]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-scalar-evolution.c
re PR target/43597 (Move and compare with 0 can be combined)
[thirdparty/gcc.git] / gcc / tree-scalar-evolution.c
CommitLineData
e9eb809d 1/* Scalar evolution detector.
c75c517d 2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
66647d44 3 Free Software Foundation, Inc.
e9eb809d
ZD
4 Contributed by Sebastian Pop <s.pop@laposte.net>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
e9eb809d
ZD
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
e9eb809d 21
b8698a0f
L
22/*
23 Description:
24
9baba81b
SP
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
b8698a0f 45
9baba81b 46 A short sketch of the algorithm is:
b8698a0f 47
9baba81b
SP
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
b8698a0f 50
726a989a 51 - When the definition is a GIMPLE_ASSIGN: if the right hand side
9baba81b 52 (RHS) of the definition cannot be statically analyzed, the answer
b8698a0f 53 of the analyzer is: "don't know".
9baba81b
SP
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
b8698a0f 75
9baba81b 76 Example 1: Illustration of the basic algorithm.
b8698a0f 77
9baba81b
SP
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
b8698a0f 84
9baba81b
SP
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
3f227a8c 105 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
9baba81b
SP
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
b8698a0f 115
9baba81b
SP
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
b8698a0f
L
119
120 or in terms of a C program:
121
9baba81b
SP
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
b8698a0f 128
3f227a8c 129 Example 2a: Illustration of the algorithm on nested loops.
b8698a0f 130
9baba81b
SP
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
b8698a0f 139
9baba81b
SP
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
b8698a0f
L
142 loop-phi-node, and its analysis as in Example 1, gives:
143
9baba81b
SP
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
b8698a0f 146
9baba81b
SP
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
b8698a0f
L
153 equal to "+32", and the result is:
154
9baba81b
SP
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
3f227a8c
JS
157
158 Example 2b: Multivariate chains of recurrences.
159
160 | loop_1
161 | k = phi (0, k + 1)
162 | loop_2 4 times
163 | j = phi (0, j + 1)
164 | loop_3 4 times
165 | i = phi (0, i + 1)
166 | A[j + k] = ...
167 | endloop
168 | endloop
169 | endloop
170
171 Analyzing the access function of array A with
172 instantiate_parameters (loop_1, "j + k"), we obtain the
173 instantiation and the analysis of the scalar variables "j" and "k"
174 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
175 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
176 {0, +, 1}_1. To obtain the evolution function in loop_3 and
177 instantiate the scalar variables up to loop_1, one has to use:
a213b219
SP
178 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
179 The result of this call is {{0, +, 1}_1, +, 1}_2.
3f227a8c 180
9baba81b 181 Example 3: Higher degree polynomials.
b8698a0f 182
9baba81b
SP
183 | loop_1
184 | a = phi (2, b)
185 | c = phi (5, d)
186 | b = a + 1
187 | d = c + a
188 | endloop
b8698a0f 189
9baba81b
SP
190 a -> {2, +, 1}_1
191 b -> {3, +, 1}_1
192 c -> {5, +, a}_1
193 d -> {5 + a, +, a}_1
b8698a0f 194
3f227a8c
JS
195 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
196 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
b8698a0f 197
9baba81b 198 Example 4: Lucas, Fibonacci, or mixers in general.
b8698a0f 199
9baba81b
SP
200 | loop_1
201 | a = phi (1, b)
202 | c = phi (3, d)
203 | b = c
204 | d = c + a
205 | endloop
b8698a0f 206
9baba81b
SP
207 a -> (1, c)_1
208 c -> {3, +, a}_1
b8698a0f 209
9baba81b
SP
210 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
211 following semantics: during the first iteration of the loop_1, the
212 variable contains the value 1, and then it contains the value "c".
213 Note that this syntax is close to the syntax of the loop-phi-node:
214 "a -> (1, c)_1" vs. "a = phi (1, c)".
b8698a0f 215
9baba81b
SP
216 The symbolic chrec representation contains all the semantics of the
217 original code. What is more difficult is to use this information.
b8698a0f 218
9baba81b 219 Example 5: Flip-flops, or exchangers.
b8698a0f 220
9baba81b
SP
221 | loop_1
222 | a = phi (1, b)
223 | c = phi (3, d)
224 | b = c
225 | d = a
226 | endloop
b8698a0f 227
9baba81b
SP
228 a -> (1, c)_1
229 c -> (3, a)_1
b8698a0f 230
9baba81b 231 Based on these symbolic chrecs, it is possible to refine this
b8698a0f
L
232 information into the more precise PERIODIC_CHRECs:
233
9baba81b
SP
234 a -> |1, 3|_1
235 c -> |3, 1|_1
b8698a0f 236
9baba81b 237 This transformation is not yet implemented.
b8698a0f 238
9baba81b 239 Further readings:
b8698a0f 240
9baba81b
SP
241 You can find a more detailed description of the algorithm in:
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
243 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
244 this is a preliminary report and some of the details of the
245 algorithm have changed. I'm working on a research report that
246 updates the description of the algorithms to reflect the design
247 choices used in this implementation.
b8698a0f 248
9baba81b
SP
249 A set of slides show a high level overview of the algorithm and run
250 an example through the scalar evolution analyzer:
251 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
252
253 The slides that I have presented at the GCC Summit'04 are available
254 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
255*/
256
e9eb809d
ZD
257#include "config.h"
258#include "system.h"
259#include "coretypes.h"
cf835838 260#include "gimple-pretty-print.h"
e9eb809d 261#include "tree-flow.h"
e9eb809d
ZD
262#include "cfgloop.h"
263#include "tree-chrec.h"
264#include "tree-scalar-evolution.h"
9baba81b 265#include "tree-pass.h"
c59dabbe 266#include "params.h"
9baba81b
SP
267
268static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
9baba81b 269
a213b219
SP
270/* The cached information about an SSA name VAR, claiming that below
271 basic block INSTANTIATED_BELOW, the value of VAR can be expressed
272 as CHREC. */
9baba81b 273
d1b38208 274struct GTY(()) scev_info_str {
a213b219 275 basic_block instantiated_below;
9baba81b
SP
276 tree var;
277 tree chrec;
278};
279
280/* Counters for the scev database. */
281static unsigned nb_set_scev = 0;
282static unsigned nb_get_scev = 0;
283
284/* The following trees are unique elements. Thus the comparison of
285 another element to these elements should be done on the pointer to
286 these trees, and not on their value. */
287
288/* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
289tree chrec_not_analyzed_yet;
290
291/* Reserved to the cases where the analyzer has detected an
292 undecidable property at compile time. */
293tree chrec_dont_know;
294
295/* When the analyzer has detected that a property will never
296 happen, then it qualifies it with chrec_known. */
297tree chrec_known;
298
9e2f83a5 299static GTY ((param_is (struct scev_info_str))) htab_t scalar_evolution_info;
9baba81b
SP
300
301\f
a213b219 302/* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
9baba81b
SP
303
304static inline struct scev_info_str *
a213b219 305new_scev_info_str (basic_block instantiated_below, tree var)
9baba81b
SP
306{
307 struct scev_info_str *res;
b8698a0f 308
a9429e29 309 res = ggc_alloc_scev_info_str ();
9baba81b
SP
310 res->var = var;
311 res->chrec = chrec_not_analyzed_yet;
a213b219
SP
312 res->instantiated_below = instantiated_below;
313
9baba81b
SP
314 return res;
315}
316
317/* Computes a hash function for database element ELT. */
318
319static hashval_t
320hash_scev_info (const void *elt)
321{
741ac903 322 return SSA_NAME_VERSION (((const struct scev_info_str *) elt)->var);
9baba81b
SP
323}
324
325/* Compares database elements E1 and E2. */
326
327static int
328eq_scev_info (const void *e1, const void *e2)
329{
cceb1885
GDR
330 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
331 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
9baba81b 332
a213b219
SP
333 return (elt1->var == elt2->var
334 && elt1->instantiated_below == elt2->instantiated_below);
9baba81b
SP
335}
336
337/* Deletes database element E. */
338
339static void
340del_scev_info (void *e)
341{
9e2f83a5 342 ggc_free (e);
9baba81b
SP
343}
344
a213b219
SP
345/* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
346 A first query on VAR returns chrec_not_analyzed_yet. */
9baba81b
SP
347
348static tree *
a213b219 349find_var_scev_info (basic_block instantiated_below, tree var)
9baba81b
SP
350{
351 struct scev_info_str *res;
352 struct scev_info_str tmp;
353 PTR *slot;
354
355 tmp.var = var;
a213b219 356 tmp.instantiated_below = instantiated_below;
9baba81b
SP
357 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
358
359 if (!*slot)
a213b219 360 *slot = new_scev_info_str (instantiated_below, var);
cceb1885 361 res = (struct scev_info_str *) *slot;
9baba81b
SP
362
363 return &res->chrec;
364}
365
9baba81b
SP
366/* Return true when CHREC contains symbolic names defined in
367 LOOP_NB. */
368
b8698a0f 369bool
ed7a4b4b 370chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
9baba81b 371{
5039610b
SL
372 int i, n;
373
9baba81b
SP
374 if (chrec == NULL_TREE)
375 return false;
376
ad6003f2 377 if (is_gimple_min_invariant (chrec))
9baba81b
SP
378 return false;
379
9baba81b
SP
380 if (TREE_CODE (chrec) == SSA_NAME)
381 {
492e5456
SP
382 gimple def;
383 loop_p def_loop, loop;
384
385 if (SSA_NAME_IS_DEFAULT_DEF (chrec))
386 return false;
387
388 def = SSA_NAME_DEF_STMT (chrec);
389 def_loop = loop_containing_stmt (def);
390 loop = get_loop (loop_nb);
9baba81b
SP
391
392 if (def_loop == NULL)
393 return false;
394
395 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
396 return true;
397
398 return false;
399 }
400
5039610b
SL
401 n = TREE_OPERAND_LENGTH (chrec);
402 for (i = 0; i < n; i++)
b8698a0f 403 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
5039610b
SL
404 loop_nb))
405 return true;
406 return false;
9baba81b
SP
407}
408
409/* Return true when PHI is a loop-phi-node. */
410
411static bool
726a989a 412loop_phi_node_p (gimple phi)
9baba81b
SP
413{
414 /* The implementation of this function is based on the following
415 property: "all the loop-phi-nodes of a loop are contained in the
416 loop's header basic block". */
417
726a989a 418 return loop_containing_stmt (phi)->header == gimple_bb (phi);
9baba81b
SP
419}
420
421/* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
422 In general, in the case of multivariate evolutions we want to get
423 the evolution in different loops. LOOP specifies the level for
424 which to get the evolution.
b8698a0f 425
9baba81b 426 Example:
b8698a0f 427
9baba81b
SP
428 | for (j = 0; j < 100; j++)
429 | {
430 | for (k = 0; k < 100; k++)
431 | {
b8698a0f 432 | i = k + j; - Here the value of i is a function of j, k.
9baba81b 433 | }
b8698a0f 434 | ... = i - Here the value of i is a function of j.
9baba81b 435 | }
b8698a0f
L
436 | ... = i - Here the value of i is a scalar.
437
438 Example:
439
9baba81b
SP
440 | i_0 = ...
