]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-scalar-evolution.c
Allow 2 insns from sched group to issue in same cycle, if no stalls needed.
[thirdparty/gcc.git] / gcc / tree-scalar-evolution.c
CommitLineData
b9d73ea6 1/* Scalar evolution detector.
aad93da1 2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
b9d73ea6 3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
b9d73ea6 10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
b9d73ea6 20
48e1416a 21/*
22 Description:
23
c2c3fd24 24 This pass analyzes the evolution of scalar variables in loop
25 structures. The algorithm is based on the SSA representation,
26 and on the loop hierarchy tree. This algorithm is not based on
27 the notion of versions of a variable, as it was the case for the
28 previous implementations of the scalar evolution algorithm, but
29 it assumes that each defined name is unique.
30
31 The notation used in this file is called "chains of recurrences",
32 and has been proposed by Eugene Zima, Robert Van Engelen, and
33 others for describing induction variables in programs. For example
34 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
35 when entering in the loop_1 and has a step 2 in this loop, in other
36 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
37 this chain of recurrence (or chrec [shrek]) can contain the name of
38 other variables, in which case they are called parametric chrecs.
39 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
40 is the value of "a". In most of the cases these parametric chrecs
41 are fully instantiated before their use because symbolic names can
42 hide some difficult cases such as self-references described later
43 (see the Fibonacci example).
48e1416a 44
c2c3fd24 45 A short sketch of the algorithm is:
48e1416a 46
c2c3fd24 47 Given a scalar variable to be analyzed, follow the SSA edge to
48 its definition:
48e1416a 49
75a70cf9 50 - When the definition is a GIMPLE_ASSIGN: if the right hand side
c2c3fd24 51 (RHS) of the definition cannot be statically analyzed, the answer
48e1416a 52 of the analyzer is: "don't know".
c2c3fd24 53 Otherwise, for all the variables that are not yet analyzed in the
54 RHS, try to determine their evolution, and finally try to
55 evaluate the operation of the RHS that gives the evolution
56 function of the analyzed variable.
57
58 - When the definition is a condition-phi-node: determine the
59 evolution function for all the branches of the phi node, and
60 finally merge these evolutions (see chrec_merge).
61
62 - When the definition is a loop-phi-node: determine its initial
63 condition, that is the SSA edge defined in an outer loop, and
64 keep it symbolic. Then determine the SSA edges that are defined
65 in the body of the loop. Follow the inner edges until ending on
66 another loop-phi-node of the same analyzed loop. If the reached
67 loop-phi-node is not the starting loop-phi-node, then we keep
68 this definition under a symbolic form. If the reached
69 loop-phi-node is the same as the starting one, then we compute a
70 symbolic stride on the return path. The result is then the
71 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
72
73 Examples:
48e1416a 74
c2c3fd24 75 Example 1: Illustration of the basic algorithm.
48e1416a 76
c2c3fd24 77 | a = 3
78 | loop_1
79 | b = phi (a, c)
80 | c = b + 1
81 | if (c > 10) exit_loop
82 | endloop
48e1416a 83
c2c3fd24 84 Suppose that we want to know the number of iterations of the
85 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
86 ask the scalar evolution analyzer two questions: what's the
87 scalar evolution (scev) of "c", and what's the scev of "10". For
88 "10" the answer is "10" since it is a scalar constant. For the
89 scalar variable "c", it follows the SSA edge to its definition,
90 "c = b + 1", and then asks again what's the scev of "b".
91 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
92 c)", where the initial condition is "a", and the inner loop edge
93 is "c". The initial condition is kept under a symbolic form (it
94 may be the case that the copy constant propagation has done its
95 work and we end with the constant "3" as one of the edges of the
96 loop-phi-node). The update edge is followed to the end of the
97 loop, and until reaching again the starting loop-phi-node: b -> c
98 -> b. At this point we have drawn a path from "b" to "b" from
99 which we compute the stride in the loop: in this example it is
100 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
101 that the scev for "b" is known, it is possible to compute the
102 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
103 determine the number of iterations in the loop_1, we have to
afd80ffb 104 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
c2c3fd24 105 more analysis the scev {4, +, 1}_1, or in other words, this is
106 the function "f (x) = x + 4", where x is the iteration count of
107 the loop_1. Now we have to solve the inequality "x + 4 > 10",
108 and take the smallest iteration number for which the loop is
109 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
110 there are 8 iterations. In terms of loop normalization, we have
111 created a variable that is implicitly defined, "x" or just "_1",
112 and all the other analyzed scalars of the loop are defined in
113 function of this variable:
48e1416a 114
c2c3fd24 115 a -> 3
116 b -> {3, +, 1}_1
117 c -> {4, +, 1}_1
48e1416a 118
119 or in terms of a C program:
120
c2c3fd24 121 | a = 3
122 | for (x = 0; x <= 7; x++)
123 | {
124 | b = x + 3
125 | c = x + 4
126 | }
48e1416a 127
afd80ffb 128 Example 2a: Illustration of the algorithm on nested loops.
48e1416a 129
c2c3fd24 130 | loop_1
131 | a = phi (1, b)
132 | c = a + 2
133 | loop_2 10 times
134 | b = phi (c, d)
135 | d = b + 3
136 | endloop
137 | endloop
48e1416a 138
c2c3fd24 139 For analyzing the scalar evolution of "a", the algorithm follows
140 the SSA edge into the loop's body: "a -> b". "b" is an inner
48e1416a 141 loop-phi-node, and its analysis as in Example 1, gives:
142
c2c3fd24 143 b -> {c, +, 3}_2
144 d -> {c + 3, +, 3}_2
48e1416a 145
c2c3fd24 146 Following the SSA edge for the initial condition, we end on "c = a
147 + 2", and then on the starting loop-phi-node "a". From this point,
148 the loop stride is computed: back on "c = a + 2" we get a "+2" in
149 the loop_1, then on the loop-phi-node "b" we compute the overall
150 effect of the inner loop that is "b = c + 30", and we get a "+30"
151 in the loop_1. That means that the overall stride in loop_1 is
48e1416a 152 equal to "+32", and the result is:
153
c2c3fd24 154 a -> {1, +, 32}_1
155 c -> {3, +, 32}_1
afd80ffb 156
157 Example 2b: Multivariate chains of recurrences.
158
159 | loop_1
160 | k = phi (0, k + 1)
161 | loop_2 4 times
162 | j = phi (0, j + 1)
163 | loop_3 4 times
164 | i = phi (0, i + 1)
165 | A[j + k] = ...
166 | endloop
167 | endloop
168 | endloop
169
170 Analyzing the access function of array A with
171 instantiate_parameters (loop_1, "j + k"), we obtain the
172 instantiation and the analysis of the scalar variables "j" and "k"
173 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
174 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
175 {0, +, 1}_1. To obtain the evolution function in loop_3 and
176 instantiate the scalar variables up to loop_1, one has to use:
089aa668 177 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
178 The result of this call is {{0, +, 1}_1, +, 1}_2.
afd80ffb 179
c2c3fd24 180 Example 3: Higher degree polynomials.
48e1416a 181
c2c3fd24 182 | loop_1
183 | a = phi (2, b)
184 | c = phi (5, d)
185 | b = a + 1
186 | d = c + a
187 | endloop
48e1416a 188
c2c3fd24 189 a -> {2, +, 1}_1
190 b -> {3, +, 1}_1
191 c -> {5, +, a}_1
192 d -> {5 + a, +, a}_1
48e1416a 193
afd80ffb 194 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
195 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
48e1416a 196
c2c3fd24 197 Example 4: Lucas, Fibonacci, or mixers in general.
48e1416a 198
c2c3fd24 199 | loop_1
200 | a = phi (1, b)
201 | c = phi (3, d)
202 | b = c
203 | d = c + a
204 | endloop
48e1416a 205
c2c3fd24 206 a -> (1, c)_1
207 c -> {3, +, a}_1
48e1416a 208
c2c3fd24 209 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
210 following semantics: during the first iteration of the loop_1, the
211 variable contains the value 1, and then it contains the value "c".
212 Note that this syntax is close to the syntax of the loop-phi-node:
213 "a -> (1, c)_1" vs. "a = phi (1, c)".
48e1416a 214
c2c3fd24 215 The symbolic chrec representation contains all the semantics of the
216 original code. What is more difficult is to use this information.
48e1416a 217
c2c3fd24 218 Example 5: Flip-flops, or exchangers.
48e1416a 219
c2c3fd24 220 | loop_1
221 | a = phi (1, b)
222 | c = phi (3, d)
223 | b = c
224 | d = a
225 | endloop
48e1416a 226
c2c3fd24 227 a -> (1, c)_1
228 c -> (3, a)_1
48e1416a 229
c2c3fd24 230 Based on these symbolic chrecs, it is possible to refine this
48e1416a 231 information into the more precise PERIODIC_CHRECs:
232
c2c3fd24 233 a -> |1, 3|_1
234 c -> |3, 1|_1
48e1416a 235
c2c3fd24 236 This transformation is not yet implemented.
48e1416a 237
c2c3fd24 238 Further readings:
48e1416a 239
c2c3fd24 240 You can find a more detailed description of the algorithm in:
241 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
243 this is a preliminary report and some of the details of the
244 algorithm have changed. I'm working on a research report that
245 updates the description of the algorithms to reflect the design
246 choices used in this implementation.
48e1416a 247
c2c3fd24 248 A set of slides show a high level overview of the algorithm and run
249 an example through the scalar evolution analyzer:
250 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
251
252 The slides that I have presented at the GCC Summit'04 are available
253 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
254*/
255
b9d73ea6 256#include "config.h"
257#include "system.h"
258#include "coretypes.h"
9ef16211 259#include "backend.h"
7c29e30e 260#include "rtl.h"
0d9585ca 261#include "tree.h"
9ef16211 262#include "gimple.h"
9ef16211 263#include "ssa.h"
7c29e30e 264#include "gimple-pretty-print.h"
9ef16211 265#include "fold-const.h"
a8783bee 266#include "gimplify.h"
dcf1a1ec 267#include "gimple-iterator.h"
e795d6e1 268#include "gimplify-me.h"
073c1fd5 269#include "tree-cfg.h"
05d9c18a 270#include "tree-ssa-loop-ivopts.h"
271#include "tree-ssa-loop-manip.h"
272#include "tree-ssa-loop-niter.h"
073c1fd5 273#include "tree-ssa-loop.h"
69ee5dbb 274#include "tree-ssa.h"
b9d73ea6 275#include "cfgloop.h"
276#include "tree-chrec.h"
c03531c4 277#include "tree-affine.h"
b9d73ea6 278#include "tree-scalar-evolution.h"
b9ed1410 279#include "dumpfile.h"
d1de0ec2 280#include "params.h"
0f4161b1 281#include "tree-ssa-propagate.h"
f6a34e3f 282#include "gimple-fold.h"
c2c3fd24 283
c3f8ce55 284static tree analyze_scalar_evolution_1 (struct loop *, tree);
62bc06ea 285static tree analyze_scalar_evolution_for_address_of (struct loop *loop,
286 tree var);
c2c3fd24 287
cbb69ef1 288/* The cached information about an SSA name with version NAME_VERSION,
289 claiming that below basic block with index INSTANTIATED_BELOW, the
290 value of the SSA name can be expressed as CHREC. */
c2c3fd24 291
9f9f871f 292struct GTY((for_user)) scev_info_str {
cbb69ef1 293 unsigned int name_version;
294 int instantiated_below;
c2c3fd24 295 tree chrec;
296};
297
298/* Counters for the scev database. */
299static unsigned nb_set_scev = 0;
300static unsigned nb_get_scev = 0;
301
302/* The following trees are unique elements. Thus the comparison of
303 another element to these elements should be done on the pointer to
304 these trees, and not on their value. */
305
306/* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
307tree chrec_not_analyzed_yet;
308
309/* Reserved to the cases where the analyzer has detected an
310 undecidable property at compile time. */
311tree chrec_dont_know;
312
313/* When the analyzer has detected that a property will never
314 happen, then it qualifies it with chrec_known. */
315tree chrec_known;
316
b594087e 317struct scev_info_hasher : ggc_ptr_hash<scev_info_str>
9f9f871f 318{
319 static hashval_t hash (scev_info_str *i);
320 static bool equal (const scev_info_str *a, const scev_info_str *b);
321};
322
323static GTY (()) hash_table<scev_info_hasher> *scalar_evolution_info;
c2c3fd24 324
325\f
089aa668 326/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
c2c3fd24 327
328static inline struct scev_info_str *
089aa668 329new_scev_info_str (basic_block instantiated_below, tree var)
c2c3fd24 330{
331 struct scev_info_str *res;
48e1416a 332
25a27413 333 res = ggc_alloc<scev_info_str> ();
cbb69ef1 334 res->name_version = SSA_NAME_VERSION (var);
c2c3fd24 335 res->chrec = chrec_not_analyzed_yet;
cbb69ef1 336 res->instantiated_below = instantiated_below->index;
089aa668 337
c2c3fd24 338 return res;
339}
340
341/* Computes a hash function for database element ELT. */
342
9f9f871f 343hashval_t
344scev_info_hasher::hash (scev_info_str *elt)
c2c3fd24 345{
cbb69ef1 346 return elt->name_version ^ elt->instantiated_below;
c2c3fd24 347}
348
349/* Compares database elements E1 and E2. */
350
9f9f871f 351bool
352scev_info_hasher::equal (const scev_info_str *elt1, const scev_info_str *elt2)
c2c3fd24 353{
cbb69ef1 354 return (elt1->name_version == elt2->name_version
089aa668 355 && elt1->instantiated_below == elt2->instantiated_below);
c2c3fd24 356}
357
089aa668 358/* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
359 A first query on VAR returns chrec_not_analyzed_yet. */
c2c3fd24 360
361static tree *
089aa668 362find_var_scev_info (basic_block instantiated_below, tree var)
c2c3fd24 363{
364 struct scev_info_str *res;
365 struct scev_info_str tmp;
c2c3fd24 366
cbb69ef1 367 tmp.name_version = SSA_NAME_VERSION (var);
368 tmp.instantiated_below = instantiated_below->index;
9f9f871f 369 scev_info_str **slot = scalar_evolution_info->find_slot (&tmp, INSERT);
c2c3fd24 370
371 if (!*slot)
089aa668 372 *slot = new_scev_info_str (instantiated_below, var);
9f9f871f 373 res = *slot;
c2c3fd24 374
375 return &res->chrec;
376}
377
c2c3fd24 378/* Return true when CHREC contains symbolic names defined in
379 LOOP_NB. */
380
48e1416a 381bool
7ecb5bb2 382chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
c2c3fd24 383{
c2f47e15 384 int i, n;
385
c2c3fd24 386 if (chrec == NULL_TREE)
387 return false;
388
71d9af81 389 if (is_gimple_min_invariant (chrec))
c2c3fd24 390 return false;
391
c2c3fd24 392 if (TREE_CODE (chrec) == SSA_NAME)
393 {
42acab1c 394 gimple *def;
a05095f9 395 loop_p def_loop, loop;
396
397 if (SSA_NAME_IS_DEFAULT_DEF (chrec))
398 return false;
399
400 def = SSA_NAME_DEF_STMT (chrec);
401 def_loop = loop_containing_stmt (def);
41f75a99 402 loop = get_loop (cfun, loop_nb);
c2c3fd24 403
404 if (def_loop == NULL)
405 return false;
406
407 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
408 return true;
409
410 return false;
411 }
412
c2f47e15 413 n = TREE_OPERAND_LENGTH (chrec);
414 for (i = 0; i < n; i++)
48e1416a 415 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
c2f47e15 416 loop_nb))
417 return true;
418 return false;
c2c3fd24 419}
420
421/* Return true when PHI is a loop-phi-node. */
422
423static bool
42acab1c 424loop_phi_node_p (gimple *phi)
c2c3fd24 425{
426 /* The implementation of this function is based on the following
427 property: "all the loop-phi-nodes of a loop are contained in the
428 loop's header basic block". */
429
75a70cf9 430 return loop_containing_stmt (phi)->header == gimple_bb (phi);
c2c3fd24 431}
432
433/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
434 In general, in the case of multivariate evolutions we want to get
435 the evolution in different loops. LOOP specifies the level for
436 which to get the evolution.
48e1416a 437
c2c3fd24 438 Example:
48e1416a 439
c2c3fd24 440 | for (j = 0; j < 100; j++)
441 | {
442 | for (k = 0; k < 100; k++)
443 | {
48e1416a 444 | i = k + j; - Here the value of i is a function of j, k.
c2c3fd24 445 | }
48e1416a 446 | ... = i - Here the value of i is a function of j.
c2c3fd24 447 | }
48e1416a 448 | ... = i - Here the value of i is a scalar.
449
450 Example:
451
c2c3fd24 452 | i_0 = ...
453 | loop_1 10 times
454 | i_1 = phi (i_0, i_2)
455 | i_2 = i_1 + 2
456 | endloop
48e1416a 457
c2c3fd24 458 This loop has the same effect as:
459 LOOP_1 has the same effect as:
48e1416a 460
c2c3fd24 461 | i_1 = i_0 + 20
48e1416a 462
463 The overall effect of the loop, "i_0 + 20" in the previous example,
464 is obtained by passing in the parameters: LOOP = 1,
c2c3fd24 465 EVOLUTION_FN = {i_0, +, 2}_1.
