]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-scalar-evolution.c
re PR tree-optimization/29902 (ICE in coalesce_abnormal_edges, at tree-outof-ssa...
[thirdparty/gcc.git] / gcc / tree-scalar-evolution.c
CommitLineData
e9eb809d 1/* Scalar evolution detector.
ad616de1 2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
e9eb809d
ZD
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING. If not, write to the Free
366ccddb
KC
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA. */
e9eb809d 21
9baba81b
SP
22/*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a MODIFY_EXPR: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 3: Higher degree polynomials.
159
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
166
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
171
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174
175 Example 4: Lucas, Fibonacci, or mixers in general.
176
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
183
184 a -> (1, c)_1
185 c -> {3, +, a}_1
186
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
192
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
195
196 Example 5: Flip-flops, or exchangers.
197
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
204
205 a -> (1, c)_1
206 c -> (3, a)_1
207
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
210
211 a -> |1, 3|_1
212 c -> |3, 1|_1
213
214 This transformation is not yet implemented.
215
216 Further readings:
217
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
225
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232*/
233
e9eb809d
ZD
234#include "config.h"
235#include "system.h"
236#include "coretypes.h"
237#include "tm.h"
e9eb809d
ZD
238#include "ggc.h"
239#include "tree.h"
9d2b0e12 240#include "real.h"
9baba81b
SP
241
242/* These RTL headers are needed for basic-block.h. */
e9eb809d
ZD
243#include "rtl.h"
244#include "basic-block.h"
245#include "diagnostic.h"
246#include "tree-flow.h"
247#include "tree-dump.h"
248#include "timevar.h"
249#include "cfgloop.h"
250#include "tree-chrec.h"
251#include "tree-scalar-evolution.h"
9baba81b
SP
252#include "tree-pass.h"
253#include "flags.h"
c59dabbe 254#include "params.h"
9baba81b
SP
255
256static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
257static tree resolve_mixers (struct loop *, tree);
258
259/* The cached information about a ssa name VAR, claiming that inside LOOP,
260 the value of VAR can be expressed as CHREC. */
261
262struct scev_info_str
263{
264 tree var;
265 tree chrec;
266};
267
268/* Counters for the scev database. */
269static unsigned nb_set_scev = 0;
270static unsigned nb_get_scev = 0;
271
272/* The following trees are unique elements. Thus the comparison of
273 another element to these elements should be done on the pointer to
274 these trees, and not on their value. */
275
276/* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
277tree chrec_not_analyzed_yet;
278
279/* Reserved to the cases where the analyzer has detected an
280 undecidable property at compile time. */
281tree chrec_dont_know;
282
283/* When the analyzer has detected that a property will never
284 happen, then it qualifies it with chrec_known. */
285tree chrec_known;
286
287static bitmap already_instantiated;
288
289static htab_t scalar_evolution_info;
290
291\f
292/* Constructs a new SCEV_INFO_STR structure. */
293
294static inline struct scev_info_str *
295new_scev_info_str (tree var)
296{
297 struct scev_info_str *res;
298
cceb1885 299 res = XNEW (struct scev_info_str);
9baba81b
SP
300 res->var = var;
301 res->chrec = chrec_not_analyzed_yet;
302
303 return res;
304}
305
306/* Computes a hash function for database element ELT. */
307
308static hashval_t
309hash_scev_info (const void *elt)
310{
311 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
312}
313
314/* Compares database elements E1 and E2. */
315
316static int
317eq_scev_info (const void *e1, const void *e2)
318{
cceb1885
GDR
319 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
320 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
9baba81b
SP
321
322 return elt1->var == elt2->var;
323}
324
325/* Deletes database element E. */
326
327static void
328del_scev_info (void *e)
329{
330 free (e);
331}
332
333/* Get the index corresponding to VAR in the current LOOP. If
334 it's the first time we ask for this VAR, then we return
b01d837f 335 chrec_not_analyzed_yet for this VAR and return its index. */
9baba81b
SP
336
337static tree *
338find_var_scev_info (tree var)
339{
340 struct scev_info_str *res;
341 struct scev_info_str tmp;
342 PTR *slot;
343
344 tmp.var = var;
345 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
346
347 if (!*slot)
348 *slot = new_scev_info_str (var);
cceb1885 349 res = (struct scev_info_str *) *slot;
9baba81b
SP
350
351 return &res->chrec;
352}
353
9baba81b
SP
354/* Return true when CHREC contains symbolic names defined in
355 LOOP_NB. */
356
357bool
358chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
359{
360 if (chrec == NULL_TREE)
361 return false;
362
363 if (TREE_INVARIANT (chrec))
364 return false;
365
366 if (TREE_CODE (chrec) == VAR_DECL
367 || TREE_CODE (chrec) == PARM_DECL
368 || TREE_CODE (chrec) == FUNCTION_DECL
369 || TREE_CODE (chrec) == LABEL_DECL
370 || TREE_CODE (chrec) == RESULT_DECL
371 || TREE_CODE (chrec) == FIELD_DECL)
372 return true;
373
374 if (TREE_CODE (chrec) == SSA_NAME)
375 {
376 tree def = SSA_NAME_DEF_STMT (chrec);
377 struct loop *def_loop = loop_containing_stmt (def);
378 struct loop *loop = current_loops->parray[loop_nb];
379
380 if (def_loop == NULL)
381 return false;
382
383 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
384 return true;
385
386 return false;
387 }
388
389 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
390 {
391 case 3:
392 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
393 loop_nb))
394 return true;
395
396 case 2:
397 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
398 loop_nb))
399 return true;
400
401 case 1:
402 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
403 loop_nb))
404 return true;
405
406 default:
407 return false;
408 }
409}
410
411/* Return true when PHI is a loop-phi-node. */
412
413static bool
414loop_phi_node_p (tree phi)
415{
416 /* The implementation of this function is based on the following
417 property: "all the loop-phi-nodes of a loop are contained in the
418 loop's header basic block". */
419
420 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
421}
422
423/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
424 In general, in the case of multivariate evolutions we want to get
425 the evolution in different loops. LOOP specifies the level for
426 which to get the evolution.
427
428 Example:
429
430 | for (j = 0; j < 100; j++)
431 | {
432 | for (k = 0; k < 100; k++)
433 | {
434 | i = k + j; - Here the value of i is a function of j, k.
435 | }
436 | ... = i - Here the value of i is a function of j.
437 | }
438 | ... = i - Here the value of i is a scalar.
439
440 Example:
441
442 | i_0 = ...
443 | loop_1 10 times
444 | i_1 = phi (i_0, i_2)
445 | i_2 = i_1 + 2
446 | endloop
447
448 This loop has the same effect as:
449 LOOP_1 has the same effect as:
450
451 | i_1 = i_0 + 20
452
453 The overall effect of the loop, "i_0 + 20" in the previous example,
454 is obtained by passing in the parameters: LOOP = 1,
455 EVOLUTION_FN = {i_0, +, 2}_1.
456*/
457
458static tree
459compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
460{
461 bool val = false;
462
463 if (evolution_fn == chrec_dont_know)
464 return chrec_dont_know;
465
466 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
467 {
468 if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
469 {
470 struct loop *inner_loop =
471 current_loops->parray[CHREC_VARIABLE (evolution_fn)];
472 tree nb_iter = number_of_iterations_in_loop (inner_loop);
473
474 if (nb_iter == chrec_dont_know)
475 return chrec_dont_know;
476 else
477 {
478 tree res;
16a2acea 479 tree type = chrec_type (nb_iter);
9baba81b
SP
480
481 /* Number of iterations is off by one (the ssa name we
482 analyze must be defined before the exit). */
16a2acea 483 nb_iter = chrec_fold_minus (type, nb_iter,
dc61cc6b 484 build_int_cst (type, 1));
9baba81b
SP
485
486 /* evolution_fn is the evolution function in LOOP. Get
487 its value in the nb_iter-th iteration. */
488 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
489
8c27b7d4 490 /* Continue the computation until ending on a parent of LOOP. */
9baba81b
SP
491 return compute_overall_effect_of_inner_loop (loop, res);
492 }
493 }
494 else
495 return evolution_fn;
496 }
497
498 /* If the evolution function is an invariant, there is nothing to do. */
499 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
500 return evolution_fn;
501
502 else
503 return chrec_dont_know;
504}
505
506/* Determine whether the CHREC is always positive/negative. If the expression
507 cannot be statically analyzed, return false, otherwise set the answer into
508 VALUE. */
509
510bool
511chrec_is_positive (tree chrec, bool *value)
512{
16a2acea
SP
513 bool value0, value1, value2;
514 tree type, end_value, nb_iter;
9baba81b
SP
515
516 switch (TREE_CODE (chrec))
517 {
518 case POLYNOMIAL_CHREC:
519 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
520 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
521 return false;
522
523 /* FIXME -- overflows. */
524 if (value0 == value1)
525 {
526 *value = value0;
527 return true;
528 }
529
530 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
531 and the proof consists in showing that the sign never
532 changes during the execution of the loop, from 0 to
533 loop->nb_iterations. */
534 if (!evolution_function_is_affine_p (chrec))
535 return false;
536
537 nb_iter = number_of_iterations_in_loop
538 (current_loops->parray[CHREC_VARIABLE (chrec)]);
539
540 if (chrec_contains_undetermined (nb_iter))
541 return false;
542
16a2acea
SP
543 type = chrec_type (nb_iter);
544 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
9baba81b
SP
545
546#if 0
547 /* TODO -- If the test is after the exit, we may decrease the number of
548 iterations by one. */
549 if (after_exit)
16a2acea 550 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
9baba81b
SP
551#endif
552
553 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
554
555 if (!chrec_is_positive (end_value, &value2))
556 return false;
557
558 *value = value0;
559 return value0 == value1;
560
561 case INTEGER_CST:
562 *value = (tree_int_cst_sgn (chrec) == 1);
563 return true;
564
565 default:
566 return false;
567 }
568}
569
570/* Associate CHREC to SCALAR. */
571
572static void
573set_scalar_evolution (tree scalar, tree chrec)
574{
575 tree *scalar_info;
576
577 if (TREE_CODE (scalar) != SSA_NAME)
578 return;
579
580 scalar_info = find_var_scev_info (scalar);
581
582 if (dump_file)
583 {
584 if (dump_flags & TDF_DETAILS)
585 {
586 fprintf (dump_file, "(set_scalar_evolution \n");
587 fprintf (dump_file, " (scalar = ");
588 print_generic_expr (dump_file, scalar, 0);
589 fprintf (dump_file, ")\n (scalar_evolution = ");
590 print_generic_expr (dump_file, chrec, 0);
591 fprintf (dump_file, "))\n");
592 }
593 if (dump_flags & TDF_STATS)
594 nb_set_scev++;
595 }
596
597 *scalar_info = chrec;
598}
599
600/* Retrieve the chrec associated to SCALAR in the LOOP. */
601
602static tree
603get_scalar_evolution (tree scalar)
604{
605 tree res;
606
607 if (dump_file)
608 {
609 if (dump_flags & TDF_DETAILS)
610 {
611 fprintf (dump_file, "(get_scalar_evolution \n");
612 fprintf (dump_file, " (scalar = ");
613 print_generic_expr (dump_file, scalar, 0);
614 fprintf (dump_file, ")\n");
615 }
616 if (dump_flags & TDF_STATS)
617 nb_get_scev++;
618 }
619
620 switch (TREE_CODE (scalar))
621 {
622 case SSA_NAME:
623 res = *find_var_scev_info (scalar);
624 break;
625
626 case REAL_CST:
627 case INTEGER_CST:
628 res = scalar;
629 break;
630
631 default:
632 res = chrec_not_analyzed_yet;
633 break;
634 }
635
636 if (dump_file && (dump_flags & TDF_DETAILS))
637 {
638 fprintf (dump_file, " (scalar_evolution = ");
639 print_generic_expr (dump_file, res, 0);
640 fprintf (dump_file, "))\n");
641 }
642
643 return res;
644}
645
646/* Helper function for add_to_evolution. Returns the evolution
647 function for an assignment of the form "a = b + c", where "a" and
648 "b" are on the strongly connected component. CHREC_BEFORE is the
649 information that we already have collected up to this point.
