]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-scalar-evolution.c
re PR tree-optimization/70623 (ICE in compute_antic at -O2)
[thirdparty/gcc.git] / gcc / tree-scalar-evolution.c
CommitLineData
e9eb809d 1/* Scalar evolution detector.
818ab71a 2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
e9eb809d
ZD
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
e9eb809d
ZD
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
e9eb809d 20
b8698a0f
L
21/*
22 Description:
23
9baba81b
SP
24 This pass analyzes the evolution of scalar variables in loop
25 structures. The algorithm is based on the SSA representation,
26 and on the loop hierarchy tree. This algorithm is not based on
27 the notion of versions of a variable, as it was the case for the
28 previous implementations of the scalar evolution algorithm, but
29 it assumes that each defined name is unique.
30
31 The notation used in this file is called "chains of recurrences",
32 and has been proposed by Eugene Zima, Robert Van Engelen, and
33 others for describing induction variables in programs. For example
34 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
35 when entering in the loop_1 and has a step 2 in this loop, in other
36 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
37 this chain of recurrence (or chrec [shrek]) can contain the name of
38 other variables, in which case they are called parametric chrecs.
39 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
40 is the value of "a". In most of the cases these parametric chrecs
41 are fully instantiated before their use because symbolic names can
42 hide some difficult cases such as self-references described later
43 (see the Fibonacci example).
b8698a0f 44
9baba81b 45 A short sketch of the algorithm is:
b8698a0f 46
9baba81b
SP
47 Given a scalar variable to be analyzed, follow the SSA edge to
48 its definition:
b8698a0f 49
726a989a 50 - When the definition is a GIMPLE_ASSIGN: if the right hand side
9baba81b 51 (RHS) of the definition cannot be statically analyzed, the answer
b8698a0f 52 of the analyzer is: "don't know".
9baba81b
SP
53 Otherwise, for all the variables that are not yet analyzed in the
54 RHS, try to determine their evolution, and finally try to
55 evaluate the operation of the RHS that gives the evolution
56 function of the analyzed variable.
57
58 - When the definition is a condition-phi-node: determine the
59 evolution function for all the branches of the phi node, and
60 finally merge these evolutions (see chrec_merge).
61
62 - When the definition is a loop-phi-node: determine its initial
63 condition, that is the SSA edge defined in an outer loop, and
64 keep it symbolic. Then determine the SSA edges that are defined
65 in the body of the loop. Follow the inner edges until ending on
66 another loop-phi-node of the same analyzed loop. If the reached
67 loop-phi-node is not the starting loop-phi-node, then we keep
68 this definition under a symbolic form. If the reached
69 loop-phi-node is the same as the starting one, then we compute a
70 symbolic stride on the return path. The result is then the
71 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
72
73 Examples:
b8698a0f 74
9baba81b 75 Example 1: Illustration of the basic algorithm.
b8698a0f 76
9baba81b
SP
77 | a = 3
78 | loop_1
79 | b = phi (a, c)
80 | c = b + 1
81 | if (c > 10) exit_loop
82 | endloop
b8698a0f 83
9baba81b
SP
84 Suppose that we want to know the number of iterations of the
85 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
86 ask the scalar evolution analyzer two questions: what's the
87 scalar evolution (scev) of "c", and what's the scev of "10". For
88 "10" the answer is "10" since it is a scalar constant. For the
89 scalar variable "c", it follows the SSA edge to its definition,
90 "c = b + 1", and then asks again what's the scev of "b".
91 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
92 c)", where the initial condition is "a", and the inner loop edge
93 is "c". The initial condition is kept under a symbolic form (it
94 may be the case that the copy constant propagation has done its
95 work and we end with the constant "3" as one of the edges of the
96 loop-phi-node). The update edge is followed to the end of the
97 loop, and until reaching again the starting loop-phi-node: b -> c
98 -> b. At this point we have drawn a path from "b" to "b" from
99 which we compute the stride in the loop: in this example it is
100 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
101 that the scev for "b" is known, it is possible to compute the
102 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
103 determine the number of iterations in the loop_1, we have to
3f227a8c 104 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
9baba81b
SP
105 more analysis the scev {4, +, 1}_1, or in other words, this is
106 the function "f (x) = x + 4", where x is the iteration count of
107 the loop_1. Now we have to solve the inequality "x + 4 > 10",
108 and take the smallest iteration number for which the loop is
109 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
110 there are 8 iterations. In terms of loop normalization, we have
111 created a variable that is implicitly defined, "x" or just "_1",
112 and all the other analyzed scalars of the loop are defined in
113 function of this variable:
b8698a0f 114
9baba81b
SP
115 a -> 3
116 b -> {3, +, 1}_1
117 c -> {4, +, 1}_1
b8698a0f
L
118
119 or in terms of a C program:
120
9baba81b
SP
121 | a = 3
122 | for (x = 0; x <= 7; x++)
123 | {
124 | b = x + 3
125 | c = x + 4
126 | }
b8698a0f 127
3f227a8c 128 Example 2a: Illustration of the algorithm on nested loops.
b8698a0f 129
9baba81b
SP
130 | loop_1
131 | a = phi (1, b)
132 | c = a + 2
133 | loop_2 10 times
134 | b = phi (c, d)
135 | d = b + 3
136 | endloop
137 | endloop
b8698a0f 138
9baba81b
SP
139 For analyzing the scalar evolution of "a", the algorithm follows
140 the SSA edge into the loop's body: "a -> b". "b" is an inner
b8698a0f
L
141 loop-phi-node, and its analysis as in Example 1, gives:
142
9baba81b
SP
143 b -> {c, +, 3}_2
144 d -> {c + 3, +, 3}_2
b8698a0f 145
9baba81b
SP
146 Following the SSA edge for the initial condition, we end on "c = a
147 + 2", and then on the starting loop-phi-node "a". From this point,
148 the loop stride is computed: back on "c = a + 2" we get a "+2" in
149 the loop_1, then on the loop-phi-node "b" we compute the overall
150 effect of the inner loop that is "b = c + 30", and we get a "+30"
151 in the loop_1. That means that the overall stride in loop_1 is
b8698a0f
L
152 equal to "+32", and the result is:
153
9baba81b
SP
154 a -> {1, +, 32}_1
155 c -> {3, +, 32}_1
3f227a8c
JS
156
157 Example 2b: Multivariate chains of recurrences.
158
159 | loop_1
160 | k = phi (0, k + 1)
161 | loop_2 4 times
162 | j = phi (0, j + 1)
163 | loop_3 4 times
164 | i = phi (0, i + 1)
165 | A[j + k] = ...
166 | endloop
167 | endloop
168 | endloop
169
170 Analyzing the access function of array A with
171 instantiate_parameters (loop_1, "j + k"), we obtain the
172 instantiation and the analysis of the scalar variables "j" and "k"
173 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
174 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
175 {0, +, 1}_1. To obtain the evolution function in loop_3 and
176 instantiate the scalar variables up to loop_1, one has to use:
a213b219
SP
177 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
178 The result of this call is {{0, +, 1}_1, +, 1}_2.
3f227a8c 179
9baba81b 180 Example 3: Higher degree polynomials.
b8698a0f 181
9baba81b
SP
182 | loop_1
183 | a = phi (2, b)
184 | c = phi (5, d)
185 | b = a + 1
186 | d = c + a
187 | endloop
b8698a0f 188
9baba81b
SP
189 a -> {2, +, 1}_1
190 b -> {3, +, 1}_1
191 c -> {5, +, a}_1
192 d -> {5 + a, +, a}_1
b8698a0f 193
3f227a8c
JS
194 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
195 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
b8698a0f 196
9baba81b 197 Example 4: Lucas, Fibonacci, or mixers in general.
b8698a0f 198
9baba81b
SP
199 | loop_1
200 | a = phi (1, b)
201 | c = phi (3, d)
202 | b = c
203 | d = c + a
204 | endloop
b8698a0f 205
9baba81b
SP
206 a -> (1, c)_1
207 c -> {3, +, a}_1
b8698a0f 208
9baba81b
SP
209 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
210 following semantics: during the first iteration of the loop_1, the
211 variable contains the value 1, and then it contains the value "c".
212 Note that this syntax is close to the syntax of the loop-phi-node:
213 "a -> (1, c)_1" vs. "a = phi (1, c)".
b8698a0f 214
9baba81b
SP
215 The symbolic chrec representation contains all the semantics of the
216 original code. What is more difficult is to use this information.
b8698a0f 217
9baba81b 218 Example 5: Flip-flops, or exchangers.
b8698a0f 219
9baba81b
SP
220 | loop_1
221 | a = phi (1, b)
222 | c = phi (3, d)
223 | b = c
224 | d = a
225 | endloop
b8698a0f 226
9baba81b
SP
227 a -> (1, c)_1
228 c -> (3, a)_1
b8698a0f 229
9baba81b 230 Based on these symbolic chrecs, it is possible to refine this
b8698a0f
L
231 information into the more precise PERIODIC_CHRECs:
232
9baba81b
SP
233 a -> |1, 3|_1
234 c -> |3, 1|_1
b8698a0f 235
9baba81b 236 This transformation is not yet implemented.
b8698a0f 237
9baba81b 238 Further readings:
b8698a0f 239
9baba81b
SP
240 You can find a more detailed description of the algorithm in:
241 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
243 this is a preliminary report and some of the details of the
244 algorithm have changed. I'm working on a research report that
245 updates the description of the algorithms to reflect the design
246 choices used in this implementation.
b8698a0f 247
9baba81b
SP
248 A set of slides show a high level overview of the algorithm and run
249 an example through the scalar evolution analyzer:
250 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
251
252 The slides that I have presented at the GCC Summit'04 are available
253 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
254*/
255
e9eb809d
ZD
256#include "config.h"
257#include "system.h"
258#include "coretypes.h"
c7131fb2 259#include "backend.h"
957060b5 260#include "rtl.h"
cf2d1b38 261#include "tree.h"
c7131fb2 262#include "gimple.h"
c7131fb2 263#include "ssa.h"
957060b5 264#include "gimple-pretty-print.h"
c7131fb2 265#include "fold-const.h"
45b0be94 266#include "gimplify.h"
5be5c238 267#include "gimple-iterator.h"
18f429e2 268#include "gimplify-me.h"
442b4905 269#include "tree-cfg.h"
e28030cf
AM
270#include "tree-ssa-loop-ivopts.h"
271#include "tree-ssa-loop-manip.h"
272#include "tree-ssa-loop-niter.h"
442b4905 273#include "tree-ssa-loop.h"
7a300452 274#include "tree-ssa.h"
e9eb809d
ZD
275#include "cfgloop.h"
276#include "tree-chrec.h"
b83b5507 277#include "tree-affine.h"
e9eb809d 278#include "tree-scalar-evolution.h"
7ee2468b 279#include "dumpfile.h"
c59dabbe 280#include "params.h"
744730a4 281#include "tree-ssa-propagate.h"
19e51b40 282#include "gimple-fold.h"
9baba81b
SP
283
284static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
bef28ced
JL
285static tree analyze_scalar_evolution_for_address_of (struct loop *loop,
286 tree var);
9baba81b 287
a3cc13cc
RB
288/* The cached information about an SSA name with version NAME_VERSION,
289 claiming that below basic block with index INSTANTIATED_BELOW, the
290 value of the SSA name can be expressed as CHREC. */
9baba81b 291
907dadbd 292struct GTY((for_user)) scev_info_str {
a3cc13cc
RB
293 unsigned int name_version;
294 int instantiated_below;
9baba81b
SP
295 tree chrec;
296};
297
298/* Counters for the scev database. */
299static unsigned nb_set_scev = 0;
300static unsigned nb_get_scev = 0;
301
302/* The following trees are unique elements. Thus the comparison of
303 another element to these elements should be done on the pointer to
304 these trees, and not on their value. */
305
306/* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
307tree chrec_not_analyzed_yet;
308
309/* Reserved to the cases where the analyzer has detected an
310 undecidable property at compile time. */
311tree chrec_dont_know;
312
313/* When the analyzer has detected that a property will never
314 happen, then it qualifies it with chrec_known. */
315tree chrec_known;
316
ca752f39 317struct scev_info_hasher : ggc_ptr_hash<scev_info_str>
907dadbd
TS
318{
319 static hashval_t hash (scev_info_str *i);
320 static bool equal (const scev_info_str *a, const scev_info_str *b);
321};
322
323static GTY (()) hash_table<scev_info_hasher> *scalar_evolution_info;
9baba81b
SP
324
325\f
a213b219 326/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
9baba81b
SP
327
328static inline struct scev_info_str *
a213b219 329new_scev_info_str (basic_block instantiated_below, tree var)
9baba81b
SP
330{
331 struct scev_info_str *res;
b8698a0f 332
766090c2 333 res = ggc_alloc<scev_info_str> ();
a3cc13cc 334 res->name_version = SSA_NAME_VERSION (var);
9baba81b 335 res->chrec = chrec_not_analyzed_yet;
a3cc13cc 336 res->instantiated_below = instantiated_below->index;
a213b219 337
9baba81b
SP
338 return res;
339}
340
341/* Computes a hash function for database element ELT. */
342
907dadbd
TS
343hashval_t
344scev_info_hasher::hash (scev_info_str *elt)
9baba81b 345{
a3cc13cc 346 return elt->name_version ^ elt->instantiated_below;
9baba81b
SP
347}
348
349/* Compares database elements E1 and E2. */
350
907dadbd
TS
351bool
352scev_info_hasher::equal (const scev_info_str *elt1, const scev_info_str *elt2)
9baba81b 353{
a3cc13cc 354 return (elt1->name_version == elt2->name_version
a213b219 355 && elt1->instantiated_below == elt2->instantiated_below);
9baba81b
SP
356}
357
a213b219
SP
358/* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
359 A first query on VAR returns chrec_not_analyzed_yet. */
9baba81b
SP
360
361static tree *
a213b219 362find_var_scev_info (basic_block instantiated_below, tree var)
9baba81b
SP
363{
364 struct scev_info_str *res;
365 struct scev_info_str tmp;
9baba81b 366
a3cc13cc
RB
367 tmp.name_version = SSA_NAME_VERSION (var);
368 tmp.instantiated_below = instantiated_below->index;
907dadbd 369 scev_info_str **slot = scalar_evolution_info->find_slot (&tmp, INSERT);
9baba81b
SP
370
371 if (!*slot)
a213b219 372 *slot = new_scev_info_str (instantiated_below, var);
907dadbd 373 res = *slot;
9baba81b
SP
374
375 return &res->chrec;
376}
377
9baba81b
SP
378/* Return true when CHREC contains symbolic names defined in
379 LOOP_NB. */
380
b8698a0f 381bool
ed7a4b4b 382chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
9baba81b 383{
5039610b
SL
384 int i, n;
385
9baba81b
SP
386 if (chrec == NULL_TREE)
387 return false;
388
ad6003f2 389 if (is_gimple_min_invariant (chrec))
9baba81b
SP
390 return false;
391
9baba81b
SP
392 if (TREE_CODE (chrec) == SSA_NAME)
393 {
355fe088 394 gimple *def;
492e5456
SP
395 loop_p def_loop, loop;
396
397 if (SSA_NAME_IS_DEFAULT_DEF (chrec))
398 return false;
399
400 def = SSA_NAME_DEF_STMT (chrec);
401 def_loop = loop_containing_stmt (def);
0fc822d0 402 loop = get_loop (cfun, loop_nb);
9baba81b
SP
403
404 if (def_loop == NULL)
405 return false;
406
407 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
408 return true;
409
410 return false;
411 }
412
5039610b
SL
413 n = TREE_OPERAND_LENGTH (chrec);
414 for (i = 0; i < n; i++)
b8698a0f 415 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
5039610b
SL
416 loop_nb))
417 return true;
418 return false;
9baba81b
SP
419}
420
421/* Return true when PHI is a loop-phi-node. */
422
423static bool
355fe088 424loop_phi_node_p (gimple *phi)
9baba81b
SP
425{
426 /* The implementation of this function is based on the following
427 property: "all the loop-phi-nodes of a loop are contained in the
428 loop's header basic block". */
429
726a989a 430 return loop_containing_stmt (phi)->header == gimple_bb (phi);
9baba81b
SP
431}
432
433/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
434 In general, in the case of multivariate evolutions we want to get
435 the evolution in different loops. LOOP specifies the level for
436 which to get the evolution.
b8698a0f 437
9baba81b 438 Example:
b8698a0f 439
9baba81b
SP
440 | for (j = 0; j < 100; j++)
441 | {
442 | for (k = 0; k < 100; k++)
443 | {
b8698a0f 444 | i = k + j; - Here the value of i is a function of j, k.
9baba81b 445 | }
b8698a0f 446 | ... = i - Here the value of i is a function of j.
9baba81b 447 | }
b8698a0f
L
448 | ... = i - Here the value of i is a scalar.
449
450 Example:
451
9baba81b
SP
452 | i_0 = ...
