]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-scalar-evolution.c
i386.md (movmemsi): Also active when TARGET_INLINE_ALL_STRINGOPS.
[thirdparty/gcc.git] / gcc / tree-scalar-evolution.c
CommitLineData
e9eb809d 1/* Scalar evolution detector.
ad616de1 2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
e9eb809d
ZD
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
21
9baba81b
SP
22/*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a MODIFY_EXPR: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 3: Higher degree polynomials.
159
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
166
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
171
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174
175 Example 4: Lucas, Fibonacci, or mixers in general.
176
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
183
184 a -> (1, c)_1
185 c -> {3, +, a}_1
186
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
192
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
195
196 Example 5: Flip-flops, or exchangers.
197
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
204
205 a -> (1, c)_1
206 c -> (3, a)_1
207
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
210
211 a -> |1, 3|_1
212 c -> |3, 1|_1
213
214 This transformation is not yet implemented.
215
216 Further readings:
217
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
225
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232*/
233
e9eb809d
ZD
234#include "config.h"
235#include "system.h"
236#include "coretypes.h"
237#include "tm.h"
238#include "errors.h"
239#include "ggc.h"
240#include "tree.h"
9baba81b
SP
241
242/* These RTL headers are needed for basic-block.h. */
e9eb809d
ZD
243#include "rtl.h"
244#include "basic-block.h"
245#include "diagnostic.h"
246#include "tree-flow.h"
247#include "tree-dump.h"
248#include "timevar.h"
249#include "cfgloop.h"
250#include "tree-chrec.h"
251#include "tree-scalar-evolution.h"
9baba81b
SP
252#include "tree-pass.h"
253#include "flags.h"
254
255static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
256static tree resolve_mixers (struct loop *, tree);
257
258/* The cached information about a ssa name VAR, claiming that inside LOOP,
259 the value of VAR can be expressed as CHREC. */
260
261struct scev_info_str
262{
263 tree var;
264 tree chrec;
265};
266
267/* Counters for the scev database. */
268static unsigned nb_set_scev = 0;
269static unsigned nb_get_scev = 0;
270
271/* The following trees are unique elements. Thus the comparison of
272 another element to these elements should be done on the pointer to
273 these trees, and not on their value. */
274
275/* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
276tree chrec_not_analyzed_yet;
277
278/* Reserved to the cases where the analyzer has detected an
279 undecidable property at compile time. */
280tree chrec_dont_know;
281
282/* When the analyzer has detected that a property will never
283 happen, then it qualifies it with chrec_known. */
284tree chrec_known;
285
286static bitmap already_instantiated;
287
288static htab_t scalar_evolution_info;
289
290\f
291/* Constructs a new SCEV_INFO_STR structure. */
292
293static inline struct scev_info_str *
294new_scev_info_str (tree var)
295{
296 struct scev_info_str *res;
297
298 res = xmalloc (sizeof (struct scev_info_str));
299 res->var = var;
300 res->chrec = chrec_not_analyzed_yet;
301
302 return res;
303}
304
305/* Computes a hash function for database element ELT. */
306
307static hashval_t
308hash_scev_info (const void *elt)
309{
310 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
311}
312
313/* Compares database elements E1 and E2. */
314
315static int
316eq_scev_info (const void *e1, const void *e2)
317{
318 const struct scev_info_str *elt1 = e1;
319 const struct scev_info_str *elt2 = e2;
320
321 return elt1->var == elt2->var;
322}
323
324/* Deletes database element E. */
325
326static void
327del_scev_info (void *e)
328{
329 free (e);
330}
331
332/* Get the index corresponding to VAR in the current LOOP. If
333 it's the first time we ask for this VAR, then we return
b01d837f 334 chrec_not_analyzed_yet for this VAR and return its index. */
9baba81b
SP
335
336static tree *
337find_var_scev_info (tree var)
338{
339 struct scev_info_str *res;
340 struct scev_info_str tmp;
341 PTR *slot;
342
343 tmp.var = var;
344 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
345
346 if (!*slot)
347 *slot = new_scev_info_str (var);
348 res = *slot;
349
350 return &res->chrec;
351}
352
353/* Tries to express CHREC in wider type TYPE. */
354
355tree
356count_ev_in_wider_type (tree type, tree chrec)
357{
358 tree base, step;
359 struct loop *loop;
360
361 if (!evolution_function_is_affine_p (chrec))
362 return fold_convert (type, chrec);
363
364 base = CHREC_LEFT (chrec);
365 step = CHREC_RIGHT (chrec);
366 loop = current_loops->parray[CHREC_VARIABLE (chrec)];
367
368 /* TODO -- if we knew the statement at that the conversion occurs,
369 we could pass it to can_count_iv_in_wider_type and get a better
370 result. */
371 step = can_count_iv_in_wider_type (loop, type, base, step, NULL_TREE);
372 if (!step)
373 return fold_convert (type, chrec);
374 base = chrec_convert (type, base);
375
376 return build_polynomial_chrec (CHREC_VARIABLE (chrec),
377 base, step);
378}
379
380/* Return true when CHREC contains symbolic names defined in
381 LOOP_NB. */
382
383bool
384chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
385{
386 if (chrec == NULL_TREE)
387 return false;
388
389 if (TREE_INVARIANT (chrec))
390 return false;
391
392 if (TREE_CODE (chrec) == VAR_DECL
393 || TREE_CODE (chrec) == PARM_DECL
394 || TREE_CODE (chrec) == FUNCTION_DECL
395 || TREE_CODE (chrec) == LABEL_DECL
396 || TREE_CODE (chrec) == RESULT_DECL
397 || TREE_CODE (chrec) == FIELD_DECL)
398 return true;
399
400 if (TREE_CODE (chrec) == SSA_NAME)
401 {
402 tree def = SSA_NAME_DEF_STMT (chrec);
403 struct loop *def_loop = loop_containing_stmt (def);
404 struct loop *loop = current_loops->parray[loop_nb];
405
406 if (def_loop == NULL)
407 return false;
408
409 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
410 return true;
411
412 return false;
413 }
414
415 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
416 {
417 case 3:
418 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
419 loop_nb))
420 return true;
421
422 case 2:
423 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
424 loop_nb))
425 return true;
426
427 case 1:
428 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
429 loop_nb))
430 return true;
431
432 default:
433 return false;
434 }
435}
436
437/* Return true when PHI is a loop-phi-node. */
438
439static bool
440loop_phi_node_p (tree phi)
441{
442 /* The implementation of this function is based on the following
443 property: "all the loop-phi-nodes of a loop are contained in the
444 loop's header basic block". */
445
446 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
447}
448
449/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
450 In general, in the case of multivariate evolutions we want to get
451 the evolution in different loops. LOOP specifies the level for
452 which to get the evolution.
453
454 Example:
455
456 | for (j = 0; j < 100; j++)
457 | {
458 | for (k = 0; k < 100; k++)
459 | {
460 | i = k + j; - Here the value of i is a function of j, k.
461 | }
462 | ... = i - Here the value of i is a function of j.
463 | }
464 | ... = i - Here the value of i is a scalar.
465
466 Example:
467
468 | i_0 = ...
469 | loop_1 10 times
470 | i_1 = phi (i_0, i_2)