650 TO_ADD is the evolution of "c".
651
652 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
653 evolution the expression TO_ADD, otherwise construct an evolution
654 part for this loop. */
655
656static tree
e2157b49
SP
657add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
658 tree at_stmt)
9baba81b 659{
e2157b49
SP
660 tree type, left, right;
661
9baba81b
SP
662 switch (TREE_CODE (chrec_before))
663 {
664 case POLYNOMIAL_CHREC:
665 if (CHREC_VARIABLE (chrec_before) <= loop_nb)
666 {
667 unsigned var;
e2157b49
SP
668
669 type = chrec_type (chrec_before);
9baba81b
SP
670
671 /* When there is no evolution part in this loop, build it. */
672 if (CHREC_VARIABLE (chrec_before) < loop_nb)
673 {
674 var = loop_nb;
675 left = chrec_before;
7e0923cd
SP
676 right = SCALAR_FLOAT_TYPE_P (type)
677 ? build_real (type, dconst0)
678 : build_int_cst (type, 0);
9baba81b
SP
679 }
680 else
681 {
682 var = CHREC_VARIABLE (chrec_before);
683 left = CHREC_LEFT (chrec_before);
684 right = CHREC_RIGHT (chrec_before);
685 }
686
e2157b49
SP
687 to_add = chrec_convert (type, to_add, at_stmt);
688 right = chrec_convert (type, right, at_stmt);
689 right = chrec_fold_plus (type, right, to_add);
690 return build_polynomial_chrec (var, left, right);
9baba81b
SP
691 }
692 else
e2157b49
SP
693 {
694 /* Search the evolution in LOOP_NB. */
695 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
696 to_add, at_stmt);
697 right = CHREC_RIGHT (chrec_before);
698 right = chrec_convert (chrec_type (left), right, at_stmt);
699 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
700 left, right);
701 }
9baba81b
SP
702
703 default:
704 /* These nodes do not depend on a loop. */
705 if (chrec_before == chrec_dont_know)
706 return chrec_dont_know;
e2157b49
SP
707
708 left = chrec_before;
709 right = chrec_convert (chrec_type (left), to_add, at_stmt);
710 return build_polynomial_chrec (loop_nb, left, right);
9baba81b
SP
711 }
712}
713
714/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
715 of LOOP_NB.
716
717 Description (provided for completeness, for those who read code in
718 a plane, and for my poor 62 bytes brain that would have forgotten
719 all this in the next two or three months):
720
721 The algorithm of translation of programs from the SSA representation
722 into the chrecs syntax is based on a pattern matching. After having
723 reconstructed the overall tree expression for a loop, there are only
724 two cases that can arise:
725
726 1. a = loop-phi (init, a + expr)
727 2. a = loop-phi (init, expr)
728
729 where EXPR is either a scalar constant with respect to the analyzed
730 loop (this is a degree 0 polynomial), or an expression containing
731 other loop-phi definitions (these are higher degree polynomials).
732
733 Examples:
734
735 1.
736 | init = ...
737 | loop_1
738 | a = phi (init, a + 5)
739 | endloop
740
741 2.
742 | inita = ...
743 | initb = ...
744 | loop_1
745 | a = phi (inita, 2 * b + 3)
746 | b = phi (initb, b + 1)
747 | endloop
748
749 For the first case, the semantics of the SSA representation is:
750
751 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
752
753 that is, there is a loop index "x" that determines the scalar value
754 of the variable during the loop execution. During the first
755 iteration, the value is that of the initial condition INIT, while
756 during the subsequent iterations, it is the sum of the initial
757 condition with the sum of all the values of EXPR from the initial
758 iteration to the before last considered iteration.
759
760 For the second case, the semantics of the SSA program is:
761
762 | a (x) = init, if x = 0;
763 | expr (x - 1), otherwise.
764
765 The second case corresponds to the PEELED_CHREC, whose syntax is
766 close to the syntax of a loop-phi-node:
767
768 | phi (init, expr) vs. (init, expr)_x
769
770 The proof of the translation algorithm for the first case is a
771 proof by structural induction based on the degree of EXPR.
772
773 Degree 0:
774 When EXPR is a constant with respect to the analyzed loop, or in
775 other words when EXPR is a polynomial of degree 0, the evolution of
776 the variable A in the loop is an affine function with an initial
777 condition INIT, and a step EXPR. In order to show this, we start
778 from the semantics of the SSA representation:
779
780 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
781
782 and since "expr (j)" is a constant with respect to "j",
783
784 f (x) = init + x * expr
785
786 Finally, based on the semantics of the pure sum chrecs, by
787 identification we get the corresponding chrecs syntax:
788
789 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
790 f (x) -> {init, +, expr}_x
791
792 Higher degree:
793 Suppose that EXPR is a polynomial of degree N with respect to the
794 analyzed loop_x for which we have already determined that it is
795 written under the chrecs syntax:
796
797 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
798
799 We start from the semantics of the SSA program:
800
801 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
802 |
803 | f (x) = init + \sum_{j = 0}^{x - 1}
804 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
805 |
806 | f (x) = init + \sum_{j = 0}^{x - 1}
807 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
808 |
809 | f (x) = init + \sum_{k = 0}^{n - 1}
810 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
811 |
812 | f (x) = init + \sum_{k = 0}^{n - 1}
813 | (b_k * \binom{x}{k + 1})
814 |
815 | f (x) = init + b_0 * \binom{x}{1} + ...
816 | + b_{n-1} * \binom{x}{n}
817 |
818 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
819 | + b_{n-1} * \binom{x}{n}
820 |
821
822 And finally from the definition of the chrecs syntax, we identify:
823 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
824
825 This shows the mechanism that stands behind the add_to_evolution
826 function. An important point is that the use of symbolic
827 parameters avoids the need of an analysis schedule.
828
829 Example:
830
831 | inita = ...
832 | initb = ...
833 | loop_1
834 | a = phi (inita, a + 2 + b)
835 | b = phi (initb, b + 1)
836 | endloop
837
838 When analyzing "a", the algorithm keeps "b" symbolically:
839
840 | a -> {inita, +, 2 + b}_1
841
842 Then, after instantiation, the analyzer ends on the evolution:
843
844 | a -> {inita, +, 2 + initb, +, 1}_1
845
846*/
847
848static tree
e2157b49
SP
849add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
850 tree to_add, tree at_stmt)
9baba81b
SP
851{
852 tree type = chrec_type (to_add);
853 tree res = NULL_TREE;
854
855 if (to_add == NULL_TREE)
856 return chrec_before;
857
858 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
859 instantiated at this point. */
860 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
861 /* This should not happen. */
862 return chrec_dont_know;
863
864 if (dump_file && (dump_flags & TDF_DETAILS))
865 {
866 fprintf (dump_file, "(add_to_evolution \n");
867 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
868 fprintf (dump_file, " (chrec_before = ");
869 print_generic_expr (dump_file, chrec_before, 0);
870 fprintf (dump_file, ")\n (to_add = ");
871 print_generic_expr (dump_file, to_add, 0);
872 fprintf (dump_file, ")\n");
873 }
874
875 if (code == MINUS_EXPR)
9d2b0e12
VR
876 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
877 ? build_real (type, dconstm1)
878 : build_int_cst_type (type, -1));
9baba81b 879
e2157b49 880 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
9baba81b
SP
881
882 if (dump_file && (dump_flags & TDF_DETAILS))
883 {
884 fprintf (dump_file, " (res = ");
885 print_generic_expr (dump_file, res, 0);
886 fprintf (dump_file, "))\n");
887 }
888
889 return res;
890}
891
892/* Helper function. */
893
894static inline tree
895set_nb_iterations_in_loop (struct loop *loop,
896 tree res)
897{
16a2acea
SP
898 tree type = chrec_type (res);
899
dc61cc6b 900 res = chrec_fold_plus (type, res, build_int_cst (type, 1));
e6845c23 901
9baba81b
SP
902 /* FIXME HWI: However we want to store one iteration less than the
903 count of the loop in order to be compatible with the other
904 nb_iter computations in loop-iv. This also allows the
905 representation of nb_iters that are equal to MAX_INT. */
94a3e63a
RS
906 if (TREE_CODE (res) == INTEGER_CST
907 && (TREE_INT_CST_LOW (res) == 0
908 || TREE_OVERFLOW (res)))
9baba81b
SP
909 res = chrec_dont_know;
910
911 if (dump_file && (dump_flags & TDF_DETAILS))
912 {
913 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
914 print_generic_expr (dump_file, res, 0);
915 fprintf (dump_file, "))\n");
916 }
917
918 loop->nb_iterations = res;
919 return res;
920}
921
922\f
923
924/* This section selects the loops that will be good candidates for the
925 scalar evolution analysis. For the moment, greedily select all the
926 loop nests we could analyze. */
927
928/* Return true when it is possible to analyze the condition expression
929 EXPR. */
930
931static bool
932analyzable_condition (tree expr)
933{
934 tree condition;
935
936 if (TREE_CODE (expr) != COND_EXPR)
937 return false;
938
939 condition = TREE_OPERAND (expr, 0);
940
941 switch (TREE_CODE (condition))
942 {
943 case SSA_NAME:
9baba81b
SP
944 return true;
945
946 case LT_EXPR:
947 case LE_EXPR:
948 case GT_EXPR:
949 case GE_EXPR:
950 case EQ_EXPR:
951 case NE_EXPR:
85022b3f 952 return true;
9baba81b
SP
953
954 default:
955 return false;
956 }
957
958 return false;
959}
960
961/* For a loop with a single exit edge, return the COND_EXPR that
962 guards the exit edge. If the expression is too difficult to
963 analyze, then give up. */
964
965tree
966get_loop_exit_condition (struct loop *loop)
967{
968 tree res = NULL_TREE;
82b85a85
ZD
969 edge exit_edge = loop->single_exit;
970
9baba81b
SP
971
972 if (dump_file && (dump_flags & TDF_DETAILS))
973 fprintf (dump_file, "(get_loop_exit_condition \n ");
974
82b85a85 975 if (exit_edge)
9baba81b 976 {
9baba81b
SP
977 tree expr;
978
9baba81b 979 expr = last_stmt (exit_edge->src);
9baba81b
SP
980 if (analyzable_condition (expr))
981 res = expr;
982 }
983
984 if (dump_file && (dump_flags & TDF_DETAILS))
985 {
986 print_generic_expr (dump_file, res, 0);
987 fprintf (dump_file, ")\n");
988 }
989
990 return res;
991}
992
993/* Recursively determine and enqueue the exit conditions for a loop. */
994
995static void
996get_exit_conditions_rec (struct loop *loop,
5310bac6 997 VEC(tree,heap) **exit_conditions)
9baba81b
SP
998{
999 if (!loop)
1000 return;
1001
1002 /* Recurse on the inner loops, then on the next (sibling) loops. */
1003 get_exit_conditions_rec (loop->inner, exit_conditions);
1004 get_exit_conditions_rec (loop->next, exit_conditions);
1005
82b85a85 1006 if (loop->single_exit)
9baba81b
SP
1007 {
1008 tree loop_condition = get_loop_exit_condition (loop);
1009
1010 if (loop_condition)
5310bac6 1011 VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
9baba81b
SP
1012 }
1013}
1014
1015/* Select the candidate loop nests for the analysis. This function
471854f8 1016 initializes the EXIT_CONDITIONS array. */
9baba81b
SP
1017
1018static void
1019select_loops_exit_conditions (struct loops *loops,
5310bac6 1020 VEC(tree,heap) **exit_conditions)
9baba81b
SP
1021{
1022 struct loop *function_body = loops->parray[0];
1023
1024 get_exit_conditions_rec (function_body->inner, exit_conditions);
1025}
1026
1027\f
1028/* Depth first search algorithm. */
1029
c59dabbe
SP
1030typedef enum t_bool {
1031 t_false,
1032 t_true,
1033 t_dont_know
1034} t_bool;
1035
1036
1037static t_bool follow_ssa_edge (struct loop *loop, tree, tree, tree *, int);
9baba81b
SP
1038
1039/* Follow the ssa edge into the right hand side RHS of an assignment.