453 | loop_1 10 times
454 | i_1 = phi (i_0, i_2)
455 | i_2 = i_1 + 2
456 | endloop
b8698a0f 457
9baba81b
SP
458 This loop has the same effect as:
459 LOOP_1 has the same effect as:
b8698a0f 460
9baba81b 461 | i_1 = i_0 + 20
b8698a0f
L
462
463 The overall effect of the loop, "i_0 + 20" in the previous example,
464 is obtained by passing in the parameters: LOOP = 1,
9baba81b
SP
465 EVOLUTION_FN = {i_0, +, 2}_1.
466*/
b8698a0f 467
42e6eec5 468tree
9baba81b
SP
469compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
470{
471 bool val = false;
472
473 if (evolution_fn == chrec_dont_know)
474 return chrec_dont_know;
475
476 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
477 {
677cc14d
ZD
478 struct loop *inner_loop = get_chrec_loop (evolution_fn);
479
480 if (inner_loop == loop
481 || flow_loop_nested_p (loop, inner_loop))
9baba81b 482 {
a14865db 483 tree nb_iter = number_of_latch_executions (inner_loop);
9baba81b
SP
484
485 if (nb_iter == chrec_dont_know)
486 return chrec_dont_know;
487 else
488 {
489 tree res;
490
9baba81b
SP
491 /* evolution_fn is the evolution function in LOOP. Get
492 its value in the nb_iter-th iteration. */
493 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
42e6eec5
SP
494
495 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
496 res = instantiate_parameters (loop, res);
497
8c27b7d4 498 /* Continue the computation until ending on a parent of LOOP. */
9baba81b
SP
499 return compute_overall_effect_of_inner_loop (loop, res);
500 }
501 }
502 else
503 return evolution_fn;
504 }
b8698a0f 505
9baba81b
SP
506 /* If the evolution function is an invariant, there is nothing to do. */
507 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
508 return evolution_fn;
b8698a0f 509
9baba81b
SP
510 else
511 return chrec_dont_know;
512}
513
9baba81b
SP
514/* Associate CHREC to SCALAR. */
515
516static void
a213b219 517set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
9baba81b
SP
518{
519 tree *scalar_info;
b8698a0f 520
9baba81b
SP
521 if (TREE_CODE (scalar) != SSA_NAME)
522 return;
523
a213b219 524 scalar_info = find_var_scev_info (instantiated_below, scalar);
b8698a0f 525
9baba81b
SP
526 if (dump_file)
527 {
dfedbe40 528 if (dump_flags & TDF_SCEV)
9baba81b
SP
529 {
530 fprintf (dump_file, "(set_scalar_evolution \n");
a213b219
SP
531 fprintf (dump_file, " instantiated_below = %d \n",
532 instantiated_below->index);
9baba81b
SP
533 fprintf (dump_file, " (scalar = ");
534 print_generic_expr (dump_file, scalar, 0);
535 fprintf (dump_file, ")\n (scalar_evolution = ");
536 print_generic_expr (dump_file, chrec, 0);
537 fprintf (dump_file, "))\n");
538 }
539 if (dump_flags & TDF_STATS)
540 nb_set_scev++;
541 }
b8698a0f 542
9baba81b
SP
543 *scalar_info = chrec;
544}
545
a213b219
SP
546/* Retrieve the chrec associated to SCALAR instantiated below
547 INSTANTIATED_BELOW block. */
9baba81b
SP
548
549static tree
a213b219 550get_scalar_evolution (basic_block instantiated_below, tree scalar)
9baba81b
SP
551{
552 tree res;
b8698a0f 553
9baba81b
SP
554 if (dump_file)
555 {
dfedbe40 556 if (dump_flags & TDF_SCEV)
9baba81b
SP
557 {
558 fprintf (dump_file, "(get_scalar_evolution \n");
559 fprintf (dump_file, " (scalar = ");
560 print_generic_expr (dump_file, scalar, 0);
561 fprintf (dump_file, ")\n");
562 }
563 if (dump_flags & TDF_STATS)
564 nb_get_scev++;
565 }
b8698a0f 566
9baba81b
SP
567 switch (TREE_CODE (scalar))
568 {
569 case SSA_NAME:
a213b219 570 res = *find_var_scev_info (instantiated_below, scalar);
9baba81b
SP
571 break;
572
573 case REAL_CST:
325217ed 574 case FIXED_CST:
9baba81b
SP
575 case INTEGER_CST:
576 res = scalar;
577 break;
578
579 default:
580 res = chrec_not_analyzed_yet;
581 break;
582 }
b8698a0f 583
dfedbe40 584 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
585 {
586 fprintf (dump_file, " (scalar_evolution = ");
587 print_generic_expr (dump_file, res, 0);
588 fprintf (dump_file, "))\n");
589 }
b8698a0f 590
9baba81b
SP
591 return res;
592}
593
594/* Helper function for add_to_evolution. Returns the evolution
595 function for an assignment of the form "a = b + c", where "a" and
596 "b" are on the strongly connected component. CHREC_BEFORE is the
597 information that we already have collected up to this point.
b8698a0f
L
598 TO_ADD is the evolution of "c".
599
9baba81b
SP
600 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
601 evolution the expression TO_ADD, otherwise construct an evolution
602 part for this loop. */
603
604static tree
e2157b49 605add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
355fe088 606 gimple *at_stmt)
9baba81b 607{
e2157b49 608 tree type, left, right;
0fc822d0 609 struct loop *loop = get_loop (cfun, loop_nb), *chloop;
e2157b49 610
9baba81b
SP
611 switch (TREE_CODE (chrec_before))
612 {
613 case POLYNOMIAL_CHREC:
677cc14d
ZD
614 chloop = get_chrec_loop (chrec_before);
615 if (chloop == loop
616 || flow_loop_nested_p (chloop, loop))
9baba81b
SP
617 {
618 unsigned var;
e2157b49
SP
619
620 type = chrec_type (chrec_before);
b8698a0f 621
9baba81b 622 /* When there is no evolution part in this loop, build it. */
677cc14d 623 if (chloop != loop)
9baba81b
SP
624 {
625 var = loop_nb;
626 left = chrec_before;
7e0923cd
SP
627 right = SCALAR_FLOAT_TYPE_P (type)
628 ? build_real (type, dconst0)
629 : build_int_cst (type, 0);
9baba81b
SP
630 }
631 else
632 {
633 var = CHREC_VARIABLE (chrec_before);
634 left = CHREC_LEFT (chrec_before);
635 right = CHREC_RIGHT (chrec_before);
636 }
637
e2157b49 638 to_add = chrec_convert (type, to_add, at_stmt);
5be014d5
AP
639 right = chrec_convert_rhs (type, right, at_stmt);
640 right = chrec_fold_plus (chrec_type (right), right, to_add);
e2157b49 641 return build_polynomial_chrec (var, left, right);
9baba81b
SP
642 }
643 else
e2157b49 644 {
677cc14d
ZD
645 gcc_assert (flow_loop_nested_p (loop, chloop));
646
e2157b49
SP
647 /* Search the evolution in LOOP_NB. */
648 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
649 to_add, at_stmt);
650 right = CHREC_RIGHT (chrec_before);
5be014d5 651 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
e2157b49
SP
652 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
653 left, right);
654 }
b8698a0f 655
9baba81b
SP
656 default:
657 /* These nodes do not depend on a loop. */
658 if (chrec_before == chrec_dont_know)
659 return chrec_dont_know;
e2157b49
SP
660
661 left = chrec_before;
5be014d5 662 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
e2157b49 663 return build_polynomial_chrec (loop_nb, left, right);
9baba81b
SP
664 }
665}
666
667/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
b8698a0f
L
668 of LOOP_NB.
669
9baba81b
SP
670 Description (provided for completeness, for those who read code in
671 a plane, and for my poor 62 bytes brain that would have forgotten
672 all this in the next two or three months):
b8698a0f 673
9baba81b
SP
674 The algorithm of translation of programs from the SSA representation
675 into the chrecs syntax is based on a pattern matching. After having
676 reconstructed the overall tree expression for a loop, there are only
677 two cases that can arise:
b8698a0f 678
9baba81b
SP
679 1. a = loop-phi (init, a + expr)
680 2. a = loop-phi (init, expr)
b8698a0f 681
9baba81b
SP
682 where EXPR is either a scalar constant with respect to the analyzed
683 loop (this is a degree 0 polynomial), or an expression containing
684 other loop-phi definitions (these are higher degree polynomials).
b8698a0f 685
9baba81b 686 Examples:
b8698a0f
L
687
688 1.
9baba81b
SP
689 | init = ...
690 | loop_1
691 | a = phi (init, a + 5)
692 | endloop
b8698a0f
L
693
694 2.
9baba81b
SP
695 | inita = ...
696 | initb = ...
697 | loop_1
698 | a = phi (inita, 2 * b + 3)
699 | b = phi (initb, b + 1)
700 | endloop
b8698a0f
L
701
702 For the first case, the semantics of the SSA representation is:
703
9baba81b 704 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
b8698a0f 705
9baba81b
SP
706 that is, there is a loop index "x" that determines the scalar value
707 of the variable during the loop execution. During the first
708 iteration, the value is that of the initial condition INIT, while
709 during the subsequent iterations, it is the sum of the initial
710 condition with the sum of all the values of EXPR from the initial
b8698a0f
L
711 iteration to the before last considered iteration.
712
9baba81b 713 For the second case, the semantics of the SSA program is:
b8698a0f 714
9baba81b
SP
715 | a (x) = init, if x = 0;
716 | expr (x - 1), otherwise.
b8698a0f 717
9baba81b 718 The second case corresponds to the PEELED_CHREC, whose syntax is
b8698a0f
L
719 close to the syntax of a loop-phi-node:
720
9baba81b 721 | phi (init, expr) vs. (init, expr)_x
b8698a0f 722
9baba81b 723 The proof of the translation algorithm for the first case is a
b8698a0f
L
724 proof by structural induction based on the degree of EXPR.
725
9baba81b
SP
726 Degree 0:
727 When EXPR is a constant with respect to the analyzed loop, or in
728 other words when EXPR is a polynomial of degree 0, the evolution of
729 the variable A in the loop is an affine function with an initial
730 condition INIT, and a step EXPR. In order to show this, we start
731 from the semantics of the SSA representation:
b8698a0f 732
9baba81b 733 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
b8698a0f 734
9baba81b 735 and since "expr (j)" is a constant with respect to "j",
b8698a0f
L
736
737 f (x) = init + x * expr
738
9baba81b
SP
739 Finally, based on the semantics of the pure sum chrecs, by
740 identification we get the corresponding chrecs syntax:
b8698a0f
L
741
742 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
9baba81b 743 f (x) -> {init, +, expr}_x
b8698a0f 744
9baba81b
SP
745 Higher degree:
746 Suppose that EXPR is a polynomial of degree N with respect to the
747 analyzed loop_x for which we have already determined that it is
748 written under the chrecs syntax:
b8698a0f 749
9baba81b 750 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
b8698a0f 751
9baba81b 752 We start from the semantics of the SSA program:
b8698a0f 753
9baba81b
SP
754 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
755 |
b8698a0f 756 | f (x) = init + \sum_{j = 0}^{x - 1}
9baba81b
SP
757 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
758 |
b8698a0f
L
759 | f (x) = init + \sum_{j = 0}^{x - 1}
760 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
9baba81b 761 |
b8698a0f
L
762 | f (x) = init + \sum_{k = 0}^{n - 1}
763 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
9baba81b 764 |
b8698a0f
L
765 | f (x) = init + \sum_{k = 0}^{n - 1}
766 | (b_k * \binom{x}{k + 1})
9baba81b 767 |
b8698a0f
L
768 | f (x) = init + b_0 * \binom{x}{1} + ...
769 | + b_{n-1} * \binom{x}{n}
9baba81b 770 |
b8698a0f
L
771 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
772 | + b_{n-1} * \binom{x}{n}
9baba81b 773 |
b8698a0f 774
9baba81b 775 And finally from the definition of the chrecs syntax, we identify:
b8698a0f
L
776 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
777
9baba81b
SP
778 This shows the mechanism that stands behind the add_to_evolution
779 function. An important point is that the use of symbolic
780 parameters avoids the need of an analysis schedule.
b8698a0f 781
9baba81b 782 Example:
b8698a0f 783
9baba81b
SP
784 | inita = ...
785 | initb = ...
b8698a0f 786 | loop_1
9baba81b
SP
787 | a = phi (inita, a + 2 + b)
788 | b = phi (initb, b + 1)
789 | endloop
b8698a0f 790
9baba81b 791 When analyzing "a", the algorithm keeps "b" symbolically:
b8698a0f 792
9baba81b 793 | a -> {inita, +, 2 + b}_1
b8698a0f 794
9baba81b 795 Then, after instantiation, the analyzer ends on the evolution:
b8698a0f 796
9baba81b
SP
797 | a -> {inita, +, 2 + initb, +, 1}_1
798
799*/
800
b8698a0f 801static tree
e2157b49 802add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
355fe088 803 tree to_add, gimple *at_stmt)
9baba81b
SP
804{
805 tree type = chrec_type (to_add);
806 tree res = NULL_TREE;
b8698a0f 807
9baba81b
SP
808 if (to_add == NULL_TREE)
809 return chrec_before;
b8698a0f 810
9baba81b
SP
811 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
812 instantiated at this point. */
813 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
814 /* This should not happen. */
815 return chrec_dont_know;
b8698a0f 816
dfedbe40 817 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
818 {
819 fprintf (dump_file, "(add_to_evolution \n");
820 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
821 fprintf (dump_file, " (chrec_before = ");
822 print_generic_expr (dump_file, chrec_before, 0);
823 fprintf (dump_file, ")\n (to_add = ");
824 print_generic_expr (dump_file, to_add, 0);
825 fprintf (dump_file, ")\n");
826 }
827
828 if (code == MINUS_EXPR)
9d2b0e12
VR
829 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
830 ? build_real (type, dconstm1)
831 : build_int_cst_type (type, -1));
9baba81b 832
e2157b49 833 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
9baba81b 834
dfedbe40 835 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
836 {
837 fprintf (dump_file, " (res = ");
838 print_generic_expr (dump_file, res, 0);
839 fprintf (dump_file, "))\n");
840 }
841
842 return res;
843}
844
9baba81b
SP
845\f
846
847/* This section selects the loops that will be good candidates for the
848 scalar evolution analysis. For the moment, greedily select all the
849 loop nests we could analyze. */
850
9baba81b
SP
851/* For a loop with a single exit edge, return the COND_EXPR that
852 guards the exit edge. If the expression is too difficult to
853 analyze, then give up. */
854
538dd0b7 855gcond *
22ea9ec0 856get_loop_exit_condition (const struct loop *loop)
9baba81b 857{
538dd0b7 858 gcond *res = NULL;
ac8f6c69 859 edge exit_edge = single_exit (loop);
b8698a0f 860
dfedbe40 861 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b 862 fprintf (dump_file, "(get_loop_exit_condition \n ");
b8698a0f 863
82b85a85 864 if (exit_edge)
9baba81b 865 {
355fe088 866 gimple *stmt;
b8698a0f 867
726a989a 868 stmt = last_stmt (exit_edge->src);
538dd0b7
DM
869 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
870 res = cond_stmt;
9baba81b 871 }
b8698a0f 872
dfedbe40 873 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b 874 {
726a989a 875 print_gimple_stmt (dump_file, res, 0, 0);
9baba81b
SP
876 fprintf (dump_file, ")\n");
877 }
b8698a0f 878
9baba81b
SP
879 return res;
880}
881
9baba81b
SP
882\f
883/* Depth first search algorithm. */
884
a79683d5 885enum t_bool {
c59dabbe
SP
886 t_false,
887 t_true,
888 t_dont_know
a79683d5 889};
c59dabbe
SP
890
891
355fe088 892static t_bool follow_ssa_edge (struct loop *loop, gimple *, gphi *,
538dd0b7 893 tree *, int);
9baba81b 894
726a989a 895/* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
9baba81b
SP
896 Return true if the strongly connected component has been found. */
897
c59dabbe 898static t_bool
355fe088 899follow_ssa_edge_binary (struct loop *loop, gimple *at_stmt,
726a989a 900 tree type, tree rhs0, enum tree_code code, tree rhs1,
538dd0b7
DM
901 gphi *halting_phi, tree *evolution_of_loop,
902 int limit)
9baba81b 903{
c59dabbe 904 t_bool res = t_false;
b2a93c0a 905 tree evol;
726a989a 906
5be014d5 907 switch (code)
9baba81b 908 {
5be014d5 909 case POINTER_PLUS_EXPR:
9baba81b 910 case PLUS_EXPR:
9baba81b
SP
911 if (TREE_CODE (rhs0) == SSA_NAME)
912 {
913 if (TREE_CODE (rhs1) == SSA_NAME)
914 {
b8698a0f 915 /* Match an assignment under the form:
9baba81b 916 "a = b + c". */
b8698a0f 917
9e824336
ZD
918 /* We want only assignments of form "name + name" contribute to
919 LIMIT, as the other cases do not necessarily contribute to
920 the complexity of the expression. */
921 limit++;
922
b2a93c0a 923 evol = *evolution_of_loop;
b9b79ba4 924 evol = add_to_evolution
b8698a0f
L
925 (loop->num,
926 chrec_convert (type, evol, at_stmt),
5be014d5 927 code, rhs1, at_stmt);
b9b79ba4
RB
928 res = follow_ssa_edge
929 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
930 if (res == t_true)
931 *evolution_of_loop = evol;
c59dabbe 932 else if (res == t_false)
9baba81b 933 {
b9b79ba4
RB
934 *evolution_of_loop = add_to_evolution
935 (loop->num,
936 chrec_convert (type, *evolution_of_loop, at_stmt),
937 code, rhs0, at_stmt);
b8698a0f
L
938 res = follow_ssa_edge
939 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
c59dabbe 940 evolution_of_loop, limit);
c59dabbe 941 if (res == t_true)
b9b79ba4 942 ;
c59dabbe
SP
943 else if (res == t_dont_know)
944 *evolution_of_loop = chrec_dont_know;
9baba81b 945 }
c59dabbe
SP
946
947 else if (res == t_dont_know)
948 *evolution_of_loop = chrec_dont_know;
9baba81b 949 }
b8698a0f 950
9baba81b
SP
951 else
952 {
b8698a0f 953 /* Match an assignment under the form:
9baba81b 954 "a = b + ...". */
b9b79ba4
RB
955 *evolution_of_loop = add_to_evolution
956 (loop->num, chrec_convert (type, *evolution_of_loop,
957 at_stmt),
958 code, rhs1, at_stmt);
b8698a0f
L
959 res = follow_ssa_edge
960 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
c59dabbe
SP
961 evolution_of_loop, limit);
962 if (res == t_true)
b9b79ba4 963 ;
c59dabbe
SP
964 else if (res == t_dont_know)
965 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
966 }
967 }
b8698a0f 968
9baba81b
SP
969 else if (TREE_CODE (rhs1) == SSA_NAME)
970 {
b8698a0f 971 /* Match an assignment under the form:
9baba81b 972 "a = ... + c". */
b9b79ba4
RB
973 *evolution_of_loop = add_to_evolution
974 (loop->num, chrec_convert (type, *evolution_of_loop,
975 at_stmt),
976 code, rhs0, at_stmt);
b8698a0f
L
977 res = follow_ssa_edge
978 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
c59dabbe
SP
979 evolution_of_loop, limit);
980 if (res == t_true)
b9b79ba4 981 ;
c59dabbe
SP
982 else if (res == t_dont_know)
983 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
984 }
985
986 else
b8698a0f 987 /* Otherwise, match an assignment under the form:
9baba81b
SP
988 "a = ... + ...". */
989 /* And there is nothing to do. */
c59dabbe 990 res = t_false;
9baba81b 991 break;
b8698a0f 992
9baba81b
SP
993 case MINUS_EXPR:
994 /* This case is under the form "opnd0 = rhs0 - rhs1". */
9baba81b 995 if (TREE_CODE (rhs0) == SSA_NAME)
9baba81b 996 {
b8698a0f 997 /* Match an assignment under the form:
f8e9d512 998 "a = b - ...". */
9e824336
ZD
999
1000 /* We want only assignments of form "name - name" contribute to
1001 LIMIT, as the other cases do not necessarily contribute to
1002 the complexity of the expression. */
1003 if (TREE_CODE (rhs1) == SSA_NAME)
1004 limit++;
1005
b9b79ba4
RB
1006 *evolution_of_loop = add_to_evolution
1007 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
1008 MINUS_EXPR, rhs1, at_stmt);
b8698a0f 1009 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
c59dabbe
SP
1010 evolution_of_loop, limit);
1011 if (res == t_true)
b9b79ba4 1012 ;
c59dabbe
SP
1013 else if (res == t_dont_know)
1014 *evolution_of_loop = chrec_dont_know;
9baba81b 1015 }
9baba81b 1016 else
b8698a0f 1017 /* Otherwise, match an assignment under the form:
9baba81b
SP
1018 "a = ... - ...". */
1019 /* And there is nothing to do. */
c59dabbe 1020 res = t_false;
9baba81b 1021 break;
726a989a
RB
1022
1023 default:
1024 res = t_false;
1025 }
1026
1027 return res;
1028}
b8698a0f 1029
726a989a
RB
1030/* Follow the ssa edge into the expression EXPR.