466*/
48e1416a 467
524bc988 468tree
c2c3fd24 469compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
470{
471 bool val = false;
472
473 if (evolution_fn == chrec_dont_know)
474 return chrec_dont_know;
475
476 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
477 {
3bbbcdff 478 struct loop *inner_loop = get_chrec_loop (evolution_fn);
479
480 if (inner_loop == loop
481 || flow_loop_nested_p (loop, inner_loop))
c2c3fd24 482 {
0c3c2e56 483 tree nb_iter = number_of_latch_executions (inner_loop);
c2c3fd24 484
485 if (nb_iter == chrec_dont_know)
486 return chrec_dont_know;
487 else
488 {
489 tree res;
490
c2c3fd24 491 /* evolution_fn is the evolution function in LOOP. Get
492 its value in the nb_iter-th iteration. */
493 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
524bc988 494
495 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
496 res = instantiate_parameters (loop, res);
497
fbf0afd1 498 /* Continue the computation until ending on a parent of LOOP. */
c2c3fd24 499 return compute_overall_effect_of_inner_loop (loop, res);
500 }
501 }
502 else
503 return evolution_fn;
504 }
48e1416a 505
c2c3fd24 506 /* If the evolution function is an invariant, there is nothing to do. */
507 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
508 return evolution_fn;
48e1416a 509
c2c3fd24 510 else
511 return chrec_dont_know;
512}
513
c2c3fd24 514/* Associate CHREC to SCALAR. */
515
516static void
089aa668 517set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
c2c3fd24 518{
519 tree *scalar_info;
48e1416a 520
c2c3fd24 521 if (TREE_CODE (scalar) != SSA_NAME)
522 return;
523
089aa668 524 scalar_info = find_var_scev_info (instantiated_below, scalar);
48e1416a 525
c2c3fd24 526 if (dump_file)
527 {
487a9bc1 528 if (dump_flags & TDF_SCEV)
c2c3fd24 529 {
530 fprintf (dump_file, "(set_scalar_evolution \n");
089aa668 531 fprintf (dump_file, " instantiated_below = %d \n",
532 instantiated_below->index);
c2c3fd24 533 fprintf (dump_file, " (scalar = ");
1ffa4346 534 print_generic_expr (dump_file, scalar);
c2c3fd24 535 fprintf (dump_file, ")\n (scalar_evolution = ");
1ffa4346 536 print_generic_expr (dump_file, chrec);
c2c3fd24 537 fprintf (dump_file, "))\n");
538 }
539 if (dump_flags & TDF_STATS)
540 nb_set_scev++;
541 }
48e1416a 542
c2c3fd24 543 *scalar_info = chrec;
544}
545
089aa668 546/* Retrieve the chrec associated to SCALAR instantiated below
547 INSTANTIATED_BELOW block. */
c2c3fd24 548
549static tree
089aa668 550get_scalar_evolution (basic_block instantiated_below, tree scalar)
c2c3fd24 551{
552 tree res;
48e1416a 553
c2c3fd24 554 if (dump_file)
555 {
487a9bc1 556 if (dump_flags & TDF_SCEV)
c2c3fd24 557 {
558 fprintf (dump_file, "(get_scalar_evolution \n");
559 fprintf (dump_file, " (scalar = ");
1ffa4346 560 print_generic_expr (dump_file, scalar);
c2c3fd24 561 fprintf (dump_file, ")\n");
562 }
563 if (dump_flags & TDF_STATS)
564 nb_get_scev++;
565 }
48e1416a 566
c2c3fd24 567 switch (TREE_CODE (scalar))
568 {
569 case SSA_NAME:
089aa668 570 res = *find_var_scev_info (instantiated_below, scalar);
c2c3fd24 571 break;
572
573 case REAL_CST:
06f0b99c 574 case FIXED_CST:
c2c3fd24 575 case INTEGER_CST:
576 res = scalar;
577 break;
578
579 default:
580 res = chrec_not_analyzed_yet;
581 break;
582 }
48e1416a 583
487a9bc1 584 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 585 {
586 fprintf (dump_file, " (scalar_evolution = ");
1ffa4346 587 print_generic_expr (dump_file, res);
c2c3fd24 588 fprintf (dump_file, "))\n");
589 }
48e1416a 590
c2c3fd24 591 return res;
592}
593
594/* Helper function for add_to_evolution. Returns the evolution
595 function for an assignment of the form "a = b + c", where "a" and
596 "b" are on the strongly connected component. CHREC_BEFORE is the
597 information that we already have collected up to this point.
48e1416a 598 TO_ADD is the evolution of "c".
599
c2c3fd24 600 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
601 evolution the expression TO_ADD, otherwise construct an evolution
602 part for this loop. */
603
604static tree
f84a688a 605add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
42acab1c 606 gimple *at_stmt)
c2c3fd24 607{
f84a688a 608 tree type, left, right;
41f75a99 609 struct loop *loop = get_loop (cfun, loop_nb), *chloop;
f84a688a 610
c2c3fd24 611 switch (TREE_CODE (chrec_before))
612 {
613 case POLYNOMIAL_CHREC:
3bbbcdff 614 chloop = get_chrec_loop (chrec_before);
615 if (chloop == loop
616 || flow_loop_nested_p (chloop, loop))
c2c3fd24 617 {
618 unsigned var;
f84a688a 619
620 type = chrec_type (chrec_before);
48e1416a 621
c2c3fd24 622 /* When there is no evolution part in this loop, build it. */
3bbbcdff 623 if (chloop != loop)
c2c3fd24 624 {
625 var = loop_nb;
626 left = chrec_before;
eb105b17 627 right = SCALAR_FLOAT_TYPE_P (type)
628 ? build_real (type, dconst0)
629 : build_int_cst (type, 0);
c2c3fd24 630 }
631 else
632 {
633 var = CHREC_VARIABLE (chrec_before);
634 left = CHREC_LEFT (chrec_before);
635 right = CHREC_RIGHT (chrec_before);
636 }
637
f84a688a 638 to_add = chrec_convert (type, to_add, at_stmt);
0de36bdb 639 right = chrec_convert_rhs (type, right, at_stmt);
640 right = chrec_fold_plus (chrec_type (right), right, to_add);
f84a688a 641 return build_polynomial_chrec (var, left, right);
c2c3fd24 642 }
643 else
f84a688a 644 {
3bbbcdff 645 gcc_assert (flow_loop_nested_p (loop, chloop));
646
f84a688a 647 /* Search the evolution in LOOP_NB. */
648 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
649 to_add, at_stmt);
650 right = CHREC_RIGHT (chrec_before);
0de36bdb 651 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
f84a688a 652 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
653 left, right);
654 }
48e1416a 655
c2c3fd24 656 default:
657 /* These nodes do not depend on a loop. */
658 if (chrec_before == chrec_dont_know)
659 return chrec_dont_know;
f84a688a 660
661 left = chrec_before;
0de36bdb 662 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
f84a688a 663 return build_polynomial_chrec (loop_nb, left, right);
c2c3fd24 664 }
665}
666
667/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
48e1416a 668 of LOOP_NB.
669
c2c3fd24 670 Description (provided for completeness, for those who read code in
671 a plane, and for my poor 62 bytes brain that would have forgotten
672 all this in the next two or three months):
48e1416a 673
c2c3fd24 674 The algorithm of translation of programs from the SSA representation
675 into the chrecs syntax is based on a pattern matching. After having
676 reconstructed the overall tree expression for a loop, there are only
677 two cases that can arise:
48e1416a 678
c2c3fd24 679 1. a = loop-phi (init, a + expr)
680 2. a = loop-phi (init, expr)
48e1416a 681
c2c3fd24 682 where EXPR is either a scalar constant with respect to the analyzed
683 loop (this is a degree 0 polynomial), or an expression containing
684 other loop-phi definitions (these are higher degree polynomials).
48e1416a 685
c2c3fd24 686 Examples:
48e1416a 687
688 1.
c2c3fd24 689 | init = ...
690 | loop_1
691 | a = phi (init, a + 5)
692 | endloop
48e1416a 693
694 2.
c2c3fd24 695 | inita = ...
696 | initb = ...
697 | loop_1
698 | a = phi (inita, 2 * b + 3)
699 | b = phi (initb, b + 1)
700 | endloop
48e1416a 701
702 For the first case, the semantics of the SSA representation is:
703
c2c3fd24 704 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
48e1416a 705
c2c3fd24 706 that is, there is a loop index "x" that determines the scalar value
707 of the variable during the loop execution. During the first
708 iteration, the value is that of the initial condition INIT, while
709 during the subsequent iterations, it is the sum of the initial
710 condition with the sum of all the values of EXPR from the initial
48e1416a 711 iteration to the before last considered iteration.
712
c2c3fd24 713 For the second case, the semantics of the SSA program is:
48e1416a 714
c2c3fd24 715 | a (x) = init, if x = 0;
716 | expr (x - 1), otherwise.
48e1416a 717
c2c3fd24 718 The second case corresponds to the PEELED_CHREC, whose syntax is
48e1416a 719 close to the syntax of a loop-phi-node:
720
c2c3fd24 721 | phi (init, expr) vs. (init, expr)_x
48e1416a 722
c2c3fd24 723 The proof of the translation algorithm for the first case is a
48e1416a 724 proof by structural induction based on the degree of EXPR.
725
c2c3fd24 726 Degree 0:
727 When EXPR is a constant with respect to the analyzed loop, or in
728 other words when EXPR is a polynomial of degree 0, the evolution of
729 the variable A in the loop is an affine function with an initial
730 condition INIT, and a step EXPR. In order to show this, we start
731 from the semantics of the SSA representation:
48e1416a 732
c2c3fd24 733 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
48e1416a 734
c2c3fd24 735 and since "expr (j)" is a constant with respect to "j",
48e1416a 736
737 f (x) = init + x * expr
738
c2c3fd24 739 Finally, based on the semantics of the pure sum chrecs, by
740 identification we get the corresponding chrecs syntax:
48e1416a 741
742 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
c2c3fd24 743 f (x) -> {init, +, expr}_x
48e1416a 744
c2c3fd24 745 Higher degree:
746 Suppose that EXPR is a polynomial of degree N with respect to the
747 analyzed loop_x for which we have already determined that it is
748 written under the chrecs syntax:
48e1416a 749
c2c3fd24 750 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
48e1416a 751
c2c3fd24 752 We start from the semantics of the SSA program:
48e1416a 753
c2c3fd24 754 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
755 |
48e1416a 756 | f (x) = init + \sum_{j = 0}^{x - 1}
c2c3fd24 757 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
758 |
48e1416a 759 | f (x) = init + \sum_{j = 0}^{x - 1}
760 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
c2c3fd24 761 |
48e1416a 762 | f (x) = init + \sum_{k = 0}^{n - 1}
763 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
c2c3fd24 764 |
48e1416a 765 | f (x) = init + \sum_{k = 0}^{n - 1}
766 | (b_k * \binom{x}{k + 1})
c2c3fd24 767 |
48e1416a 768 | f (x) = init + b_0 * \binom{x}{1} + ...
769 | + b_{n-1} * \binom{x}{n}
c2c3fd24 770 |
48e1416a 771 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
772 | + b_{n-1} * \binom{x}{n}
c2c3fd24 773 |
48e1416a 774
c2c3fd24 775 And finally from the definition of the chrecs syntax, we identify:
48e1416a 776 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
777
c2c3fd24 778 This shows the mechanism that stands behind the add_to_evolution
779 function. An important point is that the use of symbolic
780 parameters avoids the need of an analysis schedule.
48e1416a 781
c2c3fd24 782 Example:
48e1416a 783
c2c3fd24 784 | inita = ...
785 | initb = ...
48e1416a 786 | loop_1
c2c3fd24 787 | a = phi (inita, a + 2 + b)
788 | b = phi (initb, b + 1)
789 | endloop
48e1416a 790
c2c3fd24 791 When analyzing "a", the algorithm keeps "b" symbolically:
48e1416a 792
c2c3fd24 793 | a -> {inita, +, 2 + b}_1
48e1416a 794
c2c3fd24 795 Then, after instantiation, the analyzer ends on the evolution:
48e1416a 796
c2c3fd24 797 | a -> {inita, +, 2 + initb, +, 1}_1
798
799*/
800
48e1416a 801static tree
f84a688a 802add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
42acab1c 803 tree to_add, gimple *at_stmt)
c2c3fd24 804{
805 tree type = chrec_type (to_add);
806 tree res = NULL_TREE;
48e1416a 807
c2c3fd24 808 if (to_add == NULL_TREE)
809 return chrec_before;
48e1416a 810
c2c3fd24 811 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
812 instantiated at this point. */
813 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
814 /* This should not happen. */
815 return chrec_dont_know;
48e1416a 816
487a9bc1 817 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 818 {
819 fprintf (dump_file, "(add_to_evolution \n");
820 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
821 fprintf (dump_file, " (chrec_before = ");
1ffa4346 822 print_generic_expr (dump_file, chrec_before);
c2c3fd24 823 fprintf (dump_file, ")\n (to_add = ");
1ffa4346 824 print_generic_expr (dump_file, to_add);
c2c3fd24 825 fprintf (dump_file, ")\n");
826 }
827
828 if (code == MINUS_EXPR)
4a1dfa2c 829 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
830 ? build_real (type, dconstm1)
831 : build_int_cst_type (type, -1));
c2c3fd24 832
f84a688a 833 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
c2c3fd24 834
487a9bc1 835 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 836 {
837 fprintf (dump_file, " (res = ");
1ffa4346 838 print_generic_expr (dump_file, res);
c2c3fd24 839 fprintf (dump_file, "))\n");
840 }
841
842 return res;
843}
844
c2c3fd24 845\f
846
847/* This section selects the loops that will be good candidates for the
848 scalar evolution analysis. For the moment, greedily select all the
849 loop nests we could analyze. */
850
c2c3fd24 851/* For a loop with a single exit edge, return the COND_EXPR that
852 guards the exit edge. If the expression is too difficult to
853 analyze, then give up. */
854
1a91d914 855gcond *
1f1872fd 856get_loop_exit_condition (const struct loop *loop)
c2c3fd24 857{
1a91d914 858 gcond *res = NULL;
d9e7e1a2 859 edge exit_edge = single_exit (loop);
48e1416a 860
487a9bc1 861 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 862 fprintf (dump_file, "(get_loop_exit_condition \n ");
48e1416a 863
bb445479 864 if (exit_edge)
c2c3fd24 865 {
42acab1c 866 gimple *stmt;
48e1416a 867
75a70cf9 868 stmt = last_stmt (exit_edge->src);
1a91d914 869 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
870 res = cond_stmt;
c2c3fd24 871 }
48e1416a 872
487a9bc1 873 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 874 {
1ffa4346 875 print_gimple_stmt (dump_file, res, 0);
c2c3fd24 876 fprintf (dump_file, ")\n");
877 }
48e1416a 878
c2c3fd24 879 return res;
880}
881
c2c3fd24 882\f
883/* Depth first search algorithm. */
884
6dc50383 885enum t_bool {
d1de0ec2 886 t_false,
887 t_true,
888 t_dont_know
6dc50383 889};
d1de0ec2 890
891
42acab1c 892static t_bool follow_ssa_edge (struct loop *loop, gimple *, gphi *,
1a91d914 893 tree *, int);
c2c3fd24 894
75a70cf9 895/* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
c2c3fd24 896 Return true if the strongly connected component has been found. */
897
d1de0ec2 898static t_bool
42acab1c 899follow_ssa_edge_binary (struct loop *loop, gimple *at_stmt,
75a70cf9 900 tree type, tree rhs0, enum tree_code code, tree rhs1,
1a91d914 901 gphi *halting_phi, tree *evolution_of_loop,
902 int limit)
c2c3fd24 903{
d1de0ec2 904 t_bool res = t_false;
8c9d86fd 905 tree evol;
75a70cf9 906
0de36bdb 907 switch (code)
c2c3fd24 908 {
0de36bdb 909 case POINTER_PLUS_EXPR:
c2c3fd24 910 case PLUS_EXPR:
c2c3fd24 911 if (TREE_CODE (rhs0) == SSA_NAME)
912 {
913 if (TREE_CODE (rhs1) == SSA_NAME)
914 {
48e1416a 915 /* Match an assignment under the form:
c2c3fd24 916 "a = b + c". */
48e1416a 917
de39d8ad 918 /* We want only assignments of form "name + name" contribute to
919 LIMIT, as the other cases do not necessarily contribute to
920 the complexity of the expression. */
921 limit++;
922
8c9d86fd 923 evol = *evolution_of_loop;
dabc0f79 924 evol = add_to_evolution
48e1416a 925 (loop->num,
926 chrec_convert (type, evol, at_stmt),
0de36bdb 927 code, rhs1, at_stmt);
dabc0f79 928 res = follow_ssa_edge
929 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
930 if (res == t_true)
931 *evolution_of_loop = evol;
d1de0ec2 932 else if (res == t_false)
c2c3fd24 933 {
dabc0f79 934 *evolution_of_loop = add_to_evolution
935 (loop->num,
936 chrec_convert (type, *evolution_of_loop, at_stmt),
937 code, rhs0, at_stmt);
48e1416a 938 res = follow_ssa_edge
939 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
d1de0ec2 940 evolution_of_loop, limit);
d1de0ec2 941 if (res == t_true)
dabc0f79 942 ;
d1de0ec2 943 else if (res == t_dont_know)
944 *evolution_of_loop = chrec_dont_know;
c2c3fd24 945 }
d1de0ec2 946
947 else if (res == t_dont_know)
948 *evolution_of_loop = chrec_dont_know;
c2c3fd24 949 }
48e1416a 950
c2c3fd24 951 else
952 {
48e1416a 953 /* Match an assignment under the form:
c2c3fd24 954 "a = b + ...". */
dabc0f79 955 *evolution_of_loop = add_to_evolution
956 (loop->num, chrec_convert (type, *evolution_of_loop,
957 at_stmt),
958 code, rhs1, at_stmt);
48e1416a 959 res = follow_ssa_edge
960 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
d1de0ec2 961 evolution_of_loop, limit);
962 if (res == t_true)
dabc0f79 963 ;
d1de0ec2 964 else if (res == t_dont_know)
965 *evolution_of_loop = chrec_dont_know;
c2c3fd24 966 }
967 }
48e1416a 968
c2c3fd24 969 else if (TREE_CODE (rhs1) == SSA_NAME)
970 {
48e1416a 971 /* Match an assignment under the form:
c2c3fd24 972 "a = ... + c". */
dabc0f79 973 *evolution_of_loop = add_to_evolution
974 (loop->num, chrec_convert (type, *evolution_of_loop,
975 at_stmt),
976 code, rhs0, at_stmt);
48e1416a 977 res = follow_ssa_edge
978 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
d1de0ec2 979 evolution_of_loop, limit);
980 if (res == t_true)
dabc0f79 981 ;
d1de0ec2 982 else if (res == t_dont_know)
983 *evolution_of_loop = chrec_dont_know;
c2c3fd24 984 }
985
986 else
48e1416a 987 /* Otherwise, match an assignment under the form:
c2c3fd24 988 "a = ... + ...". */
989 /* And there is nothing to do. */
d1de0ec2 990 res = t_false;
c2c3fd24 991 break;
48e1416a 992
c2c3fd24 993 case MINUS_EXPR:
994 /* This case is under the form "opnd0 = rhs0 - rhs1". */
c2c3fd24 995 if (TREE_CODE (rhs0) == SSA_NAME)
c2c3fd24 996 {
48e1416a 997 /* Match an assignment under the form:
11541659 998 "a = b - ...". */
de39d8ad 999
1000 /* We want only assignments of form "name - name" contribute to
1001 LIMIT, as the other cases do not necessarily contribute to
1002 the complexity of the expression. */
1003 if (TREE_CODE (rhs1) == SSA_NAME)
1004 limit++;
1005
dabc0f79 1006 *evolution_of_loop = add_to_evolution
1007 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
1008 MINUS_EXPR, rhs1, at_stmt);
48e1416a 1009 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
d1de0ec2 1010 evolution_of_loop, limit);
1011 if (res == t_true)
dabc0f79 1012 ;
d1de0ec2 1013 else if (res == t_dont_know)
1014 *evolution_of_loop = chrec_dont_know;
c2c3fd24 1015 }
c2c3fd24 1016 else
48e1416a 1017 /* Otherwise, match an assignment under the form:
c2c3fd24 1018 "a = ... - ...". */
1019 /* And there is nothing to do. */
d1de0ec2 1020 res = t_false;
c2c3fd24 1021 break;
75a70cf9 1022
1023 default:
1024 res = t_false;
1025 }
1026
1027 return res;
1028}
48e1416a 1029
75a70cf9 1030/* Follow the ssa edge into the expression EXPR.
