]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-scalar-evolution.c
PR libstdc++/81092 add std::wstring symbols and bump library version
[thirdparty/gcc.git] / gcc / tree-scalar-evolution.c
CommitLineData
e9eb809d 1/* Scalar evolution detector.
cbe34bb5 2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
e9eb809d
ZD
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
e9eb809d
ZD
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
e9eb809d 20
b8698a0f
L
21/*
22 Description:
23
9baba81b
SP
24 This pass analyzes the evolution of scalar variables in loop
25 structures. The algorithm is based on the SSA representation,
26 and on the loop hierarchy tree. This algorithm is not based on
27 the notion of versions of a variable, as it was the case for the
28 previous implementations of the scalar evolution algorithm, but
29 it assumes that each defined name is unique.
30
31 The notation used in this file is called "chains of recurrences",
32 and has been proposed by Eugene Zima, Robert Van Engelen, and
33 others for describing induction variables in programs. For example
34 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
35 when entering in the loop_1 and has a step 2 in this loop, in other
36 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
37 this chain of recurrence (or chrec [shrek]) can contain the name of
38 other variables, in which case they are called parametric chrecs.
39 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
40 is the value of "a". In most of the cases these parametric chrecs
41 are fully instantiated before their use because symbolic names can
42 hide some difficult cases such as self-references described later
43 (see the Fibonacci example).
b8698a0f 44
9baba81b 45 A short sketch of the algorithm is:
b8698a0f 46
9baba81b
SP
47 Given a scalar variable to be analyzed, follow the SSA edge to
48 its definition:
b8698a0f 49
726a989a 50 - When the definition is a GIMPLE_ASSIGN: if the right hand side
9baba81b 51 (RHS) of the definition cannot be statically analyzed, the answer
b8698a0f 52 of the analyzer is: "don't know".
9baba81b
SP
53 Otherwise, for all the variables that are not yet analyzed in the
54 RHS, try to determine their evolution, and finally try to
55 evaluate the operation of the RHS that gives the evolution
56 function of the analyzed variable.
57
58 - When the definition is a condition-phi-node: determine the
59 evolution function for all the branches of the phi node, and
60 finally merge these evolutions (see chrec_merge).
61
62 - When the definition is a loop-phi-node: determine its initial
63 condition, that is the SSA edge defined in an outer loop, and
64 keep it symbolic. Then determine the SSA edges that are defined
65 in the body of the loop. Follow the inner edges until ending on
66 another loop-phi-node of the same analyzed loop. If the reached
67 loop-phi-node is not the starting loop-phi-node, then we keep
68 this definition under a symbolic form. If the reached
69 loop-phi-node is the same as the starting one, then we compute a
70 symbolic stride on the return path. The result is then the
71 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
72
73 Examples:
b8698a0f 74
9baba81b 75 Example 1: Illustration of the basic algorithm.
b8698a0f 76
9baba81b
SP
77 | a = 3
78 | loop_1
79 | b = phi (a, c)
80 | c = b + 1
81 | if (c > 10) exit_loop
82 | endloop
b8698a0f 83
9baba81b
SP
84 Suppose that we want to know the number of iterations of the
85 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
86 ask the scalar evolution analyzer two questions: what's the
87 scalar evolution (scev) of "c", and what's the scev of "10". For
88 "10" the answer is "10" since it is a scalar constant. For the
89 scalar variable "c", it follows the SSA edge to its definition,
90 "c = b + 1", and then asks again what's the scev of "b".
91 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
92 c)", where the initial condition is "a", and the inner loop edge
93 is "c". The initial condition is kept under a symbolic form (it
94 may be the case that the copy constant propagation has done its
95 work and we end with the constant "3" as one of the edges of the
96 loop-phi-node). The update edge is followed to the end of the
97 loop, and until reaching again the starting loop-phi-node: b -> c
98 -> b. At this point we have drawn a path from "b" to "b" from
99 which we compute the stride in the loop: in this example it is
100 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
101 that the scev for "b" is known, it is possible to compute the
102 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
103 determine the number of iterations in the loop_1, we have to
3f227a8c 104 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
9baba81b
SP
105 more analysis the scev {4, +, 1}_1, or in other words, this is
106 the function "f (x) = x + 4", where x is the iteration count of
107 the loop_1. Now we have to solve the inequality "x + 4 > 10",
108 and take the smallest iteration number for which the loop is
109 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
110 there are 8 iterations. In terms of loop normalization, we have
111 created a variable that is implicitly defined, "x" or just "_1",
112 and all the other analyzed scalars of the loop are defined in
113 function of this variable:
b8698a0f 114
9baba81b
SP
115 a -> 3
116 b -> {3, +, 1}_1
117 c -> {4, +, 1}_1
b8698a0f
L
118
119 or in terms of a C program:
120
9baba81b
SP
121 | a = 3
122 | for (x = 0; x <= 7; x++)
123 | {
124 | b = x + 3
125 | c = x + 4
126 | }
b8698a0f 127
3f227a8c 128 Example 2a: Illustration of the algorithm on nested loops.
b8698a0f 129
9baba81b
SP
130 | loop_1
131 | a = phi (1, b)
132 | c = a + 2
133 | loop_2 10 times
134 | b = phi (c, d)
135 | d = b + 3
136 | endloop
137 | endloop
b8698a0f 138
9baba81b
SP
139 For analyzing the scalar evolution of "a", the algorithm follows
140 the SSA edge into the loop's body: "a -> b". "b" is an inner
b8698a0f
L
141 loop-phi-node, and its analysis as in Example 1, gives:
142
9baba81b
SP
143 b -> {c, +, 3}_2
144 d -> {c + 3, +, 3}_2
b8698a0f 145
9baba81b
SP
146 Following the SSA edge for the initial condition, we end on "c = a
147 + 2", and then on the starting loop-phi-node "a". From this point,
148 the loop stride is computed: back on "c = a + 2" we get a "+2" in
149 the loop_1, then on the loop-phi-node "b" we compute the overall
150 effect of the inner loop that is "b = c + 30", and we get a "+30"
151 in the loop_1. That means that the overall stride in loop_1 is
b8698a0f
L
152 equal to "+32", and the result is:
153
9baba81b
SP
154 a -> {1, +, 32}_1
155 c -> {3, +, 32}_1
3f227a8c
JS
156
157 Example 2b: Multivariate chains of recurrences.
158
159 | loop_1
160 | k = phi (0, k + 1)
161 | loop_2 4 times
162 | j = phi (0, j + 1)
163 | loop_3 4 times
164 | i = phi (0, i + 1)
165 | A[j + k] = ...
166 | endloop
167 | endloop
168 | endloop
169
170 Analyzing the access function of array A with
171 instantiate_parameters (loop_1, "j + k"), we obtain the
172 instantiation and the analysis of the scalar variables "j" and "k"
173 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
174 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
175 {0, +, 1}_1. To obtain the evolution function in loop_3 and
176 instantiate the scalar variables up to loop_1, one has to use:
a213b219
SP
177 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
178 The result of this call is {{0, +, 1}_1, +, 1}_2.
3f227a8c 179
9baba81b 180 Example 3: Higher degree polynomials.
b8698a0f 181
9baba81b
SP
182 | loop_1
183 | a = phi (2, b)
184 | c = phi (5, d)
185 | b = a + 1
186 | d = c + a
187 | endloop
b8698a0f 188
9baba81b
SP
189 a -> {2, +, 1}_1
190 b -> {3, +, 1}_1
191 c -> {5, +, a}_1
192 d -> {5 + a, +, a}_1
b8698a0f 193
3f227a8c
JS
194 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
195 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
b8698a0f 196
9baba81b 197 Example 4: Lucas, Fibonacci, or mixers in general.
b8698a0f 198
9baba81b
SP
199 | loop_1
200 | a = phi (1, b)
201 | c = phi (3, d)
202 | b = c
203 | d = c + a
204 | endloop
b8698a0f 205
9baba81b
SP
206 a -> (1, c)_1
207 c -> {3, +, a}_1
b8698a0f 208
9baba81b
SP
209 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
210 following semantics: during the first iteration of the loop_1, the
211 variable contains the value 1, and then it contains the value "c".
212 Note that this syntax is close to the syntax of the loop-phi-node:
213 "a -> (1, c)_1" vs. "a = phi (1, c)".
b8698a0f 214
9baba81b
SP
215 The symbolic chrec representation contains all the semantics of the
216 original code. What is more difficult is to use this information.
b8698a0f 217
9baba81b 218 Example 5: Flip-flops, or exchangers.
b8698a0f 219
9baba81b
SP
220 | loop_1
221 | a = phi (1, b)
222 | c = phi (3, d)
223 | b = c
224 | d = a
225 | endloop
b8698a0f 226
9baba81b
SP
227 a -> (1, c)_1
228 c -> (3, a)_1
b8698a0f 229
9baba81b 230 Based on these symbolic chrecs, it is possible to refine this
b8698a0f
L
231 information into the more precise PERIODIC_CHRECs:
232
9baba81b
SP
233 a -> |1, 3|_1
234 c -> |3, 1|_1
b8698a0f 235
9baba81b 236 This transformation is not yet implemented.
b8698a0f 237
9baba81b 238 Further readings:
b8698a0f 239
9baba81b
SP
240 You can find a more detailed description of the algorithm in:
241 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
243 this is a preliminary report and some of the details of the
244 algorithm have changed. I'm working on a research report that
245 updates the description of the algorithms to reflect the design
246 choices used in this implementation.
b8698a0f 247
9baba81b
SP
248 A set of slides show a high level overview of the algorithm and run
249 an example through the scalar evolution analyzer:
250 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
251
252 The slides that I have presented at the GCC Summit'04 are available
253 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
254*/
255
e9eb809d
ZD
256#include "config.h"
257#include "system.h"
258#include "coretypes.h"
c7131fb2 259#include "backend.h"
957060b5 260#include "rtl.h"
cf2d1b38 261#include "tree.h"
c7131fb2 262#include "gimple.h"
c7131fb2 263#include "ssa.h"
957060b5 264#include "gimple-pretty-print.h"
c7131fb2 265#include "fold-const.h"
45b0be94 266#include "gimplify.h"
5be5c238 267#include "gimple-iterator.h"
18f429e2 268#include "gimplify-me.h"
442b4905 269#include "tree-cfg.h"
e28030cf
AM
270#include "tree-ssa-loop-ivopts.h"
271#include "tree-ssa-loop-manip.h"
272#include "tree-ssa-loop-niter.h"
442b4905 273#include "tree-ssa-loop.h"
7a300452 274#include "tree-ssa.h"
e9eb809d
ZD
275#include "cfgloop.h"
276#include "tree-chrec.h"
b83b5507 277#include "tree-affine.h"
e9eb809d 278#include "tree-scalar-evolution.h"
7ee2468b 279#include "dumpfile.h"
c59dabbe 280#include "params.h"
744730a4 281#include "tree-ssa-propagate.h"
19e51b40 282#include "gimple-fold.h"
9baba81b
SP
283
284static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
bef28ced
JL
285static tree analyze_scalar_evolution_for_address_of (struct loop *loop,
286 tree var);
9baba81b 287
a3cc13cc
RB
288/* The cached information about an SSA name with version NAME_VERSION,
289 claiming that below basic block with index INSTANTIATED_BELOW, the
290 value of the SSA name can be expressed as CHREC. */
9baba81b 291
907dadbd 292struct GTY((for_user)) scev_info_str {
a3cc13cc
RB
293 unsigned int name_version;
294 int instantiated_below;
9baba81b
SP
295 tree chrec;
296};
297
298/* Counters for the scev database. */
299static unsigned nb_set_scev = 0;
300static unsigned nb_get_scev = 0;
301
302/* The following trees are unique elements. Thus the comparison of
303 another element to these elements should be done on the pointer to
304 these trees, and not on their value. */
305
306/* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
307tree chrec_not_analyzed_yet;
308
309/* Reserved to the cases where the analyzer has detected an
310 undecidable property at compile time. */
311tree chrec_dont_know;
312
313/* When the analyzer has detected that a property will never
314 happen, then it qualifies it with chrec_known. */
315tree chrec_known;
316
ca752f39 317struct scev_info_hasher : ggc_ptr_hash<scev_info_str>
907dadbd
TS
318{
319 static hashval_t hash (scev_info_str *i);
320 static bool equal (const scev_info_str *a, const scev_info_str *b);
321};
322
323static GTY (()) hash_table<scev_info_hasher> *scalar_evolution_info;
9baba81b
SP
324
325\f
a213b219 326/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
9baba81b
SP
327
328static inline struct scev_info_str *
a213b219 329new_scev_info_str (basic_block instantiated_below, tree var)
9baba81b
SP
330{
331 struct scev_info_str *res;
b8698a0f 332
766090c2 333 res = ggc_alloc<scev_info_str> ();
a3cc13cc 334 res->name_version = SSA_NAME_VERSION (var);
9baba81b 335 res->chrec = chrec_not_analyzed_yet;
a3cc13cc 336 res->instantiated_below = instantiated_below->index;
a213b219 337
9baba81b
SP
338 return res;
339}
340
341/* Computes a hash function for database element ELT. */
342
907dadbd
TS
343hashval_t
344scev_info_hasher::hash (scev_info_str *elt)
9baba81b 345{
a3cc13cc 346 return elt->name_version ^ elt->instantiated_below;
9baba81b
SP
347}
348
349/* Compares database elements E1 and E2. */
350
907dadbd
TS
351bool
352scev_info_hasher::equal (const scev_info_str *elt1, const scev_info_str *elt2)
9baba81b 353{
a3cc13cc 354 return (elt1->name_version == elt2->name_version
a213b219 355 && elt1->instantiated_below == elt2->instantiated_below);
9baba81b
SP
356}
357
a213b219
SP
358/* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
359 A first query on VAR returns chrec_not_analyzed_yet. */
9baba81b
SP
360
361static tree *
a213b219 362find_var_scev_info (basic_block instantiated_below, tree var)
9baba81b
SP
363{
364 struct scev_info_str *res;
365 struct scev_info_str tmp;
9baba81b 366
a3cc13cc
RB
367 tmp.name_version = SSA_NAME_VERSION (var);
368 tmp.instantiated_below = instantiated_below->index;
907dadbd 369 scev_info_str **slot = scalar_evolution_info->find_slot (&tmp, INSERT);
9baba81b
SP
370
371 if (!*slot)
a213b219 372 *slot = new_scev_info_str (instantiated_below, var);
907dadbd 373 res = *slot;
9baba81b
SP
374
375 return &res->chrec;
376}
377
9baba81b
SP
378/* Return true when CHREC contains symbolic names defined in
379 LOOP_NB. */
380
b8698a0f 381bool
ed7a4b4b 382chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
9baba81b 383{
5039610b
SL
384 int i, n;
385
9baba81b
SP
386 if (chrec == NULL_TREE)
387 return false;
388
ad6003f2 389 if (is_gimple_min_invariant (chrec))
9baba81b
SP
390 return false;
391
9baba81b
SP
392 if (TREE_CODE (chrec) == SSA_NAME)
393 {
355fe088 394 gimple *def;
492e5456
SP
395 loop_p def_loop, loop;
396
397 if (SSA_NAME_IS_DEFAULT_DEF (chrec))
398 return false;
399
400 def = SSA_NAME_DEF_STMT (chrec);
401 def_loop = loop_containing_stmt (def);
0fc822d0 402 loop = get_loop (cfun, loop_nb);
9baba81b
SP
403
404 if (def_loop == NULL)
405 return false;
406
407 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
408 return true;
409
410 return false;
411 }
412
5039610b
SL
413 n = TREE_OPERAND_LENGTH (chrec);
414 for (i = 0; i < n; i++)
b8698a0f 415 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
5039610b
SL
416 loop_nb))
417 return true;
418 return false;
9baba81b
SP
419}
420
421/* Return true when PHI is a loop-phi-node. */
422
423static bool
355fe088 424loop_phi_node_p (gimple *phi)
9baba81b
SP
425{
426 /* The implementation of this function is based on the following
427 property: "all the loop-phi-nodes of a loop are contained in the
428 loop's header basic block". */
429
726a989a 430 return loop_containing_stmt (phi)->header == gimple_bb (phi);
9baba81b
SP
431}
432
433/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
434 In general, in the case of multivariate evolutions we want to get
435 the evolution in different loops. LOOP specifies the level for
436 which to get the evolution.
b8698a0f 437
9baba81b 438 Example:
b8698a0f 439
9baba81b
SP
440 | for (j = 0; j < 100; j++)
441 | {
442 | for (k = 0; k < 100; k++)
443 | {
b8698a0f 444 | i = k + j; - Here the value of i is a function of j, k.
9baba81b 445 | }
b8698a0f 446 | ... = i - Here the value of i is a function of j.
9baba81b 447 | }
b8698a0f
L
448 | ... = i - Here the value of i is a scalar.
449
450 Example:
451
9baba81b
SP
452 | i_0 = ...