1031 Return true if the strongly connected component has been found. */
1032
1033static t_bool
355fe088 1034follow_ssa_edge_expr (struct loop *loop, gimple *at_stmt, tree expr,
538dd0b7
DM
1035 gphi *halting_phi, tree *evolution_of_loop,
1036 int limit)
726a989a 1037{
5aefc6a0
EB
1038 enum tree_code code = TREE_CODE (expr);
1039 tree type = TREE_TYPE (expr), rhs0, rhs1;
1040 t_bool res;
1041
726a989a 1042 /* The EXPR is one of the following cases:
b8698a0f 1043 - an SSA_NAME,
726a989a 1044 - an INTEGER_CST,
b8698a0f
L
1045 - a PLUS_EXPR,
1046 - a POINTER_PLUS_EXPR,
726a989a
RB
1047 - a MINUS_EXPR,
1048 - an ASSERT_EXPR,
1049 - other cases are not yet handled. */
5aefc6a0 1050
726a989a
RB
1051 switch (code)
1052 {
5aefc6a0 1053 CASE_CONVERT:
726a989a
RB
1054 /* This assignment is under the form "a_1 = (cast) rhs. */
1055 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1056 halting_phi, evolution_of_loop, limit);
1057 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1058 break;
1059
1060 case INTEGER_CST:
1061 /* This assignment is under the form "a_1 = 7". */
1062 res = t_false;
1063 break;
5aefc6a0 1064
726a989a
RB
1065 case SSA_NAME:
1066 /* This assignment is under the form: "a_1 = b_2". */
b8698a0f 1067 res = follow_ssa_edge
726a989a
RB
1068 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1069 break;
5aefc6a0 1070
726a989a
RB
1071 case POINTER_PLUS_EXPR:
1072 case PLUS_EXPR:
1073 case MINUS_EXPR:
1074 /* This case is under the form "rhs0 +- rhs1". */
1075 rhs0 = TREE_OPERAND (expr, 0);
1076 rhs1 = TREE_OPERAND (expr, 1);
5aefc6a0
EB
1077 type = TREE_TYPE (rhs0);
1078 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1079 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1080 res = follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1081 halting_phi, evolution_of_loop, limit);
1082 break;
726a989a 1083
70f34814
RG
1084 case ADDR_EXPR:
1085 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1086 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
1087 {
1088 expr = TREE_OPERAND (expr, 0);
1089 rhs0 = TREE_OPERAND (expr, 0);
1090 rhs1 = TREE_OPERAND (expr, 1);
1091 type = TREE_TYPE (rhs0);
1092 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1093 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1094 res = follow_ssa_edge_binary (loop, at_stmt, type,
1095 rhs0, POINTER_PLUS_EXPR, rhs1,
1096 halting_phi, evolution_of_loop, limit);
1097 }
1098 else
1099 res = t_false;
1100 break;
1101
0bca51f0 1102 case ASSERT_EXPR:
5aefc6a0
EB
1103 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1104 It must be handled as a copy assignment of the form a_1 = a_2. */
1105 rhs0 = ASSERT_EXPR_VAR (expr);
1106 if (TREE_CODE (rhs0) == SSA_NAME)
1107 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0),
1108 halting_phi, evolution_of_loop, limit);
1109 else
1110 res = t_false;
1111 break;
0bca51f0 1112
9baba81b 1113 default:
c59dabbe 1114 res = t_false;
9baba81b
SP
1115 break;
1116 }
5aefc6a0 1117
9baba81b
SP
1118 return res;
1119}
1120
726a989a
RB
1121/* Follow the ssa edge into the right hand side of an assignment STMT.
1122 Return true if the strongly connected component has been found. */
1123
1124static t_bool
355fe088 1125follow_ssa_edge_in_rhs (struct loop *loop, gimple *stmt,
538dd0b7
DM
1126 gphi *halting_phi, tree *evolution_of_loop,
1127 int limit)
726a989a 1128{
726a989a 1129 enum tree_code code = gimple_assign_rhs_code (stmt);
5aefc6a0
EB
1130 tree type = gimple_expr_type (stmt), rhs1, rhs2;
1131 t_bool res;
726a989a 1132
5aefc6a0 1133 switch (code)
726a989a 1134 {
5aefc6a0
EB
1135 CASE_CONVERT:
1136 /* This assignment is under the form "a_1 = (cast) rhs. */
1137 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1138 halting_phi, evolution_of_loop, limit);
1139 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1140 break;
1141
1142 case POINTER_PLUS_EXPR:
1143 case PLUS_EXPR:
1144 case MINUS_EXPR:
1145 rhs1 = gimple_assign_rhs1 (stmt);
1146 rhs2 = gimple_assign_rhs2 (stmt);
1147 type = TREE_TYPE (rhs1);
1148 res = follow_ssa_edge_binary (loop, stmt, type, rhs1, code, rhs2,
218d1c24 1149 halting_phi, evolution_of_loop, limit);
5aefc6a0 1150 break;
218d1c24 1151
726a989a 1152 default:
5aefc6a0
EB
1153 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1154 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1155 halting_phi, evolution_of_loop, limit);
1156 else
1157 res = t_false;
1158 break;
726a989a 1159 }
5aefc6a0
EB
1160
1161 return res;
726a989a
RB
1162}
1163
9baba81b
SP
1164/* Checks whether the I-th argument of a PHI comes from a backedge. */
1165
1166static bool
538dd0b7 1167backedge_phi_arg_p (gphi *phi, int i)
9baba81b 1168{
726a989a 1169 const_edge e = gimple_phi_arg_edge (phi, i);
9baba81b
SP
1170
1171 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1172 about updating it anywhere, and this should work as well most of the
1173 time. */
1174 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1175 return true;
1176
1177 return false;
1178}
1179
1180/* Helper function for one branch of the condition-phi-node. Return
1181 true if the strongly connected component has been found following
1182 this path. */
1183
c59dabbe 1184static inline t_bool
9baba81b 1185follow_ssa_edge_in_condition_phi_branch (int i,
b8698a0f 1186 struct loop *loop,
538dd0b7
DM
1187 gphi *condition_phi,
1188 gphi *halting_phi,
9baba81b 1189 tree *evolution_of_branch,
c59dabbe 1190 tree init_cond, int limit)
9baba81b
SP
1191{
1192 tree branch = PHI_ARG_DEF (condition_phi, i);
1193 *evolution_of_branch = chrec_dont_know;
1194
1195 /* Do not follow back edges (they must belong to an irreducible loop, which
1196 we really do not want to worry about). */
1197 if (backedge_phi_arg_p (condition_phi, i))
c59dabbe 1198 return t_false;
9baba81b
SP
1199
1200 if (TREE_CODE (branch) == SSA_NAME)
1201 {
1202 *evolution_of_branch = init_cond;
b8698a0f 1203 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
c59dabbe 1204 evolution_of_branch, limit);
9baba81b
SP
1205 }
1206
b8698a0f 1207 /* This case occurs when one of the condition branches sets
89dbed81 1208 the variable to a constant: i.e. a phi-node like
b8698a0f
L
1209 "a_2 = PHI <a_7(5), 2(6)>;".
1210
1211 FIXME: This case have to be refined correctly:
9baba81b
SP
1212 in some cases it is possible to say something better than
1213 chrec_dont_know, for example using a wrap-around notation. */
c59dabbe 1214 return t_false;
9baba81b
SP
1215}
1216
1217/* This function merges the branches of a condition-phi-node in a
1218 loop. */
1219
c59dabbe 1220static t_bool
9baba81b 1221follow_ssa_edge_in_condition_phi (struct loop *loop,
538dd0b7
DM
1222 gphi *condition_phi,
1223 gphi *halting_phi,
c59dabbe 1224 tree *evolution_of_loop, int limit)
9baba81b 1225{
726a989a 1226 int i, n;
9baba81b
SP
1227 tree init = *evolution_of_loop;
1228 tree evolution_of_branch;
c59dabbe
SP
1229 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1230 halting_phi,
1231 &evolution_of_branch,
1232 init, limit);
1233 if (res == t_false || res == t_dont_know)
1234 return res;
9baba81b 1235
9baba81b
SP
1236 *evolution_of_loop = evolution_of_branch;
1237
726a989a 1238 n = gimple_phi_num_args (condition_phi);
726a989a 1239 for (i = 1; i < n; i++)
9baba81b 1240 {
e0afb98a
SP
1241 /* Quickly give up when the evolution of one of the branches is
1242 not known. */
1243 if (*evolution_of_loop == chrec_dont_know)
c59dabbe 1244 return t_true;
e0afb98a 1245
788d3075
RG
1246 /* Increase the limit by the PHI argument number to avoid exponential
1247 time and memory complexity. */
c59dabbe
SP
1248 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1249 halting_phi,
1250 &evolution_of_branch,
788d3075 1251 init, limit + i);
c59dabbe
SP
1252 if (res == t_false || res == t_dont_know)
1253 return res;
9baba81b
SP
1254
1255 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1256 evolution_of_branch);
1257 }
b8698a0f 1258
c59dabbe 1259 return t_true;
9baba81b
SP
1260}
1261
1262/* Follow an SSA edge in an inner loop. It computes the overall
1263 effect of the loop, and following the symbolic initial conditions,
1264 it follows the edges in the parent loop. The inner loop is
1265 considered as a single statement. */
1266
c59dabbe 1267static t_bool
9baba81b 1268follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
538dd0b7
DM
1269 gphi *loop_phi_node,
1270 gphi *halting_phi,
c59dabbe 1271 tree *evolution_of_loop, int limit)
9baba81b
SP
1272{
1273 struct loop *loop = loop_containing_stmt (loop_phi_node);
1274 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1275
1276 /* Sometimes, the inner loop is too difficult to analyze, and the
1277 result of the analysis is a symbolic parameter. */
1278 if (ev == PHI_RESULT (loop_phi_node))
1279 {
c59dabbe 1280 t_bool res = t_false;
726a989a 1281 int i, n = gimple_phi_num_args (loop_phi_node);
9baba81b 1282
726a989a 1283 for (i = 0; i < n; i++)
9baba81b
SP
1284 {
1285 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1286 basic_block bb;
1287
1288 /* Follow the edges that exit the inner loop. */
726a989a 1289 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
9baba81b 1290 if (!flow_bb_inside_loop_p (loop, bb))
726a989a
RB
1291 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1292 arg, halting_phi,
1293 evolution_of_loop, limit);
c59dabbe
SP
1294 if (res == t_true)
1295 break;
9baba81b
SP
1296 }
1297
1298 /* If the path crosses this loop-phi, give up. */
c59dabbe 1299 if (res == t_true)
9baba81b
SP
1300 *evolution_of_loop = chrec_dont_know;
1301
1302 return res;
1303 }
1304
1305 /* Otherwise, compute the overall effect of the inner loop. */
1306 ev = compute_overall_effect_of_inner_loop (loop, ev);
726a989a
RB
1307 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1308 evolution_of_loop, limit);
9baba81b
SP
1309}
1310
1311/* Follow an SSA edge from a loop-phi-node to itself, constructing a
1312 path that is analyzed on the return walk. */
1313
c59dabbe 1314static t_bool
355fe088 1315follow_ssa_edge (struct loop *loop, gimple *def, gphi *halting_phi,
c59dabbe 1316 tree *evolution_of_loop, int limit)
9baba81b
SP
1317{
1318 struct loop *def_loop;
b8698a0f 1319
726a989a 1320 if (gimple_nop_p (def))
c59dabbe 1321 return t_false;
b8698a0f 1322
c59dabbe 1323 /* Give up if the path is longer than the MAX that we allow. */
14dd9aab 1324 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_COMPLEXITY))
c59dabbe 1325 return t_dont_know;
b8698a0f 1326
9baba81b 1327 def_loop = loop_containing_stmt (def);
b8698a0f 1328
726a989a 1329 switch (gimple_code (def))
9baba81b 1330 {
726a989a 1331 case GIMPLE_PHI:
9baba81b
SP
1332 if (!loop_phi_node_p (def))
1333 /* DEF is a condition-phi-node. Follow the branches, and
1334 record their evolutions. Finally, merge the collected
1335 information and set the approximation to the main
1336 variable. */
b8698a0f 1337 return follow_ssa_edge_in_condition_phi
538dd0b7
DM
1338 (loop, as_a <gphi *> (def), halting_phi, evolution_of_loop,
1339 limit);
9baba81b
SP
1340
1341 /* When the analyzed phi is the halting_phi, the
1342 depth-first search is over: we have found a path from
1343 the halting_phi to itself in the loop. */
1344 if (def == halting_phi)
c59dabbe 1345 return t_true;
b8698a0f 1346
9baba81b 1347 /* Otherwise, the evolution of the HALTING_PHI depends
89dbed81 1348 on the evolution of another loop-phi-node, i.e. the
9baba81b
SP
1349 evolution function is a higher degree polynomial. */
1350 if (def_loop == loop)
c59dabbe 1351 return t_false;
b8698a0f 1352
9baba81b
SP
1353 /* Inner loop. */
1354 if (flow_loop_nested_p (loop, def_loop))
b8698a0f 1355 return follow_ssa_edge_inner_loop_phi
538dd0b7
DM
1356 (loop, as_a <gphi *> (def), halting_phi, evolution_of_loop,
1357 limit + 1);
9baba81b
SP
1358
1359 /* Outer loop. */
c59dabbe 1360 return t_false;
9baba81b 1361
726a989a 1362 case GIMPLE_ASSIGN:
b8698a0f 1363 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
c59dabbe 1364 evolution_of_loop, limit);
b8698a0f 1365
9baba81b
SP
1366 default:
1367 /* At this level of abstraction, the program is just a set
726a989a 1368 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
9baba81b 1369 other node to be handled. */
c59dabbe 1370 return t_false;
9baba81b
SP
1371 }
1372}
1373
1374\f
b83b5507
BC
1375/* Simplify PEELED_CHREC represented by (init_cond, arg) in LOOP.
1376 Handle below case and return the corresponding POLYNOMIAL_CHREC:
1377
1378 # i_17 = PHI <i_13(5), 0(3)>
1379 # _20 = PHI <_5(5), start_4(D)(3)>
1380 ...
1381 i_13 = i_17 + 1;
1382 _5 = start_4(D) + i_13;
1383
1384 Though variable _20 appears as a PEELED_CHREC in the form of
1385 (start_4, _5)_LOOP, it's a POLYNOMIAL_CHREC like {start_4, 1}_LOOP.
