]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-scalar-evolution.c
In C++11 a trivial [cd]tor might not be callable.
[thirdparty/gcc.git] / gcc / tree-scalar-evolution.c
CommitLineData
b9d73ea6 1/* Scalar evolution detector.
711789cc 2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
b9d73ea6 3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
b9d73ea6 10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
b9d73ea6 20
48e1416a 21/*
22 Description:
23
c2c3fd24 24 This pass analyzes the evolution of scalar variables in loop
25 structures. The algorithm is based on the SSA representation,
26 and on the loop hierarchy tree. This algorithm is not based on
27 the notion of versions of a variable, as it was the case for the
28 previous implementations of the scalar evolution algorithm, but
29 it assumes that each defined name is unique.
30
31 The notation used in this file is called "chains of recurrences",
32 and has been proposed by Eugene Zima, Robert Van Engelen, and
33 others for describing induction variables in programs. For example
34 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
35 when entering in the loop_1 and has a step 2 in this loop, in other
36 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
37 this chain of recurrence (or chrec [shrek]) can contain the name of
38 other variables, in which case they are called parametric chrecs.
39 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
40 is the value of "a". In most of the cases these parametric chrecs
41 are fully instantiated before their use because symbolic names can
42 hide some difficult cases such as self-references described later
43 (see the Fibonacci example).
48e1416a 44
c2c3fd24 45 A short sketch of the algorithm is:
48e1416a 46
c2c3fd24 47 Given a scalar variable to be analyzed, follow the SSA edge to
48 its definition:
48e1416a 49
75a70cf9 50 - When the definition is a GIMPLE_ASSIGN: if the right hand side
c2c3fd24 51 (RHS) of the definition cannot be statically analyzed, the answer
48e1416a 52 of the analyzer is: "don't know".
c2c3fd24 53 Otherwise, for all the variables that are not yet analyzed in the
54 RHS, try to determine their evolution, and finally try to
55 evaluate the operation of the RHS that gives the evolution
56 function of the analyzed variable.
57
58 - When the definition is a condition-phi-node: determine the
59 evolution function for all the branches of the phi node, and
60 finally merge these evolutions (see chrec_merge).
61
62 - When the definition is a loop-phi-node: determine its initial
63 condition, that is the SSA edge defined in an outer loop, and
64 keep it symbolic. Then determine the SSA edges that are defined
65 in the body of the loop. Follow the inner edges until ending on
66 another loop-phi-node of the same analyzed loop. If the reached
67 loop-phi-node is not the starting loop-phi-node, then we keep
68 this definition under a symbolic form. If the reached
69 loop-phi-node is the same as the starting one, then we compute a
70 symbolic stride on the return path. The result is then the
71 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
72
73 Examples:
48e1416a 74
c2c3fd24 75 Example 1: Illustration of the basic algorithm.
48e1416a 76
c2c3fd24 77 | a = 3
78 | loop_1
79 | b = phi (a, c)
80 | c = b + 1
81 | if (c > 10) exit_loop
82 | endloop
48e1416a 83
c2c3fd24 84 Suppose that we want to know the number of iterations of the
85 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
86 ask the scalar evolution analyzer two questions: what's the
87 scalar evolution (scev) of "c", and what's the scev of "10". For
88 "10" the answer is "10" since it is a scalar constant. For the
89 scalar variable "c", it follows the SSA edge to its definition,
90 "c = b + 1", and then asks again what's the scev of "b".
91 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
92 c)", where the initial condition is "a", and the inner loop edge
93 is "c". The initial condition is kept under a symbolic form (it
94 may be the case that the copy constant propagation has done its
95 work and we end with the constant "3" as one of the edges of the
96 loop-phi-node). The update edge is followed to the end of the
97 loop, and until reaching again the starting loop-phi-node: b -> c
98 -> b. At this point we have drawn a path from "b" to "b" from
99 which we compute the stride in the loop: in this example it is
100 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
101 that the scev for "b" is known, it is possible to compute the
102 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
103 determine the number of iterations in the loop_1, we have to
afd80ffb 104 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
c2c3fd24 105 more analysis the scev {4, +, 1}_1, or in other words, this is
106 the function "f (x) = x + 4", where x is the iteration count of
107 the loop_1. Now we have to solve the inequality "x + 4 > 10",
108 and take the smallest iteration number for which the loop is
109 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
110 there are 8 iterations. In terms of loop normalization, we have
111 created a variable that is implicitly defined, "x" or just "_1",
112 and all the other analyzed scalars of the loop are defined in
113 function of this variable:
48e1416a 114
c2c3fd24 115 a -> 3
116 b -> {3, +, 1}_1
117 c -> {4, +, 1}_1
48e1416a 118
119 or in terms of a C program:
120
c2c3fd24 121 | a = 3
122 | for (x = 0; x <= 7; x++)
123 | {
124 | b = x + 3
125 | c = x + 4
126 | }
48e1416a 127
afd80ffb 128 Example 2a: Illustration of the algorithm on nested loops.
48e1416a 129
c2c3fd24 130 | loop_1
131 | a = phi (1, b)
132 | c = a + 2
133 | loop_2 10 times
134 | b = phi (c, d)
135 | d = b + 3
136 | endloop
137 | endloop
48e1416a 138
c2c3fd24 139 For analyzing the scalar evolution of "a", the algorithm follows
140 the SSA edge into the loop's body: "a -> b". "b" is an inner
48e1416a 141 loop-phi-node, and its analysis as in Example 1, gives:
142
c2c3fd24 143 b -> {c, +, 3}_2
144 d -> {c + 3, +, 3}_2
48e1416a 145
c2c3fd24 146 Following the SSA edge for the initial condition, we end on "c = a
147 + 2", and then on the starting loop-phi-node "a". From this point,
148 the loop stride is computed: back on "c = a + 2" we get a "+2" in
149 the loop_1, then on the loop-phi-node "b" we compute the overall
150 effect of the inner loop that is "b = c + 30", and we get a "+30"
151 in the loop_1. That means that the overall stride in loop_1 is
48e1416a 152 equal to "+32", and the result is:
153
c2c3fd24 154 a -> {1, +, 32}_1
155 c -> {3, +, 32}_1
afd80ffb 156
157 Example 2b: Multivariate chains of recurrences.
158
159 | loop_1
160 | k = phi (0, k + 1)
161 | loop_2 4 times
162 | j = phi (0, j + 1)
163 | loop_3 4 times
164 | i = phi (0, i + 1)
165 | A[j + k] = ...
166 | endloop
167 | endloop
168 | endloop
169
170 Analyzing the access function of array A with
171 instantiate_parameters (loop_1, "j + k"), we obtain the
172 instantiation and the analysis of the scalar variables "j" and "k"
173 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
174 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
175 {0, +, 1}_1. To obtain the evolution function in loop_3 and
176 instantiate the scalar variables up to loop_1, one has to use:
089aa668 177 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
178 The result of this call is {{0, +, 1}_1, +, 1}_2.
afd80ffb 179
c2c3fd24 180 Example 3: Higher degree polynomials.
48e1416a 181
c2c3fd24 182 | loop_1
183 | a = phi (2, b)
184 | c = phi (5, d)
185 | b = a + 1
186 | d = c + a
187 | endloop
48e1416a 188
c2c3fd24 189 a -> {2, +, 1}_1
190 b -> {3, +, 1}_1
191 c -> {5, +, a}_1
192 d -> {5 + a, +, a}_1
48e1416a 193
afd80ffb 194 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
195 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
48e1416a 196
c2c3fd24 197 Example 4: Lucas, Fibonacci, or mixers in general.
48e1416a 198
c2c3fd24 199 | loop_1
200 | a = phi (1, b)
201 | c = phi (3, d)
202 | b = c
203 | d = c + a
204 | endloop
48e1416a 205
c2c3fd24 206 a -> (1, c)_1
207 c -> {3, +, a}_1
48e1416a 208
c2c3fd24 209 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
210 following semantics: during the first iteration of the loop_1, the
211 variable contains the value 1, and then it contains the value "c".
212 Note that this syntax is close to the syntax of the loop-phi-node:
213 "a -> (1, c)_1" vs. "a = phi (1, c)".
48e1416a 214
c2c3fd24 215 The symbolic chrec representation contains all the semantics of the
216 original code. What is more difficult is to use this information.
48e1416a 217
c2c3fd24 218 Example 5: Flip-flops, or exchangers.
48e1416a 219
c2c3fd24 220 | loop_1
221 | a = phi (1, b)
222 | c = phi (3, d)
223 | b = c
224 | d = a
225 | endloop
48e1416a 226
c2c3fd24 227 a -> (1, c)_1
228 c -> (3, a)_1
48e1416a 229
c2c3fd24 230 Based on these symbolic chrecs, it is possible to refine this
48e1416a 231 information into the more precise PERIODIC_CHRECs:
232
c2c3fd24 233 a -> |1, 3|_1
234 c -> |3, 1|_1
48e1416a 235
c2c3fd24 236 This transformation is not yet implemented.
48e1416a 237
c2c3fd24 238 Further readings:
48e1416a 239
c2c3fd24 240 You can find a more detailed description of the algorithm in:
241 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
243 this is a preliminary report and some of the details of the
244 algorithm have changed. I'm working on a research report that
245 updates the description of the algorithms to reflect the design
246 choices used in this implementation.
48e1416a 247
c2c3fd24 248 A set of slides show a high level overview of the algorithm and run
249 an example through the scalar evolution analyzer:
250 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
251
252 The slides that I have presented at the GCC Summit'04 are available
253 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
254*/
255
b9d73ea6 256#include "config.h"
257#include "system.h"
258#include "coretypes.h"
0d9585ca 259#include "tree.h"
d9dd21a8 260#include "hash-table.h"
ce084dfc 261#include "gimple-pretty-print.h"
073c1fd5 262#include "gimple.h"
263#include "gimple-ssa.h"
264#include "tree-cfg.h"
265#include "tree-phinodes.h"
266#include "tree-ssanames.h"
267#include "tree-ssa-loop.h"
69ee5dbb 268#include "tree-ssa.h"
b9d73ea6 269#include "cfgloop.h"
270#include "tree-chrec.h"
271#include "tree-scalar-evolution.h"
b9ed1410 272#include "dumpfile.h"
d1de0ec2 273#include "params.h"
0f4161b1 274#include "tree-ssa-propagate.h"
c2c3fd24 275
276static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
62bc06ea 277static tree analyze_scalar_evolution_for_address_of (struct loop *loop,
278 tree var);
c2c3fd24 279
cbb69ef1 280/* The cached information about an SSA name with version NAME_VERSION,
281 claiming that below basic block with index INSTANTIATED_BELOW, the
282 value of the SSA name can be expressed as CHREC. */
c2c3fd24 283
fb1e4f4a 284struct GTY(()) scev_info_str {
cbb69ef1 285 unsigned int name_version;
286 int instantiated_below;
c2c3fd24 287 tree chrec;
288};
289
290/* Counters for the scev database. */
291static unsigned nb_set_scev = 0;
292static unsigned nb_get_scev = 0;
293
294/* The following trees are unique elements. Thus the comparison of
295 another element to these elements should be done on the pointer to
296 these trees, and not on their value. */
297
298/* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
299tree chrec_not_analyzed_yet;
300
301/* Reserved to the cases where the analyzer has detected an
302 undecidable property at compile time. */
303tree chrec_dont_know;
304
305/* When the analyzer has detected that a property will never
306 happen, then it qualifies it with chrec_known. */
307tree chrec_known;
308
ccae4f9f 309static GTY ((param_is (struct scev_info_str))) htab_t scalar_evolution_info;
c2c3fd24 310
311\f
089aa668 312/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
c2c3fd24 313
314static inline struct scev_info_str *
089aa668 315new_scev_info_str (basic_block instantiated_below, tree var)
c2c3fd24 316{
317 struct scev_info_str *res;
48e1416a 318
ba72912a 319 res = ggc_alloc_scev_info_str ();
cbb69ef1 320 res->name_version = SSA_NAME_VERSION (var);
c2c3fd24 321 res->chrec = chrec_not_analyzed_yet;
cbb69ef1 322 res->instantiated_below = instantiated_below->index;
089aa668 323
c2c3fd24 324 return res;
325}
326
327/* Computes a hash function for database element ELT. */
328
d9dd21a8 329static inline hashval_t
cbb69ef1 330hash_scev_info (const void *elt_)
c2c3fd24 331{
cbb69ef1 332 const struct scev_info_str *elt = (const struct scev_info_str *) elt_;
333 return elt->name_version ^ elt->instantiated_below;
c2c3fd24 334}
335
336/* Compares database elements E1 and E2. */
337
d9dd21a8 338static inline int
c2c3fd24 339eq_scev_info (const void *e1, const void *e2)
340{
a9c6c0e3 341 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
342 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
c2c3fd24 343
cbb69ef1 344 return (elt1->name_version == elt2->name_version
089aa668 345 && elt1->instantiated_below == elt2->instantiated_below);
c2c3fd24 346}
347
348/* Deletes database element E. */
349
350static void
351del_scev_info (void *e)
352{
ccae4f9f 353 ggc_free (e);
c2c3fd24 354}
355
d9dd21a8 356
089aa668 357/* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
358 A first query on VAR returns chrec_not_analyzed_yet. */
c2c3fd24 359
360static tree *
089aa668 361find_var_scev_info (basic_block instantiated_below, tree var)
c2c3fd24 362{
363 struct scev_info_str *res;
364 struct scev_info_str tmp;
365 PTR *slot;
366
cbb69ef1 367 tmp.name_version = SSA_NAME_VERSION (var);
368 tmp.instantiated_below = instantiated_below->index;
c2c3fd24 369 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
370
371 if (!*slot)
089aa668 372 *slot = new_scev_info_str (instantiated_below, var);
a9c6c0e3 373 res = (struct scev_info_str *) *slot;
c2c3fd24 374
375 return &res->chrec;
376}
377
c2c3fd24 378/* Return true when CHREC contains symbolic names defined in
379 LOOP_NB. */
380
48e1416a 381bool
7ecb5bb2 382chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
c2c3fd24 383{
c2f47e15 384 int i, n;
385
c2c3fd24 386 if (chrec == NULL_TREE)
387 return false;
388
71d9af81 389 if (is_gimple_min_invariant (chrec))
c2c3fd24 390 return false;
391
c2c3fd24 392 if (TREE_CODE (chrec) == SSA_NAME)
393 {
a05095f9 394 gimple def;
395 loop_p def_loop, loop;
396
397 if (SSA_NAME_IS_DEFAULT_DEF (chrec))
398 return false;
399
400 def = SSA_NAME_DEF_STMT (chrec);
401 def_loop = loop_containing_stmt (def);
41f75a99 402 loop = get_loop (cfun, loop_nb);
c2c3fd24 403
404 if (def_loop == NULL)
405 return false;
406
407 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
408 return true;
409
410 return false;
411 }
412
c2f47e15 413 n = TREE_OPERAND_LENGTH (chrec);
414 for (i = 0; i < n; i++)
48e1416a 415 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
c2f47e15 416 loop_nb))
417 return true;
418 return false;
c2c3fd24 419}
420
421/* Return true when PHI is a loop-phi-node. */
422
423static bool
75a70cf9 424loop_phi_node_p (gimple phi)
c2c3fd24 425{
426 /* The implementation of this function is based on the following
427 property: "all the loop-phi-nodes of a loop are contained in the
428 loop's header basic block". */
429
75a70cf9 430 return loop_containing_stmt (phi)->header == gimple_bb (phi);
c2c3fd24 431}
432
433/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
434 In general, in the case of multivariate evolutions we want to get
435 the evolution in different loops. LOOP specifies the level for
436 which to get the evolution.
48e1416a 437
c2c3fd24 438 Example:
48e1416a 439
c2c3fd24 440 | for (j = 0; j < 100; j++)
441 | {
442 | for (k = 0; k < 100; k++)
443 | {
48e1416a 444 | i = k + j; - Here the value of i is a function of j, k.
c2c3fd24 445 | }
48e1416a 446 | ... = i - Here the value of i is a function of j.
c2c3fd24 447 | }
48e1416a 448 | ... = i - Here the value of i is a scalar.