453 | loop_1 10 times
454 | i_1 = phi (i_0, i_2)
455 | i_2 = i_1 + 2
456 | endloop
b8698a0f 457
9baba81b
SP
458 This loop has the same effect as:
459 LOOP_1 has the same effect as:
b8698a0f 460
9baba81b 461 | i_1 = i_0 + 20
b8698a0f
L
462
463 The overall effect of the loop, "i_0 + 20" in the previous example,
464 is obtained by passing in the parameters: LOOP = 1,
9baba81b
SP
465 EVOLUTION_FN = {i_0, +, 2}_1.
466*/
b8698a0f 467
42e6eec5 468tree
9baba81b
SP
469compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
470{
471 bool val = false;
472
473 if (evolution_fn == chrec_dont_know)
474 return chrec_dont_know;
475
476 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
477 {
677cc14d
ZD
478 struct loop *inner_loop = get_chrec_loop (evolution_fn);
479
480 if (inner_loop == loop
481 || flow_loop_nested_p (loop, inner_loop))
9baba81b 482 {
a14865db 483 tree nb_iter = number_of_latch_executions (inner_loop);
9baba81b
SP
484
485 if (nb_iter == chrec_dont_know)
486 return chrec_dont_know;
487 else
488 {
489 tree res;
490
9baba81b
SP
491 /* evolution_fn is the evolution function in LOOP. Get
492 its value in the nb_iter-th iteration. */
493 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
42e6eec5
SP
494
495 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
496 res = instantiate_parameters (loop, res);
497
8c27b7d4 498 /* Continue the computation until ending on a parent of LOOP. */
9baba81b
SP
499 return compute_overall_effect_of_inner_loop (loop, res);
500 }
501 }
502 else
503 return evolution_fn;
504 }
b8698a0f 505
9baba81b
SP
506 /* If the evolution function is an invariant, there is nothing to do. */
507 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
508 return evolution_fn;
b8698a0f 509
9baba81b
SP
510 else
511 return chrec_dont_know;
512}
513
9baba81b
SP
514/* Associate CHREC to SCALAR. */
515
516static void
a213b219 517set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
9baba81b
SP
518{
519 tree *scalar_info;
b8698a0f 520
9baba81b
SP
521 if (TREE_CODE (scalar) != SSA_NAME)
522 return;
523
a213b219 524 scalar_info = find_var_scev_info (instantiated_below, scalar);
b8698a0f 525
9baba81b
SP
526 if (dump_file)
527 {
dfedbe40 528 if (dump_flags & TDF_SCEV)
9baba81b
SP
529 {
530 fprintf (dump_file, "(set_scalar_evolution \n");
a213b219
SP
531 fprintf (dump_file, " instantiated_below = %d \n",
532 instantiated_below->index);
9baba81b 533 fprintf (dump_file, " (scalar = ");
ef6cb4c7 534 print_generic_expr (dump_file, scalar);
9baba81b 535 fprintf (dump_file, ")\n (scalar_evolution = ");
ef6cb4c7 536 print_generic_expr (dump_file, chrec);
9baba81b
SP
537 fprintf (dump_file, "))\n");
538 }
539 if (dump_flags & TDF_STATS)
540 nb_set_scev++;
541 }
b8698a0f 542
9baba81b
SP
543 *scalar_info = chrec;
544}
545
a213b219
SP
546/* Retrieve the chrec associated to SCALAR instantiated below
547 INSTANTIATED_BELOW block. */
9baba81b
SP
548
549static tree
a213b219 550get_scalar_evolution (basic_block instantiated_below, tree scalar)
9baba81b
SP
551{
552 tree res;
b8698a0f 553
9baba81b
SP
554 if (dump_file)
555 {
dfedbe40 556 if (dump_flags & TDF_SCEV)
9baba81b
SP
557 {
558 fprintf (dump_file, "(get_scalar_evolution \n");
559 fprintf (dump_file, " (scalar = ");
ef6cb4c7 560 print_generic_expr (dump_file, scalar);
9baba81b
SP
561 fprintf (dump_file, ")\n");
562 }
563 if (dump_flags & TDF_STATS)
564 nb_get_scev++;
565 }
b8698a0f 566
9baba81b
SP
567 switch (TREE_CODE (scalar))
568 {
569 case SSA_NAME:
a213b219 570 res = *find_var_scev_info (instantiated_below, scalar);
9baba81b
SP
571 break;
572
573 case REAL_CST:
325217ed 574 case FIXED_CST:
9baba81b
SP
575 case INTEGER_CST:
576 res = scalar;
577 break;
578
579 default:
580 res = chrec_not_analyzed_yet;
581 break;
582 }
b8698a0f 583
dfedbe40 584 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
585 {
586 fprintf (dump_file, " (scalar_evolution = ");
ef6cb4c7 587 print_generic_expr (dump_file, res);
9baba81b
SP
588 fprintf (dump_file, "))\n");
589 }
b8698a0f 590
9baba81b
SP
591 return res;
592}
593
594/* Helper function for add_to_evolution. Returns the evolution
595 function for an assignment of the form "a = b + c", where "a" and
596 "b" are on the strongly connected component. CHREC_BEFORE is the
597 information that we already have collected up to this point.
b8698a0f
L
598 TO_ADD is the evolution of "c".
599
9baba81b
SP
600 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
601 evolution the expression TO_ADD, otherwise construct an evolution
602 part for this loop. */
603
604static tree
e2157b49 605add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
355fe088 606 gimple *at_stmt)
9baba81b 607{
e2157b49 608 tree type, left, right;
0fc822d0 609 struct loop *loop = get_loop (cfun, loop_nb), *chloop;
e2157b49 610
9baba81b
SP
611 switch (TREE_CODE (chrec_before))
612 {
613 case POLYNOMIAL_CHREC:
677cc14d
ZD
614 chloop = get_chrec_loop (chrec_before);
615 if (chloop == loop
616 || flow_loop_nested_p (chloop, loop))
9baba81b
SP
617 {
618 unsigned var;
e2157b49
SP
619
620 type = chrec_type (chrec_before);
b8698a0f 621
9baba81b 622 /* When there is no evolution part in this loop, build it. */
677cc14d 623 if (chloop != loop)
9baba81b
SP
624 {
625 var = loop_nb;
626 left = chrec_before;
7e0923cd
SP
627 right = SCALAR_FLOAT_TYPE_P (type)
628 ? build_real (type, dconst0)
629 : build_int_cst (type, 0);
9baba81b
SP
630 }
631 else
632 {
633 var = CHREC_VARIABLE (chrec_before);
634 left = CHREC_LEFT (chrec_before);
635 right = CHREC_RIGHT (chrec_before);
636 }
637
e2157b49 638 to_add = chrec_convert (type, to_add, at_stmt);
5be014d5
AP
639 right = chrec_convert_rhs (type, right, at_stmt);
640 right = chrec_fold_plus (chrec_type (right), right, to_add);
e2157b49 641 return build_polynomial_chrec (var, left, right);
9baba81b
SP
642 }
643 else
e2157b49 644 {
677cc14d
ZD
645 gcc_assert (flow_loop_nested_p (loop, chloop));
646
e2157b49
SP
647 /* Search the evolution in LOOP_NB. */
648 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
649 to_add, at_stmt);
650 right = CHREC_RIGHT (chrec_before);
5be014d5 651 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
e2157b49
SP
652 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
653 left, right);
654 }
b8698a0f 655
9baba81b
SP
656 default:
657 /* These nodes do not depend on a loop. */
658 if (chrec_before == chrec_dont_know)
659 return chrec_dont_know;
e2157b49
SP
660
661 left = chrec_before;
5be014d5 662 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
e2157b49 663 return build_polynomial_chrec (loop_nb, left, right);
9baba81b
SP
664 }
665}
666
667/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
b8698a0f
L
668 of LOOP_NB.
669
9baba81b
SP
670 Description (provided for completeness, for those who read code in
671 a plane, and for my poor 62 bytes brain that would have forgotten
672 all this in the next two or three months):
b8698a0f 673
9baba81b
SP
674 The algorithm of translation of programs from the SSA representation
675 into the chrecs syntax is based on a pattern matching. After having
676 reconstructed the overall tree expression for a loop, there are only
677 two cases that can arise:
b8698a0f 678
9baba81b
SP
679 1. a = loop-phi (init, a + expr)
680 2. a = loop-phi (init, expr)
b8698a0f 681
9baba81b
SP
682 where EXPR is either a scalar constant with respect to the analyzed
683 loop (this is a degree 0 polynomial), or an expression containing
684 other loop-phi definitions (these are higher degree polynomials).
b8698a0f 685
9baba81b 686 Examples:
b8698a0f
L
687
688 1.
9baba81b
SP
689 | init = ...
690 | loop_1
691 | a = phi (init, a + 5)
692 | endloop
b8698a0f
L
693
694 2.
9baba81b
SP
695 | inita = ...
696 | initb = ...
697 | loop_1
698 | a = phi (inita, 2 * b + 3)
699 | b = phi (initb, b + 1)
700 | endloop
b8698a0f
L
701
702 For the first case, the semantics of the SSA representation is:
703
9baba81b 704 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
b8698a0f 705
9baba81b
SP
706 that is, there is a loop index "x" that determines the scalar value
707 of the variable during the loop execution. During the first
708 iteration, the value is that of the initial condition INIT, while
709 during the subsequent iterations, it is the sum of the initial
710 condition with the sum of all the values of EXPR from the initial
b8698a0f
L
711 iteration to the before last considered iteration.
712
9baba81b 713 For the second case, the semantics of the SSA program is:
b8698a0f 714
9baba81b
SP
715 | a (x) = init, if x = 0;
716 | expr (x - 1), otherwise.
b8698a0f 717
9baba81b 718 The second case corresponds to the PEELED_CHREC, whose syntax is
b8698a0f
L
719 close to the syntax of a loop-phi-node:
720
9baba81b 721 | phi (init, expr) vs. (init, expr)_x
b8698a0f 722
9baba81b 723 The proof of the translation algorithm for the first case is a
b8698a0f
L
724 proof by structural induction based on the degree of EXPR.
725
9baba81b
SP
726 Degree 0:
727 When EXPR is a constant with respect to the analyzed loop, or in
728 other words when EXPR is a polynomial of degree 0, the evolution of
729 the variable A in the loop is an affine function with an initial
730 condition INIT, and a step EXPR. In order to show this, we start
731 from the semantics of the SSA representation:
b8698a0f 732
9baba81b 733 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
b8698a0f 734
9baba81b 735 and since "expr (j)" is a constant with respect to "j",
b8698a0f
L
736
737 f (x) = init + x * expr
738
9baba81b
SP
739 Finally, based on the semantics of the pure sum chrecs, by
740 identification we get the corresponding chrecs syntax:
b8698a0f
L
741
742 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
9baba81b 743 f (x) -> {init, +, expr}_x
b8698a0f 744
9baba81b
SP
745 Higher degree:
746 Suppose that EXPR is a polynomial of degree N with respect to the
747 analyzed loop_x for which we have already determined that it is
748 written under the chrecs syntax:
b8698a0f 749
9baba81b 750 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
b8698a0f 751
9baba81b 752 We start from the semantics of the SSA program:
b8698a0f 753
9baba81b
SP
754 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
755 |
b8698a0f 756 | f (x) = init + \sum_{j = 0}^{x - 1}
9baba81b
SP
757 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
758 |
b8698a0f
L
759 | f (x) = init + \sum_{j = 0}^{x - 1}
760 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
9baba81b 761 |
b8698a0f
L
762 | f (x) = init + \sum_{k = 0}^{n - 1}
763 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
9baba81b 764 |
b8698a0f
L
765 | f (x) = init + \sum_{k = 0}^{n - 1}
766 | (b_k * \binom{x}{k + 1})
9baba81b 767 |
b8698a0f
L
768 | f (x) = init + b_0 * \binom{x}{1} + ...
769 | + b_{n-1} * \binom{x}{n}
9baba81b 770 |
b8698a0f
L
771 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
772 | + b_{n-1} * \binom{x}{n}
9baba81b 773 |
b8698a0f 774
9baba81b 775 And finally from the definition of the chrecs syntax, we identify:
b8698a0f
L
776 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
777
9baba81b
SP
778 This shows the mechanism that stands behind the add_to_evolution
779 function. An important point is that the use of symbolic
780 parameters avoids the need of an analysis schedule.
b8698a0f 781
9baba81b 782 Example:
b8698a0f 783
9baba81b
SP
784 | inita = ...
785 | initb = ...
b8698a0f 786 | loop_1
9baba81b
SP
787 | a = phi (inita, a + 2 + b)
788 | b = phi (initb, b + 1)
789 | endloop
b8698a0f 790
9baba81b 791 When analyzing "a", the algorithm keeps "b" symbolically:
b8698a0f 792
9baba81b 793 | a -> {inita, +, 2 + b}_1
b8698a0f 794
9baba81b 795 Then, after instantiation, the analyzer ends on the evolution:
b8698a0f 796
9baba81b
SP
797 | a -> {inita, +, 2 + initb, +, 1}_1
798
799*/
800
b8698a0f 801static tree
e2157b49 802add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
355fe088 803 tree to_add, gimple *at_stmt)
9baba81b
SP
804{
805 tree type = chrec_type (to_add);
806 tree res = NULL_TREE;
b8698a0f 807
9baba81b
SP
808 if (to_add == NULL_TREE)
809 return chrec_before;
b8698a0f 810
9baba81b
SP
811 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
812 instantiated at this point. */
813 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
814 /* This should not happen. */
815 return chrec_dont_know;
b8698a0f 816
dfedbe40 817 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
818 {
819 fprintf (dump_file, "(add_to_evolution \n");
820 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
821 fprintf (dump_file, " (chrec_before = ");
ef6cb4c7 822 print_generic_expr (dump_file, chrec_before);
9baba81b 823 fprintf (dump_file, ")\n (to_add = ");
ef6cb4c7 824 print_generic_expr (dump_file, to_add);
9baba81b
SP
825 fprintf (dump_file, ")\n");
826 }
827
828 if (code == MINUS_EXPR)
9d2b0e12
VR
829 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
830 ? build_real (type, dconstm1)
831 : build_int_cst_type (type, -1));
9baba81b 832
e2157b49 833 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
9baba81b 834
dfedbe40 835 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
836 {
837 fprintf (dump_file, " (res = ");
ef6cb4c7 838 print_generic_expr (dump_file, res);
9baba81b
SP
839 fprintf (dump_file, "))\n");
840 }
841
842 return res;
843}
844
9baba81b
SP
845\f
846
847/* This section selects the loops that will be good candidates for the
848 scalar evolution analysis. For the moment, greedily select all the
849 loop nests we could analyze. */
850
9baba81b
SP
851/* For a loop with a single exit edge, return the COND_EXPR that
852 guards the exit edge. If the expression is too difficult to
853 analyze, then give up. */
854
538dd0b7 855gcond *
22ea9ec0 856get_loop_exit_condition (const struct loop *loop)
9baba81b 857{
538dd0b7 858 gcond *res = NULL;
ac8f6c69 859 edge exit_edge = single_exit (loop);
b8698a0f 860
dfedbe40 861 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b 862 fprintf (dump_file, "(get_loop_exit_condition \n ");
b8698a0f 863
82b85a85 864 if (exit_edge)
9baba81b 865 {
355fe088 866 gimple *stmt;
b8698a0f 867
726a989a 868 stmt = last_stmt (exit_edge->src);
538dd0b7
DM
869 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
870 res = cond_stmt;
9baba81b 871 }
b8698a0f 872
dfedbe40 873 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b 874 {
ef6cb4c7 875 print_gimple_stmt (dump_file, res, 0);
9baba81b
SP
876 fprintf (dump_file, ")\n");
877 }
b8698a0f 878
9baba81b
SP
879 return res;
880}
881
9baba81b
SP
882\f
883/* Depth first search algorithm. */
884
a79683d5 885enum t_bool {
c59dabbe
SP
886 t_false,
887 t_true,
888 t_dont_know
a79683d5 889};
c59dabbe
SP
890
891
355fe088 892static t_bool follow_ssa_edge (struct loop *loop, gimple *, gphi *,
538dd0b7 893 tree *, int);
9baba81b 894
726a989a 895/* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
9baba81b
SP
896 Return true if the strongly connected component has been found. */
897
c59dabbe 898static t_bool
355fe088 899follow_ssa_edge_binary (struct loop *loop, gimple *at_stmt,
726a989a 900 tree type, tree rhs0, enum tree_code code, tree rhs1,
538dd0b7
DM
901 gphi *halting_phi, tree *evolution_of_loop,
902 int limit)
9baba81b 903{
c59dabbe 904 t_bool res = t_false;
b2a93c0a 905 tree evol;
726a989a 906
5be014d5 907 switch (code)
9baba81b 908 {
5be014d5 909 case POINTER_PLUS_EXPR:
9baba81b 910 case PLUS_EXPR:
9baba81b
SP
911 if (TREE_CODE (rhs0) == SSA_NAME)
912 {
913 if (TREE_CODE (rhs1) == SSA_NAME)
914 {
b8698a0f 915 /* Match an assignment under the form:
9baba81b 916 "a = b + c". */
b8698a0f 917
9e824336
ZD
918 /* We want only assignments of form "name + name" contribute to
919 LIMIT, as the other cases do not necessarily contribute to
920 the complexity of the expression. */
921 limit++;
922
b2a93c0a 923 evol = *evolution_of_loop;
b9b79ba4 924 evol = add_to_evolution
b8698a0f
L
925 (loop->num,
926 chrec_convert (type, evol, at_stmt),
5be014d5 927 code, rhs1, at_stmt);
b9b79ba4
RB
928 res = follow_ssa_edge
929 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
930 if (res == t_true)
931 *evolution_of_loop = evol;
c59dabbe 932 else if (res == t_false)
9baba81b 933 {
b9b79ba4
RB
934 *evolution_of_loop = add_to_evolution
935 (loop->num,
936 chrec_convert (type, *evolution_of_loop, at_stmt),
937 code, rhs0, at_stmt);
b8698a0f
L
938 res = follow_ssa_edge
939 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
c59dabbe 940 evolution_of_loop, limit);
c59dabbe 941 if (res == t_true)
b9b79ba4 942 ;
c59dabbe
SP
943 else if (res == t_dont_know)
944 *evolution_of_loop = chrec_dont_know;
9baba81b 945 }
c59dabbe
SP
946
947 else if (res == t_dont_know)
948 *evolution_of_loop = chrec_dont_know;
9baba81b 949 }
b8698a0f 950
9baba81b
SP
951 else
952 {
b8698a0f 953 /* Match an assignment under the form:
9baba81b 954 "a = b + ...". */
b9b79ba4
RB
955 *evolution_of_loop = add_to_evolution
956 (loop->num, chrec_convert (type, *evolution_of_loop,
957 at_stmt),
958 code, rhs1, at_stmt);
b8698a0f
L
959 res = follow_ssa_edge
960 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
c59dabbe
SP
961 evolution_of_loop, limit);
962 if (res == t_true)
b9b79ba4 963 ;
c59dabbe
SP
964 else if (res == t_dont_know)
965 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
966 }
967 }
b8698a0f 968
9baba81b
SP
969 else if (TREE_CODE (rhs1) == SSA_NAME)
970 {
b8698a0f 971 /* Match an assignment under the form:
9baba81b 972 "a = ... + c". */
b9b79ba4
RB
973 *evolution_of_loop = add_to_evolution
974 (loop->num, chrec_convert (type, *evolution_of_loop,
975 at_stmt),
976 code, rhs0, at_stmt);
b8698a0f
L
977 res = follow_ssa_edge
978 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
c59dabbe
SP
979 evolution_of_loop, limit);
980 if (res == t_true)
b9b79ba4 981 ;
c59dabbe
SP
982 else if (res == t_dont_know)
983 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
984 }
985
986 else
b8698a0f 987 /* Otherwise, match an assignment under the form:
9baba81b
SP
988 "a = ... + ...". */
989 /* And there is nothing to do. */
c59dabbe 990 res = t_false;
9baba81b 991 break;
b8698a0f 992
9baba81b
SP
993 case MINUS_EXPR:
994 /* This case is under the form "opnd0 = rhs0 - rhs1". */
9baba81b 995 if (TREE_CODE (rhs0) == SSA_NAME)
9baba81b 996 {
b8698a0f 997 /* Match an assignment under the form:
f8e9d512 998 "a = b - ...". */
9e824336
ZD
999
1000 /* We want only assignments of form "name - name" contribute to
1001 LIMIT, as the other cases do not necessarily contribute to
1002 the complexity of the expression. */
1003 if (TREE_CODE (rhs1) == SSA_NAME)
1004 limit++;
1005
b9b79ba4
RB
1006 *evolution_of_loop = add_to_evolution
1007 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
1008 MINUS_EXPR, rhs1, at_stmt);
b8698a0f 1009 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
c59dabbe
SP
1010 evolution_of_loop, limit);
1011 if (res == t_true)
b9b79ba4 1012 ;
c59dabbe
SP
1013 else if (res == t_dont_know)
1014 *evolution_of_loop = chrec_dont_know;
9baba81b 1015 }
9baba81b 1016 else
b8698a0f 1017 /* Otherwise, match an assignment under the form:
9baba81b
SP
1018 "a = ... - ...". */
1019 /* And there is nothing to do. */
c59dabbe 1020 res = t_false;
9baba81b 1021 break;
726a989a
RB
1022
1023 default:
1024 res = t_false;
1025 }
1026
1027 return res;
1028}
b8698a0f 1029
726a989a
RB
1030/* Follow the ssa edge into the expression EXPR.