1386
1387 See PR41488. */
1388
1389static tree
1390simplify_peeled_chrec (struct loop *loop, tree arg, tree init_cond)
1391{
1392 aff_tree aff1, aff2;
1393 tree ev, left, right, type, step_val;
39c8aaa4 1394 hash_map<tree, name_expansion *> *peeled_chrec_map = NULL;
b83b5507
BC
1395
1396 ev = instantiate_parameters (loop, analyze_scalar_evolution (loop, arg));
1397 if (ev == NULL_TREE || TREE_CODE (ev) != POLYNOMIAL_CHREC)
1398 return chrec_dont_know;
1399
1400 left = CHREC_LEFT (ev);
1401 right = CHREC_RIGHT (ev);
1402 type = TREE_TYPE (left);
1403 step_val = chrec_fold_plus (type, init_cond, right);
1404
1405 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1406 if "left" equals to "init + right". */
1407 if (operand_equal_p (left, step_val, 0))
1408 {
1409 if (dump_file && (dump_flags & TDF_SCEV))
1410 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1411
1412 return build_polynomial_chrec (loop->num, init_cond, right);
1413 }
1414
1415 /* Try harder to check if they are equal. */
1416 tree_to_aff_combination_expand (left, type, &aff1, &peeled_chrec_map);
1417 tree_to_aff_combination_expand (step_val, type, &aff2, &peeled_chrec_map);
1418 free_affine_expand_cache (&peeled_chrec_map);
807e902e 1419 aff_combination_scale (&aff2, -1);
b83b5507
BC
1420 aff_combination_add (&aff1, &aff2);
1421
1422 /* Transform (init, {left, right}_LOOP)_LOOP to {init, right}_LOOP
1423 if "left" equals to "init + right". */
1424 if (aff_combination_zero_p (&aff1))
1425 {
1426 if (dump_file && (dump_flags & TDF_SCEV))
1427 fprintf (dump_file, "Simplify PEELED_CHREC into POLYNOMIAL_CHREC.\n");
1428
1429 return build_polynomial_chrec (loop->num, init_cond, right);
1430 }
1431 return chrec_dont_know;
1432}
9baba81b
SP
1433
1434/* Given a LOOP_PHI_NODE, this function determines the evolution
1435 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1436
1437static tree
538dd0b7 1438analyze_evolution_in_loop (gphi *loop_phi_node,
9baba81b
SP
1439 tree init_cond)
1440{
726a989a 1441 int i, n = gimple_phi_num_args (loop_phi_node);
9baba81b
SP
1442 tree evolution_function = chrec_not_analyzed_yet;
1443 struct loop *loop = loop_containing_stmt (loop_phi_node);
1444 basic_block bb;
b83b5507 1445 static bool simplify_peeled_chrec_p = true;
b8698a0f 1446
dfedbe40 1447 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1448 {
1449 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1450 fprintf (dump_file, " (loop_phi_node = ");
726a989a 1451 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
9baba81b
SP
1452 fprintf (dump_file, ")\n");
1453 }
b8698a0f 1454
726a989a 1455 for (i = 0; i < n; i++)
9baba81b
SP
1456 {
1457 tree arg = PHI_ARG_DEF (loop_phi_node, i);
355fe088 1458 gimple *ssa_chain;
726a989a 1459 tree ev_fn;
874caa00 1460 t_bool res;
9baba81b
SP
1461
1462 /* Select the edges that enter the loop body. */
726a989a 1463 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
9baba81b
SP
1464 if (!flow_bb_inside_loop_p (loop, bb))
1465 continue;
f29deac9 1466
9baba81b
SP
1467 if (TREE_CODE (arg) == SSA_NAME)
1468 {
f29deac9
SP
1469 bool val = false;
1470
9baba81b
SP
1471 ssa_chain = SSA_NAME_DEF_STMT (arg);
1472
1473 /* Pass in the initial condition to the follow edge function. */
1474 ev_fn = init_cond;
c59dabbe 1475 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
f29deac9
SP
1476
1477 /* If ev_fn has no evolution in the inner loop, and the
1478 init_cond is not equal to ev_fn, then we have an
1479 ambiguity between two possible values, as we cannot know
1480 the number of iterations at this point. */
1481 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1482 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1483 && !operand_equal_p (init_cond, ev_fn, 0))
1484 ev_fn = chrec_dont_know;
9baba81b
SP
1485 }
1486 else
874caa00 1487 res = t_false;
f29deac9 1488
9baba81b
SP
1489 /* When it is impossible to go back on the same
1490 loop_phi_node by following the ssa edges, the
89dbed81 1491 evolution is represented by a peeled chrec, i.e. the
9baba81b 1492 first iteration, EV_FN has the value INIT_COND, then
b8698a0f 1493 all the other iterations it has the value of ARG.
9baba81b 1494 For the moment, PEELED_CHREC nodes are not built. */
874caa00 1495 if (res != t_true)
b83b5507
BC
1496 {
1497 ev_fn = chrec_dont_know;
1498 /* Try to recognize POLYNOMIAL_CHREC which appears in
1499 the form of PEELED_CHREC, but guard the process with
1500 a bool variable to keep the analyzer from infinite
1501 recurrence for real PEELED_RECs. */
1502 if (simplify_peeled_chrec_p && TREE_CODE (arg) == SSA_NAME)
1503 {
1504 simplify_peeled_chrec_p = false;
1505 ev_fn = simplify_peeled_chrec (loop, arg, init_cond);
1506 simplify_peeled_chrec_p = true;
1507 }
1508 }
b8698a0f 1509
9baba81b 1510 /* When there are multiple back edges of the loop (which in fact never
8c27b7d4 1511 happens currently, but nevertheless), merge their evolutions. */
9baba81b
SP
1512 evolution_function = chrec_merge (evolution_function, ev_fn);
1513 }
b8698a0f 1514
dfedbe40 1515 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1516 {
1517 fprintf (dump_file, " (evolution_function = ");
1518 print_generic_expr (dump_file, evolution_function, 0);
1519 fprintf (dump_file, "))\n");
1520 }
b8698a0f 1521
9baba81b
SP
1522 return evolution_function;
1523}
1524
806f2c1b
AL
1525/* Looks to see if VAR is a copy of a constant (via straightforward assignments
1526 or degenerate phi's). If so, returns the constant; else, returns VAR. */
1527
1528static tree
1529follow_copies_to_constant (tree var)
1530{
1531 tree res = var;
1532 while (TREE_CODE (res) == SSA_NAME)
1533 {
1534 gimple *def = SSA_NAME_DEF_STMT (res);
1535 if (gphi *phi = dyn_cast <gphi *> (def))
1536 {
1537 if (tree rhs = degenerate_phi_result (phi))
1538 res = rhs;
1539 else
1540 break;
1541 }
1542 else if (gimple_assign_single_p (def))
1543 /* Will exit loop if not an SSA_NAME. */
1544 res = gimple_assign_rhs1 (def);
1545 else
1546 break;
1547 }
1548 if (CONSTANT_CLASS_P (res))
1549 return res;
1550 return var;
1551}
1552
9baba81b
SP
1553/* Given a loop-phi-node, return the initial conditions of the
1554 variable on entry of the loop. When the CCP has propagated
1555 constants into the loop-phi-node, the initial condition is
1556 instantiated, otherwise the initial condition is kept symbolic.
1557 This analyzer does not analyze the evolution outside the current
1558 loop, and leaves this task to the on-demand tree reconstructor. */
1559
b8698a0f 1560static tree
538dd0b7 1561analyze_initial_condition (gphi *loop_phi_node)
9baba81b 1562{
726a989a 1563 int i, n;
9baba81b 1564 tree init_cond = chrec_not_analyzed_yet;
726a989a 1565 struct loop *loop = loop_containing_stmt (loop_phi_node);
b8698a0f 1566
dfedbe40 1567 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1568 {
1569 fprintf (dump_file, "(analyze_initial_condition \n");
1570 fprintf (dump_file, " (loop_phi_node = \n");
726a989a 1571 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
9baba81b
SP
1572 fprintf (dump_file, ")\n");
1573 }
b8698a0f 1574
726a989a
RB
1575 n = gimple_phi_num_args (loop_phi_node);
1576 for (i = 0; i < n; i++)
9baba81b
SP
1577 {
1578 tree branch = PHI_ARG_DEF (loop_phi_node, i);
726a989a 1579 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
b8698a0f 1580
9baba81b
SP
1581 /* When the branch is oriented to the loop's body, it does
1582 not contribute to the initial condition. */
1583 if (flow_bb_inside_loop_p (loop, bb))
1584 continue;
1585
1586 if (init_cond == chrec_not_analyzed_yet)
1587 {
1588 init_cond = branch;
1589 continue;
1590 }
1591
1592 if (TREE_CODE (branch) == SSA_NAME)
1593 {
1594 init_cond = chrec_dont_know;
1595 break;
1596 }
1597
1598 init_cond = chrec_merge (init_cond, branch);
1599 }
1600
1601 /* Ooops -- a loop without an entry??? */
1602 if (init_cond == chrec_not_analyzed_yet)
1603 init_cond = chrec_dont_know;
1604
806f2c1b
AL
1605 /* We may not have fully constant propagated IL. Handle degenerate PHIs here
1606 to not miss important early loop unrollings. */
1607 init_cond = follow_copies_to_constant (init_cond);
bf1cbdc6 1608
dfedbe40 1609 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1610 {
1611 fprintf (dump_file, " (init_cond = ");
1612 print_generic_expr (dump_file, init_cond, 0);
1613 fprintf (dump_file, "))\n");
1614 }
b8698a0f 1615
9baba81b
SP
1616 return init_cond;
1617}
1618
1619/* Analyze the scalar evolution for LOOP_PHI_NODE. */
1620
b8698a0f 1621static tree
538dd0b7 1622interpret_loop_phi (struct loop *loop, gphi *loop_phi_node)
9baba81b
SP
1623{
1624 tree res;
1625 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1626 tree init_cond;
b8698a0f 1627
9baba81b
SP
1628 if (phi_loop != loop)
1629 {
1630 struct loop *subloop;
1631 tree evolution_fn = analyze_scalar_evolution
1632 (phi_loop, PHI_RESULT (loop_phi_node));
1633
1634 /* Dive one level deeper. */
9ba025a2 1635 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
9baba81b
SP
1636
1637 /* Interpret the subloop. */
1638 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1639 return res;
1640 }
1641
1642 /* Otherwise really interpret the loop phi. */
1643 init_cond = analyze_initial_condition (loop_phi_node);
1644 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1645
73c865fa
RG
1646 /* Verify we maintained the correct initial condition throughout
1647 possible conversions in the SSA chain. */
1648 if (res != chrec_dont_know)
1649 {
1650 tree new_init = res;
1651 if (CONVERT_EXPR_P (res)
1652 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
1653 new_init = fold_convert (TREE_TYPE (res),
1654 CHREC_LEFT (TREE_OPERAND (res, 0)));
1655 else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
1656 new_init = CHREC_LEFT (res);
1657 STRIP_USELESS_TYPE_CONVERSION (new_init);
eb723fa3
RG
1658 if (TREE_CODE (new_init) == POLYNOMIAL_CHREC
1659 || !operand_equal_p (init_cond, new_init, 0))
73c865fa
RG
1660 return chrec_dont_know;
1661 }
1662
9baba81b
SP
1663 return res;
1664}
1665
1666/* This function merges the branches of a condition-phi-node,
1667 contained in the outermost loop, and whose arguments are already
1668 analyzed. */
1669
1670static tree
538dd0b7 1671interpret_condition_phi (struct loop *loop, gphi *condition_phi)
9baba81b 1672{
726a989a 1673 int i, n = gimple_phi_num_args (condition_phi);
9baba81b 1674 tree res = chrec_not_analyzed_yet;
b8698a0f 1675
726a989a 1676 for (i = 0; i < n; i++)
9baba81b
SP
1677 {
1678 tree branch_chrec;
b8698a0f 1679
9baba81b
SP
1680 if (backedge_phi_arg_p (condition_phi, i))
1681 {
1682 res = chrec_dont_know;
1683 break;
1684 }
1685
1686 branch_chrec = analyze_scalar_evolution
1687 (loop, PHI_ARG_DEF (condition_phi, i));
b8698a0f 1688
9baba81b
SP
1689 res = chrec_merge (res, branch_chrec);
1690 }
1691
1692 return res;
1693}
1694
726a989a 1695/* Interpret the operation RHS1 OP RHS2. If we didn't
29836d07 1696 analyze this node before, follow the definitions until ending
726a989a 1697 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
9baba81b
SP
1698 return path, this function propagates evolutions (ala constant copy
1699 propagation). OPND1 is not a GIMPLE expression because we could
1700 analyze the effect of an inner loop: see interpret_loop_phi. */
1701
1702static tree
355fe088 1703interpret_rhs_expr (struct loop *loop, gimple *at_stmt,
726a989a 1704 tree type, tree rhs1, enum tree_code code, tree rhs2)
9baba81b 1705{
f802a424 1706 tree res, chrec1, chrec2, ctype;
355fe088 1707 gimple *def;
726a989a
RB
1708
1709 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1710 {
1711 if (is_gimple_min_invariant (rhs1))
1712 return chrec_convert (type, rhs1, at_stmt);
1713
1714 if (code == SSA_NAME)
1715 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1716 at_stmt);
1e8552eb 1717
726a989a
RB
1718 if (code == ASSERT_EXPR)
1719 {
1720 rhs1 = ASSERT_EXPR_VAR (rhs1);
1721 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1722 at_stmt);
1723 }
726a989a 1724 }
1e8552eb 1725
726a989a 1726 switch (code)
9baba81b 1727 {
6a02a719 1728 case ADDR_EXPR:
bef28ced
JL
1729 if (TREE_CODE (TREE_OPERAND (rhs1, 0)) == MEM_REF
1730 || handled_component_p (TREE_OPERAND (rhs1, 0)))
1731 {
ef4bddc2 1732 machine_mode mode;
bef28ced 1733 HOST_WIDE_INT bitsize, bitpos;
ee45a32d 1734 int unsignedp, reversep;
bef28ced
JL
1735 int volatilep = 0;
1736 tree base, offset;
1737 tree chrec3;
1738 tree unitpos;
1739
1740 base = get_inner_reference (TREE_OPERAND (rhs1, 0),
ee45a32d
EB
1741 &bitsize, &bitpos, &offset, &mode,
1742 &unsignedp, &reversep, &volatilep,
1743 false);
bef28ced
JL
1744
1745 if (TREE_CODE (base) == MEM_REF)
1746 {
1747 rhs2 = TREE_OPERAND (base, 1);
1748 rhs1 = TREE_OPERAND (base, 0);
1749
1750 chrec1 = analyze_scalar_evolution (loop, rhs1);
1751 chrec2 = analyze_scalar_evolution (loop, rhs2);
1752 chrec1 = chrec_convert (type, chrec1, at_stmt);
1753 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
0547c9b6
RB
1754 chrec1 = instantiate_parameters (loop, chrec1);
1755 chrec2 = instantiate_parameters (loop, chrec2);
bef28ced
JL
1756 res = chrec_fold_plus (type, chrec1, chrec2);
1757 }
1758 else
1759 {
1760 chrec1 = analyze_scalar_evolution_for_address_of (loop, base);
1761 chrec1 = chrec_convert (type, chrec1, at_stmt);
1762 res = chrec1;
1763 }
6a02a719 1764
bef28ced
JL
1765 if (offset != NULL_TREE)
1766 {
1767 chrec2 = analyze_scalar_evolution (loop, offset);
1768 chrec2 = chrec_convert (TREE_TYPE (offset), chrec2, at_stmt);
0547c9b6 1769 chrec2 = instantiate_parameters (loop, chrec2);
bef28ced
JL
1770 res = chrec_fold_plus (type, res, chrec2);
1771 }
1772
1773 if (bitpos != 0)
1774 {
1775 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
1776
18dae016 1777 unitpos = size_int (bitpos / BITS_PER_UNIT);
bef28ced
JL
1778 chrec3 = analyze_scalar_evolution (loop, unitpos);
1779 chrec3 = chrec_convert (TREE_TYPE (unitpos), chrec3, at_stmt);
0547c9b6 1780 chrec3 = instantiate_parameters (loop, chrec3);
bef28ced
JL
1781 res = chrec_fold_plus (type, res, chrec3);
1782 }
1783 }
1784 else
1785 res = chrec_dont_know;
1786 break;
6a02a719 1787
5be014d5 1788 case POINTER_PLUS_EXPR:
726a989a
RB
1789 chrec1 = analyze_scalar_evolution (loop, rhs1);
1790 chrec2 = analyze_scalar_evolution (loop, rhs2);
1791 chrec1 = chrec_convert (type, chrec1, at_stmt);
0d82a1c8 1792 chrec2 = chrec_convert (TREE_TYPE (rhs2), chrec2, at_stmt);
0547c9b6
RB
1793 chrec1 = instantiate_parameters (loop, chrec1);
1794 chrec2 = instantiate_parameters (loop, chrec2);
726a989a 1795 res = chrec_fold_plus (type, chrec1, chrec2);
5be014d5
AP
1796 break;
1797
9baba81b 1798 case PLUS_EXPR:
726a989a
RB
1799 chrec1 = analyze_scalar_evolution (loop, rhs1);
1800 chrec2 = analyze_scalar_evolution (loop, rhs2);
f802a424
RB
1801 ctype = type;
1802 /* When the stmt is conditionally executed re-write the CHREC
1803 into a form that has well-defined behavior on overflow. */
1804 if (at_stmt
1805 && INTEGRAL_TYPE_P (type)
1806 && ! TYPE_OVERFLOW_WRAPS (type)
1807 && ! dominated_by_p (CDI_DOMINATORS, loop->latch,
1808 gimple_bb (at_stmt)))
1809 ctype = unsigned_type_for (type);
1810 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1811 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
0547c9b6
RB
1812 chrec1 = instantiate_parameters (loop, chrec1);
1813 chrec2 = instantiate_parameters (loop, chrec2);
f802a424
RB