449
450 Example:
451
c2c3fd24 452 | i_0 = ...
453 | loop_1 10 times
454 | i_1 = phi (i_0, i_2)
455 | i_2 = i_1 + 2
456 | endloop
48e1416a 457
c2c3fd24 458 This loop has the same effect as:
459 LOOP_1 has the same effect as:
48e1416a 460
c2c3fd24 461 | i_1 = i_0 + 20
48e1416a 462
463 The overall effect of the loop, "i_0 + 20" in the previous example,
464 is obtained by passing in the parameters: LOOP = 1,
c2c3fd24 465 EVOLUTION_FN = {i_0, +, 2}_1.
466*/
48e1416a 467
524bc988 468tree
c2c3fd24 469compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
470{
471 bool val = false;
472
473 if (evolution_fn == chrec_dont_know)
474 return chrec_dont_know;
475
476 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
477 {
3bbbcdff 478 struct loop *inner_loop = get_chrec_loop (evolution_fn);
479
480 if (inner_loop == loop
481 || flow_loop_nested_p (loop, inner_loop))
c2c3fd24 482 {
0c3c2e56 483 tree nb_iter = number_of_latch_executions (inner_loop);
c2c3fd24 484
485 if (nb_iter == chrec_dont_know)
486 return chrec_dont_know;
487 else
488 {
489 tree res;
490
c2c3fd24 491 /* evolution_fn is the evolution function in LOOP. Get
492 its value in the nb_iter-th iteration. */
493 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
524bc988 494
495 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
496 res = instantiate_parameters (loop, res);
497
fbf0afd1 498 /* Continue the computation until ending on a parent of LOOP. */
c2c3fd24 499 return compute_overall_effect_of_inner_loop (loop, res);
500 }
501 }
502 else
503 return evolution_fn;
504 }
48e1416a 505
c2c3fd24 506 /* If the evolution function is an invariant, there is nothing to do. */
507 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
508 return evolution_fn;
48e1416a 509
c2c3fd24 510 else
511 return chrec_dont_know;
512}
513
c2c3fd24 514/* Associate CHREC to SCALAR. */
515
516static void
089aa668 517set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
c2c3fd24 518{
519 tree *scalar_info;
48e1416a 520
c2c3fd24 521 if (TREE_CODE (scalar) != SSA_NAME)
522 return;
523
089aa668 524 scalar_info = find_var_scev_info (instantiated_below, scalar);
48e1416a 525
c2c3fd24 526 if (dump_file)
527 {
487a9bc1 528 if (dump_flags & TDF_SCEV)
c2c3fd24 529 {
530 fprintf (dump_file, "(set_scalar_evolution \n");
089aa668 531 fprintf (dump_file, " instantiated_below = %d \n",
532 instantiated_below->index);
c2c3fd24 533 fprintf (dump_file, " (scalar = ");
534 print_generic_expr (dump_file, scalar, 0);
535 fprintf (dump_file, ")\n (scalar_evolution = ");
536 print_generic_expr (dump_file, chrec, 0);
537 fprintf (dump_file, "))\n");
538 }
539 if (dump_flags & TDF_STATS)
540 nb_set_scev++;
541 }
48e1416a 542
c2c3fd24 543 *scalar_info = chrec;
544}
545
089aa668 546/* Retrieve the chrec associated to SCALAR instantiated below
547 INSTANTIATED_BELOW block. */
c2c3fd24 548
549static tree
089aa668 550get_scalar_evolution (basic_block instantiated_below, tree scalar)
c2c3fd24 551{
552 tree res;
48e1416a 553
c2c3fd24 554 if (dump_file)
555 {
487a9bc1 556 if (dump_flags & TDF_SCEV)
c2c3fd24 557 {
558 fprintf (dump_file, "(get_scalar_evolution \n");
559 fprintf (dump_file, " (scalar = ");
560 print_generic_expr (dump_file, scalar, 0);
561 fprintf (dump_file, ")\n");
562 }
563 if (dump_flags & TDF_STATS)
564 nb_get_scev++;
565 }
48e1416a 566
c2c3fd24 567 switch (TREE_CODE (scalar))
568 {
569 case SSA_NAME:
089aa668 570 res = *find_var_scev_info (instantiated_below, scalar);
c2c3fd24 571 break;
572
573 case REAL_CST:
06f0b99c 574 case FIXED_CST:
c2c3fd24 575 case INTEGER_CST:
576 res = scalar;
577 break;
578
579 default:
580 res = chrec_not_analyzed_yet;
581 break;
582 }
48e1416a 583
487a9bc1 584 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 585 {
586 fprintf (dump_file, " (scalar_evolution = ");
587 print_generic_expr (dump_file, res, 0);
588 fprintf (dump_file, "))\n");
589 }
48e1416a 590
c2c3fd24 591 return res;
592}
593
594/* Helper function for add_to_evolution. Returns the evolution
595 function for an assignment of the form "a = b + c", where "a" and
596 "b" are on the strongly connected component. CHREC_BEFORE is the
597 information that we already have collected up to this point.
48e1416a 598 TO_ADD is the evolution of "c".
599
c2c3fd24 600 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
601 evolution the expression TO_ADD, otherwise construct an evolution
602 part for this loop. */
603
604static tree
f84a688a 605add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
75a70cf9 606 gimple at_stmt)
c2c3fd24 607{
f84a688a 608 tree type, left, right;
41f75a99 609 struct loop *loop = get_loop (cfun, loop_nb), *chloop;
f84a688a 610
c2c3fd24 611 switch (TREE_CODE (chrec_before))
612 {
613 case POLYNOMIAL_CHREC:
3bbbcdff 614 chloop = get_chrec_loop (chrec_before);
615 if (chloop == loop
616 || flow_loop_nested_p (chloop, loop))
c2c3fd24 617 {
618 unsigned var;
f84a688a 619
620 type = chrec_type (chrec_before);
48e1416a 621
c2c3fd24 622 /* When there is no evolution part in this loop, build it. */
3bbbcdff 623 if (chloop != loop)
c2c3fd24 624 {
625 var = loop_nb;
626 left = chrec_before;
eb105b17 627 right = SCALAR_FLOAT_TYPE_P (type)
628 ? build_real (type, dconst0)
629 : build_int_cst (type, 0);
c2c3fd24 630 }
631 else
632 {
633 var = CHREC_VARIABLE (chrec_before);
634 left = CHREC_LEFT (chrec_before);
635 right = CHREC_RIGHT (chrec_before);
636 }
637
f84a688a 638 to_add = chrec_convert (type, to_add, at_stmt);
0de36bdb 639 right = chrec_convert_rhs (type, right, at_stmt);
640 right = chrec_fold_plus (chrec_type (right), right, to_add);
f84a688a 641 return build_polynomial_chrec (var, left, right);
c2c3fd24 642 }
643 else
f84a688a 644 {
3bbbcdff 645 gcc_assert (flow_loop_nested_p (loop, chloop));
646
f84a688a 647 /* Search the evolution in LOOP_NB. */
648 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
649 to_add, at_stmt);
650 right = CHREC_RIGHT (chrec_before);
0de36bdb 651 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
f84a688a 652 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
653 left, right);
654 }
48e1416a 655
c2c3fd24 656 default:
657 /* These nodes do not depend on a loop. */
658 if (chrec_before == chrec_dont_know)
659 return chrec_dont_know;
f84a688a 660
661 left = chrec_before;
0de36bdb 662 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
f84a688a 663 return build_polynomial_chrec (loop_nb, left, right);
c2c3fd24 664 }
665}
666
667/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
48e1416a 668 of LOOP_NB.
669
c2c3fd24 670 Description (provided for completeness, for those who read code in
671 a plane, and for my poor 62 bytes brain that would have forgotten
672 all this in the next two or three months):
48e1416a 673
c2c3fd24 674 The algorithm of translation of programs from the SSA representation
675 into the chrecs syntax is based on a pattern matching. After having
676 reconstructed the overall tree expression for a loop, there are only
677 two cases that can arise:
48e1416a 678
c2c3fd24 679 1. a = loop-phi (init, a + expr)
680 2. a = loop-phi (init, expr)
48e1416a 681
c2c3fd24 682 where EXPR is either a scalar constant with respect to the analyzed
683 loop (this is a degree 0 polynomial), or an expression containing
684 other loop-phi definitions (these are higher degree polynomials).
48e1416a 685
c2c3fd24 686 Examples:
48e1416a 687
688 1.
c2c3fd24 689 | init = ...
690 | loop_1
691 | a = phi (init, a + 5)
692 | endloop
48e1416a 693
694 2.
c2c3fd24 695 | inita = ...
696 | initb = ...
697 | loop_1
698 | a = phi (inita, 2 * b + 3)
699 | b = phi (initb, b + 1)
700 | endloop
48e1416a 701
702 For the first case, the semantics of the SSA representation is:
703
c2c3fd24 704 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
48e1416a 705
c2c3fd24 706 that is, there is a loop index "x" that determines the scalar value
707 of the variable during the loop execution. During the first
708 iteration, the value is that of the initial condition INIT, while
709 during the subsequent iterations, it is the sum of the initial
710 condition with the sum of all the values of EXPR from the initial
48e1416a 711 iteration to the before last considered iteration.
712
c2c3fd24 713 For the second case, the semantics of the SSA program is:
48e1416a 714
c2c3fd24 715 | a (x) = init, if x = 0;
716 | expr (x - 1), otherwise.
48e1416a 717
c2c3fd24 718 The second case corresponds to the PEELED_CHREC, whose syntax is
48e1416a 719 close to the syntax of a loop-phi-node:
720
c2c3fd24 721 | phi (init, expr) vs. (init, expr)_x
48e1416a 722
c2c3fd24 723 The proof of the translation algorithm for the first case is a
48e1416a 724 proof by structural induction based on the degree of EXPR.
725
c2c3fd24 726 Degree 0:
727 When EXPR is a constant with respect to the analyzed loop, or in
728 other words when EXPR is a polynomial of degree 0, the evolution of
729 the variable A in the loop is an affine function with an initial
730 condition INIT, and a step EXPR. In order to show this, we start
731 from the semantics of the SSA representation:
48e1416a 732
c2c3fd24 733 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
48e1416a 734
c2c3fd24 735 and since "expr (j)" is a constant with respect to "j",
48e1416a 736
737 f (x) = init + x * expr
738
c2c3fd24 739 Finally, based on the semantics of the pure sum chrecs, by
740 identification we get the corresponding chrecs syntax:
48e1416a 741
742 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
c2c3fd24 743 f (x) -> {init, +, expr}_x
48e1416a 744
c2c3fd24 745 Higher degree:
746 Suppose that EXPR is a polynomial of degree N with respect to the
747 analyzed loop_x for which we have already determined that it is
748 written under the chrecs syntax:
48e1416a 749
c2c3fd24 750 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
48e1416a 751
c2c3fd24 752 We start from the semantics of the SSA program:
48e1416a 753
c2c3fd24 754 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
755 |
48e1416a 756 | f (x) = init + \sum_{j = 0}^{x - 1}
c2c3fd24 757 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
758 |
48e1416a 759 | f (x) = init + \sum_{j = 0}^{x - 1}
760 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
c2c3fd24 761 |
48e1416a 762 | f (x) = init + \sum_{k = 0}^{n - 1}
763 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
c2c3fd24 764 |
48e1416a 765 | f (x) = init + \sum_{k = 0}^{n - 1}
766 | (b_k * \binom{x}{k + 1})
c2c3fd24 767 |
48e1416a 768 | f (x) = init + b_0 * \binom{x}{1} + ...
769 | + b_{n-1} * \binom{x}{n}
c2c3fd24 770 |
48e1416a 771 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
772 | + b_{n-1} * \binom{x}{n}
c2c3fd24 773 |
48e1416a 774
c2c3fd24 775 And finally from the definition of the chrecs syntax, we identify:
48e1416a 776 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
777
c2c3fd24 778 This shows the mechanism that stands behind the add_to_evolution
779 function. An important point is that the use of symbolic
780 parameters avoids the need of an analysis schedule.
48e1416a 781
c2c3fd24 782 Example:
48e1416a 783
c2c3fd24 784 | inita = ...
785 | initb = ...