1040 Return true if the strongly connected component has been found. */
1041
c59dabbe
SP
1042static t_bool
1043follow_ssa_edge_in_rhs (struct loop *loop, tree at_stmt, tree rhs,
1044 tree halting_phi, tree *evolution_of_loop, int limit)
9baba81b 1045{
c59dabbe 1046 t_bool res = t_false;
9baba81b
SP
1047 tree rhs0, rhs1;
1048 tree type_rhs = TREE_TYPE (rhs);
b2a93c0a 1049 tree evol;
9baba81b
SP
1050
1051 /* The RHS is one of the following cases:
1052 - an SSA_NAME,
1053 - an INTEGER_CST,
1054 - a PLUS_EXPR,
1055 - a MINUS_EXPR,
0bca51f0
DN
1056 - an ASSERT_EXPR,
1057 - other cases are not yet handled. */
9baba81b
SP
1058 switch (TREE_CODE (rhs))
1059 {
1060 case NOP_EXPR:
1061 /* This assignment is under the form "a_1 = (cast) rhs. */
1e8552eb 1062 res = follow_ssa_edge_in_rhs (loop, at_stmt, TREE_OPERAND (rhs, 0),
c59dabbe 1063 halting_phi, evolution_of_loop, limit);
1e8552eb
SP
1064 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs),
1065 *evolution_of_loop, at_stmt);
9baba81b
SP
1066 break;
1067
1068 case INTEGER_CST:
1069 /* This assignment is under the form "a_1 = 7". */
c59dabbe 1070 res = t_false;
9baba81b
SP
1071 break;
1072
1073 case SSA_NAME:
1074 /* This assignment is under the form: "a_1 = b_2". */
1075 res = follow_ssa_edge
c59dabbe 1076 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop, limit);
9baba81b
SP
1077 break;
1078
1079 case PLUS_EXPR:
1080 /* This case is under the form "rhs0 + rhs1". */
1081 rhs0 = TREE_OPERAND (rhs, 0);
1082 rhs1 = TREE_OPERAND (rhs, 1);
1083 STRIP_TYPE_NOPS (rhs0);
1084 STRIP_TYPE_NOPS (rhs1);
1085
1086 if (TREE_CODE (rhs0) == SSA_NAME)
1087 {
1088 if (TREE_CODE (rhs1) == SSA_NAME)
1089 {
1090 /* Match an assignment under the form:
1091 "a = b + c". */
b2a93c0a 1092 evol = *evolution_of_loop;
9baba81b
SP
1093 res = follow_ssa_edge
1094 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
b2a93c0a 1095 &evol, limit);
9baba81b 1096
c59dabbe 1097 if (res == t_true)
9baba81b
SP
1098 *evolution_of_loop = add_to_evolution
1099 (loop->num,
b2a93c0a 1100 chrec_convert (type_rhs, evol, at_stmt),
e2157b49 1101 PLUS_EXPR, rhs1, at_stmt);
9baba81b 1102
c59dabbe 1103 else if (res == t_false)
9baba81b
SP
1104 {
1105 res = follow_ssa_edge
1106 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
c59dabbe 1107 evolution_of_loop, limit);
9baba81b 1108
c59dabbe 1109 if (res == t_true)
9baba81b
SP
1110 *evolution_of_loop = add_to_evolution
1111 (loop->num,
1e8552eb 1112 chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
e2157b49 1113 PLUS_EXPR, rhs0, at_stmt);
c59dabbe
SP
1114
1115 else if (res == t_dont_know)
1116 *evolution_of_loop = chrec_dont_know;
9baba81b 1117 }
c59dabbe
SP
1118
1119 else if (res == t_dont_know)
1120 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
1121 }
1122
1123 else
1124 {
1125 /* Match an assignment under the form:
1126 "a = b + ...". */
1127 res = follow_ssa_edge
1128 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
c59dabbe
SP
1129 evolution_of_loop, limit);
1130 if (res == t_true)
9baba81b 1131 *evolution_of_loop = add_to_evolution
1e8552eb
SP
1132 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1133 at_stmt),
e2157b49 1134 PLUS_EXPR, rhs1, at_stmt);
c59dabbe
SP
1135
1136 else if (res == t_dont_know)
1137 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
1138 }
1139 }
1140
1141 else if (TREE_CODE (rhs1) == SSA_NAME)
1142 {
1143 /* Match an assignment under the form:
1144 "a = ... + c". */
1145 res = follow_ssa_edge
1146 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
c59dabbe
SP
1147 evolution_of_loop, limit);
1148 if (res == t_true)
9baba81b 1149 *evolution_of_loop = add_to_evolution
1e8552eb
SP
1150 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1151 at_stmt),
e2157b49 1152 PLUS_EXPR, rhs0, at_stmt);
c59dabbe
SP
1153
1154 else if (res == t_dont_know)
1155 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
1156 }
1157
1158 else
1159 /* Otherwise, match an assignment under the form:
1160 "a = ... + ...". */
1161 /* And there is nothing to do. */
c59dabbe 1162 res = t_false;
9baba81b
SP
1163
1164 break;
1165
1166 case MINUS_EXPR:
1167 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1168 rhs0 = TREE_OPERAND (rhs, 0);
1169 rhs1 = TREE_OPERAND (rhs, 1);
1170 STRIP_TYPE_NOPS (rhs0);
1171 STRIP_TYPE_NOPS (rhs1);
1172
1173 if (TREE_CODE (rhs0) == SSA_NAME)
9baba81b
SP
1174 {
1175 /* Match an assignment under the form:
f8e9d512
ZD
1176 "a = b - ...". */
1177 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
c59dabbe
SP
1178 evolution_of_loop, limit);
1179 if (res == t_true)
9baba81b 1180 *evolution_of_loop = add_to_evolution
c59dabbe 1181 (loop->num, chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
e2157b49 1182 MINUS_EXPR, rhs1, at_stmt);
c59dabbe
SP
1183
1184 else if (res == t_dont_know)
1185 *evolution_of_loop = chrec_dont_know;
9baba81b 1186 }
9baba81b
SP
1187 else
1188 /* Otherwise, match an assignment under the form:
1189 "a = ... - ...". */
1190 /* And there is nothing to do. */
c59dabbe 1191 res = t_false;
9baba81b
SP
1192
1193 break;
1194
0bca51f0
DN
1195 case ASSERT_EXPR:
1196 {
1197 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1198 It must be handled as a copy assignment of the form a_1 = a_2. */
1199 tree op0 = ASSERT_EXPR_VAR (rhs);
1200 if (TREE_CODE (op0) == SSA_NAME)
1201 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
c59dabbe 1202 halting_phi, evolution_of_loop, limit);
0bca51f0 1203 else
c59dabbe 1204 res = t_false;
0bca51f0
DN
1205 break;
1206 }
1207
1208
9baba81b 1209 default:
c59dabbe 1210 res = t_false;
9baba81b
SP
1211 break;
1212 }
1213
1214 return res;
1215}
1216
1217/* Checks whether the I-th argument of a PHI comes from a backedge. */
1218
1219static bool
1220backedge_phi_arg_p (tree phi, int i)
1221{
1222 edge e = PHI_ARG_EDGE (phi, i);
1223
1224 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1225 about updating it anywhere, and this should work as well most of the
1226 time. */
1227 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1228 return true;
1229
1230 return false;
1231}
1232
1233/* Helper function for one branch of the condition-phi-node. Return
1234 true if the strongly connected component has been found following
1235 this path. */
1236
c59dabbe 1237static inline t_bool
9baba81b
SP
1238follow_ssa_edge_in_condition_phi_branch (int i,
1239 struct loop *loop,
1240 tree condition_phi,
1241 tree halting_phi,
1242 tree *evolution_of_branch,
c59dabbe 1243 tree init_cond, int limit)
9baba81b
SP
1244{
1245 tree branch = PHI_ARG_DEF (condition_phi, i);
1246 *evolution_of_branch = chrec_dont_know;
1247
1248 /* Do not follow back edges (they must belong to an irreducible loop, which
1249 we really do not want to worry about). */
1250 if (backedge_phi_arg_p (condition_phi, i))
c59dabbe 1251 return t_false;
9baba81b
SP
1252
1253 if (TREE_CODE (branch) == SSA_NAME)
1254 {
1255 *evolution_of_branch = init_cond;
1256 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
c59dabbe 1257 evolution_of_branch, limit);
9baba81b
SP
1258 }
1259
1260 /* This case occurs when one of the condition branches sets
89dbed81 1261 the variable to a constant: i.e. a phi-node like
9baba81b
SP
1262 "a_2 = PHI <a_7(5), 2(6)>;".