471 | i_2 = i_1 + 2
472 | endloop
473
474 This loop has the same effect as:
475 LOOP_1 has the same effect as:
476
477 | i_1 = i_0 + 20
478
479 The overall effect of the loop, "i_0 + 20" in the previous example,
480 is obtained by passing in the parameters: LOOP = 1,
481 EVOLUTION_FN = {i_0, +, 2}_1.
482*/
483
484static tree
485compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
486{
487 bool val = false;
488
489 if (evolution_fn == chrec_dont_know)
490 return chrec_dont_know;
491
492 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
493 {
494 if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
495 {
496 struct loop *inner_loop =
497 current_loops->parray[CHREC_VARIABLE (evolution_fn)];
498 tree nb_iter = number_of_iterations_in_loop (inner_loop);
499
500 if (nb_iter == chrec_dont_know)
501 return chrec_dont_know;
502 else
503 {
504 tree res;
505
506 /* Number of iterations is off by one (the ssa name we
507 analyze must be defined before the exit). */
508 nb_iter = chrec_fold_minus (chrec_type (nb_iter),
e6845c23
ZD
509 nb_iter,
510 build_int_cst_type (chrec_type (nb_iter), 1));
9baba81b
SP
511
512 /* evolution_fn is the evolution function in LOOP. Get
513 its value in the nb_iter-th iteration. */
514 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
515
8c27b7d4 516 /* Continue the computation until ending on a parent of LOOP. */
9baba81b
SP
517 return compute_overall_effect_of_inner_loop (loop, res);
518 }
519 }
520 else
521 return evolution_fn;
522 }
523
524 /* If the evolution function is an invariant, there is nothing to do. */
525 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
526 return evolution_fn;
527
528 else
529 return chrec_dont_know;
530}
531
532/* Determine whether the CHREC is always positive/negative. If the expression
533 cannot be statically analyzed, return false, otherwise set the answer into
534 VALUE. */
535
536bool
537chrec_is_positive (tree chrec, bool *value)
538{
539 bool value0, value1;
540 bool value2;
541 tree end_value;
542 tree nb_iter;
543
544 switch (TREE_CODE (chrec))
545 {
546 case POLYNOMIAL_CHREC:
547 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
548 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
549 return false;
550
551 /* FIXME -- overflows. */
552 if (value0 == value1)
553 {
554 *value = value0;
555 return true;
556 }
557
558 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
559 and the proof consists in showing that the sign never
560 changes during the execution of the loop, from 0 to
561 loop->nb_iterations. */
562 if (!evolution_function_is_affine_p (chrec))
563 return false;
564
565 nb_iter = number_of_iterations_in_loop
566 (current_loops->parray[CHREC_VARIABLE (chrec)]);
567
568 if (chrec_contains_undetermined (nb_iter))
569 return false;
570
571 nb_iter = chrec_fold_minus
572 (chrec_type (nb_iter), nb_iter,
5212068f 573 build_int_cst (chrec_type (nb_iter), 1));
9baba81b
SP
574
575#if 0
576 /* TODO -- If the test is after the exit, we may decrease the number of
577 iterations by one. */
578 if (after_exit)
579 nb_iter = chrec_fold_minus
580 (chrec_type (nb_iter), nb_iter,
5212068f 581 build_int_cst (chrec_type (nb_iter), 1));
9baba81b
SP
582#endif
583
584 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
585
586 if (!chrec_is_positive (end_value, &value2))
587 return false;
588
589 *value = value0;
590 return value0 == value1;
591
592 case INTEGER_CST:
593 *value = (tree_int_cst_sgn (chrec) == 1);
594 return true;
595
596 default:
597 return false;
598 }
599}
600
601/* Associate CHREC to SCALAR. */
602
603static void
604set_scalar_evolution (tree scalar, tree chrec)
605{
606 tree *scalar_info;
607
608 if (TREE_CODE (scalar) != SSA_NAME)
609 return;
610
611 scalar_info = find_var_scev_info (scalar);
612
613 if (dump_file)
614 {
615 if (dump_flags & TDF_DETAILS)
616 {
617 fprintf (dump_file, "(set_scalar_evolution \n");
618 fprintf (dump_file, " (scalar = ");
619 print_generic_expr (dump_file, scalar, 0);
620 fprintf (dump_file, ")\n (scalar_evolution = ");
621 print_generic_expr (dump_file, chrec, 0);
622 fprintf (dump_file, "))\n");
623 }
624 if (dump_flags & TDF_STATS)
625 nb_set_scev++;
626 }
627
628 *scalar_info = chrec;
629}
630
631/* Retrieve the chrec associated to SCALAR in the LOOP. */
632
633static tree
634get_scalar_evolution (tree scalar)
635{
636 tree res;
637
638 if (dump_file)
639 {
640 if (dump_flags & TDF_DETAILS)
641 {
642 fprintf (dump_file, "(get_scalar_evolution \n");
643 fprintf (dump_file, " (scalar = ");
644 print_generic_expr (dump_file, scalar, 0);
645 fprintf (dump_file, ")\n");
646 }
647 if (dump_flags & TDF_STATS)
648 nb_get_scev++;
649 }
650
651 switch (TREE_CODE (scalar))
652 {
653 case SSA_NAME:
654 res = *find_var_scev_info (scalar);
655 break;
656
657 case REAL_CST:
658 case INTEGER_CST:
659 res = scalar;
660 break;
661
662 default:
663 res = chrec_not_analyzed_yet;
664 break;
665 }
666
667 if (dump_file && (dump_flags & TDF_DETAILS))
668 {
669 fprintf (dump_file, " (scalar_evolution = ");
670 print_generic_expr (dump_file, res, 0);
671 fprintf (dump_file, "))\n");
672 }
673
674 return res;
675}
676
677/* Helper function for add_to_evolution. Returns the evolution
678 function for an assignment of the form "a = b + c", where "a" and
679 "b" are on the strongly connected component. CHREC_BEFORE is the
680 information that we already have collected up to this point.
681 TO_ADD is the evolution of "c".
682
683 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
684 evolution the expression TO_ADD, otherwise construct an evolution
685 part for this loop. */
686
687static tree
688add_to_evolution_1 (unsigned loop_nb,
689 tree chrec_before,
690 tree to_add)
691{
692 switch (TREE_CODE (chrec_before))
693 {
694 case POLYNOMIAL_CHREC:
695 if (CHREC_VARIABLE (chrec_before) <= loop_nb)
696 {
697 unsigned var;
698 tree left, right;
699 tree type = chrec_type (chrec_before);
700
701 /* When there is no evolution part in this loop, build it. */
702 if (CHREC_VARIABLE (chrec_before) < loop_nb)
703 {
704 var = loop_nb;
705 left = chrec_before;
5212068f 706 right = build_int_cst (type, 0);
9baba81b
SP
707 }
708 else
709 {
710 var = CHREC_VARIABLE (chrec_before);
711 left = CHREC_LEFT (chrec_before);
712 right = CHREC_RIGHT (chrec_before);
713 }
714
715 return build_polynomial_chrec
716 (var, left, chrec_fold_plus (type, right, to_add));
717 }
718 else
719 /* Search the evolution in LOOP_NB. */
720 return build_polynomial_chrec
721 (CHREC_VARIABLE (chrec_before),
722 add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before), to_add),
723 CHREC_RIGHT (chrec_before));
724
725 default:
726 /* These nodes do not depend on a loop. */
727 if (chrec_before == chrec_dont_know)
728 return chrec_dont_know;
729 return build_polynomial_chrec (loop_nb, chrec_before, to_add);
730 }
731}
732
733/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
734 of LOOP_NB.
735
736 Description (provided for completeness, for those who read code in
737 a plane, and for my poor 62 bytes brain that would have forgotten
738 all this in the next two or three months):
739
740 The algorithm of translation of programs from the SSA representation
741 into the chrecs syntax is based on a pattern matching. After having
742 reconstructed the overall tree expression for a loop, there are only
743 two cases that can arise:
744
745 1. a = loop-phi (init, a + expr)
746 2. a = loop-phi (init, expr)
747
748 where EXPR is either a scalar constant with respect to the analyzed
749 loop (this is a degree 0 polynomial), or an expression containing
750 other loop-phi definitions (these are higher degree polynomials).
751
752 Examples:
753
754 1.
755 | init = ...
756 | loop_1
757 | a = phi (init, a + 5)
758 | endloop
759
760 2.
761 | inita = ...
762 | initb = ...
763 | loop_1
764 | a = phi (inita, 2 * b + 3)
765 | b = phi (initb, b + 1)
766 | endloop
767
768 For the first case, the semantics of the SSA representation is:
769
770 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
771
772 that is, there is a loop index "x" that determines the scalar value
773 of the variable during the loop execution. During the first
774 iteration, the value is that of the initial condition INIT, while
775 during the subsequent iterations, it is the sum of the initial
776 condition with the sum of all the values of EXPR from the initial
777 iteration to the before last considered iteration.
778
779 For the second case, the semantics of the SSA program is:
780
781 | a (x) = init, if x = 0;
782 | expr (x - 1), otherwise.
783
784 The second case corresponds to the PEELED_CHREC, whose syntax is
785 close to the syntax of a loop-phi-node:
786
787 | phi (init, expr) vs. (init, expr)_x
788
789 The proof of the translation algorithm for the first case is a
790 proof by structural induction based on the degree of EXPR.
791
792 Degree 0:
793 When EXPR is a constant with respect to the analyzed loop, or in
794 other words when EXPR is a polynomial of degree 0, the evolution of
795 the variable A in the loop is an affine function with an initial
796 condition INIT, and a step EXPR. In order to show this, we start
797 from the semantics of the SSA representation:
798
799 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
800
801 and since "expr (j)" is a constant with respect to "j",
802
803 f (x) = init + x * expr
804
805 Finally, based on the semantics of the pure sum chrecs, by
806 identification we get the corresponding chrecs syntax:
807
808 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
809 f (x) -> {init, +, expr}_x
810
811 Higher degree:
812 Suppose that EXPR is a polynomial of degree N with respect to the
813 analyzed loop_x for which we have already determined that it is
814 written under the chrecs syntax:
815
816 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
817
818 We start from the semantics of the SSA program:
819
820 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
821 |
822 | f (x) = init + \sum_{j = 0}^{x - 1}
823 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
824 |
825 | f (x) = init + \sum_{j = 0}^{x - 1}
826 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
827 |
828 | f (x) = init + \sum_{k = 0}^{n - 1}
829 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
830 |
831 | f (x) = init + \sum_{k = 0}^{n - 1}
832 | (b_k * \binom{x}{k + 1})
833 |
834 | f (x) = init + b_0 * \binom{x}{1} + ...
835 | + b_{n-1} * \binom{x}{n}
836 |
837 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
838 | + b_{n-1} * \binom{x}{n}
839 |
840
841 And finally from the definition of the chrecs syntax, we identify:
842 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
843
844 This shows the mechanism that stands behind the add_to_evolution
845 function. An important point is that the use of symbolic
846 parameters avoids the need of an analysis schedule.
847
848 Example:
849
850 | inita = ...
851 | initb = ...