1031 Return true if the strongly connected component has been found. */
1032
1033static t_bool
355fe088 1034follow_ssa_edge_expr (struct loop *loop, gimple *at_stmt, tree expr,
538dd0b7
DM
1035 gphi *halting_phi, tree *evolution_of_loop,
1036 int limit)
726a989a 1037{
5aefc6a0
EB
1038 enum tree_code code = TREE_CODE (expr);
1039 tree type = TREE_TYPE (expr), rhs0, rhs1;
1040 t_bool res;
1041
726a989a 1042 /* The EXPR is one of the following cases:
b8698a0f 1043 - an SSA_NAME,
726a989a 1044 - an INTEGER_CST,
b8698a0f
L
1045 - a PLUS_EXPR,
1046 - a POINTER_PLUS_EXPR,
726a989a
RB
1047 - a MINUS_EXPR,
1048 - an ASSERT_EXPR,
1049 - other cases are not yet handled. */
5aefc6a0 1050
726a989a
RB
1051 switch (code)
1052 {
5aefc6a0 1053 CASE_CONVERT:
726a989a
RB
1054 /* This assignment is under the form "a_1 = (cast) rhs. */
1055 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1056 halting_phi, evolution_of_loop, limit);
1057 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1058 break;
1059
1060 case INTEGER_CST:
1061 /* This assignment is under the form "a_1 = 7". */
1062 res = t_false;
1063 break;
5aefc6a0 1064
726a989a
RB
1065 case SSA_NAME:
1066 /* This assignment is under the form: "a_1 = b_2". */
b8698a0f 1067 res = follow_ssa_edge
726a989a
RB
1068 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1069 break;
5aefc6a0 1070
726a989a
RB
1071 case POINTER_PLUS_EXPR:
1072 case PLUS_EXPR:
1073 case MINUS_EXPR:
1074 /* This case is under the form "rhs0 +- rhs1". */
1075 rhs0 = TREE_OPERAND (expr, 0);
1076 rhs1 = TREE_OPERAND (expr, 1);
5aefc6a0
EB
1077 type = TREE_TYPE (rhs0);
1078 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1079 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1080 res = follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1081 halting_phi, evolution_of_loop, limit);
1082 break;
726a989a 1083
70f34814
RG
1084 case ADDR_EXPR:
1085 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1086 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
1087 {
1088 expr = TREE_OPERAND (expr, 0);
1089 rhs0 = TREE_OPERAND (expr, 0);
1090 rhs1 = TREE_OPERAND (expr, 1);
1091 type = TREE_TYPE (rhs0);
1092 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1093 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1094 res = follow_ssa_edge_binary (loop, at_stmt, type,
1095 rhs0, POINTER_PLUS_EXPR, rhs1,
1096 halting_phi, evolution_of_loop, limit);
1097 }
1098 else
1099 res = t_false;
1100 break;
1101
0bca51f0 1102 case ASSERT_EXPR:
5aefc6a0
EB
1103 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1104 It must be handled as a copy assignment of the form a_1 = a_2. */
1105 rhs0 = ASSERT_EXPR_VAR (expr);
1106 if (TREE_CODE (rhs0) == SSA_NAME)
1107 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0),
1108 halting_phi, evolution_of_loop, limit);
1109 else
1110 res = t_false;
1111 break;
0bca51f0 1112
9baba81b 1113 default:
c59dabbe 1114 res = t_false;
9baba81b
SP
1115 break;
1116 }
5aefc6a0 1117
9baba81b
SP
1118 return res;
1119}
1120
726a989a
RB
1121/* Follow the ssa edge into the right hand side of an assignment STMT.
1122 Return true if the strongly connected component has been found. */
1123
1124static t_bool
355fe088 1125follow_ssa_edge_in_rhs (struct loop *loop, gimple *stmt,
538dd0b7
DM
1126 gphi *halting_phi, tree *evolution_of_loop,
1127 int limit)
726a989a 1128{
726a989a 1129 enum tree_code code = gimple_assign_rhs_code (stmt);
5aefc6a0
EB
1130 tree type = gimple_expr_type (stmt), rhs1, rhs2;
1131 t_bool res;
726a989a 1132
5aefc6a0 1133 switch (code)
726a989a 1134 {
5aefc6a0
EB
1135 CASE_CONVERT:
1136 /* This assignment is under the form "a_1 = (cast) rhs. */
1137 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1138 halting_phi, evolution_of_loop, limit);
1139 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1140 break;
1141
1142 case POINTER_PLUS_EXPR:
1143 case PLUS_EXPR:
1144 case MINUS_EXPR:
1145 rhs1 = gimple_assign_rhs1 (stmt);
1146 rhs2 = gimple_assign_rhs2 (stmt);
1147 type = TREE_TYPE (rhs1);
1148 res = follow_ssa_edge_binary (loop, stmt, type, rhs1, code, rhs2,
218d1c24 1149 halting_phi, evolution_of_loop, limit);
5aefc6a0 1150 break;
218d1c24 1151
726a989a 1152 default:
5aefc6a0
EB
1153 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1154 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1155 halting_phi, evolution_of_loop, limit);
1156 else
1157 res = t_false;
1158 break;
726a989a 1159 }
5aefc6a0
EB
1160
1161 return res;
726a989a
RB
1162}
1163
9baba81b
SP
1164/* Checks whether the I-th argument of a PHI comes from a backedge. */
1165
1166static bool
538dd0b7 1167backedge_phi_arg_p (gphi *phi, int i)
9baba81b 1168{
726a989a 1169 const_edge e = gimple_phi_arg_edge (phi, i);
9baba81b
SP
1170
1171 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1172 about updating it anywhere, and this should work as well most of the
1173 time. */
1174 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1175 return true;
1176
1177 return false;
1178}
1179
1180/* Helper function for one branch of the condition-phi-node. Return
1181 true if the strongly connected component has been found following
1182 this path. */
1183
c59dabbe 1184static inline t_bool
9baba81b 1185follow_ssa_edge_in_condition_phi_branch (int i,
b8698a0f 1186 struct loop *loop,
538dd0b7
DM
1187 gphi *condition_phi,
1188 gphi *halting_phi,
9baba81b 1189 tree *evolution_of_branch,
c59dabbe 1190 tree init_cond, int limit)
9baba81b
SP
1191{
1192 tree branch = PHI_ARG_DEF (condition_phi, i);
1193 *evolution_of_branch = chrec_dont_know;
1194
1195 /* Do not follow back edges (they must belong to an irreducible loop, which
1196 we really do not want to worry about). */
1197 if (backedge_phi_arg_p (condition_phi, i))
c59dabbe 1198 return t_false;
9baba81b
SP
1199
1200 if (TREE_CODE (branch) == SSA_NAME)
1201 {
1202 *evolution_of_branch = init_cond;
b8698a0f 1203 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
c59dabbe 1204 evolution_of_branch, limit);
9baba81b
SP
1205 }
1206
b8698a0f 1207 /* This case occurs when one of the condition branches sets
89dbed81 1208 the variable to a constant: i.e. a phi-node like
b8698a0f
L
1209 "a_2 = PHI <a_7(5), 2(6)>;".
1210
1211 FIXME: This case have to be refined correctly:
9baba81b
SP
1212 in some cases it is possible to say something better than
1213 chrec_dont_know, for example using a wrap-around notation. */
c59dabbe 1214 return t_false;
9baba81b
SP
1215}
1216
1217/* This function merges the branches of a condition-phi-node in a
1218 loop. */
1219
c59dabbe 1220static t_bool
9baba81b 1221follow_ssa_edge_in_condition_phi (struct loop *loop,
538dd0b7
DM
1222 gphi *condition_phi,
1223 gphi *halting_phi,
c59dabbe 1224 tree *evolution_of_loop, int limit)
9baba81b 1225{
726a989a 1226 int i, n;
9baba81b
SP
1227 tree init = *evolution_of_loop;
1228 tree evolution_of_branch;
c59dabbe
SP
1229 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1230 halting_phi,
1231 &evolution_of_branch,
1232 init, limit);
1233 if (res == t_false || res == t_dont_know)
1234 return res;
9baba81b 1235
9baba81b
SP
1236 *evolution_of_loop = evolution_of_branch;
1237
726a989a 1238 n = gimple_phi_num_args (condition_phi);
726a989a 1239 for (i = 1; i < n; i++)
9baba81b 1240 {
e0afb98a
SP
1241 /* Quickly give up when the evolution of one of the branches is
1242 not known. */
1243 if (*evolution_of_loop == chrec_dont_know)
c59dabbe 1244 return t_true;
e0afb98a 1245
788d3075
RG
1246 /* Increase the limit by the PHI argument number to avoid exponential
1247 time and memory complexity. */
c59dabbe
SP
1248 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1249 halting_phi,
1250 &evolution_of_branch,
788d3075 1251 init, limit + i);
c59dabbe
SP
1252 if (res == t_false || res == t_dont_know)
1253 return res;
9baba81b
SP
1254
1255 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1256 evolution_of_branch);
1257 }
b8698a0f 1258
c59dabbe 1259 return t_true;
9baba81b
SP
1260}
1261
1262/* Follow an SSA edge in an inner loop. It computes the overall
1263 effect of the loop, and following the symbolic initial conditions,
1264 it follows the edges in the parent loop. The inner loop is
1265 considered as a single statement. */
1266
c59dabbe 1267static t_bool
9baba81b 1268follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
538dd0b7
DM
1269 gphi *loop_phi_node,
1270 gphi *halting_phi,
c59dabbe 1271 tree *evolution_of_loop, int limit)
9baba81b
SP
1272{
1273 struct loop *loop = loop_containing_stmt (loop_phi_node);
1274 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1275
1276 /* Sometimes, the inner loop is too difficult to analyze, and the
1277 result of the analysis is a symbolic parameter. */
1278 if (ev == PHI_RESULT (loop_phi_node))
1279 {
c59dabbe 1280 t_bool res = t_false;
726a989a 1281 int i, n = gimple_phi_num_args (loop_phi_node);
9baba81b 1282
726a989a 1283 for (i = 0; i < n; i++)
9baba81b
SP
1284 {
1285 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1286 basic_block bb;
1287
1288 /* Follow the edges that exit the inner loop. */
726a989a 1289 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
9baba81b 1290 if (!flow_bb_inside_loop_p (loop, bb))
726a989a
RB
1291 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1292 arg, halting_phi,
1293 evolution_of_loop, limit);
c59dabbe
SP
1294 if (res == t_true)
1295 break;
9baba81b
SP
1296 }
1297
1298 /* If the path crosses this loop-phi, give up. */
c59dabbe 1299 if (res == t_true)
9baba81b
SP
1300 *evolution_of_loop = chrec_dont_know;
1301
1302 return res;
1303 }
1304
1305 /* Otherwise, compute the overall effect of the inner loop. */
1306 ev = compute_overall_effect_of_inner_loop (loop, ev);
726a989a
RB
1307 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1308 evolution_of_loop, limit);
9baba81b
SP
1309}
1310
1311/* Follow an SSA edge from a loop-phi-node to itself, constructing a
1312 path that is analyzed on the return walk. */
1313
c59dabbe 1314static t_bool
355fe088 1315follow_ssa_edge (struct loop *loop, gimple *def, gphi *halting_phi,
c59dabbe 1316 tree *evolution_of_loop, int limit)
9baba81b
SP
1317{
1318 struct loop *def_loop;
b8698a0f 1319
726a989a 1320 if (gimple_nop_p (def))
c59dabbe 1321 return t_false;
b8698a0f 1322
c59dabbe 1323 /* Give up if the path is longer than the MAX that we allow. */
14dd9aab 1324 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_COMPLEXITY))
c59dabbe 1325 return t_dont_know;
b8698a0f 1326
9baba81b 1327 def_loop = loop_containing_stmt (def);
b8698a0f 1328
726a989a 1329 switch (gimple_code (def))
9baba81b 1330 {
726a989a 1331 case GIMPLE_PHI:
9baba81b
SP
1332 if (!loop_phi_node_p (def))
1333 /* DEF is a condition-phi-node. Follow the branches, and
1334 record their evolutions. Finally, merge the collected
1335 information and set the approximation to the main
1336 variable. */
b8698a0f 1337 return follow_ssa_edge_in_condition_phi
538dd0b7
DM
1338 (loop, as_a <gphi *> (def), halting_phi, evolution_of_loop,
1339 limit);
9baba81b
SP
1340
1341 /* When the analyzed phi is the halting_phi, the
1342 depth-first search is over: we have found a path from
1343 the halting_phi to itself in the loop. */
1344 if (def == halting_phi)
c59dabbe 1345 return t_true;
b8698a0f 1346
9baba81b 1347 /* Otherwise, the evolution of the HALTING_PHI depends
89dbed81 1348 on the evolution of another loop-phi-node, i.e. the
9baba81b
SP
1349 evolution function is a higher degree polynomial. */
1350 if (def_loop == loop)
c59dabbe 1351 return t_false;
b8698a0f 1352
9baba81b
SP
1353 /* Inner loop. */
1354 if (flow_loop_nested_p (loop, def_loop))
b8698a0f 1355 return follow_ssa_edge_inner_loop_phi
538dd0b7
DM
1356 (loop, as_a <gphi *> (def), halting_phi, evolution_of_loop,
1357 limit + 1);
9baba81b
SP
1358
1359 /* Outer loop. */
c59dabbe 1360 return t_false;
9baba81b 1361
726a989a 1362 case GIMPLE_ASSIGN:
b8698a0f 1363 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
c59dabbe 1364 evolution_of_loop, limit);
b8698a0f 1365
9baba81b
SP
1366 default:
1367 /* At this level of abstraction, the program is just a set
726a989a 1368 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
9baba81b 1369 other node to be handled. */
c59dabbe 1370 return t_false;
9baba81b
SP
1371 }
1372}
1373
1374\f
b83b5507
BC
1375/* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP.
1376 Handle below case and return the corresponding POLYNOMIAL_CHREC:
1377
1378 # i_17 = PHI <i_13(5), 0(3)>
1379 # _20 = PHI <_5(5), start_4(D)(3)>
1380 ...
1381 i_13 = i_17 + 1;
1382 _5 = start_4(D) + i_13;
1383
1384 Though variable _20 appears as a PEELED_CHREC in the form of
1385 (start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP.
1386
1387 See PR41488. */
1388
1389static tree
1390simplify_peeled_chrec (struct loop *loop, tree arg, tree init_cond)
1391{
1392 aff_tree aff1, aff2;
1393 tree ev, left, right, type, step_val;
39c8aaa4 1394 hash_map<tree, name_expansion *> *peeled_chrec_map = NULL;
b83b5507
BC
1395
1396 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, arg));
1397 if (ev == NULL_TREE || TREE_CODE (ev) != POLYNOMIAL_CHREC)
1398 return chrec_dont_know;
1399
1400 left = CHREC_LEFT (ev);
1401 right = CHREC_RIGHT (ev);
1402 type = TREE_TYPE (left);
1403 step_val = chrec_fold_plus (type, init_cond, right);
1404
1405 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1406 if "left" equals to "init + right". */
1407 if (operand_equal_p (left, step_val, 0))
1408 {
1409 if (dump_file && (dump_flags & TDF_SCEV))
1410 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1411
1412 return build_polynomial_chrec (loop->num, init_cond, right);
1413 }
1414
1415 /* Try harder to check if they are equal. */
1416 tree_to_aff_combination_expand (left, type, &aff1, &peeled_chrec_map);
1417 tree_to_aff_combination_expand (step_val, type, &aff2, &peeled_chrec_map);
1418 free_affine_expand_cache (&peeled_chrec_map);
807e902e 1419 aff_combination_scale (&aff2, -1);
b83b5507
BC
1420 aff_combination_add (&aff1, &aff2);
1421
1422 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1423 if "left" equals to "init + right". */
1424 if (aff_combination_zero_p (&aff1))
1425 {
1426 if (dump_file && (dump_flags & TDF_SCEV))
1427 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1428
1429 return build_polynomial_chrec (loop->num, init_cond, right);
1430 }
1431 return chrec_dont_know;
1432}
9baba81b
SP
1433
1434/* Given a LOOP_PHI_NODE, this function determines the evolution
1435 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1436
1437static tree
538dd0b7 1438analyze_evolution_in_loop (gphi *loop_phi_node,
9baba81b
SP
1439 tree init_cond)
1440{
726a989a 1441 int i, n = gimple_phi_num_args (loop_phi_node);
9baba81b
SP
1442 tree evolution_function = chrec_not_analyzed_yet;
1443 struct loop *loop = loop_containing_stmt (loop_phi_node);
1444 basic_block bb;
b83b5507 1445 static bool simplify_peeled_chrec_p = true;
b8698a0f 1446
dfedbe40 1447 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1448 {
1449 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1450 fprintf (dump_file, " (loop_phi_node = ");
ef6cb4c7 1451 print_gimple_stmt (dump_file, loop_phi_node, 0);
9baba81b
SP
1452 fprintf (dump_file, ")\n");
1453 }
b8698a0f 1454
726a989a 1455 for (i = 0; i < n; i++)
9baba81b
SP
1456 {
1457 tree arg = PHI_ARG_DEF (loop_phi_node, i);
355fe088 1458 gimple *ssa_chain;
726a989a 1459 tree ev_fn;
874caa00 1460 t_bool res;
9baba81b
SP
1461
1462 /* Select the edges that enter the loop body. */
726a989a 1463 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
9baba81b
SP
1464 if (!flow_bb_inside_loop_p (loop, bb))
1465 continue;
f29deac9 1466
9baba81b
SP
1467 if (TREE_CODE (arg) == SSA_NAME)
1468 {
f29deac9
SP
1469 bool val = false;
1470
9baba81b
SP
1471 ssa_chain = SSA_NAME_DEF_STMT (arg);
1472
1473 /* Pass in the initial condition to the follow edge function. */
1474 ev_fn = init_cond;
c59dabbe 1475 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
f29deac9
SP
1476
1477 /* If ev_fn has no evolution in the inner loop, and the
1478 init_cond is not equal to ev_fn, then we have an
1479 ambiguity between two possible values, as we cannot know
1480 the number of iterations at this point. */
1481 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1482 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1483 && !operand_equal_p (init_cond, ev_fn, 0))
1484 ev_fn = chrec_dont_know;
9baba81b
SP
1485 }
1486 else
874caa00 1487 res = t_false;
f29deac9 1488
9baba81b
SP
1489 /* When it is impossible to go back on the same
1490 loop_phi_node by following the ssa edges, the
89dbed81 1491 evolution is represented by a peeled chrec, i.e. the
9baba81b 1492 first iteration, EV_FN has the value INIT_COND, then
b8698a0f 1493 all the other iterations it has the value of ARG.