1263
1264 FIXME: This case have to be refined correctly:
1265 in some cases it is possible to say something better than
1266 chrec_dont_know, for example using a wrap-around notation. */
c59dabbe 1267 return t_false;
9baba81b
SP
1268}
1269
1270/* This function merges the branches of a condition-phi-node in a
1271 loop. */
1272
c59dabbe 1273static t_bool
9baba81b
SP
1274follow_ssa_edge_in_condition_phi (struct loop *loop,
1275 tree condition_phi,
1276 tree halting_phi,
c59dabbe 1277 tree *evolution_of_loop, int limit)
9baba81b
SP
1278{
1279 int i;
1280 tree init = *evolution_of_loop;
1281 tree evolution_of_branch;
c59dabbe
SP
1282 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1283 halting_phi,
1284 &evolution_of_branch,
1285 init, limit);
1286 if (res == t_false || res == t_dont_know)
1287 return res;
9baba81b 1288
9baba81b
SP
1289 *evolution_of_loop = evolution_of_branch;
1290
1291 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1292 {
e0afb98a
SP
1293 /* Quickly give up when the evolution of one of the branches is
1294 not known. */
1295 if (*evolution_of_loop == chrec_dont_know)
c59dabbe 1296 return t_true;
e0afb98a 1297
c59dabbe
SP
1298 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1299 halting_phi,
1300 &evolution_of_branch,
1301 init, limit);
1302 if (res == t_false || res == t_dont_know)
1303 return res;
9baba81b
SP
1304
1305 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1306 evolution_of_branch);
1307 }
1308
c59dabbe 1309 return t_true;
9baba81b
SP
1310}
1311
1312/* Follow an SSA edge in an inner loop. It computes the overall
1313 effect of the loop, and following the symbolic initial conditions,
1314 it follows the edges in the parent loop. The inner loop is
1315 considered as a single statement. */
1316
c59dabbe 1317static t_bool
9baba81b
SP
1318follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1319 tree loop_phi_node,
1320 tree halting_phi,
c59dabbe 1321 tree *evolution_of_loop, int limit)
9baba81b
SP
1322{
1323 struct loop *loop = loop_containing_stmt (loop_phi_node);
1324 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1325
1326 /* Sometimes, the inner loop is too difficult to analyze, and the
1327 result of the analysis is a symbolic parameter. */
1328 if (ev == PHI_RESULT (loop_phi_node))
1329 {
c59dabbe 1330 t_bool res = t_false;
9baba81b
SP
1331 int i;
1332
1333 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1334 {
1335 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1336 basic_block bb;
1337
1338 /* Follow the edges that exit the inner loop. */
1339 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1340 if (!flow_bb_inside_loop_p (loop, bb))
c59dabbe
SP
1341 res = follow_ssa_edge_in_rhs (outer_loop, loop_phi_node,
1342 arg, halting_phi,
1343 evolution_of_loop, limit);
1344 if (res == t_true)
1345 break;
9baba81b
SP
1346 }
1347
1348 /* If the path crosses this loop-phi, give up. */
c59dabbe 1349 if (res == t_true)
9baba81b
SP
1350 *evolution_of_loop = chrec_dont_know;
1351
1352 return res;
1353 }
1354
1355 /* Otherwise, compute the overall effect of the inner loop. */
1356 ev = compute_overall_effect_of_inner_loop (loop, ev);
1e8552eb 1357 return follow_ssa_edge_in_rhs (outer_loop, loop_phi_node, ev, halting_phi,
c59dabbe 1358 evolution_of_loop, limit);
9baba81b
SP
1359}
1360
1361/* Follow an SSA edge from a loop-phi-node to itself, constructing a
1362 path that is analyzed on the return walk. */
1363
c59dabbe
SP
1364static t_bool
1365follow_ssa_edge (struct loop *loop, tree def, tree halting_phi,
1366 tree *evolution_of_loop, int limit)
9baba81b
SP
1367{
1368 struct loop *def_loop;
1369
1370 if (TREE_CODE (def) == NOP_EXPR)
c59dabbe
SP
1371 return t_false;
1372
1373 /* Give up if the path is longer than the MAX that we allow. */
1374 if (limit++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1375 return t_dont_know;
9baba81b
SP
1376
1377 def_loop = loop_containing_stmt (def);
1378
1379 switch (TREE_CODE (def))
1380 {
1381 case PHI_NODE:
1382 if (!loop_phi_node_p (def))
1383 /* DEF is a condition-phi-node. Follow the branches, and
1384 record their evolutions. Finally, merge the collected
1385 information and set the approximation to the main
1386 variable. */
1387 return follow_ssa_edge_in_condition_phi
c59dabbe 1388 (loop, def, halting_phi, evolution_of_loop, limit);
9baba81b
SP
1389
1390 /* When the analyzed phi is the halting_phi, the
1391 depth-first search is over: we have found a path from
1392 the halting_phi to itself in the loop. */
1393 if (def == halting_phi)
c59dabbe 1394 return t_true;
9baba81b
SP
1395
1396 /* Otherwise, the evolution of the HALTING_PHI depends
89dbed81 1397 on the evolution of another loop-phi-node, i.e. the
9baba81b
SP
1398 evolution function is a higher degree polynomial. */
1399 if (def_loop == loop)
c59dabbe 1400 return t_false;
9baba81b
SP
1401
1402 /* Inner loop. */
1403 if (flow_loop_nested_p (loop, def_loop))
1404 return follow_ssa_edge_inner_loop_phi
c59dabbe 1405 (loop, def, halting_phi, evolution_of_loop, limit);
9baba81b
SP
1406
1407 /* Outer loop. */
c59dabbe 1408 return t_false;
9baba81b
SP
1409
1410 case MODIFY_EXPR:
1e8552eb 1411 return follow_ssa_edge_in_rhs (loop, def,
9baba81b
SP
1412 TREE_OPERAND (def, 1),
1413 halting_phi,
c59dabbe 1414 evolution_of_loop, limit);
9baba81b
SP
1415
1416 default:
1417 /* At this level of abstraction, the program is just a set
1418 of MODIFY_EXPRs and PHI_NODEs. In principle there is no
1419 other node to be handled. */
c59dabbe 1420 return t_false;
9baba81b
SP
1421 }
1422}
1423
1424\f
1425
1426/* Given a LOOP_PHI_NODE, this function determines the evolution
1427 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1428
1429static tree
1430analyze_evolution_in_loop (tree loop_phi_node,
1431 tree init_cond)
1432{
1433 int i;
1434 tree evolution_function = chrec_not_analyzed_yet;
1435 struct loop *loop = loop_containing_stmt (loop_phi_node);
1436 basic_block bb;
1437
1438 if (dump_file && (dump_flags & TDF_DETAILS))
1439 {
1440 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1441 fprintf (dump_file, " (loop_phi_node = ");
1442 print_generic_expr (dump_file, loop_phi_node, 0);
1443 fprintf (dump_file, ")\n");
1444 }
1445
1446 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1447 {
1448 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1449 tree ssa_chain, ev_fn;
874caa00 1450 t_bool res;
9baba81b
SP
1451
1452 /* Select the edges that enter the loop body. */
1453 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1454 if (!flow_bb_inside_loop_p (loop, bb))
1455 continue;
1456
1457 if (TREE_CODE (arg) == SSA_NAME)
1458 {
1459 ssa_chain = SSA_NAME_DEF_STMT (arg);
1460
1461 /* Pass in the initial condition to the follow edge function. */
1462 ev_fn = init_cond;
c59dabbe 1463 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
9baba81b
SP
1464 }
1465 else
874caa00 1466 res = t_false;
9baba81b
SP
1467
1468 /* When it is impossible to go back on the same
1469 loop_phi_node by following the ssa edges, the
89dbed81 1470 evolution is represented by a peeled chrec, i.e. the
9baba81b
SP
1471 first iteration, EV_FN has the value INIT_COND, then
1472 all the other iterations it has the value of ARG.
1473 For the moment, PEELED_CHREC nodes are not built. */
874caa00 1474 if (res != t_true)
9baba81b
SP
1475 ev_fn = chrec_dont_know;
1476
1477 /* When there are multiple back edges of the loop (which in fact never
8c27b7d4 1478 happens currently, but nevertheless), merge their evolutions. */
9baba81b
SP
1479 evolution_function = chrec_merge (evolution_function, ev_fn);
1480 }
1481
1482 if (dump_file && (dump_flags & TDF_DETAILS))
1483 {
1484 fprintf (dump_file, " (evolution_function = ");
1485 print_generic_expr (dump_file, evolution_function, 0);
1486 fprintf (dump_file, "))\n");
1487 }
1488
1489 return evolution_function;
1490}
1491
1492/* Given a loop-phi-node, return the initial conditions of the
1493 variable on entry of the loop. When the CCP has propagated
1494 constants into the loop-phi-node, the initial condition is
1495 instantiated, otherwise the initial condition is kept symbolic.
1496 This analyzer does not analyze the evolution outside the current
1497 loop, and leaves this task to the on-demand tree reconstructor. */
1498
1499static tree
1500analyze_initial_condition (tree loop_phi_node)
1501{
1502 int i;
1503 tree init_cond = chrec_not_analyzed_yet;
1504 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1505
1506 if (dump_file && (dump_flags & TDF_DETAILS))
1507 {
1508 fprintf (dump_file, "(analyze_initial_condition \n");
1509 fprintf (dump_file, " (loop_phi_node = \n");
1510 print_generic_expr (dump_file, loop_phi_node, 0);
1511 fprintf (dump_file, ")\n");
1512 }
1513
1514 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1515 {
1516 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1517 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1518
1519 /* When the branch is oriented to the loop's body, it does
1520 not contribute to the initial condition. */
1521 if (flow_bb_inside_loop_p (loop, bb))
1522 continue;
1523
1524 if (init_cond == chrec_not_analyzed_yet)
1525 {
1526 init_cond = branch;
1527 continue;
1528 }
1529
1530 if (TREE_CODE (branch) == SSA_NAME)
1531 {
1532 init_cond = chrec_dont_know;
1533 break;
1534 }
1535
1536 init_cond = chrec_merge (init_cond, branch);
1537 }
1538
1539 /* Ooops -- a loop without an entry??? */
1540 if (init_cond == chrec_not_analyzed_yet)
1541 init_cond = chrec_dont_know;
1542
1543 if (dump_file && (dump_flags & TDF_DETAILS))
1544 {
1545 fprintf (dump_file, " (init_cond = ");
1546 print_generic_expr (dump_file, init_cond, 0);
1547 fprintf (dump_file, "))\n");
1548 }
1549
1550 return init_cond;
1551}
1552
1553/* Analyze the scalar evolution for LOOP_PHI_NODE. */
1554
1555static tree
1556interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1557{
1558 tree res;
1559 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1560 tree init_cond;
1561
1562 if (phi_loop != loop)
1563 {
1564 struct loop *subloop;
1565 tree evolution_fn = analyze_scalar_evolution
1566 (phi_loop, PHI_RESULT (loop_phi_node));
1567
1568 /* Dive one level deeper. */
1569 subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1570
1571 /* Interpret the subloop. */
1572 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1573 return res;
1574 }
1575
1576 /* Otherwise really interpret the loop phi. */
1577 init_cond = analyze_initial_condition (loop_phi_node);
1578 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1579
1580 return res;
1581}
1582
1583/* This function merges the branches of a condition-phi-node,
1584 contained in the outermost loop, and whose arguments are already
1585 analyzed. */
1586
1587static tree
1588interpret_condition_phi (struct loop *loop, tree condition_phi)
1589{
1590 int i;
1591 tree res = chrec_not_analyzed_yet;
1592
1593 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1594 {
1595 tree branch_chrec;
1596
1597 if (backedge_phi_arg_p (condition_phi, i))
1598 {
1599 res = chrec_dont_know;
1600 break;
1601 }
1602
1603 branch_chrec = analyze_scalar_evolution
1604 (loop, PHI_ARG_DEF (condition_phi, i));
1605
1606 res = chrec_merge (res, branch_chrec);
1607 }
1608
1609 return res;
1610}
1611
1612/* Interpret the right hand side of a modify_expr OPND1. If we didn't
29836d07 1613 analyze this node before, follow the definitions until ending
9baba81b
SP
1614 either on an analyzed modify_expr, or on a loop-phi-node. On the
1615 return path, this function propagates evolutions (ala constant copy
1616 propagation). OPND1 is not a GIMPLE expression because we could
1617 analyze the effect of an inner loop: see interpret_loop_phi. */
1618
1619static tree
1e8552eb 1620interpret_rhs_modify_expr (struct loop *loop, tree at_stmt,
9baba81b
SP
1621 tree opnd1, tree type)
1622{
1623 tree res, opnd10, opnd11, chrec10, chrec11;
1e8552eb 1624
9baba81b 1625 if (is_gimple_min_invariant (opnd1))
1e8552eb
SP
1626 return chrec_convert (type, opnd1, at_stmt);
1627
9baba81b
SP
1628 switch (TREE_CODE (opnd1))
1629 {
1630 case PLUS_EXPR:
1631 opnd10 = TREE_OPERAND (opnd1, 0);
1632 opnd11 = TREE_OPERAND (opnd1, 1);
1633 chrec10 = analyze_scalar_evolution (loop, opnd10);
1634 chrec11 = analyze_scalar_evolution (loop, opnd11);
1e8552eb
SP
1635 chrec10 = chrec_convert (type, chrec10, at_stmt);
1636 chrec11 = chrec_convert (type, chrec11, at_stmt);
9baba81b
SP
1637 res = chrec_fold_plus (type, chrec10, chrec11);
1638 break;
1639
1640 case MINUS_EXPR:
1641 opnd10 = TREE_OPERAND (opnd1, 0);
1642 opnd11 = TREE_OPERAND (opnd1, 1);
1643 chrec10 = analyze_scalar_evolution (loop, opnd10);
1644 chrec11 = analyze_scalar_evolution (loop, opnd11);
1e8552eb
SP
1645 chrec10 = chrec_convert (type, chrec10, at_stmt);
1646 chrec11 = chrec_convert (type, chrec11, at_stmt);
9baba81b
SP
1647 res = chrec_fold_minus (type, chrec10, chrec11);
1648 break;
1649
1650 case NEGATE_EXPR:
1651 opnd10 = TREE_OPERAND (opnd1, 0);
1652 chrec10 = analyze_scalar_evolution (loop, opnd10);
1e8552eb 1653 chrec10 = chrec_convert (type, chrec10, at_stmt);
9a75ede0
RS
1654 /* TYPE may be integer, real or complex, so use fold_convert. */
1655 res = chrec_fold_multiply (type, chrec10,
1656 fold_convert (type, integer_minus_one_node));
9baba81b
SP
1657 break;
1658
1659 case MULT_EXPR:
1660 opnd10 = TREE_OPERAND (opnd1, 0);
1661 opnd11 = TREE_OPERAND (opnd1, 1);
1662 chrec10 = analyze_scalar_evolution (loop, opnd10);
1663 chrec11 = analyze_scalar_evolution (loop, opnd11);
1e8552eb
SP
1664 chrec10 = chrec_convert (type, chrec10, at_stmt);
1665 chrec11 = chrec_convert (type, chrec11, at_stmt);
9baba81b
SP
1666 res = chrec_fold_multiply (type, chrec10, chrec11);
1667 break;
1668
1669 case SSA_NAME:
1e8552eb
SP
1670 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1),
1671 at_stmt);
9baba81b 1672 break;
0bca51f0
DN
1673
1674 case ASSERT_EXPR:
1675 opnd10 = ASSERT_EXPR_VAR (opnd1);
1e8552eb
SP
1676 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10),
1677 at_stmt);
0bca51f0 1678 break;
9baba81b
SP
1679
1680 case NOP_EXPR:
1681 case CONVERT_EXPR:
1682 opnd10 = TREE_OPERAND (opnd1, 0);
1683 chrec10 = analyze_scalar_evolution (loop, opnd10);
1e8552eb 1684 res = chrec_convert (type, chrec10, at_stmt);
9baba81b
SP
1685 break;
1686
1687 default:
1688 res = chrec_dont_know;
1689 break;
1690 }
1691
1692 return res;
1693}
1694
1695\f
1696
1697/* This section contains all the entry points:
1698 - number_of_iterations_in_loop,
1699 - analyze_scalar_evolution,
1700 - instantiate_parameters.