852 | loop_1
853 | a = phi (inita, a + 2 + b)
854 | b = phi (initb, b + 1)
855 | endloop
856
857 When analyzing "a", the algorithm keeps "b" symbolically:
858
859 | a -> {inita, +, 2 + b}_1
860
861 Then, after instantiation, the analyzer ends on the evolution:
862
863 | a -> {inita, +, 2 + initb, +, 1}_1
864
865*/
866
867static tree
868add_to_evolution (unsigned loop_nb,
869 tree chrec_before,
870 enum tree_code code,
871 tree to_add)
872{
873 tree type = chrec_type (to_add);
874 tree res = NULL_TREE;
875
876 if (to_add == NULL_TREE)
877 return chrec_before;
878
879 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
880 instantiated at this point. */
881 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
882 /* This should not happen. */
883 return chrec_dont_know;
884
885 if (dump_file && (dump_flags & TDF_DETAILS))
886 {
887 fprintf (dump_file, "(add_to_evolution \n");
888 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
889 fprintf (dump_file, " (chrec_before = ");
890 print_generic_expr (dump_file, chrec_before, 0);
891 fprintf (dump_file, ")\n (to_add = ");
892 print_generic_expr (dump_file, to_add, 0);
893 fprintf (dump_file, ")\n");
894 }
895
896 if (code == MINUS_EXPR)
897 to_add = chrec_fold_multiply (type, to_add,
e6845c23 898 build_int_cst_type (type, -1));
9baba81b
SP
899
900 res = add_to_evolution_1 (loop_nb, chrec_before, to_add);
901
902 if (dump_file && (dump_flags & TDF_DETAILS))
903 {
904 fprintf (dump_file, " (res = ");
905 print_generic_expr (dump_file, res, 0);
906 fprintf (dump_file, "))\n");
907 }
908
909 return res;
910}
911
912/* Helper function. */
913
914static inline tree
915set_nb_iterations_in_loop (struct loop *loop,
916 tree res)
917{
e6845c23
ZD
918 res = chrec_fold_plus (chrec_type (res), res,
919 build_int_cst_type (chrec_type (res), 1));
920
9baba81b
SP
921 /* FIXME HWI: However we want to store one iteration less than the
922 count of the loop in order to be compatible with the other
923 nb_iter computations in loop-iv. This also allows the
924 representation of nb_iters that are equal to MAX_INT. */
925 if ((TREE_CODE (res) == INTEGER_CST && TREE_INT_CST_LOW (res) == 0)
926 || TREE_OVERFLOW (res))
927 res = chrec_dont_know;
928
929 if (dump_file && (dump_flags & TDF_DETAILS))
930 {
931 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
932 print_generic_expr (dump_file, res, 0);
933 fprintf (dump_file, "))\n");
934 }
935
936 loop->nb_iterations = res;
937 return res;
938}
939
940\f
941
942/* This section selects the loops that will be good candidates for the
943 scalar evolution analysis. For the moment, greedily select all the
944 loop nests we could analyze. */
945
946/* Return true when it is possible to analyze the condition expression
947 EXPR. */
948
949static bool
950analyzable_condition (tree expr)
951{
952 tree condition;
953
954 if (TREE_CODE (expr) != COND_EXPR)
955 return false;
956
957 condition = TREE_OPERAND (expr, 0);
958
959 switch (TREE_CODE (condition))
960 {
961 case SSA_NAME:
9baba81b
SP
962 return true;
963
964 case LT_EXPR:
965 case LE_EXPR:
966 case GT_EXPR:
967 case GE_EXPR:
968 case EQ_EXPR:
969 case NE_EXPR:
85022b3f 970 return true;
9baba81b
SP
971
972 default:
973 return false;
974 }
975
976 return false;
977}
978
979/* For a loop with a single exit edge, return the COND_EXPR that
980 guards the exit edge. If the expression is too difficult to
981 analyze, then give up. */
982
983tree
984get_loop_exit_condition (struct loop *loop)
985{
986 tree res = NULL_TREE;
82b85a85
ZD
987 edge exit_edge = loop->single_exit;
988
9baba81b
SP
989
990 if (dump_file && (dump_flags & TDF_DETAILS))
991 fprintf (dump_file, "(get_loop_exit_condition \n ");
992
82b85a85 993 if (exit_edge)
9baba81b 994 {
9baba81b
SP
995 tree expr;
996
9baba81b 997 expr = last_stmt (exit_edge->src);
9baba81b
SP
998 if (analyzable_condition (expr))
999 res = expr;
1000 }
1001
1002 if (dump_file && (dump_flags & TDF_DETAILS))
1003 {
1004 print_generic_expr (dump_file, res, 0);
1005 fprintf (dump_file, ")\n");
1006 }
1007
1008 return res;
1009}
1010
1011/* Recursively determine and enqueue the exit conditions for a loop. */
1012
1013static void
1014get_exit_conditions_rec (struct loop *loop,
1015 varray_type *exit_conditions)
1016{
1017 if (!loop)
1018 return;
1019
1020 /* Recurse on the inner loops, then on the next (sibling) loops. */
1021 get_exit_conditions_rec (loop->inner, exit_conditions);
1022 get_exit_conditions_rec (loop->next, exit_conditions);
1023
82b85a85 1024 if (loop->single_exit)
9baba81b
SP
1025 {
1026 tree loop_condition = get_loop_exit_condition (loop);
1027
1028 if (loop_condition)
1029 VARRAY_PUSH_TREE (*exit_conditions, loop_condition);
1030 }
1031}
1032
1033/* Select the candidate loop nests for the analysis. This function
471854f8 1034 initializes the EXIT_CONDITIONS array. */
9baba81b
SP
1035
1036static void
1037select_loops_exit_conditions (struct loops *loops,
1038 varray_type *exit_conditions)
1039{
1040 struct loop *function_body = loops->parray[0];
1041
1042 get_exit_conditions_rec (function_body->inner, exit_conditions);
1043}
1044
1045\f
1046/* Depth first search algorithm. */
1047
1048static bool follow_ssa_edge (struct loop *loop, tree, tree, tree *);
1049
1050/* Follow the ssa edge into the right hand side RHS of an assignment.
1051 Return true if the strongly connected component has been found. */
1052
1053static bool
1054follow_ssa_edge_in_rhs (struct loop *loop,
1055 tree rhs,
1056 tree halting_phi,
1057 tree *evolution_of_loop)
1058{
1059 bool res = false;
1060 tree rhs0, rhs1;
1061 tree type_rhs = TREE_TYPE (rhs);
1062
1063 /* The RHS is one of the following cases:
1064 - an SSA_NAME,
1065 - an INTEGER_CST,
1066 - a PLUS_EXPR,
1067 - a MINUS_EXPR,
0bca51f0
DN
1068 - an ASSERT_EXPR,
1069 - other cases are not yet handled. */
9baba81b
SP
1070 switch (TREE_CODE (rhs))
1071 {
1072 case NOP_EXPR:
1073 /* This assignment is under the form "a_1 = (cast) rhs. */
1074 res = follow_ssa_edge_in_rhs (loop, TREE_OPERAND (rhs, 0), halting_phi,
1075 evolution_of_loop);
1076 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs), *evolution_of_loop);
1077 break;
1078
1079 case INTEGER_CST:
1080 /* This assignment is under the form "a_1 = 7". */
1081 res = false;
1082 break;
1083
1084 case SSA_NAME:
1085 /* This assignment is under the form: "a_1 = b_2". */
1086 res = follow_ssa_edge
1087 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop);
1088 break;
1089
1090 case PLUS_EXPR:
1091 /* This case is under the form "rhs0 + rhs1". */
1092 rhs0 = TREE_OPERAND (rhs, 0);
1093 rhs1 = TREE_OPERAND (rhs, 1);
1094 STRIP_TYPE_NOPS (rhs0);
1095 STRIP_TYPE_NOPS (rhs1);
1096
1097 if (TREE_CODE (rhs0) == SSA_NAME)
1098 {
1099 if (TREE_CODE (rhs1) == SSA_NAME)
1100 {
1101 /* Match an assignment under the form:
1102 "a = b + c". */
1103 res = follow_ssa_edge
1104 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1105 evolution_of_loop);
1106
1107 if (res)
1108 *evolution_of_loop = add_to_evolution
1109 (loop->num,
1110 chrec_convert (type_rhs, *evolution_of_loop),
1111 PLUS_EXPR, rhs1);
1112
1113 else
1114 {
1115 res = follow_ssa_edge
1116 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1117 evolution_of_loop);
1118
1119 if (res)
1120 *evolution_of_loop = add_to_evolution
1121 (loop->num,
1122 chrec_convert (type_rhs, *evolution_of_loop),
1123 PLUS_EXPR, rhs0);
1124 }
1125 }
1126
1127 else
1128 {
1129 /* Match an assignment under the form:
1130 "a = b + ...". */
1131 res = follow_ssa_edge
1132 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1133 evolution_of_loop);
1134 if (res)
1135 *evolution_of_loop = add_to_evolution
1136 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1137 PLUS_EXPR, rhs1);
1138 }
1139 }
1140
1141 else if (TREE_CODE (rhs1) == SSA_NAME)
1142 {
1143 /* Match an assignment under the form:
1144 "a = ... + c". */
1145 res = follow_ssa_edge
1146 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1147 evolution_of_loop);
1148 if (res)
1149 *evolution_of_loop = add_to_evolution
1150 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1151 PLUS_EXPR, rhs0);
1152 }
1153
1154 else
1155 /* Otherwise, match an assignment under the form:
1156 "a = ... + ...". */
1157 /* And there is nothing to do. */
1158 res = false;
1159
1160 break;
1161
1162 case MINUS_EXPR:
1163 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1164 rhs0 = TREE_OPERAND (rhs, 0);
1165 rhs1 = TREE_OPERAND (rhs, 1);
1166 STRIP_TYPE_NOPS (rhs0);
1167 STRIP_TYPE_NOPS (rhs1);
1168
1169 if (TREE_CODE (rhs0) == SSA_NAME)
9baba81b
SP
1170 {
1171 /* Match an assignment under the form:
f8e9d512
ZD
1172 "a = b - ...". */
1173 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1174 evolution_of_loop);
9baba81b
SP
1175 if (res)
1176 *evolution_of_loop = add_to_evolution
f8e9d512
ZD
1177 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1178 MINUS_EXPR, rhs1);
9baba81b 1179 }
9baba81b
SP
1180 else
1181 /* Otherwise, match an assignment under the form:
1182 "a = ... - ...". */
1183 /* And there is nothing to do. */
1184 res = false;
1185
1186 break;
1187
1188 case MULT_EXPR:
1189 /* This case is under the form "opnd0 = rhs0 * rhs1". */
1190 rhs0 = TREE_OPERAND (rhs, 0);
1191 rhs1 = TREE_OPERAND (rhs, 1);
1192 STRIP_TYPE_NOPS (rhs0);
1193 STRIP_TYPE_NOPS (rhs1);
1194
1195 if (TREE_CODE (rhs0) == SSA_NAME)
1196 {
1197 if (TREE_CODE (rhs1) == SSA_NAME)
1198 {