48e1416a 786 | loop_1
c2c3fd24 787 | a = phi (inita, a + 2 + b)
788 | b = phi (initb, b + 1)
789 | endloop
48e1416a 790
c2c3fd24 791 When analyzing "a", the algorithm keeps "b" symbolically:
48e1416a 792
c2c3fd24 793 | a -> {inita, +, 2 + b}_1
48e1416a 794
c2c3fd24 795 Then, after instantiation, the analyzer ends on the evolution:
48e1416a 796
c2c3fd24 797 | a -> {inita, +, 2 + initb, +, 1}_1
798
799*/
800
48e1416a 801static tree
f84a688a 802add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
75a70cf9 803 tree to_add, gimple at_stmt)
c2c3fd24 804{
805 tree type = chrec_type (to_add);
806 tree res = NULL_TREE;
48e1416a 807
c2c3fd24 808 if (to_add == NULL_TREE)
809 return chrec_before;
48e1416a 810
c2c3fd24 811 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
812 instantiated at this point. */
813 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
814 /* This should not happen. */
815 return chrec_dont_know;
48e1416a 816
487a9bc1 817 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 818 {
819 fprintf (dump_file, "(add_to_evolution \n");
820 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
821 fprintf (dump_file, " (chrec_before = ");
822 print_generic_expr (dump_file, chrec_before, 0);
823 fprintf (dump_file, ")\n (to_add = ");
824 print_generic_expr (dump_file, to_add, 0);
825 fprintf (dump_file, ")\n");
826 }
827
828 if (code == MINUS_EXPR)
4a1dfa2c 829 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
830 ? build_real (type, dconstm1)
831 : build_int_cst_type (type, -1));
c2c3fd24 832
f84a688a 833 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
c2c3fd24 834
487a9bc1 835 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 836 {
837 fprintf (dump_file, " (res = ");
838 print_generic_expr (dump_file, res, 0);
839 fprintf (dump_file, "))\n");
840 }
841
842 return res;
843}
844
c2c3fd24 845\f
846
847/* This section selects the loops that will be good candidates for the
848 scalar evolution analysis. For the moment, greedily select all the
849 loop nests we could analyze. */
850
c2c3fd24 851/* For a loop with a single exit edge, return the COND_EXPR that
852 guards the exit edge. If the expression is too difficult to
853 analyze, then give up. */
854
48e1416a 855gimple
1f1872fd 856get_loop_exit_condition (const struct loop *loop)
c2c3fd24 857{
75a70cf9 858 gimple res = NULL;
d9e7e1a2 859 edge exit_edge = single_exit (loop);
48e1416a 860
487a9bc1 861 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 862 fprintf (dump_file, "(get_loop_exit_condition \n ");
48e1416a 863
bb445479 864 if (exit_edge)
c2c3fd24 865 {
75a70cf9 866 gimple stmt;
48e1416a 867
75a70cf9 868 stmt = last_stmt (exit_edge->src);
869 if (gimple_code (stmt) == GIMPLE_COND)
870 res = stmt;
c2c3fd24 871 }
48e1416a 872
487a9bc1 873 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 874 {
75a70cf9 875 print_gimple_stmt (dump_file, res, 0, 0);
c2c3fd24 876 fprintf (dump_file, ")\n");
877 }
48e1416a 878
c2c3fd24 879 return res;
880}
881
c2c3fd24 882\f
883/* Depth first search algorithm. */
884
d1de0ec2 885typedef enum t_bool {
886 t_false,
887 t_true,
888 t_dont_know
889} t_bool;
890
891
75a70cf9 892static t_bool follow_ssa_edge (struct loop *loop, gimple, gimple, tree *, int);
c2c3fd24 893
75a70cf9 894/* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
c2c3fd24 895 Return true if the strongly connected component has been found. */
896
d1de0ec2 897static t_bool
75a70cf9 898follow_ssa_edge_binary (struct loop *loop, gimple at_stmt,
899 tree type, tree rhs0, enum tree_code code, tree rhs1,
900 gimple halting_phi, tree *evolution_of_loop, int limit)
c2c3fd24 901{
d1de0ec2 902 t_bool res = t_false;
8c9d86fd 903 tree evol;
75a70cf9 904
0de36bdb 905 switch (code)
c2c3fd24 906 {
0de36bdb 907 case POINTER_PLUS_EXPR:
c2c3fd24 908 case PLUS_EXPR:
c2c3fd24 909 if (TREE_CODE (rhs0) == SSA_NAME)
910 {
911 if (TREE_CODE (rhs1) == SSA_NAME)
912 {
48e1416a 913 /* Match an assignment under the form:
c2c3fd24 914 "a = b + c". */
48e1416a 915
de39d8ad 916 /* We want only assignments of form "name + name" contribute to
917 LIMIT, as the other cases do not necessarily contribute to
918 the complexity of the expression. */
919 limit++;
920
8c9d86fd 921 evol = *evolution_of_loop;
48e1416a 922 res = follow_ssa_edge
75a70cf9 923 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
48e1416a 924
d1de0ec2 925 if (res == t_true)
48e1416a 926 *evolution_of_loop = add_to_evolution
927 (loop->num,
928 chrec_convert (type, evol, at_stmt),
0de36bdb 929 code, rhs1, at_stmt);
48e1416a 930
d1de0ec2 931 else if (res == t_false)
c2c3fd24 932 {
48e1416a 933 res = follow_ssa_edge
934 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
d1de0ec2 935 evolution_of_loop, limit);
48e1416a 936
d1de0ec2 937 if (res == t_true)
48e1416a 938 *evolution_of_loop = add_to_evolution
939 (loop->num,
940 chrec_convert (type, *evolution_of_loop, at_stmt),
0de36bdb 941 code, rhs0, at_stmt);
d1de0ec2 942
943 else if (res == t_dont_know)
944 *evolution_of_loop = chrec_dont_know;
c2c3fd24 945 }
d1de0ec2 946
947 else if (res == t_dont_know)
948 *evolution_of_loop = chrec_dont_know;
c2c3fd24 949 }
48e1416a 950
c2c3fd24 951 else
952 {
48e1416a 953 /* Match an assignment under the form:
c2c3fd24 954 "a = b + ...". */
48e1416a 955 res = follow_ssa_edge
956 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
d1de0ec2 957 evolution_of_loop, limit);
958 if (res == t_true)
48e1416a 959 *evolution_of_loop = add_to_evolution
75a70cf9 960 (loop->num, chrec_convert (type, *evolution_of_loop,
b3786ab3 961 at_stmt),
0de36bdb 962 code, rhs1, at_stmt);
d1de0ec2 963
964 else if (res == t_dont_know)
965 *evolution_of_loop = chrec_dont_know;
c2c3fd24 966 }
967 }
48e1416a 968
c2c3fd24 969 else if (TREE_CODE (rhs1) == SSA_NAME)
970 {
48e1416a 971 /* Match an assignment under the form:
c2c3fd24 972 "a = ... + c". */
48e1416a 973 res = follow_ssa_edge
974 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
d1de0ec2 975 evolution_of_loop, limit);
976 if (res == t_true)
48e1416a 977 *evolution_of_loop = add_to_evolution
75a70cf9 978 (loop->num, chrec_convert (type, *evolution_of_loop,
b3786ab3 979 at_stmt),
0de36bdb 980 code, rhs0, at_stmt);
d1de0ec2 981
982 else if (res == t_dont_know)
983 *evolution_of_loop = chrec_dont_know;
c2c3fd24 984 }
985
986 else
48e1416a 987 /* Otherwise, match an assignment under the form:
c2c3fd24 988 "a = ... + ...". */
989 /* And there is nothing to do. */
d1de0ec2 990 res = t_false;
c2c3fd24 991 break;
48e1416a 992
c2c3fd24 993 case MINUS_EXPR:
994 /* This case is under the form "opnd0 = rhs0 - rhs1". */
c2c3fd24 995 if (TREE_CODE (rhs0) == SSA_NAME)
c2c3fd24 996 {
48e1416a 997 /* Match an assignment under the form:
11541659 998 "a = b - ...". */
de39d8ad 999
1000 /* We want only assignments of form "name - name" contribute to
1001 LIMIT, as the other cases do not necessarily contribute to
1002 the complexity of the expression. */
1003 if (TREE_CODE (rhs1) == SSA_NAME)
1004 limit++;
1005
48e1416a 1006 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
d1de0ec2 1007 evolution_of_loop, limit);
1008 if (res == t_true)
48e1416a 1009 *evolution_of_loop = add_to_evolution
75a70cf9 1010 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
f84a688a 1011 MINUS_EXPR, rhs1, at_stmt);
d1de0ec2 1012
1013 else if (res == t_dont_know)
1014 *evolution_of_loop = chrec_dont_know;
c2c3fd24 1015 }
c2c3fd24 1016 else
48e1416a 1017 /* Otherwise, match an assignment under the form:
c2c3fd24 1018 "a = ... - ...". */
1019 /* And there is nothing to do. */
d1de0ec2 1020 res = t_false;
c2c3fd24 1021 break;
75a70cf9 1022
1023 default:
1024 res = t_false;
1025 }
1026
1027 return res;
1028}
48e1416a 1029
75a70cf9 1030/* Follow the ssa edge into the expression EXPR.
1031 Return true if the strongly connected component has been found. */
1032
1033static t_bool
48e1416a 1034follow_ssa_edge_expr (struct loop *loop, gimple at_stmt, tree expr,
75a70cf9 1035 gimple halting_phi, tree *evolution_of_loop, int limit)
1036{
191bdb6e 1037 enum tree_code code = TREE_CODE (expr);
1038 tree type = TREE_TYPE (expr), rhs0, rhs1;
1039 t_bool res;
1040
75a70cf9 1041 /* The EXPR is one of the following cases:
48e1416a 1042 - an SSA_NAME,
75a70cf9 1043 - an INTEGER_CST,
48e1416a 1044 - a PLUS_EXPR,
1045 - a POINTER_PLUS_EXPR,
75a70cf9 1046 - a MINUS_EXPR,
1047 - an ASSERT_EXPR,
1048 - other cases are not yet handled. */
191bdb6e 1049
75a70cf9 1050 switch (code)
1051 {
191bdb6e 1052 CASE_CONVERT:
75a70cf9 1053 /* This assignment is under the form "a_1 = (cast) rhs. */
1054 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1055 halting_phi, evolution_of_loop, limit);
1056 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1057 break;
1058
1059 case INTEGER_CST:
1060 /* This assignment is under the form "a_1 = 7". */
1061 res = t_false;
1062 break;
191bdb6e 1063
75a70cf9 1064 case SSA_NAME:
1065 /* This assignment is under the form: "a_1 = b_2". */
48e1416a 1066 res = follow_ssa_edge
75a70cf9 1067 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1068 break;
191bdb6e 1069
75a70cf9 1070 case POINTER_PLUS_EXPR:
1071 case PLUS_EXPR:
1072 case MINUS_EXPR:
1073 /* This case is under the form "rhs0 +- rhs1". */
1074 rhs0 = TREE_OPERAND (expr, 0);
1075 rhs1 = TREE_OPERAND (expr, 1);
191bdb6e 1076 type = TREE_TYPE (rhs0);
1077 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1078 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1079 res = follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1080 halting_phi, evolution_of_loop, limit);
1081 break;
75a70cf9 1082
182cf5a9 1083 case ADDR_EXPR:
1084 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1085 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
1086 {
1087 expr = TREE_OPERAND (expr, 0);
1088 rhs0 = TREE_OPERAND (expr, 0);
1089 rhs1 = TREE_OPERAND (expr, 1);
1090 type = TREE_TYPE (rhs0);
1091 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1092 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1093 res = follow_ssa_edge_binary (loop, at_stmt, type,
1094 rhs0, POINTER_PLUS_EXPR, rhs1,
1095 halting_phi, evolution_of_loop, limit);
1096 }
1097 else
1098 res = t_false;
1099 break;
1100
88dbf20f 1101 case ASSERT_EXPR:
191bdb6e 1102 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1103 It must be handled as a copy assignment of the form a_1 = a_2. */
1104 rhs0 = ASSERT_EXPR_VAR (expr);
1105 if (TREE_CODE (rhs0) == SSA_NAME)
1106 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0),
1107 halting_phi, evolution_of_loop, limit);
1108 else
1109 res = t_false;
1110 break;
88dbf20f 1111
c2c3fd24 1112 default:
d1de0ec2 1113 res = t_false;
c2c3fd24 1114 break;
1115 }
191bdb6e 1116
c2c3fd24 1117 return res;
1118}
1119
75a70cf9 1120/* Follow the ssa edge into the right hand side of an assignment STMT.
1121 Return true if the strongly connected component has been found. */
1122
1123static t_bool
1124follow_ssa_edge_in_rhs (struct loop *loop, gimple stmt,
1125 gimple halting_phi, tree *evolution_of_loop, int limit)
1126{
75a70cf9 1127 enum tree_code code = gimple_assign_rhs_code (stmt);
191bdb6e 1128 tree type = gimple_expr_type (stmt), rhs1, rhs2;
1129 t_bool res;
75a70cf9 1130
191bdb6e 1131 switch (code)
75a70cf9 1132 {
191bdb6e 1133 CASE_CONVERT:
1134 /* This assignment is under the form "a_1 = (cast) rhs. */
1135 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1136 halting_phi, evolution_of_loop, limit);
1137 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1138 break;
1139
1140 case POINTER_PLUS_EXPR:
1141 case PLUS_EXPR:
1142 case MINUS_EXPR:
1143 rhs1 = gimple_assign_rhs1 (stmt);
1144 rhs2 = gimple_assign_rhs2 (stmt);
1145 type = TREE_TYPE (rhs1);
1146 res = follow_ssa_edge_binary (loop, stmt, type, rhs1, code, rhs2,
d7e5a0b1 1147 halting_phi, evolution_of_loop, limit);
191bdb6e 1148 break;
d7e5a0b1 1149
75a70cf9 1150 default:
191bdb6e 1151 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1152 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1153 halting_phi, evolution_of_loop, limit);
1154 else
1155 res = t_false;
1156 break;
75a70cf9 1157 }
191bdb6e 1158
1159 return res;
75a70cf9 1160}
1161
c2c3fd24 1162/* Checks whether the I-th argument of a PHI comes from a backedge. */
1163
1164static bool
75a70cf9 1165backedge_phi_arg_p (gimple phi, int i)
c2c3fd24 1166{
75a70cf9 1167 const_edge e = gimple_phi_arg_edge (phi, i);
c2c3fd24 1168
1169 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1170 about updating it anywhere, and this should work as well most of the
1171 time. */
1172 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1173 return true;
1174
1175 return false;
1176}
1177
1178/* Helper function for one branch of the condition-phi-node. Return
1179 true if the strongly connected component has been found following
1180 this path. */
1181
d1de0ec2 1182static inline t_bool
c2c3fd24 1183follow_ssa_edge_in_condition_phi_branch (int i,
48e1416a 1184 struct loop *loop,
1185 gimple condition_phi,
75a70cf9 1186 gimple halting_phi,
c2c3fd24 1187 tree *evolution_of_branch,
d1de0ec2 1188 tree init_cond, int limit)
c2c3fd24 1189{
1190 tree branch = PHI_ARG_DEF (condition_phi, i);
1191 *evolution_of_branch = chrec_dont_know;
1192
1193 /* Do not follow back edges (they must belong to an irreducible loop, which
1194 we really do not want to worry about). */
1195 if (backedge_phi_arg_p (condition_phi, i))
d1de0ec2 1196 return t_false;
c2c3fd24 1197
1198 if (TREE_CODE (branch) == SSA_NAME)
1199 {
1200 *evolution_of_branch = init_cond;
48e1416a 1201 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
d1de0ec2 1202 evolution_of_branch, limit);
c2c3fd24 1203 }
1204
48e1416a 1205 /* This case occurs when one of the condition branches sets
5c9dae64 1206 the variable to a constant: i.e. a phi-node like
48e1416a 1207 "a_2 = PHI <a_7(5), 2(6)>;".