1814 res = chrec_fold_plus (ctype, chrec1, chrec2);
1815 if (type != ctype)
1816 res = chrec_convert (type, res, at_stmt);
9baba81b 1817 break;
b8698a0f 1818
9baba81b 1819 case MINUS_EXPR:
726a989a
RB
1820 chrec1 = analyze_scalar_evolution (loop, rhs1);
1821 chrec2 = analyze_scalar_evolution (loop, rhs2);
f802a424
RB
1822 ctype = type;
1823 /* When the stmt is conditionally executed re-write the CHREC
1824 into a form that has well-defined behavior on overflow. */
1825 if (at_stmt
1826 && INTEGRAL_TYPE_P (type)
1827 && ! TYPE_OVERFLOW_WRAPS (type)
1828 && ! dominated_by_p (CDI_DOMINATORS,
1829 loop->latch, gimple_bb (at_stmt)))
1830 ctype = unsigned_type_for (type);
1831 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1832 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
0547c9b6
RB
1833 chrec1 = instantiate_parameters (loop, chrec1);
1834 chrec2 = instantiate_parameters (loop, chrec2);
f802a424
RB
1835 res = chrec_fold_minus (ctype, chrec1, chrec2);
1836 if (type != ctype)
1837 res = chrec_convert (type, res, at_stmt);
9baba81b
SP
1838 break;
1839
1840 case NEGATE_EXPR:
726a989a 1841 chrec1 = analyze_scalar_evolution (loop, rhs1);
f802a424
RB
1842 ctype = type;
1843 /* When the stmt is conditionally executed re-write the CHREC
1844 into a form that has well-defined behavior on overflow. */
1845 if (at_stmt
1846 && INTEGRAL_TYPE_P (type)
1847 && ! TYPE_OVERFLOW_WRAPS (type)
1848 && ! dominated_by_p (CDI_DOMINATORS,
1849 loop->latch, gimple_bb (at_stmt)))
1850 ctype = unsigned_type_for (type);
1851 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
9a75ede0 1852 /* TYPE may be integer, real or complex, so use fold_convert. */
0547c9b6 1853 chrec1 = instantiate_parameters (loop, chrec1);
f802a424
RB
1854 res = chrec_fold_multiply (ctype, chrec1,
1855 fold_convert (ctype, integer_minus_one_node));
1856 if (type != ctype)
1857 res = chrec_convert (type, res, at_stmt);
9baba81b
SP
1858 break;
1859
418df9d7
JJ
1860 case BIT_NOT_EXPR:
1861 /* Handle ~X as -1 - X. */
1862 chrec1 = analyze_scalar_evolution (loop, rhs1);
1863 chrec1 = chrec_convert (type, chrec1, at_stmt);
0547c9b6 1864 chrec1 = instantiate_parameters (loop, chrec1);
418df9d7
JJ
1865 res = chrec_fold_minus (type,
1866 fold_convert (type, integer_minus_one_node),
1867 chrec1);
1868 break;
1869
9baba81b 1870 case MULT_EXPR:
726a989a
RB
1871 chrec1 = analyze_scalar_evolution (loop, rhs1);
1872 chrec2 = analyze_scalar_evolution (loop, rhs2);
f802a424
RB
1873 ctype = type;
1874 /* When the stmt is conditionally executed re-write the CHREC
1875 into a form that has well-defined behavior on overflow. */
1876 if (at_stmt
1877 && INTEGRAL_TYPE_P (type)
1878 && ! TYPE_OVERFLOW_WRAPS (type)
1879 && ! dominated_by_p (CDI_DOMINATORS,
1880 loop->latch, gimple_bb (at_stmt)))
1881 ctype = unsigned_type_for (type);
1882 chrec1 = chrec_convert (ctype, chrec1, at_stmt);
1883 chrec2 = chrec_convert (ctype, chrec2, at_stmt);
0547c9b6
RB
1884 chrec1 = instantiate_parameters (loop, chrec1);
1885 chrec2 = instantiate_parameters (loop, chrec2);
f802a424
RB
1886 res = chrec_fold_multiply (ctype, chrec1, chrec2);
1887 if (type != ctype)
1888 res = chrec_convert (type, res, at_stmt);
0bca51f0 1889 break;
b8698a0f 1890
60f2d2f3
AL
1891 case LSHIFT_EXPR:
1892 {
1893 /* Handle A<<B as A * (1<<B). */
1894 tree uns = unsigned_type_for (type);
1895 chrec1 = analyze_scalar_evolution (loop, rhs1);
1896 chrec2 = analyze_scalar_evolution (loop, rhs2);
1897 chrec1 = chrec_convert (uns, chrec1, at_stmt);
1898 chrec1 = instantiate_parameters (loop, chrec1);
1899 chrec2 = instantiate_parameters (loop, chrec2);
1900
1901 tree one = build_int_cst (uns, 1);
1902 chrec2 = fold_build2 (LSHIFT_EXPR, uns, one, chrec2);
1903 res = chrec_fold_multiply (uns, chrec1, chrec2);
1904 res = chrec_convert (type, res, at_stmt);
1905 }
1906 break;
1907
1043771b 1908 CASE_CONVERT:
195b4c50
RG
1909 /* In case we have a truncation of a widened operation that in
1910 the truncated type has undefined overflow behavior analyze
1911 the operation done in an unsigned type of the same precision
1912 as the final truncation. We cannot derive a scalar evolution
1913 for the widened operation but for the truncated result. */
1914 if (TREE_CODE (type) == INTEGER_TYPE
1915 && TREE_CODE (TREE_TYPE (rhs1)) == INTEGER_TYPE
1916 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (rhs1))
1917 && TYPE_OVERFLOW_UNDEFINED (type)
1918 && TREE_CODE (rhs1) == SSA_NAME
1919 && (def = SSA_NAME_DEF_STMT (rhs1))
1920 && is_gimple_assign (def)
1921 && TREE_CODE_CLASS (gimple_assign_rhs_code (def)) == tcc_binary
1922 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
1923 {
1924 tree utype = unsigned_type_for (type);
1925 chrec1 = interpret_rhs_expr (loop, at_stmt, utype,
1926 gimple_assign_rhs1 (def),
1927 gimple_assign_rhs_code (def),
1928 gimple_assign_rhs2 (def));
1929 }
1930 else
1931 chrec1 = analyze_scalar_evolution (loop, rhs1);
726a989a 1932 res = chrec_convert (type, chrec1, at_stmt);
9baba81b 1933 break;
b8698a0f 1934
9baba81b
SP
1935 default:
1936 res = chrec_dont_know;
1937 break;
1938 }
b8698a0f 1939
9baba81b
SP
1940 return res;
1941}
1942
726a989a
RB
1943/* Interpret the expression EXPR. */
1944
1945static tree
355fe088 1946interpret_expr (struct loop *loop, gimple *at_stmt, tree expr)
726a989a
RB
1947{
1948 enum tree_code code;
1949 tree type = TREE_TYPE (expr), op0, op1;
1950
1951 if (automatically_generated_chrec_p (expr))
1952 return expr;
1953
4e71066d
RG
1954 if (TREE_CODE (expr) == POLYNOMIAL_CHREC
1955 || get_gimple_rhs_class (TREE_CODE (expr)) == GIMPLE_TERNARY_RHS)
726a989a
RB
1956 return chrec_dont_know;
1957
1958 extract_ops_from_tree (expr, &code, &op0, &op1);
1959
1960 return interpret_rhs_expr (loop, at_stmt, type,
1961 op0, code, op1);
1962}
1963
1964/* Interpret the rhs of the assignment STMT. */
1965
1966static tree
355fe088 1967interpret_gimple_assign (struct loop *loop, gimple *stmt)
726a989a
RB
1968{
1969 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1970 enum tree_code code = gimple_assign_rhs_code (stmt);
1971
1972 return interpret_rhs_expr (loop, stmt, type,
1973 gimple_assign_rhs1 (stmt), code,
1974 gimple_assign_rhs2 (stmt));
1975}
1976
9baba81b
SP
1977\f
1978
b8698a0f 1979/* This section contains all the entry points:
9baba81b
SP
1980 - number_of_iterations_in_loop,
1981 - analyze_scalar_evolution,
1982 - instantiate_parameters.
1983*/
1984
1985/* Compute and return the evolution function in WRTO_LOOP, the nearest
1986 common ancestor of DEF_LOOP and USE_LOOP. */
1987
b8698a0f
L
1988static tree
1989compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1990 struct loop *def_loop,
9baba81b
SP
1991 tree ev)
1992{
492e5456 1993 bool val;
9baba81b 1994 tree res;
492e5456 1995
9baba81b
SP
1996 if (def_loop == wrto_loop)
1997 return ev;
1998
9ba025a2 1999 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
9baba81b
SP
2000 res = compute_overall_effect_of_inner_loop (def_loop, ev);
2001
492e5456
SP
2002 if (no_evolution_in_loop_p (res, wrto_loop->num, &val) && val)
2003 return res;
2004
9baba81b
SP
2005 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
2006}
2007
2008/* Helper recursive function. */
2009
2010static tree
2011analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
2012{
726a989a 2013 tree type = TREE_TYPE (var);
355fe088 2014 gimple *def;
9baba81b
SP
2015 basic_block bb;
2016 struct loop *def_loop;
2017
42d375ed 2018 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
9baba81b
SP
2019 return chrec_dont_know;
2020
2021 if (TREE_CODE (var) != SSA_NAME)
726a989a 2022 return interpret_expr (loop, NULL, var);
9baba81b
SP
2023
2024 def = SSA_NAME_DEF_STMT (var);
726a989a 2025 bb = gimple_bb (def);
9baba81b
SP
2026 def_loop = bb ? bb->loop_father : NULL;
2027
2028 if (bb == NULL
2029 || !flow_bb_inside_loop_p (loop, bb))
2030 {
806f2c1b
AL
2031 /* Keep symbolic form, but look through obvious copies for constants. */
2032 res = follow_copies_to_constant (var);
9baba81b
SP
2033 goto set_and_end;
2034 }
2035
2036 if (res != chrec_not_analyzed_yet)
2037 {
2038 if (loop != bb->loop_father)
b8698a0f 2039 res = compute_scalar_evolution_in_loop
9baba81b
SP
2040 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
2041
2042 goto set_and_end;
2043 }
2044
2045 if (loop != def_loop)
2046 {
2047 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
2048 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
2049
2050 goto set_and_end;
2051 }
2052
726a989a 2053 switch (gimple_code (def))
9baba81b 2054 {
726a989a
RB
2055 case GIMPLE_ASSIGN:
2056 res = interpret_gimple_assign (loop, def);
9baba81b
SP
2057 break;
2058
726a989a 2059 case GIMPLE_PHI:
9baba81b 2060 if (loop_phi_node_p (def))
538dd0b7 2061 res = interpret_loop_phi (loop, as_a <gphi *> (def));
9baba81b 2062 else
538dd0b7 2063 res = interpret_condition_phi (loop, as_a <gphi *> (def));
9baba81b
SP
2064 break;
2065
2066 default:
2067 res = chrec_dont_know;
2068 break;
2069 }
2070
2071 set_and_end:
2072
2073 /* Keep the symbolic form. */
2074 if (res == chrec_dont_know)
2075 res = var;
2076
2077 if (loop == def_loop)
a213b219 2078 set_scalar_evolution (block_before_loop (loop), var, res);
9baba81b
SP
2079
2080 return res;
2081}
2082
52bdd655
SP
2083/* Analyzes and returns the scalar evolution of the ssa_name VAR in
2084 LOOP. LOOP is the loop in which the variable is used.
b8698a0f 2085
9baba81b
SP
2086 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
2087 pointer to the statement that uses this variable, in order to
2088 determine the evolution function of the variable, use the following
2089 calls:
b8698a0f 2090
52bdd655
SP
2091 loop_p loop = loop_containing_stmt (stmt);
2092 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
3f227a8c 2093 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
9baba81b
SP
2094*/
2095
b8698a0f 2096tree
9baba81b
SP
2097analyze_scalar_evolution (struct loop *loop, tree var)
2098{
2099 tree res;
2100
dfedbe40 2101 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
2102 {
2103 fprintf (dump_file, "(analyze_scalar_evolution \n");
2104 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2105 fprintf (dump_file, " (scalar = ");
2106 print_generic_expr (dump_file, var, 0);
2107 fprintf (dump_file, ")\n");
2108 }
2109
a213b219
SP
2110 res = get_scalar_evolution (block_before_loop (loop), var);
2111 res = analyze_scalar_evolution_1 (loop, var, res);
9baba81b 2112
dfedbe40 2113 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
2114 fprintf (dump_file, ")\n");
2115
2116 return res;
2117}
2118
bef28ced
JL
2119/* Analyzes and returns the scalar evolution of VAR address in LOOP. */
2120
2121static tree
2122analyze_scalar_evolution_for_address_of (struct loop *loop, tree var)
2123{
2124 return analyze_scalar_evolution (loop, build_fold_addr_expr (var));
2125}
2126
9baba81b 2127/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
f017bf5e 2128 WRTO_LOOP (which should be a superloop of USE_LOOP)
a6f778b2
ZD
2129
2130 FOLDED_CASTS is set to true if resolve_mixers used
2131 chrec_convert_aggressive (TODO -- not really, we are way too conservative
b8698a0f
L
2132 at the moment in order to keep things simple).
2133
f017bf5e
ZD
2134 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
2135 example:
2136
2137 for (i = 0; i < 100; i++) -- loop 1
2138 {
2139 for (j = 0; j < 100; j++) -- loop 2
2140 {
2141 k1 = i;
2142 k2 = j;
2143
2144 use2 (k1, k2);
2145
2146 for (t = 0; t < 100; t++) -- loop 3
2147 use3 (k1, k2);
2148
2149 }
2150 use1 (k1, k2);
2151 }
2152
2153 Both k1 and k2 are invariants in loop3, thus
2154 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
2155 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2156
2157 As they are invariant, it does not matter whether we consider their
2158 usage in loop 3 or loop 2, hence
2159 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2160 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2161 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2162 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2163
2164 Similarly for their evolutions with respect to loop 1. The values of K2
2165 in the use in loop 2 vary independently on loop 1, thus we cannot express
2166 the evolution with respect to loop 1:
2167 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2168 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2169 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2170 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2171
2172 The value of k2 in the use in loop 1 is known, though:
2173 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2174 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2175 */
9baba81b
SP
2176
2177static tree
2178analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
a6f778b2 2179 tree version, bool *folded_casts)
9baba81b
SP
2180{
2181 bool val = false;
a6f778b2 2182 tree ev = version, tmp;
9baba81b 2183
b8698a0f 2184 /* We cannot just do
f017bf5e
ZD
2185
2186 tmp = analyze_scalar_evolution (use_loop, version);
c70ed622 2187 ev = resolve_mixers (wrto_loop, tmp, folded_casts);
f017bf5e
ZD
2188
2189 as resolve_mixers would query the scalar evolution with respect to
2190 wrto_loop. For example, in the situation described in the function
2191 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2192 version = k2. Then
2193
2194 analyze_scalar_evolution (use_loop, version) = k2
2195
c70ed622
BC
2196 and resolve_mixers (loop1, k2, folded_casts) finds that the value of
2197 k2 in loop 1 is 100, which is a wrong result, since we are interested
2198 in the value in loop 3.
f017bf5e
ZD
2199
2200 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2201 each time checking that there is no evolution in the inner loop. */
2202
a6f778b2
ZD
2203 if (folded_casts)
2204 *folded_casts = false;
9baba81b
SP
2205 while (1)
2206 {
a6f778b2 2207 tmp = analyze_scalar_evolution (use_loop, ev);
c70ed622 2208 ev = resolve_mixers (use_loop, tmp, folded_casts);
9baba81b
SP
2209
2210 if (use_loop == wrto_loop)
2211 return ev;
2212
2213 /* If the value of the use changes in the inner loop, we cannot express
2214 its value in the outer loop (we might try to return interval chrec,
2215 but we do not have a user for it anyway) */
2216 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2217 || !val)
2218 return chrec_dont_know;
2219
9ba025a2 2220 use_loop = loop_outer (use_loop);
9baba81b
SP
2221 }
2222}
2223
eb0bc7af 2224
fdd43ac4
RB
2225/* Hashtable helpers for a temporary hash-table used when
2226 instantiating a CHREC or resolving mixers. For this use
2227 instantiated_below is always the same. */
2228
fdd43ac4 2229struct instantiate_cache_type
eb0bc7af 2230{
a3cc13cc
RB
2231 htab_t map;
2232 vec<scev_info_str> entries;
b8698a0f 2233
c3284718 2234 instantiate_cache_type () : map (NULL), entries (vNULL) {}
fdd43ac4 2235 ~instantiate_cache_type ();
0547c9b6
RB
2236 tree get (unsigned slot) { return entries[slot].chrec; }
2237 void set (unsigned slot, tree chrec) { entries[slot].chrec = chrec; }
fdd43ac4 2238};
eb0bc7af 2239
fdd43ac4
RB
2240instantiate_cache_type::~instantiate_cache_type ()
2241{
0547c9b6 2242 if (map != NULL)
fdd43ac4 2243 {
a3cc13cc 2244 htab_delete (map);
fdd43ac4
RB
2245 entries.release ();
2246 }
eb0bc7af
ZD
2247}
2248
a3cc13cc
RB
2249/* Cache to avoid infinite recursion when instantiating an SSA name.