9baba81b 1494 For the moment, PEELED_CHREC nodes are not built. */
874caa00 1495 if (res != t_true)
b83b5507
BC
1496 {
1497 ev_fn = chrec_dont_know;
1498 /* Try to recognize POLYNOMIAL_CHREC which appears in
1499 the form of PEELED_CHREC, but guard the process with
1500 a bool variable to keep the analyzer from infinite
1501 recurrence for real PEELED_RECs. */
1502 if (simplify_peeled_chrec_p && TREE_CODE (arg) == SSA_NAME)
1503 {
1504 simplify_peeled_chrec_p = false;
1505 ev_fn = simplify_peeled_chrec (loop, arg, init_cond);
1506 simplify_peeled_chrec_p = true;
1507 }
1508 }
b8698a0f 1509
9baba81b 1510 /* When there are multiple back edges of the loop (which in fact never
8c27b7d4 1511 happens currently, but nevertheless), merge their evolutions. */
9baba81b 1512 evolution_function = chrec_merge (evolution_function, ev_fn);
e21401b6
RB
1513
1514 if (evolution_function == chrec_dont_know)
1515 break;
9baba81b 1516 }
b8698a0f 1517
dfedbe40 1518 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1519 {
1520 fprintf (dump_file, " (evolution_function = ");
ef6cb4c7 1521 print_generic_expr (dump_file, evolution_function);
9baba81b
SP
1522 fprintf (dump_file, "))\n");
1523 }
b8698a0f 1524
9baba81b
SP
1525 return evolution_function;
1526}
1527
806f2c1b
AL
1528/* Looks to see if VAR is a copy of a constant (via straightforward assignments
1529 or degenerate phi's). If so, returns the constant; else, returns VAR. */
1530
1531static tree
1532follow_copies_to_constant (tree var)
1533{
1534 tree res = var;
1535 while (TREE_CODE (res) == SSA_NAME)
1536 {
1537 gimple *def = SSA_NAME_DEF_STMT (res);
1538 if (gphi *phi = dyn_cast <gphi *> (def))
1539 {
1540 if (tree rhs = degenerate_phi_result (phi))
1541 res = rhs;
1542 else
1543 break;
1544 }
1545 else if (gimple_assign_single_p (def))
1546 /* Will exit loop if not an SSA_NAME. */
1547 res = gimple_assign_rhs1 (def);
1548 else
1549 break;
1550 }
1551 if (CONSTANT_CLASS_P (res))
1552 return res;
1553 return var;
1554}
1555
9baba81b
SP
1556/* Given a loop-phi-node, return the initial conditions of the
1557 variable on entry of the loop. When the CCP has propagated
1558 constants into the loop-phi-node, the initial condition is
1559 instantiated, otherwise the initial condition is kept symbolic.
1560 This analyzer does not analyze the evolution outside the current
1561 loop, and leaves this task to the on-demand tree reconstructor. */
1562
b8698a0f 1563static tree
538dd0b7 1564analyze_initial_condition (gphi *loop_phi_node)
9baba81b 1565{
726a989a 1566 int i, n;
9baba81b 1567 tree init_cond = chrec_not_analyzed_yet;
726a989a 1568 struct loop *loop = loop_containing_stmt (loop_phi_node);
b8698a0f 1569
dfedbe40 1570 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1571 {
1572 fprintf (dump_file, "(analyze_initial_condition \n");
1573 fprintf (dump_file, " (loop_phi_node = \n");
ef6cb4c7 1574 print_gimple_stmt (dump_file, loop_phi_node, 0);
9baba81b
SP
1575 fprintf (dump_file, ")\n");
1576 }
b8698a0f 1577
726a989a
RB
1578 n = gimple_phi_num_args (loop_phi_node);
1579 for (i = 0; i < n; i++)
9baba81b
SP
1580 {
1581 tree branch = PHI_ARG_DEF (loop_phi_node, i);
726a989a 1582 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
b8698a0f 1583
9baba81b
SP
1584 /* When the branch is oriented to the loop's body, it does
1585 not contribute to the initial condition. */
1586 if (flow_bb_inside_loop_p (loop, bb))
1587 continue;
1588
1589 if (init_cond == chrec_not_analyzed_yet)
1590 {
1591 init_cond = branch;
1592 continue;
1593 }
1594
1595 if (TREE_CODE (branch) == SSA_NAME)
1596 {
1597 init_cond = chrec_dont_know;
1598 break;
1599 }
1600
1601 init_cond = chrec_merge (init_cond, branch);
1602 }
1603
1604 /* Ooops -- a loop without an entry??? */
1605 if (init_cond == chrec_not_analyzed_yet)
1606 init_cond = chrec_dont_know;
1607
806f2c1b
AL
1608 /* We may not have fully constant propagated IL. Handle degenerate PHIs here
1609 to not miss important early loop unrollings. */
1610 init_cond = follow_copies_to_constant (init_cond);
bf1cbdc6 1611
dfedbe40 1612 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1613 {
1614 fprintf (dump_file, " (init_cond = ");
ef6cb4c7 1615 print_generic_expr (dump_file, init_cond);
9baba81b
SP
1616 fprintf (dump_file, "))\n");
1617 }
b8698a0f 1618
9baba81b
SP
1619 return init_cond;
1620}
1621
1622/* Analyze the scalar evolution for LOOP_PHI_NODE. */
1623
b8698a0f 1624static tree
538dd0b7 1625interpret_loop_phi (struct loop *loop, gphi *loop_phi_node)
9baba81b
SP
1626{
1627 tree res;
1628 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1629 tree init_cond;
b8698a0f 1630
9baba81b
SP
1631 if (phi_loop != loop)
1632 {
1633 struct loop *subloop;
1634 tree evolution_fn = analyze_scalar_evolution
1635 (phi_loop, PHI_RESULT (loop_phi_node));
1636
1637 /* Dive one level deeper. */
9ba025a2 1638 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
9baba81b
SP
1639
1640 /* Interpret the subloop. */
1641 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1642 return res;
1643 }
1644
1645 /* Otherwise really interpret the loop phi. */
1646 init_cond = analyze_initial_condition (loop_phi_node);
1647 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1648
73c865fa
RG
1649 /* Verify we maintained the correct initial condition throughout
1650 possible conversions in the SSA chain. */
1651 if (res != chrec_dont_know)
1652 {
1653 tree new_init = res;
1654 if (CONVERT_EXPR_P (res)
1655 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
1656 new_init = fold_convert (TREE_TYPE (res),
1657 CHREC_LEFT (TREE_OPERAND (res, 0)));
1658 else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
1659 new_init = CHREC_LEFT (res);
1660 STRIP_USELESS_TYPE_CONVERSION (new_init);
eb723fa3
RG
1661 if (TREE_CODE (new_init) == POLYNOMIAL_CHREC
1662 || !operand_equal_p (init_cond, new_init, 0))
73c865fa
RG
1663 return chrec_dont_know;
1664 }
1665
9baba81b
SP
1666 return res;
1667}
1668
1669/* This function merges the branches of a condition-phi-node,
1670 contained in the outermost loop, and whose arguments are already
1671 analyzed. */
1672
1673static tree
538dd0b7 1674interpret_condition_phi (struct loop *loop, gphi *condition_phi)
9baba81b 1675{
726a989a 1676 int i, n = gimple_phi_num_args (condition_phi);
9baba81b 1677 tree res = chrec_not_analyzed_yet;
b8698a0f 1678
726a989a 1679 for (i = 0; i < n; i++)
9baba81b
SP
1680 {
1681 tree branch_chrec;
b8698a0f 1682
9baba81b
SP
1683 if (backedge_phi_arg_p (condition_phi, i))
1684 {
1685 res = chrec_dont_know;
1686 break;
1687 }
1688
1689 branch_chrec = analyze_scalar_evolution
1690 (loop, PHI_ARG_DEF (condition_phi, i));
b8698a0f 1691
9baba81b 1692 res = chrec_merge (res, branch_chrec);
e21401b6
RB
1693 if (res == chrec_dont_know)
1694 break;
9baba81b
SP
1695 }
1696
1697 return res;
1698}
1699
726a989a 1700/* Interpret the operation RHS1 OP RHS2. If we didn't
29836d07 1701 analyze this node before, follow the definitions until ending
726a989a 1702 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
9baba81b
SP
1703 return path, this function propagates evolutions (ala constant copy
1704 propagation). OPND1 is not a GIMPLE expression because we could
1705 analyze the effect of an inner loop: see interpret_loop_phi. */
1706
1707static tree
355fe088 1708interpret_rhs_expr (struct loop *loop, gimple *at_stmt,
726a989a 1709 tree type, tree rhs1, enum tree_code code, tree rhs2)
9baba81b 1710{
f802a424 1711 tree res, chrec1, chrec2, ctype;
355fe088 1712 gimple *def;
726a989a
RB
1713
1714 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1715 {
1716 if (is_gimple_min_invariant (rhs1))
1717 return chrec_convert (type, rhs1, at_stmt);
1718
1719 if (code == SSA_NAME)
1720 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1721 at_stmt);
1e8552eb 1722
726a989a
RB
1723 if (code == ASSERT_EXPR)
1724 {
1725 rhs1 = ASSERT_EXPR_VAR (rhs1);
1726 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1727 at_stmt);
1728 }
726a989a 1729 }
1e8552eb 1730
726a989a 1731 switch (code)
9baba81b 1732 {
6a02a719 1733 case ADDR_EXPR:
bef28ced
JL
1734 if (TREE_CODE (TREE_OPERAND (rhs1, 0)) == MEM_REF
1735 || handled_component_p (TREE_OPERAND (rhs1, 0)))
1736 {
ef4bddc2 1737 machine_mode mode;
bef28ced 1738 HOST_WIDE_INT bitsize, bitpos;
ee45a32d 1739 int unsignedp, reversep;
bef28ced
JL
1740 int volatilep = 0;
1741 tree base, offset;
1742 tree chrec3;
1743 tree unitpos;
1744
1745 base = get_inner_reference (TREE_OPERAND (rhs1, 0),
ee45a32d 1746 &bitsize, &bitpos, &offset, &mode,
25b75a48 1747 &unsignedp, &reversep, &volatilep);
bef28ced
JL
1748
1749 if (TREE_CODE (base) == MEM_REF)
1750 {
1751 rhs2 = TREE_OPERAND (base, 1);
1752 rhs1 = TREE_OPERAND (base, 0);
1753
1754 chrec1 = analyze_scalar_evolution (loop, rhs1);
1755 chrec2 = analyze_scalar_evolution (loop, rhs2);
1756 chrec1 = chrec_convert (type, chrec1, at_stmt);
1757 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
0547c9b6
RB
1758 chrec1 = instantiate_parameters (loop, chrec1);
1759 chrec2 = instantiate_parameters (loop, chrec2);
bef28ced
JL
1760 res = chrec_fold_plus (type, chrec1, chrec2);
1761 }
1762 else
1763 {
1764 chrec1 = analyze_scalar_evolution_for_address_of (loop, base);
1765 chrec1 = chrec_convert (type, chrec1, at_stmt);
1766 res = chrec1;
1767 }
6a02a719 1768
bef28ced
JL
1769 if (offset != NULL_TREE)
1770 {
1771 chrec2 = analyze_scalar_evolution (loop, offset);
1772 chrec2 = chrec_convert (TREE_TYPE (offset), chrec2, at_stmt);
0547c9b6 1773 chrec2 = instantiate_parameters (loop, chrec2);
bef28ced
JL
1774 res = chrec_fold_plus (type, res, chrec2);
1775 }
1776
1777 if (bitpos != 0)
1778 {
1779 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
1780
18dae016 1781 unitpos = size_int (bitpos / BITS_PER_UNIT);
bef28ced
JL
1782 chrec3 = analyze_scalar_evolution (loop, unitpos);
1783 chrec3 = chrec_convert (TREE_TYPE (unitpos), chrec3, at_stmt);
0547c9b6 1784 chrec3 = instantiate_parameters (loop, chrec3);
bef28ced
JL
1785 res = chrec_fold_plus (type, res, chrec3);
1786 }
1787 }
1788 else
1789 res = chrec_dont_know;
1790 break;
6a02a719 1791
5be014d5 1792 case POINTER_PLUS_EXPR:
726a989a
RB
1793 chrec1 = analyze_scalar_evolution (loop, rhs1);
1794 chrec2 = analyze_scalar_evolution (loop, rhs2);
1795 chrec1 = chrec_convert (type, chrec1, at_stmt);
0d82a1c8 1796 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
0547c9b6
RB
1797 chrec1 = instantiate_parameters (loop, chrec1);
1798 chrec2 = instantiate_parameters (loop, chrec2);
726a989a 1799 res = chrec_fold_plus (type, chrec1, chrec2);
5be014d5
AP
1800 break;
1801
9baba81b 1802 case PLUS_EXPR:
726a989a
RB
1803 chrec1 = analyze_scalar_evolution (loop, rhs1);
1804 chrec2 = analyze_scalar_evolution (loop, rhs2);
f802a424
RB
1805 ctype = type;
1806 /* When the stmt is conditionally executed re-write the CHREC
1807 into a form that has well-defined behavior on overflow. */
1808 if (at_stmt
1809 && INTEGRAL_TYPE_P (type)
1810 && ! TYPE_OVERFLOW_WRAPS (type)
1811 && ! dominated_by_p (CDI_DOMINATORS, loop->latch,
1812 gimple_bb (at_stmt)))
1813 ctype = unsigned_type_for (type);
1814 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1815 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
0547c9b6
RB
1816 chrec1 = instantiate_parameters (loop, chrec1);
1817 chrec2 = instantiate_parameters (loop, chrec2);
f802a424
RB
1818 res = chrec_fold_plus (ctype, chrec1, chrec2);
1819 if (type != ctype)
1820 res = chrec_convert (type, res, at_stmt);
9baba81b 1821 break;
b8698a0f 1822
9baba81b 1823 case MINUS_EXPR:
726a989a
RB
1824 chrec1 = analyze_scalar_evolution (loop, rhs1);
1825 chrec2 = analyze_scalar_evolution (loop, rhs2);
f802a424
RB
1826 ctype = type;
1827 /* When the stmt is conditionally executed re-write the CHREC
1828 into a form that has well-defined behavior on overflow. */
1829 if (at_stmt
1830 && INTEGRAL_TYPE_P (type)
1831 && ! TYPE_OVERFLOW_WRAPS (type)
1832 && ! dominated_by_p (CDI_DOMINATORS,
1833 loop->latch, gimple_bb (at_stmt)))
1834 ctype = unsigned_type_for (type);
1835 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1836 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
0547c9b6
RB
1837 chrec1 = instantiate_parameters (loop, chrec1);
1838 chrec2 = instantiate_parameters (loop, chrec2);
f802a424
RB
1839 res = chrec_fold_minus (ctype, chrec1, chrec2);
1840 if (type != ctype)
1841 res = chrec_convert (type, res, at_stmt);
9baba81b
SP
1842 break;
1843
1844 case NEGATE_EXPR:
726a989a 1845 chrec1 = analyze_scalar_evolution (loop, rhs1);
f802a424
RB
1846 ctype = type;
1847 /* When the stmt is conditionally executed re-write the CHREC
1848 into a form that has well-defined behavior on overflow. */
1849 if (at_stmt
1850 && INTEGRAL_TYPE_P (type)
1851 && ! TYPE_OVERFLOW_WRAPS (type)
1852 && ! dominated_by_p (CDI_DOMINATORS,
1853 loop->latch, gimple_bb (at_stmt)))
1854 ctype = unsigned_type_for (type);
1855 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
9a75ede0 1856 /* TYPE may be integer, real or complex, so use fold_convert. */
0547c9b6 1857 chrec1 = instantiate_parameters (loop, chrec1);
f802a424
RB
1858 res = chrec_fold_multiply (ctype, chrec1,
1859 fold_convert (ctype, integer_minus_one_node));
1860 if (type != ctype)
1861 res = chrec_convert (type, res, at_stmt);
9baba81b
SP
1862 break;
1863
418df9d7
JJ
1864 case BIT_NOT_EXPR:
1865 /* Handle ~X as -1 - X. */
1866 chrec1 = analyze_scalar_evolution (loop, rhs1);
1867 chrec1 = chrec_convert (type, chrec1, at_stmt);
0547c9b6 1868 chrec1 = instantiate_parameters (loop, chrec1);
418df9d7
JJ
1869 res = chrec_fold_minus (type,
1870 fold_convert (type, integer_minus_one_node),
1871 chrec1);
1872 break;
1873
9baba81b 1874 case MULT_EXPR:
726a989a
RB
1875 chrec1 = analyze_scalar_evolution (loop, rhs1);
1876 chrec2 = analyze_scalar_evolution (loop, rhs2);
f802a424
RB
1877 ctype = type;
1878 /* When the stmt is conditionally executed re-write the CHREC
1879 into a form that has well-defined behavior on overflow. */
1880 if (at_stmt
1881 && INTEGRAL_TYPE_P (type)
1882 && ! TYPE_OVERFLOW_WRAPS (type)
1883 && ! dominated_by_p (CDI_DOMINATORS,
1884 loop->latch, gimple_bb (at_stmt)))
1885 ctype = unsigned_type_for (type);
1886 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1887 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
0547c9b6
RB
1888 chrec1 = instantiate_parameters (loop, chrec1);
1889 chrec2 = instantiate_parameters (loop, chrec2);
f802a424
RB
1890 res = chrec_fold_multiply (ctype, chrec1, chrec2);
1891 if (type != ctype)
1892 res = chrec_convert (type, res, at_stmt);
0bca51f0 1893 break;
b8698a0f 1894
60f2d2f3
AL
1895 case LSHIFT_EXPR:
1896 {
1897 /* Handle A<<B as A * (1<<B). */
1898 tree uns = unsigned_type_for (type);
1899 chrec1 = analyze_scalar_evolution (loop, rhs1);
1900 chrec2 = analyze_scalar_evolution (loop, rhs2);
1901 chrec1 = chrec_convert (uns, chrec1, at_stmt);
1902 chrec1 = instantiate_parameters (loop, chrec1);
1903 chrec2 = instantiate_parameters (loop, chrec2);
1904
1905 tree one = build_int_cst (uns, 1);
1906 chrec2 = fold_build2 (LSHIFT_EXPR, uns, one, chrec2);
1907 res = chrec_fold_multiply (uns, chrec1, chrec2);
1908 res = chrec_convert (type, res, at_stmt);
1909 }
1910 break;
1911
1043771b 1912 CASE_CONVERT:
195b4c50
RG
1913 /* In case we have a truncation of a widened operation that in
1914 the truncated type has undefined overflow behavior analyze
1915 the operation done in an unsigned type of the same precision
1916 as the final truncation. We cannot derive a scalar evolution
1917 for the widened operation but for the truncated result. */
1918 if (TREE_CODE (type) == INTEGER_TYPE
1919 && TREE_CODE (TREE_TYPE (rhs1)) == INTEGER_TYPE
1920 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (rhs1))
1921 && TYPE_OVERFLOW_UNDEFINED (type)
1922 && TREE_CODE (rhs1) == SSA_NAME
1923 && (def = SSA_NAME_DEF_STMT (rhs1))
1924 && is_gimple_assign (def)
1925 && TREE_CODE_CLASS (gimple_assign_rhs_code (def)) == tcc_binary
1926 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
1927 {
1928 tree utype = unsigned_type_for (type);
1929 chrec1 = interpret_rhs_expr (loop, at_stmt, utype,
1930 gimple_assign_rhs1 (def),
1931 gimple_assign_rhs_code (def),
1932 gimple_assign_rhs2 (def));
1933 }
1934 else
1935 chrec1 = analyze_scalar_evolution (loop, rhs1);
b24d9420 1936 res = chrec_convert (type, chrec1, at_stmt, true, rhs1);
9baba81b 1937 break;
e6d62b46
BC
1938
1939 case BIT_AND_EXPR:
1940 /* Given int variable A, handle A&0xffff as (int)(unsigned short)A.