1208
1209 FIXME: This case have to be refined correctly:
c2c3fd24 1210 in some cases it is possible to say something better than
1211 chrec_dont_know, for example using a wrap-around notation. */
d1de0ec2 1212 return t_false;
c2c3fd24 1213}
1214
1215/* This function merges the branches of a condition-phi-node in a
1216 loop. */
1217
d1de0ec2 1218static t_bool
c2c3fd24 1219follow_ssa_edge_in_condition_phi (struct loop *loop,
48e1416a 1220 gimple condition_phi,
1221 gimple halting_phi,
d1de0ec2 1222 tree *evolution_of_loop, int limit)
c2c3fd24 1223{
75a70cf9 1224 int i, n;
c2c3fd24 1225 tree init = *evolution_of_loop;
1226 tree evolution_of_branch;
d1de0ec2 1227 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1228 halting_phi,
1229 &evolution_of_branch,
1230 init, limit);
1231 if (res == t_false || res == t_dont_know)
1232 return res;
c2c3fd24 1233
c2c3fd24 1234 *evolution_of_loop = evolution_of_branch;
1235
75a70cf9 1236 n = gimple_phi_num_args (condition_phi);
75a70cf9 1237 for (i = 1; i < n; i++)
c2c3fd24 1238 {
c4485791 1239 /* Quickly give up when the evolution of one of the branches is
1240 not known. */
1241 if (*evolution_of_loop == chrec_dont_know)
d1de0ec2 1242 return t_true;
c4485791 1243
aebe538b 1244 /* Increase the limit by the PHI argument number to avoid exponential
1245 time and memory complexity. */
d1de0ec2 1246 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1247 halting_phi,
1248 &evolution_of_branch,
aebe538b 1249 init, limit + i);
d1de0ec2 1250 if (res == t_false || res == t_dont_know)
1251 return res;
c2c3fd24 1252
1253 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1254 evolution_of_branch);
1255 }
48e1416a 1256
d1de0ec2 1257 return t_true;
c2c3fd24 1258}
1259
1260/* Follow an SSA edge in an inner loop. It computes the overall
1261 effect of the loop, and following the symbolic initial conditions,
1262 it follows the edges in the parent loop. The inner loop is
1263 considered as a single statement. */
1264
d1de0ec2 1265static t_bool
c2c3fd24 1266follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
48e1416a 1267 gimple loop_phi_node,
75a70cf9 1268 gimple halting_phi,
d1de0ec2 1269 tree *evolution_of_loop, int limit)
c2c3fd24 1270{
1271 struct loop *loop = loop_containing_stmt (loop_phi_node);
1272 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1273
1274 /* Sometimes, the inner loop is too difficult to analyze, and the
1275 result of the analysis is a symbolic parameter. */
1276 if (ev == PHI_RESULT (loop_phi_node))
1277 {
d1de0ec2 1278 t_bool res = t_false;
75a70cf9 1279 int i, n = gimple_phi_num_args (loop_phi_node);
c2c3fd24 1280
75a70cf9 1281 for (i = 0; i < n; i++)
c2c3fd24 1282 {
1283 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1284 basic_block bb;
1285
1286 /* Follow the edges that exit the inner loop. */
75a70cf9 1287 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
c2c3fd24 1288 if (!flow_bb_inside_loop_p (loop, bb))
75a70cf9 1289 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1290 arg, halting_phi,
1291 evolution_of_loop, limit);
d1de0ec2 1292 if (res == t_true)
1293 break;
c2c3fd24 1294 }
1295
1296 /* If the path crosses this loop-phi, give up. */
d1de0ec2 1297 if (res == t_true)
c2c3fd24 1298 *evolution_of_loop = chrec_dont_know;
1299
1300 return res;
1301 }
1302
1303 /* Otherwise, compute the overall effect of the inner loop. */
1304 ev = compute_overall_effect_of_inner_loop (loop, ev);
75a70cf9 1305 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1306 evolution_of_loop, limit);
c2c3fd24 1307}
1308
1309/* Follow an SSA edge from a loop-phi-node to itself, constructing a
1310 path that is analyzed on the return walk. */
1311
d1de0ec2 1312static t_bool
75a70cf9 1313follow_ssa_edge (struct loop *loop, gimple def, gimple halting_phi,
d1de0ec2 1314 tree *evolution_of_loop, int limit)
c2c3fd24 1315{
1316 struct loop *def_loop;
48e1416a 1317
75a70cf9 1318 if (gimple_nop_p (def))
d1de0ec2 1319 return t_false;
48e1416a 1320
d1de0ec2 1321 /* Give up if the path is longer than the MAX that we allow. */
99df7432 1322 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_COMPLEXITY))
d1de0ec2 1323 return t_dont_know;
48e1416a 1324
c2c3fd24 1325 def_loop = loop_containing_stmt (def);
48e1416a 1326
75a70cf9 1327 switch (gimple_code (def))
c2c3fd24 1328 {
75a70cf9 1329 case GIMPLE_PHI:
c2c3fd24 1330 if (!loop_phi_node_p (def))
1331 /* DEF is a condition-phi-node. Follow the branches, and
1332 record their evolutions. Finally, merge the collected
1333 information and set the approximation to the main
1334 variable. */
48e1416a 1335 return follow_ssa_edge_in_condition_phi
d1de0ec2 1336 (loop, def, halting_phi, evolution_of_loop, limit);
c2c3fd24 1337
1338 /* When the analyzed phi is the halting_phi, the
1339 depth-first search is over: we have found a path from
1340 the halting_phi to itself in the loop. */
1341 if (def == halting_phi)
d1de0ec2 1342 return t_true;
48e1416a 1343
c2c3fd24 1344 /* Otherwise, the evolution of the HALTING_PHI depends
5c9dae64 1345 on the evolution of another loop-phi-node, i.e. the
c2c3fd24 1346 evolution function is a higher degree polynomial. */
1347 if (def_loop == loop)
d1de0ec2 1348 return t_false;
48e1416a 1349
c2c3fd24 1350 /* Inner loop. */
1351 if (flow_loop_nested_p (loop, def_loop))
48e1416a 1352 return follow_ssa_edge_inner_loop_phi
de39d8ad 1353 (loop, def, halting_phi, evolution_of_loop, limit + 1);
c2c3fd24 1354
1355 /* Outer loop. */
d1de0ec2 1356 return t_false;
c2c3fd24 1357
75a70cf9 1358 case GIMPLE_ASSIGN:
48e1416a 1359 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
d1de0ec2 1360 evolution_of_loop, limit);
48e1416a 1361
c2c3fd24 1362 default:
1363 /* At this level of abstraction, the program is just a set
75a70cf9 1364 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
c2c3fd24 1365 other node to be handled. */
d1de0ec2 1366 return t_false;
c2c3fd24 1367 }
1368}
1369
1370\f
1371
1372/* Given a LOOP_PHI_NODE, this function determines the evolution
1373 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1374
1375static tree
48e1416a 1376analyze_evolution_in_loop (gimple loop_phi_node,
c2c3fd24 1377 tree init_cond)
1378{
75a70cf9 1379 int i, n = gimple_phi_num_args (loop_phi_node);
c2c3fd24 1380 tree evolution_function = chrec_not_analyzed_yet;
1381 struct loop *loop = loop_containing_stmt (loop_phi_node);
1382 basic_block bb;
48e1416a 1383
487a9bc1 1384 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1385 {
1386 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1387 fprintf (dump_file, " (loop_phi_node = ");
75a70cf9 1388 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
c2c3fd24 1389 fprintf (dump_file, ")\n");
1390 }
48e1416a 1391
75a70cf9 1392 for (i = 0; i < n; i++)
c2c3fd24 1393 {
1394 tree arg = PHI_ARG_DEF (loop_phi_node, i);
75a70cf9 1395 gimple ssa_chain;
1396 tree ev_fn;
1aa768f0 1397 t_bool res;
c2c3fd24 1398
1399 /* Select the edges that enter the loop body. */
75a70cf9 1400 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
c2c3fd24 1401 if (!flow_bb_inside_loop_p (loop, bb))
1402 continue;
8da11536 1403
c2c3fd24 1404 if (TREE_CODE (arg) == SSA_NAME)
1405 {
8da11536 1406 bool val = false;
1407
c2c3fd24 1408 ssa_chain = SSA_NAME_DEF_STMT (arg);
1409
1410 /* Pass in the initial condition to the follow edge function. */
1411 ev_fn = init_cond;
d1de0ec2 1412 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
8da11536 1413
1414 /* If ev_fn has no evolution in the inner loop, and the
1415 init_cond is not equal to ev_fn, then we have an
1416 ambiguity between two possible values, as we cannot know
1417 the number of iterations at this point. */
1418 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1419 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1420 && !operand_equal_p (init_cond, ev_fn, 0))
1421 ev_fn = chrec_dont_know;
c2c3fd24 1422 }
1423 else
1aa768f0 1424 res = t_false;
8da11536 1425
c2c3fd24 1426 /* When it is impossible to go back on the same
1427 loop_phi_node by following the ssa edges, the
5c9dae64 1428 evolution is represented by a peeled chrec, i.e. the
c2c3fd24 1429 first iteration, EV_FN has the value INIT_COND, then
48e1416a 1430 all the other iterations it has the value of ARG.
c2c3fd24 1431 For the moment, PEELED_CHREC nodes are not built. */
1aa768f0 1432 if (res != t_true)
c2c3fd24 1433 ev_fn = chrec_dont_know;
48e1416a 1434
c2c3fd24 1435 /* When there are multiple back edges of the loop (which in fact never
fbf0afd1 1436 happens currently, but nevertheless), merge their evolutions. */
c2c3fd24 1437 evolution_function = chrec_merge (evolution_function, ev_fn);
1438 }
48e1416a 1439
487a9bc1 1440 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1441 {
1442 fprintf (dump_file, " (evolution_function = ");
1443 print_generic_expr (dump_file, evolution_function, 0);
1444 fprintf (dump_file, "))\n");
1445 }
48e1416a 1446
c2c3fd24 1447 return evolution_function;
1448}
1449
1450/* Given a loop-phi-node, return the initial conditions of the
1451 variable on entry of the loop. When the CCP has propagated
1452 constants into the loop-phi-node, the initial condition is
1453 instantiated, otherwise the initial condition is kept symbolic.
1454 This analyzer does not analyze the evolution outside the current
1455 loop, and leaves this task to the on-demand tree reconstructor. */
1456
48e1416a 1457static tree
75a70cf9 1458analyze_initial_condition (gimple loop_phi_node)
c2c3fd24 1459{
75a70cf9 1460 int i, n;
c2c3fd24 1461 tree init_cond = chrec_not_analyzed_yet;
75a70cf9 1462 struct loop *loop = loop_containing_stmt (loop_phi_node);
48e1416a 1463
487a9bc1 1464 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1465 {
1466 fprintf (dump_file, "(analyze_initial_condition \n");
1467 fprintf (dump_file, " (loop_phi_node = \n");
75a70cf9 1468 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
c2c3fd24 1469 fprintf (dump_file, ")\n");
1470 }
48e1416a 1471
75a70cf9 1472 n = gimple_phi_num_args (loop_phi_node);
1473 for (i = 0; i < n; i++)
c2c3fd24 1474 {
1475 tree branch = PHI_ARG_DEF (loop_phi_node, i);
75a70cf9 1476 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
48e1416a 1477
c2c3fd24 1478 /* When the branch is oriented to the loop's body, it does
1479 not contribute to the initial condition. */
1480 if (flow_bb_inside_loop_p (loop, bb))
1481 continue;
1482
1483 if (init_cond == chrec_not_analyzed_yet)
1484 {
1485 init_cond = branch;
1486 continue;
1487 }
1488
1489 if (TREE_CODE (branch) == SSA_NAME)
1490 {
1491 init_cond = chrec_dont_know;
1492 break;
1493 }
1494
1495 init_cond = chrec_merge (init_cond, branch);
1496 }
1497
1498 /* Ooops -- a loop without an entry??? */
1499 if (init_cond == chrec_not_analyzed_yet)
1500 init_cond = chrec_dont_know;
1501
ac9b13de 1502 /* During early loop unrolling we do not have fully constant propagated IL.
1503 Handle degenerate PHIs here to not miss important unrollings. */
1504 if (TREE_CODE (init_cond) == SSA_NAME)
1505 {
1506 gimple def = SSA_NAME_DEF_STMT (init_cond);
1507 tree res;
1508 if (gimple_code (def) == GIMPLE_PHI
1509 && (res = degenerate_phi_result (def)) != NULL_TREE
1510 /* Only allow invariants here, otherwise we may break
1511 loop-closed SSA form. */
1512 && is_gimple_min_invariant (res))
1513 init_cond = res;
1514 }
1515
487a9bc1 1516 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1517 {
1518 fprintf (dump_file, " (init_cond = ");
1519 print_generic_expr (dump_file, init_cond, 0);
1520 fprintf (dump_file, "))\n");
1521 }
48e1416a 1522
c2c3fd24 1523 return init_cond;
1524}
1525
1526/* Analyze the scalar evolution for LOOP_PHI_NODE. */
1527
48e1416a 1528static tree
75a70cf9 1529interpret_loop_phi (struct loop *loop, gimple loop_phi_node)
c2c3fd24 1530{
1531 tree res;
1532 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1533 tree init_cond;
48e1416a 1534
c2c3fd24 1535 if (phi_loop != loop)
1536 {
1537 struct loop *subloop;
1538 tree evolution_fn = analyze_scalar_evolution
1539 (phi_loop, PHI_RESULT (loop_phi_node));
1540
1541 /* Dive one level deeper. */
9e3536f4 1542 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
c2c3fd24 1543
1544 /* Interpret the subloop. */
1545 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1546 return res;
1547 }
1548
1549 /* Otherwise really interpret the loop phi. */
1550 init_cond = analyze_initial_condition (loop_phi_node);
1551 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1552
ce00c150 1553 /* Verify we maintained the correct initial condition throughout
1554 possible conversions in the SSA chain. */
1555 if (res != chrec_dont_know)
1556 {
1557 tree new_init = res;
1558 if (CONVERT_EXPR_P (res)
1559 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
1560 new_init = fold_convert (TREE_TYPE (res),
1561 CHREC_LEFT (TREE_OPERAND (res, 0)));
1562 else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
1563 new_init = CHREC_LEFT (res);
1564 STRIP_USELESS_TYPE_CONVERSION (new_init);
7624240a 1565 if (TREE_CODE (new_init) == POLYNOMIAL_CHREC
1566 || !operand_equal_p (init_cond, new_init, 0))
ce00c150 1567 return chrec_dont_know;
1568 }
1569
c2c3fd24 1570 return res;
1571}
1572
1573/* This function merges the branches of a condition-phi-node,
1574 contained in the outermost loop, and whose arguments are already
1575 analyzed. */
1576
1577static tree
75a70cf9 1578interpret_condition_phi (struct loop *loop, gimple condition_phi)
c2c3fd24 1579{
75a70cf9 1580 int i, n = gimple_phi_num_args (condition_phi);
c2c3fd24 1581 tree res = chrec_not_analyzed_yet;
48e1416a 1582
75a70cf9 1583 for (i = 0; i < n; i++)
c2c3fd24 1584 {
1585 tree branch_chrec;
48e1416a 1586
c2c3fd24 1587 if (backedge_phi_arg_p (condition_phi, i))
1588 {
1589 res = chrec_dont_know;
1590 break;
1591 }
1592
1593 branch_chrec = analyze_scalar_evolution
1594 (loop, PHI_ARG_DEF (condition_phi, i));
48e1416a 1595
c2c3fd24 1596 res = chrec_merge (res, branch_chrec);
1597 }
1598
1599 return res;
1600}
1601
75a70cf9 1602/* Interpret the operation RHS1 OP RHS2. If we didn't
0b94b8c8 1603 analyze this node before, follow the definitions until ending
75a70cf9 1604 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
c2c3fd24 1605 return path, this function propagates evolutions (ala constant copy
1606 propagation). OPND1 is not a GIMPLE expression because we could
1607 analyze the effect of an inner loop: see interpret_loop_phi. */
1608
1609static tree
75a70cf9 1610interpret_rhs_expr (struct loop *loop, gimple at_stmt,
1611 tree type, tree rhs1, enum tree_code code, tree rhs2)
c2c3fd24 1612{
75a70cf9 1613 tree res, chrec1, chrec2;
3ef23449 1614 gimple def;
75a70cf9 1615
1616 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1617 {
1618 if (is_gimple_min_invariant (rhs1))
1619 return chrec_convert (type, rhs1, at_stmt);
1620
1621 if (code == SSA_NAME)
1622 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1623 at_stmt);
b3786ab3 1624
75a70cf9 1625 if (code == ASSERT_EXPR)
1626 {
1627 rhs1 = ASSERT_EXPR_VAR (rhs1);
1628 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1629 at_stmt);
1630 }
75a70cf9 1631 }
b3786ab3 1632
75a70cf9 1633 switch (code)
c2c3fd24 1634 {
1214c397 1635 case ADDR_EXPR:
62bc06ea 1636 if (TREE_CODE (TREE_OPERAND (rhs1, 0)) == MEM_REF
1637 || handled_component_p (TREE_OPERAND (rhs1, 0)))
1638 {
1639 enum machine_mode mode;
1640 HOST_WIDE_INT bitsize, bitpos;
1641 int unsignedp;
1642 int volatilep = 0;
1643 tree base, offset;