1031 Return true if the strongly connected component has been found. */
1032
1033static t_bool
42acab1c 1034follow_ssa_edge_expr (struct loop *loop, gimple *at_stmt, tree expr,
1a91d914 1035 gphi *halting_phi, tree *evolution_of_loop,
1036 int limit)
75a70cf9 1037{
191bdb6e 1038 enum tree_code code = TREE_CODE (expr);
1039 tree type = TREE_TYPE (expr), rhs0, rhs1;
1040 t_bool res;
1041
75a70cf9 1042 /* The EXPR is one of the following cases:
48e1416a 1043 - an SSA_NAME,
75a70cf9 1044 - an INTEGER_CST,
48e1416a 1045 - a PLUS_EXPR,
1046 - a POINTER_PLUS_EXPR,
75a70cf9 1047 - a MINUS_EXPR,
1048 - an ASSERT_EXPR,
1049 - other cases are not yet handled. */
191bdb6e 1050
75a70cf9 1051 switch (code)
1052 {
191bdb6e 1053 CASE_CONVERT:
75a70cf9 1054 /* This assignment is under the form "a_1 = (cast) rhs. */
1055 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1056 halting_phi, evolution_of_loop, limit);
1057 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1058 break;
1059
1060 case INTEGER_CST:
1061 /* This assignment is under the form "a_1 = 7". */
1062 res = t_false;
1063 break;
191bdb6e 1064
75a70cf9 1065 case SSA_NAME:
1066 /* This assignment is under the form: "a_1 = b_2". */
48e1416a 1067 res = follow_ssa_edge
75a70cf9 1068 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1069 break;
191bdb6e 1070
75a70cf9 1071 case POINTER_PLUS_EXPR:
1072 case PLUS_EXPR:
1073 case MINUS_EXPR:
1074 /* This case is under the form "rhs0 +- rhs1". */
1075 rhs0 = TREE_OPERAND (expr, 0);
1076 rhs1 = TREE_OPERAND (expr, 1);
191bdb6e 1077 type = TREE_TYPE (rhs0);
1078 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1079 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1080 res = follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1081 halting_phi, evolution_of_loop, limit);
1082 break;
75a70cf9 1083
182cf5a9 1084 case ADDR_EXPR:
1085 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1086 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
1087 {
1088 expr = TREE_OPERAND (expr, 0);
1089 rhs0 = TREE_OPERAND (expr, 0);
1090 rhs1 = TREE_OPERAND (expr, 1);
1091 type = TREE_TYPE (rhs0);
1092 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1093 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1094 res = follow_ssa_edge_binary (loop, at_stmt, type,
1095 rhs0, POINTER_PLUS_EXPR, rhs1,
1096 halting_phi, evolution_of_loop, limit);
1097 }
1098 else
1099 res = t_false;
1100 break;
1101
88dbf20f 1102 case ASSERT_EXPR:
191bdb6e 1103 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1104 It must be handled as a copy assignment of the form a_1 = a_2. */
1105 rhs0 = ASSERT_EXPR_VAR (expr);
1106 if (TREE_CODE (rhs0) == SSA_NAME)
1107 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0),
1108 halting_phi, evolution_of_loop, limit);
1109 else
1110 res = t_false;
1111 break;
88dbf20f 1112
c2c3fd24 1113 default:
d1de0ec2 1114 res = t_false;
c2c3fd24 1115 break;
1116 }
191bdb6e 1117
c2c3fd24 1118 return res;
1119}
1120
75a70cf9 1121/* Follow the ssa edge into the right hand side of an assignment STMT.
1122 Return true if the strongly connected component has been found. */
1123
1124static t_bool
42acab1c 1125follow_ssa_edge_in_rhs (struct loop *loop, gimple *stmt,
1a91d914 1126 gphi *halting_phi, tree *evolution_of_loop,
1127 int limit)
75a70cf9 1128{
75a70cf9 1129 enum tree_code code = gimple_assign_rhs_code (stmt);
191bdb6e 1130 tree type = gimple_expr_type (stmt), rhs1, rhs2;
1131 t_bool res;
75a70cf9 1132
191bdb6e 1133 switch (code)
75a70cf9 1134 {
191bdb6e 1135 CASE_CONVERT:
1136 /* This assignment is under the form "a_1 = (cast) rhs. */
1137 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1138 halting_phi, evolution_of_loop, limit);
1139 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1140 break;
1141
1142 case POINTER_PLUS_EXPR:
1143 case PLUS_EXPR:
1144 case MINUS_EXPR:
1145 rhs1 = gimple_assign_rhs1 (stmt);
1146 rhs2 = gimple_assign_rhs2 (stmt);
1147 type = TREE_TYPE (rhs1);
1148 res = follow_ssa_edge_binary (loop, stmt, type, rhs1, code, rhs2,
d7e5a0b1 1149 halting_phi, evolution_of_loop, limit);
191bdb6e 1150 break;
d7e5a0b1 1151
75a70cf9 1152 default:
191bdb6e 1153 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1154 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1155 halting_phi, evolution_of_loop, limit);
1156 else
1157 res = t_false;
1158 break;
75a70cf9 1159 }
191bdb6e 1160
1161 return res;
75a70cf9 1162}
1163
c2c3fd24 1164/* Checks whether the I-th argument of a PHI comes from a backedge. */
1165
1166static bool
1a91d914 1167backedge_phi_arg_p (gphi *phi, int i)
c2c3fd24 1168{
75a70cf9 1169 const_edge e = gimple_phi_arg_edge (phi, i);
c2c3fd24 1170
1171 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1172 about updating it anywhere, and this should work as well most of the
1173 time. */
1174 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1175 return true;
1176
1177 return false;
1178}
1179
1180/* Helper function for one branch of the condition-phi-node. Return
1181 true if the strongly connected component has been found following
1182 this path. */
1183
d1de0ec2 1184static inline t_bool
c2c3fd24 1185follow_ssa_edge_in_condition_phi_branch (int i,
48e1416a 1186 struct loop *loop,
1a91d914 1187 gphi *condition_phi,
1188 gphi *halting_phi,
c2c3fd24 1189 tree *evolution_of_branch,
d1de0ec2 1190 tree init_cond, int limit)
c2c3fd24 1191{
1192 tree branch = PHI_ARG_DEF (condition_phi, i);
1193 *evolution_of_branch = chrec_dont_know;
1194
1195 /* Do not follow back edges (they must belong to an irreducible loop, which
1196 we really do not want to worry about). */
1197 if (backedge_phi_arg_p (condition_phi, i))
d1de0ec2 1198 return t_false;
c2c3fd24 1199
1200 if (TREE_CODE (branch) == SSA_NAME)
1201 {
1202 *evolution_of_branch = init_cond;
48e1416a 1203 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
d1de0ec2 1204 evolution_of_branch, limit);
c2c3fd24 1205 }
1206
48e1416a 1207 /* This case occurs when one of the condition branches sets
5c9dae64 1208 the variable to a constant: i.e. a phi-node like
48e1416a 1209 "a_2 = PHI <a_7(5), 2(6)>;".
1210
1211 FIXME: This case have to be refined correctly:
c2c3fd24 1212 in some cases it is possible to say something better than
1213 chrec_dont_know, for example using a wrap-around notation. */
d1de0ec2 1214 return t_false;
c2c3fd24 1215}
1216
1217/* This function merges the branches of a condition-phi-node in a
1218 loop. */
1219
d1de0ec2 1220static t_bool
c2c3fd24 1221follow_ssa_edge_in_condition_phi (struct loop *loop,
1a91d914 1222 gphi *condition_phi,
1223 gphi *halting_phi,
d1de0ec2 1224 tree *evolution_of_loop, int limit)
c2c3fd24 1225{
75a70cf9 1226 int i, n;
c2c3fd24 1227 tree init = *evolution_of_loop;
1228 tree evolution_of_branch;
d1de0ec2 1229 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1230 halting_phi,
1231 &evolution_of_branch,
1232 init, limit);
1233 if (res == t_false || res == t_dont_know)
1234 return res;
c2c3fd24 1235
c2c3fd24 1236 *evolution_of_loop = evolution_of_branch;
1237
75a70cf9 1238 n = gimple_phi_num_args (condition_phi);
75a70cf9 1239 for (i = 1; i < n; i++)
c2c3fd24 1240 {
c4485791 1241 /* Quickly give up when the evolution of one of the branches is
1242 not known. */
1243 if (*evolution_of_loop == chrec_dont_know)
d1de0ec2 1244 return t_true;
c4485791 1245
aebe538b 1246 /* Increase the limit by the PHI argument number to avoid exponential
1247 time and memory complexity. */
d1de0ec2 1248 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1249 halting_phi,
1250 &evolution_of_branch,
aebe538b 1251 init, limit + i);
d1de0ec2 1252 if (res == t_false || res == t_dont_know)
1253 return res;
c2c3fd24 1254
1255 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1256 evolution_of_branch);
1257 }
48e1416a 1258
d1de0ec2 1259 return t_true;
c2c3fd24 1260}
1261
1262/* Follow an SSA edge in an inner loop. It computes the overall
1263 effect of the loop, and following the symbolic initial conditions,
1264 it follows the edges in the parent loop. The inner loop is
1265 considered as a single statement. */
1266
d1de0ec2 1267static t_bool
c2c3fd24 1268follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1a91d914 1269 gphi *loop_phi_node,
1270 gphi *halting_phi,
d1de0ec2 1271 tree *evolution_of_loop, int limit)
c2c3fd24 1272{
1273 struct loop *loop = loop_containing_stmt (loop_phi_node);
1274 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1275
1276 /* Sometimes, the inner loop is too difficult to analyze, and the
1277 result of the analysis is a symbolic parameter. */
1278 if (ev == PHI_RESULT (loop_phi_node))
1279 {
d1de0ec2 1280 t_bool res = t_false;
75a70cf9 1281 int i, n = gimple_phi_num_args (loop_phi_node);
c2c3fd24 1282
75a70cf9 1283 for (i = 0; i < n; i++)
c2c3fd24 1284 {
1285 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1286 basic_block bb;
1287
1288 /* Follow the edges that exit the inner loop. */
75a70cf9 1289 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
c2c3fd24 1290 if (!flow_bb_inside_loop_p (loop, bb))
75a70cf9 1291 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1292 arg, halting_phi,
1293 evolution_of_loop, limit);
d1de0ec2 1294 if (res == t_true)
1295 break;
c2c3fd24 1296 }
1297
1298 /* If the path crosses this loop-phi, give up. */
d1de0ec2 1299 if (res == t_true)
c2c3fd24 1300 *evolution_of_loop = chrec_dont_know;
1301
1302 return res;
1303 }
1304
1305 /* Otherwise, compute the overall effect of the inner loop. */
1306 ev = compute_overall_effect_of_inner_loop (loop, ev);
75a70cf9 1307 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1308 evolution_of_loop, limit);
c2c3fd24 1309}
1310
1311/* Follow an SSA edge from a loop-phi-node to itself, constructing a
1312 path that is analyzed on the return walk. */
1313
d1de0ec2 1314static t_bool
42acab1c 1315follow_ssa_edge (struct loop *loop, gimple *def, gphi *halting_phi,
d1de0ec2 1316 tree *evolution_of_loop, int limit)
c2c3fd24 1317{
1318 struct loop *def_loop;
48e1416a 1319
75a70cf9 1320 if (gimple_nop_p (def))
d1de0ec2 1321 return t_false;
48e1416a 1322
d1de0ec2 1323 /* Give up if the path is longer than the MAX that we allow. */
99df7432 1324 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_COMPLEXITY))
d1de0ec2 1325 return t_dont_know;
48e1416a 1326
c2c3fd24 1327 def_loop = loop_containing_stmt (def);
48e1416a 1328
75a70cf9 1329 switch (gimple_code (def))
c2c3fd24 1330 {
75a70cf9 1331 case GIMPLE_PHI:
c2c3fd24 1332 if (!loop_phi_node_p (def))
1333 /* DEF is a condition-phi-node. Follow the branches, and
1334 record their evolutions. Finally, merge the collected
1335 information and set the approximation to the main
1336 variable. */
48e1416a 1337 return follow_ssa_edge_in_condition_phi
1a91d914 1338 (loop, as_a <gphi *> (def), halting_phi, evolution_of_loop,
1339 limit);
c2c3fd24 1340
1341 /* When the analyzed phi is the halting_phi, the
1342 depth-first search is over: we have found a path from
1343 the halting_phi to itself in the loop. */
1344 if (def == halting_phi)
d1de0ec2 1345 return t_true;
48e1416a 1346
c2c3fd24 1347 /* Otherwise, the evolution of the HALTING_PHI depends
5c9dae64 1348 on the evolution of another loop-phi-node, i.e. the
c2c3fd24 1349 evolution function is a higher degree polynomial. */
1350 if (def_loop == loop)
d1de0ec2 1351 return t_false;
48e1416a 1352
c2c3fd24 1353 /* Inner loop. */
1354 if (flow_loop_nested_p (loop, def_loop))
48e1416a 1355 return follow_ssa_edge_inner_loop_phi
1a91d914 1356 (loop, as_a <gphi *> (def), halting_phi, evolution_of_loop,
1357 limit + 1);
c2c3fd24 1358
1359 /* Outer loop. */
d1de0ec2 1360 return t_false;
c2c3fd24 1361
75a70cf9 1362 case GIMPLE_ASSIGN:
48e1416a 1363 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
d1de0ec2 1364 evolution_of_loop, limit);
48e1416a 1365
c2c3fd24 1366 default:
1367 /* At this level of abstraction, the program is just a set
75a70cf9 1368 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
c2c3fd24 1369 other node to be handled. */
d1de0ec2 1370 return t_false;
c2c3fd24 1371 }
1372}
1373
1374\f
c03531c4 1375/* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP.
1376 Handle below case and return the corresponding POLYNOMIAL_CHREC:
1377
1378 # i_17 = PHI <i_13(5), 0(3)>
1379 # _20 = PHI <_5(5), start_4(D)(3)>
1380 ...
1381 i_13 = i_17 + 1;
1382 _5 = start_4(D) + i_13;
1383
1384 Though variable _20 appears as a PEELED_CHREC in the form of
1385 (start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP.
1386
1387 See PR41488. */
1388
1389static tree
1390simplify_peeled_chrec (struct loop *loop, tree arg, tree init_cond)
1391{
1392 aff_tree aff1, aff2;
1393 tree ev, left, right, type, step_val;
5f8841a5 1394 hash_map<tree, name_expansion *> *peeled_chrec_map = NULL;
c03531c4 1395
1396 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, arg));
1397 if (ev == NULL_TREE || TREE_CODE (ev) != POLYNOMIAL_CHREC)
1398 return chrec_dont_know;
1399
1400 left = CHREC_LEFT (ev);
1401 right = CHREC_RIGHT (ev);
1402 type = TREE_TYPE (left);
1403 step_val = chrec_fold_plus (type, init_cond, right);
1404
1405 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1406 if "left" equals to "init + right". */
1407 if (operand_equal_p (left, step_val, 0))
1408 {
1409 if (dump_file && (dump_flags & TDF_SCEV))
1410 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1411
1412 return build_polynomial_chrec (loop->num, init_cond, right);
1413 }
1414
1415 /* Try harder to check if they are equal. */
1416 tree_to_aff_combination_expand (left, type, &aff1, &peeled_chrec_map);
1417 tree_to_aff_combination_expand (step_val, type, &aff2, &peeled_chrec_map);
1418 free_affine_expand_cache (&peeled_chrec_map);
a2d59721 1419 aff_combination_scale (&aff2, -1);
c03531c4 1420 aff_combination_add (&aff1, &aff2);
1421
1422 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1423 if "left" equals to "init + right". */
1424 if (aff_combination_zero_p (&aff1))
1425 {
1426 if (dump_file && (dump_flags & TDF_SCEV))
1427 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1428
1429 return build_polynomial_chrec (loop->num, init_cond, right);
1430 }
1431 return chrec_dont_know;
1432}
c2c3fd24 1433
1434/* Given a LOOP_PHI_NODE, this function determines the evolution
1435 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1436
1437static tree
1a91d914 1438analyze_evolution_in_loop (gphi *loop_phi_node,
c2c3fd24 1439 tree init_cond)
1440{
75a70cf9 1441 int i, n = gimple_phi_num_args (loop_phi_node);
c2c3fd24 1442 tree evolution_function = chrec_not_analyzed_yet;
1443 struct loop *loop = loop_containing_stmt (loop_phi_node);
1444 basic_block bb;
c03531c4 1445 static bool simplify_peeled_chrec_p = true;
48e1416a 1446
487a9bc1 1447 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1448 {
1449 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1450 fprintf (dump_file, " (loop_phi_node = ");
1ffa4346 1451 print_gimple_stmt (dump_file, loop_phi_node, 0);
c2c3fd24 1452 fprintf (dump_file, ")\n");
1453 }
48e1416a 1454
75a70cf9 1455 for (i = 0; i < n; i++)
c2c3fd24 1456 {
1457 tree arg = PHI_ARG_DEF (loop_phi_node, i);
42acab1c 1458 gimple *ssa_chain;
75a70cf9 1459 tree ev_fn;
1aa768f0 1460 t_bool res;
c2c3fd24 1461
1462 /* Select the edges that enter the loop body. */
75a70cf9 1463 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
c2c3fd24 1464 if (!flow_bb_inside_loop_p (loop, bb))
1465 continue;
8da11536 1466
c2c3fd24 1467 if (TREE_CODE (arg) == SSA_NAME)
1468 {
8da11536 1469 bool val = false;
1470
c2c3fd24 1471 ssa_chain = SSA_NAME_DEF_STMT (arg);
1472
1473 /* Pass in the initial condition to the follow edge function. */
1474 ev_fn = init_cond;
d1de0ec2 1475 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
8da11536 1476
1477 /* If ev_fn has no evolution in the inner loop, and the
1478 init_cond is not equal to ev_fn, then we have an
1479 ambiguity between two possible values, as we cannot know
1480 the number of iterations at this point. */
1481 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1482 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1483 && !operand_equal_p (init_cond, ev_fn, 0))
1484 ev_fn = chrec_dont_know;
c2c3fd24 1485 }
1486 else
1aa768f0 1487 res = t_false;
8da11536 1488
c2c3fd24 1489 /* When it is impossible to go back on the same
1490 loop_phi_node by following the ssa edges, the
5c9dae64 1491 evolution is represented by a peeled chrec, i.e. the
c2c3fd24 1492 first iteration, EV_FN has the value INIT_COND, then
48e1416a 1493 all the other iterations it has the value of ARG.