441 | loop_1 10 times
442 | i_1 = phi (i_0, i_2)
443 | i_2 = i_1 + 2
444 | endloop
b8698a0f 445
9baba81b
SP
446 This loop has the same effect as:
447 LOOP_1 has the same effect as:
b8698a0f 448
9baba81b 449 | i_1 = i_0 + 20
b8698a0f
L
450
451 The overall effect of the loop, "i_0 + 20" in the previous example,
452 is obtained by passing in the parameters: LOOP = 1,
9baba81b
SP
453 EVOLUTION_FN = {i_0, +, 2}_1.
454*/
b8698a0f 455
42e6eec5 456tree
9baba81b
SP
457compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
458{
459 bool val = false;
460
461 if (evolution_fn == chrec_dont_know)
462 return chrec_dont_know;
463
464 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
465 {
677cc14d
ZD
466 struct loop *inner_loop = get_chrec_loop (evolution_fn);
467
468 if (inner_loop == loop
469 || flow_loop_nested_p (loop, inner_loop))
9baba81b 470 {
a14865db 471 tree nb_iter = number_of_latch_executions (inner_loop);
9baba81b
SP
472
473 if (nb_iter == chrec_dont_know)
474 return chrec_dont_know;
475 else
476 {
477 tree res;
478
9baba81b
SP
479 /* evolution_fn is the evolution function in LOOP. Get
480 its value in the nb_iter-th iteration. */
481 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
42e6eec5
SP
482
483 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
484 res = instantiate_parameters (loop, res);
485
8c27b7d4 486 /* Continue the computation until ending on a parent of LOOP. */
9baba81b
SP
487 return compute_overall_effect_of_inner_loop (loop, res);
488 }
489 }
490 else
491 return evolution_fn;
492 }
b8698a0f 493
9baba81b
SP
494 /* If the evolution function is an invariant, there is nothing to do. */
495 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
496 return evolution_fn;
b8698a0f 497
9baba81b
SP
498 else
499 return chrec_dont_know;
500}
501
502/* Determine whether the CHREC is always positive/negative. If the expression
503 cannot be statically analyzed, return false, otherwise set the answer into
504 VALUE. */
505
506bool
507chrec_is_positive (tree chrec, bool *value)
508{
16a2acea 509 bool value0, value1, value2;
a14865db 510 tree end_value, nb_iter;
b8698a0f 511
9baba81b
SP
512 switch (TREE_CODE (chrec))
513 {
514 case POLYNOMIAL_CHREC:
515 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
516 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
517 return false;
b8698a0f 518
9baba81b
SP
519 /* FIXME -- overflows. */
520 if (value0 == value1)
521 {
522 *value = value0;
523 return true;
524 }
525
526 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
527 and the proof consists in showing that the sign never
528 changes during the execution of the loop, from 0 to
529 loop->nb_iterations. */
530 if (!evolution_function_is_affine_p (chrec))
531 return false;
532
a14865db 533 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
9baba81b
SP
534 if (chrec_contains_undetermined (nb_iter))
535 return false;
536
9baba81b
SP
537#if 0
538 /* TODO -- If the test is after the exit, we may decrease the number of
539 iterations by one. */
540 if (after_exit)
16a2acea 541 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
9baba81b
SP
542#endif
543
544 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
b8698a0f 545
9baba81b
SP
546 if (!chrec_is_positive (end_value, &value2))
547 return false;
b8698a0f 548
9baba81b
SP
549 *value = value0;
550 return value0 == value1;
b8698a0f 551
9baba81b
SP
552 case INTEGER_CST:
553 *value = (tree_int_cst_sgn (chrec) == 1);
554 return true;
b8698a0f 555
9baba81b
SP
556 default:
557 return false;
558 }
559}
560
561/* Associate CHREC to SCALAR. */
562
563static void
a213b219 564set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
9baba81b
SP
565{
566 tree *scalar_info;
b8698a0f 567
9baba81b
SP
568 if (TREE_CODE (scalar) != SSA_NAME)
569 return;
570
a213b219 571 scalar_info = find_var_scev_info (instantiated_below, scalar);
b8698a0f 572
9baba81b
SP
573 if (dump_file)
574 {
dfedbe40 575 if (dump_flags & TDF_SCEV)
9baba81b
SP
576 {
577 fprintf (dump_file, "(set_scalar_evolution \n");
a213b219
SP
578 fprintf (dump_file, " instantiated_below = %d \n",
579 instantiated_below->index);
9baba81b
SP
580 fprintf (dump_file, " (scalar = ");
581 print_generic_expr (dump_file, scalar, 0);
582 fprintf (dump_file, ")\n (scalar_evolution = ");
583 print_generic_expr (dump_file, chrec, 0);
584 fprintf (dump_file, "))\n");
585 }
586 if (dump_flags & TDF_STATS)
587 nb_set_scev++;
588 }
b8698a0f 589
9baba81b
SP
590 *scalar_info = chrec;
591}
592
a213b219
SP
593/* Retrieve the chrec associated to SCALAR instantiated below
594 INSTANTIATED_BELOW block. */
9baba81b
SP
595
596static tree
a213b219 597get_scalar_evolution (basic_block instantiated_below, tree scalar)
9baba81b
SP
598{
599 tree res;
b8698a0f 600
9baba81b
SP
601 if (dump_file)
602 {
dfedbe40 603 if (dump_flags & TDF_SCEV)
9baba81b
SP
604 {
605 fprintf (dump_file, "(get_scalar_evolution \n");
606 fprintf (dump_file, " (scalar = ");
607 print_generic_expr (dump_file, scalar, 0);
608 fprintf (dump_file, ")\n");
609 }
610 if (dump_flags & TDF_STATS)
611 nb_get_scev++;
612 }
b8698a0f 613
9baba81b
SP
614 switch (TREE_CODE (scalar))
615 {
616 case SSA_NAME:
a213b219 617 res = *find_var_scev_info (instantiated_below, scalar);
9baba81b
SP
618 break;
619
620 case REAL_CST:
325217ed 621 case FIXED_CST:
9baba81b
SP
622 case INTEGER_CST:
623 res = scalar;
624 break;
625
626 default:
627 res = chrec_not_analyzed_yet;
628 break;
629 }
b8698a0f 630
dfedbe40 631 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
632 {
633 fprintf (dump_file, " (scalar_evolution = ");
634 print_generic_expr (dump_file, res, 0);
635 fprintf (dump_file, "))\n");
636 }
b8698a0f 637
9baba81b
SP
638 return res;
639}
640
641/* Helper function for add_to_evolution. Returns the evolution
642 function for an assignment of the form "a = b + c", where "a" and
643 "b" are on the strongly connected component. CHREC_BEFORE is the
644 information that we already have collected up to this point.
b8698a0f
L
645 TO_ADD is the evolution of "c".
646
9baba81b
SP
647 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
648 evolution the expression TO_ADD, otherwise construct an evolution
649 part for this loop. */
650
651static tree
e2157b49 652add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
726a989a 653 gimple at_stmt)
9baba81b 654{
e2157b49 655 tree type, left, right;
677cc14d 656 struct loop *loop = get_loop (loop_nb), *chloop;
e2157b49 657
9baba81b
SP
658 switch (TREE_CODE (chrec_before))
659 {
660 case POLYNOMIAL_CHREC:
677cc14d
ZD
661 chloop = get_chrec_loop (chrec_before);
662 if (chloop == loop
663 || flow_loop_nested_p (chloop, loop))
9baba81b
SP
664 {
665 unsigned var;
e2157b49
SP
666
667 type = chrec_type (chrec_before);
b8698a0f 668
9baba81b 669 /* When there is no evolution part in this loop, build it. */
677cc14d 670 if (chloop != loop)
9baba81b
SP
671 {
672 var = loop_nb;
673 left = chrec_before;
7e0923cd
SP
674 right = SCALAR_FLOAT_TYPE_P (type)
675 ? build_real (type, dconst0)
676 : build_int_cst (type, 0);
9baba81b
SP
677 }
678 else
679 {
680 var = CHREC_VARIABLE (chrec_before);
681 left = CHREC_LEFT (chrec_before);
682 right = CHREC_RIGHT (chrec_before);
683 }
684
e2157b49 685 to_add = chrec_convert (type, to_add, at_stmt);
5be014d5
AP
686 right = chrec_convert_rhs (type, right, at_stmt);
687 right = chrec_fold_plus (chrec_type (right), right, to_add);
e2157b49 688 return build_polynomial_chrec (var, left, right);
9baba81b
SP
689 }
690 else
e2157b49 691 {
677cc14d
ZD
692 gcc_assert (flow_loop_nested_p (loop, chloop));
693
e2157b49
SP
694 /* Search the evolution in LOOP_NB. */
695 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
696 to_add, at_stmt);
697 right = CHREC_RIGHT (chrec_before);
5be014d5 698 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
e2157b49
SP
699 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
700 left, right);
701 }
b8698a0f 702
9baba81b
SP
703 default:
704 /* These nodes do not depend on a loop. */
705 if (chrec_before == chrec_dont_know)
706 return chrec_dont_know;
e2157b49
SP
707
708 left = chrec_before;
5be014d5 709 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
e2157b49 710 return build_polynomial_chrec (loop_nb, left, right);
9baba81b
SP
711 }
712}
713
714/* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
b8698a0f
L
715 of LOOP_NB.
716
9baba81b
SP
717 Description (provided for completeness, for those who read code in
718 a plane, and for my poor 62 bytes brain that would have forgotten
719 all this in the next two or three months):
b8698a0f 720
9baba81b
SP
721 The algorithm of translation of programs from the SSA representation
722 into the chrecs syntax is based on a pattern matching. After having
723 reconstructed the overall tree expression for a loop, there are only
724 two cases that can arise:
b8698a0f 725
9baba81b
SP
726 1. a = loop-phi (init, a + expr)
727 2. a = loop-phi (init, expr)
b8698a0f 728
9baba81b
SP
729 where EXPR is either a scalar constant with respect to the analyzed
730 loop (this is a degree 0 polynomial), or an expression containing
731 other loop-phi definitions (these are higher degree polynomials).
b8698a0f 732
9baba81b 733 Examples:
b8698a0f
L
734
735 1.
9baba81b
SP
736 | init = ...
737 | loop_1
738 | a = phi (init, a + 5)
739 | endloop
b8698a0f
L
740
741 2.
9baba81b
SP
742 | inita = ...
743 | initb = ...
744 | loop_1
745 | a = phi (inita, 2 * b + 3)
746 | b = phi (initb, b + 1)
747 | endloop
b8698a0f
L
748
749 For the first case, the semantics of the SSA representation is:
750
9baba81b 751 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
b8698a0f 752
9baba81b
SP
753 that is, there is a loop index "x" that determines the scalar value
754 of the variable during the loop execution. During the first
755 iteration, the value is that of the initial condition INIT, while
756 during the subsequent iterations, it is the sum of the initial
757 condition with the sum of all the values of EXPR from the initial
b8698a0f
L
758 iteration to the before last considered iteration.
759
9baba81b 760 For the second case, the semantics of the SSA program is:
b8698a0f 761
9baba81b
SP
762 | a (x) = init, if x = 0;
763 | expr (x - 1), otherwise.
b8698a0f 764
9baba81b 765 The second case corresponds to the PEELED_CHREC, whose syntax is
b8698a0f
L
766 close to the syntax of a loop-phi-node:
767
9baba81b 768 | phi (init, expr) vs. (init, expr)_x
b8698a0f 769
9baba81b 770 The proof of the translation algorithm for the first case is a
b8698a0f
L
771 proof by structural induction based on the degree of EXPR.
772
9baba81b
SP
773 Degree 0:
774 When EXPR is a constant with respect to the analyzed loop, or in
775 other words when EXPR is a polynomial of degree 0, the evolution of
776 the variable A in the loop is an affine function with an initial
777 condition INIT, and a step EXPR. In order to show this, we start
778 from the semantics of the SSA representation:
b8698a0f 779
9baba81b 780 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
b8698a0f 781
9baba81b 782 and since "expr (j)" is a constant with respect to "j",
b8698a0f
L
783
784 f (x) = init + x * expr
785
9baba81b
SP
786 Finally, based on the semantics of the pure sum chrecs, by
787 identification we get the corresponding chrecs syntax:
b8698a0f
L
788
789 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
9baba81b 790 f (x) -> {init, +, expr}_x
b8698a0f 791
9baba81b
SP
792 Higher degree:
793 Suppose that EXPR is a polynomial of degree N with respect to the
794 analyzed loop_x for which we have already determined that it is
795 written under the chrecs syntax:
b8698a0f 796
9baba81b 797 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
b8698a0f 798
9baba81b 799 We start from the semantics of the SSA program:
b8698a0f 800
9baba81b
SP
801 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
802 |
b8698a0f 803 | f (x) = init + \sum_{j = 0}^{x - 1}
9baba81b
SP
804 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
805 |
b8698a0f
L
806 | f (x) = init + \sum_{j = 0}^{x - 1}
807 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
9baba81b 808 |
b8698a0f
L
809 | f (x) = init + \sum_{k = 0}^{n - 1}
810 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
9baba81b 811 |
b8698a0f
L
812 | f (x) = init + \sum_{k = 0}^{n - 1}
813 | (b_k * \binom{x}{k + 1})
9baba81b 814 |
b8698a0f
L
815 | f (x) = init + b_0 * \binom{x}{1} + ...