1941 If A is SCEV and its value is in the range of representable set
1942 of type unsigned short, the result expression is a (no-overflow)
1943 SCEV. */
1944 res = chrec_dont_know;
1945 if (tree_fits_uhwi_p (rhs2))
1946 {
1947 int precision;
1948 unsigned HOST_WIDE_INT val = tree_to_uhwi (rhs2);
1949
1950 val ++;
1951 /* Skip if value of rhs2 wraps in unsigned HOST_WIDE_INT or
1952 it's not the maximum value of a smaller type than rhs1. */
1953 if (val != 0
1954 && (precision = exact_log2 (val)) > 0
1955 && (unsigned) precision < TYPE_PRECISION (TREE_TYPE (rhs1)))
1956 {
1957 tree utype = build_nonstandard_integer_type (precision, 1);
1958
1959 if (TYPE_PRECISION (utype) < TYPE_PRECISION (TREE_TYPE (rhs1)))
1960 {
1961 chrec1 = analyze_scalar_evolution (loop, rhs1);
1962 chrec1 = chrec_convert (utype, chrec1, at_stmt);
1963 res = chrec_convert (TREE_TYPE (rhs1), chrec1, at_stmt);
1964 }
1965 }
1966 }
1967 break;
b8698a0f 1968
9baba81b
SP
1969 default:
1970 res = chrec_dont_know;
1971 break;
1972 }
b8698a0f 1973
9baba81b
SP
1974 return res;
1975}
1976
726a989a
RB
1977/* Interpret the expression EXPR. */
1978
1979static tree
355fe088 1980interpret_expr (struct loop *loop, gimple *at_stmt, tree expr)
726a989a
RB
1981{
1982 enum tree_code code;
1983 tree type = TREE_TYPE (expr), op0, op1;
1984
1985 if (automatically_generated_chrec_p (expr))
1986 return expr;
1987
4e71066d
RG
1988 if (TREE_CODE (expr) == POLYNOMIAL_CHREC
1989 || get_gimple_rhs_class (TREE_CODE (expr)) == GIMPLE_TERNARY_RHS)
726a989a
RB
1990 return chrec_dont_know;
1991
1992 extract_ops_from_tree (expr, &code, &op0, &op1);
1993
1994 return interpret_rhs_expr (loop, at_stmt, type,
1995 op0, code, op1);
1996}
1997
1998/* Interpret the rhs of the assignment STMT. */
1999
2000static tree
355fe088 2001interpret_gimple_assign (struct loop *loop, gimple *stmt)
726a989a
RB
2002{
2003 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2004 enum tree_code code = gimple_assign_rhs_code (stmt);
2005
2006 return interpret_rhs_expr (loop, stmt, type,
2007 gimple_assign_rhs1 (stmt), code,
2008 gimple_assign_rhs2 (stmt));
2009}
2010
9baba81b
SP
2011\f
2012
b8698a0f 2013/* This section contains all the entry points:
9baba81b
SP
2014 - number_of_iterations_in_loop,
2015 - analyze_scalar_evolution,
2016 - instantiate_parameters.
2017*/
2018
2019/* Compute and return the evolution function in WRTO_LOOP, the nearest
2020 common ancestor of DEF_LOOP and USE_LOOP. */
2021
b8698a0f
L
2022static tree
2023compute_scalar_evolution_in_loop (struct loop *wrto_loop,
2024 struct loop *def_loop,
9baba81b
SP
2025 tree ev)
2026{
492e5456 2027 bool val;
9baba81b 2028 tree res;
492e5456 2029
9baba81b
SP
2030 if (def_loop == wrto_loop)
2031 return ev;
2032
9ba025a2 2033 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
9baba81b
SP
2034 res = compute_overall_effect_of_inner_loop (def_loop, ev);
2035
492e5456
SP
2036 if (no_evolution_in_loop_p (res, wrto_loop->num, &val) && val)
2037 return res;
2038
9baba81b
SP
2039 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
2040}
2041
2042/* Helper recursive function. */
2043
2044static tree
2045analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
2046{
726a989a 2047 tree type = TREE_TYPE (var);
355fe088 2048 gimple *def;
9baba81b
SP
2049 basic_block bb;
2050 struct loop *def_loop;
2051
f30a1190
RB
2052 if (loop == NULL
2053 || TREE_CODE (type) == VECTOR_TYPE
2054 || TREE_CODE (type) == COMPLEX_TYPE)
9baba81b
SP
2055 return chrec_dont_know;
2056
2057 if (TREE_CODE (var) != SSA_NAME)
726a989a 2058 return interpret_expr (loop, NULL, var);
9baba81b
SP
2059
2060 def = SSA_NAME_DEF_STMT (var);
726a989a 2061 bb = gimple_bb (def);
9baba81b
SP
2062 def_loop = bb ? bb->loop_father : NULL;
2063
2064 if (bb == NULL
2065 || !flow_bb_inside_loop_p (loop, bb))
2066 {
806f2c1b
AL
2067 /* Keep symbolic form, but look through obvious copies for constants. */
2068 res = follow_copies_to_constant (var);
9baba81b
SP
2069 goto set_and_end;
2070 }
2071
2072 if (res != chrec_not_analyzed_yet)
2073 {
2074 if (loop != bb->loop_father)
b8698a0f 2075 res = compute_scalar_evolution_in_loop
9baba81b
SP
2076 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
2077
2078 goto set_and_end;
2079 }
2080
2081 if (loop != def_loop)
2082 {
2083 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
2084 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
2085
2086 goto set_and_end;
2087 }
2088
726a989a 2089 switch (gimple_code (def))
9baba81b 2090 {
726a989a
RB
2091 case GIMPLE_ASSIGN:
2092 res = interpret_gimple_assign (loop, def);
9baba81b
SP
2093 break;
2094
726a989a 2095 case GIMPLE_PHI:
9baba81b 2096 if (loop_phi_node_p (def))
538dd0b7 2097 res = interpret_loop_phi (loop, as_a <gphi *> (def));
9baba81b 2098 else
538dd0b7 2099 res = interpret_condition_phi (loop, as_a <gphi *> (def));
9baba81b
SP
2100 break;
2101
2102 default:
2103 res = chrec_dont_know;
2104 break;
2105 }
2106
2107 set_and_end:
2108
2109 /* Keep the symbolic form. */
2110 if (res == chrec_dont_know)
2111 res = var;
2112
2113 if (loop == def_loop)
a213b219 2114 set_scalar_evolution (block_before_loop (loop), var, res);
9baba81b
SP
2115
2116 return res;
2117}
2118
52bdd655
SP
2119/* Analyzes and returns the scalar evolution of the ssa_name VAR in
2120 LOOP. LOOP is the loop in which the variable is used.
b8698a0f 2121
9baba81b
SP
2122 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
2123 pointer to the statement that uses this variable, in order to
2124 determine the evolution function of the variable, use the following
2125 calls:
b8698a0f 2126
52bdd655
SP
2127 loop_p loop = loop_containing_stmt (stmt);
2128 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
3f227a8c 2129 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
9baba81b
SP
2130*/
2131
b8698a0f 2132tree
9baba81b
SP
2133analyze_scalar_evolution (struct loop *loop, tree var)
2134{
2135 tree res;
2136
dfedbe40 2137 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
2138 {
2139 fprintf (dump_file, "(analyze_scalar_evolution \n");
2140 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2141 fprintf (dump_file, " (scalar = ");
ef6cb4c7 2142 print_generic_expr (dump_file, var);
9baba81b
SP
2143 fprintf (dump_file, ")\n");
2144 }
2145
a213b219
SP
2146 res = get_scalar_evolution (block_before_loop (loop), var);
2147 res = analyze_scalar_evolution_1 (loop, var, res);
9baba81b 2148
dfedbe40 2149 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
2150 fprintf (dump_file, ")\n");
2151
2152 return res;
2153}
2154
bef28ced
JL
2155/* Analyzes and returns the scalar evolution of VAR address in LOOP. */
2156
2157static tree
2158analyze_scalar_evolution_for_address_of (struct loop *loop, tree var)
2159{
2160 return analyze_scalar_evolution (loop, build_fold_addr_expr (var));
2161}
2162
9baba81b 2163/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
f017bf5e 2164 WRTO_LOOP (which should be a superloop of USE_LOOP)
a6f778b2
ZD
2165
2166 FOLDED_CASTS is set to true if resolve_mixers used
2167 chrec_convert_aggressive (TODO -- not really, we are way too conservative
b8698a0f
L
2168 at the moment in order to keep things simple).
2169
f017bf5e
ZD
2170 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
2171 example:
2172
2173 for (i = 0; i < 100; i++) -- loop 1
2174 {
2175 for (j = 0; j < 100; j++) -- loop 2
2176 {
2177 k1 = i;
2178 k2 = j;
2179
2180 use2 (k1, k2);
2181
2182 for (t = 0; t < 100; t++) -- loop 3
2183 use3 (k1, k2);
2184
2185 }
2186 use1 (k1, k2);
2187 }
2188
2189 Both k1 and k2 are invariants in loop3, thus
2190 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
2191 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2192
2193 As they are invariant, it does not matter whether we consider their
2194 usage in loop 3 or loop 2, hence
2195 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2196 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2197 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2198 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2199
2200 Similarly for their evolutions with respect to loop 1. The values of K2
2201 in the use in loop 2 vary independently on loop 1, thus we cannot express
2202 the evolution with respect to loop 1:
2203 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2204 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2205 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2206 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2207
2208 The value of k2 in the use in loop 1 is known, though:
2209 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2210 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2211 */
9baba81b
SP
2212
2213static tree
2214analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
a6f778b2 2215 tree version, bool *folded_casts)
9baba81b
SP
2216{
2217 bool val = false;
a6f778b2 2218 tree ev = version, tmp;
9baba81b 2219
b8698a0f 2220 /* We cannot just do
f017bf5e
ZD
2221
2222 tmp = analyze_scalar_evolution (use_loop, version);
c70ed622 2223 ev = resolve_mixers (wrto_loop, tmp, folded_casts);
f017bf5e
ZD
2224
2225 as resolve_mixers would query the scalar evolution with respect to
2226 wrto_loop. For example, in the situation described in the function
2227 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2228 version = k2. Then
2229
2230 analyze_scalar_evolution (use_loop, version) = k2
2231
c70ed622
BC
2232 and resolve_mixers (loop1, k2, folded_casts) finds that the value of
2233 k2 in loop 1 is 100, which is a wrong result, since we are interested
2234 in the value in loop 3.
f017bf5e
ZD
2235
2236 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2237 each time checking that there is no evolution in the inner loop. */
2238
a6f778b2
ZD
2239 if (folded_casts)
2240 *folded_casts = false;
9baba81b
SP
2241 while (1)
2242 {
a6f778b2 2243 tmp = analyze_scalar_evolution (use_loop, ev);
c70ed622 2244 ev = resolve_mixers (use_loop, tmp, folded_casts);
9baba81b
SP
2245
2246 if (use_loop == wrto_loop)
2247 return ev;
2248
2249 /* If the value of the use changes in the inner loop, we cannot express
2250 its value in the outer loop (we might try to return interval chrec,
2251 but we do not have a user for it anyway) */
2252 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2253 || !val)
2254 return chrec_dont_know;
2255
9ba025a2 2256 use_loop = loop_outer (use_loop);
9baba81b
SP
2257 }
2258}
2259
eb0bc7af 2260
fdd43ac4
RB
2261/* Hashtable helpers for a temporary hash-table used when
2262 instantiating a CHREC or resolving mixers. For this use
2263 instantiated_below is always the same. */
2264
fdd43ac4 2265struct instantiate_cache_type
eb0bc7af 2266{
a3cc13cc
RB
2267 htab_t map;
2268 vec<scev_info_str> entries;
b8698a0f 2269
c3284718 2270 instantiate_cache_type () : map (NULL), entries (vNULL) {}
fdd43ac4 2271 ~instantiate_cache_type ();
0547c9b6
RB
2272 tree get (unsigned slot) { return entries[slot].chrec; }
2273 void set (unsigned slot, tree chrec) { entries[slot].chrec = chrec; }
fdd43ac4 2274};
eb0bc7af 2275
fdd43ac4
RB
2276instantiate_cache_type::~instantiate_cache_type ()
2277{
0547c9b6 2278 if (map != NULL)
fdd43ac4 2279 {
a3cc13cc 2280 htab_delete (map);
fdd43ac4
RB
2281 entries.release ();
2282 }
eb0bc7af
ZD
2283}
2284
a3cc13cc
RB
2285/* Cache to avoid infinite recursion when instantiating an SSA name.
2286 Live during the outermost instantiate_scev or resolve_mixers call. */
2287static instantiate_cache_type *global_cache;
2288
2289/* Computes a hash function for database element ELT. */
2290
2291static inline hashval_t
2292hash_idx_scev_info (const void *elt_)
2293{
2294 unsigned idx = ((size_t) elt_) - 2;
907dadbd 2295 return scev_info_hasher::hash (&global_cache->entries[idx]);
a3cc13cc
RB
2296}
2297
2298/* Compares database elements E1 and E2. */
2299
2300static inline int
2301eq_idx_scev_info (const void *e1, const void *e2)
2302{
2303 unsigned idx1 = ((size_t) e1) - 2;
907dadbd
TS
2304 return scev_info_hasher::equal (&global_cache->entries[idx1],
2305 (const scev_info_str *) e2);
a3cc13cc
RB
2306}
2307
0547c9b6 2308/* Returns from CACHE the slot number of the cached chrec for NAME. */
fdd43ac4 2309
0547c9b6 2310static unsigned
a3cc13cc
RB
2311get_instantiated_value_entry (instantiate_cache_type &cache,
2312 tree name, basic_block instantiate_below)
fdd43ac4 2313{
0547c9b6 2314 if (!cache.map)
fdd43ac4 2315 {
a3cc13cc 2316 cache.map = htab_create (10, hash_idx_scev_info, eq_idx_scev_info, NULL);
fdd43ac4
RB
2317 cache.entries.create (10);
2318 }
b8698a0f 2319
a3cc13cc
RB
2320 scev_info_str e;
2321 e.name_version = SSA_NAME_VERSION (name);
2322 e.instantiated_below = instantiate_below->index;
2323 void **slot = htab_find_slot_with_hash (cache.map, &e,
907dadbd 2324 scev_info_hasher::hash (&e), INSERT);
a3cc13cc 2325 if (!*slot)
fdd43ac4
RB
2326 {
2327 e.chrec = chrec_not_analyzed_yet;
a3cc13cc 2328 *slot = (void *)(size_t)(cache.entries.length () + 2);
fdd43ac4 2329 cache.entries.safe_push (e);
fdd43ac4
RB
2330 }
2331
a3cc13cc 2332 return ((size_t)*slot) - 2;
eb0bc7af
ZD
2333}
2334
0547c9b6 2335
18aed06a
SP
2336/* Return the closed_loop_phi node for VAR. If there is none, return
2337 NULL_TREE. */
2338
2339static tree
2340loop_closed_phi_def (tree var)
2341{
2342 struct loop *loop;
2343 edge exit;
538dd0b7
DM
2344 gphi *phi;
2345 gphi_iterator psi;
18aed06a
SP
2346
2347 if (var == NULL_TREE
2348 || TREE_CODE (var) != SSA_NAME)
2349 return NULL_TREE;
2350
2351 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
ac8f6c69 2352 exit = single_exit (loop);
18aed06a
SP
2353 if (!exit)
2354 return NULL_TREE;
2355
726a989a
RB
2356 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2357 {
538dd0b7 2358 phi = psi.phi ();
726a989a
RB
2359 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2360 return PHI_RESULT (phi);
2361 }
18aed06a
SP
2362
2363 return NULL_TREE;
2364}
2365
8b679c9b 2366static tree instantiate_scev_r (basic_block, struct loop *, struct loop *,
c70ed622 2367 tree, bool *, int);
320f5a78
SP
2368
2369/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2370 and EVOLUTION_LOOP, that were left under a symbolic form.
2371
2495a183 2372 CHREC is an SSA_NAME to be instantiated.
320f5a78
SP
2373
2374 CACHE is the cache of already instantiated values.
2375
c70ed622
BC
2376 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2377 conversions that may wrap in signed/pointer type are folded, as long
2378 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2379 then we don't do such fold.