1644 tree chrec3;
1645 tree unitpos;
1646
1647 base = get_inner_reference (TREE_OPERAND (rhs1, 0),
1648 &bitsize, &bitpos, &offset,
1649 &mode, &unsignedp, &volatilep, false);
1650
1651 if (TREE_CODE (base) == MEM_REF)
1652 {
1653 rhs2 = TREE_OPERAND (base, 1);
1654 rhs1 = TREE_OPERAND (base, 0);
1655
1656 chrec1 = analyze_scalar_evolution (loop, rhs1);
1657 chrec2 = analyze_scalar_evolution (loop, rhs2);
1658 chrec1 = chrec_convert (type, chrec1, at_stmt);
1659 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
32e31826 1660 chrec1 = instantiate_parameters (loop, chrec1);
1661 chrec2 = instantiate_parameters (loop, chrec2);
62bc06ea 1662 res = chrec_fold_plus (type, chrec1, chrec2);
1663 }
1664 else
1665 {
1666 chrec1 = analyze_scalar_evolution_for_address_of (loop, base);
1667 chrec1 = chrec_convert (type, chrec1, at_stmt);
1668 res = chrec1;
1669 }
1214c397 1670
62bc06ea 1671 if (offset != NULL_TREE)
1672 {
1673 chrec2 = analyze_scalar_evolution (loop, offset);
1674 chrec2 = chrec_convert (TREE_TYPE (offset), chrec2, at_stmt);
32e31826 1675 chrec2 = instantiate_parameters (loop, chrec2);
62bc06ea 1676 res = chrec_fold_plus (type, res, chrec2);
1677 }
1678
1679 if (bitpos != 0)
1680 {
1681 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
1682
748e5d45 1683 unitpos = size_int (bitpos / BITS_PER_UNIT);
62bc06ea 1684 chrec3 = analyze_scalar_evolution (loop, unitpos);
1685 chrec3 = chrec_convert (TREE_TYPE (unitpos), chrec3, at_stmt);
32e31826 1686 chrec3 = instantiate_parameters (loop, chrec3);
62bc06ea 1687 res = chrec_fold_plus (type, res, chrec3);
1688 }
1689 }
1690 else
1691 res = chrec_dont_know;
1692 break;
1214c397 1693
0de36bdb 1694 case POINTER_PLUS_EXPR:
75a70cf9 1695 chrec1 = analyze_scalar_evolution (loop, rhs1);
1696 chrec2 = analyze_scalar_evolution (loop, rhs2);
1697 chrec1 = chrec_convert (type, chrec1, at_stmt);
a0553bff 1698 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
32e31826 1699 chrec1 = instantiate_parameters (loop, chrec1);
1700 chrec2 = instantiate_parameters (loop, chrec2);
75a70cf9 1701 res = chrec_fold_plus (type, chrec1, chrec2);
0de36bdb 1702 break;
1703
c2c3fd24 1704 case PLUS_EXPR:
75a70cf9 1705 chrec1 = analyze_scalar_evolution (loop, rhs1);
1706 chrec2 = analyze_scalar_evolution (loop, rhs2);
1707 chrec1 = chrec_convert (type, chrec1, at_stmt);
1708 chrec2 = chrec_convert (type, chrec2, at_stmt);
32e31826 1709 chrec1 = instantiate_parameters (loop, chrec1);
1710 chrec2 = instantiate_parameters (loop, chrec2);
75a70cf9 1711 res = chrec_fold_plus (type, chrec1, chrec2);
c2c3fd24 1712 break;
48e1416a 1713
c2c3fd24 1714 case MINUS_EXPR:
75a70cf9 1715 chrec1 = analyze_scalar_evolution (loop, rhs1);
1716 chrec2 = analyze_scalar_evolution (loop, rhs2);
1717 chrec1 = chrec_convert (type, chrec1, at_stmt);
1718 chrec2 = chrec_convert (type, chrec2, at_stmt);
32e31826 1719 chrec1 = instantiate_parameters (loop, chrec1);
1720 chrec2 = instantiate_parameters (loop, chrec2);
75a70cf9 1721 res = chrec_fold_minus (type, chrec1, chrec2);
c2c3fd24 1722 break;
1723
1724 case NEGATE_EXPR:
75a70cf9 1725 chrec1 = analyze_scalar_evolution (loop, rhs1);
1726 chrec1 = chrec_convert (type, chrec1, at_stmt);
560af66a 1727 /* TYPE may be integer, real or complex, so use fold_convert. */
32e31826 1728 chrec1 = instantiate_parameters (loop, chrec1);
75a70cf9 1729 res = chrec_fold_multiply (type, chrec1,
560af66a 1730 fold_convert (type, integer_minus_one_node));
c2c3fd24 1731 break;
1732
b6eab06c 1733 case BIT_NOT_EXPR:
1734 /* Handle ~X as -1 - X. */
1735 chrec1 = analyze_scalar_evolution (loop, rhs1);
1736 chrec1 = chrec_convert (type, chrec1, at_stmt);
32e31826 1737 chrec1 = instantiate_parameters (loop, chrec1);
b6eab06c 1738 res = chrec_fold_minus (type,
1739 fold_convert (type, integer_minus_one_node),
1740 chrec1);
1741 break;
1742
c2c3fd24 1743 case MULT_EXPR:
75a70cf9 1744 chrec1 = analyze_scalar_evolution (loop, rhs1);
1745 chrec2 = analyze_scalar_evolution (loop, rhs2);
1746 chrec1 = chrec_convert (type, chrec1, at_stmt);
1747 chrec2 = chrec_convert (type, chrec2, at_stmt);
32e31826 1748 chrec1 = instantiate_parameters (loop, chrec1);
1749 chrec2 = instantiate_parameters (loop, chrec2);
75a70cf9 1750 res = chrec_fold_multiply (type, chrec1, chrec2);
88dbf20f 1751 break;
48e1416a 1752
72dd6141 1753 CASE_CONVERT:
3ef23449 1754 /* In case we have a truncation of a widened operation that in
1755 the truncated type has undefined overflow behavior analyze
1756 the operation done in an unsigned type of the same precision
1757 as the final truncation. We cannot derive a scalar evolution
1758 for the widened operation but for the truncated result. */
1759 if (TREE_CODE (type) == INTEGER_TYPE
1760 && TREE_CODE (TREE_TYPE (rhs1)) == INTEGER_TYPE
1761 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (rhs1))
1762 && TYPE_OVERFLOW_UNDEFINED (type)
1763 && TREE_CODE (rhs1) == SSA_NAME
1764 && (def = SSA_NAME_DEF_STMT (rhs1))
1765 && is_gimple_assign (def)
1766 && TREE_CODE_CLASS (gimple_assign_rhs_code (def)) == tcc_binary
1767 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
1768 {
1769 tree utype = unsigned_type_for (type);
1770 chrec1 = interpret_rhs_expr (loop, at_stmt, utype,
1771 gimple_assign_rhs1 (def),
1772 gimple_assign_rhs_code (def),
1773 gimple_assign_rhs2 (def));
1774 }
1775 else
1776 chrec1 = analyze_scalar_evolution (loop, rhs1);
75a70cf9 1777 res = chrec_convert (type, chrec1, at_stmt);
c2c3fd24 1778 break;
48e1416a 1779
c2c3fd24 1780 default:
1781 res = chrec_dont_know;
1782 break;
1783 }
48e1416a 1784
c2c3fd24 1785 return res;
1786}
1787
75a70cf9 1788/* Interpret the expression EXPR. */
1789
1790static tree
1791interpret_expr (struct loop *loop, gimple at_stmt, tree expr)
1792{
1793 enum tree_code code;
1794 tree type = TREE_TYPE (expr), op0, op1;
1795
1796 if (automatically_generated_chrec_p (expr))
1797 return expr;
1798
8a2caf10 1799 if (TREE_CODE (expr) == POLYNOMIAL_CHREC
1800 || get_gimple_rhs_class (TREE_CODE (expr)) == GIMPLE_TERNARY_RHS)
75a70cf9 1801 return chrec_dont_know;
1802
1803 extract_ops_from_tree (expr, &code, &op0, &op1);
1804
1805 return interpret_rhs_expr (loop, at_stmt, type,
1806 op0, code, op1);
1807}
1808
1809/* Interpret the rhs of the assignment STMT. */
1810
1811static tree
1812interpret_gimple_assign (struct loop *loop, gimple stmt)
1813{
1814 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1815 enum tree_code code = gimple_assign_rhs_code (stmt);
1816
1817 return interpret_rhs_expr (loop, stmt, type,
1818 gimple_assign_rhs1 (stmt), code,
1819 gimple_assign_rhs2 (stmt));
1820}
1821
c2c3fd24 1822\f
1823
48e1416a 1824/* This section contains all the entry points:
c2c3fd24 1825 - number_of_iterations_in_loop,
1826 - analyze_scalar_evolution,
1827 - instantiate_parameters.
1828*/
1829
1830/* Compute and return the evolution function in WRTO_LOOP, the nearest
1831 common ancestor of DEF_LOOP and USE_LOOP. */
1832
48e1416a 1833static tree
1834compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1835 struct loop *def_loop,
c2c3fd24 1836 tree ev)
1837{
a05095f9 1838 bool val;
c2c3fd24 1839 tree res;
a05095f9 1840
c2c3fd24 1841 if (def_loop == wrto_loop)
1842 return ev;
1843
9e3536f4 1844 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
c2c3fd24 1845 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1846
a05095f9 1847 if (no_evolution_in_loop_p (res, wrto_loop->num, &val) && val)
1848 return res;
1849
c2c3fd24 1850 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1851}
1852
1853/* Helper recursive function. */
1854
1855static tree
1856analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1857{
75a70cf9 1858 tree type = TREE_TYPE (var);
1859 gimple def;
c2c3fd24 1860 basic_block bb;
1861 struct loop *def_loop;
1862
a8c839ae 1863 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
c2c3fd24 1864 return chrec_dont_know;
1865
1866 if (TREE_CODE (var) != SSA_NAME)
75a70cf9 1867 return interpret_expr (loop, NULL, var);
c2c3fd24 1868
1869 def = SSA_NAME_DEF_STMT (var);
75a70cf9 1870 bb = gimple_bb (def);
c2c3fd24 1871 def_loop = bb ? bb->loop_father : NULL;
1872
1873 if (bb == NULL
1874 || !flow_bb_inside_loop_p (loop, bb))
1875 {
1876 /* Keep the symbolic form. */
1877 res = var;
1878 goto set_and_end;
1879 }
1880
1881 if (res != chrec_not_analyzed_yet)
1882 {
1883 if (loop != bb->loop_father)
48e1416a 1884 res = compute_scalar_evolution_in_loop
c2c3fd24 1885 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1886
1887 goto set_and_end;
1888 }
1889
1890 if (loop != def_loop)
1891 {
1892 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1893 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1894
1895 goto set_and_end;
1896 }
1897
75a70cf9 1898 switch (gimple_code (def))
c2c3fd24 1899 {
75a70cf9 1900 case GIMPLE_ASSIGN:
1901 res = interpret_gimple_assign (loop, def);
c2c3fd24 1902 break;
1903
75a70cf9 1904 case GIMPLE_PHI:
c2c3fd24 1905 if (loop_phi_node_p (def))
1906 res = interpret_loop_phi (loop, def);
1907 else
1908 res = interpret_condition_phi (loop, def);
1909 break;
1910
1911 default:
1912 res = chrec_dont_know;
1913 break;
1914 }
1915
1916 set_and_end:
1917
1918 /* Keep the symbolic form. */
1919 if (res == chrec_dont_know)
1920 res = var;
1921
1922 if (loop == def_loop)
089aa668 1923 set_scalar_evolution (block_before_loop (loop), var, res);
c2c3fd24 1924
1925 return res;
1926}
1927
8b7d09b4 1928/* Analyzes and returns the scalar evolution of the ssa_name VAR in
1929 LOOP. LOOP is the loop in which the variable is used.
48e1416a 1930
c2c3fd24 1931 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1932 pointer to the statement that uses this variable, in order to
1933 determine the evolution function of the variable, use the following
1934 calls:
48e1416a 1935
8b7d09b4 1936 loop_p loop = loop_containing_stmt (stmt);
1937 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
afd80ffb 1938 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
c2c3fd24 1939*/
1940
48e1416a 1941tree
c2c3fd24 1942analyze_scalar_evolution (struct loop *loop, tree var)
1943{
1944 tree res;
1945
487a9bc1 1946 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1947 {
1948 fprintf (dump_file, "(analyze_scalar_evolution \n");
1949 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1950 fprintf (dump_file, " (scalar = ");
1951 print_generic_expr (dump_file, var, 0);
1952 fprintf (dump_file, ")\n");
1953 }
1954
089aa668 1955 res = get_scalar_evolution (block_before_loop (loop), var);
1956 res = analyze_scalar_evolution_1 (loop, var, res);
c2c3fd24 1957
487a9bc1 1958 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 1959 fprintf (dump_file, ")\n");
1960
1961 return res;
1962}
1963
62bc06ea 1964/* Analyzes and returns the scalar evolution of VAR address in LOOP. */
1965
1966static tree
1967analyze_scalar_evolution_for_address_of (struct loop *loop, tree var)
1968{
1969 return analyze_scalar_evolution (loop, build_fold_addr_expr (var));
1970}
1971
c2c3fd24 1972/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
76610704 1973 WRTO_LOOP (which should be a superloop of USE_LOOP)
553b9523 1974
1975 FOLDED_CASTS is set to true if resolve_mixers used
1976 chrec_convert_aggressive (TODO -- not really, we are way too conservative
48e1416a 1977 at the moment in order to keep things simple).
1978
76610704 1979 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
1980 example:
1981
1982 for (i = 0; i < 100; i++) -- loop 1
1983 {
1984 for (j = 0; j < 100; j++) -- loop 2
1985 {
1986 k1 = i;
1987 k2 = j;
1988
1989 use2 (k1, k2);
1990
1991 for (t = 0; t < 100; t++) -- loop 3
1992 use3 (k1, k2);
1993
1994 }
1995 use1 (k1, k2);
1996 }
1997
1998 Both k1 and k2 are invariants in loop3, thus
1999 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
2000 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2001
2002 As they are invariant, it does not matter whether we consider their
2003 usage in loop 3 or loop 2, hence
2004 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2005 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2006 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2007 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2008
2009 Similarly for their evolutions with respect to loop 1. The values of K2
2010 in the use in loop 2 vary independently on loop 1, thus we cannot express
2011 the evolution with respect to loop 1:
2012 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2013 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2014 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2015 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2016
2017 The value of k2 in the use in loop 1 is known, though:
2018 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2019 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2020 */
c2c3fd24 2021
2022static tree
2023analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
553b9523 2024 tree version, bool *folded_casts)
c2c3fd24 2025{
2026 bool val = false;
553b9523 2027 tree ev = version, tmp;
c2c3fd24 2028
48e1416a 2029 /* We cannot just do
76610704 2030
2031 tmp = analyze_scalar_evolution (use_loop, version);
2032 ev = resolve_mixers (wrto_loop, tmp);
2033
2034 as resolve_mixers would query the scalar evolution with respect to
2035 wrto_loop. For example, in the situation described in the function
2036 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2037 version = k2. Then
2038
2039 analyze_scalar_evolution (use_loop, version) = k2
2040
2041 and resolve_mixers (loop1, k2) finds that the value of k2 in loop 1
2042 is 100, which is a wrong result, since we are interested in the
2043 value in loop 3.
2044
2045 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2046 each time checking that there is no evolution in the inner loop. */
2047
553b9523 2048 if (folded_casts)
2049 *folded_casts = false;
c2c3fd24 2050 while (1)
2051 {
553b9523 2052 tmp = analyze_scalar_evolution (use_loop, ev);
2053 ev = resolve_mixers (use_loop, tmp);
2054
2055 if (folded_casts && tmp != ev)
2056 *folded_casts = true;
c2c3fd24 2057
2058 if (use_loop == wrto_loop)
2059 return ev;
2060
2061 /* If the value of the use changes in the inner loop, we cannot express
2062 its value in the outer loop (we might try to return interval chrec,
2063 but we do not have a user for it anyway) */
2064 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2065 || !val)
2066 return chrec_dont_know;
2067
9e3536f4 2068 use_loop = loop_outer (use_loop);
c2c3fd24 2069 }
2070}
2071
15a951ca 2072
e23d3784 2073/* Hashtable helpers for a temporary hash-table used when
2074 instantiating a CHREC or resolving mixers. For this use
2075 instantiated_below is always the same. */
2076
e23d3784 2077struct instantiate_cache_type
15a951ca 2078{
cbb69ef1 2079 htab_t map;
2080 vec<scev_info_str> entries;
48e1416a 2081
9af5ce0c 2082 instantiate_cache_type () : map (NULL), entries (vNULL) {}
e23d3784 2083 ~instantiate_cache_type ();
32e31826 2084 tree get (unsigned slot) { return entries[slot].chrec; }
2085 void set (unsigned slot, tree chrec) { entries[slot].chrec = chrec; }
e23d3784 2086};
15a951ca 2087
e23d3784 2088instantiate_cache_type::~instantiate_cache_type ()
2089{
32e31826 2090 if (map != NULL)
e23d3784 2091 {
cbb69ef1 2092 htab_delete (map);
e23d3784 2093 entries.release ();
2094 }
15a951ca 2095}
2096
cbb69ef1 2097/* Cache to avoid infinite recursion when instantiating an SSA name.