1701*/
1702
1703/* Compute and return the evolution function in WRTO_LOOP, the nearest
1704 common ancestor of DEF_LOOP and USE_LOOP. */
1705
1706static tree
1707compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1708 struct loop *def_loop,
1709 tree ev)
1710{
1711 tree res;
1712 if (def_loop == wrto_loop)
1713 return ev;
1714
1715 def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1716 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1717
1718 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1719}
1720
20527215
ZD
1721/* Folds EXPR, if it is a cast to pointer, assuming that the created
1722 polynomial_chrec does not wrap. */
1723
1724static tree
1725fold_used_pointer_cast (tree expr)
1726{
1727 tree op;
1728 tree type, inner_type;
1729
1730 if (TREE_CODE (expr) != NOP_EXPR && TREE_CODE (expr) != CONVERT_EXPR)
1731 return expr;
1732
1733 op = TREE_OPERAND (expr, 0);
1734 if (TREE_CODE (op) != POLYNOMIAL_CHREC)
1735 return expr;
1736
1737 type = TREE_TYPE (expr);
1738 inner_type = TREE_TYPE (op);
1739
1740 if (!INTEGRAL_TYPE_P (inner_type)
1741 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (type))
1742 return expr;
1743
1744 return build_polynomial_chrec (CHREC_VARIABLE (op),
1745 chrec_convert (type, CHREC_LEFT (op), NULL_TREE),
1746 chrec_convert (type, CHREC_RIGHT (op), NULL_TREE));
1747}
1748
1749/* Returns true if EXPR is an expression corresponding to offset of pointer
1750 in p + offset. */
1751
1752static bool
1753pointer_offset_p (tree expr)
1754{
1755 if (TREE_CODE (expr) == INTEGER_CST)
1756 return true;
1757
1758 if ((TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
1759 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))))
1760 return true;
1761
1762 return false;
1763}
1764
1765/* EXPR is a scalar evolution of a pointer that is dereferenced or used in
1766 comparison. This means that it must point to a part of some object in
1767 memory, which enables us to argue about overflows and possibly simplify
8a613cae
RG
1768 the EXPR. AT_STMT is the statement in which this conversion has to be
1769 performed. Returns the simplified value.
20527215
ZD
1770
1771 Currently, for
1772
1773 int i, n;
1774 int *p;
1775
1776 for (i = -n; i < n; i++)
1777 *(p + i) = ...;
1778
1779 We generate the following code (assuming that size of int and size_t is
1780 4 bytes):
1781
1782 for (i = -n; i < n; i++)
1783 {
1784 size_t tmp1, tmp2;
1785 int *tmp3, *tmp4;
1786
1787 tmp1 = (size_t) i; (1)
1788 tmp2 = 4 * tmp1; (2)
1789 tmp3 = (int *) tmp2; (3)
1790 tmp4 = p + tmp3; (4)
1791
1792 *tmp4 = ...;
1793 }
1794
1795 We in general assume that pointer arithmetics does not overflow (since its
1796 behavior is undefined in that case). One of the problems is that our
1797 translation does not capture this property very well -- (int *) is
1798 considered unsigned, hence the computation in (4) does overflow if i is
1799 negative.
1800
1801 This impreciseness creates complications in scev analysis. The scalar
1802 evolution of i is [-n, +, 1]. Since int and size_t have the same precision
1803 (in this example), and size_t is unsigned (so we do not care about
1804 overflows), we succeed to derive that scev of tmp1 is [(size_t) -n, +, 1]
1805 and scev of tmp2 is [4 * (size_t) -n, +, 4]. With tmp3, we run into
1806 problem -- [(int *) (4 * (size_t) -n), +, 4] wraps, and since we on several
1807 places assume that this is not the case for scevs with pointer type, we
1808 cannot use this scev for tmp3; hence, its scev is
1809 (int *) [(4 * (size_t) -n), +, 4], and scev of tmp4 is
1810 p + (int *) [(4 * (size_t) -n), +, 4]. Most of the optimizers are unable to
1811 work with scevs of this shape.
1812
1813 However, since tmp4 is dereferenced, all its values must belong to a single
1814 object, and taking into account that the precision of int * and size_t is
1815 the same, it is impossible for its scev to wrap. Hence, we can derive that
1816 its evolution is [p + (int *) (4 * (size_t) -n), +, 4], which the optimizers
1817 can work with.
1818
1819 ??? Maybe we should use different representation for pointer arithmetics,
1820 however that is a long-term project with a lot of potential for creating
1821 bugs. */
1822
1823static tree
8a613cae 1824fold_used_pointer (tree expr, tree at_stmt)
20527215
ZD
1825{
1826 tree op0, op1, new0, new1;
1827 enum tree_code code = TREE_CODE (expr);
1828
1829 if (code == PLUS_EXPR
1830 || code == MINUS_EXPR)
1831 {
1832 op0 = TREE_OPERAND (expr, 0);
1833 op1 = TREE_OPERAND (expr, 1);
1834
1835 if (pointer_offset_p (op1))
1836 {
8a613cae 1837 new0 = fold_used_pointer (op0, at_stmt);
20527215
ZD
1838 new1 = fold_used_pointer_cast (op1);
1839 }
1840 else if (code == PLUS_EXPR && pointer_offset_p (op0))
1841 {
1842 new0 = fold_used_pointer_cast (op0);
8a613cae 1843 new1 = fold_used_pointer (op1, at_stmt);
20527215
ZD
1844 }
1845 else
1846 return expr;
1847
1848 if (new0 == op0 && new1 == op1)
1849 return expr;
1850
8a613cae
RG
1851 new0 = chrec_convert (TREE_TYPE (expr), new0, at_stmt);
1852 new1 = chrec_convert (TREE_TYPE (expr), new1, at_stmt);
1853
20527215
ZD
1854 if (code == PLUS_EXPR)
1855 expr = chrec_fold_plus (TREE_TYPE (expr), new0, new1);
1856 else
1857 expr = chrec_fold_minus (TREE_TYPE (expr), new0, new1);
1858
1859 return expr;
1860 }
1861 else
1862 return fold_used_pointer_cast (expr);
1863}
1864
1865/* Returns true if PTR is dereferenced, or used in comparison. */
1866
1867static bool
1868pointer_used_p (tree ptr)
1869{
1870 use_operand_p use_p;
1871 imm_use_iterator imm_iter;
1872 tree stmt, rhs;
1873 struct ptr_info_def *pi = get_ptr_info (ptr);
1874 var_ann_t v_ann = var_ann (SSA_NAME_VAR (ptr));
1875
1876 /* Check whether the pointer has a memory tag; if it does, it is
1877 (or at least used to be) dereferenced. */
1878 if ((pi != NULL && pi->name_mem_tag != NULL)
1879 || v_ann->symbol_mem_tag)
1880 return true;
1881
1882 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ptr)
1883 {
1884 stmt = USE_STMT (use_p);
1885 if (TREE_CODE (stmt) == COND_EXPR)
1886 return true;
1887
1888 if (TREE_CODE (stmt) != MODIFY_EXPR)
1889 continue;
1890
1891 rhs = TREE_OPERAND (stmt, 1);
1892 if (!COMPARISON_CLASS_P (rhs))
1893 continue;
1894
1895 if (TREE_OPERAND (stmt, 0) == ptr
1896 || TREE_OPERAND (stmt, 1) == ptr)
1897 return true;
1898 }
1899
1900 return false;
1901}
1902
9baba81b
SP
1903/* Helper recursive function. */
1904
1905static tree
1906analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1907{
1908 tree def, type = TREE_TYPE (var);
1909 basic_block bb;
1910 struct loop *def_loop;
1911
42d375ed 1912 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
9baba81b
SP
1913 return chrec_dont_know;
1914
1915 if (TREE_CODE (var) != SSA_NAME)
1e8552eb 1916 return interpret_rhs_modify_expr (loop, NULL_TREE, var, type);
9baba81b
SP
1917
1918 def = SSA_NAME_DEF_STMT (var);
1919 bb = bb_for_stmt (def);
1920 def_loop = bb ? bb->loop_father : NULL;
1921
1922 if (bb == NULL
1923 || !flow_bb_inside_loop_p (loop, bb))
1924 {
1925 /* Keep the symbolic form. */
1926 res = var;
1927 goto set_and_end;
1928 }
1929
1930 if (res != chrec_not_analyzed_yet)
1931 {
1932 if (loop != bb->loop_father)
1933 res = compute_scalar_evolution_in_loop
1934 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1935
1936 goto set_and_end;
1937 }
1938
1939 if (loop != def_loop)
1940 {
1941 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1942 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1943
1944 goto set_and_end;
1945 }
1946
1947 switch (TREE_CODE (def))
1948 {
1949 case MODIFY_EXPR:
1e8552eb 1950 res = interpret_rhs_modify_expr (loop, def, TREE_OPERAND (def, 1), type);
20527215
ZD
1951
1952 if (POINTER_TYPE_P (type)
1953 && !automatically_generated_chrec_p (res)
1954 && pointer_used_p (var))
8a613cae 1955 res = fold_used_pointer (res, def);
9baba81b
SP
1956 break;
1957
1958 case PHI_NODE:
1959 if (loop_phi_node_p (def))
1960 res = interpret_loop_phi (loop, def);
1961 else
1962 res = interpret_condition_phi (loop, def);
1963 break;
1964
1965 default:
1966 res = chrec_dont_know;
1967 break;
1968 }
1969
1970 set_and_end:
1971
1972 /* Keep the symbolic form. */
1973 if (res == chrec_dont_know)
1974 res = var;
1975
1976 if (loop == def_loop)
1977 set_scalar_evolution (var, res);
1978
1979 return res;
1980}
1981
1982/* Entry point for the scalar evolution analyzer.
1983 Analyzes and returns the scalar evolution of the ssa_name VAR.
1984 LOOP_NB is the identifier number of the loop in which the variable
1985 is used.
1986
1987 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1988 pointer to the statement that uses this variable, in order to
1989 determine the evolution function of the variable, use the following
1990 calls:
1991
1992 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1993 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1994 tree chrec_instantiated = instantiate_parameters
1995 (loop_nb, chrec_with_symbols);
1996*/
1997
1998tree
1999analyze_scalar_evolution (struct loop *loop, tree var)
2000{
2001 tree res;
2002
2003 if (dump_file && (dump_flags & TDF_DETAILS))
2004 {
2005 fprintf (dump_file, "(analyze_scalar_evolution \n");
2006 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2007 fprintf (dump_file, " (scalar = ");
2008 print_generic_expr (dump_file, var, 0);
2009 fprintf (dump_file, ")\n");
2010 }
2011
2012 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
2013
2014 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
2015 res = var;
2016
2017 if (dump_file && (dump_flags & TDF_DETAILS))
2018 fprintf (dump_file, ")\n");
2019
2020 return res;
2021}
2022
2023/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
2024 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
a6f778b2
ZD
2025 of VERSION).