816 | + b_{n-1} * \binom{x}{n}
9baba81b 817 |
b8698a0f
L
818 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
819 | + b_{n-1} * \binom{x}{n}
9baba81b 820 |
b8698a0f 821
9baba81b 822 And finally from the definition of the chrecs syntax, we identify:
b8698a0f
L
823 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
824
9baba81b
SP
825 This shows the mechanism that stands behind the add_to_evolution
826 function. An important point is that the use of symbolic
827 parameters avoids the need of an analysis schedule.
b8698a0f 828
9baba81b 829 Example:
b8698a0f 830
9baba81b
SP
831 | inita = ...
832 | initb = ...
b8698a0f 833 | loop_1
9baba81b
SP
834 | a = phi (inita, a + 2 + b)
835 | b = phi (initb, b + 1)
836 | endloop
b8698a0f 837
9baba81b 838 When analyzing "a", the algorithm keeps "b" symbolically:
b8698a0f 839
9baba81b 840 | a -> {inita, +, 2 + b}_1
b8698a0f 841
9baba81b 842 Then, after instantiation, the analyzer ends on the evolution:
b8698a0f 843
9baba81b
SP
844 | a -> {inita, +, 2 + initb, +, 1}_1
845
846*/
847
b8698a0f 848static tree
e2157b49 849add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
726a989a 850 tree to_add, gimple at_stmt)
9baba81b
SP
851{
852 tree type = chrec_type (to_add);
853 tree res = NULL_TREE;
b8698a0f 854
9baba81b
SP
855 if (to_add == NULL_TREE)
856 return chrec_before;
b8698a0f 857
9baba81b
SP
858 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
859 instantiated at this point. */
860 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
861 /* This should not happen. */
862 return chrec_dont_know;
b8698a0f 863
dfedbe40 864 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
865 {
866 fprintf (dump_file, "(add_to_evolution \n");
867 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
868 fprintf (dump_file, " (chrec_before = ");
869 print_generic_expr (dump_file, chrec_before, 0);
870 fprintf (dump_file, ")\n (to_add = ");
871 print_generic_expr (dump_file, to_add, 0);
872 fprintf (dump_file, ")\n");
873 }
874
875 if (code == MINUS_EXPR)
9d2b0e12
VR
876 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
877 ? build_real (type, dconstm1)
878 : build_int_cst_type (type, -1));
9baba81b 879
e2157b49 880 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
9baba81b 881
dfedbe40 882 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
883 {
884 fprintf (dump_file, " (res = ");
885 print_generic_expr (dump_file, res, 0);
886 fprintf (dump_file, "))\n");
887 }
888
889 return res;
890}
891
9baba81b
SP
892\f
893
894/* This section selects the loops that will be good candidates for the
895 scalar evolution analysis. For the moment, greedily select all the
896 loop nests we could analyze. */
897
9baba81b
SP
898/* For a loop with a single exit edge, return the COND_EXPR that
899 guards the exit edge. If the expression is too difficult to
900 analyze, then give up. */
901
b8698a0f 902gimple
22ea9ec0 903get_loop_exit_condition (const struct loop *loop)
9baba81b 904{
726a989a 905 gimple res = NULL;
ac8f6c69 906 edge exit_edge = single_exit (loop);
b8698a0f 907
dfedbe40 908 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b 909 fprintf (dump_file, "(get_loop_exit_condition \n ");
b8698a0f 910
82b85a85 911 if (exit_edge)
9baba81b 912 {
726a989a 913 gimple stmt;
b8698a0f 914
726a989a
RB
915 stmt = last_stmt (exit_edge->src);
916 if (gimple_code (stmt) == GIMPLE_COND)
917 res = stmt;
9baba81b 918 }
b8698a0f 919
dfedbe40 920 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b 921 {
726a989a 922 print_gimple_stmt (dump_file, res, 0, 0);
9baba81b
SP
923 fprintf (dump_file, ")\n");
924 }
b8698a0f 925
9baba81b
SP
926 return res;
927}
928
929/* Recursively determine and enqueue the exit conditions for a loop. */
930
b8698a0f
L
931static void
932get_exit_conditions_rec (struct loop *loop,
726a989a 933 VEC(gimple,heap) **exit_conditions)
9baba81b
SP
934{
935 if (!loop)
936 return;
b8698a0f 937
9baba81b
SP
938 /* Recurse on the inner loops, then on the next (sibling) loops. */
939 get_exit_conditions_rec (loop->inner, exit_conditions);
940 get_exit_conditions_rec (loop->next, exit_conditions);
b8698a0f 941
ac8f6c69 942 if (single_exit (loop))
9baba81b 943 {
726a989a 944 gimple loop_condition = get_loop_exit_condition (loop);
b8698a0f 945
9baba81b 946 if (loop_condition)
726a989a 947 VEC_safe_push (gimple, heap, *exit_conditions, loop_condition);
9baba81b
SP
948 }
949}
950
951/* Select the candidate loop nests for the analysis. This function
471854f8 952 initializes the EXIT_CONDITIONS array. */
9baba81b
SP
953
954static void
726a989a 955select_loops_exit_conditions (VEC(gimple,heap) **exit_conditions)
9baba81b 956{
d73be268 957 struct loop *function_body = current_loops->tree_root;
b8698a0f 958
9baba81b
SP
959 get_exit_conditions_rec (function_body->inner, exit_conditions);
960}
961
962\f
963/* Depth first search algorithm. */
964
c59dabbe
SP
965typedef enum t_bool {
966 t_false,
967 t_true,
968 t_dont_know
969} t_bool;
970
971
726a989a 972static t_bool follow_ssa_edge (struct loop *loop, gimple, gimple, tree *, int);
9baba81b 973
726a989a 974/* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
9baba81b
SP
975 Return true if the strongly connected component has been found. */
976
c59dabbe 977static t_bool
726a989a
RB
978follow_ssa_edge_binary (struct loop *loop, gimple at_stmt,
979 tree type, tree rhs0, enum tree_code code, tree rhs1,
980 gimple halting_phi, tree *evolution_of_loop, int limit)
9baba81b 981{
c59dabbe 982 t_bool res = t_false;
b2a93c0a 983 tree evol;
726a989a 984
5be014d5 985 switch (code)
9baba81b 986 {
5be014d5 987 case POINTER_PLUS_EXPR:
9baba81b 988 case PLUS_EXPR:
9baba81b
SP
989 if (TREE_CODE (rhs0) == SSA_NAME)
990 {
991 if (TREE_CODE (rhs1) == SSA_NAME)
992 {
b8698a0f 993 /* Match an assignment under the form:
9baba81b 994 "a = b + c". */
b8698a0f 995
9e824336
ZD
996 /* We want only assignments of form "name + name" contribute to
997 LIMIT, as the other cases do not necessarily contribute to
998 the complexity of the expression. */
999 limit++;
1000
b2a93c0a 1001 evol = *evolution_of_loop;
b8698a0f 1002 res = follow_ssa_edge
726a989a 1003 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
b8698a0f 1004
c59dabbe 1005 if (res == t_true)
b8698a0f
L
1006 *evolution_of_loop = add_to_evolution
1007 (loop->num,
1008 chrec_convert (type, evol, at_stmt),
5be014d5 1009 code, rhs1, at_stmt);
b8698a0f 1010
c59dabbe 1011 else if (res == t_false)
9baba81b 1012 {
b8698a0f
L
1013 res = follow_ssa_edge
1014 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
c59dabbe 1015 evolution_of_loop, limit);
b8698a0f 1016
c59dabbe 1017 if (res == t_true)
b8698a0f
L
1018 *evolution_of_loop = add_to_evolution
1019 (loop->num,
1020 chrec_convert (type, *evolution_of_loop, at_stmt),
5be014d5 1021 code, rhs0, at_stmt);
c59dabbe
SP
1022
1023 else if (res == t_dont_know)
1024 *evolution_of_loop = chrec_dont_know;
9baba81b 1025 }
c59dabbe
SP
1026
1027 else if (res == t_dont_know)
1028 *evolution_of_loop = chrec_dont_know;
9baba81b 1029 }
b8698a0f 1030
9baba81b
SP
1031 else
1032 {
b8698a0f 1033 /* Match an assignment under the form:
9baba81b 1034 "a = b + ...". */
b8698a0f
L
1035 res = follow_ssa_edge
1036 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
c59dabbe
SP
1037 evolution_of_loop, limit);
1038 if (res == t_true)
b8698a0f 1039 *evolution_of_loop = add_to_evolution
726a989a 1040 (loop->num, chrec_convert (type, *evolution_of_loop,
1e8552eb 1041 at_stmt),
5be014d5 1042 code, rhs1, at_stmt);
c59dabbe
SP
1043
1044 else if (res == t_dont_know)
1045 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
1046 }
1047 }
b8698a0f 1048
9baba81b
SP
1049 else if (TREE_CODE (rhs1) == SSA_NAME)
1050 {
b8698a0f 1051 /* Match an assignment under the form:
9baba81b 1052 "a = ... + c". */
b8698a0f
L
1053 res = follow_ssa_edge
1054 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
c59dabbe
SP
1055 evolution_of_loop, limit);
1056 if (res == t_true)
b8698a0f 1057 *evolution_of_loop = add_to_evolution
726a989a 1058 (loop->num, chrec_convert (type, *evolution_of_loop,
1e8552eb 1059 at_stmt),
5be014d5 1060 code, rhs0, at_stmt);
c59dabbe
SP
1061
1062 else if (res == t_dont_know)
1063 *evolution_of_loop = chrec_dont_know;
9baba81b
SP
1064 }
1065
1066 else
b8698a0f 1067 /* Otherwise, match an assignment under the form:
9baba81b
SP
1068 "a = ... + ...". */
1069 /* And there is nothing to do. */
c59dabbe 1070 res = t_false;
9baba81b 1071 break;
b8698a0f 1072
9baba81b
SP
1073 case MINUS_EXPR:
1074 /* This case is under the form "opnd0 = rhs0 - rhs1". */
9baba81b 1075 if (TREE_CODE (rhs0) == SSA_NAME)
9baba81b 1076 {
b8698a0f 1077 /* Match an assignment under the form:
f8e9d512 1078 "a = b - ...". */
9e824336
ZD
1079
1080 /* We want only assignments of form "name - name" contribute to
1081 LIMIT, as the other cases do not necessarily contribute to
1082 the complexity of the expression. */
1083 if (TREE_CODE (rhs1) == SSA_NAME)
1084 limit++;
1085
b8698a0f 1086 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
c59dabbe
SP
1087 evolution_of_loop, limit);
1088 if (res == t_true)
b8698a0f 1089 *evolution_of_loop = add_to_evolution
726a989a 1090 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
e2157b49 1091 MINUS_EXPR, rhs1, at_stmt);
c59dabbe
SP
1092
1093 else if (res == t_dont_know)
1094 *evolution_of_loop = chrec_dont_know;
9baba81b 1095 }
9baba81b 1096 else
b8698a0f 1097 /* Otherwise, match an assignment under the form:
9baba81b
SP
1098 "a = ... - ...". */
1099 /* And there is nothing to do. */
c59dabbe 1100 res = t_false;
9baba81b 1101 break;
726a989a
RB
1102
1103 default:
1104 res = t_false;
1105 }
1106
1107 return res;
1108}
b8698a0f 1109
726a989a
RB
1110/* Follow the ssa edge into the expression EXPR.