c2c3fd24 1494 For the moment, PEELED_CHREC nodes are not built. */
1aa768f0 1495 if (res != t_true)
c03531c4 1496 {
1497 ev_fn = chrec_dont_know;
1498 /* Try to recognize POLYNOMIAL_CHREC which appears in
1499 the form of PEELED_CHREC, but guard the process with
1500 a bool variable to keep the analyzer from infinite
1501 recurrence for real PEELED_RECs. */
1502 if (simplify_peeled_chrec_p && TREE_CODE (arg) == SSA_NAME)
1503 {
1504 simplify_peeled_chrec_p = false;
1505 ev_fn = simplify_peeled_chrec (loop, arg, init_cond);
1506 simplify_peeled_chrec_p = true;
1507 }
1508 }
48e1416a 1509
c2c3fd24 1510 /* When there are multiple back edges of the loop (which in fact never
fbf0afd1 1511 happens currently, but nevertheless), merge their evolutions. */
c2c3fd24 1512 evolution_function = chrec_merge (evolution_function, ev_fn);
81cf35e4 1513
1514 if (evolution_function == chrec_dont_know)
1515 break;
c2c3fd24 1516 }
48e1416a 1517
487a9bc1 1518 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1519 {
1520 fprintf (dump_file, " (evolution_function = ");
1ffa4346 1521 print_generic_expr (dump_file, evolution_function);
c2c3fd24 1522 fprintf (dump_file, "))\n");
1523 }
48e1416a 1524
c2c3fd24 1525 return evolution_function;
1526}
1527
c45a20be 1528/* Looks to see if VAR is a copy of a constant (via straightforward assignments
1529 or degenerate phi's). If so, returns the constant; else, returns VAR. */
1530
1531static tree
1532follow_copies_to_constant (tree var)
1533{
1534 tree res = var;
1535 while (TREE_CODE (res) == SSA_NAME)
1536 {
1537 gimple *def = SSA_NAME_DEF_STMT (res);
1538 if (gphi *phi = dyn_cast <gphi *> (def))
1539 {
1540 if (tree rhs = degenerate_phi_result (phi))
1541 res = rhs;
1542 else
1543 break;
1544 }
1545 else if (gimple_assign_single_p (def))
1546 /* Will exit loop if not an SSA_NAME. */
1547 res = gimple_assign_rhs1 (def);
1548 else
1549 break;
1550 }
1551 if (CONSTANT_CLASS_P (res))
1552 return res;
1553 return var;
1554}
1555
c2c3fd24 1556/* Given a loop-phi-node, return the initial conditions of the
1557 variable on entry of the loop. When the CCP has propagated
1558 constants into the loop-phi-node, the initial condition is
1559 instantiated, otherwise the initial condition is kept symbolic.
1560 This analyzer does not analyze the evolution outside the current
1561 loop, and leaves this task to the on-demand tree reconstructor. */
1562
48e1416a 1563static tree
1a91d914 1564analyze_initial_condition (gphi *loop_phi_node)
c2c3fd24 1565{
75a70cf9 1566 int i, n;
c2c3fd24 1567 tree init_cond = chrec_not_analyzed_yet;
75a70cf9 1568 struct loop *loop = loop_containing_stmt (loop_phi_node);
48e1416a 1569
487a9bc1 1570 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1571 {
1572 fprintf (dump_file, "(analyze_initial_condition \n");
1573 fprintf (dump_file, " (loop_phi_node = \n");
1ffa4346 1574 print_gimple_stmt (dump_file, loop_phi_node, 0);
c2c3fd24 1575 fprintf (dump_file, ")\n");
1576 }
48e1416a 1577
75a70cf9 1578 n = gimple_phi_num_args (loop_phi_node);
1579 for (i = 0; i < n; i++)
c2c3fd24 1580 {
1581 tree branch = PHI_ARG_DEF (loop_phi_node, i);
75a70cf9 1582 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
48e1416a 1583
c2c3fd24 1584 /* When the branch is oriented to the loop's body, it does
1585 not contribute to the initial condition. */
1586 if (flow_bb_inside_loop_p (loop, bb))
1587 continue;
1588
1589 if (init_cond == chrec_not_analyzed_yet)
1590 {
1591 init_cond = branch;
1592 continue;
1593 }
1594
1595 if (TREE_CODE (branch) == SSA_NAME)
1596 {
1597 init_cond = chrec_dont_know;
1598 break;
1599 }
1600
1601 init_cond = chrec_merge (init_cond, branch);
1602 }
1603
1604 /* Ooops -- a loop without an entry??? */
1605 if (init_cond == chrec_not_analyzed_yet)
1606 init_cond = chrec_dont_know;
1607
c45a20be 1608 /* We may not have fully constant propagated IL. Handle degenerate PHIs here
1609 to not miss important early loop unrollings. */
1610 init_cond = follow_copies_to_constant (init_cond);
ac9b13de 1611
487a9bc1 1612 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1613 {
1614 fprintf (dump_file, " (init_cond = ");
1ffa4346 1615 print_generic_expr (dump_file, init_cond);
c2c3fd24 1616 fprintf (dump_file, "))\n");
1617 }
48e1416a 1618
c2c3fd24 1619 return init_cond;
1620}
1621
1622/* Analyze the scalar evolution for LOOP_PHI_NODE. */
1623
48e1416a 1624static tree
1a91d914 1625interpret_loop_phi (struct loop *loop, gphi *loop_phi_node)
c2c3fd24 1626{
1627 tree res;
1628 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1629 tree init_cond;
48e1416a 1630
c2c3fd24 1631 if (phi_loop != loop)
1632 {
1633 struct loop *subloop;
1634 tree evolution_fn = analyze_scalar_evolution
1635 (phi_loop, PHI_RESULT (loop_phi_node));
1636
1637 /* Dive one level deeper. */
9e3536f4 1638 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
c2c3fd24 1639
1640 /* Interpret the subloop. */
1641 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1642 return res;
1643 }
1644
1645 /* Otherwise really interpret the loop phi. */
1646 init_cond = analyze_initial_condition (loop_phi_node);
1647 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1648
ce00c150 1649 /* Verify we maintained the correct initial condition throughout
1650 possible conversions in the SSA chain. */
1651 if (res != chrec_dont_know)
1652 {
1653 tree new_init = res;
1654 if (CONVERT_EXPR_P (res)
1655 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
1656 new_init = fold_convert (TREE_TYPE (res),
1657 CHREC_LEFT (TREE_OPERAND (res, 0)));
1658 else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
1659 new_init = CHREC_LEFT (res);
1660 STRIP_USELESS_TYPE_CONVERSION (new_init);
7624240a 1661 if (TREE_CODE (new_init) == POLYNOMIAL_CHREC
1662 || !operand_equal_p (init_cond, new_init, 0))
ce00c150 1663 return chrec_dont_know;
1664 }
1665
c2c3fd24 1666 return res;
1667}
1668
1669/* This function merges the branches of a condition-phi-node,
1670 contained in the outermost loop, and whose arguments are already
1671 analyzed. */
1672
1673static tree
1a91d914 1674interpret_condition_phi (struct loop *loop, gphi *condition_phi)
c2c3fd24 1675{
75a70cf9 1676 int i, n = gimple_phi_num_args (condition_phi);
c2c3fd24 1677 tree res = chrec_not_analyzed_yet;
48e1416a 1678
75a70cf9 1679 for (i = 0; i < n; i++)
c2c3fd24 1680 {
1681 tree branch_chrec;
48e1416a 1682
c2c3fd24 1683 if (backedge_phi_arg_p (condition_phi, i))
1684 {
1685 res = chrec_dont_know;
1686 break;
1687 }
1688
1689 branch_chrec = analyze_scalar_evolution
1690 (loop, PHI_ARG_DEF (condition_phi, i));
48e1416a 1691
c2c3fd24 1692 res = chrec_merge (res, branch_chrec);
81cf35e4 1693 if (res == chrec_dont_know)
1694 break;
c2c3fd24 1695 }
1696
1697 return res;
1698}
1699
75a70cf9 1700/* Interpret the operation RHS1 OP RHS2. If we didn't
0b94b8c8 1701 analyze this node before, follow the definitions until ending
75a70cf9 1702 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
c2c3fd24 1703 return path, this function propagates evolutions (ala constant copy
1704 propagation). OPND1 is not a GIMPLE expression because we could
1705 analyze the effect of an inner loop: see interpret_loop_phi. */
1706
1707static tree
42acab1c 1708interpret_rhs_expr (struct loop *loop, gimple *at_stmt,
75a70cf9 1709 tree type, tree rhs1, enum tree_code code, tree rhs2)
c2c3fd24 1710{
596070e8 1711 tree res, chrec1, chrec2, ctype;
42acab1c 1712 gimple *def;
75a70cf9 1713
1714 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1715 {
1716 if (is_gimple_min_invariant (rhs1))
1717 return chrec_convert (type, rhs1, at_stmt);
1718
1719 if (code == SSA_NAME)
1720 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1721 at_stmt);
b3786ab3 1722
75a70cf9 1723 if (code == ASSERT_EXPR)
1724 {
1725 rhs1 = ASSERT_EXPR_VAR (rhs1);
1726 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1727 at_stmt);
1728 }
75a70cf9 1729 }
b3786ab3 1730
75a70cf9 1731 switch (code)
c2c3fd24 1732 {
1214c397 1733 case ADDR_EXPR:
62bc06ea 1734 if (TREE_CODE (TREE_OPERAND (rhs1, 0)) == MEM_REF
1735 || handled_component_p (TREE_OPERAND (rhs1, 0)))
1736 {
3754d046 1737 machine_mode mode;
62bc06ea 1738 HOST_WIDE_INT bitsize, bitpos;
292237f3 1739 int unsignedp, reversep;
62bc06ea 1740 int volatilep = 0;
1741 tree base, offset;
1742 tree chrec3;
1743 tree unitpos;
1744
1745 base = get_inner_reference (TREE_OPERAND (rhs1, 0),
292237f3 1746 &bitsize, &bitpos, &offset, &mode,
b3b6e4b5 1747 &unsignedp, &reversep, &volatilep);
62bc06ea 1748
1749 if (TREE_CODE (base) == MEM_REF)
1750 {
1751 rhs2 = TREE_OPERAND (base, 1);
1752 rhs1 = TREE_OPERAND (base, 0);
1753
1754 chrec1 = analyze_scalar_evolution (loop, rhs1);
1755 chrec2 = analyze_scalar_evolution (loop, rhs2);
1756 chrec1 = chrec_convert (type, chrec1, at_stmt);
1757 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
32e31826 1758 chrec1 = instantiate_parameters (loop, chrec1);
1759 chrec2 = instantiate_parameters (loop, chrec2);
62bc06ea 1760 res = chrec_fold_plus (type, chrec1, chrec2);
1761 }
1762 else
1763 {
1764 chrec1 = analyze_scalar_evolution_for_address_of (loop, base);
1765 chrec1 = chrec_convert (type, chrec1, at_stmt);
1766 res = chrec1;
1767 }
1214c397 1768
62bc06ea 1769 if (offset != NULL_TREE)
1770 {
1771 chrec2 = analyze_scalar_evolution (loop, offset);
1772 chrec2 = chrec_convert (TREE_TYPE (offset), chrec2, at_stmt);
32e31826 1773 chrec2 = instantiate_parameters (loop, chrec2);
62bc06ea 1774 res = chrec_fold_plus (type, res, chrec2);
1775 }
1776
1777 if (bitpos != 0)
1778 {
1779 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
1780
748e5d45 1781 unitpos = size_int (bitpos / BITS_PER_UNIT);
62bc06ea 1782 chrec3 = analyze_scalar_evolution (loop, unitpos);
1783 chrec3 = chrec_convert (TREE_TYPE (unitpos), chrec3, at_stmt);
32e31826 1784 chrec3 = instantiate_parameters (loop, chrec3);
62bc06ea 1785 res = chrec_fold_plus (type, res, chrec3);
1786 }
1787 }
1788 else
1789 res = chrec_dont_know;
1790 break;
1214c397 1791
0de36bdb 1792 case POINTER_PLUS_EXPR:
75a70cf9 1793 chrec1 = analyze_scalar_evolution (loop, rhs1);
1794 chrec2 = analyze_scalar_evolution (loop, rhs2);
1795 chrec1 = chrec_convert (type, chrec1, at_stmt);
a0553bff 1796 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
32e31826 1797 chrec1 = instantiate_parameters (loop, chrec1);
1798 chrec2 = instantiate_parameters (loop, chrec2);
75a70cf9 1799 res = chrec_fold_plus (type, chrec1, chrec2);
0de36bdb 1800 break;
1801
c2c3fd24 1802 case PLUS_EXPR:
75a70cf9 1803 chrec1 = analyze_scalar_evolution (loop, rhs1);
1804 chrec2 = analyze_scalar_evolution (loop, rhs2);
596070e8 1805 ctype = type;
1806 /* When the stmt is conditionally executed re-write the CHREC
1807 into a form that has well-defined behavior on overflow. */
1808 if (at_stmt
1809 && INTEGRAL_TYPE_P (type)
1810 && ! TYPE_OVERFLOW_WRAPS (type)
1811 && ! dominated_by_p (CDI_DOMINATORS, loop->latch,
1812 gimple_bb (at_stmt)))
1813 ctype = unsigned_type_for (type);
1814 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1815 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
32e31826 1816 chrec1 = instantiate_parameters (loop, chrec1);
1817 chrec2 = instantiate_parameters (loop, chrec2);
596070e8 1818 res = chrec_fold_plus (ctype, chrec1, chrec2);
1819 if (type != ctype)
1820 res = chrec_convert (type, res, at_stmt);
c2c3fd24 1821 break;
48e1416a 1822
c2c3fd24 1823 case MINUS_EXPR:
75a70cf9 1824 chrec1 = analyze_scalar_evolution (loop, rhs1);
1825 chrec2 = analyze_scalar_evolution (loop, rhs2);
596070e8 1826 ctype = type;
1827 /* When the stmt is conditionally executed re-write the CHREC
1828 into a form that has well-defined behavior on overflow. */
1829 if (at_stmt
1830 && INTEGRAL_TYPE_P (type)
1831 && ! TYPE_OVERFLOW_WRAPS (type)
1832 && ! dominated_by_p (CDI_DOMINATORS,
1833 loop->latch, gimple_bb (at_stmt)))
1834 ctype = unsigned_type_for (type);
1835 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1836 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
32e31826 1837 chrec1 = instantiate_parameters (loop, chrec1);
1838 chrec2 = instantiate_parameters (loop, chrec2);
596070e8 1839 res = chrec_fold_minus (ctype, chrec1, chrec2);
1840 if (type != ctype)
1841 res = chrec_convert (type, res, at_stmt);
c2c3fd24 1842 break;
1843
1844 case NEGATE_EXPR:
75a70cf9 1845 chrec1 = analyze_scalar_evolution (loop, rhs1);
596070e8 1846 ctype = type;
1847 /* When the stmt is conditionally executed re-write the CHREC
1848 into a form that has well-defined behavior on overflow. */
1849 if (at_stmt
1850 && INTEGRAL_TYPE_P (type)
1851 && ! TYPE_OVERFLOW_WRAPS (type)
1852 && ! dominated_by_p (CDI_DOMINATORS,
1853 loop->latch, gimple_bb (at_stmt)))
1854 ctype = unsigned_type_for (type);
1855 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
560af66a 1856 /* TYPE may be integer, real or complex, so use fold_convert. */
32e31826 1857 chrec1 = instantiate_parameters (loop, chrec1);
596070e8 1858 res = chrec_fold_multiply (ctype, chrec1,
1859 fold_convert (ctype, integer_minus_one_node));
1860 if (type != ctype)
1861 res = chrec_convert (type, res, at_stmt);
c2c3fd24 1862 break;
1863
b6eab06c 1864 case BIT_NOT_EXPR:
1865 /* Handle ~X as -1 - X. */
1866 chrec1 = analyze_scalar_evolution (loop, rhs1);
1867 chrec1 = chrec_convert (type, chrec1, at_stmt);
32e31826 1868 chrec1 = instantiate_parameters (loop, chrec1);
b6eab06c 1869 res = chrec_fold_minus (type,
1870 fold_convert (type, integer_minus_one_node),
1871 chrec1);
1872 break;
1873
c2c3fd24 1874 case MULT_EXPR:
75a70cf9 1875 chrec1 = analyze_scalar_evolution (loop, rhs1);
1876 chrec2 = analyze_scalar_evolution (loop, rhs2);
596070e8 1877 ctype = type;
1878 /* When the stmt is conditionally executed re-write the CHREC
1879 into a form that has well-defined behavior on overflow. */
1880 if (at_stmt
1881 && INTEGRAL_TYPE_P (type)
1882 && ! TYPE_OVERFLOW_WRAPS (type)
1883 && ! dominated_by_p (CDI_DOMINATORS,
1884 loop->latch, gimple_bb (at_stmt)))
1885 ctype = unsigned_type_for (type);
1886 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1887 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
32e31826 1888 chrec1 = instantiate_parameters (loop, chrec1);
1889 chrec2 = instantiate_parameters (loop, chrec2);
596070e8 1890 res = chrec_fold_multiply (ctype, chrec1, chrec2);
1891 if (type != ctype)
1892 res = chrec_convert (type, res, at_stmt);
88dbf20f 1893 break;
48e1416a 1894
7eef4085 1895 case LSHIFT_EXPR:
1896 {
1897 /* Handle A<<B as A * (1<<B). */
1898 tree uns = unsigned_type_for (type);
1899 chrec1 = analyze_scalar_evolution (loop, rhs1);
1900 chrec2 = analyze_scalar_evolution (loop, rhs2);
1901 chrec1 = chrec_convert (uns, chrec1, at_stmt);
1902 chrec1 = instantiate_parameters (loop, chrec1);
1903 chrec2 = instantiate_parameters (loop, chrec2);
1904
1905 tree one = build_int_cst (uns, 1);
1906 chrec2 = fold_build2 (LSHIFT_EXPR, uns, one, chrec2);
1907 res = chrec_fold_multiply (uns, chrec1, chrec2);
1908 res = chrec_convert (type, res, at_stmt);
1909 }
1910 break;
1911
72dd6141 1912 CASE_CONVERT:
3ef23449 1913 /* In case we have a truncation of a widened operation that in
1914 the truncated type has undefined overflow behavior analyze
1915 the operation done in an unsigned type of the same precision
1916 as the final truncation. We cannot derive a scalar evolution
1917 for the widened operation but for the truncated result. */
1918 if (TREE_CODE (type) == INTEGER_TYPE
1919 && TREE_CODE (TREE_TYPE (rhs1)) == INTEGER_TYPE
1920 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (rhs1))
1921 && TYPE_OVERFLOW_UNDEFINED (type)
1922 && TREE_CODE (rhs1) == SSA_NAME
1923 && (def = SSA_NAME_DEF_STMT (rhs1))
1924 && is_gimple_assign (def)
1925 && TREE_CODE_CLASS (gimple_assign_rhs_code (def)) == tcc_binary
1926 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
1927 {
1928 tree utype = unsigned_type_for (type);
1929 chrec1 = interpret_rhs_expr (loop, at_stmt, utype,
1930 gimple_assign_rhs1 (def),
1931 gimple_assign_rhs_code (def),
1932 gimple_assign_rhs2 (def));
1933 }
1934 else
1935 chrec1 = analyze_scalar_evolution (loop, rhs1);
90261646 1936 res = chrec_convert (type, chrec1, at_stmt, true, rhs1);
c2c3fd24 1937 break;
4fb48737 1938
1939 case BIT_AND_EXPR:
1940 /* Given int variable A, handle A&0xffff as (int)(unsigned short)A.