320f5a78
SP
2380
2381 SIZE_EXPR is used for computing the size of the expression to be
2382 instantiated, and to stop if it exceeds some limit. */
2383
2384static tree
2495a183 2385instantiate_scev_name (basic_block instantiate_below,
8b679c9b
RB
2386 struct loop *evolution_loop, struct loop *inner_loop,
2387 tree chrec,
c70ed622 2388 bool *fold_conversions,
4a8fb1a1 2389 int size_expr)
320f5a78 2390{
2495a183
SP
2391 tree res;
2392 struct loop *def_loop;
2393 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
20179b0d 2394
2495a183
SP
2395 /* A parameter (or loop invariant and we do not want to include
2396 evolutions in outer loops), nothing to do. */
2397 if (!def_bb
2398 || loop_depth (def_bb->loop_father) == 0
2399 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2400 return chrec;
20179b0d 2401
2495a183
SP
2402 /* We cache the value of instantiated variable to avoid exponential
2403 time complexity due to reevaluations. We also store the convenient
2404 value in the cache in order to prevent infinite recursion -- we do
2405 not want to instantiate the SSA_NAME if it is in a mixer
2406 structure. This is used for avoiding the instantiation of
2407 recursively defined functions, such as:
320f5a78 2408
2495a183 2409 | a_2 -> {0, +, 1, +, a_2}_1 */
20179b0d 2410
a3cc13cc
RB
2411 unsigned si = get_instantiated_value_entry (*global_cache,
2412 chrec, instantiate_below);
0547c9b6
RB
2413 if (global_cache->get (si) != chrec_not_analyzed_yet)
2414 return global_cache->get (si);
20179b0d 2415
fdd43ac4 2416 /* On recursion return chrec_dont_know. */
0547c9b6 2417 global_cache->set (si, chrec_dont_know);
320f5a78 2418
2495a183
SP
2419 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2420
320f5a78
SP
2421 /* If the analysis yields a parametric chrec, instantiate the
2422 result again. */
2423 res = analyze_scalar_evolution (def_loop, chrec);
2424
2847388e 2425 /* Don't instantiate default definitions. */
320f5a78 2426 if (TREE_CODE (res) == SSA_NAME
2847388e
SP
2427 && SSA_NAME_IS_DEFAULT_DEF (res))
2428 ;
2429
2430 /* Don't instantiate loop-closed-ssa phi nodes. */
2431 else if (TREE_CODE (res) == SSA_NAME
2432 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2433 > loop_depth (def_loop))
320f5a78
SP
2434 {
2435 if (res == chrec)
2436 res = loop_closed_phi_def (chrec);
2437 else
2438 res = chrec;
2439
7472eb13
SP
2440 /* When there is no loop_closed_phi_def, it means that the
2441 variable is not used after the loop: try to still compute the
2442 value of the variable when exiting the loop. */
2443 if (res == NULL_TREE)
2444 {
2445 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
2446 res = analyze_scalar_evolution (loop, chrec);
2447 res = compute_overall_effect_of_inner_loop (loop, res);
8b679c9b
RB
2448 res = instantiate_scev_r (instantiate_below, evolution_loop,
2449 inner_loop, res,
0547c9b6 2450 fold_conversions, size_expr);
7472eb13
SP
2451 }
2452 else if (!dominated_by_p (CDI_DOMINATORS, instantiate_below,
2453 gimple_bb (SSA_NAME_DEF_STMT (res))))
320f5a78
SP
2454 res = chrec_dont_know;
2455 }
2456
2457 else if (res != chrec_dont_know)
8b679c9b
RB
2458 {
2459 if (inner_loop
63fdb7be 2460 && def_bb->loop_father != inner_loop
8b679c9b
RB
2461 && !flow_loop_nested_p (def_bb->loop_father, inner_loop))
2462 /* ??? We could try to compute the overall effect of the loop here. */
2463 res = chrec_dont_know;
2464 else
2465 res = instantiate_scev_r (instantiate_below, evolution_loop,
2466 inner_loop, res,
0547c9b6 2467 fold_conversions, size_expr);
8b679c9b 2468 }
320f5a78
SP
2469
2470 /* Store the correct value to the cache. */
0547c9b6 2471 global_cache->set (si, res);
320f5a78 2472 return res;
320f5a78
SP
2473}
2474
ec6636eb
SP
2475/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2476 and EVOLUTION_LOOP, that were left under a symbolic form.
2477
2478 CHREC is a polynomial chain of recurrence to be instantiated.
2479
2480 CACHE is the cache of already instantiated values.
2481
c70ed622
BC
2482 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2483 conversions that may wrap in signed/pointer type are folded, as long
2484 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2485 then we don't do such fold.
ec6636eb
SP
2486
2487 SIZE_EXPR is used for computing the size of the expression to be
2488 instantiated, and to stop if it exceeds some limit. */
2489
2490static tree
2491instantiate_scev_poly (basic_block instantiate_below,
8b679c9b 2492 struct loop *evolution_loop, struct loop *,
c70ed622 2493 tree chrec, bool *fold_conversions, int size_expr)
ec6636eb
SP
2494{
2495 tree op1;
9e5dc77f 2496 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2497 get_chrec_loop (chrec),
0547c9b6 2498 CHREC_LEFT (chrec), fold_conversions,
ec6636eb
SP
2499 size_expr);
2500 if (op0 == chrec_dont_know)
2501 return chrec_dont_know;
2502
9e5dc77f 2503 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2504 get_chrec_loop (chrec),
0547c9b6 2505 CHREC_RIGHT (chrec), fold_conversions,
ec6636eb
SP
2506 size_expr);
2507 if (op1 == chrec_dont_know)
2508 return chrec_dont_know;
2509
2510 if (CHREC_LEFT (chrec) != op0
2511 || CHREC_RIGHT (chrec) != op1)
2512 {
2513 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
8b679c9b 2514 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
ec6636eb 2515 }
4bf4e169 2516
ec6636eb
SP
2517 return chrec;
2518}
2519
15fda317
SP
2520/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2521 and EVOLUTION_LOOP, that were left under a symbolic form.
2522
ffa34f4b 2523 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
15fda317
SP
2524
2525 CACHE is the cache of already instantiated values.
2526
c70ed622
BC
2527 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2528 conversions that may wrap in signed/pointer type are folded, as long
2529 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2530 then we don't do such fold.
15fda317
SP
2531
2532 SIZE_EXPR is used for computing the size of the expression to be
2533 instantiated, and to stop if it exceeds some limit. */
2534
2535static tree
2536instantiate_scev_binary (basic_block instantiate_below,
8b679c9b
RB
2537 struct loop *evolution_loop, struct loop *inner_loop,
2538 tree chrec, enum tree_code code,
ffa34f4b 2539 tree type, tree c0, tree c1,
c70ed622 2540 bool *fold_conversions, int size_expr)
15fda317
SP
2541{
2542 tree op1;
8b679c9b 2543 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
0547c9b6 2544 c0, fold_conversions, size_expr);
15fda317
SP
2545 if (op0 == chrec_dont_know)
2546 return chrec_dont_know;
2547
8b679c9b 2548 op1 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
0547c9b6 2549 c1, fold_conversions, size_expr);
15fda317
SP
2550 if (op1 == chrec_dont_know)
2551 return chrec_dont_know;
2552
ffa34f4b
SP
2553 if (c0 != op0
2554 || c1 != op1)
15fda317 2555 {
15fda317
SP
2556 op0 = chrec_convert (type, op0, NULL);
2557 op1 = chrec_convert_rhs (type, op1, NULL);
2558
ffa34f4b 2559 switch (code)
15fda317
SP
2560 {
2561 case POINTER_PLUS_EXPR:
2562 case PLUS_EXPR:
2563 return chrec_fold_plus (type, op0, op1);
2564
2565 case MINUS_EXPR:
2566 return chrec_fold_minus (type, op0, op1);
2567
2568 case MULT_EXPR:
2569 return chrec_fold_multiply (type, op0, op1);
2570
2571 default:
2572 gcc_unreachable ();
2573 }
2574 }
2575
ffa34f4b 2576 return chrec ? chrec : fold_build2 (code, type, c0, c1);
15fda317
SP
2577}
2578
dbc08079
SP
2579/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2580 and EVOLUTION_LOOP, that were left under a symbolic form.
2581
2582 "CHREC" is an array reference to be instantiated.
2583
2584 CACHE is the cache of already instantiated values.
2585
c70ed622
BC
2586 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2587 conversions that may wrap in signed/pointer type are folded, as long
2588 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2589 then we don't do such fold.
dbc08079
SP
2590
2591 SIZE_EXPR is used for computing the size of the expression to be
2592 instantiated, and to stop if it exceeds some limit. */
2593
2594static tree
2595instantiate_array_ref (basic_block instantiate_below,
8b679c9b 2596 struct loop *evolution_loop, struct loop *inner_loop,
c70ed622 2597 tree chrec, bool *fold_conversions, int size_expr)
dbc08079
SP
2598{
2599 tree res;
2600 tree index = TREE_OPERAND (chrec, 1);
8b679c9b
RB
2601 tree op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2602 inner_loop, index,
0547c9b6 2603 fold_conversions, size_expr);
dbc08079
SP
2604
2605 if (op1 == chrec_dont_know)
2606 return chrec_dont_know;
2607
2608 if (chrec && op1 == index)
2609 return chrec;
2610
2611 res = unshare_expr (chrec);
2612 TREE_OPERAND (res, 1) = op1;
2613 return res;
2614}
2615
a213b219 2616/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
9c382ce9
SP
2617 and EVOLUTION_LOOP, that were left under a symbolic form.
2618
2619 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2620 instantiated.
2621
2622 CACHE is the cache of already instantiated values.
2623
c70ed622
BC
2624 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2625 conversions that may wrap in signed/pointer type are folded, as long
2626 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2627 then we don't do such fold.
9c382ce9
SP
2628
2629 SIZE_EXPR is used for computing the size of the expression to be
2630 instantiated, and to stop if it exceeds some limit. */
2631
2632static tree
2633instantiate_scev_convert (basic_block instantiate_below,
8b679c9b 2634 struct loop *evolution_loop, struct loop *inner_loop,
0547c9b6 2635 tree chrec, tree type, tree op,
c70ed622 2636 bool *fold_conversions, int size_expr)
9c382ce9 2637{
8b679c9b
RB
2638 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2639 inner_loop, op,
0547c9b6 2640 fold_conversions, size_expr);
9c382ce9
SP
2641
2642 if (op0 == chrec_dont_know)
2643 return chrec_dont_know;
2644
2645 if (fold_conversions)
2646 {
c70ed622 2647 tree tmp = chrec_convert_aggressive (type, op0, fold_conversions);
9c382ce9
SP
2648 if (tmp)
2649 return tmp;
9c382ce9 2650
c70ed622
BC
2651 /* If we used chrec_convert_aggressive, we can no longer assume that
2652 signed chrecs do not overflow, as chrec_convert does, so avoid
2653 calling it in that case. */
2654 if (*fold_conversions)
2655 {
2656 if (chrec && op0 == op)
2657 return chrec;
9c382ce9 2658
c70ed622
BC
2659 return fold_convert (type, op0);
2660 }
2661 }
9c382ce9
SP
2662
2663 return chrec_convert (type, op0, NULL);
2664}
2665
7ec0665d
SP
2666/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2667 and EVOLUTION_LOOP, that were left under a symbolic form.
2668
4b9d48a1 2669 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
7ec0665d 2670 Handle ~X as -1 - X.
4b9d48a1 2671 Handle -X as -1 * X.
7ec0665d
SP
2672
2673 CACHE is the cache of already instantiated values.
2674
c70ed622
BC
2675 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2676 conversions that may wrap in signed/pointer type are folded, as long
2677 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2678 then we don't do such fold.
7ec0665d
SP
2679
2680 SIZE_EXPR is used for computing the size of the expression to be
2681 instantiated, and to stop if it exceeds some limit. */
2682
2683static tree
4b9d48a1 2684instantiate_scev_not (basic_block instantiate_below,
8b679c9b
RB
2685 struct loop *evolution_loop, struct loop *inner_loop,
2686 tree chrec,
20179b0d 2687 enum tree_code code, tree type, tree op,
c70ed622 2688 bool *fold_conversions, int size_expr)
7ec0665d 2689{
8b679c9b
RB
2690 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2691 inner_loop, op,
0547c9b6 2692 fold_conversions, size_expr);
20179b0d 2693
7ec0665d
SP
2694 if (op0 == chrec_dont_know)
2695 return chrec_dont_know;
2696
20179b0d 2697 if (op != op0)
7ec0665d
SP
2698 {
2699 op0 = chrec_convert (type, op0, NULL);
4b9d48a1 2700
20179b0d 2701 switch (code)
4b9d48a1
SP
2702 {
2703 case BIT_NOT_EXPR:
2704 return chrec_fold_minus
2705 (type, fold_convert (type, integer_minus_one_node), op0);
2706
2707 case NEGATE_EXPR:
2708 return chrec_fold_multiply
2709 (type, fold_convert (type, integer_minus_one_node), op0);
2710
2711 default:
2712 gcc_unreachable ();
2713 }
7ec0665d 2714 }
4b9d48a1 2715
20179b0d 2716 return chrec ? chrec : fold_build1 (code, type, op0);
7ec0665d
SP
2717}
2718
d814176c
SP
2719/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2720 and EVOLUTION_LOOP, that were left under a symbolic form.
2721
2722 CHREC is an expression with 3 operands to be instantiated.
2723
2724 CACHE is the cache of already instantiated values.
2725
c70ed622
BC
2726 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2727 conversions that may wrap in signed/pointer type are folded, as long
2728 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2729 then we don't do such fold.
d814176c
SP
2730
2731 SIZE_EXPR is used for computing the size of the expression to be
2732 instantiated, and to stop if it exceeds some limit. */
2733
2734static tree
2735instantiate_scev_3 (basic_block instantiate_below,
8b679c9b
RB
2736 struct loop *evolution_loop, struct loop *inner_loop,
2737 tree chrec,
c70ed622 2738 bool *fold_conversions, int size_expr)
d814176c
SP
2739{
2740 tree op1, op2;
9e5dc77f 2741 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2742 inner_loop, TREE_OPERAND (chrec, 0),
0547c9b6 2743 fold_conversions, size_expr);
d814176c
SP
2744 if (op0 == chrec_dont_know)
2745 return chrec_dont_know;
2746
9e5dc77f 2747 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2748 inner_loop, TREE_OPERAND (chrec, 1),
0547c9b6 2749 fold_conversions, size_expr);
d814176c
SP
2750 if (op1 == chrec_dont_know)
2751 return chrec_dont_know;
2752
9e5dc77f 2753 op2 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2754 inner_loop, TREE_OPERAND (chrec, 2),
0547c9b6 2755 fold_conversions, size_expr);
d814176c
SP
2756 if (op2 == chrec_dont_know)
2757 return chrec_dont_know;
2758
2759 if (op0 == TREE_OPERAND (chrec, 0)
2760 && op1 == TREE_OPERAND (chrec, 1)
2761 && op2 == TREE_OPERAND (chrec, 2))
2762 return chrec;
2763
2764 return fold_build3 (TREE_CODE (chrec),
2765 TREE_TYPE (chrec), op0, op1, op2);
2766}
2767
9c382ce9
SP
2768/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2769 and EVOLUTION_LOOP, that were left under a symbolic form.
5b78fc3e 2770
9e5dc77f
SP
2771 CHREC is an expression with 2 operands to be instantiated.
2772
2773 CACHE is the cache of already instantiated values.
2774
c70ed622
BC
2775 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2776 conversions that may wrap in signed/pointer type are folded, as long
2777 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2778 then we don't do such fold.
9e5dc77f
SP
2779
2780 SIZE_EXPR is used for computing the size of the expression to be
2781 instantiated, and to stop if it exceeds some limit. */
2782
2783static tree
2784instantiate_scev_2 (basic_block instantiate_below,
8b679c9b
RB
2785 struct loop *evolution_loop, struct loop *inner_loop,
2786 tree chrec,
c70ed622 2787 bool *fold_conversions, int size_expr)
9e5dc77f
SP
2788{
2789 tree op1;
2790 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2791 inner_loop, TREE_OPERAND (chrec, 0),
0547c9b6 2792 fold_conversions, size_expr);
9e5dc77f
SP
2793 if (op0 == chrec_dont_know)
2794 return chrec_dont_know;
2795
2796 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2797 inner_loop, TREE_OPERAND (chrec, 1),
0547c9b6 2798 fold_conversions, size_expr);
9e5dc77f
SP
2799 if (op1 == chrec_dont_know)
2800 return chrec_dont_know;
2801
2802 if (op0 == TREE_OPERAND (chrec, 0)
2803 && op1 == TREE_OPERAND (chrec, 1))
2804 return chrec;
2805
2806 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2807}
2808
2809/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2810 and EVOLUTION_LOOP, that were left under a symbolic form.
2811
2812 CHREC is an expression with 2 operands to be instantiated.
5b78fc3e
JS
2813
2814 CACHE is the cache of already instantiated values.
2815
c70ed622
BC
2816 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2817 conversions that may wrap in signed/pointer type are folded, as long
2818 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2819 then we don't do such fold.
5b78fc3e 2820
3f227a8c
JS
2821 SIZE_EXPR is used for computing the size of the expression to be
2822 instantiated, and to stop if it exceeds some limit. */
9c382ce9 2823
9baba81b 2824static tree
a213b219 2825instantiate_scev_1 (basic_block instantiate_below,
8b679c9b
RB
2826 struct loop *evolution_loop, struct loop *inner_loop,
2827 tree chrec,
c70ed622 2828 bool *fold_conversions, int size_expr)
9baba81b 2829{
9e5dc77f 2830 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2831 inner_loop, TREE_OPERAND (chrec, 0),
0547c9b6 2832 fold_conversions, size_expr);
9e5dc77f
SP
2833
2834 if (op0 == chrec_dont_know)
2835 return chrec_dont_know;
2836
2837 if (op0 == TREE_OPERAND (chrec, 0))
2838 return chrec;
2839
2840 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2841}
2842
2843/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2844 and EVOLUTION_LOOP, that were left under a symbolic form.
2845
2846 CHREC is the scalar evolution to instantiate.
2847
2848 CACHE is the cache of already instantiated values.
2282a0e6 2849
c70ed622
BC
2850 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2851 conversions that may wrap in signed/pointer type are folded, as long
2852 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2853 then we don't do such fold.