1111 Return true if the strongly connected component has been found. */
1112
1113static t_bool
b8698a0f 1114follow_ssa_edge_expr (struct loop *loop, gimple at_stmt, tree expr,
726a989a
RB
1115 gimple halting_phi, tree *evolution_of_loop, int limit)
1116{
5aefc6a0
EB
1117 enum tree_code code = TREE_CODE (expr);
1118 tree type = TREE_TYPE (expr), rhs0, rhs1;
1119 t_bool res;
1120
726a989a 1121 /* The EXPR is one of the following cases:
b8698a0f 1122 - an SSA_NAME,
726a989a 1123 - an INTEGER_CST,
b8698a0f
L
1124 - a PLUS_EXPR,
1125 - a POINTER_PLUS_EXPR,
726a989a
RB
1126 - a MINUS_EXPR,
1127 - an ASSERT_EXPR,
1128 - other cases are not yet handled. */
5aefc6a0 1129
726a989a
RB
1130 switch (code)
1131 {
5aefc6a0 1132 CASE_CONVERT:
726a989a
RB
1133 /* This assignment is under the form "a_1 = (cast) rhs. */
1134 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1135 halting_phi, evolution_of_loop, limit);
1136 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1137 break;
1138
1139 case INTEGER_CST:
1140 /* This assignment is under the form "a_1 = 7". */
1141 res = t_false;
1142 break;
5aefc6a0 1143
726a989a
RB
1144 case SSA_NAME:
1145 /* This assignment is under the form: "a_1 = b_2". */
b8698a0f 1146 res = follow_ssa_edge
726a989a
RB
1147 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1148 break;
5aefc6a0 1149
726a989a
RB
1150 case POINTER_PLUS_EXPR:
1151 case PLUS_EXPR:
1152 case MINUS_EXPR:
1153 /* This case is under the form "rhs0 +- rhs1". */
1154 rhs0 = TREE_OPERAND (expr, 0);
1155 rhs1 = TREE_OPERAND (expr, 1);
5aefc6a0
EB
1156 type = TREE_TYPE (rhs0);
1157 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1158 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1159 res = follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1160 halting_phi, evolution_of_loop, limit);
1161 break;
726a989a 1162
70f34814
RG
1163 case ADDR_EXPR:
1164 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1165 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
1166 {
1167 expr = TREE_OPERAND (expr, 0);
1168 rhs0 = TREE_OPERAND (expr, 0);
1169 rhs1 = TREE_OPERAND (expr, 1);
1170 type = TREE_TYPE (rhs0);
1171 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1172 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1173 res = follow_ssa_edge_binary (loop, at_stmt, type,
1174 rhs0, POINTER_PLUS_EXPR, rhs1,
1175 halting_phi, evolution_of_loop, limit);
1176 }
1177 else
1178 res = t_false;
1179 break;
1180
0bca51f0 1181 case ASSERT_EXPR:
5aefc6a0
EB
1182 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1183 It must be handled as a copy assignment of the form a_1 = a_2. */
1184 rhs0 = ASSERT_EXPR_VAR (expr);
1185 if (TREE_CODE (rhs0) == SSA_NAME)
1186 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0),
1187 halting_phi, evolution_of_loop, limit);
1188 else
1189 res = t_false;
1190 break;
0bca51f0 1191
9baba81b 1192 default:
c59dabbe 1193 res = t_false;
9baba81b
SP
1194 break;
1195 }
5aefc6a0 1196
9baba81b
SP
1197 return res;
1198}
1199
726a989a
RB
1200/* Follow the ssa edge into the right hand side of an assignment STMT.
1201 Return true if the strongly connected component has been found. */
1202
1203static t_bool
1204follow_ssa_edge_in_rhs (struct loop *loop, gimple stmt,
1205 gimple halting_phi, tree *evolution_of_loop, int limit)
1206{
726a989a 1207 enum tree_code code = gimple_assign_rhs_code (stmt);
5aefc6a0
EB
1208 tree type = gimple_expr_type (stmt), rhs1, rhs2;
1209 t_bool res;
726a989a 1210
5aefc6a0 1211 switch (code)
726a989a 1212 {
5aefc6a0
EB
1213 CASE_CONVERT:
1214 /* This assignment is under the form "a_1 = (cast) rhs. */
1215 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1216 halting_phi, evolution_of_loop, limit);
1217 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1218 break;
1219
1220 case POINTER_PLUS_EXPR:
1221 case PLUS_EXPR:
1222 case MINUS_EXPR:
1223 rhs1 = gimple_assign_rhs1 (stmt);
1224 rhs2 = gimple_assign_rhs2 (stmt);
1225 type = TREE_TYPE (rhs1);
1226 res = follow_ssa_edge_binary (loop, stmt, type, rhs1, code, rhs2,
218d1c24 1227 halting_phi, evolution_of_loop, limit);
5aefc6a0 1228 break;
218d1c24 1229
726a989a 1230 default:
5aefc6a0
EB
1231 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1232 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1233 halting_phi, evolution_of_loop, limit);
1234 else
1235 res = t_false;
1236 break;
726a989a 1237 }
5aefc6a0
EB
1238
1239 return res;
726a989a
RB
1240}
1241
9baba81b
SP
1242/* Checks whether the I-th argument of a PHI comes from a backedge. */
1243
1244static bool
726a989a 1245backedge_phi_arg_p (gimple phi, int i)
9baba81b 1246{
726a989a 1247 const_edge e = gimple_phi_arg_edge (phi, i);
9baba81b
SP
1248
1249 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1250 about updating it anywhere, and this should work as well most of the
1251 time. */
1252 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1253 return true;
1254
1255 return false;
1256}
1257
1258/* Helper function for one branch of the condition-phi-node. Return
1259 true if the strongly connected component has been found following
1260 this path. */
1261
c59dabbe 1262static inline t_bool
9baba81b 1263follow_ssa_edge_in_condition_phi_branch (int i,
b8698a0f
L
1264 struct loop *loop,
1265 gimple condition_phi,
726a989a 1266 gimple halting_phi,
9baba81b 1267 tree *evolution_of_branch,
c59dabbe 1268 tree init_cond, int limit)
9baba81b
SP
1269{
1270 tree branch = PHI_ARG_DEF (condition_phi, i);
1271 *evolution_of_branch = chrec_dont_know;
1272
1273 /* Do not follow back edges (they must belong to an irreducible loop, which
1274 we really do not want to worry about). */
1275 if (backedge_phi_arg_p (condition_phi, i))
c59dabbe 1276 return t_false;
9baba81b
SP
1277
1278 if (TREE_CODE (branch) == SSA_NAME)
1279 {
1280 *evolution_of_branch = init_cond;
b8698a0f 1281 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
c59dabbe 1282 evolution_of_branch, limit);
9baba81b
SP
1283 }
1284
b8698a0f 1285 /* This case occurs when one of the condition branches sets
89dbed81 1286 the variable to a constant: i.e. a phi-node like
b8698a0f
L
1287 "a_2 = PHI <a_7(5), 2(6)>;".
1288
1289 FIXME: This case have to be refined correctly:
9baba81b
SP
1290 in some cases it is possible to say something better than
1291 chrec_dont_know, for example using a wrap-around notation. */
c59dabbe 1292 return t_false;
9baba81b
SP
1293}
1294
1295/* This function merges the branches of a condition-phi-node in a
1296 loop. */
1297
c59dabbe 1298static t_bool
9baba81b 1299follow_ssa_edge_in_condition_phi (struct loop *loop,
b8698a0f
L
1300 gimple condition_phi,
1301 gimple halting_phi,
c59dabbe 1302 tree *evolution_of_loop, int limit)
9baba81b 1303{
726a989a 1304 int i, n;
9baba81b
SP
1305 tree init = *evolution_of_loop;
1306 tree evolution_of_branch;
c59dabbe
SP
1307 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1308 halting_phi,
1309 &evolution_of_branch,
1310 init, limit);
1311 if (res == t_false || res == t_dont_know)
1312 return res;
9baba81b 1313
9baba81b
SP
1314 *evolution_of_loop = evolution_of_branch;
1315
726a989a 1316 n = gimple_phi_num_args (condition_phi);
726a989a 1317 for (i = 1; i < n; i++)
9baba81b 1318 {
e0afb98a
SP
1319 /* Quickly give up when the evolution of one of the branches is
1320 not known. */
1321 if (*evolution_of_loop == chrec_dont_know)
c59dabbe 1322 return t_true;
e0afb98a 1323
788d3075
RG
1324 /* Increase the limit by the PHI argument number to avoid exponential
1325 time and memory complexity. */
c59dabbe
SP
1326 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1327 halting_phi,
1328 &evolution_of_branch,
788d3075 1329 init, limit + i);
c59dabbe
SP
1330 if (res == t_false || res == t_dont_know)
1331 return res;
9baba81b
SP
1332
1333 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1334 evolution_of_branch);
1335 }
b8698a0f 1336
c59dabbe 1337 return t_true;
9baba81b
SP
1338}
1339
1340/* Follow an SSA edge in an inner loop. It computes the overall
1341 effect of the loop, and following the symbolic initial conditions,
1342 it follows the edges in the parent loop. The inner loop is
1343 considered as a single statement. */
1344
c59dabbe 1345static t_bool
9baba81b 1346follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
b8698a0f 1347 gimple loop_phi_node,
726a989a 1348 gimple halting_phi,
c59dabbe 1349 tree *evolution_of_loop, int limit)
9baba81b
SP
1350{
1351 struct loop *loop = loop_containing_stmt (loop_phi_node);
1352 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1353
1354 /* Sometimes, the inner loop is too difficult to analyze, and the
1355 result of the analysis is a symbolic parameter. */
1356 if (ev == PHI_RESULT (loop_phi_node))
1357 {
c59dabbe 1358 t_bool res = t_false;
726a989a 1359 int i, n = gimple_phi_num_args (loop_phi_node);
9baba81b 1360
726a989a 1361 for (i = 0; i < n; i++)
9baba81b
SP
1362 {
1363 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1364 basic_block bb;
1365
1366 /* Follow the edges that exit the inner loop. */
726a989a 1367 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
9baba81b 1368 if (!flow_bb_inside_loop_p (loop, bb))
726a989a
RB
1369 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1370 arg, halting_phi,
1371 evolution_of_loop, limit);
c59dabbe
SP
1372 if (res == t_true)
1373 break;
9baba81b
SP
1374 }
1375
1376 /* If the path crosses this loop-phi, give up. */
c59dabbe 1377 if (res == t_true)
9baba81b
SP
1378 *evolution_of_loop = chrec_dont_know;
1379
1380 return res;
1381 }
1382
1383 /* Otherwise, compute the overall effect of the inner loop. */
1384 ev = compute_overall_effect_of_inner_loop (loop, ev);
726a989a
RB
1385 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1386 evolution_of_loop, limit);
9baba81b
SP
1387}
1388
1389/* Follow an SSA edge from a loop-phi-node to itself, constructing a
1390 path that is analyzed on the return walk. */
1391
c59dabbe 1392static t_bool
726a989a 1393follow_ssa_edge (struct loop *loop, gimple def, gimple halting_phi,
c59dabbe 1394 tree *evolution_of_loop, int limit)
9baba81b
SP
1395{
1396 struct loop *def_loop;
b8698a0f 1397
726a989a 1398 if (gimple_nop_p (def))
c59dabbe 1399 return t_false;
b8698a0f 1400
c59dabbe 1401 /* Give up if the path is longer than the MAX that we allow. */
14dd9aab 1402 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_COMPLEXITY))
c59dabbe 1403 return t_dont_know;
b8698a0f 1404
9baba81b 1405 def_loop = loop_containing_stmt (def);
b8698a0f 1406
726a989a 1407 switch (gimple_code (def))
9baba81b 1408 {
726a989a 1409 case GIMPLE_PHI:
9baba81b
SP
1410 if (!loop_phi_node_p (def))