1941 If A is SCEV and its value is in the range of representable set
1942 of type unsigned short, the result expression is a (no-overflow)
1943 SCEV. */
1944 res = chrec_dont_know;
1945 if (tree_fits_uhwi_p (rhs2))
1946 {
1947 int precision;
1948 unsigned HOST_WIDE_INT val = tree_to_uhwi (rhs2);
1949
1950 val ++;
1951 /* Skip if value of rhs2 wraps in unsigned HOST_WIDE_INT or
1952 it's not the maximum value of a smaller type than rhs1. */
1953 if (val != 0
1954 && (precision = exact_log2 (val)) > 0
1955 && (unsigned) precision < TYPE_PRECISION (TREE_TYPE (rhs1)))
1956 {
1957 tree utype = build_nonstandard_integer_type (precision, 1);
1958
1959 if (TYPE_PRECISION (utype) < TYPE_PRECISION (TREE_TYPE (rhs1)))
1960 {
1961 chrec1 = analyze_scalar_evolution (loop, rhs1);
1962 chrec1 = chrec_convert (utype, chrec1, at_stmt);
1963 res = chrec_convert (TREE_TYPE (rhs1), chrec1, at_stmt);
1964 }
1965 }
1966 }
1967 break;
48e1416a 1968
c2c3fd24 1969 default:
1970 res = chrec_dont_know;
1971 break;
1972 }
48e1416a 1973
c2c3fd24 1974 return res;
1975}
1976
75a70cf9 1977/* Interpret the expression EXPR. */
1978
1979static tree
42acab1c 1980interpret_expr (struct loop *loop, gimple *at_stmt, tree expr)
75a70cf9 1981{
1982 enum tree_code code;
1983 tree type = TREE_TYPE (expr), op0, op1;
1984
1985 if (automatically_generated_chrec_p (expr))
1986 return expr;
1987
8a2caf10 1988 if (TREE_CODE (expr) == POLYNOMIAL_CHREC
1989 || get_gimple_rhs_class (TREE_CODE (expr)) == GIMPLE_TERNARY_RHS)
75a70cf9 1990 return chrec_dont_know;
1991
1992 extract_ops_from_tree (expr, &code, &op0, &op1);
1993
1994 return interpret_rhs_expr (loop, at_stmt, type,
1995 op0, code, op1);
1996}
1997
1998/* Interpret the rhs of the assignment STMT. */
1999
2000static tree
42acab1c 2001interpret_gimple_assign (struct loop *loop, gimple *stmt)
75a70cf9 2002{
2003 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2004 enum tree_code code = gimple_assign_rhs_code (stmt);
2005
2006 return interpret_rhs_expr (loop, stmt, type,
2007 gimple_assign_rhs1 (stmt), code,
2008 gimple_assign_rhs2 (stmt));
2009}
2010
c2c3fd24 2011\f
2012
48e1416a 2013/* This section contains all the entry points:
c2c3fd24 2014 - number_of_iterations_in_loop,
2015 - analyze_scalar_evolution,
2016 - instantiate_parameters.
2017*/
2018
2019/* Compute and return the evolution function in WRTO_LOOP, the nearest
2020 common ancestor of DEF_LOOP and USE_LOOP. */
2021
48e1416a 2022static tree
2023compute_scalar_evolution_in_loop (struct loop *wrto_loop,
2024 struct loop *def_loop,
c2c3fd24 2025 tree ev)
2026{
a05095f9 2027 bool val;
c2c3fd24 2028 tree res;
a05095f9 2029
c2c3fd24 2030 if (def_loop == wrto_loop)
2031 return ev;
2032
9e3536f4 2033 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
c2c3fd24 2034 res = compute_overall_effect_of_inner_loop (def_loop, ev);
2035
a05095f9 2036 if (no_evolution_in_loop_p (res, wrto_loop->num, &val) && val)
2037 return res;
2038
c3f8ce55 2039 return analyze_scalar_evolution_1 (wrto_loop, res);
c2c3fd24 2040}
2041
2042/* Helper recursive function. */
2043
2044static tree
c3f8ce55 2045analyze_scalar_evolution_1 (struct loop *loop, tree var)
c2c3fd24 2046{
75a70cf9 2047 tree type = TREE_TYPE (var);
42acab1c 2048 gimple *def;
c2c3fd24 2049 basic_block bb;
2050 struct loop *def_loop;
c3f8ce55 2051 tree res;
c2c3fd24 2052
5cea6ae9 2053 if (loop == NULL
2054 || TREE_CODE (type) == VECTOR_TYPE
2055 || TREE_CODE (type) == COMPLEX_TYPE)
c2c3fd24 2056 return chrec_dont_know;
2057
2058 if (TREE_CODE (var) != SSA_NAME)
75a70cf9 2059 return interpret_expr (loop, NULL, var);
c2c3fd24 2060
2061 def = SSA_NAME_DEF_STMT (var);
75a70cf9 2062 bb = gimple_bb (def);
c2c3fd24 2063 def_loop = bb ? bb->loop_father : NULL;
2064
2065 if (bb == NULL
2066 || !flow_bb_inside_loop_p (loop, bb))
2067 {
c45a20be 2068 /* Keep symbolic form, but look through obvious copies for constants. */
2069 res = follow_copies_to_constant (var);
c2c3fd24 2070 goto set_and_end;
2071 }
2072
c2c3fd24 2073 if (loop != def_loop)
2074 {
c3f8ce55 2075 res = analyze_scalar_evolution_1 (def_loop, var);
c2c3fd24 2076 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
2077
2078 goto set_and_end;
2079 }
2080
75a70cf9 2081 switch (gimple_code (def))
c2c3fd24 2082 {
75a70cf9 2083 case GIMPLE_ASSIGN:
2084 res = interpret_gimple_assign (loop, def);
c2c3fd24 2085 break;
2086
75a70cf9 2087 case GIMPLE_PHI:
c2c3fd24 2088 if (loop_phi_node_p (def))
1a91d914 2089 res = interpret_loop_phi (loop, as_a <gphi *> (def));
c2c3fd24 2090 else
1a91d914 2091 res = interpret_condition_phi (loop, as_a <gphi *> (def));
c2c3fd24 2092 break;
2093
2094 default:
2095 res = chrec_dont_know;
2096 break;
2097 }
2098
2099 set_and_end:
2100
2101 /* Keep the symbolic form. */
2102 if (res == chrec_dont_know)
2103 res = var;
2104
2105 if (loop == def_loop)
089aa668 2106 set_scalar_evolution (block_before_loop (loop), var, res);
c2c3fd24 2107
2108 return res;
2109}
2110
8b7d09b4 2111/* Analyzes and returns the scalar evolution of the ssa_name VAR in
2112 LOOP. LOOP is the loop in which the variable is used.
48e1416a 2113
c2c3fd24 2114 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
2115 pointer to the statement that uses this variable, in order to
2116 determine the evolution function of the variable, use the following
2117 calls:
48e1416a 2118
8b7d09b4 2119 loop_p loop = loop_containing_stmt (stmt);
2120 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
afd80ffb 2121 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
c2c3fd24 2122*/
2123
48e1416a 2124tree
c2c3fd24 2125analyze_scalar_evolution (struct loop *loop, tree var)
2126{
2127 tree res;
2128
487a9bc1 2129 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 2130 {
2131 fprintf (dump_file, "(analyze_scalar_evolution \n");
2132 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2133 fprintf (dump_file, " (scalar = ");
1ffa4346 2134 print_generic_expr (dump_file, var);
c2c3fd24 2135 fprintf (dump_file, ")\n");
2136 }
2137
089aa668 2138 res = get_scalar_evolution (block_before_loop (loop), var);
c3f8ce55 2139 if (res == chrec_not_analyzed_yet)
2140 res = analyze_scalar_evolution_1 (loop, var);
c2c3fd24 2141
487a9bc1 2142 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 2143 fprintf (dump_file, ")\n");
2144
2145 return res;
2146}
2147
62bc06ea 2148/* Analyzes and returns the scalar evolution of VAR address in LOOP. */
2149
2150static tree
2151analyze_scalar_evolution_for_address_of (struct loop *loop, tree var)
2152{
2153 return analyze_scalar_evolution (loop, build_fold_addr_expr (var));
2154}
2155
c2c3fd24 2156/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
76610704 2157 WRTO_LOOP (which should be a superloop of USE_LOOP)
553b9523 2158
2159 FOLDED_CASTS is set to true if resolve_mixers used
2160 chrec_convert_aggressive (TODO -- not really, we are way too conservative
48e1416a 2161 at the moment in order to keep things simple).
2162
76610704 2163 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
2164 example:
2165
2166 for (i = 0; i < 100; i++) -- loop 1
2167 {
2168 for (j = 0; j < 100; j++) -- loop 2
2169 {
2170 k1 = i;
2171 k2 = j;
2172
2173 use2 (k1, k2);
2174
2175 for (t = 0; t < 100; t++) -- loop 3
2176 use3 (k1, k2);
2177
2178 }
2179 use1 (k1, k2);
2180 }
2181
2182 Both k1 and k2 are invariants in loop3, thus
2183 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
2184 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2185
2186 As they are invariant, it does not matter whether we consider their
2187 usage in loop 3 or loop 2, hence
2188 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2189 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2190 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2191 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2192
2193 Similarly for their evolutions with respect to loop 1. The values of K2
2194 in the use in loop 2 vary independently on loop 1, thus we cannot express
2195 the evolution with respect to loop 1:
2196 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2197 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2198 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2199 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2200
2201 The value of k2 in the use in loop 1 is known, though:
2202 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2203 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2204 */
c2c3fd24 2205
2206static tree
2207analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
553b9523 2208 tree version, bool *folded_casts)
c2c3fd24 2209{
2210 bool val = false;
553b9523 2211 tree ev = version, tmp;
c2c3fd24 2212
48e1416a 2213 /* We cannot just do
76610704 2214
2215 tmp = analyze_scalar_evolution (use_loop, version);
5fe66b3c 2216 ev = resolve_mixers (wrto_loop, tmp, folded_casts);
76610704 2217
2218 as resolve_mixers would query the scalar evolution with respect to
2219 wrto_loop. For example, in the situation described in the function
2220 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2221 version = k2. Then
2222
2223 analyze_scalar_evolution (use_loop, version) = k2
2224
5fe66b3c 2225 and resolve_mixers (loop1, k2, folded_casts) finds that the value of
2226 k2 in loop 1 is 100, which is a wrong result, since we are interested
2227 in the value in loop 3.
76610704 2228
2229 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2230 each time checking that there is no evolution in the inner loop. */
2231
553b9523 2232 if (folded_casts)
2233 *folded_casts = false;
c2c3fd24 2234 while (1)
2235 {
553b9523 2236 tmp = analyze_scalar_evolution (use_loop, ev);
5fe66b3c 2237 ev = resolve_mixers (use_loop, tmp, folded_casts);
c2c3fd24 2238
2239 if (use_loop == wrto_loop)
2240 return ev;
2241
2242 /* If the value of the use changes in the inner loop, we cannot express
2243 its value in the outer loop (we might try to return interval chrec,
2244 but we do not have a user for it anyway) */
2245 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2246 || !val)
2247 return chrec_dont_know;
2248
9e3536f4 2249 use_loop = loop_outer (use_loop);
c2c3fd24 2250 }
2251}
2252
15a951ca 2253
e23d3784 2254/* Hashtable helpers for a temporary hash-table used when
2255 instantiating a CHREC or resolving mixers. For this use
2256 instantiated_below is always the same. */
2257
e23d3784 2258struct instantiate_cache_type
15a951ca 2259{
cbb69ef1 2260 htab_t map;
2261 vec<scev_info_str> entries;
48e1416a 2262
9af5ce0c 2263 instantiate_cache_type () : map (NULL), entries (vNULL) {}
e23d3784 2264 ~instantiate_cache_type ();
32e31826 2265 tree get (unsigned slot) { return entries[slot].chrec; }
2266 void set (unsigned slot, tree chrec) { entries[slot].chrec = chrec; }
e23d3784 2267};
15a951ca 2268
e23d3784 2269instantiate_cache_type::~instantiate_cache_type ()
2270{
32e31826 2271 if (map != NULL)
e23d3784 2272 {
cbb69ef1 2273 htab_delete (map);
e23d3784 2274 entries.release ();
2275 }
15a951ca 2276}
2277
cbb69ef1 2278/* Cache to avoid infinite recursion when instantiating an SSA name.
2279 Live during the outermost instantiate_scev or resolve_mixers call. */
2280static instantiate_cache_type *global_cache;
2281
2282/* Computes a hash function for database element ELT. */
2283
2284static inline hashval_t
2285hash_idx_scev_info (const void *elt_)
2286{
2287 unsigned idx = ((size_t) elt_) - 2;
9f9f871f 2288 return scev_info_hasher::hash (&global_cache->entries[idx]);
cbb69ef1 2289}
2290
2291/* Compares database elements E1 and E2. */
2292
2293static inline int
2294eq_idx_scev_info (const void *e1, const void *e2)
2295{
2296 unsigned idx1 = ((size_t) e1) - 2;
9f9f871f 2297 return scev_info_hasher::equal (&global_cache->entries[idx1],
2298 (const scev_info_str *) e2);
cbb69ef1 2299}
2300
32e31826 2301/* Returns from CACHE the slot number of the cached chrec for NAME. */
e23d3784 2302
32e31826 2303static unsigned
cbb69ef1 2304get_instantiated_value_entry (instantiate_cache_type &cache,
2305 tree name, basic_block instantiate_below)
e23d3784 2306{
32e31826 2307 if (!cache.map)
e23d3784 2308 {
cbb69ef1 2309 cache.map = htab_create (10, hash_idx_scev_info, eq_idx_scev_info, NULL);
e23d3784 2310 cache.entries.create (10);
2311 }
48e1416a 2312
cbb69ef1 2313 scev_info_str e;
2314 e.name_version = SSA_NAME_VERSION (name);
2315 e.instantiated_below = instantiate_below->index;
2316 void **slot = htab_find_slot_with_hash (cache.map, &e,
9f9f871f 2317 scev_info_hasher::hash (&e), INSERT);
cbb69ef1 2318 if (!*slot)
e23d3784 2319 {
2320 e.chrec = chrec_not_analyzed_yet;
cbb69ef1 2321 *slot = (void *)(size_t)(cache.entries.length () + 2);
e23d3784 2322 cache.entries.safe_push (e);
e23d3784 2323 }
2324
cbb69ef1 2325 return ((size_t)*slot) - 2;
15a951ca 2326}
2327
32e31826 2328
9887dd18 2329/* Return the closed_loop_phi node for VAR. If there is none, return
2330 NULL_TREE. */
2331
2332static tree
2333loop_closed_phi_def (tree var)
2334{
2335 struct loop *loop;
2336 edge exit;
1a91d914 2337 gphi *phi;
2338 gphi_iterator psi;
9887dd18 2339
2340 if (var == NULL_TREE
2341 || TREE_CODE (var) != SSA_NAME)
2342 return NULL_TREE;
2343
2344 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
d9e7e1a2 2345 exit = single_exit (loop);
9887dd18 2346 if (!exit)
2347 return NULL_TREE;
2348
75a70cf9 2349 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2350 {
1a91d914 2351 phi = psi.phi ();
75a70cf9 2352 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2353 return PHI_RESULT (phi);
2354 }
9887dd18 2355
2356 return NULL_TREE;
2357}
2358
6ee802ad 2359static tree instantiate_scev_r (basic_block, struct loop *, struct loop *,
5fe66b3c 2360 tree, bool *, int);
0731d869 2361
2362/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2363 and EVOLUTION_LOOP, that were left under a symbolic form.
2364
5e803fbe 2365 CHREC is an SSA_NAME to be instantiated.
0731d869 2366
2367 CACHE is the cache of already instantiated values.
2368
5fe66b3c 2369 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2370 conversions that may wrap in signed/pointer type are folded, as long
2371 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2372 then we don't do such fold.