9e5dc77f
SP
2854
2855 SIZE_EXPR is used for computing the size of the expression to be
2856 instantiated, and to stop if it exceeds some limit. */
2857
2858static tree
2859instantiate_scev_r (basic_block instantiate_below,
8b679c9b
RB
2860 struct loop *evolution_loop, struct loop *inner_loop,
2861 tree chrec,
c70ed622 2862 bool *fold_conversions, int size_expr)
9e5dc77f 2863{
47ae9e4c
SP
2864 /* Give up if the expression is larger than the MAX that we allow. */
2865 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2866 return chrec_dont_know;
2867
81fada9a
JJ
2868 if (chrec == NULL_TREE
2869 || automatically_generated_chrec_p (chrec)
d7770457 2870 || is_gimple_min_invariant (chrec))
9baba81b
SP
2871 return chrec;
2872
2873 switch (TREE_CODE (chrec))
2874 {
2875 case SSA_NAME:
8b679c9b
RB
2876 return instantiate_scev_name (instantiate_below, evolution_loop,
2877 inner_loop, chrec,
0547c9b6 2878 fold_conversions, size_expr);
9baba81b
SP
2879
2880 case POLYNOMIAL_CHREC:
8b679c9b
RB
2881 return instantiate_scev_poly (instantiate_below, evolution_loop,
2882 inner_loop, chrec,
0547c9b6 2883 fold_conversions, size_expr);
9baba81b 2884
5be014d5 2885 case POINTER_PLUS_EXPR:
9baba81b 2886 case PLUS_EXPR:
9baba81b 2887 case MINUS_EXPR:
9baba81b 2888 case MULT_EXPR:
8b679c9b
RB
2889 return instantiate_scev_binary (instantiate_below, evolution_loop,
2890 inner_loop, chrec,
ffa34f4b
SP
2891 TREE_CODE (chrec), chrec_type (chrec),
2892 TREE_OPERAND (chrec, 0),
2893 TREE_OPERAND (chrec, 1),
0547c9b6 2894 fold_conversions, size_expr);
9baba81b 2895
1043771b 2896 CASE_CONVERT:
8b679c9b
RB
2897 return instantiate_scev_convert (instantiate_below, evolution_loop,
2898 inner_loop, chrec,
9c382ce9 2899 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
0547c9b6 2900 fold_conversions, size_expr);
9baba81b 2901
4b9d48a1 2902 case NEGATE_EXPR:
418df9d7 2903 case BIT_NOT_EXPR:
8b679c9b
RB
2904 return instantiate_scev_not (instantiate_below, evolution_loop,
2905 inner_loop, chrec,
20179b0d
SP
2906 TREE_CODE (chrec), TREE_TYPE (chrec),
2907 TREE_OPERAND (chrec, 0),
0547c9b6 2908 fold_conversions, size_expr);
418df9d7 2909
4c7d6755 2910 case ADDR_EXPR:
9baba81b
SP
2911 case SCEV_NOT_KNOWN:
2912 return chrec_dont_know;
2913
2914 case SCEV_KNOWN:
2915 return chrec_known;
15fda317 2916
dbc08079 2917 case ARRAY_REF:
8b679c9b
RB
2918 return instantiate_array_ref (instantiate_below, evolution_loop,
2919 inner_loop, chrec,
0547c9b6 2920 fold_conversions, size_expr);
dbc08079 2921
9baba81b
SP
2922 default:
2923 break;
2924 }
2925
0dfb0dc6
SP
2926 if (VL_EXP_CLASS_P (chrec))
2927 return chrec_dont_know;
2928
9baba81b
SP
2929 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2930 {
2931 case 3:
8b679c9b
RB
2932 return instantiate_scev_3 (instantiate_below, evolution_loop,
2933 inner_loop, chrec,
0547c9b6 2934 fold_conversions, size_expr);
9baba81b
SP
2935
2936 case 2:
8b679c9b
RB
2937 return instantiate_scev_2 (instantiate_below, evolution_loop,
2938 inner_loop, chrec,
0547c9b6 2939 fold_conversions, size_expr);
7ec0665d 2940
9baba81b 2941 case 1:
8b679c9b
RB
2942 return instantiate_scev_1 (instantiate_below, evolution_loop,
2943 inner_loop, chrec,
0547c9b6 2944 fold_conversions, size_expr);
9baba81b
SP
2945
2946 case 0:
2947 return chrec;
2948
2949 default:
2950 break;
2951 }
2952
2953 /* Too complicated to handle. */
2954 return chrec_dont_know;
2955}
e9eb809d
ZD
2956
2957/* Analyze all the parameters of the chrec that were left under a
a213b219
SP
2958 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2959 recursive instantiation of parameters: a parameter is a variable
2960 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2961 a function parameter. */
e9eb809d
ZD
2962
2963tree
a213b219 2964instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
3f227a8c 2965 tree chrec)
e9eb809d 2966{
9baba81b
SP
2967 tree res;
2968
dfedbe40 2969 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b 2970 {
3f227a8c 2971 fprintf (dump_file, "(instantiate_scev \n");
a213b219 2972 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
3f227a8c 2973 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
9baba81b 2974 fprintf (dump_file, " (chrec = ");
ef6cb4c7 2975 print_generic_expr (dump_file, chrec);
9baba81b
SP
2976 fprintf (dump_file, ")\n");
2977 }
b8698a0f 2978
0547c9b6
RB
2979 bool destr = false;
2980 if (!global_cache)
2981 {
2982 global_cache = new instantiate_cache_type;
2983 destr = true;
2984 }
2985
8b679c9b 2986 res = instantiate_scev_r (instantiate_below, evolution_loop,
c70ed622 2987 NULL, chrec, NULL, 0);
0547c9b6
RB
2988
2989 if (destr)
2990 {
2991 delete global_cache;
2992 global_cache = NULL;
2993 }
9baba81b 2994
dfedbe40 2995 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
2996 {
2997 fprintf (dump_file, " (res = ");
ef6cb4c7 2998 print_generic_expr (dump_file, res);
9baba81b
SP
2999 fprintf (dump_file, "))\n");
3000 }
eb0bc7af 3001
9baba81b
SP
3002 return res;
3003}
3004
3005/* Similar to instantiate_parameters, but does not introduce the
2282a0e6
ZD
3006 evolutions in outer loops for LOOP invariants in CHREC, and does not
3007 care about causing overflows, as long as they do not affect value
3008 of an expression. */
9baba81b 3009
3cb960c7 3010tree
c70ed622 3011resolve_mixers (struct loop *loop, tree chrec, bool *folded_casts)
9baba81b 3012{
0547c9b6 3013 bool destr = false;
c70ed622 3014 bool fold_conversions = false;
0547c9b6
RB
3015 if (!global_cache)
3016 {
3017 global_cache = new instantiate_cache_type;
3018 destr = true;
3019 }
3020
8b679c9b 3021 tree ret = instantiate_scev_r (block_before_loop (loop), loop, NULL,
c70ed622
BC
3022 chrec, &fold_conversions, 0);
3023
3024 if (folded_casts && !*folded_casts)
3025 *folded_casts = fold_conversions;
0547c9b6
RB
3026
3027 if (destr)
3028 {
3029 delete global_cache;
3030 global_cache = NULL;
3031 }
3032
eb0bc7af 3033 return ret;
9baba81b
SP
3034}
3035
b8698a0f 3036/* Entry point for the analysis of the number of iterations pass.
9baba81b
SP
3037 This function tries to safely approximate the number of iterations
3038 the loop will run. When this property is not decidable at compile
0a74c758
SP
3039 time, the result is chrec_dont_know. Otherwise the result is a
3040 scalar or a symbolic parameter. When the number of iterations may
3041 be equal to zero and the property cannot be determined at compile
3042 time, the result is a COND_EXPR that represents in a symbolic form
3043 the conditions under which the number of iterations is not zero.
b8698a0f 3044
9baba81b 3045 Example of analysis: suppose that the loop has an exit condition:
b8698a0f 3046
9baba81b 3047 "if (b > 49) goto end_loop;"
b8698a0f 3048
9baba81b
SP
3049 and that in a previous analysis we have determined that the
3050 variable 'b' has an evolution function:
b8698a0f
L
3051
3052 "EF = {23, +, 5}_2".
3053
9baba81b
SP
3054 When we evaluate the function at the point 5, i.e. the value of the
3055 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
3056 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
3057 the loop body has been executed 6 times. */
3058
b8698a0f 3059tree
a14865db 3060number_of_latch_executions (struct loop *loop)
9baba81b 3061{
9baba81b
SP
3062 edge exit;
3063 struct tree_niter_desc niter_desc;
0a74c758
SP
3064 tree may_be_zero;
3065 tree res;
9baba81b 3066
0a74c758 3067 /* Determine whether the number of iterations in loop has already
9baba81b
SP
3068 been computed. */
3069 res = loop->nb_iterations;
3070 if (res)
3071 return res;
0a74c758
SP
3072
3073 may_be_zero = NULL_TREE;
9baba81b 3074
dfedbe40 3075 if (dump_file && (dump_flags & TDF_SCEV))
0a74c758 3076 fprintf (dump_file, "(number_of_iterations_in_loop = \n");
b8698a0f 3077
0a74c758 3078 res = chrec_dont_know;
ac8f6c69 3079 exit = single_exit (loop);
9baba81b 3080
0a74c758
SP
3081 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
3082 {
3083 may_be_zero = niter_desc.may_be_zero;
3084 res = niter_desc.niter;
3085 }
3086
3087 if (res == chrec_dont_know
3088 || !may_be_zero
3089 || integer_zerop (may_be_zero))
3090 ;
3091 else if (integer_nonzerop (may_be_zero))
3092 res = build_int_cst (TREE_TYPE (res), 0);
9baba81b 3093
0a74c758
SP
3094 else if (COMPARISON_CLASS_P (may_be_zero))
3095 res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero,
3096 build_int_cst (TREE_TYPE (res), 0), res);
9baba81b
SP
3097 else
3098 res = chrec_dont_know;
3099
dfedbe40 3100 if (dump_file && (dump_flags & TDF_SCEV))
0a74c758
SP
3101 {
3102 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
ef6cb4c7 3103 print_generic_expr (dump_file, res);
0a74c758
SP
3104 fprintf (dump_file, "))\n");
3105 }
3106
3107 loop->nb_iterations = res;
3108 return res;
9baba81b 3109}
9baba81b
SP
3110\f
3111
3112/* Counters for the stats. */
3113
b8698a0f 3114struct chrec_stats
9baba81b
SP
3115{
3116 unsigned nb_chrecs;
3117 unsigned nb_affine;
3118 unsigned nb_affine_multivar;
3119 unsigned nb_higher_poly;
3120 unsigned nb_chrec_dont_know;
3121 unsigned nb_undetermined;
3122};
3123
3124/* Reset the counters. */
3125
3126static inline void
3127reset_chrecs_counters (struct chrec_stats *stats)
3128{
3129 stats->nb_chrecs = 0;
3130 stats->nb_affine = 0;
3131 stats->nb_affine_multivar = 0;
3132 stats->nb_higher_poly = 0;
3133 stats->nb_chrec_dont_know = 0;
3134 stats->nb_undetermined = 0;
3135}
3136
3137/* Dump the contents of a CHREC_STATS structure. */
3138
3139static void
3140dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
3141{
3142 fprintf (file, "\n(\n");
3143 fprintf (file, "-----------------------------------------\n");
3144 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
3145 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
b8698a0f 3146 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
9baba81b
SP
3147 stats->nb_higher_poly);
3148 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
3149 fprintf (file, "-----------------------------------------\n");
3150 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
b8698a0f 3151 fprintf (file, "%d\twith undetermined coefficients\n",
9baba81b
SP
3152 stats->nb_undetermined);
3153 fprintf (file, "-----------------------------------------\n");
b8698a0f 3154 fprintf (file, "%d\tchrecs in the scev database\n",
907dadbd 3155 (int) scalar_evolution_info->elements ());
9baba81b
SP
3156 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
3157 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
3158 fprintf (file, "-----------------------------------------\n");
3159 fprintf (file, ")\n\n");
3160}
3161
3162/* Gather statistics about CHREC. */
3163
3164static void
3165gather_chrec_stats (tree chrec, struct chrec_stats *stats)
3166{
3167 if (dump_file && (dump_flags & TDF_STATS))
3168 {
3169 fprintf (dump_file, "(classify_chrec ");
ef6cb4c7 3170 print_generic_expr (dump_file, chrec);
9baba81b
SP
3171 fprintf (dump_file, "\n");
3172 }
b8698a0f 3173
9baba81b 3174 stats->nb_chrecs++;
b8698a0f 3175
9baba81b
SP
3176 if (chrec == NULL_TREE)
3177 {
3178 stats->nb_undetermined++;
3179 return;
3180 }
b8698a0f 3181
9baba81b
SP
3182 switch (TREE_CODE (chrec))
3183 {
3184 case POLYNOMIAL_CHREC:
3185 if (evolution_function_is_affine_p (chrec))
3186 {
3187 if (dump_file && (dump_flags & TDF_STATS))
3188 fprintf (dump_file, " affine_univariate\n");
3189 stats->nb_affine++;
3190 }
a50411de 3191 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
9baba81b
SP
3192 {
3193 if (dump_file && (dump_flags & TDF_STATS))
3194 fprintf (dump_file, " affine_multivariate\n");
3195 stats->nb_affine_multivar++;
3196 }
3197 else
3198 {
3199 if (dump_file && (dump_flags & TDF_STATS))
3200 fprintf (dump_file, " higher_degree_polynomial\n");
3201 stats->nb_higher_poly++;
3202 }
b8698a0f 3203
9baba81b
SP
3204 break;
3205
3206 default:
3207 break;
3208 }
b8698a0f 3209
9baba81b
SP
3210 if (chrec_contains_undetermined (chrec))
3211 {
3212 if (dump_file && (dump_flags & TDF_STATS))
3213 fprintf (dump_file, " undetermined\n");
3214 stats->nb_undetermined++;
3215 }
b8698a0f 3216
9baba81b
SP
3217 if (dump_file && (dump_flags & TDF_STATS))
3218 fprintf (dump_file, ")\n");
3219}
3220
9baba81b
SP
3221/* Classify the chrecs of the whole database. */
3222
b8698a0f 3223void
9baba81b
SP
3224gather_stats_on_scev_database (void)
3225{
3226 struct chrec_stats stats;
b8698a0f 3227
9baba81b
SP
3228 if (!dump_file)
3229 return;
b8698a0f 3230
9baba81b 3231 reset_chrecs_counters (&stats);
b8698a0f 3232
907dadbd
TS
3233 hash_table<scev_info_hasher>::iterator iter;
3234 scev_info_str *elt;
3235 FOR_EACH_HASH_TABLE_ELEMENT (*scalar_evolution_info, elt, scev_info_str *,
3236 iter)
3237 gather_chrec_stats (elt->chrec, &stats);
9baba81b
SP
3238
3239 dump_chrecs_stats (dump_file, &stats);
3240}
3241
3242\f
3243
3244/* Initializer. */
3245
3246static void
3247initialize_scalar_evolutions_analyzer (void)
3248{
3249 /* The elements below are unique. */
3250 if (chrec_dont_know == NULL_TREE)
3251 {
3252 chrec_not_analyzed_yet = NULL_TREE;
3253 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
3254 chrec_known = make_node (SCEV_KNOWN);
d5ab5675
ZD
3255 TREE_TYPE (chrec_dont_know) = void_type_node;
3256 TREE_TYPE (chrec_known) = void_type_node;
9baba81b
SP
3257 }
3258}
3259
3260/* Initialize the analysis of scalar evolutions for LOOPS. */
3261
3262void
d73be268 3263scev_initialize (void)
9baba81b 3264{
42fd6772 3265 struct loop *loop;
9baba81b 3266
907dadbd 3267 scalar_evolution_info = hash_table<scev_info_hasher>::create_ggc (100);
b8698a0f 3268
9baba81b
SP
3269 initialize_scalar_evolutions_analyzer ();
3270
f0bd40b1 3271 FOR_EACH_LOOP (loop, 0)
42fd6772
ZD
3272 {
3273 loop->nb_iterations = NULL_TREE;
3274 }
9baba81b
SP
3275}
3276
e3a8f1fa
JH
3277/* Return true if SCEV is initialized. */
3278
3279bool
3280scev_initialized_p (void)
3281{
3282 return scalar_evolution_info != NULL;
3283}
3284
a7bf45de
SP
3285/* Cleans up the information cached by the scalar evolutions analysis
3286 in the hash table. */
3287
3288void
3289scev_reset_htab (void)
3290{
3291 if (!scalar_evolution_info)
3292 return;
3293
907dadbd 3294 scalar_evolution_info->empty ();
a7bf45de
SP
3295}
3296
3297/* Cleans up the information cached by the scalar evolutions analysis
3298 in the hash table and in the loop->nb_iterations. */
9baba81b
SP
3299
3300void
3301scev_reset (void)
3302{
9baba81b
SP
3303 struct loop *loop;
3304
a7bf45de
SP
3305 scev_reset_htab ();
3306
f0bd40b1 3307 FOR_EACH_LOOP (loop, 0)
9baba81b 3308 {
42fd6772 3309 loop->nb_iterations = NULL_TREE;
9baba81b 3310 }
e9eb809d
ZD
3311}
3312
1e3d54b4
JH
3313/* Return true if the IV calculation in TYPE can overflow based on the knowledge
3314 of the upper bound on the number of iterations of LOOP, the BASE and STEP
3315 of IV.
3316
3317 We do not use information whether TYPE can overflow so it is safe to
3318 use this test even for derived IVs not computed every iteration or
3319 hypotetical IVs to be inserted into code. */
3320
019d6598 3321bool
1e3d54b4
JH
3322iv_can_overflow_p (struct loop *loop, tree type, tree base, tree step)
3323{
3324 widest_int nit;
3325 wide_int base_min, base_max, step_min, step_max, type_min, type_max;
3326 signop sgn = TYPE_SIGN (type);
3327
3328 if (integer_zerop (step))
3329 return false;
3330
3331 if (TREE_CODE (base) == INTEGER_CST)
3332 base_min = base_max = base;
3333 else if (TREE_CODE (base) == SSA_NAME
3334 && INTEGRAL_TYPE_P (TREE_TYPE (base))
3335 && get_range_info (base, &base_min, &base_max) == VR_RANGE)
3336 ;
3337 else
3338 return true;
3339
3340 if (TREE_CODE (step) == INTEGER_CST)
3341 step_min = step_max = step;
3342 else if (TREE_CODE (step) == SSA_NAME
3343 && INTEGRAL_TYPE_P (TREE_TYPE (step))
3344 && get_range_info (step, &step_min, &step_max) == VR_RANGE)
3345 ;
3346 else
3347 return true;
3348
3349 if (!get_max_loop_iterations (loop, &nit))
3350 return true;
3351
3352 type_min = wi::min_value (type);
3353 type_max = wi::max_value (type);
3354
3355 /* Just sanity check that we don't see values out of the range of the type.
3356 In this case the arithmetics bellow would overflow. */
3357 gcc_checking_assert (wi::ge_p (base_min, type_min, sgn)
3358 && wi::le_p (base_max, type_max, sgn));
3359
3360 /* Account the possible increment in the last ieration. */
3361 bool overflow = false;
3362 nit = wi::add (nit, 1, SIGNED, &overflow);
3363 if (overflow)
3364 return true;
3365
3366 /* NIT is typeless and can exceed the precision of the type. In this case
3367 overflow is always possible, because we know STEP is non-zero. */
3368 if (wi::min_precision (nit, UNSIGNED) > TYPE_PRECISION (type))
3369 return true;
3370 wide_int nit2 = wide_int::from (nit, TYPE_PRECISION (type), UNSIGNED);
3371
3372 /* If step can be positive, check that nit*step <= type_max-base.