1411 /* DEF is a condition-phi-node. Follow the branches, and
1412 record their evolutions. Finally, merge the collected
1413 information and set the approximation to the main
1414 variable. */
b8698a0f 1415 return follow_ssa_edge_in_condition_phi
c59dabbe 1416 (loop, def, halting_phi, evolution_of_loop, limit);
9baba81b
SP
1417
1418 /* When the analyzed phi is the halting_phi, the
1419 depth-first search is over: we have found a path from
1420 the halting_phi to itself in the loop. */
1421 if (def == halting_phi)
c59dabbe 1422 return t_true;
b8698a0f 1423
9baba81b 1424 /* Otherwise, the evolution of the HALTING_PHI depends
89dbed81 1425 on the evolution of another loop-phi-node, i.e. the
9baba81b
SP
1426 evolution function is a higher degree polynomial. */
1427 if (def_loop == loop)
c59dabbe 1428 return t_false;
b8698a0f 1429
9baba81b
SP
1430 /* Inner loop. */
1431 if (flow_loop_nested_p (loop, def_loop))
b8698a0f 1432 return follow_ssa_edge_inner_loop_phi
9e824336 1433 (loop, def, halting_phi, evolution_of_loop, limit + 1);
9baba81b
SP
1434
1435 /* Outer loop. */
c59dabbe 1436 return t_false;
9baba81b 1437
726a989a 1438 case GIMPLE_ASSIGN:
b8698a0f 1439 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
c59dabbe 1440 evolution_of_loop, limit);
b8698a0f 1441
9baba81b
SP
1442 default:
1443 /* At this level of abstraction, the program is just a set
726a989a 1444 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
9baba81b 1445 other node to be handled. */
c59dabbe 1446 return t_false;
9baba81b
SP
1447 }
1448}
1449
1450\f
1451
1452/* Given a LOOP_PHI_NODE, this function determines the evolution
1453 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1454
1455static tree
b8698a0f 1456analyze_evolution_in_loop (gimple loop_phi_node,
9baba81b
SP
1457 tree init_cond)
1458{
726a989a 1459 int i, n = gimple_phi_num_args (loop_phi_node);
9baba81b
SP
1460 tree evolution_function = chrec_not_analyzed_yet;
1461 struct loop *loop = loop_containing_stmt (loop_phi_node);
1462 basic_block bb;
b8698a0f 1463
dfedbe40 1464 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1465 {
1466 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1467 fprintf (dump_file, " (loop_phi_node = ");
726a989a 1468 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
9baba81b
SP
1469 fprintf (dump_file, ")\n");
1470 }
b8698a0f 1471
726a989a 1472 for (i = 0; i < n; i++)
9baba81b
SP
1473 {
1474 tree arg = PHI_ARG_DEF (loop_phi_node, i);
726a989a
RB
1475 gimple ssa_chain;
1476 tree ev_fn;
874caa00 1477 t_bool res;
9baba81b
SP
1478
1479 /* Select the edges that enter the loop body. */
726a989a 1480 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
9baba81b
SP
1481 if (!flow_bb_inside_loop_p (loop, bb))
1482 continue;
f29deac9 1483
9baba81b
SP
1484 if (TREE_CODE (arg) == SSA_NAME)
1485 {
f29deac9
SP
1486 bool val = false;
1487
9baba81b
SP
1488 ssa_chain = SSA_NAME_DEF_STMT (arg);
1489
1490 /* Pass in the initial condition to the follow edge function. */
1491 ev_fn = init_cond;
c59dabbe 1492 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
f29deac9
SP
1493
1494 /* If ev_fn has no evolution in the inner loop, and the
1495 init_cond is not equal to ev_fn, then we have an
1496 ambiguity between two possible values, as we cannot know
1497 the number of iterations at this point. */
1498 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1499 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1500 && !operand_equal_p (init_cond, ev_fn, 0))
1501 ev_fn = chrec_dont_know;
9baba81b
SP
1502 }
1503 else
874caa00 1504 res = t_false;
f29deac9 1505
9baba81b
SP
1506 /* When it is impossible to go back on the same
1507 loop_phi_node by following the ssa edges, the
89dbed81 1508 evolution is represented by a peeled chrec, i.e. the
9baba81b 1509 first iteration, EV_FN has the value INIT_COND, then
b8698a0f 1510 all the other iterations it has the value of ARG.
9baba81b 1511 For the moment, PEELED_CHREC nodes are not built. */
874caa00 1512 if (res != t_true)
9baba81b 1513 ev_fn = chrec_dont_know;
b8698a0f 1514
9baba81b 1515 /* When there are multiple back edges of the loop (which in fact never
8c27b7d4 1516 happens currently, but nevertheless), merge their evolutions. */
9baba81b
SP
1517 evolution_function = chrec_merge (evolution_function, ev_fn);
1518 }
b8698a0f 1519
dfedbe40 1520 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1521 {
1522 fprintf (dump_file, " (evolution_function = ");
1523 print_generic_expr (dump_file, evolution_function, 0);
1524 fprintf (dump_file, "))\n");
1525 }
b8698a0f 1526
9baba81b
SP
1527 return evolution_function;
1528}
1529
1530/* Given a loop-phi-node, return the initial conditions of the
1531 variable on entry of the loop. When the CCP has propagated
1532 constants into the loop-phi-node, the initial condition is
1533 instantiated, otherwise the initial condition is kept symbolic.
1534 This analyzer does not analyze the evolution outside the current
1535 loop, and leaves this task to the on-demand tree reconstructor. */
1536
b8698a0f 1537static tree
726a989a 1538analyze_initial_condition (gimple loop_phi_node)
9baba81b 1539{
726a989a 1540 int i, n;
9baba81b 1541 tree init_cond = chrec_not_analyzed_yet;
726a989a 1542 struct loop *loop = loop_containing_stmt (loop_phi_node);
b8698a0f 1543
dfedbe40 1544 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1545 {
1546 fprintf (dump_file, "(analyze_initial_condition \n");
1547 fprintf (dump_file, " (loop_phi_node = \n");
726a989a 1548 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
9baba81b
SP
1549 fprintf (dump_file, ")\n");
1550 }
b8698a0f 1551
726a989a
RB
1552 n = gimple_phi_num_args (loop_phi_node);
1553 for (i = 0; i < n; i++)
9baba81b
SP
1554 {
1555 tree branch = PHI_ARG_DEF (loop_phi_node, i);
726a989a 1556 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
b8698a0f 1557
9baba81b
SP
1558 /* When the branch is oriented to the loop's body, it does
1559 not contribute to the initial condition. */
1560 if (flow_bb_inside_loop_p (loop, bb))
1561 continue;
1562
1563 if (init_cond == chrec_not_analyzed_yet)
1564 {
1565 init_cond = branch;
1566 continue;
1567 }
1568
1569 if (TREE_CODE (branch) == SSA_NAME)
1570 {
1571 init_cond = chrec_dont_know;
1572 break;
1573 }
1574
1575 init_cond = chrec_merge (init_cond, branch);
1576 }
1577
1578 /* Ooops -- a loop without an entry??? */
1579 if (init_cond == chrec_not_analyzed_yet)
1580 init_cond = chrec_dont_know;
1581
bf1cbdc6
RG
1582 /* During early loop unrolling we do not have fully constant propagated IL.
1583 Handle degenerate PHIs here to not miss important unrollings. */
1584 if (TREE_CODE (init_cond) == SSA_NAME)
1585 {
1586 gimple def = SSA_NAME_DEF_STMT (init_cond);
1587 tree res;
1588 if (gimple_code (def) == GIMPLE_PHI
1589 && (res = degenerate_phi_result (def)) != NULL_TREE
1590 /* Only allow invariants here, otherwise we may break
1591 loop-closed SSA form. */
1592 && is_gimple_min_invariant (res))
1593 init_cond = res;
1594 }
1595
dfedbe40 1596 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1597 {
1598 fprintf (dump_file, " (init_cond = ");
1599 print_generic_expr (dump_file, init_cond, 0);
1600 fprintf (dump_file, "))\n");
1601 }
b8698a0f 1602
9baba81b
SP
1603 return init_cond;
1604}
1605
1606/* Analyze the scalar evolution for LOOP_PHI_NODE. */
1607
b8698a0f 1608static tree
726a989a 1609interpret_loop_phi (struct loop *loop, gimple loop_phi_node)
9baba81b
SP
1610{
1611 tree res;
1612 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1613 tree init_cond;
b8698a0f 1614
9baba81b
SP
1615 if (phi_loop != loop)
1616 {
1617 struct loop *subloop;
1618 tree evolution_fn = analyze_scalar_evolution
1619 (phi_loop, PHI_RESULT (loop_phi_node));
1620
1621 /* Dive one level deeper. */
9ba025a2 1622 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
9baba81b
SP
1623
1624 /* Interpret the subloop. */
1625 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1626 return res;
1627 }
1628
1629 /* Otherwise really interpret the loop phi. */
1630 init_cond = analyze_initial_condition (loop_phi_node);
1631 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1632
73c865fa
RG
1633 /* Verify we maintained the correct initial condition throughout
1634 possible conversions in the SSA chain. */
1635 if (res != chrec_dont_know)
1636 {
1637 tree new_init = res;
1638 if (CONVERT_EXPR_P (res)
1639 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
1640 new_init = fold_convert (TREE_TYPE (res),
1641 CHREC_LEFT (TREE_OPERAND (res, 0)));
1642 else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
1643 new_init = CHREC_LEFT (res);
1644 STRIP_USELESS_TYPE_CONVERSION (new_init);
eb723fa3
RG
1645 if (TREE_CODE (new_init) == POLYNOMIAL_CHREC
1646 || !operand_equal_p (init_cond, new_init, 0))
73c865fa
RG
1647 return chrec_dont_know;
1648 }
1649
9baba81b
SP
1650 return res;
1651}
1652
1653/* This function merges the branches of a condition-phi-node,
1654 contained in the outermost loop, and whose arguments are already
1655 analyzed. */
1656
1657static tree
726a989a 1658interpret_condition_phi (struct loop *loop, gimple condition_phi)
9baba81b 1659{
726a989a 1660 int i, n = gimple_phi_num_args (condition_phi);
9baba81b 1661 tree res = chrec_not_analyzed_yet;
b8698a0f 1662
726a989a 1663 for (i = 0; i < n; i++)
9baba81b
SP
1664 {
1665 tree branch_chrec;
b8698a0f 1666
9baba81b
SP
1667 if (backedge_phi_arg_p (condition_phi, i))
1668 {
1669 res = chrec_dont_know;
1670 break;
1671 }
1672
1673 branch_chrec = analyze_scalar_evolution
1674 (loop, PHI_ARG_DEF (condition_phi, i));
b8698a0f 1675
9baba81b
SP
1676 res = chrec_merge (res, branch_chrec);
1677 }
1678
1679 return res;
1680}
1681
726a989a 1682/* Interpret the operation RHS1 OP RHS2. If we didn't
29836d07 1683 analyze this node before, follow the definitions until ending
726a989a 1684 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
9baba81b
SP
1685 return path, this function propagates evolutions (ala constant copy
1686 propagation). OPND1 is not a GIMPLE expression because we could
1687 analyze the effect of an inner loop: see interpret_loop_phi. */
1688
1689static tree
726a989a
RB
1690interpret_rhs_expr (struct loop *loop, gimple at_stmt,
1691 tree type, tree rhs1, enum tree_code code, tree rhs2)
9baba81b 1692{
726a989a
RB
1693 tree res, chrec1, chrec2;
1694
1695 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1696 {
1697 if (is_gimple_min_invariant (rhs1))
1698 return chrec_convert (type, rhs1, at_stmt);
1699
1700 if (code == SSA_NAME)
1701 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1702 at_stmt);
1e8552eb 1703
726a989a
RB
1704 if (code == ASSERT_EXPR)
1705 {