2098 Live during the outermost instantiate_scev or resolve_mixers call. */
2099static instantiate_cache_type *global_cache;
2100
2101/* Computes a hash function for database element ELT. */
2102
2103static inline hashval_t
2104hash_idx_scev_info (const void *elt_)
2105{
2106 unsigned idx = ((size_t) elt_) - 2;
2107 return hash_scev_info (&global_cache->entries[idx]);
2108}
2109
2110/* Compares database elements E1 and E2. */
2111
2112static inline int
2113eq_idx_scev_info (const void *e1, const void *e2)
2114{
2115 unsigned idx1 = ((size_t) e1) - 2;
2116 return eq_scev_info (&global_cache->entries[idx1], e2);
2117}
2118
32e31826 2119/* Returns from CACHE the slot number of the cached chrec for NAME. */
e23d3784 2120
32e31826 2121static unsigned
cbb69ef1 2122get_instantiated_value_entry (instantiate_cache_type &cache,
2123 tree name, basic_block instantiate_below)
e23d3784 2124{
32e31826 2125 if (!cache.map)
e23d3784 2126 {
cbb69ef1 2127 cache.map = htab_create (10, hash_idx_scev_info, eq_idx_scev_info, NULL);
e23d3784 2128 cache.entries.create (10);
2129 }
48e1416a 2130
cbb69ef1 2131 scev_info_str e;
2132 e.name_version = SSA_NAME_VERSION (name);
2133 e.instantiated_below = instantiate_below->index;
2134 void **slot = htab_find_slot_with_hash (cache.map, &e,
2135 hash_scev_info (&e), INSERT);
2136 if (!*slot)
e23d3784 2137 {
2138 e.chrec = chrec_not_analyzed_yet;
cbb69ef1 2139 *slot = (void *)(size_t)(cache.entries.length () + 2);
e23d3784 2140 cache.entries.safe_push (e);
e23d3784 2141 }
2142
cbb69ef1 2143 return ((size_t)*slot) - 2;
15a951ca 2144}
2145
32e31826 2146
9887dd18 2147/* Return the closed_loop_phi node for VAR. If there is none, return
2148 NULL_TREE. */
2149
2150static tree
2151loop_closed_phi_def (tree var)
2152{
2153 struct loop *loop;
2154 edge exit;
75a70cf9 2155 gimple phi;
2156 gimple_stmt_iterator psi;
9887dd18 2157
2158 if (var == NULL_TREE
2159 || TREE_CODE (var) != SSA_NAME)
2160 return NULL_TREE;
2161
2162 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
d9e7e1a2 2163 exit = single_exit (loop);
9887dd18 2164 if (!exit)
2165 return NULL_TREE;
2166
75a70cf9 2167 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2168 {
2169 phi = gsi_stmt (psi);
2170 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2171 return PHI_RESULT (phi);
2172 }
9887dd18 2173
2174 return NULL_TREE;
2175}
2176
6ee802ad 2177static tree instantiate_scev_r (basic_block, struct loop *, struct loop *,
32e31826 2178 tree, bool, int);
0731d869 2179
2180/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2181 and EVOLUTION_LOOP, that were left under a symbolic form.
2182
5e803fbe 2183 CHREC is an SSA_NAME to be instantiated.
0731d869 2184
2185 CACHE is the cache of already instantiated values.
2186
2187 FOLD_CONVERSIONS should be set to true when the conversions that
2188 may wrap in signed/pointer type are folded, as long as the value of
2189 the chrec is preserved.
2190
2191 SIZE_EXPR is used for computing the size of the expression to be
2192 instantiated, and to stop if it exceeds some limit. */
2193
2194static tree
5e803fbe 2195instantiate_scev_name (basic_block instantiate_below,
6ee802ad 2196 struct loop *evolution_loop, struct loop *inner_loop,
2197 tree chrec,
32e31826 2198 bool fold_conversions,
d9dd21a8 2199 int size_expr)
0731d869 2200{
5e803fbe 2201 tree res;
2202 struct loop *def_loop;
2203 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
c43f1e90 2204
5e803fbe 2205 /* A parameter (or loop invariant and we do not want to include
2206 evolutions in outer loops), nothing to do. */
2207 if (!def_bb
2208 || loop_depth (def_bb->loop_father) == 0
2209 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2210 return chrec;
c43f1e90 2211
5e803fbe 2212 /* We cache the value of instantiated variable to avoid exponential
2213 time complexity due to reevaluations. We also store the convenient
2214 value in the cache in order to prevent infinite recursion -- we do
2215 not want to instantiate the SSA_NAME if it is in a mixer
2216 structure. This is used for avoiding the instantiation of
2217 recursively defined functions, such as:
0731d869 2218
5e803fbe 2219 | a_2 -> {0, +, 1, +, a_2}_1 */
c43f1e90 2220
cbb69ef1 2221 unsigned si = get_instantiated_value_entry (*global_cache,
2222 chrec, instantiate_below);
32e31826 2223 if (global_cache->get (si) != chrec_not_analyzed_yet)
2224 return global_cache->get (si);
c43f1e90 2225
e23d3784 2226 /* On recursion return chrec_dont_know. */
32e31826 2227 global_cache->set (si, chrec_dont_know);
0731d869 2228
5e803fbe 2229 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2230
0731d869 2231 /* If the analysis yields a parametric chrec, instantiate the
2232 result again. */
2233 res = analyze_scalar_evolution (def_loop, chrec);
2234
52f57b4e 2235 /* Don't instantiate default definitions. */
0731d869 2236 if (TREE_CODE (res) == SSA_NAME
52f57b4e 2237 && SSA_NAME_IS_DEFAULT_DEF (res))
2238 ;
2239
2240 /* Don't instantiate loop-closed-ssa phi nodes. */
2241 else if (TREE_CODE (res) == SSA_NAME
2242 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2243 > loop_depth (def_loop))
0731d869 2244 {
2245 if (res == chrec)
2246 res = loop_closed_phi_def (chrec);
2247 else
2248 res = chrec;
2249
dfeb6545 2250 /* When there is no loop_closed_phi_def, it means that the
2251 variable is not used after the loop: try to still compute the
2252 value of the variable when exiting the loop. */
2253 if (res == NULL_TREE)
2254 {
2255 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
2256 res = analyze_scalar_evolution (loop, chrec);
2257 res = compute_overall_effect_of_inner_loop (loop, res);
6ee802ad 2258 res = instantiate_scev_r (instantiate_below, evolution_loop,
2259 inner_loop, res,
32e31826 2260 fold_conversions, size_expr);
dfeb6545 2261 }
2262 else if (!dominated_by_p (CDI_DOMINATORS, instantiate_below,
2263 gimple_bb (SSA_NAME_DEF_STMT (res))))
0731d869 2264 res = chrec_dont_know;
2265 }
2266
2267 else if (res != chrec_dont_know)
6ee802ad 2268 {
2269 if (inner_loop
0c763224 2270 && def_bb->loop_father != inner_loop
6ee802ad 2271 && !flow_loop_nested_p (def_bb->loop_father, inner_loop))
2272 /* ??? We could try to compute the overall effect of the loop here. */
2273 res = chrec_dont_know;
2274 else
2275 res = instantiate_scev_r (instantiate_below, evolution_loop,
2276 inner_loop, res,
32e31826 2277 fold_conversions, size_expr);
6ee802ad 2278 }
0731d869 2279
2280 /* Store the correct value to the cache. */
32e31826 2281 global_cache->set (si, res);
0731d869 2282 return res;
0731d869 2283}
2284
a819f845 2285/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2286 and EVOLUTION_LOOP, that were left under a symbolic form.
2287
2288 CHREC is a polynomial chain of recurrence to be instantiated.
2289
2290 CACHE is the cache of already instantiated values.
2291
2292 FOLD_CONVERSIONS should be set to true when the conversions that
2293 may wrap in signed/pointer type are folded, as long as the value of
2294 the chrec is preserved.
2295
2296 SIZE_EXPR is used for computing the size of the expression to be
2297 instantiated, and to stop if it exceeds some limit. */
2298
2299static tree
2300instantiate_scev_poly (basic_block instantiate_below,
6ee802ad 2301 struct loop *evolution_loop, struct loop *,
32e31826 2302 tree chrec, bool fold_conversions, int size_expr)
a819f845 2303{
2304 tree op1;
d91a99f1 2305 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2306 get_chrec_loop (chrec),
32e31826 2307 CHREC_LEFT (chrec), fold_conversions,
a819f845 2308 size_expr);
2309 if (op0 == chrec_dont_know)
2310 return chrec_dont_know;
2311
d91a99f1 2312 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2313 get_chrec_loop (chrec),
32e31826 2314 CHREC_RIGHT (chrec), fold_conversions,
a819f845 2315 size_expr);
2316 if (op1 == chrec_dont_know)
2317 return chrec_dont_know;
2318
2319 if (CHREC_LEFT (chrec) != op0
2320 || CHREC_RIGHT (chrec) != op1)
2321 {
2322 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
6ee802ad 2323 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
a819f845 2324 }
1d4dd1ed 2325
a819f845 2326 return chrec;
2327}
2328
5a10dfba 2329/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2330 and EVOLUTION_LOOP, that were left under a symbolic form.
2331
9e9aa0c6 2332 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
5a10dfba 2333
2334 CACHE is the cache of already instantiated values.
2335
2336 FOLD_CONVERSIONS should be set to true when the conversions that
2337 may wrap in signed/pointer type are folded, as long as the value of
2338 the chrec is preserved.
2339
2340 SIZE_EXPR is used for computing the size of the expression to be
2341 instantiated, and to stop if it exceeds some limit. */
2342
2343static tree
2344instantiate_scev_binary (basic_block instantiate_below,
6ee802ad 2345 struct loop *evolution_loop, struct loop *inner_loop,
2346 tree chrec, enum tree_code code,
9e9aa0c6 2347 tree type, tree c0, tree c1,
32e31826 2348 bool fold_conversions, int size_expr)
5a10dfba 2349{
2350 tree op1;
6ee802ad 2351 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
32e31826 2352 c0, fold_conversions, size_expr);
5a10dfba 2353 if (op0 == chrec_dont_know)
2354 return chrec_dont_know;
2355
6ee802ad 2356 op1 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
32e31826 2357 c1, fold_conversions, size_expr);
5a10dfba 2358 if (op1 == chrec_dont_know)
2359 return chrec_dont_know;
2360
9e9aa0c6 2361 if (c0 != op0
2362 || c1 != op1)
5a10dfba 2363 {
5a10dfba 2364 op0 = chrec_convert (type, op0, NULL);
2365 op1 = chrec_convert_rhs (type, op1, NULL);
2366
9e9aa0c6 2367 switch (code)
5a10dfba 2368 {
2369 case POINTER_PLUS_EXPR:
2370 case PLUS_EXPR:
2371 return chrec_fold_plus (type, op0, op1);
2372
2373 case MINUS_EXPR:
2374 return chrec_fold_minus (type, op0, op1);
2375
2376 case MULT_EXPR:
2377 return chrec_fold_multiply (type, op0, op1);
2378
2379 default:
2380 gcc_unreachable ();
2381 }
2382 }
2383
9e9aa0c6 2384 return chrec ? chrec : fold_build2 (code, type, c0, c1);
5a10dfba 2385}
2386
3e0b5bba 2387/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2388 and EVOLUTION_LOOP, that were left under a symbolic form.
2389
2390 "CHREC" is an array reference to be instantiated.
2391
2392 CACHE is the cache of already instantiated values.
2393
2394 FOLD_CONVERSIONS should be set to true when the conversions that
2395 may wrap in signed/pointer type are folded, as long as the value of
2396 the chrec is preserved.
2397
2398 SIZE_EXPR is used for computing the size of the expression to be
2399 instantiated, and to stop if it exceeds some limit. */
2400
2401static tree
2402instantiate_array_ref (basic_block instantiate_below,
6ee802ad 2403 struct loop *evolution_loop, struct loop *inner_loop,
32e31826 2404 tree chrec, bool fold_conversions, int size_expr)
3e0b5bba 2405{
2406 tree res;
2407 tree index = TREE_OPERAND (chrec, 1);
6ee802ad 2408 tree op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2409 inner_loop, index,
32e31826 2410 fold_conversions, size_expr);
3e0b5bba 2411
2412 if (op1 == chrec_dont_know)
2413 return chrec_dont_know;
2414
2415 if (chrec && op1 == index)
2416 return chrec;
2417
2418 res = unshare_expr (chrec);
2419 TREE_OPERAND (res, 1) = op1;
2420 return res;
2421}
2422
089aa668 2423/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
7723692a 2424 and EVOLUTION_LOOP, that were left under a symbolic form.
2425
2426 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2427 instantiated.
2428
2429 CACHE is the cache of already instantiated values.
2430
2431 FOLD_CONVERSIONS should be set to true when the conversions that
2432 may wrap in signed/pointer type are folded, as long as the value of
2433 the chrec is preserved.
2434
2435 SIZE_EXPR is used for computing the size of the expression to be
2436 instantiated, and to stop if it exceeds some limit. */
2437
2438static tree
2439instantiate_scev_convert (basic_block instantiate_below,
6ee802ad 2440 struct loop *evolution_loop, struct loop *inner_loop,
32e31826 2441 tree chrec, tree type, tree op,
2442 bool fold_conversions, int size_expr)
7723692a 2443{
6ee802ad 2444 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2445 inner_loop, op,
32e31826 2446 fold_conversions, size_expr);
7723692a 2447
2448 if (op0 == chrec_dont_know)
2449 return chrec_dont_know;
2450
2451 if (fold_conversions)
2452 {
2453 tree tmp = chrec_convert_aggressive (type, op0);
2454 if (tmp)
2455 return tmp;
2456 }
2457
2458 if (chrec && op0 == op)
2459 return chrec;
2460
2461 /* If we used chrec_convert_aggressive, we can no longer assume that
2462 signed chrecs do not overflow, as chrec_convert does, so avoid
2463 calling it in that case. */
2464 if (fold_conversions)
2465 return fold_convert (type, op0);
2466
2467 return chrec_convert (type, op0, NULL);
2468}
2469
39251a91 2470/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2471 and EVOLUTION_LOOP, that were left under a symbolic form.
2472
9d206f16 2473 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
39251a91 2474 Handle ~X as -1 - X.
9d206f16 2475 Handle -X as -1 * X.
39251a91 2476
2477 CACHE is the cache of already instantiated values.
2478
2479 FOLD_CONVERSIONS should be set to true when the conversions that
2480 may wrap in signed/pointer type are folded, as long as the value of
2481 the chrec is preserved.
2482
2483 SIZE_EXPR is used for computing the size of the expression to be
2484 instantiated, and to stop if it exceeds some limit. */
2485
2486static tree
9d206f16 2487instantiate_scev_not (basic_block instantiate_below,
6ee802ad 2488 struct loop *evolution_loop, struct loop *inner_loop,
2489 tree chrec,
c43f1e90 2490 enum tree_code code, tree type, tree op,
32e31826 2491 bool fold_conversions, int size_expr)
39251a91 2492{
6ee802ad 2493 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2494 inner_loop, op,
32e31826 2495 fold_conversions, size_expr);
c43f1e90 2496
39251a91 2497 if (op0 == chrec_dont_know)
2498 return chrec_dont_know;
2499
c43f1e90 2500 if (op != op0)
39251a91 2501 {
2502 op0 = chrec_convert (type, op0, NULL);
9d206f16 2503
c43f1e90 2504 switch (code)
9d206f16 2505 {
2506 case BIT_NOT_EXPR:
2507 return chrec_fold_minus
2508 (type, fold_convert (type, integer_minus_one_node), op0);
2509
2510 case NEGATE_EXPR:
2511 return chrec_fold_multiply
2512 (type, fold_convert (type, integer_minus_one_node), op0);
2513
2514 default:
2515 gcc_unreachable ();
2516 }
39251a91 2517 }
9d206f16 2518
c43f1e90 2519 return chrec ? chrec : fold_build1 (code, type, op0);
39251a91 2520}
2521
378a6626 2522/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2523 and EVOLUTION_LOOP, that were left under a symbolic form.
2524
2525 CHREC is an expression with 3 operands to be instantiated.
2526
2527 CACHE is the cache of already instantiated values.
2528
2529 FOLD_CONVERSIONS should be set to true when the conversions that
2530 may wrap in signed/pointer type are folded, as long as the value of
2531 the chrec is preserved.
2532
2533 SIZE_EXPR is used for computing the size of the expression to be
2534 instantiated, and to stop if it exceeds some limit. */
2535
2536static tree
2537instantiate_scev_3 (basic_block instantiate_below,
6ee802ad 2538 struct loop *evolution_loop, struct loop *inner_loop,
2539 tree chrec,
32e31826 2540 bool fold_conversions, int size_expr)
378a6626 2541{
2542 tree op1, op2;
d91a99f1 2543 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2544 inner_loop, TREE_OPERAND (chrec, 0),
32e31826 2545 fold_conversions, size_expr);
378a6626 2546 if (op0 == chrec_dont_know)
2547 return chrec_dont_know;
2548
d91a99f1 2549 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2550 inner_loop, TREE_OPERAND (chrec, 1),
32e31826 2551 fold_conversions, size_expr);
378a6626 2552 if (op1 == chrec_dont_know)
2553 return chrec_dont_know;
2554
d91a99f1 2555 op2 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2556 inner_loop, TREE_OPERAND (chrec, 2),
32e31826 2557 fold_conversions, size_expr);
378a6626 2558 if (op2 == chrec_dont_know)
2559 return chrec_dont_know;
2560
2561 if (op0 == TREE_OPERAND (chrec, 0)
2562 && op1 == TREE_OPERAND (chrec, 1)
2563 && op2 == TREE_OPERAND (chrec, 2))
2564 return chrec;
2565
2566 return fold_build3 (TREE_CODE (chrec),
2567 TREE_TYPE (chrec), op0, op1, op2);
2568}
2569
7723692a 2570/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2571 and EVOLUTION_LOOP, that were left under a symbolic form.