2250 Live during the outermost instantiate_scev or resolve_mixers call. */
2251static instantiate_cache_type *global_cache;
2252
2253/* Computes a hash function for database element ELT. */
2254
2255static inline hashval_t
2256hash_idx_scev_info (const void *elt_)
2257{
2258 unsigned idx = ((size_t) elt_) - 2;
907dadbd 2259 return scev_info_hasher::hash (&global_cache->entries[idx]);
a3cc13cc
RB
2260}
2261
2262/* Compares database elements E1 and E2. */
2263
2264static inline int
2265eq_idx_scev_info (const void *e1, const void *e2)
2266{
2267 unsigned idx1 = ((size_t) e1) - 2;
907dadbd
TS
2268 return scev_info_hasher::equal (&global_cache->entries[idx1],
2269 (const scev_info_str *) e2);
a3cc13cc
RB
2270}
2271
0547c9b6 2272/* Returns from CACHE the slot number of the cached chrec for NAME. */
fdd43ac4 2273
0547c9b6 2274static unsigned
a3cc13cc
RB
2275get_instantiated_value_entry (instantiate_cache_type &cache,
2276 tree name, basic_block instantiate_below)
fdd43ac4 2277{
0547c9b6 2278 if (!cache.map)
fdd43ac4 2279 {
a3cc13cc 2280 cache.map = htab_create (10, hash_idx_scev_info, eq_idx_scev_info, NULL);
fdd43ac4
RB
2281 cache.entries.create (10);
2282 }
b8698a0f 2283
a3cc13cc
RB
2284 scev_info_str e;
2285 e.name_version = SSA_NAME_VERSION (name);
2286 e.instantiated_below = instantiate_below->index;
2287 void **slot = htab_find_slot_with_hash (cache.map, &e,
907dadbd 2288 scev_info_hasher::hash (&e), INSERT);
a3cc13cc 2289 if (!*slot)
fdd43ac4
RB
2290 {
2291 e.chrec = chrec_not_analyzed_yet;
a3cc13cc 2292 *slot = (void *)(size_t)(cache.entries.length () + 2);
fdd43ac4 2293 cache.entries.safe_push (e);
fdd43ac4
RB
2294 }
2295
a3cc13cc 2296 return ((size_t)*slot) - 2;
eb0bc7af
ZD
2297}
2298
0547c9b6 2299
18aed06a
SP
2300/* Return the closed_loop_phi node for VAR. If there is none, return
2301 NULL_TREE. */
2302
2303static tree
2304loop_closed_phi_def (tree var)
2305{
2306 struct loop *loop;
2307 edge exit;
538dd0b7
DM
2308 gphi *phi;
2309 gphi_iterator psi;
18aed06a
SP
2310
2311 if (var == NULL_TREE
2312 || TREE_CODE (var) != SSA_NAME)
2313 return NULL_TREE;
2314
2315 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
ac8f6c69 2316 exit = single_exit (loop);
18aed06a
SP
2317 if (!exit)
2318 return NULL_TREE;
2319
726a989a
RB
2320 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2321 {
538dd0b7 2322 phi = psi.phi ();
726a989a
RB
2323 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2324 return PHI_RESULT (phi);
2325 }
18aed06a
SP
2326
2327 return NULL_TREE;
2328}
2329
8b679c9b 2330static tree instantiate_scev_r (basic_block, struct loop *, struct loop *,
c70ed622 2331 tree, bool *, int);
320f5a78
SP
2332
2333/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2334 and EVOLUTION_LOOP, that were left under a symbolic form.
2335
2495a183 2336 CHREC is an SSA_NAME to be instantiated.
320f5a78
SP
2337
2338 CACHE is the cache of already instantiated values.
2339
c70ed622
BC
2340 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2341 conversions that may wrap in signed/pointer type are folded, as long
2342 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2343 then we don't do such fold.
320f5a78
SP
2344
2345 SIZE_EXPR is used for computing the size of the expression to be
2346 instantiated, and to stop if it exceeds some limit. */
2347
2348static tree
2495a183 2349instantiate_scev_name (basic_block instantiate_below,
8b679c9b
RB
2350 struct loop *evolution_loop, struct loop *inner_loop,
2351 tree chrec,
c70ed622 2352 bool *fold_conversions,
4a8fb1a1 2353 int size_expr)
320f5a78 2354{
2495a183
SP
2355 tree res;
2356 struct loop *def_loop;
2357 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
20179b0d 2358
2495a183
SP
2359 /* A parameter (or loop invariant and we do not want to include
2360 evolutions in outer loops), nothing to do. */
2361 if (!def_bb
2362 || loop_depth (def_bb->loop_father) == 0
2363 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2364 return chrec;
20179b0d 2365
2495a183
SP
2366 /* We cache the value of instantiated variable to avoid exponential
2367 time complexity due to reevaluations. We also store the convenient
2368 value in the cache in order to prevent infinite recursion -- we do
2369 not want to instantiate the SSA_NAME if it is in a mixer
2370 structure. This is used for avoiding the instantiation of
2371 recursively defined functions, such as:
320f5a78 2372
2495a183 2373 | a_2 -> {0, +, 1, +, a_2}_1 */
20179b0d 2374
a3cc13cc
RB
2375 unsigned si = get_instantiated_value_entry (*global_cache,
2376 chrec, instantiate_below);
0547c9b6
RB
2377 if (global_cache->get (si) != chrec_not_analyzed_yet)
2378 return global_cache->get (si);
20179b0d 2379
fdd43ac4 2380 /* On recursion return chrec_dont_know. */
0547c9b6 2381 global_cache->set (si, chrec_dont_know);
320f5a78 2382
2495a183
SP
2383 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2384
320f5a78
SP
2385 /* If the analysis yields a parametric chrec, instantiate the
2386 result again. */
2387 res = analyze_scalar_evolution (def_loop, chrec);
2388
2847388e 2389 /* Don't instantiate default definitions. */
320f5a78 2390 if (TREE_CODE (res) == SSA_NAME
2847388e
SP
2391 && SSA_NAME_IS_DEFAULT_DEF (res))
2392 ;
2393
2394 /* Don't instantiate loop-closed-ssa phi nodes. */
2395 else if (TREE_CODE (res) == SSA_NAME
2396 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2397 > loop_depth (def_loop))
320f5a78
SP
2398 {
2399 if (res == chrec)
2400 res = loop_closed_phi_def (chrec);
2401 else
2402 res = chrec;
2403
7472eb13
SP
2404 /* When there is no loop_closed_phi_def, it means that the
2405 variable is not used after the loop: try to still compute the
2406 value of the variable when exiting the loop. */
2407 if (res == NULL_TREE)
2408 {
2409 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
2410 res = analyze_scalar_evolution (loop, chrec);
2411 res = compute_overall_effect_of_inner_loop (loop, res);
8b679c9b
RB
2412 res = instantiate_scev_r (instantiate_below, evolution_loop,
2413 inner_loop, res,
0547c9b6 2414 fold_conversions, size_expr);
7472eb13
SP
2415 }
2416 else if (!dominated_by_p (CDI_DOMINATORS, instantiate_below,
2417 gimple_bb (SSA_NAME_DEF_STMT (res))))
320f5a78
SP
2418 res = chrec_dont_know;
2419 }
2420
2421 else if (res != chrec_dont_know)
8b679c9b
RB
2422 {
2423 if (inner_loop
63fdb7be 2424 && def_bb->loop_father != inner_loop
8b679c9b
RB
2425 && !flow_loop_nested_p (def_bb->loop_father, inner_loop))
2426 /* ??? We could try to compute the overall effect of the loop here. */
2427 res = chrec_dont_know;
2428 else
2429 res = instantiate_scev_r (instantiate_below, evolution_loop,
2430 inner_loop, res,
0547c9b6 2431 fold_conversions, size_expr);
8b679c9b 2432 }
320f5a78
SP
2433
2434 /* Store the correct value to the cache. */
0547c9b6 2435 global_cache->set (si, res);
320f5a78 2436 return res;
320f5a78
SP
2437}
2438
ec6636eb
SP
2439/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2440 and EVOLUTION_LOOP, that were left under a symbolic form.
2441
2442 CHREC is a polynomial chain of recurrence to be instantiated.
2443
2444 CACHE is the cache of already instantiated values.
2445
c70ed622
BC
2446 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2447 conversions that may wrap in signed/pointer type are folded, as long
2448 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2449 then we don't do such fold.
ec6636eb
SP
2450
2451 SIZE_EXPR is used for computing the size of the expression to be
2452 instantiated, and to stop if it exceeds some limit. */
2453
2454static tree
2455instantiate_scev_poly (basic_block instantiate_below,
8b679c9b 2456 struct loop *evolution_loop, struct loop *,
c70ed622 2457 tree chrec, bool *fold_conversions, int size_expr)
ec6636eb
SP
2458{
2459 tree op1;
9e5dc77f 2460 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2461 get_chrec_loop (chrec),
0547c9b6 2462 CHREC_LEFT (chrec), fold_conversions,
ec6636eb
SP
2463 size_expr);
2464 if (op0 == chrec_dont_know)
2465 return chrec_dont_know;
2466
9e5dc77f 2467 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2468 get_chrec_loop (chrec),
0547c9b6 2469 CHREC_RIGHT (chrec), fold_conversions,
ec6636eb
SP
2470 size_expr);
2471 if (op1 == chrec_dont_know)
2472 return chrec_dont_know;
2473
2474 if (CHREC_LEFT (chrec) != op0
2475 || CHREC_RIGHT (chrec) != op1)
2476 {
2477 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
8b679c9b 2478 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
ec6636eb 2479 }
4bf4e169 2480
ec6636eb
SP
2481 return chrec;
2482}
2483
15fda317
SP
2484/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2485 and EVOLUTION_LOOP, that were left under a symbolic form.
2486
ffa34f4b 2487 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
15fda317
SP
2488
2489 CACHE is the cache of already instantiated values.
2490
c70ed622
BC
2491 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2492 conversions that may wrap in signed/pointer type are folded, as long
2493 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2494 then we don't do such fold.
15fda317
SP
2495
2496 SIZE_EXPR is used for computing the size of the expression to be
2497 instantiated, and to stop if it exceeds some limit. */
2498
2499static tree
2500instantiate_scev_binary (basic_block instantiate_below,
8b679c9b
RB
2501 struct loop *evolution_loop, struct loop *inner_loop,
2502 tree chrec, enum tree_code code,
ffa34f4b 2503 tree type, tree c0, tree c1,
c70ed622 2504 bool *fold_conversions, int size_expr)
15fda317
SP
2505{
2506 tree op1;
8b679c9b 2507 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
0547c9b6 2508 c0, fold_conversions, size_expr);
15fda317
SP
2509 if (op0 == chrec_dont_know)
2510 return chrec_dont_know;
2511
8b679c9b 2512 op1 = instantiate_scev_r (instantiate_below, evolution_loop, inner_loop,
0547c9b6 2513 c1, fold_conversions, size_expr);
15fda317
SP
2514 if (op1 == chrec_dont_know)
2515 return chrec_dont_know;
2516
ffa34f4b
SP
2517 if (c0 != op0
2518 || c1 != op1)
15fda317 2519 {
15fda317
SP
2520 op0 = chrec_convert (type, op0, NULL);
2521 op1 = chrec_convert_rhs (type, op1, NULL);
2522
ffa34f4b 2523 switch (code)
15fda317
SP
2524 {
2525 case POINTER_PLUS_EXPR:
2526 case PLUS_EXPR:
2527 return chrec_fold_plus (type, op0, op1);
2528
2529 case MINUS_EXPR:
2530 return chrec_fold_minus (type, op0, op1);
2531
2532 case MULT_EXPR:
2533 return chrec_fold_multiply (type, op0, op1);
2534
2535 default:
2536 gcc_unreachable ();
2537 }
2538 }
2539
ffa34f4b 2540 return chrec ? chrec : fold_build2 (code, type, c0, c1);
15fda317
SP
2541}
2542
dbc08079
SP
2543/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2544 and EVOLUTION_LOOP, that were left under a symbolic form.
2545
2546 "CHREC" is an array reference to be instantiated.
2547
2548 CACHE is the cache of already instantiated values.
2549
c70ed622
BC
2550 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2551 conversions that may wrap in signed/pointer type are folded, as long
2552 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2553 then we don't do such fold.
dbc08079
SP
2554
2555 SIZE_EXPR is used for computing the size of the expression to be
2556 instantiated, and to stop if it exceeds some limit. */
2557
2558static tree
2559instantiate_array_ref (basic_block instantiate_below,
8b679c9b 2560 struct loop *evolution_loop, struct loop *inner_loop,
c70ed622 2561 tree chrec, bool *fold_conversions, int size_expr)
dbc08079
SP
2562{
2563 tree res;
2564 tree index = TREE_OPERAND (chrec, 1);
8b679c9b
RB
2565 tree op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2566 inner_loop, index,
0547c9b6 2567 fold_conversions, size_expr);
dbc08079
SP
2568
2569 if (op1 == chrec_dont_know)
2570 return chrec_dont_know;
2571
2572 if (chrec && op1 == index)
2573 return chrec;
2574
2575 res = unshare_expr (chrec);
2576 TREE_OPERAND (res, 1) = op1;
2577 return res;
2578}
2579
a213b219 2580/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
9c382ce9
SP
2581 and EVOLUTION_LOOP, that were left under a symbolic form.
2582
2583 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2584 instantiated.
2585
2586 CACHE is the cache of already instantiated values.
2587
c70ed622
BC
2588 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2589 conversions that may wrap in signed/pointer type are folded, as long
2590 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2591 then we don't do such fold.
9c382ce9
SP
2592
2593 SIZE_EXPR is used for computing the size of the expression to be
2594 instantiated, and to stop if it exceeds some limit. */
2595
2596static tree
2597instantiate_scev_convert (basic_block instantiate_below,
8b679c9b 2598 struct loop *evolution_loop, struct loop *inner_loop,
0547c9b6 2599 tree chrec, tree type, tree op,
c70ed622 2600 bool *fold_conversions, int size_expr)
9c382ce9 2601{
8b679c9b
RB
2602 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2603 inner_loop, op,
0547c9b6 2604 fold_conversions, size_expr);
9c382ce9
SP
2605
2606 if (op0 == chrec_dont_know)
2607 return chrec_dont_know;
2608
2609 if (fold_conversions)
2610 {
c70ed622 2611 tree tmp = chrec_convert_aggressive (type, op0, fold_conversions);
9c382ce9
SP
2612 if (tmp)
2613 return tmp;
9c382ce9 2614
c70ed622
BC
2615 /* If we used chrec_convert_aggressive, we can no longer assume that
2616 signed chrecs do not overflow, as chrec_convert does, so avoid
2617 calling it in that case. */
2618 if (*fold_conversions)
2619 {
2620 if (chrec && op0 == op)
2621 return chrec;
9c382ce9 2622
c70ed622
BC
2623 return fold_convert (type, op0);
2624 }
2625 }
9c382ce9
SP
2626
2627 return chrec_convert (type, op0, NULL);
2628}
2629
7ec0665d
SP
2630/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2631 and EVOLUTION_LOOP, that were left under a symbolic form.
2632
4b9d48a1 2633 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
7ec0665d 2634 Handle ~X as -1 - X.
4b9d48a1 2635 Handle -X as -1 * X.
7ec0665d
SP
2636
2637 CACHE is the cache of already instantiated values.
2638
c70ed622
BC
2639 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2640 conversions that may wrap in signed/pointer type are folded, as long
2641 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2642 then we don't do such fold.
7ec0665d
SP
2643
2644 SIZE_EXPR is used for computing the size of the expression to be
2645 instantiated, and to stop if it exceeds some limit. */
2646
2647static tree
4b9d48a1 2648instantiate_scev_not (basic_block instantiate_below,
8b679c9b
RB
2649 struct loop *evolution_loop, struct loop *inner_loop,
2650 tree chrec,
20179b0d 2651 enum tree_code code, tree type, tree op,
c70ed622 2652 bool *fold_conversions, int size_expr)
7ec0665d 2653{
8b679c9b
RB
2654 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2655 inner_loop, op,
0547c9b6 2656 fold_conversions, size_expr);
20179b0d 2657
7ec0665d
SP
2658 if (op0 == chrec_dont_know)
2659 return chrec_dont_know;
2660
20179b0d 2661 if (op != op0)
7ec0665d
SP
2662 {
2663 op0 = chrec_convert (type, op0, NULL);
4b9d48a1 2664
20179b0d 2665 switch (code)
4b9d48a1
SP
2666 {
2667 case BIT_NOT_EXPR:
2668 return chrec_fold_minus
2669 (type, fold_convert (type, integer_minus_one_node), op0);
2670
2671 case NEGATE_EXPR:
2672 return chrec_fold_multiply
2673 (type, fold_convert (type, integer_minus_one_node), op0);
2674
2675 default:
2676 gcc_unreachable ();
2677 }
7ec0665d 2678 }
4b9d48a1 2679
20179b0d 2680 return chrec ? chrec : fold_build1 (code, type, op0);
7ec0665d
SP
2681}
2682
d814176c
SP
2683/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2684 and EVOLUTION_LOOP, that were left under a symbolic form.
2685
2686 CHREC is an expression with 3 operands to be instantiated.
2687
2688 CACHE is the cache of already instantiated values.
2689
c70ed622
BC
2690 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2691 conversions that may wrap in signed/pointer type are folded, as long
2692 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2693 then we don't do such fold.
d814176c
SP
2694
2695 SIZE_EXPR is used for computing the size of the expression to be
2696 instantiated, and to stop if it exceeds some limit. */
2697
2698static tree
2699instantiate_scev_3 (basic_block instantiate_below,
8b679c9b
RB
2700 struct loop *evolution_loop, struct loop *inner_loop,
2701 tree chrec,
c70ed622 2702 bool *fold_conversions, int size_expr)
d814176c
SP
2703{
2704 tree op1, op2;
9e5dc77f 2705 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2706 inner_loop, TREE_OPERAND (chrec, 0),
0547c9b6 2707 fold_conversions, size_expr);
d814176c
SP
2708 if (op0 == chrec_dont_know)
2709 return chrec_dont_know;
2710
9e5dc77f 2711 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2712 inner_loop, TREE_OPERAND (chrec, 1),
0547c9b6 2713 fold_conversions, size_expr);
d814176c
SP
2714 if (op1 == chrec_dont_know)
2715 return chrec_dont_know;
2716
9e5dc77f 2717 op2 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2718 inner_loop, TREE_OPERAND (chrec, 2),
0547c9b6 2719 fold_conversions, size_expr);
d814176c
SP
2720 if (op2 == chrec_dont_know)
2721 return chrec_dont_know;
2722
2723 if (op0 == TREE_OPERAND (chrec, 0)
2724 && op1 == TREE_OPERAND (chrec, 1)
2725 && op2 == TREE_OPERAND (chrec, 2))
2726 return chrec;
2727
2728 return fold_build3 (TREE_CODE (chrec),
2729 TREE_TYPE (chrec), op0, op1, op2);
2730}
2731
9c382ce9
SP
2732/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2733 and EVOLUTION_LOOP, that were left under a symbolic form.
5b78fc3e 2734
9e5dc77f
SP
2735 CHREC is an expression with 2 operands to be instantiated.
2736
2737 CACHE is the cache of already instantiated values.
2738
c70ed622
BC
2739 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2740 conversions that may wrap in signed/pointer type are folded, as long
2741 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2742 then we don't do such fold.