1706 rhs1 = ASSERT_EXPR_VAR (rhs1);
1707 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1708 at_stmt);
1709 }
726a989a 1710 }
1e8552eb 1711
726a989a 1712 switch (code)
9baba81b 1713 {
6a02a719
SP
1714 case ADDR_EXPR:
1715 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1716 if (TREE_CODE (TREE_OPERAND (rhs1, 0)) != MEM_REF)
1717 {
1718 res = chrec_dont_know;
1719 break;
1720 }
1721
1722 rhs2 = TREE_OPERAND (TREE_OPERAND (rhs1, 0), 1);
1723 rhs1 = TREE_OPERAND (TREE_OPERAND (rhs1, 0), 0);
1724 /* Fall through. */
1725
5be014d5 1726 case POINTER_PLUS_EXPR:
726a989a
RB
1727 chrec1 = analyze_scalar_evolution (loop, rhs1);
1728 chrec2 = analyze_scalar_evolution (loop, rhs2);
1729 chrec1 = chrec_convert (type, chrec1, at_stmt);
1730 chrec2 = chrec_convert (sizetype, chrec2, at_stmt);
1731 res = chrec_fold_plus (type, chrec1, chrec2);
5be014d5
AP
1732 break;
1733
9baba81b 1734 case PLUS_EXPR:
726a989a
RB
1735 chrec1 = analyze_scalar_evolution (loop, rhs1);
1736 chrec2 = analyze_scalar_evolution (loop, rhs2);
1737 chrec1 = chrec_convert (type, chrec1, at_stmt);
1738 chrec2 = chrec_convert (type, chrec2, at_stmt);
1739 res = chrec_fold_plus (type, chrec1, chrec2);
9baba81b 1740 break;
b8698a0f 1741
9baba81b 1742 case MINUS_EXPR:
726a989a
RB
1743 chrec1 = analyze_scalar_evolution (loop, rhs1);
1744 chrec2 = analyze_scalar_evolution (loop, rhs2);
1745 chrec1 = chrec_convert (type, chrec1, at_stmt);
1746 chrec2 = chrec_convert (type, chrec2, at_stmt);
1747 res = chrec_fold_minus (type, chrec1, chrec2);
9baba81b
SP
1748 break;
1749
1750 case NEGATE_EXPR:
726a989a
RB
1751 chrec1 = analyze_scalar_evolution (loop, rhs1);
1752 chrec1 = chrec_convert (type, chrec1, at_stmt);
9a75ede0 1753 /* TYPE may be integer, real or complex, so use fold_convert. */
726a989a 1754 res = chrec_fold_multiply (type, chrec1,
9a75ede0 1755 fold_convert (type, integer_minus_one_node));
9baba81b
SP
1756 break;
1757
418df9d7
JJ
1758 case BIT_NOT_EXPR:
1759 /* Handle ~X as -1 - X. */
1760 chrec1 = analyze_scalar_evolution (loop, rhs1);
1761 chrec1 = chrec_convert (type, chrec1, at_stmt);
1762 res = chrec_fold_minus (type,
1763 fold_convert (type, integer_minus_one_node),
1764 chrec1);
1765 break;
1766
9baba81b 1767 case MULT_EXPR:
726a989a
RB
1768 chrec1 = analyze_scalar_evolution (loop, rhs1);
1769 chrec2 = analyze_scalar_evolution (loop, rhs2);
1770 chrec1 = chrec_convert (type, chrec1, at_stmt);
1771 chrec2 = chrec_convert (type, chrec2, at_stmt);
1772 res = chrec_fold_multiply (type, chrec1, chrec2);
0bca51f0 1773 break;
b8698a0f 1774
1043771b 1775 CASE_CONVERT:
726a989a
RB
1776 chrec1 = analyze_scalar_evolution (loop, rhs1);
1777 res = chrec_convert (type, chrec1, at_stmt);
9baba81b 1778 break;
b8698a0f 1779
9baba81b
SP
1780 default:
1781 res = chrec_dont_know;
1782 break;
1783 }
b8698a0f 1784
9baba81b
SP
1785 return res;
1786}
1787
726a989a
RB
1788/* Interpret the expression EXPR. */
1789
1790static tree
1791interpret_expr (struct loop *loop, gimple at_stmt, tree expr)
1792{
1793 enum tree_code code;
1794 tree type = TREE_TYPE (expr), op0, op1;
1795
1796 if (automatically_generated_chrec_p (expr))
1797 return expr;
1798
1799 if (TREE_CODE (expr) == POLYNOMIAL_CHREC)
1800 return chrec_dont_know;
1801
1802 extract_ops_from_tree (expr, &code, &op0, &op1);
1803
1804 return interpret_rhs_expr (loop, at_stmt, type,
1805 op0, code, op1);
1806}
1807
1808/* Interpret the rhs of the assignment STMT. */
1809
1810static tree
1811interpret_gimple_assign (struct loop *loop, gimple stmt)
1812{
1813 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1814 enum tree_code code = gimple_assign_rhs_code (stmt);
1815
1816 return interpret_rhs_expr (loop, stmt, type,
1817 gimple_assign_rhs1 (stmt), code,
1818 gimple_assign_rhs2 (stmt));
1819}
1820
9baba81b
SP
1821\f
1822
b8698a0f 1823/* This section contains all the entry points:
9baba81b
SP
1824 - number_of_iterations_in_loop,
1825 - analyze_scalar_evolution,
1826 - instantiate_parameters.
1827*/
1828
1829/* Compute and return the evolution function in WRTO_LOOP, the nearest
1830 common ancestor of DEF_LOOP and USE_LOOP. */
1831
b8698a0f
L
1832static tree
1833compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1834 struct loop *def_loop,
9baba81b
SP
1835 tree ev)
1836{
492e5456 1837 bool val;
9baba81b 1838 tree res;
492e5456 1839
9baba81b
SP
1840 if (def_loop == wrto_loop)
1841 return ev;
1842
9ba025a2 1843 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
9baba81b
SP
1844 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1845
492e5456
SP
1846 if (no_evolution_in_loop_p (res, wrto_loop->num, &val) && val)
1847 return res;
1848
9baba81b
SP
1849 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1850}
1851
1852/* Helper recursive function. */
1853
1854static tree
1855analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1856{
726a989a
RB
1857 tree type = TREE_TYPE (var);
1858 gimple def;
9baba81b
SP
1859 basic_block bb;
1860 struct loop *def_loop;
1861
42d375ed 1862 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
9baba81b
SP
1863 return chrec_dont_know;
1864
1865 if (TREE_CODE (var) != SSA_NAME)
726a989a 1866 return interpret_expr (loop, NULL, var);
9baba81b
SP
1867
1868 def = SSA_NAME_DEF_STMT (var);
726a989a 1869 bb = gimple_bb (def);
9baba81b
SP
1870 def_loop = bb ? bb->loop_father : NULL;
1871
1872 if (bb == NULL
1873 || !flow_bb_inside_loop_p (loop, bb))
1874 {
1875 /* Keep the symbolic form. */
1876 res = var;
1877 goto set_and_end;
1878 }
1879
1880 if (res != chrec_not_analyzed_yet)
1881 {
1882 if (loop != bb->loop_father)
b8698a0f 1883 res = compute_scalar_evolution_in_loop
9baba81b
SP
1884 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1885
1886 goto set_and_end;
1887 }
1888
1889 if (loop != def_loop)
1890 {
1891 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1892 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1893
1894 goto set_and_end;
1895 }
1896
726a989a 1897 switch (gimple_code (def))
9baba81b 1898 {
726a989a
RB
1899 case GIMPLE_ASSIGN:
1900 res = interpret_gimple_assign (loop, def);
9baba81b
SP
1901 break;
1902
726a989a 1903 case GIMPLE_PHI:
9baba81b
SP
1904 if (loop_phi_node_p (def))
1905 res = interpret_loop_phi (loop, def);
1906 else
1907 res = interpret_condition_phi (loop, def);
1908 break;
1909
1910 default:
1911 res = chrec_dont_know;
1912 break;
1913 }
1914
1915 set_and_end:
1916
1917 /* Keep the symbolic form. */
1918 if (res == chrec_dont_know)
1919 res = var;
1920
1921 if (loop == def_loop)
a213b219 1922 set_scalar_evolution (block_before_loop (loop), var, res);
9baba81b
SP
1923
1924 return res;
1925}
1926
52bdd655
SP
1927/* Analyzes and returns the scalar evolution of the ssa_name VAR in
1928 LOOP. LOOP is the loop in which the variable is used.
b8698a0f 1929
9baba81b
SP
1930 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1931 pointer to the statement that uses this variable, in order to
1932 determine the evolution function of the variable, use the following
1933 calls:
b8698a0f 1934
52bdd655
SP
1935 loop_p loop = loop_containing_stmt (stmt);
1936 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
3f227a8c 1937 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
9baba81b
SP
1938*/
1939
b8698a0f 1940tree
9baba81b
SP
1941analyze_scalar_evolution (struct loop *loop, tree var)
1942{
1943 tree res;
1944
dfedbe40 1945 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1946 {
1947 fprintf (dump_file, "(analyze_scalar_evolution \n");
1948 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1949 fprintf (dump_file, " (scalar = ");
1950 print_generic_expr (dump_file, var, 0);
1951 fprintf (dump_file, ")\n");
1952 }
1953
a213b219
SP
1954 res = get_scalar_evolution (block_before_loop (loop), var);
1955 res = analyze_scalar_evolution_1 (loop, var, res);
9baba81b 1956
dfedbe40 1957 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
1958 fprintf (dump_file, ")\n");
1959
1960 return res;
1961}
1962
1963/* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
f017bf5e 1964 WRTO_LOOP (which should be a superloop of USE_LOOP)
a6f778b2
ZD
1965
1966 FOLDED_CASTS is set to true if resolve_mixers used
1967 chrec_convert_aggressive (TODO -- not really, we are way too conservative
b8698a0f
L
1968 at the moment in order to keep things simple).
1969
f017bf5e
ZD
1970 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
1971 example:
1972
1973 for (i = 0; i < 100; i++) -- loop 1
1974 {
1975 for (j = 0; j < 100; j++) -- loop 2
1976 {
1977 k1 = i;
1978 k2 = j;
1979
1980 use2 (k1, k2);
1981
1982 for (t = 0; t < 100; t++) -- loop 3
1983 use3 (k1, k2);
1984
1985 }
1986 use1 (k1, k2);
1987 }
1988
1989 Both k1 and k2 are invariants in loop3, thus
1990 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
1991 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
1992
1993 As they are invariant, it does not matter whether we consider their
1994 usage in loop 3 or loop 2, hence
1995 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
1996 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
1997 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
1998 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
1999
2000 Similarly for their evolutions with respect to loop 1. The values of K2
2001 in the use in loop 2 vary independently on loop 1, thus we cannot express
2002 the evolution with respect to loop 1:
2003 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2004 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2005 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2006 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2007
2008 The value of k2 in the use in loop 1 is known, though:
2009 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2010 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2011 */
9baba81b
SP
2012
2013static tree
2014analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
a6f778b2 2015 tree version, bool *folded_casts)
9baba81b
SP
2016{
2017 bool val = false;
a6f778b2 2018 tree ev = version, tmp;
9baba81b 2019
b8698a0f 2020 /* We cannot just do
f017bf5e
ZD
2021
2022 tmp = analyze_scalar_evolution (use_loop, version);
2023 ev = resolve_mixers (wrto_loop, tmp);
2024
2025 as resolve_mixers would query the scalar evolution with respect to
2026 wrto_loop. For example, in the situation described in the function
2027 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2028 version = k2. Then
2029
2030 analyze_scalar_evolution (use_loop, version) = k2
2031
2032 and resolve_mixers (loop1, k2) finds that the value of k2 in loop 1
2033 is 100, which is a wrong result, since we are interested in the
2034 value in loop 3.