0731d869 2373
2374 SIZE_EXPR is used for computing the size of the expression to be
2375 instantiated, and to stop if it exceeds some limit. */
2376
2377static tree
5e803fbe 2378instantiate_scev_name (basic_block instantiate_below,
6ee802ad 2379 struct loop *evolution_loop, struct loop *inner_loop,
2380 tree chrec,
5fe66b3c 2381 bool *fold_conversions,
d9dd21a8 2382 int size_expr)
0731d869 2383{
5e803fbe 2384 tree res;
2385 struct loop *def_loop;
2386 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
c43f1e90 2387
5e803fbe 2388 /* A parameter (or loop invariant and we do not want to include
2389 evolutions in outer loops), nothing to do. */
2390 if (!def_bb
2391 || loop_depth (def_bb->loop_father) == 0
2392 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2393 return chrec;
c43f1e90 2394
5e803fbe 2395 /* We cache the value of instantiated variable to avoid exponential
2396 time complexity due to reevaluations. We also store the convenient
2397 value in the cache in order to prevent infinite recursion -- we do
2398 not want to instantiate the SSA_NAME if it is in a mixer
2399 structure. This is used for avoiding the instantiation of
2400 recursively defined functions, such as:
0731d869 2401
5e803fbe 2402 | a_2 -> {0, +, 1, +, a_2}_1 */
c43f1e90 2403
cbb69ef1 2404 unsigned si = get_instantiated_value_entry (*global_cache,
2405 chrec, instantiate_below);
32e31826 2406 if (global_cache->get (si) != chrec_not_analyzed_yet)
2407 return global_cache->get (si);
c43f1e90 2408
e23d3784 2409 /* On recursion return chrec_dont_know. */
32e31826 2410 global_cache->set (si, chrec_dont_know);
0731d869 2411
5e803fbe 2412 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2413
0731d869 2414 /* If the analysis yields a parametric chrec, instantiate the
2415 result again. */
2416 res = analyze_scalar_evolution (def_loop, chrec);
2417
52f57b4e 2418 /* Don't instantiate default definitions. */
0731d869 2419 if (TREE_CODE (res) == SSA_NAME
52f57b4e 2420 && SSA_NAME_IS_DEFAULT_DEF (res))
2421 ;
2422
2423 /* Don't instantiate loop-closed-ssa phi nodes. */
2424 else if (TREE_CODE (res) == SSA_NAME
2425 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2426 > loop_depth (def_loop))
0731d869 2427 {
2428 if (res == chrec)
2429 res = loop_closed_phi_def (chrec);
2430 else
2431 res = chrec;
2432
dfeb6545 2433 /* When there is no loop_closed_phi_def, it means that the
2434 variable is not used after the loop: try to still compute the
2435 value of the variable when exiting the loop. */
2436 if (res == NULL_TREE)
2437 {
2438 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
2439 res = analyze_scalar_evolution (loop, chrec);
2440 res = compute_overall_effect_of_inner_loop (loop, res);
6ee802ad 2441 res = instantiate_scev_r (instantiate_below, evolution_loop,
2442 inner_loop, res,
32e31826 2443 fold_conversions, size_expr);
dfeb6545 2444 }
2445 else if (!dominated_by_p (CDI_DOMINATORS, instantiate_below,
2446 gimple_bb (SSA_NAME_DEF_STMT (res))))
0731d869 2447 res = chrec_dont_know;
2448 }
2449
2450 else if (res != chrec_dont_know)
6ee802ad 2451 {
2452 if (inner_loop
0c763224 2453 && def_bb->loop_father != inner_loop
6ee802ad 2454 && !flow_loop_nested_p (def_bb->loop_father, inner_loop))
2455 /* ??? We could try to compute the overall effect of the loop here. */
2456 res = chrec_dont_know;
2457 else
2458 res = instantiate_scev_r (instantiate_below, evolution_loop,
2459 inner_loop, res,
32e31826 2460 fold_conversions, size_expr);
6ee802ad 2461 }
0731d869 2462
2463 /* Store the correct value to the cache. */
32e31826 2464 global_cache->set (si, res);
0731d869 2465 return res;
0731d869 2466}
2467
a819f845 2468/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2469 and EVOLUTION_LOOP, that were left under a symbolic form.
2470
2471 CHREC is a polynomial chain of recurrence to be instantiated.
2472
2473 CACHE is the cache of already instantiated values.
2474
5fe66b3c 2475 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2476 conversions that may wrap in signed/pointer type are folded, as long
2477 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2478 then we don't do such fold.
a819f845 2479
2480 SIZE_EXPR is used for computing the size of the expression to be
2481 instantiated, and to stop if it exceeds some limit. */
2482
2483static tree
2484instantiate_scev_poly (basic_block instantiate_below,
6ee802ad 2485 struct loop *evolution_loop, struct loop *,
5fe66b3c 2486 tree chrec, bool *fold_conversions, int size_expr)
a819f845 2487{
2488 tree op1;
d91a99f1 2489 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2490 get_chrec_loop (chrec),
32e31826 2491 CHREC_LEFT (chrec), fold_conversions,
a819f845 2492 size_expr);
2493 if (op0 == chrec_dont_know)
2494 return chrec_dont_know;
2495
d91a99f1 2496 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2497 get_chrec_loop (chrec),
32e31826 2498 CHREC_RIGHT (chrec), fold_conversions,
a819f845 2499 size_expr);
2500 if (op1 == chrec_dont_know)
2501 return chrec_dont_know;
2502
2503 if (CHREC_LEFT (chrec) != op0
2504 || CHREC_RIGHT (chrec) != op1)
2505 {
2506 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
6ee802ad 2507 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
a819f845 2508 }
1d4dd1ed 2509
a819f845 2510 return chrec;
2511}
2512
5a10dfba 2513/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2514 and EVOLUTION_LOOP, that were left under a symbolic form.
2515
9e9aa0c6 2516 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
5a10dfba 2517
2518 CACHE is the cache of already instantiated values.
2519
5fe66b3c 2520 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2521 conversions that may wrap in signed/pointer type are folded, as long
2522 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2523 then we don't do such fold.
5a10dfba 2524
2525 SIZE_EXPR is used for computing the size of the expression to be
2526 instantiated, and to stop if it exceeds some limit. */
2527
2528static tree
2529instantiate_scev_binary (basic_block instantiate_below,
6ee802ad 2530 struct loop *evolution_loop, struct loop *inner_loop,
2531 tree chrec, enum tree_code code,
9e9aa0c6 2532 tree type, tree c0, tree c1,
5fe66b3c 2533 bool *fold_conversions, int size_expr)
5a10dfba 2534{
2535 tree op1;
6ee802ad 2536 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
32e31826 2537 c0, fold_conversions, size_expr);
5a10dfba 2538 if (op0 == chrec_dont_know)
2539 return chrec_dont_know;
2540
6ee802ad 2541 op1 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
32e31826 2542 c1, fold_conversions, size_expr);
5a10dfba 2543 if (op1 == chrec_dont_know)
2544 return chrec_dont_know;
2545
9e9aa0c6 2546 if (c0 != op0
2547 || c1 != op1)
5a10dfba 2548 {
5a10dfba 2549 op0 = chrec_convert (type, op0, NULL);
2550 op1 = chrec_convert_rhs (type, op1, NULL);
2551
9e9aa0c6 2552 switch (code)
5a10dfba 2553 {
2554 case POINTER_PLUS_EXPR:
2555 case PLUS_EXPR:
2556 return chrec_fold_plus (type, op0, op1);
2557
2558 case MINUS_EXPR:
2559 return chrec_fold_minus (type, op0, op1);
2560
2561 case MULT_EXPR:
2562 return chrec_fold_multiply (type, op0, op1);
2563
2564 default:
2565 gcc_unreachable ();
2566 }
2567 }
2568
9e9aa0c6 2569 return chrec ? chrec : fold_build2 (code, type, c0, c1);
5a10dfba 2570}
2571
3e0b5bba 2572/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2573 and EVOLUTION_LOOP, that were left under a symbolic form.
2574
2575 "CHREC" is an array reference to be instantiated.
2576
2577 CACHE is the cache of already instantiated values.
2578
5fe66b3c 2579 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2580 conversions that may wrap in signed/pointer type are folded, as long
2581 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2582 then we don't do such fold.
3e0b5bba 2583
2584 SIZE_EXPR is used for computing the size of the expression to be
2585 instantiated, and to stop if it exceeds some limit. */
2586
2587static tree
2588instantiate_array_ref (basic_block instantiate_below,
6ee802ad 2589 struct loop *evolution_loop, struct loop *inner_loop,
5fe66b3c 2590 tree chrec, bool *fold_conversions, int size_expr)
3e0b5bba 2591{
2592 tree res;
2593 tree index = TREE_OPERAND (chrec, 1);
6ee802ad 2594 tree op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2595 inner_loop, index,
32e31826 2596 fold_conversions, size_expr);
3e0b5bba 2597
2598 if (op1 == chrec_dont_know)
2599 return chrec_dont_know;
2600
2601 if (chrec && op1 == index)
2602 return chrec;
2603
2604 res = unshare_expr (chrec);
2605 TREE_OPERAND (res, 1) = op1;
2606 return res;
2607}
2608
089aa668 2609/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
7723692a 2610 and EVOLUTION_LOOP, that were left under a symbolic form.
2611
2612 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2613 instantiated.
2614
2615 CACHE is the cache of already instantiated values.
2616
5fe66b3c 2617 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2618 conversions that may wrap in signed/pointer type are folded, as long
2619 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2620 then we don't do such fold.
7723692a 2621
2622 SIZE_EXPR is used for computing the size of the expression to be
2623 instantiated, and to stop if it exceeds some limit. */
2624
2625static tree
2626instantiate_scev_convert (basic_block instantiate_below,
6ee802ad 2627 struct loop *evolution_loop, struct loop *inner_loop,
32e31826 2628 tree chrec, tree type, tree op,
5fe66b3c 2629 bool *fold_conversions, int size_expr)
7723692a 2630{
6ee802ad 2631 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2632 inner_loop, op,
32e31826 2633 fold_conversions, size_expr);
7723692a 2634
2635 if (op0 == chrec_dont_know)
2636 return chrec_dont_know;
2637
2638 if (fold_conversions)
2639 {
5fe66b3c 2640 tree tmp = chrec_convert_aggressive (type, op0, fold_conversions);
7723692a 2641 if (tmp)
2642 return tmp;
7723692a 2643
5fe66b3c 2644 /* If we used chrec_convert_aggressive, we can no longer assume that
2645 signed chrecs do not overflow, as chrec_convert does, so avoid
2646 calling it in that case. */
2647 if (*fold_conversions)
2648 {
2649 if (chrec && op0 == op)
2650 return chrec;
7723692a 2651
5fe66b3c 2652 return fold_convert (type, op0);
2653 }
2654 }
7723692a 2655
2656 return chrec_convert (type, op0, NULL);
2657}
2658
39251a91 2659/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2660 and EVOLUTION_LOOP, that were left under a symbolic form.
2661
9d206f16 2662 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
39251a91 2663 Handle ~X as -1 - X.
9d206f16 2664 Handle -X as -1 * X.
39251a91 2665
2666 CACHE is the cache of already instantiated values.
2667
5fe66b3c 2668 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2669 conversions that may wrap in signed/pointer type are folded, as long
2670 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2671 then we don't do such fold.
39251a91 2672
2673 SIZE_EXPR is used for computing the size of the expression to be
2674 instantiated, and to stop if it exceeds some limit. */
2675
2676static tree
9d206f16 2677instantiate_scev_not (basic_block instantiate_below,
6ee802ad 2678 struct loop *evolution_loop, struct loop *inner_loop,
2679 tree chrec,
c43f1e90 2680 enum tree_code code, tree type, tree op,
5fe66b3c 2681 bool *fold_conversions, int size_expr)
39251a91 2682{
6ee802ad 2683 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2684 inner_loop, op,
32e31826 2685 fold_conversions, size_expr);
c43f1e90 2686
39251a91 2687 if (op0 == chrec_dont_know)
2688 return chrec_dont_know;
2689
c43f1e90 2690 if (op != op0)
39251a91 2691 {
2692 op0 = chrec_convert (type, op0, NULL);
9d206f16 2693
c43f1e90 2694 switch (code)
9d206f16 2695 {
2696 case BIT_NOT_EXPR:
2697 return chrec_fold_minus
2698 (type, fold_convert (type, integer_minus_one_node), op0);
2699
2700 case NEGATE_EXPR:
2701 return chrec_fold_multiply
2702 (type, fold_convert (type, integer_minus_one_node), op0);
2703
2704 default:
2705 gcc_unreachable ();
2706 }
39251a91 2707 }
9d206f16 2708
c43f1e90 2709 return chrec ? chrec : fold_build1 (code, type, op0);
39251a91 2710}
2711
378a6626 2712/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2713 and EVOLUTION_LOOP, that were left under a symbolic form.
2714
2715 CHREC is an expression with 3 operands to be instantiated.
2716
2717 CACHE is the cache of already instantiated values.
2718
5fe66b3c 2719 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2720 conversions that may wrap in signed/pointer type are folded, as long
2721 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2722 then we don't do such fold.
378a6626 2723
2724 SIZE_EXPR is used for computing the size of the expression to be
2725 instantiated, and to stop if it exceeds some limit. */
2726
2727static tree
2728instantiate_scev_3 (basic_block instantiate_below,
6ee802ad 2729 struct loop *evolution_loop, struct loop *inner_loop,
2730 tree chrec,
5fe66b3c 2731 bool *fold_conversions, int size_expr)
378a6626 2732{
2733 tree op1, op2;
d91a99f1 2734 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2735 inner_loop, TREE_OPERAND (chrec, 0),
32e31826 2736 fold_conversions, size_expr);
378a6626 2737 if (op0 == chrec_dont_know)
2738 return chrec_dont_know;
2739
d91a99f1 2740 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2741 inner_loop, TREE_OPERAND (chrec, 1),
32e31826 2742 fold_conversions, size_expr);
378a6626 2743 if (op1 == chrec_dont_know)
2744 return chrec_dont_know;
2745
d91a99f1 2746 op2 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2747 inner_loop, TREE_OPERAND (chrec, 2),
32e31826 2748 fold_conversions, size_expr);
378a6626 2749 if (op2 == chrec_dont_know)
2750 return chrec_dont_know;
2751
2752 if (op0 == TREE_OPERAND (chrec, 0)
2753 && op1 == TREE_OPERAND (chrec, 1)
2754 && op2 == TREE_OPERAND (chrec, 2))
2755 return chrec;
2756
2757 return fold_build3 (TREE_CODE (chrec),
2758 TREE_TYPE (chrec), op0, op1, op2);
2759}
2760
7723692a 2761/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2762 and EVOLUTION_LOOP, that were left under a symbolic form.
8ceddf57 2763
d91a99f1 2764 CHREC is an expression with 2 operands to be instantiated.
2765
2766 CACHE is the cache of already instantiated values.
2767
5fe66b3c 2768 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2769 conversions that may wrap in signed/pointer type are folded, as long
2770 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2771 then we don't do such fold.
d91a99f1 2772
2773 SIZE_EXPR is used for computing the size of the expression to be
2774 instantiated, and to stop if it exceeds some limit. */
2775
2776static tree
2777instantiate_scev_2 (basic_block instantiate_below,
6ee802ad 2778 struct loop *evolution_loop, struct loop *inner_loop,
2779 tree chrec,
5fe66b3c 2780 bool *fold_conversions, int size_expr)
d91a99f1 2781{
2782 tree op1;
2783 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2784 inner_loop, TREE_OPERAND (chrec, 0),
32e31826 2785 fold_conversions, size_expr);
d91a99f1 2786 if (op0 == chrec_dont_know)
2787 return chrec_dont_know;
2788
2789 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2790 inner_loop, TREE_OPERAND (chrec, 1),
32e31826 2791 fold_conversions, size_expr);
d91a99f1 2792 if (op1 == chrec_dont_know)
2793 return chrec_dont_know;
2794
2795 if (op0 == TREE_OPERAND (chrec, 0)
2796 && op1 == TREE_OPERAND (chrec, 1))
2797 return chrec;
2798
2799 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2800}
2801
2802/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2803 and EVOLUTION_LOOP, that were left under a symbolic form.
2804
2805 CHREC is an expression with 2 operands to be instantiated.
8ceddf57 2806
2807 CACHE is the cache of already instantiated values.
2808
5fe66b3c 2809 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2810 conversions that may wrap in signed/pointer type are folded, as long
2811 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2812 then we don't do such fold.
8ceddf57 2813
afd80ffb 2814 SIZE_EXPR is used for computing the size of the expression to be
2815 instantiated, and to stop if it exceeds some limit. */
7723692a 2816
c2c3fd24 2817static tree
089aa668 2818instantiate_scev_1 (basic_block instantiate_below,
6ee802ad 2819 struct loop *evolution_loop, struct loop *inner_loop,
2820 tree chrec,
5fe66b3c 2821 bool *fold_conversions, int size_expr)
c2c3fd24 2822{
d91a99f1 2823 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2824 inner_loop, TREE_OPERAND (chrec, 0),
32e31826 2825 fold_conversions, size_expr);
d91a99f1 2826
2827 if (op0 == chrec_dont_know)
2828 return chrec_dont_know;
2829
2830 if (op0 == TREE_OPERAND (chrec, 0))
2831 return chrec;
2832
2833 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2834}
2835
2836/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2837 and EVOLUTION_LOOP, that were left under a symbolic form.