1199 /* Match an assignment under the form:
1200 "a = b * c". */
1201 res = follow_ssa_edge
1202 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1203 evolution_of_loop);
1204
1205 if (res)
1206 *evolution_of_loop = chrec_dont_know;
1207
1208 else
1209 {
1210 res = follow_ssa_edge
1211 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1212 evolution_of_loop);
1213
1214 if (res)
1215 *evolution_of_loop = chrec_dont_know;
1216 }
1217 }
1218
1219 else
1220 {
1221 /* Match an assignment under the form:
1222 "a = b * ...". */
1223 res = follow_ssa_edge
1224 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1225 evolution_of_loop);
1226 if (res)
1227 *evolution_of_loop = chrec_dont_know;
1228 }
1229 }
1230
1231 else if (TREE_CODE (rhs1) == SSA_NAME)
1232 {
1233 /* Match an assignment under the form:
1234 "a = ... * c". */
1235 res = follow_ssa_edge
1236 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1237 evolution_of_loop);
1238 if (res)
1239 *evolution_of_loop = chrec_dont_know;
1240 }
1241
1242 else
1243 /* Otherwise, match an assignment under the form:
1244 "a = ... * ...". */
1245 /* And there is nothing to do. */
1246 res = false;
1247
1248 break;
1249
0bca51f0
DN
1250 case ASSERT_EXPR:
1251 {
1252 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1253 It must be handled as a copy assignment of the form a_1 = a_2. */
1254 tree op0 = ASSERT_EXPR_VAR (rhs);
1255 if (TREE_CODE (op0) == SSA_NAME)
1256 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1257 halting_phi, evolution_of_loop);
1258 else
1259 res = false;
1260 break;
1261 }
1262
1263
9baba81b
SP
1264 default:
1265 res = false;
1266 break;
1267 }
1268
1269 return res;
1270}
1271
1272/* Checks whether the I-th argument of a PHI comes from a backedge. */
1273
1274static bool
1275backedge_phi_arg_p (tree phi, int i)
1276{
1277 edge e = PHI_ARG_EDGE (phi, i);
1278
1279 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1280 about updating it anywhere, and this should work as well most of the
1281 time. */
1282 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1283 return true;
1284
1285 return false;
1286}
1287
1288/* Helper function for one branch of the condition-phi-node. Return
1289 true if the strongly connected component has been found following
1290 this path. */
1291
1292static inline bool
1293follow_ssa_edge_in_condition_phi_branch (int i,
1294 struct loop *loop,
1295 tree condition_phi,
1296 tree halting_phi,
1297 tree *evolution_of_branch,
1298 tree init_cond)
1299{
1300 tree branch = PHI_ARG_DEF (condition_phi, i);
1301 *evolution_of_branch = chrec_dont_know;
1302
1303 /* Do not follow back edges (they must belong to an irreducible loop, which
1304 we really do not want to worry about). */
1305 if (backedge_phi_arg_p (condition_phi, i))
1306 return false;
1307
1308 if (TREE_CODE (branch) == SSA_NAME)
1309 {
1310 *evolution_of_branch = init_cond;
1311 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1312 evolution_of_branch);
1313 }
1314
1315 /* This case occurs when one of the condition branches sets
89dbed81 1316 the variable to a constant: i.e. a phi-node like
9baba81b
SP
1317 "a_2 = PHI <a_7(5), 2(6)>;".
1318
1319 FIXME: This case have to be refined correctly:
1320 in some cases it is possible to say something better than
1321 chrec_dont_know, for example using a wrap-around notation. */
1322 return false;
1323}
1324
1325/* This function merges the branches of a condition-phi-node in a
1326 loop. */
1327
1328static bool
1329follow_ssa_edge_in_condition_phi (struct loop *loop,
1330 tree condition_phi,
1331 tree halting_phi,
1332 tree *evolution_of_loop)
1333{
1334 int i;
1335 tree init = *evolution_of_loop;
1336 tree evolution_of_branch;
1337
1338 if (!follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1339 halting_phi,
1340 &evolution_of_branch,
1341 init))
1342 return false;
1343 *evolution_of_loop = evolution_of_branch;
1344
1345 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1346 {
e0afb98a
SP
1347 /* Quickly give up when the evolution of one of the branches is
1348 not known. */
1349 if (*evolution_of_loop == chrec_dont_know)
1350 return true;
1351
9baba81b
SP
1352 if (!follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1353 halting_phi,
1354 &evolution_of_branch,
1355 init))
1356 return false;
1357
1358 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1359 evolution_of_branch);
1360 }
1361
1362 return true;
1363}
1364
1365/* Follow an SSA edge in an inner loop. It computes the overall
1366 effect of the loop, and following the symbolic initial conditions,
1367 it follows the edges in the parent loop. The inner loop is
1368 considered as a single statement. */
1369
1370static bool
1371follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1372 tree loop_phi_node,
1373 tree halting_phi,
1374 tree *evolution_of_loop)
1375{
1376 struct loop *loop = loop_containing_stmt (loop_phi_node);
1377 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1378
1379 /* Sometimes, the inner loop is too difficult to analyze, and the
1380 result of the analysis is a symbolic parameter. */
1381 if (ev == PHI_RESULT (loop_phi_node))
1382 {
1383 bool res = false;
1384 int i;
1385
1386 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1387 {
1388 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1389 basic_block bb;
1390
1391 /* Follow the edges that exit the inner loop. */
1392 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1393 if (!flow_bb_inside_loop_p (loop, bb))
1394 res = res || follow_ssa_edge_in_rhs (outer_loop, arg, halting_phi,
1395 evolution_of_loop);
1396 }
1397
1398 /* If the path crosses this loop-phi, give up. */
1399 if (res == true)
1400 *evolution_of_loop = chrec_dont_know;
1401
1402 return res;
1403 }
1404
1405 /* Otherwise, compute the overall effect of the inner loop. */
1406 ev = compute_overall_effect_of_inner_loop (loop, ev);
1407 return follow_ssa_edge_in_rhs (outer_loop, ev, halting_phi,
1408 evolution_of_loop);
1409}
1410
1411/* Follow an SSA edge from a loop-phi-node to itself, constructing a
1412 path that is analyzed on the return walk. */
1413
1414static bool
1415follow_ssa_edge (struct loop *loop,
1416 tree def,
1417 tree halting_phi,
1418 tree *evolution_of_loop)
1419{
1420 struct loop *def_loop;
1421
1422 if (TREE_CODE (def) == NOP_EXPR)
1423 return false;
1424
1425 def_loop = loop_containing_stmt (def);
1426
1427 switch (TREE_CODE (def))
1428 {
1429 case PHI_NODE:
1430 if (!loop_phi_node_p (def))
1431 /* DEF is a condition-phi-node. Follow the branches, and
1432 record their evolutions. Finally, merge the collected
1433 information and set the approximation to the main
1434 variable. */
1435 return follow_ssa_edge_in_condition_phi
1436 (loop, def, halting_phi, evolution_of_loop);
1437
1438 /* When the analyzed phi is the halting_phi, the
1439 depth-first search is over: we have found a path from
1440 the halting_phi to itself in the loop. */
1441 if (def == halting_phi)
1442 return true;
1443
1444 /* Otherwise, the evolution of the HALTING_PHI depends
89dbed81 1445 on the evolution of another loop-phi-node, i.e. the
9baba81b
SP
1446 evolution function is a higher degree polynomial. */
1447 if (def_loop == loop)
1448 return false;
1449
1450 /* Inner loop. */
1451 if (flow_loop_nested_p (loop, def_loop))
1452 return follow_ssa_edge_inner_loop_phi
1453 (loop, def, halting_phi, evolution_of_loop);
1454
1455 /* Outer loop. */
1456 return false;
1457
1458 case MODIFY_EXPR:
1459 return follow_ssa_edge_in_rhs (loop,
1460 TREE_OPERAND (def, 1),
1461 halting_phi,
1462 evolution_of_loop);
1463
1464 default:
1465 /* At this level of abstraction, the program is just a set
1466 of MODIFY_EXPRs and PHI_NODEs. In principle there is no
1467 other node to be handled. */
1468 return false;
1469 }
1470}
1471
1472\f
1473
1474/* Given a LOOP_PHI_NODE, this function determines the evolution
1475 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1476
1477static tree
1478analyze_evolution_in_loop (tree loop_phi_node,
1479 tree init_cond)
1480{
1481 int i;
1482 tree evolution_function = chrec_not_analyzed_yet;
1483 struct loop *loop = loop_containing_stmt (loop_phi_node);
1484 basic_block bb;
1485
1486 if (dump_file && (dump_flags & TDF_DETAILS))
1487 {
1488 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1489 fprintf (dump_file, " (loop_phi_node = ");
1490 print_generic_expr (dump_file, loop_phi_node, 0);
1491 fprintf (dump_file, ")\n");
1492 }
1493
1494 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1495 {
1496 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1497 tree ssa_chain, ev_fn;
1498 bool res;
1499
1500 /* Select the edges that enter the loop body. */
1501 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1502 if (!flow_bb_inside_loop_p (loop, bb))
1503 continue;
1504
1505 if (TREE_CODE (arg) == SSA_NAME)
1506 {
1507 ssa_chain = SSA_NAME_DEF_STMT (arg);
1508
1509 /* Pass in the initial condition to the follow edge function. */
1510 ev_fn = init_cond;
1511 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn);
1512 }
1513 else
1514 res = false;
1515
1516 /* When it is impossible to go back on the same
1517 loop_phi_node by following the ssa edges, the
89dbed81 1518 evolution is represented by a peeled chrec, i.e. the
9baba81b
SP
1519 first iteration, EV_FN has the value INIT_COND, then
1520 all the other iterations it has the value of ARG.