2035
2036 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2037 each time checking that there is no evolution in the inner loop. */
2038
a6f778b2
ZD
2039 if (folded_casts)
2040 *folded_casts = false;
9baba81b
SP
2041 while (1)
2042 {
a6f778b2
ZD
2043 tmp = analyze_scalar_evolution (use_loop, ev);
2044 ev = resolve_mixers (use_loop, tmp);
2045
2046 if (folded_casts && tmp != ev)
2047 *folded_casts = true;
9baba81b
SP
2048
2049 if (use_loop == wrto_loop)
2050 return ev;
2051
2052 /* If the value of the use changes in the inner loop, we cannot express
2053 its value in the outer loop (we might try to return interval chrec,
2054 but we do not have a user for it anyway) */
2055 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2056 || !val)
2057 return chrec_dont_know;
2058
9ba025a2 2059 use_loop = loop_outer (use_loop);
9baba81b
SP
2060 }
2061}
2062
a213b219
SP
2063/* Returns from CACHE the value for VERSION instantiated below
2064 INSTANTIATED_BELOW block. */
eb0bc7af
ZD
2065
2066static tree
a213b219
SP
2067get_instantiated_value (htab_t cache, basic_block instantiated_below,
2068 tree version)
eb0bc7af
ZD
2069{
2070 struct scev_info_str *info, pattern;
b8698a0f 2071
eb0bc7af 2072 pattern.var = version;
a213b219 2073 pattern.instantiated_below = instantiated_below;
858904db 2074 info = (struct scev_info_str *) htab_find (cache, &pattern);
eb0bc7af
ZD
2075
2076 if (info)
2077 return info->chrec;
2078 else
2079 return NULL_TREE;
2080}
2081
a213b219
SP
2082/* Sets in CACHE the value of VERSION instantiated below basic block
2083 INSTANTIATED_BELOW to VAL. */
eb0bc7af
ZD
2084
2085static void
a213b219
SP
2086set_instantiated_value (htab_t cache, basic_block instantiated_below,
2087 tree version, tree val)
eb0bc7af
ZD
2088{
2089 struct scev_info_str *info, pattern;
2090 PTR *slot;
b8698a0f 2091
eb0bc7af 2092 pattern.var = version;
0bfdfbf6 2093 pattern.instantiated_below = instantiated_below;
eb0bc7af
ZD
2094 slot = htab_find_slot (cache, &pattern, INSERT);
2095
cceb1885 2096 if (!*slot)
a213b219 2097 *slot = new_scev_info_str (instantiated_below, version);
cceb1885 2098 info = (struct scev_info_str *) *slot;
eb0bc7af
ZD
2099 info->chrec = val;
2100}
2101
18aed06a
SP
2102/* Return the closed_loop_phi node for VAR. If there is none, return
2103 NULL_TREE. */
2104
2105static tree
2106loop_closed_phi_def (tree var)
2107{
2108 struct loop *loop;
2109 edge exit;
726a989a
RB
2110 gimple phi;
2111 gimple_stmt_iterator psi;
18aed06a
SP
2112
2113 if (var == NULL_TREE
2114 || TREE_CODE (var) != SSA_NAME)
2115 return NULL_TREE;
2116
2117 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
ac8f6c69 2118 exit = single_exit (loop);
18aed06a
SP
2119 if (!exit)
2120 return NULL_TREE;
2121
726a989a
RB
2122 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2123 {
2124 phi = gsi_stmt (psi);
2125 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2126 return PHI_RESULT (phi);
2127 }
18aed06a
SP
2128
2129 return NULL_TREE;
2130}
2131
9e5dc77f 2132static tree instantiate_scev_r (basic_block, struct loop *, tree, bool,
320f5a78
SP
2133 htab_t, int);
2134
2135/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2136 and EVOLUTION_LOOP, that were left under a symbolic form.
2137
2495a183 2138 CHREC is an SSA_NAME to be instantiated.
320f5a78
SP
2139
2140 CACHE is the cache of already instantiated values.
2141
2142 FOLD_CONVERSIONS should be set to true when the conversions that
2143 may wrap in signed/pointer type are folded, as long as the value of
2144 the chrec is preserved.
2145
2146 SIZE_EXPR is used for computing the size of the expression to be
2147 instantiated, and to stop if it exceeds some limit. */
2148
2149static tree
2495a183
SP
2150instantiate_scev_name (basic_block instantiate_below,
2151 struct loop *evolution_loop, tree chrec,
2152 bool fold_conversions, htab_t cache, int size_expr)
320f5a78 2153{
2495a183
SP
2154 tree res;
2155 struct loop *def_loop;
2156 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
20179b0d 2157
2495a183
SP
2158 /* A parameter (or loop invariant and we do not want to include
2159 evolutions in outer loops), nothing to do. */
2160 if (!def_bb
2161 || loop_depth (def_bb->loop_father) == 0
2162 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2163 return chrec;
20179b0d 2164
2495a183
SP
2165 /* We cache the value of instantiated variable to avoid exponential
2166 time complexity due to reevaluations. We also store the convenient
2167 value in the cache in order to prevent infinite recursion -- we do
2168 not want to instantiate the SSA_NAME if it is in a mixer
2169 structure. This is used for avoiding the instantiation of
2170 recursively defined functions, such as:
320f5a78 2171
2495a183 2172 | a_2 -> {0, +, 1, +, a_2}_1 */
20179b0d 2173
2495a183
SP
2174 res = get_instantiated_value (cache, instantiate_below, chrec);
2175 if (res)
2176 return res;
20179b0d 2177
2495a183 2178 res = chrec_dont_know;
20179b0d 2179 set_instantiated_value (cache, instantiate_below, chrec, res);
320f5a78 2180
2495a183
SP
2181 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2182
320f5a78
SP
2183 /* If the analysis yields a parametric chrec, instantiate the
2184 result again. */
2185 res = analyze_scalar_evolution (def_loop, chrec);
2186
2847388e 2187 /* Don't instantiate default definitions. */
320f5a78 2188 if (TREE_CODE (res) == SSA_NAME
2847388e
SP
2189 && SSA_NAME_IS_DEFAULT_DEF (res))
2190 ;
2191
2192 /* Don't instantiate loop-closed-ssa phi nodes. */
2193 else if (TREE_CODE (res) == SSA_NAME
2194 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2195 > loop_depth (def_loop))
320f5a78
SP
2196 {
2197 if (res == chrec)
2198 res = loop_closed_phi_def (chrec);
2199 else
2200 res = chrec;
2201
7472eb13
SP
2202 /* When there is no loop_closed_phi_def, it means that the
2203 variable is not used after the loop: try to still compute the
2204 value of the variable when exiting the loop. */
2205 if (res == NULL_TREE)
2206 {
2207 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
2208 res = analyze_scalar_evolution (loop, chrec);
2209 res = compute_overall_effect_of_inner_loop (loop, res);
2210 res = instantiate_scev_r (instantiate_below, evolution_loop, res,
2211 fold_conversions, cache, size_expr);
2212 }
2213 else if (!dominated_by_p (CDI_DOMINATORS, instantiate_below,
2214 gimple_bb (SSA_NAME_DEF_STMT (res))))
320f5a78
SP
2215 res = chrec_dont_know;
2216 }
2217
2218 else if (res != chrec_dont_know)
9e5dc77f 2219 res = instantiate_scev_r (instantiate_below, evolution_loop, res,
320f5a78
SP
2220 fold_conversions, cache, size_expr);
2221
2222 /* Store the correct value to the cache. */
2223 set_instantiated_value (cache, instantiate_below, chrec, res);
2224 return res;
320f5a78
SP
2225}
2226
ec6636eb
SP
2227/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2228 and EVOLUTION_LOOP, that were left under a symbolic form.
2229
2230 CHREC is a polynomial chain of recurrence to be instantiated.
2231
2232 CACHE is the cache of already instantiated values.
2233
2234 FOLD_CONVERSIONS should be set to true when the conversions that
2235 may wrap in signed/pointer type are folded, as long as the value of
2236 the chrec is preserved.
2237
2238 SIZE_EXPR is used for computing the size of the expression to be
2239 instantiated, and to stop if it exceeds some limit. */
2240
2241static tree
2242instantiate_scev_poly (basic_block instantiate_below,
2243 struct loop *evolution_loop, tree chrec,
2244 bool fold_conversions, htab_t cache, int size_expr)
2245{
2246 tree op1;
9e5dc77f 2247 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
ec6636eb
SP
2248 CHREC_LEFT (chrec), fold_conversions, cache,
2249 size_expr);
2250 if (op0 == chrec_dont_know)
2251 return chrec_dont_know;
2252
9e5dc77f 2253 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
ec6636eb
SP
2254 CHREC_RIGHT (chrec), fold_conversions, cache,
2255 size_expr);
2256 if (op1 == chrec_dont_know)
2257 return chrec_dont_know;
2258
2259 if (CHREC_LEFT (chrec) != op0
2260 || CHREC_RIGHT (chrec) != op1)
2261 {
4bf4e169
SP
2262 unsigned var = CHREC_VARIABLE (chrec);
2263
2264 /* When the instantiated stride or base has an evolution in an
2265 innermost loop, return chrec_dont_know, as this is not a
2266 valid SCEV representation. In the reduced testcase for
2267 PR40281 we would have {0, +, {1, +, 1}_2}_1 that has no
2268 meaning. */
2269 if ((tree_is_chrec (op0) && CHREC_VARIABLE (op0) > var)
2270 || (tree_is_chrec (op1) && CHREC_VARIABLE (op1) > var))
2271 return chrec_dont_know;
2272
ec6636eb 2273 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
4bf4e169 2274 chrec = build_polynomial_chrec (var, op0, op1);
ec6636eb 2275 }
4bf4e169 2276
ec6636eb
SP
2277 return chrec;
2278}
2279
15fda317
SP
2280/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2281 and EVOLUTION_LOOP, that were left under a symbolic form.
2282
ffa34f4b 2283 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
15fda317
SP
2284
2285 CACHE is the cache of already instantiated values.
2286
2287 FOLD_CONVERSIONS should be set to true when the conversions that
2288 may wrap in signed/pointer type are folded, as long as the value of
2289 the chrec is preserved.
2290
2291 SIZE_EXPR is used for computing the size of the expression to be
2292 instantiated, and to stop if it exceeds some limit. */
2293
2294static tree
2295instantiate_scev_binary (basic_block instantiate_below,
ffa34f4b
SP
2296 struct loop *evolution_loop, tree chrec, enum tree_code code,
2297 tree type, tree c0, tree c1,
15fda317
SP
2298 bool fold_conversions, htab_t cache, int size_expr)
2299{
2300 tree op1;
9e5dc77f 2301 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
ffa34f4b 2302 c0, fold_conversions, cache,
15fda317
SP
2303 size_expr);
2304 if (op0 == chrec_dont_know)
2305 return chrec_dont_know;
2306
9e5dc77f 2307 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
ffa34f4b 2308 c1, fold_conversions, cache,
15fda317
SP
2309 size_expr);
2310 if (op1 == chrec_dont_know)
2311 return chrec_dont_know;
2312
ffa34f4b
SP
2313 if (c0 != op0
2314 || c1 != op1)
15fda317 2315 {
15fda317
SP
2316 op0 = chrec_convert (type, op0, NULL);
2317 op1 = chrec_convert_rhs (type, op1, NULL);
2318
ffa34f4b 2319 switch (code)
15fda317
SP
2320 {
2321 case POINTER_PLUS_EXPR:
2322 case PLUS_EXPR:
2323 return chrec_fold_plus (type, op0, op1);
2324
2325 case MINUS_EXPR:
2326 return chrec_fold_minus (type, op0, op1);
2327
2328 case MULT_EXPR:
2329 return chrec_fold_multiply (type, op0, op1);
2330
2331 default:
2332 gcc_unreachable ();
2333 }
2334 }
2335
ffa34f4b 2336 return chrec ? chrec : fold_build2 (code, type, c0, c1);
15fda317
SP
2337}
2338
dbc08079
SP
2339/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2340 and EVOLUTION_LOOP, that were left under a symbolic form.