2838
2839 CHREC is the scalar evolution to instantiate.
2840
2841 CACHE is the cache of already instantiated values.
88d02c9e 2842
5fe66b3c 2843 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2844 conversions that may wrap in signed/pointer type are folded, as long
2845 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2846 then we don't do such fold.
d91a99f1 2847
2848 SIZE_EXPR is used for computing the size of the expression to be
2849 instantiated, and to stop if it exceeds some limit. */
2850
2851static tree
2852instantiate_scev_r (basic_block instantiate_below,
6ee802ad 2853 struct loop *evolution_loop, struct loop *inner_loop,
2854 tree chrec,
5fe66b3c 2855 bool *fold_conversions, int size_expr)
d91a99f1 2856{
8fb9f6fe 2857 /* Give up if the expression is larger than the MAX that we allow. */
2858 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2859 return chrec_dont_know;
2860
8491bc74 2861 if (chrec == NULL_TREE
2862 || automatically_generated_chrec_p (chrec)
903dae48 2863 || is_gimple_min_invariant (chrec))
c2c3fd24 2864 return chrec;
2865
2866 switch (TREE_CODE (chrec))
2867 {
2868 case SSA_NAME:
6ee802ad 2869 return instantiate_scev_name (instantiate_below, evolution_loop,
2870 inner_loop, chrec,
32e31826 2871 fold_conversions, size_expr);
c2c3fd24 2872
2873 case POLYNOMIAL_CHREC:
6ee802ad 2874 return instantiate_scev_poly (instantiate_below, evolution_loop,
2875 inner_loop, chrec,
32e31826 2876 fold_conversions, size_expr);
c2c3fd24 2877
0de36bdb 2878 case POINTER_PLUS_EXPR:
c2c3fd24 2879 case PLUS_EXPR:
c2c3fd24 2880 case MINUS_EXPR:
c2c3fd24 2881 case MULT_EXPR:
6ee802ad 2882 return instantiate_scev_binary (instantiate_below, evolution_loop,
2883 inner_loop, chrec,
9e9aa0c6 2884 TREE_CODE (chrec), chrec_type (chrec),
2885 TREE_OPERAND (chrec, 0),
2886 TREE_OPERAND (chrec, 1),
32e31826 2887 fold_conversions, size_expr);
c2c3fd24 2888
72dd6141 2889 CASE_CONVERT:
6ee802ad 2890 return instantiate_scev_convert (instantiate_below, evolution_loop,
2891 inner_loop, chrec,
7723692a 2892 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
32e31826 2893 fold_conversions, size_expr);
c2c3fd24 2894
9d206f16 2895 case NEGATE_EXPR:
b6eab06c 2896 case BIT_NOT_EXPR:
6ee802ad 2897 return instantiate_scev_not (instantiate_below, evolution_loop,
2898 inner_loop, chrec,
c43f1e90 2899 TREE_CODE (chrec), TREE_TYPE (chrec),
2900 TREE_OPERAND (chrec, 0),
32e31826 2901 fold_conversions, size_expr);
b6eab06c 2902
0d0cdcaa 2903 case ADDR_EXPR:
c2c3fd24 2904 case SCEV_NOT_KNOWN:
2905 return chrec_dont_know;
2906
2907 case SCEV_KNOWN:
2908 return chrec_known;
5a10dfba 2909
3e0b5bba 2910 case ARRAY_REF:
6ee802ad 2911 return instantiate_array_ref (instantiate_below, evolution_loop,
2912 inner_loop, chrec,
32e31826 2913 fold_conversions, size_expr);
3e0b5bba 2914
c2c3fd24 2915 default:
2916 break;
2917 }
2918
8e34a7c6 2919 if (VL_EXP_CLASS_P (chrec))
2920 return chrec_dont_know;
2921
c2c3fd24 2922 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2923 {
2924 case 3:
6ee802ad 2925 return instantiate_scev_3 (instantiate_below, evolution_loop,
2926 inner_loop, chrec,
32e31826 2927 fold_conversions, size_expr);
c2c3fd24 2928
2929 case 2:
6ee802ad 2930 return instantiate_scev_2 (instantiate_below, evolution_loop,
2931 inner_loop, chrec,
32e31826 2932 fold_conversions, size_expr);
39251a91 2933
c2c3fd24 2934 case 1:
6ee802ad 2935 return instantiate_scev_1 (instantiate_below, evolution_loop,
2936 inner_loop, chrec,
32e31826 2937 fold_conversions, size_expr);
c2c3fd24 2938
2939 case 0:
2940 return chrec;
2941
2942 default:
2943 break;
2944 }
2945
2946 /* Too complicated to handle. */
2947 return chrec_dont_know;
2948}
b9d73ea6 2949
2950/* Analyze all the parameters of the chrec that were left under a
089aa668 2951 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2952 recursive instantiation of parameters: a parameter is a variable
2953 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2954 a function parameter. */
b9d73ea6 2955
2956tree
089aa668 2957instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
afd80ffb 2958 tree chrec)
b9d73ea6 2959{
c2c3fd24 2960 tree res;
2961
487a9bc1 2962 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 2963 {
afd80ffb 2964 fprintf (dump_file, "(instantiate_scev \n");
089aa668 2965 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
afd80ffb 2966 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
c2c3fd24 2967 fprintf (dump_file, " (chrec = ");
1ffa4346 2968 print_generic_expr (dump_file, chrec);
c2c3fd24 2969 fprintf (dump_file, ")\n");
2970 }
48e1416a 2971
32e31826 2972 bool destr = false;
2973 if (!global_cache)
2974 {
2975 global_cache = new instantiate_cache_type;
2976 destr = true;
2977 }
2978
6ee802ad 2979 res = instantiate_scev_r (instantiate_below, evolution_loop,
5fe66b3c 2980 NULL, chrec, NULL, 0);
32e31826 2981
2982 if (destr)
2983 {
2984 delete global_cache;
2985 global_cache = NULL;
2986 }
c2c3fd24 2987
487a9bc1 2988 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 2989 {
2990 fprintf (dump_file, " (res = ");
1ffa4346 2991 print_generic_expr (dump_file, res);
c2c3fd24 2992 fprintf (dump_file, "))\n");
2993 }
15a951ca 2994
c2c3fd24 2995 return res;
2996}
2997
2998/* Similar to instantiate_parameters, but does not introduce the
88d02c9e 2999 evolutions in outer loops for LOOP invariants in CHREC, and does not
3000 care about causing overflows, as long as they do not affect value
3001 of an expression. */
c2c3fd24 3002
80bb306a 3003tree
5fe66b3c 3004resolve_mixers (struct loop *loop, tree chrec, bool *folded_casts)
c2c3fd24 3005{
32e31826 3006 bool destr = false;
5fe66b3c 3007 bool fold_conversions = false;
32e31826 3008 if (!global_cache)
3009 {
3010 global_cache = new instantiate_cache_type;
3011 destr = true;
3012 }
3013
6ee802ad 3014 tree ret = instantiate_scev_r (block_before_loop (loop), loop, NULL,
5fe66b3c 3015 chrec, &fold_conversions, 0);
3016
3017 if (folded_casts && !*folded_casts)
3018 *folded_casts = fold_conversions;
32e31826 3019
3020 if (destr)
3021 {
3022 delete global_cache;
3023 global_cache = NULL;
3024 }
3025
15a951ca 3026 return ret;
c2c3fd24 3027}
3028
48e1416a 3029/* Entry point for the analysis of the number of iterations pass.
c2c3fd24 3030 This function tries to safely approximate the number of iterations
3031 the loop will run. When this property is not decidable at compile
134c053e 3032 time, the result is chrec_dont_know. Otherwise the result is a
3033 scalar or a symbolic parameter. When the number of iterations may
3034 be equal to zero and the property cannot be determined at compile
3035 time, the result is a COND_EXPR that represents in a symbolic form
3036 the conditions under which the number of iterations is not zero.
48e1416a 3037
c2c3fd24 3038 Example of analysis: suppose that the loop has an exit condition:
48e1416a 3039
c2c3fd24 3040 "if (b > 49) goto end_loop;"
48e1416a 3041
c2c3fd24 3042 and that in a previous analysis we have determined that the
3043 variable 'b' has an evolution function:
48e1416a 3044
3045 "EF = {23, +, 5}_2".
3046
c2c3fd24 3047 When we evaluate the function at the point 5, i.e. the value of the
3048 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
3049 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
3050 the loop body has been executed 6 times. */
3051
48e1416a 3052tree
0c3c2e56 3053number_of_latch_executions (struct loop *loop)
c2c3fd24 3054{
c2c3fd24 3055 edge exit;
3056 struct tree_niter_desc niter_desc;
134c053e 3057 tree may_be_zero;
3058 tree res;
c2c3fd24 3059
134c053e 3060 /* Determine whether the number of iterations in loop has already
c2c3fd24 3061 been computed. */
3062 res = loop->nb_iterations;
3063 if (res)
3064 return res;
134c053e 3065
3066 may_be_zero = NULL_TREE;
c2c3fd24 3067
487a9bc1 3068 if (dump_file && (dump_flags & TDF_SCEV))
134c053e 3069 fprintf (dump_file, "(number_of_iterations_in_loop = \n");
48e1416a 3070
134c053e 3071 res = chrec_dont_know;
d9e7e1a2 3072 exit = single_exit (loop);
c2c3fd24 3073
134c053e 3074 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
3075 {
3076 may_be_zero = niter_desc.may_be_zero;
3077 res = niter_desc.niter;
3078 }
3079
3080 if (res == chrec_dont_know
3081 || !may_be_zero
3082 || integer_zerop (may_be_zero))
3083 ;
3084 else if (integer_nonzerop (may_be_zero))
3085 res = build_int_cst (TREE_TYPE (res), 0);
c2c3fd24 3086
134c053e 3087 else if (COMPARISON_CLASS_P (may_be_zero))
3088 res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero,
3089 build_int_cst (TREE_TYPE (res), 0), res);
c2c3fd24 3090 else
3091 res = chrec_dont_know;
3092
487a9bc1 3093 if (dump_file && (dump_flags & TDF_SCEV))
134c053e 3094 {
3095 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
1ffa4346 3096 print_generic_expr (dump_file, res);
134c053e 3097 fprintf (dump_file, "))\n");
3098 }
3099
3100 loop->nb_iterations = res;
3101 return res;
c2c3fd24 3102}
c2c3fd24 3103\f
3104
3105/* Counters for the stats. */
3106
48e1416a 3107struct chrec_stats
c2c3fd24 3108{
3109 unsigned nb_chrecs;
3110 unsigned nb_affine;
3111 unsigned nb_affine_multivar;
3112 unsigned nb_higher_poly;
3113 unsigned nb_chrec_dont_know;
3114 unsigned nb_undetermined;
3115};
3116
3117/* Reset the counters. */
3118
3119static inline void
3120reset_chrecs_counters (struct chrec_stats *stats)
3121{
3122 stats->nb_chrecs = 0;
3123 stats->nb_affine = 0;
3124 stats->nb_affine_multivar = 0;
3125 stats->nb_higher_poly = 0;
3126 stats->nb_chrec_dont_know = 0;
3127 stats->nb_undetermined = 0;
3128}
3129
3130/* Dump the contents of a CHREC_STATS structure. */
3131
3132static void
3133dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
3134{
3135 fprintf (file, "\n(\n");
3136 fprintf (file, "-----------------------------------------\n");
3137 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
3138 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
48e1416a 3139 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
c2c3fd24 3140 stats->nb_higher_poly);
3141 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
3142 fprintf (file, "-----------------------------------------\n");
3143 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
48e1416a 3144 fprintf (file, "%d\twith undetermined coefficients\n",
c2c3fd24 3145 stats->nb_undetermined);
3146 fprintf (file, "-----------------------------------------\n");
48e1416a 3147 fprintf (file, "%d\tchrecs in the scev database\n",
9f9f871f 3148 (int) scalar_evolution_info->elements ());
c2c3fd24 3149 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
3150 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
3151 fprintf (file, "-----------------------------------------\n");
3152 fprintf (file, ")\n\n");
3153}
3154
3155/* Gather statistics about CHREC. */
3156
3157static void
3158gather_chrec_stats (tree chrec, struct chrec_stats *stats)
3159{
3160 if (dump_file && (dump_flags & TDF_STATS))
3161 {
3162 fprintf (dump_file, "(classify_chrec ");
1ffa4346 3163 print_generic_expr (dump_file, chrec);
c2c3fd24 3164 fprintf (dump_file, "\n");
3165 }
48e1416a 3166
c2c3fd24 3167 stats->nb_chrecs++;
48e1416a 3168
c2c3fd24 3169 if (chrec == NULL_TREE)
3170 {
3171 stats->nb_undetermined++;
3172 return;
3173 }
48e1416a 3174
c2c3fd24 3175 switch (TREE_CODE (chrec))
3176 {
3177 case POLYNOMIAL_CHREC:
3178 if (evolution_function_is_affine_p (chrec))
3179 {
3180 if (dump_file && (dump_flags & TDF_STATS))
3181 fprintf (dump_file, " affine_univariate\n");
3182 stats->nb_affine++;
3183 }
9c77efff 3184 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
c2c3fd24 3185 {
3186 if (dump_file && (dump_flags & TDF_STATS))
3187 fprintf (dump_file, " affine_multivariate\n");
3188 stats->nb_affine_multivar++;
3189 }
3190 else
3191 {
3192 if (dump_file && (dump_flags & TDF_STATS))
3193 fprintf (dump_file, " higher_degree_polynomial\n");
3194 stats->nb_higher_poly++;
3195 }
48e1416a 3196
c2c3fd24 3197 break;
3198
3199 default:
3200 break;
3201 }
48e1416a 3202
c2c3fd24 3203 if (chrec_contains_undetermined (chrec))
3204 {
3205 if (dump_file && (dump_flags & TDF_STATS))
3206 fprintf (dump_file, " undetermined\n");
3207 stats->nb_undetermined++;
3208 }
48e1416a 3209
c2c3fd24 3210 if (dump_file && (dump_flags & TDF_STATS))
3211 fprintf (dump_file, ")\n");
3212}
3213
c2c3fd24 3214/* Classify the chrecs of the whole database. */
3215
48e1416a 3216void
c2c3fd24 3217gather_stats_on_scev_database (void)
3218{
3219 struct chrec_stats stats;
48e1416a 3220
c2c3fd24 3221 if (!dump_file)
3222 return;
48e1416a 3223
c2c3fd24 3224 reset_chrecs_counters (&stats);
48e1416a 3225
9f9f871f 3226 hash_table<scev_info_hasher>::iterator iter;
3227 scev_info_str *elt;
3228 FOR_EACH_HASH_TABLE_ELEMENT (*scalar_evolution_info, elt, scev_info_str *,
3229 iter)
3230 gather_chrec_stats (elt->chrec, &stats);
c2c3fd24 3231
3232 dump_chrecs_stats (dump_file, &stats);
3233}
3234
3235\f
3236
3237/* Initializer. */
3238
3239static void
3240initialize_scalar_evolutions_analyzer (void)
3241{
3242 /* The elements below are unique. */
3243 if (chrec_dont_know == NULL_TREE)
3244 {
3245 chrec_not_analyzed_yet = NULL_TREE;
3246 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
3247 chrec_known = make_node (SCEV_KNOWN);
f3830c7c 3248 TREE_TYPE (chrec_dont_know) = void_type_node;
3249 TREE_TYPE (chrec_known) = void_type_node;
c2c3fd24 3250 }
3251}
3252
3253/* Initialize the analysis of scalar evolutions for LOOPS. */
3254
3255void
7194de72 3256scev_initialize (void)
c2c3fd24 3257{
17519ba0 3258 struct loop *loop;
c2c3fd24 3259
c3f8ce55 3260 gcc_assert (! scev_initialized_p ());
3261
9f9f871f 3262 scalar_evolution_info = hash_table<scev_info_hasher>::create_ggc (100);
48e1416a 3263
c2c3fd24 3264 initialize_scalar_evolutions_analyzer ();
3265
f21d4d00 3266 FOR_EACH_LOOP (loop, 0)
17519ba0 3267 {
3268 loop->nb_iterations = NULL_TREE;
3269 }
c2c3fd24 3270}
3271
a9ef9877 3272/* Return true if SCEV is initialized. */
3273
3274bool
3275scev_initialized_p (void)
3276{
3277 return scalar_evolution_info != NULL;
3278}
3279
efe339e3 3280/* Cleans up the information cached by the scalar evolutions analysis
3281 in the hash table. */
3282
3283void
3284scev_reset_htab (void)
3285{
3286 if (!scalar_evolution_info)
3287 return;
3288
9f9f871f 3289 scalar_evolution_info->empty ();
efe339e3 3290}
3291
3292/* Cleans up the information cached by the scalar evolutions analysis
3293 in the hash table and in the loop->nb_iterations. */
c2c3fd24 3294
3295void
3296scev_reset (void)
3297{
c2c3fd24 3298 struct loop *loop;
3299
efe339e3 3300 scev_reset_htab ();
3301
f21d4d00 3302 FOR_EACH_LOOP (loop, 0)
c2c3fd24 3303 {
17519ba0 3304 loop->nb_iterations = NULL_TREE;
c2c3fd24 3305 }
b9d73ea6 3306}
3307
30a39817 3308/* Return true if the IV calculation in TYPE can overflow based on the knowledge
3309 of the upper bound on the number of iterations of LOOP, the BASE and STEP
3310 of IV.
3311
3312 We do not use information whether TYPE can overflow so it is safe to
3313 use this test even for derived IVs not computed every iteration or
3314 hypotetical IVs to be inserted into code. */
3315
cd959806 3316bool
30a39817 3317iv_can_overflow_p (struct loop *loop, tree type, tree base, tree step)
3318{
3319 widest_int nit;
3320 wide_int base_min, base_max, step_min, step_max, type_min, type_max;
3321 signop sgn = TYPE_SIGN (type);
3322
3323 if (integer_zerop (step))
3324 return false;
3325
3326 if (TREE_CODE (base) == INTEGER_CST)
e3d0f65c 3327 base_min = base_max = wi::to_wide (base);
30a39817 3328 else if (TREE_CODE (base) == SSA_NAME
3329 && INTEGRAL_TYPE_P (TREE_TYPE (base))
3330 && get_range_info (base, &base_min, &base_max) == VR_RANGE)
3331 ;
3332 else
3333 return true;
3334
3335 if (TREE_CODE (step) == INTEGER_CST)
e3d0f65c 3336 step_min = step_max = wi::to_wide (step);
30a39817 3337 else if (TREE_CODE (step) == SSA_NAME
3338 && INTEGRAL_TYPE_P (TREE_TYPE (step))
3339 && get_range_info (step, &step_min, &step_max) == VR_RANGE)
3340 ;
3341 else
3342 return true;
3343
3344 if (!get_max_loop_iterations (loop, &nit))
3345 return true;
3346
3347 type_min = wi::min_value (type);
3348 type_max = wi::max_value (type);
3349
3350 /* Just sanity check that we don't see values out of the range of the type.
3351 In this case the arithmetics bellow would overflow. */
3352 gcc_checking_assert (wi::ge_p (base_min, type_min, sgn)
3353 && wi::le_p (base_max, type_max, sgn));
3354
3355 /* Account the possible increment in the last ieration. */
3356 bool overflow = false;
3357 nit = wi::add (nit, 1, SIGNED, &overflow);
3358 if (overflow)
3359 return true;
3360
3361 /* NIT is typeless and can exceed the precision of the type. In this case
3362 overflow is always possible, because we know STEP is non-zero. */
3363 if (wi::min_precision (nit, UNSIGNED) > TYPE_PRECISION (type))
3364 return true;
3365 wide_int nit2 = wide_int::from (nit, TYPE_PRECISION (type), UNSIGNED);
3366
3367 /* If step can be positive, check that nit*step <= type_max-base.