3373 This can be done by unsigned arithmetic and we only need to watch overflow
3374 in the multiplication. The right hand side can always be represented in
3375 the type. */
3376 if (sgn == UNSIGNED || !wi::neg_p (step_max))
3377 {
3378 bool overflow = false;
3379 if (wi::gtu_p (wi::mul (step_max, nit2, UNSIGNED, &overflow),
3380 type_max - base_max)
3381 || overflow)
3382 return true;
3383 }
3384 /* If step can be negative, check that nit*(-step) <= base_min-type_min. */
3385 if (sgn == SIGNED && wi::neg_p (step_min))
3386 {
3387 bool overflow = false, overflow2 = false;
3388 if (wi::gtu_p (wi::mul (wi::neg (step_min, &overflow2),
3389 nit2, UNSIGNED, &overflow),
3390 base_min - type_min)
3391 || overflow || overflow2)
3392 return true;
3393 }
3394
3395 return false;
3396}
3397
43aabfcf
BC
3398/* Given EV with form of "(type) {inner_base, inner_step}_loop", this
3399 function tries to derive condition under which it can be simplified
3400 into "{(type)inner_base, (type)inner_step}_loop". The condition is
3401 the maximum number that inner iv can iterate. */
3402
3403static tree
3404derive_simple_iv_with_niters (tree ev, tree *niters)
3405{
3406 if (!CONVERT_EXPR_P (ev))
3407 return ev;
3408
3409 tree inner_ev = TREE_OPERAND (ev, 0);
3410 if (TREE_CODE (inner_ev) != POLYNOMIAL_CHREC)
3411 return ev;
3412
3413 tree init = CHREC_LEFT (inner_ev);
3414 tree step = CHREC_RIGHT (inner_ev);
3415 if (TREE_CODE (init) != INTEGER_CST
3416 || TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
3417 return ev;
3418
3419 tree type = TREE_TYPE (ev);
3420 tree inner_type = TREE_TYPE (inner_ev);
3421 if (TYPE_PRECISION (inner_type) >= TYPE_PRECISION (type))
3422 return ev;
3423
3424 /* Type conversion in "(type) {inner_base, inner_step}_loop" can be
3425 folded only if inner iv won't overflow. We compute the maximum
3426 number the inner iv can iterate before overflowing and return the
3427 simplified affine iv. */
3428 tree delta;
3429 init = fold_convert (type, init);
3430 step = fold_convert (type, step);
3431 ev = build_polynomial_chrec (CHREC_VARIABLE (inner_ev), init, step);
3432 if (tree_int_cst_sign_bit (step))
3433 {
3434 tree bound = lower_bound_in_type (inner_type, inner_type);
3435 delta = fold_build2 (MINUS_EXPR, type, init, fold_convert (type, bound));
3436 step = fold_build1 (NEGATE_EXPR, type, step);
3437 }
3438 else
3439 {
3440 tree bound = upper_bound_in_type (inner_type, inner_type);
3441 delta = fold_build2 (MINUS_EXPR, type, fold_convert (type, bound), init);
3442 }
3443 *niters = fold_build2 (FLOOR_DIV_EXPR, type, delta, step);
3444 return ev;
3445}
3446
f017bf5e
ZD
3447/* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3448 respect to WRTO_LOOP and returns its base and step in IV if possible
3449 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3450 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3451 invariant in LOOP. Otherwise we require it to be an integer constant.
b8698a0f 3452
f017bf5e
ZD
3453 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3454 because it is computed in signed arithmetics). Consequently, adding an
3455 induction variable
b8698a0f 3456
f017bf5e
ZD
3457 for (i = IV->base; ; i += IV->step)
3458
3459 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3460 false for the type of the induction variable, or you can prove that i does
3461 not wrap by some other argument. Otherwise, this might introduce undefined
3462 behavior, and
b8698a0f 3463
43aabfcf
BC
3464 i = iv->base;
3465 for (; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3466
3467 must be used instead.
3468
3469 When IV_NITERS is not NULL, this function also checks case in which OP
3470 is a conversion of an inner simple iv of below form:
3471
3472 (outer_type){inner_base, inner_step}_loop.
f017bf5e 3473
43aabfcf
BC
3474 If type of inner iv has smaller precision than outer_type, it can't be
3475 folded into {(outer_type)inner_base, (outer_type)inner_step}_loop because
3476 the inner iv could overflow/wrap. In this case, we derive a condition
3477 under which the inner iv won't overflow/wrap and do the simplification.
3478 The derived condition normally is the maximum number the inner iv can
3479 iterate, and will be stored in IV_NITERS. This is useful in loop niter
3480 analysis, to derive break conditions when a loop must terminate, when is
3481 infinite. */
e9eb809d
ZD
3482
3483bool
43aabfcf
BC
3484simple_iv_with_niters (struct loop *wrto_loop, struct loop *use_loop,
3485 tree op, affine_iv *iv, tree *iv_niters,
3486 bool allow_nonconstant_step)
e9eb809d 3487{
f3c5f3a3 3488 enum tree_code code;
8aa46dd2 3489 tree type, ev, base, e;
f3c5f3a3
BC
3490 wide_int extreme;
3491 bool folded_casts, overflow;
9baba81b 3492
a6f778b2
ZD
3493 iv->base = NULL_TREE;
3494 iv->step = NULL_TREE;
3495 iv->no_overflow = false;
9baba81b
SP
3496
3497 type = TREE_TYPE (op);
1ee0d660
EB
3498 if (!POINTER_TYPE_P (type)
3499 && !INTEGRAL_TYPE_P (type))
9baba81b
SP
3500 return false;
3501
f017bf5e 3502 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
a6f778b2 3503 &folded_casts);
f017bf5e
ZD
3504 if (chrec_contains_undetermined (ev)
3505 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
9baba81b
SP
3506 return false;
3507
f017bf5e 3508 if (tree_does_not_contain_chrecs (ev))
9baba81b 3509 {
a6f778b2 3510 iv->base = ev;
6e42ce54 3511 iv->step = build_int_cst (TREE_TYPE (ev), 0);
a6f778b2 3512 iv->no_overflow = true;
9baba81b
SP
3513 return true;
3514 }
3515
43aabfcf
BC
3516 /* If we can derive valid scalar evolution with assumptions. */
3517 if (iv_niters && TREE_CODE (ev) != POLYNOMIAL_CHREC)
3518 ev = derive_simple_iv_with_niters (ev, iv_niters);
3519
3520 if (TREE_CODE (ev) != POLYNOMIAL_CHREC)
3521 return false;
3522
3523 if (CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
9baba81b
SP
3524 return false;
3525
a6f778b2 3526 iv->step = CHREC_RIGHT (ev);
f017bf5e
ZD
3527 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
3528 || tree_contains_chrecs (iv->step, NULL))
9baba81b 3529 return false;
9be872b7 3530
a6f778b2 3531 iv->base = CHREC_LEFT (ev);
f017bf5e 3532 if (tree_contains_chrecs (iv->base, NULL))
9baba81b
SP
3533 return false;
3534
1210573b 3535 iv->no_overflow = !folded_casts && nowrap_type_p (type);
eeef0e45 3536
1e3d54b4
JH
3537 if (!iv->no_overflow
3538 && !iv_can_overflow_p (wrto_loop, type, iv->base, iv->step))
3539 iv->no_overflow = true;
3540
f3c5f3a3
BC
3541 /* Try to simplify iv base:
3542
3543 (signed T) ((unsigned T)base + step) ;; TREE_TYPE (base) == signed T
3544 == (signed T)(unsigned T)base + step
3545 == base + step
3546
3547 If we can prove operation (base + step) doesn't overflow or underflow.
3548 Specifically, we try to prove below conditions are satisfied:
3549
3550 base <= UPPER_BOUND (type) - step ;;step > 0
3551 base >= LOWER_BOUND (type) - step ;;step < 0
3552
3553 This is done by proving the reverse conditions are false using loop's
3554 initial conditions.
3555
3556 The is necessary to make loop niter, or iv overflow analysis easier
3557 for below example:
3558
3559 int foo (int *a, signed char s, signed char l)
3560 {
3561 signed char i;
3562 for (i = s; i < l; i++)
3563 a[i] = 0;
3564 return 0;
3565 }
3566
3567 Note variable I is firstly converted to type unsigned char, incremented,
3568 then converted back to type signed char. */
3569
3570 if (wrto_loop->num != use_loop->num)
3571 return true;
3572
3573 if (!CONVERT_EXPR_P (iv->base) || TREE_CODE (iv->step) != INTEGER_CST)
3574 return true;
3575
3576 type = TREE_TYPE (iv->base);
3577 e = TREE_OPERAND (iv->base, 0);
3578 if (TREE_CODE (e) != PLUS_EXPR
3579 || TREE_CODE (TREE_OPERAND (e, 1)) != INTEGER_CST
3580 || !tree_int_cst_equal (iv->step,
3581 fold_convert (type, TREE_OPERAND (e, 1))))
3582 return true;
3583 e = TREE_OPERAND (e, 0);
3584 if (!CONVERT_EXPR_P (e))
3585 return true;
3586 base = TREE_OPERAND (e, 0);
3587 if (!useless_type_conversion_p (type, TREE_TYPE (base)))
3588 return true;
3589
3590 if (tree_int_cst_sign_bit (iv->step))
3591 {
3592 code = LT_EXPR;
3593 extreme = wi::min_value (type);
3594 }
3595 else
3596 {
3597 code = GT_EXPR;
3598 extreme = wi::max_value (type);
3599 }
3600 overflow = false;
3601 extreme = wi::sub (extreme, iv->step, TYPE_SIGN (type), &overflow);
3602 if (overflow)
3603 return true;
3604 e = fold_build2 (code, boolean_type_node, base,
3605 wide_int_to_tree (type, extreme));
8aa46dd2 3606 e = simplify_using_initial_conditions (use_loop, e);
f3c5f3a3
BC
3607 if (!integer_zerop (e))
3608 return true;
3609
3610 if (POINTER_TYPE_P (TREE_TYPE (base)))
3611 code = POINTER_PLUS_EXPR;
3612 else
3613 code = PLUS_EXPR;
3614
3615 iv->base = fold_build2 (code, TREE_TYPE (base), base, iv->step);
9baba81b
SP
3616 return true;
3617}
3618
43aabfcf
BC
3619/* Like simple_iv_with_niters, but return TRUE when OP behaves as a simple
3620 affine iv unconditionally. */
3621
3622bool
3623simple_iv (struct loop *wrto_loop, struct loop *use_loop, tree op,
3624 affine_iv *iv, bool allow_nonconstant_step)
3625{
3626 return simple_iv_with_niters (wrto_loop, use_loop, op, iv,
3627 NULL, allow_nonconstant_step);
3628}
3629
9baba81b
SP
3630/* Finalize the scalar evolution analysis. */
3631
3632void
3633scev_finalize (void)
3634{
d51157de
ZD
3635 if (!scalar_evolution_info)
3636 return;
907dadbd 3637 scalar_evolution_info->empty ();
c7b852c8 3638 scalar_evolution_info = NULL;
9baba81b
SP
3639}
3640
771f882e
ZD
3641/* Returns true if the expression EXPR is considered to be too expensive
3642 for scev_const_prop. */
3643
3644bool
3645expression_expensive_p (tree expr)
3646{
3647 enum tree_code code;
3648
3649 if (is_gimple_val (expr))
3650 return false;
3651
3652 code = TREE_CODE (expr);
3653 if (code == TRUNC_DIV_EXPR
3654 || code == CEIL_DIV_EXPR
3655 || code == FLOOR_DIV_EXPR
3656 || code == ROUND_DIV_EXPR
3657 || code == TRUNC_MOD_EXPR
3658 || code == CEIL_MOD_EXPR
3659 || code == FLOOR_MOD_EXPR
3660 || code == ROUND_MOD_EXPR
3661 || code == EXACT_DIV_EXPR)
3662 {
3663 /* Division by power of two is usually cheap, so we allow it.
3664 Forbid anything else. */
3665 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
3666 return true;
3667 }
3668
3669 switch (TREE_CODE_CLASS (code))
3670 {
3671 case tcc_binary:
3672 case tcc_comparison:
3673 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
3674 return true;
3675
3676 /* Fallthru. */
3677 case tcc_unary:
3678 return expression_expensive_p (TREE_OPERAND (expr, 0));
3679
3680 default:
3681 return true;
3682 }
3683}
3684
f993a853
TV
3685/* Do final value replacement for LOOP. */
3686
3687void
3688final_value_replacement_loop (struct loop *loop)
3689{
3690 /* If we do not know exact number of iterations of the loop, we cannot
3691 replace the final value. */
3692 edge exit = single_exit (loop);
3693 if (!exit)
3694 return;
3695
3696 tree niter = number_of_latch_executions (loop);
3697 if (niter == chrec_dont_know)
3698 return;
3699
3700 /* Ensure that it is possible to insert new statements somewhere. */
3701 if (!single_pred_p (exit->dest))
3702 split_loop_exit_edge (exit);
3703
3704 /* Set stmt insertion pointer. All stmts are inserted before this point. */
3705 gimple_stmt_iterator gsi = gsi_after_labels (exit->dest);
3706
3707 struct loop *ex_loop
3708 = superloop_at_depth (loop,
3709 loop_depth (exit->dest->loop_father) + 1);
3710
3711 gphi_iterator psi;
3712 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
3713 {
3714 gphi *phi = psi.phi ();
3715 tree rslt = PHI_RESULT (phi);
3716 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
3717 if (virtual_operand_p (def))
3718 {
3719 gsi_next (&psi);
3720 continue;
3721 }
3722
3723 if (!POINTER_TYPE_P (TREE_TYPE (def))
3724 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
3725 {
3726 gsi_next (&psi);
3727 continue;
3728 }
3729
3730 bool folded_casts;
3731 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def,
3732 &folded_casts);
3733 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3734 if (!tree_does_not_contain_chrecs (def)
3735 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3736 /* Moving the computation from the loop may prolong life range
3737 of some ssa names, which may cause problems if they appear
3738 on abnormal edges. */
3739 || contains_abnormal_ssa_name_p (def)
3740 /* Do not emit expensive expressions. The rationale is that
3741 when someone writes a code like
3742
3743 while (n > 45) n -= 45;
3744
3745 he probably knows that n is not large, and does not want it
3746 to be turned into n %= 45. */
3747 || expression_expensive_p (def))
3748 {
3749 if (dump_file && (dump_flags & TDF_DETAILS))
3750 {
3751 fprintf (dump_file, "not replacing:\n ");
ef6cb4c7 3752 print_gimple_stmt (dump_file, phi, 0);
f993a853
TV
3753 fprintf (dump_file, "\n");
3754 }
3755 gsi_next (&psi);
3756 continue;
3757 }
3758
3759 /* Eliminate the PHI node and replace it by a computation outside
3760 the loop. */
3761 if (dump_file)
3762 {
3763 fprintf (dump_file, "\nfinal value replacement:\n ");
ef6cb4c7 3764 print_gimple_stmt (dump_file, phi, 0);
f993a853
TV
3765 fprintf (dump_file, " with\n ");
3766 }
3767 def = unshare_expr (def);
3768 remove_phi_node (&psi, false);
3769
3770 /* If def's type has undefined overflow and there were folded
3771 casts, rewrite all stmts added for def into arithmetics
3772 with defined overflow behavior. */
3773 if (folded_casts && ANY_INTEGRAL_TYPE_P (TREE_TYPE (def))
3774 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (def)))
3775 {
3776 gimple_seq stmts;
3777 gimple_stmt_iterator gsi2;
3778 def = force_gimple_operand (def, &stmts, true, NULL_TREE);
3779 gsi2 = gsi_start (stmts);
3780 while (!gsi_end_p (gsi2))
3781 {
3782 gimple *stmt = gsi_stmt (gsi2);
3783 gimple_stmt_iterator gsi3 = gsi2;
3784 gsi_next (&gsi2);
3785 gsi_remove (&gsi3, false);
3786 if (is_gimple_assign (stmt)
3787 && arith_code_with_undefined_signed_overflow
3788 (gimple_assign_rhs_code (stmt)))
3789 gsi_insert_seq_before (&gsi,
3790 rewrite_to_defined_overflow (stmt),
3791 GSI_SAME_STMT);
3792 else
3793 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3794 }
3795 }
3796 else
3797 def = force_gimple_operand_gsi (&gsi, def, false, NULL_TREE,
3798 true, GSI_SAME_STMT);
3799
3800 gassign *ass = gimple_build_assign (rslt, def);
3801 gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
3802 if (dump_file)
3803 {
ef6cb4c7 3804 print_gimple_stmt (dump_file, ass, 0);
f993a853
TV
3805 fprintf (dump_file, "\n");
3806 }
3807 }
3808}
3809
684aaf29 3810/* Replace ssa names for that scev can prove they are constant by the
3ac01fde
ZD
3811 appropriate constants. Also perform final value replacement in loops,
3812 in case the replacement expressions are cheap.
b8698a0f 3813
684aaf29
ZD
3814 We only consider SSA names defined by phi nodes; rest is left to the
3815 ordinary constant propagation pass. */
3816
c2924966 3817unsigned int
684aaf29
ZD
3818scev_const_prop (void)
3819{
3820 basic_block bb;
726a989a 3821 tree name, type, ev;
538dd0b7 3822 gphi *phi;
f993a853 3823 struct loop *loop;
684aaf29 3824 bitmap ssa_names_to_remove = NULL;
3ac01fde 3825 unsigned i;
538dd0b7 3826 gphi_iterator psi;
684aaf29 3827
0fc822d0 3828 if (number_of_loops (cfun) <= 1)
c2924966 3829 return 0;
684aaf29 3830
11cd3bed 3831 FOR_EACH_BB_FN (bb, cfun)
684aaf29
ZD
3832 {
3833 loop = bb->loop_father;
3834
726a989a 3835 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
684aaf29 3836 {
538dd0b7 3837 phi = psi.phi ();
684aaf29
ZD
3838 name = PHI_RESULT (phi);
3839
ea057359 3840 if (virtual_operand_p (name))
684aaf29
ZD
3841 continue;
3842
3843 type = TREE_TYPE (name);
3844
3845 if (!POINTER_TYPE_P (type)
3846 && !INTEGRAL_TYPE_P (type))
3847 continue;
3848
c70ed622
BC
3849 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name),
3850 NULL);
684aaf29
ZD
3851 if (!is_gimple_min_invariant (ev)
3852 || !may_propagate_copy (name, ev))
3853 continue;
3854
3855 /* Replace the uses of the name. */
18aed06a 3856 if (name != ev)
ed22b76f
TV
3857 {
3858 if (dump_file && (dump_flags & TDF_DETAILS))
3859 {
3860 fprintf (dump_file, "Replacing uses of: ");
ef6cb4c7 3861 print_generic_expr (dump_file, name);
ed22b76f 3862 fprintf (dump_file, " with: ");
ef6cb4c7 3863 print_generic_expr (dump_file, ev);
ed22b76f
TV
3864 fprintf (dump_file, "\n");
3865 }
3866 replace_uses_by (name, ev);
3867 }
684aaf29
ZD
3868
3869 if (!ssa_names_to_remove)
3870 ssa_names_to_remove = BITMAP_ALLOC (NULL);
3871 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
3872 }
3873 }
3874
9b3b55a1
DN
3875 /* Remove the ssa names that were replaced by constants. We do not
3876 remove them directly in the previous cycle, since this
3877 invalidates scev cache. */
684aaf29
ZD
3878 if (ssa_names_to_remove)
3879 {
3880 bitmap_iterator bi;
684aaf29
ZD
3881
3882 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
3883 {
726a989a 3884 gimple_stmt_iterator psi;
684aaf29 3885 name = ssa_name (i);
538dd0b7 3886 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (name));
684aaf29 3887
726a989a
RB
3888 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
3889 psi = gsi_for_stmt (phi);
3890 remove_phi_node (&psi, true);
684aaf29
ZD
3891 }
3892
3893 BITMAP_FREE (ssa_names_to_remove);
3894 scev_reset ();
3895 }
3ac01fde
ZD
3896
3897 /* Now the regular final value replacement. */
f0bd40b1 3898 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
f993a853 3899 final_value_replacement_loop (loop);
925196ed 3900
c2924966 3901 return 0;
684aaf29 3902}
9e2f83a5
ZD
3903
3904#include "gt-tree-scalar-evolution.h"