1521 For the moment, PEELED_CHREC nodes are not built. */
1522 if (!res)
1523 ev_fn = chrec_dont_know;
1524
1525 /* When there are multiple back edges of the loop (which in fact never
8c27b7d4 1526 happens currently, but nevertheless), merge their evolutions. */
9baba81b
SP
1527 evolution_function = chrec_merge (evolution_function, ev_fn);
1528 }
1529
1530 if (dump_file && (dump_flags & TDF_DETAILS))
1531 {
1532 fprintf (dump_file, " (evolution_function = ");
1533 print_generic_expr (dump_file, evolution_function, 0);
1534 fprintf (dump_file, "))\n");
1535 }
1536
1537 return evolution_function;
1538}
1539
1540/* Given a loop-phi-node, return the initial conditions of the
1541 variable on entry of the loop. When the CCP has propagated
1542 constants into the loop-phi-node, the initial condition is
1543 instantiated, otherwise the initial condition is kept symbolic.
1544 This analyzer does not analyze the evolution outside the current
1545 loop, and leaves this task to the on-demand tree reconstructor. */
1546
1547static tree
1548analyze_initial_condition (tree loop_phi_node)
1549{
1550 int i;
1551 tree init_cond = chrec_not_analyzed_yet;
1552 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1553
1554 if (dump_file && (dump_flags & TDF_DETAILS))
1555 {
1556 fprintf (dump_file, "(analyze_initial_condition \n");
1557 fprintf (dump_file, " (loop_phi_node = \n");
1558 print_generic_expr (dump_file, loop_phi_node, 0);
1559 fprintf (dump_file, ")\n");
1560 }
1561
1562 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1563 {
1564 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1565 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1566
1567 /* When the branch is oriented to the loop's body, it does
1568 not contribute to the initial condition. */
1569 if (flow_bb_inside_loop_p (loop, bb))
1570 continue;
1571
1572 if (init_cond == chrec_not_analyzed_yet)
1573 {
1574 init_cond = branch;
1575 continue;
1576 }
1577
1578 if (TREE_CODE (branch) == SSA_NAME)
1579 {
1580 init_cond = chrec_dont_know;
1581 break;
1582 }
1583
1584 init_cond = chrec_merge (init_cond, branch);
1585 }
1586
1587 /* Ooops -- a loop without an entry??? */
1588 if (init_cond == chrec_not_analyzed_yet)
1589 init_cond = chrec_dont_know;
1590
1591 if (dump_file && (dump_flags & TDF_DETAILS))
1592 {
1593 fprintf (dump_file, " (init_cond = ");
1594 print_generic_expr (dump_file, init_cond, 0);
1595 fprintf (dump_file, "))\n");
1596 }
1597
1598 return init_cond;
1599}
1600
1601/* Analyze the scalar evolution for LOOP_PHI_NODE. */
1602
1603static tree
1604interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1605{
1606 tree res;
1607 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1608 tree init_cond;
1609
1610 if (phi_loop != loop)
1611 {
1612 struct loop *subloop;
1613 tree evolution_fn = analyze_scalar_evolution
1614 (phi_loop, PHI_RESULT (loop_phi_node));
1615
1616 /* Dive one level deeper. */
1617 subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1618
1619 /* Interpret the subloop. */
1620 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1621 return res;
1622 }
1623
1624 /* Otherwise really interpret the loop phi. */
1625 init_cond = analyze_initial_condition (loop_phi_node);
1626 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1627
1628 return res;
1629}
1630
1631/* This function merges the branches of a condition-phi-node,
1632 contained in the outermost loop, and whose arguments are already
1633 analyzed. */
1634
1635static tree
1636interpret_condition_phi (struct loop *loop, tree condition_phi)
1637{
1638 int i;
1639 tree res = chrec_not_analyzed_yet;
1640
1641 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1642 {
1643 tree branch_chrec;
1644
1645 if (backedge_phi_arg_p (condition_phi, i))
1646 {
1647 res = chrec_dont_know;
1648 break;
1649 }
1650
1651 branch_chrec = analyze_scalar_evolution
1652 (loop, PHI_ARG_DEF (condition_phi, i));
1653
1654 res = chrec_merge (res, branch_chrec);
1655 }
1656
1657 return res;
1658}
1659
1660/* Interpret the right hand side of a modify_expr OPND1. If we didn't
29836d07 1661 analyze this node before, follow the definitions until ending
9baba81b
SP
1662 either on an analyzed modify_expr, or on a loop-phi-node. On the
1663 return path, this function propagates evolutions (ala constant copy
1664 propagation). OPND1 is not a GIMPLE expression because we could
1665 analyze the effect of an inner loop: see interpret_loop_phi. */
1666
1667static tree
1668interpret_rhs_modify_expr (struct loop *loop,
1669 tree opnd1, tree type)
1670{
1671 tree res, opnd10, opnd11, chrec10, chrec11;
1672
1673 if (is_gimple_min_invariant (opnd1))
1674 return chrec_convert (type, opnd1);
1675
1676 switch (TREE_CODE (opnd1))
1677 {
1678 case PLUS_EXPR:
1679 opnd10 = TREE_OPERAND (opnd1, 0);
1680 opnd11 = TREE_OPERAND (opnd1, 1);
1681 chrec10 = analyze_scalar_evolution (loop, opnd10);
1682 chrec11 = analyze_scalar_evolution (loop, opnd11);
1683 chrec10 = chrec_convert (type, chrec10);
1684 chrec11 = chrec_convert (type, chrec11);
1685 res = chrec_fold_plus (type, chrec10, chrec11);
1686 break;
1687
1688 case MINUS_EXPR:
1689 opnd10 = TREE_OPERAND (opnd1, 0);
1690 opnd11 = TREE_OPERAND (opnd1, 1);
1691 chrec10 = analyze_scalar_evolution (loop, opnd10);
1692 chrec11 = analyze_scalar_evolution (loop, opnd11);
1693 chrec10 = chrec_convert (type, chrec10);
1694 chrec11 = chrec_convert (type, chrec11);
1695 res = chrec_fold_minus (type, chrec10, chrec11);
1696 break;
1697
1698 case NEGATE_EXPR:
1699 opnd10 = TREE_OPERAND (opnd1, 0);
1700 chrec10 = analyze_scalar_evolution (loop, opnd10);
1701 chrec10 = chrec_convert (type, chrec10);
5212068f 1702 res = chrec_fold_minus (type, build_int_cst (type, 0), chrec10);
9baba81b
SP
1703 break;
1704
1705 case MULT_EXPR:
1706 opnd10 = TREE_OPERAND (opnd1, 0);
1707 opnd11 = TREE_OPERAND (opnd1, 1);
1708 chrec10 = analyze_scalar_evolution (loop, opnd10);
1709 chrec11 = analyze_scalar_evolution (loop, opnd11);
1710 chrec10 = chrec_convert (type, chrec10);
1711 chrec11 = chrec_convert (type, chrec11);
1712 res = chrec_fold_multiply (type, chrec10, chrec11);
1713 break;
1714
1715 case SSA_NAME:
1716 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1));
1717 break;
0bca51f0
DN
1718
1719 case ASSERT_EXPR:
1720 opnd10 = ASSERT_EXPR_VAR (opnd1);
1721 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10));
1722 break;
9baba81b
SP
1723
1724 case NOP_EXPR:
1725 case CONVERT_EXPR:
1726 opnd10 = TREE_OPERAND (opnd1, 0);
1727 chrec10 = analyze_scalar_evolution (loop, opnd10);
1728 res = chrec_convert (type, chrec10);
1729 break;
1730
1731 default:
1732 res = chrec_dont_know;
1733 break;
1734 }
1735
1736 return res;
1737}
1738
1739\f
1740
1741/* This section contains all the entry points:
1742 - number_of_iterations_in_loop,
1743 - analyze_scalar_evolution,
1744 - instantiate_parameters.