9e5dc77f
SP
2743
2744 SIZE_EXPR is used for computing the size of the expression to be
2745 instantiated, and to stop if it exceeds some limit. */
2746
2747static tree
2748instantiate_scev_2 (basic_block instantiate_below,
8b679c9b
RB
2749 struct loop *evolution_loop, struct loop *inner_loop,
2750 tree chrec,
c70ed622 2751 bool *fold_conversions, int size_expr)
9e5dc77f
SP
2752{
2753 tree op1;
2754 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2755 inner_loop, TREE_OPERAND (chrec, 0),
0547c9b6 2756 fold_conversions, size_expr);
9e5dc77f
SP
2757 if (op0 == chrec_dont_know)
2758 return chrec_dont_know;
2759
2760 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2761 inner_loop, TREE_OPERAND (chrec, 1),
0547c9b6 2762 fold_conversions, size_expr);
9e5dc77f
SP
2763 if (op1 == chrec_dont_know)
2764 return chrec_dont_know;
2765
2766 if (op0 == TREE_OPERAND (chrec, 0)
2767 && op1 == TREE_OPERAND (chrec, 1))
2768 return chrec;
2769
2770 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2771}
2772
2773/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2774 and EVOLUTION_LOOP, that were left under a symbolic form.
2775
2776 CHREC is an expression with 2 operands to be instantiated.
5b78fc3e
JS
2777
2778 CACHE is the cache of already instantiated values.
2779
c70ed622
BC
2780 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2781 conversions that may wrap in signed/pointer type are folded, as long
2782 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2783 then we don't do such fold.
5b78fc3e 2784
3f227a8c
JS
2785 SIZE_EXPR is used for computing the size of the expression to be
2786 instantiated, and to stop if it exceeds some limit. */
9c382ce9 2787
9baba81b 2788static tree
a213b219 2789instantiate_scev_1 (basic_block instantiate_below,
8b679c9b
RB
2790 struct loop *evolution_loop, struct loop *inner_loop,
2791 tree chrec,
c70ed622 2792 bool *fold_conversions, int size_expr)
9baba81b 2793{
9e5dc77f 2794 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
8b679c9b 2795 inner_loop, TREE_OPERAND (chrec, 0),
0547c9b6 2796 fold_conversions, size_expr);
9e5dc77f
SP
2797
2798 if (op0 == chrec_dont_know)
2799 return chrec_dont_know;
2800
2801 if (op0 == TREE_OPERAND (chrec, 0))
2802 return chrec;
2803
2804 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2805}
2806
2807/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2808 and EVOLUTION_LOOP, that were left under a symbolic form.
2809
2810 CHREC is the scalar evolution to instantiate.
2811
2812 CACHE is the cache of already instantiated values.
2282a0e6 2813
c70ed622
BC
2814 Variable pointed by FOLD_CONVERSIONS is set to TRUE when the
2815 conversions that may wrap in signed/pointer type are folded, as long
2816 as the value of the chrec is preserved. If FOLD_CONVERSIONS is NULL
2817 then we don't do such fold.
9e5dc77f
SP
2818
2819 SIZE_EXPR is used for computing the size of the expression to be
2820 instantiated, and to stop if it exceeds some limit. */
2821
2822static tree
2823instantiate_scev_r (basic_block instantiate_below,
8b679c9b
RB
2824 struct loop *evolution_loop, struct loop *inner_loop,
2825 tree chrec,
c70ed622 2826 bool *fold_conversions, int size_expr)
9e5dc77f 2827{
47ae9e4c
SP
2828 /* Give up if the expression is larger than the MAX that we allow. */
2829 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2830 return chrec_dont_know;
2831
81fada9a
JJ
2832 if (chrec == NULL_TREE
2833 || automatically_generated_chrec_p (chrec)
d7770457 2834 || is_gimple_min_invariant (chrec))
9baba81b
SP
2835 return chrec;
2836
2837 switch (TREE_CODE (chrec))
2838 {
2839 case SSA_NAME:
8b679c9b
RB
2840 return instantiate_scev_name (instantiate_below, evolution_loop,
2841 inner_loop, chrec,
0547c9b6 2842 fold_conversions, size_expr);
9baba81b
SP
2843
2844 case POLYNOMIAL_CHREC:
8b679c9b
RB
2845 return instantiate_scev_poly (instantiate_below, evolution_loop,
2846 inner_loop, chrec,
0547c9b6 2847 fold_conversions, size_expr);
9baba81b 2848
5be014d5 2849 case POINTER_PLUS_EXPR:
9baba81b 2850 case PLUS_EXPR:
9baba81b 2851 case MINUS_EXPR:
9baba81b 2852 case MULT_EXPR:
8b679c9b
RB
2853 return instantiate_scev_binary (instantiate_below, evolution_loop,
2854 inner_loop, chrec,
ffa34f4b
SP
2855 TREE_CODE (chrec), chrec_type (chrec),
2856 TREE_OPERAND (chrec, 0),
2857 TREE_OPERAND (chrec, 1),
0547c9b6 2858 fold_conversions, size_expr);
9baba81b 2859
1043771b 2860 CASE_CONVERT:
8b679c9b
RB
2861 return instantiate_scev_convert (instantiate_below, evolution_loop,
2862 inner_loop, chrec,
9c382ce9 2863 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
0547c9b6 2864 fold_conversions, size_expr);
9baba81b 2865
4b9d48a1 2866 case NEGATE_EXPR:
418df9d7 2867 case BIT_NOT_EXPR:
8b679c9b
RB
2868 return instantiate_scev_not (instantiate_below, evolution_loop,
2869 inner_loop, chrec,
20179b0d
SP
2870 TREE_CODE (chrec), TREE_TYPE (chrec),
2871 TREE_OPERAND (chrec, 0),
0547c9b6 2872 fold_conversions, size_expr);
418df9d7 2873
4c7d6755 2874 case ADDR_EXPR:
9baba81b
SP
2875 case SCEV_NOT_KNOWN:
2876 return chrec_dont_know;
2877
2878 case SCEV_KNOWN:
2879 return chrec_known;
15fda317 2880
dbc08079 2881 case ARRAY_REF:
8b679c9b
RB
2882 return instantiate_array_ref (instantiate_below, evolution_loop,
2883 inner_loop, chrec,
0547c9b6 2884 fold_conversions, size_expr);
dbc08079 2885
9baba81b
SP
2886 default:
2887 break;
2888 }
2889
0dfb0dc6
SP
2890 if (VL_EXP_CLASS_P (chrec))
2891 return chrec_dont_know;
2892
9baba81b
SP
2893 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2894 {
2895 case 3:
8b679c9b
RB
2896 return instantiate_scev_3 (instantiate_below, evolution_loop,
2897 inner_loop, chrec,
0547c9b6 2898 fold_conversions, size_expr);
9baba81b
SP
2899
2900 case 2:
8b679c9b
RB
2901 return instantiate_scev_2 (instantiate_below, evolution_loop,
2902 inner_loop, chrec,
0547c9b6 2903 fold_conversions, size_expr);
7ec0665d 2904
9baba81b 2905 case 1:
8b679c9b
RB
2906 return instantiate_scev_1 (instantiate_below, evolution_loop,
2907 inner_loop, chrec,
0547c9b6 2908 fold_conversions, size_expr);
9baba81b
SP
2909
2910 case 0:
2911 return chrec;
2912
2913 default:
2914 break;
2915 }
2916
2917 /* Too complicated to handle. */
2918 return chrec_dont_know;
2919}
e9eb809d
ZD
2920
2921/* Analyze all the parameters of the chrec that were left under a
a213b219
SP
2922 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2923 recursive instantiation of parameters: a parameter is a variable
2924 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2925 a function parameter. */
e9eb809d
ZD
2926
2927tree
a213b219 2928instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
3f227a8c 2929 tree chrec)
e9eb809d 2930{
9baba81b
SP
2931 tree res;
2932
dfedbe40 2933 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b 2934 {
3f227a8c 2935 fprintf (dump_file, "(instantiate_scev \n");
a213b219 2936 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
3f227a8c 2937 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
9baba81b
SP
2938 fprintf (dump_file, " (chrec = ");
2939 print_generic_expr (dump_file, chrec, 0);
2940 fprintf (dump_file, ")\n");
2941 }
b8698a0f 2942
0547c9b6
RB
2943 bool destr = false;
2944 if (!global_cache)
2945 {
2946 global_cache = new instantiate_cache_type;
2947 destr = true;
2948 }
2949
8b679c9b 2950 res = instantiate_scev_r (instantiate_below, evolution_loop,
c70ed622 2951 NULL, chrec, NULL, 0);
0547c9b6
RB
2952
2953 if (destr)
2954 {
2955 delete global_cache;
2956 global_cache = NULL;
2957 }
9baba81b 2958
dfedbe40 2959 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
2960 {
2961 fprintf (dump_file, " (res = ");
2962 print_generic_expr (dump_file, res, 0);
2963 fprintf (dump_file, "))\n");
2964 }
eb0bc7af 2965
9baba81b
SP
2966 return res;
2967}
2968
2969/* Similar to instantiate_parameters, but does not introduce the
2282a0e6
ZD
2970 evolutions in outer loops for LOOP invariants in CHREC, and does not
2971 care about causing overflows, as long as they do not affect value
2972 of an expression. */
9baba81b 2973
3cb960c7 2974tree
c70ed622 2975resolve_mixers (struct loop *loop, tree chrec, bool *folded_casts)
9baba81b 2976{
0547c9b6 2977 bool destr = false;
c70ed622 2978 bool fold_conversions = false;
0547c9b6
RB
2979 if (!global_cache)
2980 {
2981 global_cache = new instantiate_cache_type;
2982 destr = true;
2983 }
2984
8b679c9b 2985 tree ret = instantiate_scev_r (block_before_loop (loop), loop, NULL,
c70ed622
BC
2986 chrec, &fold_conversions, 0);
2987
2988 if (folded_casts && !*folded_casts)
2989 *folded_casts = fold_conversions;
0547c9b6
RB
2990
2991 if (destr)
2992 {
2993 delete global_cache;
2994 global_cache = NULL;
2995 }
2996
eb0bc7af 2997 return ret;
9baba81b
SP
2998}
2999
b8698a0f 3000/* Entry point for the analysis of the number of iterations pass.
9baba81b
SP
3001 This function tries to safely approximate the number of iterations
3002 the loop will run. When this property is not decidable at compile
0a74c758
SP
3003 time, the result is chrec_dont_know. Otherwise the result is a
3004 scalar or a symbolic parameter. When the number of iterations may
3005 be equal to zero and the property cannot be determined at compile
3006 time, the result is a COND_EXPR that represents in a symbolic form
3007 the conditions under which the number of iterations is not zero.
b8698a0f 3008
9baba81b 3009 Example of analysis: suppose that the loop has an exit condition:
b8698a0f 3010
9baba81b 3011 "if (b > 49) goto end_loop;"
b8698a0f 3012
9baba81b
SP
3013 and that in a previous analysis we have determined that the
3014 variable 'b' has an evolution function:
b8698a0f
L
3015
3016 "EF = {23, +, 5}_2".
3017
9baba81b
SP
3018 When we evaluate the function at the point 5, i.e. the value of the
3019 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
3020 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
3021 the loop body has been executed 6 times. */
3022
b8698a0f 3023tree
a14865db 3024number_of_latch_executions (struct loop *loop)
9baba81b 3025{
9baba81b
SP
3026 edge exit;
3027 struct tree_niter_desc niter_desc;
0a74c758
SP
3028 tree may_be_zero;
3029 tree res;
9baba81b 3030
0a74c758 3031 /* Determine whether the number of iterations in loop has already
9baba81b
SP
3032 been computed. */
3033 res = loop->nb_iterations;
3034 if (res)
3035 return res;
0a74c758
SP
3036
3037 may_be_zero = NULL_TREE;
9baba81b 3038
dfedbe40 3039 if (dump_file && (dump_flags & TDF_SCEV))
0a74c758 3040 fprintf (dump_file, "(number_of_iterations_in_loop = \n");
b8698a0f 3041
0a74c758 3042 res = chrec_dont_know;
ac8f6c69 3043 exit = single_exit (loop);
9baba81b 3044
0a74c758
SP
3045 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
3046 {
3047 may_be_zero = niter_desc.may_be_zero;
3048 res = niter_desc.niter;
3049 }
3050
3051 if (res == chrec_dont_know
3052 || !may_be_zero
3053 || integer_zerop (may_be_zero))
3054 ;
3055 else if (integer_nonzerop (may_be_zero))
3056 res = build_int_cst (TREE_TYPE (res), 0);
9baba81b 3057
0a74c758
SP
3058 else if (COMPARISON_CLASS_P (may_be_zero))
3059 res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero,
3060 build_int_cst (TREE_TYPE (res), 0), res);
9baba81b
SP
3061 else
3062 res = chrec_dont_know;
3063
dfedbe40 3064 if (dump_file && (dump_flags & TDF_SCEV))
0a74c758
SP
3065 {
3066 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
3067 print_generic_expr (dump_file, res, 0);
3068 fprintf (dump_file, "))\n");
3069 }
3070
3071 loop->nb_iterations = res;
3072 return res;
9baba81b 3073}
9baba81b
SP
3074\f
3075
3076/* Counters for the stats. */
3077
b8698a0f 3078struct chrec_stats
9baba81b
SP
3079{
3080 unsigned nb_chrecs;
3081 unsigned nb_affine;
3082 unsigned nb_affine_multivar;
3083 unsigned nb_higher_poly;
3084 unsigned nb_chrec_dont_know;
3085 unsigned nb_undetermined;
3086};
3087
3088/* Reset the counters. */
3089
3090static inline void
3091reset_chrecs_counters (struct chrec_stats *stats)
3092{
3093 stats->nb_chrecs = 0;
3094 stats->nb_affine = 0;
3095 stats->nb_affine_multivar = 0;
3096 stats->nb_higher_poly = 0;
3097 stats->nb_chrec_dont_know = 0;
3098 stats->nb_undetermined = 0;
3099}
3100
3101/* Dump the contents of a CHREC_STATS structure. */
3102
3103static void
3104dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
3105{
3106 fprintf (file, "\n(\n");
3107 fprintf (file, "-----------------------------------------\n");
3108 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
3109 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
b8698a0f 3110 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
9baba81b
SP
3111 stats->nb_higher_poly);
3112 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
3113 fprintf (file, "-----------------------------------------\n");
3114 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
b8698a0f 3115 fprintf (file, "%d\twith undetermined coefficients\n",
9baba81b
SP
3116 stats->nb_undetermined);
3117 fprintf (file, "-----------------------------------------\n");
b8698a0f 3118 fprintf (file, "%d\tchrecs in the scev database\n",
907dadbd 3119 (int) scalar_evolution_info->elements ());
9baba81b
SP
3120 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
3121 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
3122 fprintf (file, "-----------------------------------------\n");
3123 fprintf (file, ")\n\n");
3124}
3125
3126/* Gather statistics about CHREC. */
3127
3128static void
3129gather_chrec_stats (tree chrec, struct chrec_stats *stats)
3130{
3131 if (dump_file && (dump_flags & TDF_STATS))
3132 {
3133 fprintf (dump_file, "(classify_chrec ");
3134 print_generic_expr (dump_file, chrec, 0);
3135 fprintf (dump_file, "\n");
3136 }
b8698a0f 3137
9baba81b 3138 stats->nb_chrecs++;
b8698a0f 3139
9baba81b
SP
3140 if (chrec == NULL_TREE)
3141 {
3142 stats->nb_undetermined++;
3143 return;
3144 }
b8698a0f 3145
9baba81b
SP
3146 switch (TREE_CODE (chrec))
3147 {
3148 case POLYNOMIAL_CHREC:
3149 if (evolution_function_is_affine_p (chrec))
3150 {
3151 if (dump_file && (dump_flags & TDF_STATS))
3152 fprintf (dump_file, " affine_univariate\n");
3153 stats->nb_affine++;
3154 }
a50411de 3155 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
9baba81b
SP
3156 {
3157 if (dump_file && (dump_flags & TDF_STATS))
3158 fprintf (dump_file, " affine_multivariate\n");
3159 stats->nb_affine_multivar++;
3160 }
3161 else
3162 {
3163 if (dump_file && (dump_flags & TDF_STATS))
3164 fprintf (dump_file, " higher_degree_polynomial\n");
3165 stats->nb_higher_poly++;
3166 }
b8698a0f 3167
9baba81b
SP
3168 break;
3169
3170 default:
3171 break;
3172 }
b8698a0f 3173
9baba81b
SP
3174 if (chrec_contains_undetermined (chrec))
3175 {
3176 if (dump_file && (dump_flags & TDF_STATS))
3177 fprintf (dump_file, " undetermined\n");
3178 stats->nb_undetermined++;
3179 }
b8698a0f 3180
9baba81b
SP
3181 if (dump_file && (dump_flags & TDF_STATS))
3182 fprintf (dump_file, ")\n");
3183}
3184
9baba81b
SP
3185/* Classify the chrecs of the whole database. */
3186
b8698a0f 3187void
9baba81b
SP
3188gather_stats_on_scev_database (void)
3189{
3190 struct chrec_stats stats;
b8698a0f 3191
9baba81b
SP
3192 if (!dump_file)
3193 return;
b8698a0f 3194
9baba81b 3195 reset_chrecs_counters (&stats);
b8698a0f 3196
907dadbd
TS
3197 hash_table<scev_info_hasher>::iterator iter;
3198 scev_info_str *elt;
3199 FOR_EACH_HASH_TABLE_ELEMENT (*scalar_evolution_info, elt, scev_info_str *,
3200 iter)
3201 gather_chrec_stats (elt->chrec, &stats);
9baba81b
SP
3202
3203 dump_chrecs_stats (dump_file, &stats);
3204}
3205
3206\f
3207
3208/* Initializer. */
3209
3210static void
3211initialize_scalar_evolutions_analyzer (void)
3212{
3213 /* The elements below are unique. */
3214 if (chrec_dont_know == NULL_TREE)
3215 {
3216 chrec_not_analyzed_yet = NULL_TREE;
3217 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
3218 chrec_known = make_node (SCEV_KNOWN);
d5ab5675
ZD
3219 TREE_TYPE (chrec_dont_know) = void_type_node;
3220 TREE_TYPE (chrec_known) = void_type_node;
9baba81b
SP
3221 }
3222}
3223
3224/* Initialize the analysis of scalar evolutions for LOOPS. */
3225
3226void
d73be268 3227scev_initialize (void)
9baba81b 3228{
42fd6772 3229 struct loop *loop;
9baba81b 3230
907dadbd 3231 scalar_evolution_info = hash_table<scev_info_hasher>::create_ggc (100);
b8698a0f 3232
9baba81b
SP
3233 initialize_scalar_evolutions_analyzer ();
3234
f0bd40b1 3235 FOR_EACH_LOOP (loop, 0)
42fd6772
ZD
3236 {
3237 loop->nb_iterations = NULL_TREE;
3238 }
9baba81b
SP
3239}
3240
e3a8f1fa
JH
3241/* Return true if SCEV is initialized. */
3242
3243bool
3244scev_initialized_p (void)
3245{
3246 return scalar_evolution_info != NULL;
3247}
3248
a7bf45de
SP
3249/* Cleans up the information cached by the scalar evolutions analysis
3250 in the hash table. */
3251
3252void
3253scev_reset_htab (void)
3254{
3255 if (!scalar_evolution_info)
3256 return;
3257
907dadbd 3258 scalar_evolution_info->empty ();
a7bf45de
SP
3259}
3260
3261/* Cleans up the information cached by the scalar evolutions analysis
3262 in the hash table and in the loop->nb_iterations. */
9baba81b
SP
3263
3264void
3265scev_reset (void)
3266{
9baba81b
SP
3267 struct loop *loop;
3268
a7bf45de
SP
3269 scev_reset_htab ();
3270
f0bd40b1 3271 FOR_EACH_LOOP (loop, 0)
9baba81b 3272 {
42fd6772 3273 loop->nb_iterations = NULL_TREE;
9baba81b 3274 }
e9eb809d
ZD
3275}
3276
f017bf5e
ZD
3277/* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3278 respect to WRTO_LOOP and returns its base and step in IV if possible
3279 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3280 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3281 invariant in LOOP. Otherwise we require it to be an integer constant.