2026
2027 FOLDED_CASTS is set to true if resolve_mixers used
2028 chrec_convert_aggressive (TODO -- not really, we are way too conservative
2029 at the moment in order to keep things simple). */
9baba81b
SP
2030
2031static tree
2032analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
a6f778b2 2033 tree version, bool *folded_casts)
9baba81b
SP
2034{
2035 bool val = false;
a6f778b2 2036 tree ev = version, tmp;
9baba81b 2037
a6f778b2
ZD
2038 if (folded_casts)
2039 *folded_casts = false;
9baba81b
SP
2040 while (1)
2041 {
a6f778b2
ZD
2042 tmp = analyze_scalar_evolution (use_loop, ev);
2043 ev = resolve_mixers (use_loop, tmp);
2044
2045 if (folded_casts && tmp != ev)
2046 *folded_casts = true;
9baba81b
SP
2047
2048 if (use_loop == wrto_loop)
2049 return ev;
2050
2051 /* If the value of the use changes in the inner loop, we cannot express
2052 its value in the outer loop (we might try to return interval chrec,
2053 but we do not have a user for it anyway) */
2054 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2055 || !val)
2056 return chrec_dont_know;
2057
2058 use_loop = use_loop->outer;
2059 }
2060}
2061
eb0bc7af
ZD
2062/* Returns instantiated value for VERSION in CACHE. */
2063
2064static tree
2065get_instantiated_value (htab_t cache, tree version)
2066{
2067 struct scev_info_str *info, pattern;
2068
2069 pattern.var = version;
858904db 2070 info = (struct scev_info_str *) htab_find (cache, &pattern);
eb0bc7af
ZD
2071
2072 if (info)
2073 return info->chrec;
2074 else
2075 return NULL_TREE;
2076}
2077
2078/* Sets instantiated value for VERSION to VAL in CACHE. */
2079
2080static void
2081set_instantiated_value (htab_t cache, tree version, tree val)
2082{
2083 struct scev_info_str *info, pattern;
2084 PTR *slot;
2085
2086 pattern.var = version;
2087 slot = htab_find_slot (cache, &pattern, INSERT);
2088
cceb1885
GDR
2089 if (!*slot)
2090 *slot = new_scev_info_str (version);
2091 info = (struct scev_info_str *) *slot;
eb0bc7af
ZD
2092 info->chrec = val;
2093}
2094
18aed06a
SP
2095/* Return the closed_loop_phi node for VAR. If there is none, return
2096 NULL_TREE. */
2097
2098static tree
2099loop_closed_phi_def (tree var)
2100{
2101 struct loop *loop;
2102 edge exit;
2103 tree phi;
2104
2105 if (var == NULL_TREE
2106 || TREE_CODE (var) != SSA_NAME)
2107 return NULL_TREE;
2108
2109 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2110 exit = loop->single_exit;
2111 if (!exit)
2112 return NULL_TREE;
2113
2114 for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
2115 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2116 return PHI_RESULT (phi);
2117
2118 return NULL_TREE;
2119}
2120
9baba81b 2121/* Analyze all the parameters of the chrec that were left under a symbolic form,
2282a0e6
ZD
2122 with respect to LOOP. CHREC is the chrec to instantiate. CACHE is the cache
2123 of already instantiated values. FLAGS modify the way chrecs are
47ae9e4c
SP
2124 instantiated. SIZE_EXPR is used for computing the size of the expression to
2125 be instantiated, and to stop if it exceeds some limit. */
9baba81b 2126
2282a0e6
ZD
2127/* Values for FLAGS. */
2128enum
2129{
2130 INSERT_SUPERLOOP_CHRECS = 1, /* Loop invariants are replaced with chrecs
2131 in outer loops. */
2132 FOLD_CONVERSIONS = 2 /* The conversions that may wrap in
2133 signed/pointer type are folded, as long as the
2134 value of the chrec is preserved. */
2135};
2136
9baba81b 2137static tree
47ae9e4c
SP
2138instantiate_parameters_1 (struct loop *loop, tree chrec, int flags, htab_t cache,
2139 int size_expr)
9baba81b
SP
2140{
2141 tree res, op0, op1, op2;
2142 basic_block def_bb;
2143 struct loop *def_loop;
16a2acea 2144 tree type = chrec_type (chrec);
2282a0e6 2145
47ae9e4c
SP
2146 /* Give up if the expression is larger than the MAX that we allow. */
2147 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2148 return chrec_dont_know;
2149
d7770457
SP
2150 if (automatically_generated_chrec_p (chrec)
2151 || is_gimple_min_invariant (chrec))
9baba81b
SP
2152 return chrec;
2153
2154 switch (TREE_CODE (chrec))
2155 {
2156 case SSA_NAME:
2157 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
2158
2159 /* A parameter (or loop invariant and we do not want to include
2160 evolutions in outer loops), nothing to do. */
2161 if (!def_bb
2282a0e6 2162 || (!(flags & INSERT_SUPERLOOP_CHRECS)
9baba81b
SP
2163 && !flow_bb_inside_loop_p (loop, def_bb)))
2164 return chrec;
2165
eb0bc7af
ZD
2166 /* We cache the value of instantiated variable to avoid exponential
2167 time complexity due to reevaluations. We also store the convenient
2168 value in the cache in order to prevent infinite recursion -- we do
2169 not want to instantiate the SSA_NAME if it is in a mixer
9baba81b
SP
2170 structure. This is used for avoiding the instantiation of
2171 recursively defined functions, such as:
2172
2173 | a_2 -> {0, +, 1, +, a_2}_1 */
eb0bc7af
ZD
2174
2175 res = get_instantiated_value (cache, chrec);
2176 if (res)
2177 return res;
2178
2179 /* Store the convenient value for chrec in the structure. If it
2180 is defined outside of the loop, we may just leave it in symbolic
2181 form, otherwise we need to admit that we do not know its behavior
2182 inside the loop. */
2183 res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
2184 set_instantiated_value (cache, chrec, res);
2185
2186 /* To make things even more complicated, instantiate_parameters_1
2187 calls analyze_scalar_evolution that may call # of iterations
2188 analysis that may in turn call instantiate_parameters_1 again.
2189 To prevent the infinite recursion, keep also the bitmap of
2190 ssa names that are being instantiated globally. */
9baba81b 2191 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
eb0bc7af 2192 return res;
9baba81b
SP
2193
2194 def_loop = find_common_loop (loop, def_bb->loop_father);
2195
2196 /* If the analysis yields a parametric chrec, instantiate the
eb0bc7af 2197 result again. */
9baba81b
SP
2198 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2199 res = analyze_scalar_evolution (def_loop, chrec);
18aed06a
SP
2200
2201 /* Don't instantiate loop-closed-ssa phi nodes. */
2202 if (TREE_CODE (res) == SSA_NAME
2203 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2204 || (loop_containing_stmt (SSA_NAME_DEF_STMT (res))->depth
2205 > def_loop->depth)))
2206 {
2207 if (res == chrec)
2208 res = loop_closed_phi_def (chrec);
2209 else
2210 res = chrec;
2211
2212 if (res == NULL_TREE)
2213 res = chrec_dont_know;
2214 }
2215
2216 else if (res != chrec_dont_know)
47ae9e4c 2217 res = instantiate_parameters_1 (loop, res, flags, cache, size_expr);
18aed06a 2218
9baba81b 2219 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
eb0bc7af
ZD
2220
2221 /* Store the correct value to the cache. */
2222 set_instantiated_value (cache, chrec, res);
9baba81b
SP
2223 return res;
2224
2225 case POLYNOMIAL_CHREC:
2226 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
47ae9e4c 2227 flags, cache, size_expr);
fca81712
SP
2228 if (op0 == chrec_dont_know)
2229 return chrec_dont_know;
2230
9baba81b 2231 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
47ae9e4c 2232 flags, cache, size_expr);
fca81712
SP
2233 if (op1 == chrec_dont_know)
2234 return chrec_dont_know;
2235
eac30183
ZD
2236 if (CHREC_LEFT (chrec) != op0
2237 || CHREC_RIGHT (chrec) != op1)
e2157b49
SP
2238 {
2239 op1 = chrec_convert (chrec_type (op0), op1, NULL_TREE);
2240 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2241 }
eac30183 2242 return chrec;
9baba81b
SP
2243
2244 case PLUS_EXPR:
2245 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2246 flags, cache, size_expr);
fca81712
SP
2247 if (op0 == chrec_dont_know)
2248 return chrec_dont_know;
2249
9baba81b 2250 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
47ae9e4c 2251 flags, cache, size_expr);
fca81712
SP
2252 if (op1 == chrec_dont_know)
2253 return chrec_dont_know;
2254
eac30183
ZD
2255 if (TREE_OPERAND (chrec, 0) != op0
2256 || TREE_OPERAND (chrec, 1) != op1)
16a2acea
SP
2257 {
2258 op0 = chrec_convert (type, op0, NULL_TREE);
2259 op1 = chrec_convert (type, op1, NULL_TREE);
2260 chrec = chrec_fold_plus (type, op0, op1);
2261 }
eac30183 2262 return chrec;
9baba81b
SP
2263
2264 case MINUS_EXPR:
2265 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2266 flags, cache, size_expr);
fca81712
SP
2267 if (op0 == chrec_dont_know)
2268 return chrec_dont_know;
2269
9baba81b 2270 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
47ae9e4c 2271 flags, cache, size_expr);
fca81712
SP
2272 if (op1 == chrec_dont_know)
2273 return chrec_dont_know;
2274
eac30183
ZD
2275 if (TREE_OPERAND (chrec, 0) != op0
2276 || TREE_OPERAND (chrec, 1) != op1)
16a2acea
SP
2277 {
2278 op0 = chrec_convert (type, op0, NULL_TREE);
2279 op1 = chrec_convert (type, op1, NULL_TREE);
2280 chrec = chrec_fold_minus (type, op0, op1);
2281 }
eac30183 2282 return chrec;
9baba81b
SP
2283
2284 case MULT_EXPR:
2285 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2286 flags, cache, size_expr);
fca81712
SP
2287 if (op0 == chrec_dont_know)
2288 return chrec_dont_know;
2289
9baba81b 2290 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
47ae9e4c 2291 flags, cache, size_expr);
fca81712
SP
2292 if (op1 == chrec_dont_know)
2293 return chrec_dont_know;
2294
eac30183
ZD
2295 if (TREE_OPERAND (chrec, 0) != op0
2296 || TREE_OPERAND (chrec, 1) != op1)
16a2acea
SP
2297 {
2298 op0 = chrec_convert (type, op0, NULL_TREE);
2299 op1 = chrec_convert (type, op1, NULL_TREE);
2300 chrec = chrec_fold_multiply (type, op0, op1);
2301 }
eac30183 2302 return chrec;
9baba81b
SP
2303
2304 case NOP_EXPR:
2305 case CONVERT_EXPR:
2306 case NON_LVALUE_EXPR:
2307 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2308 flags, cache, size_expr);
9baba81b
SP
2309 if (op0 == chrec_dont_know)
2310 return chrec_dont_know;
2311
2282a0e6
ZD
2312 if (flags & FOLD_CONVERSIONS)
2313 {
2314 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2315 if (tmp)
2316 return tmp;
2317 }
2318
eac30183
ZD
2319 if (op0 == TREE_OPERAND (chrec, 0))
2320 return chrec;
2321
d7f5de76
ZD
2322 /* If we used chrec_convert_aggressive, we can no longer assume that
2323 signed chrecs do not overflow, as chrec_convert does, so avoid
2324 calling it in that case. */