1745*/
1746
1747/* Compute and return the evolution function in WRTO_LOOP, the nearest
1748 common ancestor of DEF_LOOP and USE_LOOP. */
1749
1750static tree
1751compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1752 struct loop *def_loop,
1753 tree ev)
1754{
1755 tree res;
1756 if (def_loop == wrto_loop)
1757 return ev;
1758
1759 def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1760 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1761
1762 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1763}
1764
1765/* Helper recursive function. */
1766
1767static tree
1768analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1769{
1770 tree def, type = TREE_TYPE (var);
1771 basic_block bb;
1772 struct loop *def_loop;
1773
1774 if (loop == NULL)
1775 return chrec_dont_know;
1776
1777 if (TREE_CODE (var) != SSA_NAME)
1778 return interpret_rhs_modify_expr (loop, var, type);
1779
1780 def = SSA_NAME_DEF_STMT (var);
1781 bb = bb_for_stmt (def);
1782 def_loop = bb ? bb->loop_father : NULL;
1783
1784 if (bb == NULL
1785 || !flow_bb_inside_loop_p (loop, bb))
1786 {
1787 /* Keep the symbolic form. */
1788 res = var;
1789 goto set_and_end;
1790 }
1791
1792 if (res != chrec_not_analyzed_yet)
1793 {
1794 if (loop != bb->loop_father)
1795 res = compute_scalar_evolution_in_loop
1796 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1797
1798 goto set_and_end;
1799 }
1800
1801 if (loop != def_loop)
1802 {
1803 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1804 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1805
1806 goto set_and_end;
1807 }
1808
1809 switch (TREE_CODE (def))
1810 {
1811 case MODIFY_EXPR:
1812 res = interpret_rhs_modify_expr (loop, TREE_OPERAND (def, 1), type);
1813 break;
1814
1815 case PHI_NODE:
1816 if (loop_phi_node_p (def))
1817 res = interpret_loop_phi (loop, def);
1818 else
1819 res = interpret_condition_phi (loop, def);
1820 break;
1821
1822 default:
1823 res = chrec_dont_know;
1824 break;
1825 }
1826
1827 set_and_end:
1828
1829 /* Keep the symbolic form. */
1830 if (res == chrec_dont_know)
1831 res = var;
1832
1833 if (loop == def_loop)
1834 set_scalar_evolution (var, res);
1835
1836 return res;
1837}
1838
1839/* Entry point for the scalar evolution analyzer.
1840 Analyzes and returns the scalar evolution of the ssa_name VAR.
1841 LOOP_NB is the identifier number of the loop in which the variable
1842 is used.
1843
1844 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1845 pointer to the statement that uses this variable, in order to
1846 determine the evolution function of the variable, use the following
1847 calls:
1848
1849 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1850 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1851 tree chrec_instantiated = instantiate_parameters
1852 (loop_nb, chrec_with_symbols);
1853*/
1854
1855tree
1856analyze_scalar_evolution (struct loop *loop, tree var)
1857{
1858 tree res;
1859
1860 if (dump_file && (dump_flags & TDF_DETAILS))
1861 {
1862 fprintf (dump_file, "(analyze_scalar_evolution \n");
1863 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1864 fprintf (dump_file, " (scalar = ");
1865 print_generic_expr (dump_file, var, 0);
1866 fprintf (dump_file, ")\n");
1867 }
1868
1869 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
1870
1871 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
1872 res = var;
1873
1874 if (dump_file && (dump_flags & TDF_DETAILS))
1875 fprintf (dump_file, ")\n");
1876
1877 return res;
1878}
1879
1880/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1881 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1882 of VERSION). */
1883
1884static tree
1885analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
1886 tree version)
1887{
1888 bool val = false;
1889 tree ev = version;
1890
1891 while (1)
1892 {
1893 ev = analyze_scalar_evolution (use_loop, ev);
1894 ev = resolve_mixers (use_loop, ev);
1895
1896 if (use_loop == wrto_loop)
1897 return ev;
1898
1899 /* If the value of the use changes in the inner loop, we cannot express
1900 its value in the outer loop (we might try to return interval chrec,
1901 but we do not have a user for it anyway) */
1902 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
1903 || !val)
1904 return chrec_dont_know;
1905
1906 use_loop = use_loop->outer;
1907 }
1908}
1909
eb0bc7af
ZD
1910/* Returns instantiated value for VERSION in CACHE. */
1911
1912static tree
1913get_instantiated_value (htab_t cache, tree version)
1914{
1915 struct scev_info_str *info, pattern;
1916
1917 pattern.var = version;
1918 info = htab_find (cache, &pattern);
1919
1920 if (info)
1921 return info->chrec;
1922 else
1923 return NULL_TREE;
1924}
1925
1926/* Sets instantiated value for VERSION to VAL in CACHE. */
1927
1928static void
1929set_instantiated_value (htab_t cache, tree version, tree val)
1930{
1931 struct scev_info_str *info, pattern;
1932 PTR *slot;
1933
1934 pattern.var = version;
1935 slot = htab_find_slot (cache, &pattern, INSERT);
1936
1937 if (*slot)
1938 info = *slot;
1939 else
1940 info = *slot = new_scev_info_str (version);
1941 info->chrec = val;
1942}
1943
9baba81b
SP
1944/* Analyze all the parameters of the chrec that were left under a symbolic form,
1945 with respect to LOOP. CHREC is the chrec to instantiate. If
1946 ALLOW_SUPERLOOP_CHRECS is true, replacing loop invariants with
eb0bc7af
ZD
1947 outer loop chrecs is done. CACHE is the cache of already instantiated
1948 values. */
9baba81b
SP
1949
1950static tree
1951instantiate_parameters_1 (struct loop *loop, tree chrec,
eb0bc7af
ZD
1952 bool allow_superloop_chrecs,
1953 htab_t cache)
9baba81b
SP
1954{
1955 tree res, op0, op1, op2;
1956 basic_block def_bb;
1957 struct loop *def_loop;
eb0bc7af 1958
9baba81b
SP
1959 if (chrec == NULL_TREE
1960 || automatically_generated_chrec_p (chrec))
1961 return chrec;
1962
1963 if (is_gimple_min_invariant (chrec))
1964 return chrec;
1965
1966 switch (TREE_CODE (chrec))
1967 {
1968 case SSA_NAME:
1969 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
1970
1971 /* A parameter (or loop invariant and we do not want to include
1972 evolutions in outer loops), nothing to do. */
1973 if (!def_bb
1974 || (!allow_superloop_chrecs
1975 && !flow_bb_inside_loop_p (loop, def_bb)))
1976 return chrec;
1977
eb0bc7af
ZD
1978 /* We cache the value of instantiated variable to avoid exponential
1979 time complexity due to reevaluations. We also store the convenient
1980 value in the cache in order to prevent infinite recursion -- we do
1981 not want to instantiate the SSA_NAME if it is in a mixer
9baba81b
SP
1982 structure. This is used for avoiding the instantiation of
1983 recursively defined functions, such as:
1984
1985 | a_2 -> {0, +, 1, +, a_2}_1 */
eb0bc7af
ZD
1986
1987 res = get_instantiated_value (cache, chrec);
1988 if (res)
1989 return res;
1990
1991 /* Store the convenient value for chrec in the structure. If it
1992 is defined outside of the loop, we may just leave it in symbolic
1993 form, otherwise we need to admit that we do not know its behavior
1994 inside the loop. */
1995 res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
1996 set_instantiated_value (cache, chrec, res);
1997
1998 /* To make things even more complicated, instantiate_parameters_1
1999 calls analyze_scalar_evolution that may call # of iterations
2000 analysis that may in turn call instantiate_parameters_1 again.