8ceddf57 2572
d91a99f1 2573 CHREC is an expression with 2 operands to be instantiated.
2574
2575 CACHE is the cache of already instantiated values.
2576
2577 FOLD_CONVERSIONS should be set to true when the conversions that
2578 may wrap in signed/pointer type are folded, as long as the value of
2579 the chrec is preserved.
2580
2581 SIZE_EXPR is used for computing the size of the expression to be
2582 instantiated, and to stop if it exceeds some limit. */
2583
2584static tree
2585instantiate_scev_2 (basic_block instantiate_below,
6ee802ad 2586 struct loop *evolution_loop, struct loop *inner_loop,
2587 tree chrec,
32e31826 2588 bool fold_conversions, int size_expr)
d91a99f1 2589{
2590 tree op1;
2591 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2592 inner_loop, TREE_OPERAND (chrec, 0),
32e31826 2593 fold_conversions, size_expr);
d91a99f1 2594 if (op0 == chrec_dont_know)
2595 return chrec_dont_know;
2596
2597 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2598 inner_loop, TREE_OPERAND (chrec, 1),
32e31826 2599 fold_conversions, size_expr);
d91a99f1 2600 if (op1 == chrec_dont_know)
2601 return chrec_dont_know;
2602
2603 if (op0 == TREE_OPERAND (chrec, 0)
2604 && op1 == TREE_OPERAND (chrec, 1))
2605 return chrec;
2606
2607 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2608}
2609
2610/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2611 and EVOLUTION_LOOP, that were left under a symbolic form.
2612
2613 CHREC is an expression with 2 operands to be instantiated.
8ceddf57 2614
2615 CACHE is the cache of already instantiated values.
2616
2617 FOLD_CONVERSIONS should be set to true when the conversions that
2618 may wrap in signed/pointer type are folded, as long as the value of
2619 the chrec is preserved.
2620
afd80ffb 2621 SIZE_EXPR is used for computing the size of the expression to be
2622 instantiated, and to stop if it exceeds some limit. */
7723692a 2623
c2c3fd24 2624static tree
089aa668 2625instantiate_scev_1 (basic_block instantiate_below,
6ee802ad 2626 struct loop *evolution_loop, struct loop *inner_loop,
2627 tree chrec,
32e31826 2628 bool fold_conversions, int size_expr)
c2c3fd24 2629{
d91a99f1 2630 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
6ee802ad 2631 inner_loop, TREE_OPERAND (chrec, 0),
32e31826 2632 fold_conversions, size_expr);
d91a99f1 2633
2634 if (op0 == chrec_dont_know)
2635 return chrec_dont_know;
2636
2637 if (op0 == TREE_OPERAND (chrec, 0))
2638 return chrec;
2639
2640 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2641}
2642
2643/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2644 and EVOLUTION_LOOP, that were left under a symbolic form.
2645
2646 CHREC is the scalar evolution to instantiate.
2647
2648 CACHE is the cache of already instantiated values.
88d02c9e 2649
d91a99f1 2650 FOLD_CONVERSIONS should be set to true when the conversions that
2651 may wrap in signed/pointer type are folded, as long as the value of
2652 the chrec is preserved.
2653
2654 SIZE_EXPR is used for computing the size of the expression to be
2655 instantiated, and to stop if it exceeds some limit. */
2656
2657static tree
2658instantiate_scev_r (basic_block instantiate_below,
6ee802ad 2659 struct loop *evolution_loop, struct loop *inner_loop,
2660 tree chrec,
32e31826 2661 bool fold_conversions, int size_expr)
d91a99f1 2662{
8fb9f6fe 2663 /* Give up if the expression is larger than the MAX that we allow. */
2664 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2665 return chrec_dont_know;
2666
8491bc74 2667 if (chrec == NULL_TREE
2668 || automatically_generated_chrec_p (chrec)
903dae48 2669 || is_gimple_min_invariant (chrec))
c2c3fd24 2670 return chrec;
2671
2672 switch (TREE_CODE (chrec))
2673 {
2674 case SSA_NAME:
6ee802ad 2675 return instantiate_scev_name (instantiate_below, evolution_loop,
2676 inner_loop, chrec,
32e31826 2677 fold_conversions, size_expr);
c2c3fd24 2678
2679 case POLYNOMIAL_CHREC:
6ee802ad 2680 return instantiate_scev_poly (instantiate_below, evolution_loop,
2681 inner_loop, chrec,
32e31826 2682 fold_conversions, size_expr);
c2c3fd24 2683
0de36bdb 2684 case POINTER_PLUS_EXPR:
c2c3fd24 2685 case PLUS_EXPR:
c2c3fd24 2686 case MINUS_EXPR:
c2c3fd24 2687 case MULT_EXPR:
6ee802ad 2688 return instantiate_scev_binary (instantiate_below, evolution_loop,
2689 inner_loop, chrec,
9e9aa0c6 2690 TREE_CODE (chrec), chrec_type (chrec),
2691 TREE_OPERAND (chrec, 0),
2692 TREE_OPERAND (chrec, 1),
32e31826 2693 fold_conversions, size_expr);
c2c3fd24 2694
72dd6141 2695 CASE_CONVERT:
6ee802ad 2696 return instantiate_scev_convert (instantiate_below, evolution_loop,
2697 inner_loop, chrec,
7723692a 2698 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
32e31826 2699 fold_conversions, size_expr);
c2c3fd24 2700
9d206f16 2701 case NEGATE_EXPR:
b6eab06c 2702 case BIT_NOT_EXPR:
6ee802ad 2703 return instantiate_scev_not (instantiate_below, evolution_loop,
2704 inner_loop, chrec,
c43f1e90 2705 TREE_CODE (chrec), TREE_TYPE (chrec),
2706 TREE_OPERAND (chrec, 0),
32e31826 2707 fold_conversions, size_expr);
b6eab06c 2708
0d0cdcaa 2709 case ADDR_EXPR:
c2c3fd24 2710 case SCEV_NOT_KNOWN:
2711 return chrec_dont_know;
2712
2713 case SCEV_KNOWN:
2714 return chrec_known;
5a10dfba 2715
3e0b5bba 2716 case ARRAY_REF:
6ee802ad 2717 return instantiate_array_ref (instantiate_below, evolution_loop,
2718 inner_loop, chrec,
32e31826 2719 fold_conversions, size_expr);
3e0b5bba 2720
c2c3fd24 2721 default:
2722 break;
2723 }
2724
8e34a7c6 2725 if (VL_EXP_CLASS_P (chrec))
2726 return chrec_dont_know;
2727
c2c3fd24 2728 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2729 {
2730 case 3:
6ee802ad 2731 return instantiate_scev_3 (instantiate_below, evolution_loop,
2732 inner_loop, chrec,
32e31826 2733 fold_conversions, size_expr);
c2c3fd24 2734
2735 case 2:
6ee802ad 2736 return instantiate_scev_2 (instantiate_below, evolution_loop,
2737 inner_loop, chrec,
32e31826 2738 fold_conversions, size_expr);
39251a91 2739
c2c3fd24 2740 case 1:
6ee802ad 2741 return instantiate_scev_1 (instantiate_below, evolution_loop,
2742 inner_loop, chrec,
32e31826 2743 fold_conversions, size_expr);
c2c3fd24 2744
2745 case 0:
2746 return chrec;
2747
2748 default:
2749 break;
2750 }
2751
2752 /* Too complicated to handle. */
2753 return chrec_dont_know;
2754}
b9d73ea6 2755
2756/* Analyze all the parameters of the chrec that were left under a
089aa668 2757 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2758 recursive instantiation of parameters: a parameter is a variable
2759 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2760 a function parameter. */
b9d73ea6 2761
2762tree
089aa668 2763instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
afd80ffb 2764 tree chrec)
b9d73ea6 2765{
c2c3fd24 2766 tree res;
2767
487a9bc1 2768 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 2769 {
afd80ffb 2770 fprintf (dump_file, "(instantiate_scev \n");
089aa668 2771 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
afd80ffb 2772 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
c2c3fd24 2773 fprintf (dump_file, " (chrec = ");
2774 print_generic_expr (dump_file, chrec, 0);
2775 fprintf (dump_file, ")\n");
2776 }
48e1416a 2777
32e31826 2778 bool destr = false;
2779 if (!global_cache)
2780 {
2781 global_cache = new instantiate_cache_type;
2782 destr = true;
2783 }
2784
6ee802ad 2785 res = instantiate_scev_r (instantiate_below, evolution_loop,
32e31826 2786 NULL, chrec, false, 0);
2787
2788 if (destr)
2789 {
2790 delete global_cache;
2791 global_cache = NULL;
2792 }
c2c3fd24 2793
487a9bc1 2794 if (dump_file && (dump_flags & TDF_SCEV))
c2c3fd24 2795 {
2796 fprintf (dump_file, " (res = ");
2797 print_generic_expr (dump_file, res, 0);
2798 fprintf (dump_file, "))\n");
2799 }
15a951ca 2800
c2c3fd24 2801 return res;
2802}
2803
2804/* Similar to instantiate_parameters, but does not introduce the
88d02c9e 2805 evolutions in outer loops for LOOP invariants in CHREC, and does not
2806 care about causing overflows, as long as they do not affect value
2807 of an expression. */
c2c3fd24 2808
80bb306a 2809tree
c2c3fd24 2810resolve_mixers (struct loop *loop, tree chrec)
2811{
32e31826 2812 bool destr = false;
2813 if (!global_cache)
2814 {
2815 global_cache = new instantiate_cache_type;
2816 destr = true;
2817 }
2818
6ee802ad 2819 tree ret = instantiate_scev_r (block_before_loop (loop), loop, NULL,
32e31826 2820 chrec, true, 0);
2821
2822 if (destr)
2823 {
2824 delete global_cache;
2825 global_cache = NULL;
2826 }
2827
15a951ca 2828 return ret;
c2c3fd24 2829}
2830
48e1416a 2831/* Entry point for the analysis of the number of iterations pass.
c2c3fd24 2832 This function tries to safely approximate the number of iterations
2833 the loop will run. When this property is not decidable at compile
134c053e 2834 time, the result is chrec_dont_know. Otherwise the result is a
2835 scalar or a symbolic parameter. When the number of iterations may
2836 be equal to zero and the property cannot be determined at compile
2837 time, the result is a COND_EXPR that represents in a symbolic form
2838 the conditions under which the number of iterations is not zero.
48e1416a 2839
c2c3fd24 2840 Example of analysis: suppose that the loop has an exit condition:
48e1416a 2841
c2c3fd24 2842 "if (b > 49) goto end_loop;"
48e1416a 2843
c2c3fd24 2844 and that in a previous analysis we have determined that the
2845 variable 'b' has an evolution function:
48e1416a 2846
2847 "EF = {23, +, 5}_2".
2848
c2c3fd24 2849 When we evaluate the function at the point 5, i.e. the value of the
2850 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2851 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2852 the loop body has been executed 6 times. */
2853
48e1416a 2854tree
0c3c2e56 2855number_of_latch_executions (struct loop *loop)
c2c3fd24 2856{
c2c3fd24 2857 edge exit;
2858 struct tree_niter_desc niter_desc;
134c053e 2859 tree may_be_zero;
2860 tree res;
c2c3fd24 2861
134c053e 2862 /* Determine whether the number of iterations in loop has already
c2c3fd24 2863 been computed. */
2864 res = loop->nb_iterations;
2865 if (res)
2866 return res;
134c053e 2867
2868 may_be_zero = NULL_TREE;
c2c3fd24 2869
487a9bc1 2870 if (dump_file && (dump_flags & TDF_SCEV))
134c053e 2871 fprintf (dump_file, "(number_of_iterations_in_loop = \n");
48e1416a 2872
134c053e 2873 res = chrec_dont_know;
d9e7e1a2 2874 exit = single_exit (loop);
c2c3fd24 2875
134c053e 2876 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
2877 {
2878 may_be_zero = niter_desc.may_be_zero;
2879 res = niter_desc.niter;
2880 }
2881
2882 if (res == chrec_dont_know
2883 || !may_be_zero
2884 || integer_zerop (may_be_zero))
2885 ;
2886 else if (integer_nonzerop (may_be_zero))
2887 res = build_int_cst (TREE_TYPE (res), 0);
c2c3fd24 2888
134c053e 2889 else if (COMPARISON_CLASS_P (may_be_zero))
2890 res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero,
2891 build_int_cst (TREE_TYPE (res), 0), res);
c2c3fd24 2892 else
2893 res = chrec_dont_know;
2894
487a9bc1 2895 if (dump_file && (dump_flags & TDF_SCEV))
134c053e 2896 {
2897 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
2898 print_generic_expr (dump_file, res, 0);
2899 fprintf (dump_file, "))\n");
2900 }
2901
2902 loop->nb_iterations = res;
2903 return res;
c2c3fd24 2904}
2905
0c3c2e56 2906/* Returns the number of executions of the exit condition of LOOP,
2907 i.e., the number by one higher than number_of_latch_executions.