3368 This can be done by unsigned arithmetic and we only need to watch overflow
3369 in the multiplication. The right hand side can always be represented in
3370 the type. */
3371 if (sgn == UNSIGNED || !wi::neg_p (step_max))
3372 {
3373 bool overflow = false;
3374 if (wi::gtu_p (wi::mul (step_max, nit2, UNSIGNED, &overflow),
3375 type_max - base_max)
3376 || overflow)
3377 return true;
3378 }
3379 /* If step can be negative, check that nit*(-step) <= base_min-type_min. */
3380 if (sgn == SIGNED && wi::neg_p (step_min))
3381 {
3382 bool overflow = false, overflow2 = false;
3383 if (wi::gtu_p (wi::mul (wi::neg (step_min, &overflow2),
3384 nit2, UNSIGNED, &overflow),
3385 base_min - type_min)
3386 || overflow || overflow2)
3387 return true;
3388 }
3389
3390 return false;
3391}
3392
a4d34e5e 3393/* Given EV with form of "(type) {inner_base, inner_step}_loop", this
3394 function tries to derive condition under which it can be simplified
3395 into "{(type)inner_base, (type)inner_step}_loop". The condition is
3396 the maximum number that inner iv can iterate. */
3397
3398static tree
3399derive_simple_iv_with_niters (tree ev, tree *niters)
3400{
3401 if (!CONVERT_EXPR_P (ev))
3402 return ev;
3403
3404 tree inner_ev = TREE_OPERAND (ev, 0);
3405 if (TREE_CODE (inner_ev) != POLYNOMIAL_CHREC)
3406 return ev;
3407
3408 tree init = CHREC_LEFT (inner_ev);
3409 tree step = CHREC_RIGHT (inner_ev);
3410 if (TREE_CODE (init) != INTEGER_CST
3411 || TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
3412 return ev;
3413
3414 tree type = TREE_TYPE (ev);
3415 tree inner_type = TREE_TYPE (inner_ev);
3416 if (TYPE_PRECISION (inner_type) >= TYPE_PRECISION (type))
3417 return ev;
3418
3419 /* Type conversion in "(type) {inner_base, inner_step}_loop" can be
3420 folded only if inner iv won't overflow. We compute the maximum
3421 number the inner iv can iterate before overflowing and return the
3422 simplified affine iv. */
3423 tree delta;
3424 init = fold_convert (type, init);
3425 step = fold_convert (type, step);
3426 ev = build_polynomial_chrec (CHREC_VARIABLE (inner_ev), init, step);
3427 if (tree_int_cst_sign_bit (step))
3428 {
3429 tree bound = lower_bound_in_type (inner_type, inner_type);
3430 delta = fold_build2 (MINUS_EXPR, type, init, fold_convert (type, bound));
3431 step = fold_build1 (NEGATE_EXPR, type, step);
3432 }
3433 else
3434 {
3435 tree bound = upper_bound_in_type (inner_type, inner_type);
3436 delta = fold_build2 (MINUS_EXPR, type, fold_convert (type, bound), init);
3437 }
3438 *niters = fold_build2 (FLOOR_DIV_EXPR, type, delta, step);
3439 return ev;
3440}
3441
76610704 3442/* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3443 respect to WRTO_LOOP and returns its base and step in IV if possible
3444 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3445 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3446 invariant in LOOP. Otherwise we require it to be an integer constant.
48e1416a 3447
76610704 3448 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3449 because it is computed in signed arithmetics). Consequently, adding an
3450 induction variable
48e1416a 3451
76610704 3452 for (i = IV->base; ; i += IV->step)
3453
3454 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3455 false for the type of the induction variable, or you can prove that i does
3456 not wrap by some other argument. Otherwise, this might introduce undefined
3457 behavior, and
48e1416a 3458
a4d34e5e 3459 i = iv->base;
3460 for (; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3461
3462 must be used instead.
3463
3464 When IV_NITERS is not NULL, this function also checks case in which OP
3465 is a conversion of an inner simple iv of below form:
3466
3467 (outer_type){inner_base, inner_step}_loop.
76610704 3468
a4d34e5e 3469 If type of inner iv has smaller precision than outer_type, it can't be
3470 folded into {(outer_type)inner_base, (outer_type)inner_step}_loop because
3471 the inner iv could overflow/wrap. In this case, we derive a condition
3472 under which the inner iv won't overflow/wrap and do the simplification.
3473 The derived condition normally is the maximum number the inner iv can
3474 iterate, and will be stored in IV_NITERS. This is useful in loop niter
3475 analysis, to derive break conditions when a loop must terminate, when is
3476 infinite. */
b9d73ea6 3477
3478bool
a4d34e5e 3479simple_iv_with_niters (struct loop *wrto_loop, struct loop *use_loop,
3480 tree op, affine_iv *iv, tree *iv_niters,
3481 bool allow_nonconstant_step)
b9d73ea6 3482{
6c48ce84 3483 enum tree_code code;
6723abf5 3484 tree type, ev, base, e;
6c48ce84 3485 wide_int extreme;
3486 bool folded_casts, overflow;
c2c3fd24 3487
553b9523 3488 iv->base = NULL_TREE;
3489 iv->step = NULL_TREE;
3490 iv->no_overflow = false;
c2c3fd24 3491
3492 type = TREE_TYPE (op);
367113ea 3493 if (!POINTER_TYPE_P (type)
3494 && !INTEGRAL_TYPE_P (type))
c2c3fd24 3495 return false;
3496
76610704 3497 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
553b9523 3498 &folded_casts);
76610704 3499 if (chrec_contains_undetermined (ev)
3500 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
c2c3fd24 3501 return false;
3502
76610704 3503 if (tree_does_not_contain_chrecs (ev))
c2c3fd24 3504 {
553b9523 3505 iv->base = ev;
7a973feb 3506 iv->step = build_int_cst (TREE_TYPE (ev), 0);
553b9523 3507 iv->no_overflow = true;
c2c3fd24 3508 return true;
3509 }
3510
a4d34e5e 3511 /* If we can derive valid scalar evolution with assumptions. */
3512 if (iv_niters && TREE_CODE (ev) != POLYNOMIAL_CHREC)
3513 ev = derive_simple_iv_with_niters (ev, iv_niters);
3514
3515 if (TREE_CODE (ev) != POLYNOMIAL_CHREC)
3516 return false;
3517
3518 if (CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
c2c3fd24 3519 return false;
3520
553b9523 3521 iv->step = CHREC_RIGHT (ev);
76610704 3522 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
3523 || tree_contains_chrecs (iv->step, NULL))
c2c3fd24 3524 return false;
651874e1 3525
553b9523 3526 iv->base = CHREC_LEFT (ev);
76610704 3527 if (tree_contains_chrecs (iv->base, NULL))
c2c3fd24 3528 return false;
3529
4f37c011 3530 iv->no_overflow = !folded_casts && nowrap_type_p (type);
981eb798 3531
30a39817 3532 if (!iv->no_overflow
3533 && !iv_can_overflow_p (wrto_loop, type, iv->base, iv->step))
3534 iv->no_overflow = true;
3535
6c48ce84 3536 /* Try to simplify iv base:
3537
3538 (signed T) ((unsigned T)base + step) ;; TREE_TYPE (base) == signed T
3539 == (signed T)(unsigned T)base + step
3540 == base + step
3541
3542 If we can prove operation (base + step) doesn't overflow or underflow.
3543 Specifically, we try to prove below conditions are satisfied:
3544
3545 base <= UPPER_BOUND (type) - step ;;step > 0
3546 base >= LOWER_BOUND (type) - step ;;step < 0
3547
3548 This is done by proving the reverse conditions are false using loop's
3549 initial conditions.
3550
3551 The is necessary to make loop niter, or iv overflow analysis easier
3552 for below example:
3553
3554 int foo (int *a, signed char s, signed char l)
3555 {
3556 signed char i;
3557 for (i = s; i < l; i++)
3558 a[i] = 0;
3559 return 0;
3560 }
3561
3562 Note variable I is firstly converted to type unsigned char, incremented,
3563 then converted back to type signed char. */
3564
3565 if (wrto_loop->num != use_loop->num)
3566 return true;
3567
3568 if (!CONVERT_EXPR_P (iv->base) || TREE_CODE (iv->step) != INTEGER_CST)
3569 return true;
3570
3571 type = TREE_TYPE (iv->base);
3572 e = TREE_OPERAND (iv->base, 0);
3573 if (TREE_CODE (e) != PLUS_EXPR
3574 || TREE_CODE (TREE_OPERAND (e, 1)) != INTEGER_CST
3575 || !tree_int_cst_equal (iv->step,
3576 fold_convert (type, TREE_OPERAND (e, 1))))
3577 return true;
3578 e = TREE_OPERAND (e, 0);
3579 if (!CONVERT_EXPR_P (e))
3580 return true;
3581 base = TREE_OPERAND (e, 0);
3582 if (!useless_type_conversion_p (type, TREE_TYPE (base)))
3583 return true;
3584
3585 if (tree_int_cst_sign_bit (iv->step))
3586 {
3587 code = LT_EXPR;
3588 extreme = wi::min_value (type);
3589 }
3590 else
3591 {
3592 code = GT_EXPR;
3593 extreme = wi::max_value (type);
3594 }
3595 overflow = false;
e3d0f65c 3596 extreme = wi::sub (extreme, wi::to_wide (iv->step),
3597 TYPE_SIGN (type), &overflow);
6c48ce84 3598 if (overflow)
3599 return true;
3600 e = fold_build2 (code, boolean_type_node, base,
3601 wide_int_to_tree (type, extreme));
6723abf5 3602 e = simplify_using_initial_conditions (use_loop, e);
6c48ce84 3603 if (!integer_zerop (e))
3604 return true;
3605
3606 if (POINTER_TYPE_P (TREE_TYPE (base)))
3607 code = POINTER_PLUS_EXPR;
3608 else
3609 code = PLUS_EXPR;
3610
3611 iv->base = fold_build2 (code, TREE_TYPE (base), base, iv->step);
c2c3fd24 3612 return true;
3613}
3614
a4d34e5e 3615/* Like simple_iv_with_niters, but return TRUE when OP behaves as a simple
3616 affine iv unconditionally. */
3617
3618bool
3619simple_iv (struct loop *wrto_loop, struct loop *use_loop, tree op,
3620 affine_iv *iv, bool allow_nonconstant_step)
3621{
3622 return simple_iv_with_niters (wrto_loop, use_loop, op, iv,
3623 NULL, allow_nonconstant_step);
3624}
3625
c2c3fd24 3626/* Finalize the scalar evolution analysis. */
3627
3628void
3629scev_finalize (void)
3630{
7a3bf727 3631 if (!scalar_evolution_info)
3632 return;
9f9f871f 3633 scalar_evolution_info->empty ();
d8a0d6b8 3634 scalar_evolution_info = NULL;
866da453 3635 free_numbers_of_iterations_estimates (cfun);
c2c3fd24 3636}
3637
590f8b68 3638/* Returns true if the expression EXPR is considered to be too expensive
3639 for scev_const_prop. */
3640
3641bool
3642expression_expensive_p (tree expr)
3643{
3644 enum tree_code code;
3645
3646 if (is_gimple_val (expr))
3647 return false;
3648
3649 code = TREE_CODE (expr);
3650 if (code == TRUNC_DIV_EXPR
3651 || code == CEIL_DIV_EXPR
3652 || code == FLOOR_DIV_EXPR
3653 || code == ROUND_DIV_EXPR
3654 || code == TRUNC_MOD_EXPR
3655 || code == CEIL_MOD_EXPR
3656 || code == FLOOR_MOD_EXPR
3657 || code == ROUND_MOD_EXPR
3658 || code == EXACT_DIV_EXPR)
3659 {
3660 /* Division by power of two is usually cheap, so we allow it.
3661 Forbid anything else. */
3662 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
3663 return true;
3664 }
3665
3666 switch (TREE_CODE_CLASS (code))
3667 {
3668 case tcc_binary:
3669 case tcc_comparison:
3670 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
3671 return true;
3672
3673 /* Fallthru. */
3674 case tcc_unary:
3675 return expression_expensive_p (TREE_OPERAND (expr, 0));
3676
3677 default:
3678 return true;
3679 }
3680}
3681
9e75a9b9 3682/* Do final value replacement for LOOP. */
3683
3684void
3685final_value_replacement_loop (struct loop *loop)
3686{
3687 /* If we do not know exact number of iterations of the loop, we cannot
3688 replace the final value. */
3689 edge exit = single_exit (loop);
3690 if (!exit)
3691 return;
3692
3693 tree niter = number_of_latch_executions (loop);
3694 if (niter == chrec_dont_know)
3695 return;
3696
3697 /* Ensure that it is possible to insert new statements somewhere. */
3698 if (!single_pred_p (exit->dest))
3699 split_loop_exit_edge (exit);
3700
3701 /* Set stmt insertion pointer. All stmts are inserted before this point. */
3702 gimple_stmt_iterator gsi = gsi_after_labels (exit->dest);
3703
3704 struct loop *ex_loop
3705 = superloop_at_depth (loop,
3706 loop_depth (exit->dest->loop_father) + 1);
3707
3708 gphi_iterator psi;
3709 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
3710 {
3711 gphi *phi = psi.phi ();
3712 tree rslt = PHI_RESULT (phi);
3713 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
3714 if (virtual_operand_p (def))
3715 {
3716 gsi_next (&psi);
3717 continue;
3718 }
3719
3720 if (!POINTER_TYPE_P (TREE_TYPE (def))
3721 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
3722 {
3723 gsi_next (&psi);
3724 continue;
3725 }
3726
3727 bool folded_casts;
3728 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def,
3729 &folded_casts);
3730 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3731 if (!tree_does_not_contain_chrecs (def)
3732 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3733 /* Moving the computation from the loop may prolong life range
3734 of some ssa names, which may cause problems if they appear
3735 on abnormal edges. */
3736 || contains_abnormal_ssa_name_p (def)
3737 /* Do not emit expensive expressions. The rationale is that
3738 when someone writes a code like
3739
3740 while (n > 45) n -= 45;
3741
3742 he probably knows that n is not large, and does not want it
3743 to be turned into n %= 45. */
3744 || expression_expensive_p (def))
3745 {
3746 if (dump_file && (dump_flags & TDF_DETAILS))
3747 {
3748 fprintf (dump_file, "not replacing:\n ");
1ffa4346 3749 print_gimple_stmt (dump_file, phi, 0);
9e75a9b9 3750 fprintf (dump_file, "\n");
3751 }
3752 gsi_next (&psi);
3753 continue;
3754 }
3755
3756 /* Eliminate the PHI node and replace it by a computation outside
3757 the loop. */
3758 if (dump_file)
3759 {
3760 fprintf (dump_file, "\nfinal value replacement:\n ");
1ffa4346 3761 print_gimple_stmt (dump_file, phi, 0);
9e75a9b9 3762 fprintf (dump_file, " with\n ");
3763 }
3764 def = unshare_expr (def);
3765 remove_phi_node (&psi, false);
3766
3767 /* If def's type has undefined overflow and there were folded
3768 casts, rewrite all stmts added for def into arithmetics
3769 with defined overflow behavior. */
3770 if (folded_casts && ANY_INTEGRAL_TYPE_P (TREE_TYPE (def))
3771 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (def)))
3772 {
3773 gimple_seq stmts;
3774 gimple_stmt_iterator gsi2;
3775 def = force_gimple_operand (def, &stmts, true, NULL_TREE);
3776 gsi2 = gsi_start (stmts);
3777 while (!gsi_end_p (gsi2))
3778 {
3779 gimple *stmt = gsi_stmt (gsi2);
3780 gimple_stmt_iterator gsi3 = gsi2;
3781 gsi_next (&gsi2);
3782 gsi_remove (&gsi3, false);
3783 if (is_gimple_assign (stmt)
3784 && arith_code_with_undefined_signed_overflow
3785 (gimple_assign_rhs_code (stmt)))
3786 gsi_insert_seq_before (&gsi,
3787 rewrite_to_defined_overflow (stmt),
3788 GSI_SAME_STMT);
3789 else
3790 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3791 }
3792 }
3793 else
3794 def = force_gimple_operand_gsi (&gsi, def, false, NULL_TREE,
3795 true, GSI_SAME_STMT);
3796
3797 gassign *ass = gimple_build_assign (rslt, def);
3798 gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
3799 if (dump_file)
3800 {
1ffa4346 3801 print_gimple_stmt (dump_file, ass, 0);
9e75a9b9 3802 fprintf (dump_file, "\n");
3803 }
3804 }
3805}
3806
10fec820 3807/* Replace ssa names for that scev can prove they are constant by the
f4d7629d 3808 appropriate constants. Also perform final value replacement in loops,
3809 in case the replacement expressions are cheap.
48e1416a 3810
10fec820 3811 We only consider SSA names defined by phi nodes; rest is left to the
3812 ordinary constant propagation pass. */
3813
2a1990e9 3814unsigned int
10fec820 3815scev_const_prop (void)
3816{
3817 basic_block bb;
75a70cf9 3818 tree name, type, ev;
1a91d914 3819 gphi *phi;
9e75a9b9 3820 struct loop *loop;
10fec820 3821 bitmap ssa_names_to_remove = NULL;
f4d7629d 3822 unsigned i;
1a91d914 3823 gphi_iterator psi;
10fec820 3824
41f75a99 3825 if (number_of_loops (cfun) <= 1)
2a1990e9 3826 return 0;
10fec820 3827
fc00614f 3828 FOR_EACH_BB_FN (bb, cfun)
10fec820 3829 {
3830 loop = bb->loop_father;
3831
75a70cf9 3832 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
10fec820 3833 {
1a91d914 3834 phi = psi.phi ();
10fec820 3835 name = PHI_RESULT (phi);
3836
7c782c9b 3837 if (virtual_operand_p (name))
10fec820 3838 continue;
3839
3840 type = TREE_TYPE (name);
3841
3842 if (!POINTER_TYPE_P (type)
3843 && !INTEGRAL_TYPE_P (type))
3844 continue;
3845
5fe66b3c 3846 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name),
3847 NULL);
10fec820 3848 if (!is_gimple_min_invariant (ev)
3849 || !may_propagate_copy (name, ev))
3850 continue;
3851
3852 /* Replace the uses of the name. */
9887dd18 3853 if (name != ev)
5aa78b2e 3854 {
3855 if (dump_file && (dump_flags & TDF_DETAILS))
3856 {
3857 fprintf (dump_file, "Replacing uses of: ");
1ffa4346 3858 print_generic_expr (dump_file, name);
5aa78b2e 3859 fprintf (dump_file, " with: ");
1ffa4346 3860 print_generic_expr (dump_file, ev);
5aa78b2e 3861 fprintf (dump_file, "\n");
3862 }
3863 replace_uses_by (name, ev);
3864 }
10fec820 3865
3866 if (!ssa_names_to_remove)
3867 ssa_names_to_remove = BITMAP_ALLOC (NULL);
3868 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
3869 }
3870 }
3871
17889f9d 3872 /* Remove the ssa names that were replaced by constants. We do not
3873 remove them directly in the previous cycle, since this
3874 invalidates scev cache. */
10fec820 3875 if (ssa_names_to_remove)
3876 {
3877 bitmap_iterator bi;
10fec820 3878
3879 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
3880 {
75a70cf9 3881 gimple_stmt_iterator psi;
10fec820 3882 name = ssa_name (i);
1a91d914 3883 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (name));
10fec820 3884
75a70cf9 3885 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
3886 psi = gsi_for_stmt (phi);
3887 remove_phi_node (&psi, true);
10fec820 3888 }
3889
3890 BITMAP_FREE (ssa_names_to_remove);
3891 scev_reset ();
3892 }
f4d7629d 3893
3894 /* Now the regular final value replacement. */
f21d4d00 3895 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
9e75a9b9 3896 final_value_replacement_loop (loop);
5bacce6b 3897
2a1990e9 3898 return 0;
10fec820 3899}
ccae4f9f 3900
3901#include "gt-tree-scalar-evolution.h"