2325 if (flags & FOLD_CONVERSIONS)
2326 return fold_convert (TREE_TYPE (chrec), op0);
2327
1e8552eb 2328 return chrec_convert (TREE_TYPE (chrec), op0, NULL_TREE);
9baba81b
SP
2329
2330 case SCEV_NOT_KNOWN:
2331 return chrec_dont_know;
2332
2333 case SCEV_KNOWN:
2334 return chrec_known;
2335
2336 default:
2337 break;
2338 }
2339
2340 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2341 {
2342 case 3:
2343 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2344 flags, cache, size_expr);
fca81712
SP
2345 if (op0 == chrec_dont_know)
2346 return chrec_dont_know;
2347
9baba81b 2348 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
47ae9e4c 2349 flags, cache, size_expr);
fca81712
SP
2350 if (op1 == chrec_dont_know)
2351 return chrec_dont_know;
2352
9baba81b 2353 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
47ae9e4c 2354 flags, cache, size_expr);
fca81712 2355 if (op2 == chrec_dont_know)
9baba81b 2356 return chrec_dont_know;
eac30183
ZD
2357
2358 if (op0 == TREE_OPERAND (chrec, 0)
2359 && op1 == TREE_OPERAND (chrec, 1)
2360 && op2 == TREE_OPERAND (chrec, 2))
2361 return chrec;
2362
987b67bc
KH
2363 return fold_build3 (TREE_CODE (chrec),
2364 TREE_TYPE (chrec), op0, op1, op2);
9baba81b
SP
2365
2366 case 2:
2367 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2368 flags, cache, size_expr);
fca81712
SP
2369 if (op0 == chrec_dont_know)
2370 return chrec_dont_know;
2371
9baba81b 2372 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
47ae9e4c 2373 flags, cache, size_expr);
fca81712 2374 if (op1 == chrec_dont_know)
9baba81b 2375 return chrec_dont_know;
eac30183
ZD
2376
2377 if (op0 == TREE_OPERAND (chrec, 0)
2378 && op1 == TREE_OPERAND (chrec, 1))
2379 return chrec;
987b67bc 2380 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
9baba81b
SP
2381
2382 case 1:
2383 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
47ae9e4c 2384 flags, cache, size_expr);
9baba81b
SP
2385 if (op0 == chrec_dont_know)
2386 return chrec_dont_know;
eac30183
ZD
2387 if (op0 == TREE_OPERAND (chrec, 0))
2388 return chrec;
987b67bc 2389 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
9baba81b
SP
2390
2391 case 0:
2392 return chrec;
2393
2394 default:
2395 break;
2396 }
2397
2398 /* Too complicated to handle. */
2399 return chrec_dont_know;
2400}
e9eb809d
ZD
2401
2402/* Analyze all the parameters of the chrec that were left under a
2403 symbolic form. LOOP is the loop in which symbolic names have to
2404 be analyzed and instantiated. */
2405
2406tree
9baba81b 2407instantiate_parameters (struct loop *loop,
e9eb809d
ZD
2408 tree chrec)
2409{
9baba81b 2410 tree res;
eb0bc7af 2411 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
9baba81b
SP
2412
2413 if (dump_file && (dump_flags & TDF_DETAILS))
2414 {
2415 fprintf (dump_file, "(instantiate_parameters \n");
2416 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2417 fprintf (dump_file, " (chrec = ");
2418 print_generic_expr (dump_file, chrec, 0);
2419 fprintf (dump_file, ")\n");
2420 }
2421
47ae9e4c
SP
2422 res = instantiate_parameters_1 (loop, chrec, INSERT_SUPERLOOP_CHRECS, cache,
2423 0);
9baba81b
SP
2424
2425 if (dump_file && (dump_flags & TDF_DETAILS))
2426 {
2427 fprintf (dump_file, " (res = ");
2428 print_generic_expr (dump_file, res, 0);
2429 fprintf (dump_file, "))\n");
2430 }
eb0bc7af
ZD
2431
2432 htab_delete (cache);
9baba81b
SP
2433
2434 return res;
2435}
2436
2437/* Similar to instantiate_parameters, but does not introduce the
2282a0e6
ZD
2438 evolutions in outer loops for LOOP invariants in CHREC, and does not
2439 care about causing overflows, as long as they do not affect value
2440 of an expression. */
9baba81b
SP
2441
2442static tree
2443resolve_mixers (struct loop *loop, tree chrec)
2444{
eb0bc7af 2445 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
47ae9e4c 2446 tree ret = instantiate_parameters_1 (loop, chrec, FOLD_CONVERSIONS, cache, 0);
eb0bc7af
ZD
2447 htab_delete (cache);
2448 return ret;
9baba81b
SP
2449}
2450
2451/* Entry point for the analysis of the number of iterations pass.
2452 This function tries to safely approximate the number of iterations
2453 the loop will run. When this property is not decidable at compile
2454 time, the result is chrec_dont_know. Otherwise the result is
2455 a scalar or a symbolic parameter.
2456
2457 Example of analysis: suppose that the loop has an exit condition:
2458
2459 "if (b > 49) goto end_loop;"
2460
2461 and that in a previous analysis we have determined that the
2462 variable 'b' has an evolution function:
2463
2464 "EF = {23, +, 5}_2".
2465
2466 When we evaluate the function at the point 5, i.e. the value of the
2467 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2468 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2469 the loop body has been executed 6 times. */
2470
2471tree
2472number_of_iterations_in_loop (struct loop *loop)
2473{
2474 tree res, type;
2475 edge exit;
2476 struct tree_niter_desc niter_desc;
2477
2478 /* Determine whether the number_of_iterations_in_loop has already
2479 been computed. */
2480 res = loop->nb_iterations;
2481 if (res)
2482 return res;
2483 res = chrec_dont_know;
2484
2485 if (dump_file && (dump_flags & TDF_DETAILS))
2486 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2487
82b85a85
ZD
2488 exit = loop->single_exit;
2489 if (!exit)
9baba81b 2490 goto end;
9baba81b 2491
f9cc1a70 2492 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
9baba81b
SP
2493 goto end;
2494
2495 type = TREE_TYPE (niter_desc.niter);
2496 if (integer_nonzerop (niter_desc.may_be_zero))
5212068f 2497 res = build_int_cst (type, 0);
9baba81b
SP
2498 else if (integer_zerop (niter_desc.may_be_zero))
2499 res = niter_desc.niter;
2500 else
2501 res = chrec_dont_know;
2502
2503end:
2504 return set_nb_iterations_in_loop (loop, res);
2505}
2506
2507/* One of the drivers for testing the scalar evolutions analysis.
2508 This function computes the number of iterations for all the loops
2509 from the EXIT_CONDITIONS array. */
2510
2511static void
5310bac6 2512number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
9baba81b
SP
2513{
2514 unsigned int i;
2515 unsigned nb_chrec_dont_know_loops = 0;
2516 unsigned nb_static_loops = 0;
5310bac6 2517 tree cond;
9baba81b 2518
5310bac6 2519 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
9baba81b 2520 {
5310bac6 2521 tree res = number_of_iterations_in_loop (loop_containing_stmt (cond));
9baba81b
SP
2522 if (chrec_contains_undetermined (res))
2523 nb_chrec_dont_know_loops++;
2524 else
2525 nb_static_loops++;
2526 }
2527
2528 if (dump_file)
2529 {
2530 fprintf (dump_file, "\n(\n");
2531 fprintf (dump_file, "-----------------------------------------\n");
2532 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2533 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2534 fprintf (dump_file, "%d\tnb_total_loops\n", current_loops->num);
2535 fprintf (dump_file, "-----------------------------------------\n");
2536 fprintf (dump_file, ")\n\n");
2537
2538 print_loop_ir (dump_file);
2539 }
2540}
2541
2542\f
2543
2544/* Counters for the stats. */
2545
2546struct chrec_stats
2547{
2548 unsigned nb_chrecs;
2549 unsigned nb_affine;
2550 unsigned nb_affine_multivar;
2551 unsigned nb_higher_poly;
2552 unsigned nb_chrec_dont_know;
2553 unsigned nb_undetermined;
2554};
2555
2556/* Reset the counters. */
2557
2558static inline void
2559reset_chrecs_counters (struct chrec_stats *stats)
2560{
2561 stats->nb_chrecs = 0;
2562 stats->nb_affine = 0;
2563 stats->nb_affine_multivar = 0;
2564 stats->nb_higher_poly = 0;
2565 stats->nb_chrec_dont_know = 0;
2566 stats->nb_undetermined = 0;
2567}
2568
2569/* Dump the contents of a CHREC_STATS structure. */
2570
2571static void
2572dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2573{
2574 fprintf (file, "\n(\n");
2575 fprintf (file, "-----------------------------------------\n");
2576 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2577 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2578 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2579 stats->nb_higher_poly);
2580 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2581 fprintf (file, "-----------------------------------------\n");
2582 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2583 fprintf (file, "%d\twith undetermined coefficients\n",
2584 stats->nb_undetermined);
2585 fprintf (file, "-----------------------------------------\n");
2586 fprintf (file, "%d\tchrecs in the scev database\n",
2587 (int) htab_elements (scalar_evolution_info));
2588 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2589 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2590 fprintf (file, "-----------------------------------------\n");
2591 fprintf (file, ")\n\n");
2592}
2593
2594/* Gather statistics about CHREC. */
2595
2596static void
2597gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2598{
2599 if (dump_file && (dump_flags & TDF_STATS))
2600 {
2601 fprintf (dump_file, "(classify_chrec ");
2602 print_generic_expr (dump_file, chrec, 0);
2603 fprintf (dump_file, "\n");
2604 }
2605
2606 stats->nb_chrecs++;
2607
2608 if (chrec == NULL_TREE)
2609 {
2610 stats->nb_undetermined++;
2611 return;
2612 }
2613
2614 switch (TREE_CODE (chrec))
2615 {
2616 case POLYNOMIAL_CHREC:
2617 if (evolution_function_is_affine_p (chrec))
2618 {
2619 if (dump_file && (dump_flags & TDF_STATS))
2620 fprintf (dump_file, " affine_univariate\n");
2621 stats->nb_affine++;
2622 }
2623 else if (evolution_function_is_affine_multivariate_p (chrec))
2624 {
2625 if (dump_file && (dump_flags & TDF_STATS))
2626 fprintf (dump_file, " affine_multivariate\n");
2627 stats->nb_affine_multivar++;
2628 }
2629 else
2630 {
2631 if (dump_file && (dump_flags & TDF_STATS))
2632 fprintf (dump_file, " higher_degree_polynomial\n");
2633 stats->nb_higher_poly++;
2634 }
2635
2636 break;
2637
2638 default:
2639 break;
2640 }
2641
2642 if (chrec_contains_undetermined (chrec))
2643 {
2644 if (dump_file && (dump_flags & TDF_STATS))
2645 fprintf (dump_file, " undetermined\n");
2646 stats->nb_undetermined++;
2647 }
2648
2649 if (dump_file && (dump_flags & TDF_STATS))
2650 fprintf (dump_file, ")\n");
2651}
2652
2653/* One of the drivers for testing the scalar evolutions analysis.