f0b5f617 2908 Note that unlike number_of_latch_executions, this number does
0c3c2e56 2909 not necessarily fit in the unsigned variant of the type of
2910 the control variable -- if the number of iterations is a constant,
2911 we return chrec_dont_know if adding one to number_of_latch_executions
2912 overflows; however, in case the number of iterations is symbolic
2913 expression, the caller is responsible for dealing with this
2914 the possible overflow. */
2915
48e1416a 2916tree
0c3c2e56 2917number_of_exit_cond_executions (struct loop *loop)
2918{
2919 tree ret = number_of_latch_executions (loop);
2920 tree type = chrec_type (ret);
2921
2922 if (chrec_contains_undetermined (ret))
2923 return ret;
2924
2925 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2926 if (TREE_CODE (ret) == INTEGER_CST
2927 && TREE_OVERFLOW (ret))
2928 return chrec_dont_know;
2929
2930 return ret;
2931}
2932
c2c3fd24 2933\f
2934
2935/* Counters for the stats. */
2936
48e1416a 2937struct chrec_stats
c2c3fd24 2938{
2939 unsigned nb_chrecs;
2940 unsigned nb_affine;
2941 unsigned nb_affine_multivar;
2942 unsigned nb_higher_poly;
2943 unsigned nb_chrec_dont_know;
2944 unsigned nb_undetermined;
2945};
2946
2947/* Reset the counters. */
2948
2949static inline void
2950reset_chrecs_counters (struct chrec_stats *stats)
2951{
2952 stats->nb_chrecs = 0;
2953 stats->nb_affine = 0;
2954 stats->nb_affine_multivar = 0;
2955 stats->nb_higher_poly = 0;
2956 stats->nb_chrec_dont_know = 0;
2957 stats->nb_undetermined = 0;
2958}
2959
2960/* Dump the contents of a CHREC_STATS structure. */
2961
2962static void
2963dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2964{
2965 fprintf (file, "\n(\n");
2966 fprintf (file, "-----------------------------------------\n");
2967 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2968 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
48e1416a 2969 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
c2c3fd24 2970 stats->nb_higher_poly);
2971 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2972 fprintf (file, "-----------------------------------------\n");
2973 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
48e1416a 2974 fprintf (file, "%d\twith undetermined coefficients\n",
c2c3fd24 2975 stats->nb_undetermined);
2976 fprintf (file, "-----------------------------------------\n");
48e1416a 2977 fprintf (file, "%d\tchrecs in the scev database\n",
c2c3fd24 2978 (int) htab_elements (scalar_evolution_info));
2979 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2980 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2981 fprintf (file, "-----------------------------------------\n");
2982 fprintf (file, ")\n\n");
2983}
2984
2985/* Gather statistics about CHREC. */
2986
2987static void
2988gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2989{
2990 if (dump_file && (dump_flags & TDF_STATS))
2991 {
2992 fprintf (dump_file, "(classify_chrec ");
2993 print_generic_expr (dump_file, chrec, 0);
2994 fprintf (dump_file, "\n");
2995 }
48e1416a 2996
c2c3fd24 2997 stats->nb_chrecs++;
48e1416a 2998
c2c3fd24 2999 if (chrec == NULL_TREE)
3000 {
3001 stats->nb_undetermined++;
3002 return;
3003 }
48e1416a 3004
c2c3fd24 3005 switch (TREE_CODE (chrec))
3006 {
3007 case POLYNOMIAL_CHREC:
3008 if (evolution_function_is_affine_p (chrec))
3009 {
3010 if (dump_file && (dump_flags & TDF_STATS))
3011 fprintf (dump_file, " affine_univariate\n");
3012 stats->nb_affine++;
3013 }
9c77efff 3014 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
c2c3fd24 3015 {
3016 if (dump_file && (dump_flags & TDF_STATS))
3017 fprintf (dump_file, " affine_multivariate\n");
3018 stats->nb_affine_multivar++;
3019 }
3020 else
3021 {
3022 if (dump_file && (dump_flags & TDF_STATS))
3023 fprintf (dump_file, " higher_degree_polynomial\n");
3024 stats->nb_higher_poly++;
3025 }
48e1416a 3026
c2c3fd24 3027 break;
3028
3029 default:
3030 break;
3031 }
48e1416a 3032
c2c3fd24 3033 if (chrec_contains_undetermined (chrec))
3034 {
3035 if (dump_file && (dump_flags & TDF_STATS))
3036 fprintf (dump_file, " undetermined\n");
3037 stats->nb_undetermined++;
3038 }
48e1416a 3039
c2c3fd24 3040 if (dump_file && (dump_flags & TDF_STATS))
3041 fprintf (dump_file, ")\n");
3042}
3043
c2c3fd24 3044/* Callback for htab_traverse, gathers information on chrecs in the
3045 hashtable. */
3046
3047static int
3048gather_stats_on_scev_database_1 (void **slot, void *stats)
3049{
a9c6c0e3 3050 struct scev_info_str *entry = (struct scev_info_str *) *slot;
c2c3fd24 3051
a9c6c0e3 3052 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
c2c3fd24 3053
3054 return 1;
3055}
3056
3057/* Classify the chrecs of the whole database. */
3058
48e1416a 3059void
c2c3fd24 3060gather_stats_on_scev_database (void)
3061{
3062 struct chrec_stats stats;
48e1416a 3063
c2c3fd24 3064 if (!dump_file)
3065 return;
48e1416a 3066
c2c3fd24 3067 reset_chrecs_counters (&stats);
48e1416a 3068
c2c3fd24 3069 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
3070 &stats);
3071
3072 dump_chrecs_stats (dump_file, &stats);
3073}
3074
3075\f
3076
3077/* Initializer. */
3078
3079static void
3080initialize_scalar_evolutions_analyzer (void)
3081{
3082 /* The elements below are unique. */
3083 if (chrec_dont_know == NULL_TREE)
3084 {
3085 chrec_not_analyzed_yet = NULL_TREE;
3086 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
3087 chrec_known = make_node (SCEV_KNOWN);
f3830c7c 3088 TREE_TYPE (chrec_dont_know) = void_type_node;
3089 TREE_TYPE (chrec_known) = void_type_node;
c2c3fd24 3090 }
3091}
3092
3093/* Initialize the analysis of scalar evolutions for LOOPS. */
3094
3095void
7194de72 3096scev_initialize (void)
c2c3fd24 3097{
17519ba0 3098 loop_iterator li;
3099 struct loop *loop;
c2c3fd24 3100
ba72912a 3101
3102 scalar_evolution_info = htab_create_ggc (100, hash_scev_info, eq_scev_info,
3103 del_scev_info);
48e1416a 3104
c2c3fd24 3105 initialize_scalar_evolutions_analyzer ();
3106
17519ba0 3107 FOR_EACH_LOOP (li, loop, 0)
3108 {
3109 loop->nb_iterations = NULL_TREE;
3110 }
c2c3fd24 3111}
3112
a9ef9877 3113/* Return true if SCEV is initialized. */
3114
3115bool
3116scev_initialized_p (void)
3117{
3118 return scalar_evolution_info != NULL;
3119}
3120
efe339e3 3121/* Cleans up the information cached by the scalar evolutions analysis
3122 in the hash table. */
3123
3124void
3125scev_reset_htab (void)
3126{
3127 if (!scalar_evolution_info)
3128 return;
3129
3130 htab_empty (scalar_evolution_info);
3131}
3132
3133/* Cleans up the information cached by the scalar evolutions analysis
3134 in the hash table and in the loop->nb_iterations. */
c2c3fd24 3135
3136void
3137scev_reset (void)
3138{
17519ba0 3139 loop_iterator li;
c2c3fd24 3140 struct loop *loop;
3141
efe339e3 3142 scev_reset_htab ();
3143
3144 if (!current_loops)
c2c3fd24 3145 return;
3146
17519ba0 3147 FOR_EACH_LOOP (li, loop, 0)
c2c3fd24 3148 {
17519ba0 3149 loop->nb_iterations = NULL_TREE;
c2c3fd24 3150 }
b9d73ea6 3151}
3152
76610704 3153/* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3154 respect to WRTO_LOOP and returns its base and step in IV if possible
3155 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3156 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3157 invariant in LOOP. Otherwise we require it to be an integer constant.
48e1416a 3158
76610704 3159 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3160 because it is computed in signed arithmetics). Consequently, adding an
3161 induction variable
48e1416a 3162
76610704 3163 for (i = IV->base; ; i += IV->step)
3164
3165 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3166 false for the type of the induction variable, or you can prove that i does
3167 not wrap by some other argument. Otherwise, this might introduce undefined
3168 behavior, and
48e1416a 3169
76610704 3170 for (i = iv->base; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3171
3172 must be used instead. */
b9d73ea6 3173
3174bool
76610704 3175simple_iv (struct loop *wrto_loop, struct loop *use_loop, tree op,
3176 affine_iv *iv, bool allow_nonconstant_step)
b9d73ea6 3177{
c2c3fd24 3178 tree type, ev;
553b9523 3179 bool folded_casts;
c2c3fd24 3180
553b9523 3181 iv->base = NULL_TREE;
3182 iv->step = NULL_TREE;
3183 iv->no_overflow = false;
c2c3fd24 3184
3185 type = TREE_TYPE (op);
367113ea 3186 if (!POINTER_TYPE_P (type)
3187 && !INTEGRAL_TYPE_P (type))
c2c3fd24 3188 return false;
3189
76610704 3190 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
553b9523 3191 &folded_casts);
76610704 3192 if (chrec_contains_undetermined (ev)
3193 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
c2c3fd24 3194 return false;
3195
76610704 3196 if (tree_does_not_contain_chrecs (ev))
c2c3fd24 3197 {
553b9523 3198 iv->base = ev;
7a973feb 3199 iv->step = build_int_cst (TREE_TYPE (ev), 0);
553b9523 3200 iv->no_overflow = true;
c2c3fd24 3201 return true;
3202 }
3203
3204 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
76610704 3205 || CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
c2c3fd24 3206 return false;
3207
553b9523 3208 iv->step = CHREC_RIGHT (ev);
76610704 3209 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
3210 || tree_contains_chrecs (iv->step, NULL))
c2c3fd24 3211 return false;
651874e1 3212
553b9523 3213 iv->base = CHREC_LEFT (ev);
76610704 3214 if (tree_contains_chrecs (iv->base, NULL))
c2c3fd24 3215 return false;
3216
981eb798 3217 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
3218
c2c3fd24 3219 return true;
3220}
3221
c2c3fd24 3222/* Finalize the scalar evolution analysis. */
3223
3224void
3225scev_finalize (void)
3226{
7a3bf727 3227 if (!scalar_evolution_info)
3228 return;
c2c3fd24 3229 htab_delete (scalar_evolution_info);
d8a0d6b8 3230 scalar_evolution_info = NULL;
c2c3fd24 3231}
3232
590f8b68 3233/* Returns true if the expression EXPR is considered to be too expensive
3234 for scev_const_prop. */
3235
3236bool
3237expression_expensive_p (tree expr)
3238{
3239 enum tree_code code;
3240
3241 if (is_gimple_val (expr))
3242 return false;
3243
3244 code = TREE_CODE (expr);
3245 if (code == TRUNC_DIV_EXPR
3246 || code == CEIL_DIV_EXPR
3247 || code == FLOOR_DIV_EXPR
3248 || code == ROUND_DIV_EXPR
3249 || code == TRUNC_MOD_EXPR
3250 || code == CEIL_MOD_EXPR
3251 || code == FLOOR_MOD_EXPR
3252 || code == ROUND_MOD_EXPR
3253 || code == EXACT_DIV_EXPR)
3254 {
3255 /* Division by power of two is usually cheap, so we allow it.
3256 Forbid anything else. */
3257 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
3258 return true;
3259 }
3260
3261 switch (TREE_CODE_CLASS (code))
3262 {
3263 case tcc_binary:
3264 case tcc_comparison:
3265 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
3266 return true;
3267
3268 /* Fallthru. */
3269 case tcc_unary:
3270 return expression_expensive_p (TREE_OPERAND (expr, 0));
3271
3272 default:
3273 return true;
3274 }
3275}
3276
10fec820 3277/* Replace ssa names for that scev can prove they are constant by the
f4d7629d 3278 appropriate constants. Also perform final value replacement in loops,
3279 in case the replacement expressions are cheap.
48e1416a 3280
10fec820 3281 We only consider SSA names defined by phi nodes; rest is left to the
3282 ordinary constant propagation pass. */
3283
2a1990e9 3284unsigned int
10fec820 3285scev_const_prop (void)
3286{
3287 basic_block bb;
75a70cf9 3288 tree name, type, ev;
3289 gimple phi, ass;
f4d7629d 3290 struct loop *loop, *ex_loop;
10fec820 3291 bitmap ssa_names_to_remove = NULL;
f4d7629d 3292 unsigned i;
17519ba0 3293 loop_iterator li;
75a70cf9 3294 gimple_stmt_iterator psi;
10fec820 3295
41f75a99 3296 if (number_of_loops (cfun) <= 1)
2a1990e9 3297 return 0;
10fec820 3298
3299 FOR_EACH_BB (bb)
3300 {
3301 loop = bb->loop_father;
3302
75a70cf9 3303 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
10fec820 3304 {
75a70cf9 3305 phi = gsi_stmt (psi);
10fec820 3306 name = PHI_RESULT (phi);
3307
7c782c9b 3308 if (virtual_operand_p (name))
10fec820 3309 continue;
3310
3311 type = TREE_TYPE (name);
3312
3313 if (!POINTER_TYPE_P (type)
3314 && !INTEGRAL_TYPE_P (type))
3315 continue;
3316
3317 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
3318 if (!is_gimple_min_invariant (ev)
3319 || !may_propagate_copy (name, ev))
3320 continue;
3321
3322 /* Replace the uses of the name. */
9887dd18 3323 if (name != ev)
3324 replace_uses_by (name, ev);
10fec820 3325
3326 if (!ssa_names_to_remove)
3327 ssa_names_to_remove = BITMAP_ALLOC (NULL);
3328 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
3329 }
3330 }
3331
17889f9d 3332 /* Remove the ssa names that were replaced by constants. We do not
3333 remove them directly in the previous cycle, since this
3334 invalidates scev cache. */
10fec820 3335 if (ssa_names_to_remove)
3336 {
3337 bitmap_iterator bi;
10fec820 3338
3339 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
3340 {
75a70cf9 3341 gimple_stmt_iterator psi;
10fec820 3342 name = ssa_name (i);
3343 phi = SSA_NAME_DEF_STMT (name);
3344
75a70cf9 3345 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
3346 psi = gsi_for_stmt (phi);
3347 remove_phi_node (&psi, true);
10fec820 3348 }
3349
3350 BITMAP_FREE (ssa_names_to_remove);
3351 scev_reset ();
3352 }
f4d7629d 3353
3354 /* Now the regular final value replacement. */
17519ba0 3355 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
f4d7629d 3356 {
3357 edge exit;
75a70cf9 3358 tree def, rslt, niter;
3359 gimple_stmt_iterator bsi;
f4d7629d 3360
f4d7629d 3361 /* If we do not know exact number of iterations of the loop, we cannot
3362 replace the final value. */
d9e7e1a2 3363 exit = single_exit (loop);
553b9523 3364 if (!exit)
3365 continue;
3366
0c3c2e56 3367 niter = number_of_latch_executions (loop);
a463eaea 3368 if (niter == chrec_dont_know)
f4d7629d 3369 continue;
5bacce6b 3370
3371 /* Ensure that it is possible to insert new statements somewhere. */
3372 if (!single_pred_p (exit->dest))
3373 split_loop_exit_edge (exit);
75a70cf9 3374 bsi = gsi_after_labels (exit->dest);
5bacce6b 3375
9e3536f4 3376 ex_loop = superloop_at_depth (loop,
3377 loop_depth (exit->dest->loop_father) + 1);
f4d7629d 3378
75a70cf9 3379 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
f4d7629d 3380 {
75a70cf9 3381 phi = gsi_stmt (psi);
5bacce6b 3382 rslt = PHI_RESULT (phi);
f4d7629d 3383 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
7c782c9b 3384 if (virtual_operand_p (def))
75a70cf9 3385 {
3386 gsi_next (&psi);
3387 continue;
3388 }
f4d7629d 3389
3390 if (!POINTER_TYPE_P (TREE_TYPE (def))
3391 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
75a70cf9 3392 {
3393 gsi_next (&psi);
3394 continue;
3395 }
f4d7629d 3396
553b9523 3397 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
5bacce6b 3398 def = compute_overall_effect_of_inner_loop (ex_loop, def);
f4d7629d 3399 if (!tree_does_not_contain_chrecs (def)
72079d62 3400 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3401 /* Moving the computation from the loop may prolong life range
3402 of some ssa names, which may cause problems if they appear
3403 on abnormal edges. */
590f8b68 3404 || contains_abnormal_ssa_name_p (def)
3405 /* Do not emit expensive expressions. The rationale is that
3406 when someone writes a code like
3407
3408 while (n > 45) n -= 45;
3409
3410 he probably knows that n is not large, and does not want it
3411 to be turned into n %= 45. */
3412 || expression_expensive_p (def))
75a70cf9 3413 {
d70b7140 3414 if (dump_file && (dump_flags & TDF_DETAILS))
3415 {
3416 fprintf (dump_file, "not replacing:\n ");
3417 print_gimple_stmt (dump_file, phi, 0, 0);
3418 fprintf (dump_file, "\n");
3419 }
75a70cf9 3420 gsi_next (&psi);
3421 continue;
3422 }
f4d7629d 3423
17889f9d 3424 /* Eliminate the PHI node and replace it by a computation outside
5bacce6b 3425 the loop. */
d70b7140 3426 if (dump_file)
3427 {
3428 fprintf (dump_file, "\nfinal value replacement:\n ");
3429 print_gimple_stmt (dump_file, phi, 0, 0);
3430 fprintf (dump_file, " with\n ");
3431 }
5bacce6b 3432 def = unshare_expr (def);
75a70cf9 3433 remove_phi_node (&psi, false);
3434
3435 def = force_gimple_operand_gsi (&bsi, def, false, NULL_TREE,
3436 true, GSI_SAME_STMT);
3437 ass = gimple_build_assign (rslt, def);
3438 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
d70b7140 3439 if (dump_file)
3440 {
3441 print_gimple_stmt (dump_file, ass, 0, 0);
3442 fprintf (dump_file, "\n");
3443 }
f4d7629d 3444 }
3445 }
2a1990e9 3446 return 0;
10fec820 3447}
ccae4f9f 3448
3449#include "gt-tree-scalar-evolution.h"