b8698a0f 3282
f017bf5e
ZD
3283 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3284 because it is computed in signed arithmetics). Consequently, adding an
3285 induction variable
b8698a0f 3286
f017bf5e
ZD
3287 for (i = IV->base; ; i += IV->step)
3288
3289 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3290 false for the type of the induction variable, or you can prove that i does
3291 not wrap by some other argument. Otherwise, this might introduce undefined
3292 behavior, and
b8698a0f 3293
f017bf5e
ZD
3294 for (i = iv->base; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3295
3296 must be used instead. */
e9eb809d
ZD
3297
3298bool
f017bf5e
ZD
3299simple_iv (struct loop *wrto_loop, struct loop *use_loop, tree op,
3300 affine_iv *iv, bool allow_nonconstant_step)
e9eb809d 3301{
f3c5f3a3
BC
3302 enum tree_code code;
3303 tree type, ev, base, e, stop;
3304 wide_int extreme;
3305 bool folded_casts, overflow;
9baba81b 3306
a6f778b2
ZD
3307 iv->base = NULL_TREE;
3308 iv->step = NULL_TREE;
3309 iv->no_overflow = false;
9baba81b
SP
3310
3311 type = TREE_TYPE (op);
1ee0d660
EB
3312 if (!POINTER_TYPE_P (type)
3313 && !INTEGRAL_TYPE_P (type))
9baba81b
SP
3314 return false;
3315
f017bf5e 3316 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
a6f778b2 3317 &folded_casts);
f017bf5e
ZD
3318 if (chrec_contains_undetermined (ev)
3319 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
9baba81b
SP
3320 return false;
3321
f017bf5e 3322 if (tree_does_not_contain_chrecs (ev))
9baba81b 3323 {
a6f778b2 3324 iv->base = ev;
6e42ce54 3325 iv->step = build_int_cst (TREE_TYPE (ev), 0);
a6f778b2 3326 iv->no_overflow = true;
9baba81b
SP
3327 return true;
3328 }
3329
3330 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
f017bf5e 3331 || CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
9baba81b
SP
3332 return false;
3333
a6f778b2 3334 iv->step = CHREC_RIGHT (ev);
f017bf5e
ZD
3335 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
3336 || tree_contains_chrecs (iv->step, NULL))
9baba81b 3337 return false;
9be872b7 3338
a6f778b2 3339 iv->base = CHREC_LEFT (ev);
f017bf5e 3340 if (tree_contains_chrecs (iv->base, NULL))
9baba81b
SP
3341 return false;
3342
20bd649a
MP
3343 iv->no_overflow = (!folded_casts && ANY_INTEGRAL_TYPE_P (type)
3344 && TYPE_OVERFLOW_UNDEFINED (type));
eeef0e45 3345
f3c5f3a3
BC
3346 /* Try to simplify iv base:
3347
3348 (signed T) ((unsigned T)base + step) ;; TREE_TYPE (base) == signed T
3349 == (signed T)(unsigned T)base + step
3350 == base + step
3351
3352 If we can prove operation (base + step) doesn't overflow or underflow.
3353 Specifically, we try to prove below conditions are satisfied:
3354
3355 base <= UPPER_BOUND (type) - step ;;step > 0
3356 base >= LOWER_BOUND (type) - step ;;step < 0
3357
3358 This is done by proving the reverse conditions are false using loop's
3359 initial conditions.
3360
3361 The is necessary to make loop niter, or iv overflow analysis easier
3362 for below example:
3363
3364 int foo (int *a, signed char s, signed char l)
3365 {
3366 signed char i;
3367 for (i = s; i < l; i++)
3368 a[i] = 0;
3369 return 0;
3370 }
3371
3372 Note variable I is firstly converted to type unsigned char, incremented,
3373 then converted back to type signed char. */
3374
3375 if (wrto_loop->num != use_loop->num)
3376 return true;
3377
3378 if (!CONVERT_EXPR_P (iv->base) || TREE_CODE (iv->step) != INTEGER_CST)
3379 return true;
3380
3381 type = TREE_TYPE (iv->base);
3382 e = TREE_OPERAND (iv->base, 0);
3383 if (TREE_CODE (e) != PLUS_EXPR
3384 || TREE_CODE (TREE_OPERAND (e, 1)) != INTEGER_CST
3385 || !tree_int_cst_equal (iv->step,
3386 fold_convert (type, TREE_OPERAND (e, 1))))
3387 return true;
3388 e = TREE_OPERAND (e, 0);
3389 if (!CONVERT_EXPR_P (e))
3390 return true;
3391 base = TREE_OPERAND (e, 0);
3392 if (!useless_type_conversion_p (type, TREE_TYPE (base)))
3393 return true;
3394
3395 if (tree_int_cst_sign_bit (iv->step))
3396 {
3397 code = LT_EXPR;
3398 extreme = wi::min_value (type);
3399 }
3400 else
3401 {
3402 code = GT_EXPR;
3403 extreme = wi::max_value (type);
3404 }
3405 overflow = false;
3406 extreme = wi::sub (extreme, iv->step, TYPE_SIGN (type), &overflow);
3407 if (overflow)
3408 return true;
3409 e = fold_build2 (code, boolean_type_node, base,
3410 wide_int_to_tree (type, extreme));
3411 stop = (TREE_CODE (base) == SSA_NAME) ? base : NULL;
3412 e = simplify_using_initial_conditions (use_loop, e, stop);
3413 if (!integer_zerop (e))
3414 return true;
3415
3416 if (POINTER_TYPE_P (TREE_TYPE (base)))
3417 code = POINTER_PLUS_EXPR;
3418 else
3419 code = PLUS_EXPR;
3420
3421 iv->base = fold_build2 (code, TREE_TYPE (base), base, iv->step);
9baba81b
SP
3422 return true;
3423}
3424
9baba81b
SP
3425/* Finalize the scalar evolution analysis. */
3426
3427void
3428scev_finalize (void)
3429{
d51157de
ZD
3430 if (!scalar_evolution_info)
3431 return;
907dadbd 3432 scalar_evolution_info->empty ();
c7b852c8 3433 scalar_evolution_info = NULL;
9baba81b
SP
3434}
3435
771f882e
ZD
3436/* Returns true if the expression EXPR is considered to be too expensive
3437 for scev_const_prop. */
3438
3439bool
3440expression_expensive_p (tree expr)
3441{
3442 enum tree_code code;
3443
3444 if (is_gimple_val (expr))
3445 return false;
3446
3447 code = TREE_CODE (expr);
3448 if (code == TRUNC_DIV_EXPR
3449 || code == CEIL_DIV_EXPR
3450 || code == FLOOR_DIV_EXPR
3451 || code == ROUND_DIV_EXPR
3452 || code == TRUNC_MOD_EXPR
3453 || code == CEIL_MOD_EXPR
3454 || code == FLOOR_MOD_EXPR
3455 || code == ROUND_MOD_EXPR
3456 || code == EXACT_DIV_EXPR)
3457 {
3458 /* Division by power of two is usually cheap, so we allow it.
3459 Forbid anything else. */
3460 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
3461 return true;
3462 }
3463
3464 switch (TREE_CODE_CLASS (code))
3465 {
3466 case tcc_binary:
3467 case tcc_comparison:
3468 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
3469 return true;
3470
3471 /* Fallthru. */
3472 case tcc_unary:
3473 return expression_expensive_p (TREE_OPERAND (expr, 0));
3474
3475 default:
3476 return true;
3477 }
3478}
3479
f993a853
TV
3480/* Do final value replacement for LOOP. */
3481
3482void
3483final_value_replacement_loop (struct loop *loop)
3484{
3485 /* If we do not know exact number of iterations of the loop, we cannot
3486 replace the final value. */
3487 edge exit = single_exit (loop);
3488 if (!exit)
3489 return;
3490
3491 tree niter = number_of_latch_executions (loop);
3492 if (niter == chrec_dont_know)
3493 return;
3494
3495 /* Ensure that it is possible to insert new statements somewhere. */
3496 if (!single_pred_p (exit->dest))
3497 split_loop_exit_edge (exit);
3498
3499 /* Set stmt insertion pointer. All stmts are inserted before this point. */
3500 gimple_stmt_iterator gsi = gsi_after_labels (exit->dest);
3501
3502 struct loop *ex_loop
3503 = superloop_at_depth (loop,
3504 loop_depth (exit->dest->loop_father) + 1);
3505
3506 gphi_iterator psi;
3507 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
3508 {
3509 gphi *phi = psi.phi ();
3510 tree rslt = PHI_RESULT (phi);
3511 tree def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
3512 if (virtual_operand_p (def))
3513 {
3514 gsi_next (&psi);
3515 continue;
3516 }
3517
3518 if (!POINTER_TYPE_P (TREE_TYPE (def))
3519 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
3520 {
3521 gsi_next (&psi);
3522 continue;
3523 }
3524
3525 bool folded_casts;
3526 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def,
3527 &folded_casts);
3528 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3529 if (!tree_does_not_contain_chrecs (def)
3530 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3531 /* Moving the computation from the loop may prolong life range
3532 of some ssa names, which may cause problems if they appear
3533 on abnormal edges. */
3534 || contains_abnormal_ssa_name_p (def)
3535 /* Do not emit expensive expressions. The rationale is that
3536 when someone writes a code like
3537
3538 while (n > 45) n -= 45;
3539
3540 he probably knows that n is not large, and does not want it
3541 to be turned into n %= 45. */
3542 || expression_expensive_p (def))
3543 {
3544 if (dump_file && (dump_flags & TDF_DETAILS))
3545 {
3546 fprintf (dump_file, "not replacing:\n ");
3547 print_gimple_stmt (dump_file, phi, 0, 0);
3548 fprintf (dump_file, "\n");
3549 }
3550 gsi_next (&psi);
3551 continue;
3552 }
3553
3554 /* Eliminate the PHI node and replace it by a computation outside
3555 the loop. */
3556 if (dump_file)
3557 {
3558 fprintf (dump_file, "\nfinal value replacement:\n ");
3559 print_gimple_stmt (dump_file, phi, 0, 0);
3560 fprintf (dump_file, " with\n ");
3561 }
3562 def = unshare_expr (def);
3563 remove_phi_node (&psi, false);
3564
3565 /* If def's type has undefined overflow and there were folded
3566 casts, rewrite all stmts added for def into arithmetics
3567 with defined overflow behavior. */
3568 if (folded_casts && ANY_INTEGRAL_TYPE_P (TREE_TYPE (def))
3569 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (def)))
3570 {
3571 gimple_seq stmts;
3572 gimple_stmt_iterator gsi2;
3573 def = force_gimple_operand (def, &stmts, true, NULL_TREE);
3574 gsi2 = gsi_start (stmts);
3575 while (!gsi_end_p (gsi2))
3576 {
3577 gimple *stmt = gsi_stmt (gsi2);
3578 gimple_stmt_iterator gsi3 = gsi2;
3579 gsi_next (&gsi2);
3580 gsi_remove (&gsi3, false);
3581 if (is_gimple_assign (stmt)
3582 && arith_code_with_undefined_signed_overflow
3583 (gimple_assign_rhs_code (stmt)))
3584 gsi_insert_seq_before (&gsi,
3585 rewrite_to_defined_overflow (stmt),
3586 GSI_SAME_STMT);
3587 else
3588 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
3589 }
3590 }
3591 else
3592 def = force_gimple_operand_gsi (&gsi, def, false, NULL_TREE,
3593 true, GSI_SAME_STMT);
3594
3595 gassign *ass = gimple_build_assign (rslt, def);
3596 gsi_insert_before (&gsi, ass, GSI_SAME_STMT);
3597 if (dump_file)
3598 {
3599 print_gimple_stmt (dump_file, ass, 0, 0);
3600 fprintf (dump_file, "\n");
3601 }
3602 }
3603}
3604
684aaf29 3605/* Replace ssa names for that scev can prove they are constant by the
3ac01fde
ZD
3606 appropriate constants. Also perform final value replacement in loops,
3607 in case the replacement expressions are cheap.
b8698a0f 3608
684aaf29
ZD
3609 We only consider SSA names defined by phi nodes; rest is left to the
3610 ordinary constant propagation pass. */
3611
c2924966 3612unsigned int
684aaf29
ZD
3613scev_const_prop (void)
3614{
3615 basic_block bb;
726a989a 3616 tree name, type, ev;
538dd0b7 3617 gphi *phi;
f993a853 3618 struct loop *loop;
684aaf29 3619 bitmap ssa_names_to_remove = NULL;
3ac01fde 3620 unsigned i;
538dd0b7 3621 gphi_iterator psi;
684aaf29 3622
0fc822d0 3623 if (number_of_loops (cfun) <= 1)
c2924966 3624 return 0;
684aaf29 3625
11cd3bed 3626 FOR_EACH_BB_FN (bb, cfun)
684aaf29
ZD
3627 {
3628 loop = bb->loop_father;
3629
726a989a 3630 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
684aaf29 3631 {
538dd0b7 3632 phi = psi.phi ();
684aaf29
ZD
3633 name = PHI_RESULT (phi);
3634
ea057359 3635 if (virtual_operand_p (name))
684aaf29
ZD
3636 continue;
3637
3638 type = TREE_TYPE (name);
3639
3640 if (!POINTER_TYPE_P (type)
3641 && !INTEGRAL_TYPE_P (type))
3642 continue;
3643
c70ed622
BC
3644 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name),
3645 NULL);
684aaf29
ZD
3646 if (!is_gimple_min_invariant (ev)
3647 || !may_propagate_copy (name, ev))
3648 continue;
3649
3650 /* Replace the uses of the name. */
18aed06a 3651 if (name != ev)
ed22b76f
TV
3652 {
3653 if (dump_file && (dump_flags & TDF_DETAILS))
3654 {
3655 fprintf (dump_file, "Replacing uses of: ");
3656 print_generic_expr (dump_file, name, 0);
3657 fprintf (dump_file, " with: ");
3658 print_generic_expr (dump_file, ev, 0);
3659 fprintf (dump_file, "\n");
3660 }
3661 replace_uses_by (name, ev);
3662 }
684aaf29
ZD
3663
3664 if (!ssa_names_to_remove)
3665 ssa_names_to_remove = BITMAP_ALLOC (NULL);
3666 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
3667 }
3668 }
3669
9b3b55a1
DN
3670 /* Remove the ssa names that were replaced by constants. We do not
3671 remove them directly in the previous cycle, since this
3672 invalidates scev cache. */
684aaf29
ZD
3673 if (ssa_names_to_remove)
3674 {
3675 bitmap_iterator bi;
684aaf29
ZD
3676
3677 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
3678 {
726a989a 3679 gimple_stmt_iterator psi;
684aaf29 3680 name = ssa_name (i);
538dd0b7 3681 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (name));
684aaf29 3682
726a989a
RB
3683 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
3684 psi = gsi_for_stmt (phi);
3685 remove_phi_node (&psi, true);
684aaf29
ZD
3686 }
3687
3688 BITMAP_FREE (ssa_names_to_remove);
3689 scev_reset ();
3690 }
3ac01fde
ZD
3691
3692 /* Now the regular final value replacement. */
f0bd40b1 3693 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
f993a853 3694 final_value_replacement_loop (loop);
925196ed 3695
c2924966 3696 return 0;
684aaf29 3697}
9e2f83a5
ZD
3698
3699#include "gt-tree-scalar-evolution.h"