2001 To prevent the infinite recursion, keep also the bitmap of
2002 ssa names that are being instantiated globally. */
9baba81b 2003 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
eb0bc7af 2004 return res;
9baba81b
SP
2005
2006 def_loop = find_common_loop (loop, def_bb->loop_father);
2007
2008 /* If the analysis yields a parametric chrec, instantiate the
eb0bc7af 2009 result again. */
9baba81b
SP
2010 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2011 res = analyze_scalar_evolution (def_loop, chrec);
fca81712
SP
2012 if (res != chrec_dont_know)
2013 res = instantiate_parameters_1 (loop, res, allow_superloop_chrecs,
2014 cache);
9baba81b 2015 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
eb0bc7af
ZD
2016
2017 /* Store the correct value to the cache. */
2018 set_instantiated_value (cache, chrec, res);
9baba81b
SP
2019 return res;
2020
2021 case POLYNOMIAL_CHREC:
2022 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
eb0bc7af 2023 allow_superloop_chrecs, cache);
fca81712
SP
2024 if (op0 == chrec_dont_know)
2025 return chrec_dont_know;
2026
9baba81b 2027 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
eb0bc7af 2028 allow_superloop_chrecs, cache);
fca81712
SP
2029 if (op1 == chrec_dont_know)
2030 return chrec_dont_know;
2031
eac30183
ZD
2032 if (CHREC_LEFT (chrec) != op0
2033 || CHREC_RIGHT (chrec) != op1)
2034 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2035 return chrec;
9baba81b
SP
2036
2037 case PLUS_EXPR:
2038 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
eb0bc7af 2039 allow_superloop_chrecs, cache);
fca81712
SP
2040 if (op0 == chrec_dont_know)
2041 return chrec_dont_know;
2042
9baba81b 2043 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
eb0bc7af 2044 allow_superloop_chrecs, cache);
fca81712
SP
2045 if (op1 == chrec_dont_know)
2046 return chrec_dont_know;
2047
eac30183
ZD
2048 if (TREE_OPERAND (chrec, 0) != op0
2049 || TREE_OPERAND (chrec, 1) != op1)
2050 chrec = chrec_fold_plus (TREE_TYPE (chrec), op0, op1);
2051 return chrec;
9baba81b
SP
2052
2053 case MINUS_EXPR:
2054 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
eb0bc7af 2055 allow_superloop_chrecs, cache);
fca81712
SP
2056 if (op0 == chrec_dont_know)
2057 return chrec_dont_know;
2058
9baba81b 2059 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
eb0bc7af 2060 allow_superloop_chrecs, cache);
fca81712
SP
2061 if (op1 == chrec_dont_know)
2062 return chrec_dont_know;
2063
eac30183
ZD
2064 if (TREE_OPERAND (chrec, 0) != op0
2065 || TREE_OPERAND (chrec, 1) != op1)
2066 chrec = chrec_fold_minus (TREE_TYPE (chrec), op0, op1);
2067 return chrec;
9baba81b
SP
2068
2069 case MULT_EXPR:
2070 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
eb0bc7af 2071 allow_superloop_chrecs, cache);
fca81712
SP
2072 if (op0 == chrec_dont_know)
2073 return chrec_dont_know;
2074
9baba81b 2075 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
eb0bc7af 2076 allow_superloop_chrecs, cache);
fca81712
SP
2077 if (op1 == chrec_dont_know)
2078 return chrec_dont_know;
2079
eac30183
ZD
2080 if (TREE_OPERAND (chrec, 0) != op0
2081 || TREE_OPERAND (chrec, 1) != op1)
2082 chrec = chrec_fold_multiply (TREE_TYPE (chrec), op0, op1);
2083 return chrec;
9baba81b
SP
2084
2085 case NOP_EXPR:
2086 case CONVERT_EXPR:
2087 case NON_LVALUE_EXPR:
2088 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
eb0bc7af 2089 allow_superloop_chrecs, cache);
9baba81b
SP
2090 if (op0 == chrec_dont_know)
2091 return chrec_dont_know;
2092
eac30183
ZD
2093 if (op0 == TREE_OPERAND (chrec, 0))
2094 return chrec;
2095
9baba81b
SP
2096 return chrec_convert (TREE_TYPE (chrec), op0);
2097
2098 case SCEV_NOT_KNOWN:
2099 return chrec_dont_know;
2100
2101 case SCEV_KNOWN:
2102 return chrec_known;
2103
2104 default:
2105 break;
2106 }
2107
2108 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2109 {
2110 case 3:
2111 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
eb0bc7af 2112 allow_superloop_chrecs, cache);
fca81712
SP
2113 if (op0 == chrec_dont_know)
2114 return chrec_dont_know;
2115
9baba81b 2116 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
eb0bc7af 2117 allow_superloop_chrecs, cache);
fca81712
SP
2118 if (op1 == chrec_dont_know)
2119 return chrec_dont_know;
2120
9baba81b 2121 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
eb0bc7af 2122 allow_superloop_chrecs, cache);
fca81712 2123 if (op2 == chrec_dont_know)
9baba81b 2124 return chrec_dont_know;
eac30183
ZD
2125
2126 if (op0 == TREE_OPERAND (chrec, 0)
2127 && op1 == TREE_OPERAND (chrec, 1)
2128 && op2 == TREE_OPERAND (chrec, 2))
2129 return chrec;
2130
9baba81b
SP
2131 return fold (build (TREE_CODE (chrec),
2132 TREE_TYPE (chrec), op0, op1, op2));
2133
2134 case 2:
2135 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
eb0bc7af 2136 allow_superloop_chrecs, cache);
fca81712
SP
2137 if (op0 == chrec_dont_know)
2138 return chrec_dont_know;
2139
9baba81b 2140 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
eb0bc7af 2141 allow_superloop_chrecs, cache);
fca81712 2142 if (op1 == chrec_dont_know)
9baba81b 2143 return chrec_dont_know;
eac30183
ZD
2144
2145 if (op0 == TREE_OPERAND (chrec, 0)
2146 && op1 == TREE_OPERAND (chrec, 1))
2147 return chrec;
9baba81b
SP
2148 return fold (build (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1));
2149
2150 case 1:
2151 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
eb0bc7af 2152 allow_superloop_chrecs, cache);
9baba81b
SP
2153 if (op0 == chrec_dont_know)
2154 return chrec_dont_know;
eac30183
ZD
2155 if (op0 == TREE_OPERAND (chrec, 0))
2156 return chrec;
9baba81b
SP
2157 return fold (build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0));
2158
2159 case 0:
2160 return chrec;
2161
2162 default:
2163 break;
2164 }
2165
2166 /* Too complicated to handle. */
2167 return chrec_dont_know;
2168}
e9eb809d
ZD
2169
2170/* Analyze all the parameters of the chrec that were left under a
2171 symbolic form. LOOP is the loop in which symbolic names have to
2172 be analyzed and instantiated. */
2173
2174tree
9baba81b 2175instantiate_parameters (struct loop *loop,
e9eb809d
ZD
2176 tree chrec)
2177{
9baba81b 2178 tree res;
eb0bc7af 2179 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
9baba81b
SP
2180
2181 if (dump_file && (dump_flags & TDF_DETAILS))
2182 {
2183 fprintf (dump_file, "(instantiate_parameters \n");
2184 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2185 fprintf (dump_file, " (chrec = ");
2186 print_generic_expr (dump_file, chrec, 0);
2187 fprintf (dump_file, ")\n");
2188 }
2189
eb0bc7af 2190 res = instantiate_parameters_1 (loop, chrec, true, cache);
9baba81b
SP
2191
2192 if (dump_file && (dump_flags & TDF_DETAILS))
2193 {
2194 fprintf (dump_file, " (res = ");
2195 print_generic_expr (dump_file, res, 0);
2196 fprintf (dump_file, "))\n");
2197 }
eb0bc7af
ZD
2198
2199 htab_delete (cache);
9baba81b
SP
2200
2201 return res;
2202}
2203
2204/* Similar to instantiate_parameters, but does not introduce the
2205 evolutions in outer loops for LOOP invariants in CHREC. */
2206
2207static tree
2208resolve_mixers (struct loop *loop, tree chrec)
2209{
eb0bc7af
ZD
2210 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2211 tree ret = instantiate_parameters_1 (loop, chrec, false, cache);
2212 htab_delete (cache);
2213 return ret;
9baba81b
SP
2214}
2215
2216/* Entry point for the analysis of the number of iterations pass.
2217 This function tries to safely approximate the number of iterations
2218 the loop will run. When this property is not decidable at compile
2219 time, the result is chrec_dont_know. Otherwise the result is
2220 a scalar or a symbolic parameter.
2221
2222 Example of analysis: suppose that the loop has an exit condition:
2223
2224 "if (b > 49) goto end_loop;"
2225
2226 and that in a previous analysis we have determined that the
2227 variable 'b' has an evolution function:
2228
2229 "EF = {23, +, 5}_2".
2230
2231 When we evaluate the function at the point 5, i.e. the value of the
2232 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2233 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2234 the loop body has been executed 6 times. */
2235
2236tree
2237number_of_iterations_in_loop (struct loop *loop)
2238{
2239 tree res, type;
2240 edge exit;
2241 struct tree_niter_desc niter_desc;
2242
2243 /* Determine whether the number_of_iterations_in_loop has already
2244 been computed. */
2245 res = loop->nb_iterations;
2246 if (res)
2247 return res;
2248 res = chrec_dont_know;
2249
2250 if (dump_file && (dump_flags & TDF_DETAILS))
2251 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2252
82b85a85
ZD
2253 exit = loop->single_exit;
2254 if (!exit)
9baba81b 2255 goto end;
9baba81b
SP
2256
2257 if (!number_of_iterations_exit (loop, exit, &niter_desc))
2258 goto end;
2259
2260 type = TREE_TYPE (niter_desc.niter);
2261 if (integer_nonzerop (niter_desc.may_be_zero))
5212068f 2262 res = build_int_cst (type, 0);
9baba81b
SP
2263 else if (integer_zerop (niter_desc.may_be_zero))
2264 res = niter_desc.niter;
2265 else
2266 res = chrec_dont_know;
2267
2268end:
2269 return set_nb_iterations_in_loop (loop, res);
2270}
2271
2272/* One of the drivers for testing the scalar evolutions analysis.