2654 This function analyzes the scalar evolution of all the scalars
2655 defined as loop phi nodes in one of the loops from the
2656 EXIT_CONDITIONS array.
2657
2658 TODO Optimization: A loop is in canonical form if it contains only
2659 a single scalar loop phi node. All the other scalars that have an
2660 evolution in the loop are rewritten in function of this single
2661 index. This allows the parallelization of the loop. */
2662
2663static void
5310bac6 2664analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
9baba81b
SP
2665{
2666 unsigned int i;
2667 struct chrec_stats stats;
5310bac6 2668 tree cond;
9baba81b
SP
2669
2670 reset_chrecs_counters (&stats);
2671
5310bac6 2672 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
9baba81b
SP
2673 {
2674 struct loop *loop;
2675 basic_block bb;
2676 tree phi, chrec;
2677
5310bac6 2678 loop = loop_containing_stmt (cond);
9baba81b
SP
2679 bb = loop->header;
2680
bb29d951 2681 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
9baba81b
SP
2682 if (is_gimple_reg (PHI_RESULT (phi)))
2683 {
2684 chrec = instantiate_parameters
2685 (loop,
2686 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2687
2688 if (dump_file && (dump_flags & TDF_STATS))
2689 gather_chrec_stats (chrec, &stats);
2690 }
2691 }
2692
2693 if (dump_file && (dump_flags & TDF_STATS))
2694 dump_chrecs_stats (dump_file, &stats);
2695}
2696
2697/* Callback for htab_traverse, gathers information on chrecs in the
2698 hashtable. */
2699
2700static int
2701gather_stats_on_scev_database_1 (void **slot, void *stats)
2702{
cceb1885 2703 struct scev_info_str *entry = (struct scev_info_str *) *slot;
9baba81b 2704
cceb1885 2705 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
9baba81b
SP
2706
2707 return 1;
2708}
2709
2710/* Classify the chrecs of the whole database. */
2711
2712void
2713gather_stats_on_scev_database (void)
2714{
2715 struct chrec_stats stats;
2716
2717 if (!dump_file)
2718 return;
2719
2720 reset_chrecs_counters (&stats);
2721
2722 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2723 &stats);
2724
2725 dump_chrecs_stats (dump_file, &stats);
2726}
2727
2728\f
2729
2730/* Initializer. */
2731
2732static void
2733initialize_scalar_evolutions_analyzer (void)
2734{
2735 /* The elements below are unique. */
2736 if (chrec_dont_know == NULL_TREE)
2737 {
2738 chrec_not_analyzed_yet = NULL_TREE;
2739 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2740 chrec_known = make_node (SCEV_KNOWN);
d5ab5675
ZD
2741 TREE_TYPE (chrec_dont_know) = void_type_node;
2742 TREE_TYPE (chrec_known) = void_type_node;
9baba81b
SP
2743 }
2744}
2745
2746/* Initialize the analysis of scalar evolutions for LOOPS. */
2747
2748void
2749scev_initialize (struct loops *loops)
2750{
2751 unsigned i;
2752 current_loops = loops;
2753
2754 scalar_evolution_info = htab_create (100, hash_scev_info,
2755 eq_scev_info, del_scev_info);
8bdbfff5 2756 already_instantiated = BITMAP_ALLOC (NULL);
9baba81b
SP
2757
2758 initialize_scalar_evolutions_analyzer ();
2759
2760 for (i = 1; i < loops->num; i++)
2761 if (loops->parray[i])
82b85a85 2762 loops->parray[i]->nb_iterations = NULL_TREE;
9baba81b
SP
2763}
2764
2765/* Cleans up the information cached by the scalar evolutions analysis. */
2766
2767void
2768scev_reset (void)
2769{
2770 unsigned i;
2771 struct loop *loop;
2772
2773 if (!scalar_evolution_info || !current_loops)
2774 return;
2775
2776 htab_empty (scalar_evolution_info);
2777 for (i = 1; i < current_loops->num; i++)
2778 {
2779 loop = current_loops->parray[i];
2780 if (loop)
2781 loop->nb_iterations = NULL_TREE;
2782 }
e9eb809d
ZD
2783}
2784
2785/* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
a6f778b2
ZD
2786 its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
2787 want step to be invariant in LOOP. Otherwise we require it to be an
2788 integer constant. IV->no_overflow is set to true if we are sure the iv cannot
2789 overflow (e.g. because it is computed in signed arithmetics). */
e9eb809d
ZD
2790
2791bool
a6f778b2 2792simple_iv (struct loop *loop, tree stmt, tree op, affine_iv *iv,
9be872b7 2793 bool allow_nonconstant_step)
e9eb809d 2794{
9baba81b
SP
2795 basic_block bb = bb_for_stmt (stmt);
2796 tree type, ev;
a6f778b2 2797 bool folded_casts;
9baba81b 2798
a6f778b2
ZD
2799 iv->base = NULL_TREE;
2800 iv->step = NULL_TREE;
2801 iv->no_overflow = false;
9baba81b
SP
2802
2803 type = TREE_TYPE (op);
2804 if (TREE_CODE (type) != INTEGER_TYPE
2805 && TREE_CODE (type) != POINTER_TYPE)
2806 return false;
2807
a6f778b2
ZD
2808 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2809 &folded_casts);
9baba81b
SP
2810 if (chrec_contains_undetermined (ev))
2811 return false;
2812
2813 if (tree_does_not_contain_chrecs (ev)
2814 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2815 {
a6f778b2
ZD
2816 iv->base = ev;
2817 iv->no_overflow = true;
9baba81b
SP
2818 return true;
2819 }
2820
2821 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2822 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2823 return false;
2824
a6f778b2 2825 iv->step = CHREC_RIGHT (ev);
9be872b7
ZD
2826 if (allow_nonconstant_step)
2827 {
a6f778b2
ZD
2828 if (tree_contains_chrecs (iv->step, NULL)
2829 || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
9be872b7
ZD
2830 return false;
2831 }
a6f778b2 2832 else if (TREE_CODE (iv->step) != INTEGER_CST)
9baba81b 2833 return false;
9be872b7 2834
a6f778b2
ZD
2835 iv->base = CHREC_LEFT (ev);
2836 if (tree_contains_chrecs (iv->base, NULL)
2837 || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
9baba81b
SP
2838 return false;
2839
a6f778b2
ZD
2840 iv->no_overflow = (!folded_casts
2841 && !flag_wrapv
2842 && !TYPE_UNSIGNED (type));
9baba81b
SP
2843 return true;
2844}
2845
2846/* Runs the analysis of scalar evolutions. */
2847
2848void
2849scev_analysis (void)
2850{
5310bac6 2851 VEC(tree,heap) *exit_conditions;
9baba81b 2852
5310bac6 2853 exit_conditions = VEC_alloc (tree, heap, 37);
9baba81b
SP
2854 select_loops_exit_conditions (current_loops, &exit_conditions);
2855
2856 if (dump_file && (dump_flags & TDF_STATS))
5310bac6 2857 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
9baba81b 2858
5310bac6
KH
2859 number_of_iterations_for_all_loops (&exit_conditions);
2860 VEC_free (tree, heap, exit_conditions);
e9eb809d 2861}
9baba81b
SP
2862
2863/* Finalize the scalar evolution analysis. */
2864
2865void
2866scev_finalize (void)
2867{
2868 htab_delete (scalar_evolution_info);
8bdbfff5 2869 BITMAP_FREE (already_instantiated);
9baba81b
SP
2870}
2871
925196ed
ZD
2872/* Returns true if EXPR looks expensive. */
2873
2874static bool
2875expression_expensive_p (tree expr)
2876{
2877 return force_expr_to_var_cost (expr) >= target_spill_cost;
2878}
2879
684aaf29 2880/* Replace ssa names for that scev can prove they are constant by the
3ac01fde
ZD
2881 appropriate constants. Also perform final value replacement in loops,
2882 in case the replacement expressions are cheap.
684aaf29
ZD
2883
2884 We only consider SSA names defined by phi nodes; rest is left to the
2885 ordinary constant propagation pass. */
2886
c2924966 2887unsigned int
684aaf29
ZD
2888scev_const_prop (void)
2889{
2890 basic_block bb;
3ac01fde
ZD
2891 tree name, phi, next_phi, type, ev;
2892 struct loop *loop, *ex_loop;
684aaf29 2893 bitmap ssa_names_to_remove = NULL;
3ac01fde 2894 unsigned i;
684aaf29
ZD
2895
2896 if (!current_loops)
c2924966 2897 return 0;
684aaf29
ZD
2898
2899 FOR_EACH_BB (bb)
2900 {
2901 loop = bb->loop_father;
2902
2903 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2904 {
2905 name = PHI_RESULT (phi);
2906
2907 if (!is_gimple_reg (name))
2908 continue;
2909
2910 type = TREE_TYPE (name);
2911
2912 if (!POINTER_TYPE_P (type)
2913 && !INTEGRAL_TYPE_P (type))
2914 continue;
2915
2916 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2917 if (!is_gimple_min_invariant (ev)
2918 || !may_propagate_copy (name, ev))
2919 continue;
2920
2921 /* Replace the uses of the name. */
18aed06a
SP
2922 if (name != ev)
2923 replace_uses_by (name, ev);
684aaf29
ZD
2924
2925 if (!ssa_names_to_remove)
2926 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2927 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2928 }
2929 }
2930
2931 /* Remove the ssa names that were replaced by constants. We do not remove them
2932 directly in the previous cycle, since this invalidates scev cache. */
2933 if (ssa_names_to_remove)
2934 {
2935 bitmap_iterator bi;
2936 unsigned i;
2937
2938 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2939 {
2940 name = ssa_name (i);
2941 phi = SSA_NAME_DEF_STMT (name);
2942
2943 gcc_assert (TREE_CODE (phi) == PHI_NODE);
2944 remove_phi_node (phi, NULL);
2945 }
2946
2947 BITMAP_FREE (ssa_names_to_remove);
2948 scev_reset ();
2949 }
3ac01fde
ZD
2950
2951 /* Now the regular final value replacement. */
2952 for (i = current_loops->num - 1; i > 0; i--)
2953 {
2954 edge exit;
a6f778b2 2955 tree def, rslt, ass, niter;
925196ed 2956 block_stmt_iterator bsi;
3ac01fde
ZD
2957
2958 loop = current_loops->parray[i];
2959 if (!loop)
2960 continue;
2961
2962 /* If we do not know exact number of iterations of the loop, we cannot
2963 replace the final value. */
2964 exit = loop->single_exit;
a6f778b2
ZD
2965 if (!exit)
2966 continue;
2967
2968 niter = number_of_iterations_in_loop (loop);
2969 if (niter == chrec_dont_know
2970 /* If computing the number of iterations is expensive, it may be
2971 better not to introduce computations involving it. */
2972 || expression_expensive_p (niter))
3ac01fde 2973 continue;
925196ed
ZD
2974
2975 /* Ensure that it is possible to insert new statements somewhere. */
2976 if (!single_pred_p (exit->dest))
2977 split_loop_exit_edge (exit);
2978 tree_block_label (exit->dest);
2979 bsi = bsi_after_labels (exit->dest);
2980
2981 ex_loop = superloop_at_depth (loop, exit->dest->loop_father->depth + 1);
3ac01fde
ZD
2982
2983 for (phi = phi_nodes (exit->dest); phi; phi = next_phi)
2984 {
2985 next_phi = PHI_CHAIN (phi);
925196ed 2986 rslt = PHI_RESULT (phi);
3ac01fde 2987 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
925196ed 2988 if (!is_gimple_reg (def))
3ac01fde
ZD
2989 continue;
2990
2991 if (!POINTER_TYPE_P (TREE_TYPE (def))
2992 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2993 continue;
2994
a6f778b2 2995 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
925196ed 2996 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3ac01fde 2997 if (!tree_does_not_contain_chrecs (def)
e5db3515
ZD
2998 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
2999 /* Moving the computation from the loop may prolong life range
3000 of some ssa names, which may cause problems if they appear
3001 on abnormal edges. */
3002 || contains_abnormal_ssa_name_p (def))
3ac01fde
ZD
3003 continue;
3004
925196ed
ZD
3005 /* Eliminate the phi node and replace it by a computation outside
3006 the loop. */
3007 def = unshare_expr (def);
3008 SET_PHI_RESULT (phi, NULL_TREE);
3009 remove_phi_node (phi, NULL_TREE);
3010
3011 ass = build2 (MODIFY_EXPR, void_type_node, rslt, NULL_TREE);
3012 SSA_NAME_DEF_STMT (rslt) = ass;
35771d34
PB
3013 {
3014 block_stmt_iterator dest = bsi;
3015 bsi_insert_before (&dest, ass, BSI_NEW_STMT);
3016 def = force_gimple_operand_bsi (&dest, def, false, NULL_TREE);
3017 }
925196ed
ZD
3018 TREE_OPERAND (ass, 1) = def;
3019 update_stmt (ass);
3ac01fde
ZD
3020 }
3021 }
c2924966 3022 return 0;
684aaf29 3023}