2273 This function computes the number of iterations for all the loops
2274 from the EXIT_CONDITIONS array. */
2275
2276static void
2277number_of_iterations_for_all_loops (varray_type exit_conditions)
2278{
2279 unsigned int i;
2280 unsigned nb_chrec_dont_know_loops = 0;
2281 unsigned nb_static_loops = 0;
2282
2283 for (i = 0; i < VARRAY_ACTIVE_SIZE (exit_conditions); i++)
2284 {
2285 tree res = number_of_iterations_in_loop
2286 (loop_containing_stmt (VARRAY_TREE (exit_conditions, i)));
2287 if (chrec_contains_undetermined (res))
2288 nb_chrec_dont_know_loops++;
2289 else
2290 nb_static_loops++;
2291 }
2292
2293 if (dump_file)
2294 {
2295 fprintf (dump_file, "\n(\n");
2296 fprintf (dump_file, "-----------------------------------------\n");
2297 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2298 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2299 fprintf (dump_file, "%d\tnb_total_loops\n", current_loops->num);
2300 fprintf (dump_file, "-----------------------------------------\n");
2301 fprintf (dump_file, ")\n\n");
2302
2303 print_loop_ir (dump_file);
2304 }
2305}
2306
2307\f
2308
2309/* Counters for the stats. */
2310
2311struct chrec_stats
2312{
2313 unsigned nb_chrecs;
2314 unsigned nb_affine;
2315 unsigned nb_affine_multivar;
2316 unsigned nb_higher_poly;
2317 unsigned nb_chrec_dont_know;
2318 unsigned nb_undetermined;
2319};
2320
2321/* Reset the counters. */
2322
2323static inline void
2324reset_chrecs_counters (struct chrec_stats *stats)
2325{
2326 stats->nb_chrecs = 0;
2327 stats->nb_affine = 0;
2328 stats->nb_affine_multivar = 0;
2329 stats->nb_higher_poly = 0;
2330 stats->nb_chrec_dont_know = 0;
2331 stats->nb_undetermined = 0;
2332}
2333
2334/* Dump the contents of a CHREC_STATS structure. */
2335
2336static void
2337dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2338{
2339 fprintf (file, "\n(\n");
2340 fprintf (file, "-----------------------------------------\n");
2341 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2342 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2343 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2344 stats->nb_higher_poly);
2345 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2346 fprintf (file, "-----------------------------------------\n");
2347 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2348 fprintf (file, "%d\twith undetermined coefficients\n",
2349 stats->nb_undetermined);
2350 fprintf (file, "-----------------------------------------\n");
2351 fprintf (file, "%d\tchrecs in the scev database\n",
2352 (int) htab_elements (scalar_evolution_info));
2353 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2354 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2355 fprintf (file, "-----------------------------------------\n");
2356 fprintf (file, ")\n\n");
2357}
2358
2359/* Gather statistics about CHREC. */
2360
2361static void
2362gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2363{
2364 if (dump_file && (dump_flags & TDF_STATS))
2365 {
2366 fprintf (dump_file, "(classify_chrec ");
2367 print_generic_expr (dump_file, chrec, 0);
2368 fprintf (dump_file, "\n");
2369 }
2370
2371 stats->nb_chrecs++;
2372
2373 if (chrec == NULL_TREE)
2374 {
2375 stats->nb_undetermined++;
2376 return;
2377 }
2378
2379 switch (TREE_CODE (chrec))
2380 {
2381 case POLYNOMIAL_CHREC:
2382 if (evolution_function_is_affine_p (chrec))
2383 {
2384 if (dump_file && (dump_flags & TDF_STATS))
2385 fprintf (dump_file, " affine_univariate\n");
2386 stats->nb_affine++;
2387 }
2388 else if (evolution_function_is_affine_multivariate_p (chrec))
2389 {
2390 if (dump_file && (dump_flags & TDF_STATS))
2391 fprintf (dump_file, " affine_multivariate\n");
2392 stats->nb_affine_multivar++;
2393 }
2394 else
2395 {
2396 if (dump_file && (dump_flags & TDF_STATS))
2397 fprintf (dump_file, " higher_degree_polynomial\n");
2398 stats->nb_higher_poly++;
2399 }
2400
2401 break;
2402
2403 default:
2404 break;
2405 }
2406
2407 if (chrec_contains_undetermined (chrec))
2408 {
2409 if (dump_file && (dump_flags & TDF_STATS))
2410 fprintf (dump_file, " undetermined\n");
2411 stats->nb_undetermined++;
2412 }
2413
2414 if (dump_file && (dump_flags & TDF_STATS))
2415 fprintf (dump_file, ")\n");
2416}
2417
2418/* One of the drivers for testing the scalar evolutions analysis.
2419 This function analyzes the scalar evolution of all the scalars
2420 defined as loop phi nodes in one of the loops from the
2421 EXIT_CONDITIONS array.
2422
2423 TODO Optimization: A loop is in canonical form if it contains only
2424 a single scalar loop phi node. All the other scalars that have an
2425 evolution in the loop are rewritten in function of this single
2426 index. This allows the parallelization of the loop. */
2427
2428static void
2429analyze_scalar_evolution_for_all_loop_phi_nodes (varray_type exit_conditions)
2430{
2431 unsigned int i;
2432 struct chrec_stats stats;
2433
2434 reset_chrecs_counters (&stats);
2435
2436 for (i = 0; i < VARRAY_ACTIVE_SIZE (exit_conditions); i++)
2437 {
2438 struct loop *loop;
2439 basic_block bb;
2440 tree phi, chrec;
2441
2442 loop = loop_containing_stmt (VARRAY_TREE (exit_conditions, i));
2443 bb = loop->header;
2444
bb29d951 2445 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
9baba81b
SP
2446 if (is_gimple_reg (PHI_RESULT (phi)))
2447 {
2448 chrec = instantiate_parameters
2449 (loop,
2450 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2451
2452 if (dump_file && (dump_flags & TDF_STATS))
2453 gather_chrec_stats (chrec, &stats);
2454 }
2455 }
2456
2457 if (dump_file && (dump_flags & TDF_STATS))
2458 dump_chrecs_stats (dump_file, &stats);
2459}
2460
2461/* Callback for htab_traverse, gathers information on chrecs in the
2462 hashtable. */
2463
2464static int
2465gather_stats_on_scev_database_1 (void **slot, void *stats)
2466{
2467 struct scev_info_str *entry = *slot;
2468
2469 gather_chrec_stats (entry->chrec, stats);
2470
2471 return 1;
2472}
2473
2474/* Classify the chrecs of the whole database. */
2475
2476void
2477gather_stats_on_scev_database (void)
2478{
2479 struct chrec_stats stats;
2480
2481 if (!dump_file)
2482 return;
2483
2484 reset_chrecs_counters (&stats);
2485
2486 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2487 &stats);
2488
2489 dump_chrecs_stats (dump_file, &stats);
2490}
2491
2492\f
2493
2494/* Initializer. */
2495
2496static void
2497initialize_scalar_evolutions_analyzer (void)
2498{
2499 /* The elements below are unique. */
2500 if (chrec_dont_know == NULL_TREE)
2501 {
2502 chrec_not_analyzed_yet = NULL_TREE;
2503 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2504 chrec_known = make_node (SCEV_KNOWN);
2505 TREE_TYPE (chrec_dont_know) = NULL_TREE;
2506 TREE_TYPE (chrec_known) = NULL_TREE;
2507 }
2508}
2509
2510/* Initialize the analysis of scalar evolutions for LOOPS. */
2511
2512void
2513scev_initialize (struct loops *loops)
2514{
2515 unsigned i;
2516 current_loops = loops;
2517
2518 scalar_evolution_info = htab_create (100, hash_scev_info,
2519 eq_scev_info, del_scev_info);
8bdbfff5 2520 already_instantiated = BITMAP_ALLOC (NULL);
9baba81b
SP
2521
2522 initialize_scalar_evolutions_analyzer ();
2523
2524 for (i = 1; i < loops->num; i++)
2525 if (loops->parray[i])
82b85a85 2526 loops->parray[i]->nb_iterations = NULL_TREE;
9baba81b
SP
2527}
2528
2529/* Cleans up the information cached by the scalar evolutions analysis. */
2530
2531void
2532scev_reset (void)
2533{
2534 unsigned i;
2535 struct loop *loop;
2536
2537 if (!scalar_evolution_info || !current_loops)
2538 return;
2539
2540 htab_empty (scalar_evolution_info);
2541 for (i = 1; i < current_loops->num; i++)
2542 {
2543 loop = current_loops->parray[i];
2544 if (loop)
2545 loop->nb_iterations = NULL_TREE;
2546 }
e9eb809d
ZD
2547}
2548
2549/* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2550 its BASE and STEP if possible. */
2551
2552bool
9baba81b 2553simple_iv (struct loop *loop, tree stmt, tree op, tree *base, tree *step)
e9eb809d 2554{
9baba81b
SP
2555 basic_block bb = bb_for_stmt (stmt);
2556 tree type, ev;
2557
2558 *base = NULL_TREE;
2559 *step = NULL_TREE;
2560
2561 type = TREE_TYPE (op);
2562 if (TREE_CODE (type) != INTEGER_TYPE
2563 && TREE_CODE (type) != POINTER_TYPE)
2564 return false;
2565
2566 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op);
2567 if (chrec_contains_undetermined (ev))
2568 return false;
2569
2570 if (tree_does_not_contain_chrecs (ev)
2571 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2572 {
2573 *base = ev;
2574 return true;
2575 }
2576
2577 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2578 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2579 return false;
2580
2581 *step = CHREC_RIGHT (ev);
2582 if (TREE_CODE (*step) != INTEGER_CST)
2583 return false;
2584 *base = CHREC_LEFT (ev);
2412d35c 2585 if (tree_contains_chrecs (*base, NULL)
9baba81b
SP
2586 || chrec_contains_symbols_defined_in_loop (*base, loop->num))
2587 return false;
2588
2589 return true;
2590}
2591
2592/* Runs the analysis of scalar evolutions. */
2593
2594void
2595scev_analysis (void)
2596{
2597 varray_type exit_conditions;
2598
2599 VARRAY_GENERIC_PTR_INIT (exit_conditions, 37, "exit_conditions");
2600 select_loops_exit_conditions (current_loops, &exit_conditions);
2601
2602 if (dump_file && (dump_flags & TDF_STATS))
2603 analyze_scalar_evolution_for_all_loop_phi_nodes (exit_conditions);
2604
2605 number_of_iterations_for_all_loops (exit_conditions);
2606 VARRAY_CLEAR (exit_conditions);
e9eb809d 2607}
9baba81b
SP
2608
2609/* Finalize the scalar evolution analysis. */
2610
2611void
2612scev_finalize (void)
2613{
2614 htab_delete (scalar_evolution_info);
8bdbfff5 2615 BITMAP_FREE (already_instantiated);
9baba81b
SP
2616}
2617