2341
2342 "CHREC" is an array reference to be instantiated.
2343
2344 CACHE is the cache of already instantiated values.
2345
2346 FOLD_CONVERSIONS should be set to true when the conversions that
2347 may wrap in signed/pointer type are folded, as long as the value of
2348 the chrec is preserved.
2349
2350 SIZE_EXPR is used for computing the size of the expression to be
2351 instantiated, and to stop if it exceeds some limit. */
2352
2353static tree
2354instantiate_array_ref (basic_block instantiate_below,
2355 struct loop *evolution_loop, tree chrec,
2356 bool fold_conversions, htab_t cache, int size_expr)
2357{
2358 tree res;
2359 tree index = TREE_OPERAND (chrec, 1);
2360 tree op1 = instantiate_scev_r (instantiate_below, evolution_loop, index,
2361 fold_conversions, cache, size_expr);
2362
2363 if (op1 == chrec_dont_know)
2364 return chrec_dont_know;
2365
2366 if (chrec && op1 == index)
2367 return chrec;
2368
2369 res = unshare_expr (chrec);
2370 TREE_OPERAND (res, 1) = op1;
2371 return res;
2372}
2373
a213b219 2374/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
9c382ce9
SP
2375 and EVOLUTION_LOOP, that were left under a symbolic form.
2376
2377 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2378 instantiated.
2379
2380 CACHE is the cache of already instantiated values.
2381
2382 FOLD_CONVERSIONS should be set to true when the conversions that
2383 may wrap in signed/pointer type are folded, as long as the value of
2384 the chrec is preserved.
2385
2386 SIZE_EXPR is used for computing the size of the expression to be
2387 instantiated, and to stop if it exceeds some limit. */
2388
2389static tree
2390instantiate_scev_convert (basic_block instantiate_below,
2391 struct loop *evolution_loop, tree chrec,
2392 tree type, tree op,
2393 bool fold_conversions, htab_t cache, int size_expr)
2394{
9e5dc77f 2395 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, op,
9c382ce9
SP
2396 fold_conversions, cache, size_expr);
2397
2398 if (op0 == chrec_dont_know)
2399 return chrec_dont_know;
2400
2401 if (fold_conversions)
2402 {
2403 tree tmp = chrec_convert_aggressive (type, op0);
2404 if (tmp)
2405 return tmp;
2406 }
2407
2408 if (chrec && op0 == op)
2409 return chrec;
2410
2411 /* If we used chrec_convert_aggressive, we can no longer assume that
2412 signed chrecs do not overflow, as chrec_convert does, so avoid
2413 calling it in that case. */
2414 if (fold_conversions)
2415 return fold_convert (type, op0);
2416
2417 return chrec_convert (type, op0, NULL);
2418}
2419
7ec0665d
SP
2420/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2421 and EVOLUTION_LOOP, that were left under a symbolic form.
2422
4b9d48a1 2423 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
7ec0665d 2424 Handle ~X as -1 - X.
4b9d48a1 2425 Handle -X as -1 * X.
7ec0665d
SP
2426
2427 CACHE is the cache of already instantiated values.
2428
2429 FOLD_CONVERSIONS should be set to true when the conversions that
2430 may wrap in signed/pointer type are folded, as long as the value of
2431 the chrec is preserved.
2432
2433 SIZE_EXPR is used for computing the size of the expression to be
2434 instantiated, and to stop if it exceeds some limit. */
2435
2436static tree
4b9d48a1
SP
2437instantiate_scev_not (basic_block instantiate_below,
2438 struct loop *evolution_loop, tree chrec,
20179b0d 2439 enum tree_code code, tree type, tree op,
4b9d48a1 2440 bool fold_conversions, htab_t cache, int size_expr)
7ec0665d 2441{
20179b0d 2442 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, op,
7ec0665d 2443 fold_conversions, cache, size_expr);
20179b0d 2444
7ec0665d
SP
2445 if (op0 == chrec_dont_know)
2446 return chrec_dont_know;
2447
20179b0d 2448 if (op != op0)
7ec0665d
SP
2449 {
2450 op0 = chrec_convert (type, op0, NULL);
4b9d48a1 2451
20179b0d 2452 switch (code)
4b9d48a1
SP
2453 {
2454 case BIT_NOT_EXPR:
2455 return chrec_fold_minus
2456 (type, fold_convert (type, integer_minus_one_node), op0);
2457
2458 case NEGATE_EXPR:
2459 return chrec_fold_multiply
2460 (type, fold_convert (type, integer_minus_one_node), op0);
2461
2462 default:
2463 gcc_unreachable ();
2464 }
7ec0665d 2465 }
4b9d48a1 2466
20179b0d 2467 return chrec ? chrec : fold_build1 (code, type, op0);
7ec0665d
SP
2468}
2469
d814176c
SP
2470/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2471 and EVOLUTION_LOOP, that were left under a symbolic form.
2472
2473 CHREC is an expression with 3 operands to be instantiated.
2474
2475 CACHE is the cache of already instantiated values.
2476
2477 FOLD_CONVERSIONS should be set to true when the conversions that
2478 may wrap in signed/pointer type are folded, as long as the value of
2479 the chrec is preserved.
2480
2481 SIZE_EXPR is used for computing the size of the expression to be
2482 instantiated, and to stop if it exceeds some limit. */
2483
2484static tree
2485instantiate_scev_3 (basic_block instantiate_below,
2486 struct loop *evolution_loop, tree chrec,
2487 bool fold_conversions, htab_t cache, int size_expr)
2488{
2489 tree op1, op2;
9e5dc77f 2490 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
d814176c
SP
2491 TREE_OPERAND (chrec, 0),
2492 fold_conversions, cache, size_expr);
2493 if (op0 == chrec_dont_know)
2494 return chrec_dont_know;
2495
9e5dc77f 2496 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
d814176c
SP
2497 TREE_OPERAND (chrec, 1),
2498 fold_conversions, cache, size_expr);
2499 if (op1 == chrec_dont_know)
2500 return chrec_dont_know;
2501
9e5dc77f 2502 op2 = instantiate_scev_r (instantiate_below, evolution_loop,
d814176c
SP
2503 TREE_OPERAND (chrec, 2),
2504 fold_conversions, cache, size_expr);
2505 if (op2 == chrec_dont_know)
2506 return chrec_dont_know;
2507
2508 if (op0 == TREE_OPERAND (chrec, 0)
2509 && op1 == TREE_OPERAND (chrec, 1)
2510 && op2 == TREE_OPERAND (chrec, 2))
2511 return chrec;
2512
2513 return fold_build3 (TREE_CODE (chrec),
2514 TREE_TYPE (chrec), op0, op1, op2);
2515}
2516
9c382ce9
SP
2517/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2518 and EVOLUTION_LOOP, that were left under a symbolic form.
5b78fc3e 2519
9e5dc77f
SP
2520 CHREC is an expression with 2 operands to be instantiated.
2521
2522 CACHE is the cache of already instantiated values.
2523
2524 FOLD_CONVERSIONS should be set to true when the conversions that
2525 may wrap in signed/pointer type are folded, as long as the value of
2526 the chrec is preserved.
2527
2528 SIZE_EXPR is used for computing the size of the expression to be
2529 instantiated, and to stop if it exceeds some limit. */
2530
2531static tree
2532instantiate_scev_2 (basic_block instantiate_below,
2533 struct loop *evolution_loop, tree chrec,
2534 bool fold_conversions, htab_t cache, int size_expr)
2535{
2536 tree op1;
2537 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2538 TREE_OPERAND (chrec, 0),
2539 fold_conversions, cache, size_expr);
2540 if (op0 == chrec_dont_know)
2541 return chrec_dont_know;
2542
2543 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2544 TREE_OPERAND (chrec, 1),
2545 fold_conversions, cache, size_expr);
2546 if (op1 == chrec_dont_know)
2547 return chrec_dont_know;
2548
2549 if (op0 == TREE_OPERAND (chrec, 0)
2550 && op1 == TREE_OPERAND (chrec, 1))
2551 return chrec;
2552
2553 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2554}
2555
2556/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2557 and EVOLUTION_LOOP, that were left under a symbolic form.
2558
2559 CHREC is an expression with 2 operands to be instantiated.
5b78fc3e
JS
2560
2561 CACHE is the cache of already instantiated values.
2562
2563 FOLD_CONVERSIONS should be set to true when the conversions that
2564 may wrap in signed/pointer type are folded, as long as the value of
2565 the chrec is preserved.
2566
3f227a8c
JS
2567 SIZE_EXPR is used for computing the size of the expression to be
2568 instantiated, and to stop if it exceeds some limit. */
9c382ce9 2569
9baba81b 2570static tree
a213b219 2571instantiate_scev_1 (basic_block instantiate_below,
3f227a8c 2572 struct loop *evolution_loop, tree chrec,
5b78fc3e 2573 bool fold_conversions, htab_t cache, int size_expr)
9baba81b 2574{
9e5dc77f
SP
2575 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2576 TREE_OPERAND (chrec, 0),
2577 fold_conversions, cache, size_expr);
2578
2579 if (op0 == chrec_dont_know)
2580 return chrec_dont_know;
2581
2582 if (op0 == TREE_OPERAND (chrec, 0))
2583 return chrec;
2584
2585 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2586}
2587
2588/* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2589 and EVOLUTION_LOOP, that were left under a symbolic form.
2590
2591 CHREC is the scalar evolution to instantiate.
2592
2593 CACHE is the cache of already instantiated values.
2282a0e6 2594
9e5dc77f
SP
2595 FOLD_CONVERSIONS should be set to true when the conversions that
2596 may wrap in signed/pointer type are folded, as long as the value of
2597 the chrec is preserved.
2598
2599 SIZE_EXPR is used for computing the size of the expression to be
2600 instantiated, and to stop if it exceeds some limit. */
2601
2602static tree
2603instantiate_scev_r (basic_block instantiate_below,
2604 struct loop *evolution_loop, tree chrec,
2605 bool fold_conversions, htab_t cache, int size_expr)
2606{
47ae9e4c
SP
2607 /* Give up if the expression is larger than the MAX that we allow. */
2608 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2609 return chrec_dont_know;
2610
81fada9a
JJ
2611 if (chrec == NULL_TREE
2612 || automatically_generated_chrec_p (chrec)
d7770457 2613 || is_gimple_min_invariant (chrec))
9baba81b
SP
2614 return chrec;
2615
2616 switch (TREE_CODE (chrec))
2617 {
2618 case SSA_NAME:
320f5a78
SP
2619 return instantiate_scev_name (instantiate_below, evolution_loop, chrec,
2620 fold_conversions, cache, size_expr);
9baba81b
SP
2621
2622 case POLYNOMIAL_CHREC:
ec6636eb
SP
2623 return instantiate_scev_poly (instantiate_below, evolution_loop, chrec,
2624 fold_conversions, cache, size_expr);
9baba81b 2625
5be014d5 2626 case POINTER_PLUS_EXPR:
9baba81b 2627 case PLUS_EXPR:
9baba81b 2628 case MINUS_EXPR:
9baba81b 2629 case MULT_EXPR:
15fda317 2630 return instantiate_scev_binary (instantiate_below, evolution_loop, chrec,
ffa34f4b
SP
2631 TREE_CODE (chrec), chrec_type (chrec),
2632 TREE_OPERAND (chrec, 0),
2633 TREE_OPERAND (chrec, 1),
15fda317 2634 fold_conversions, cache, size_expr);
9baba81b 2635
1043771b 2636 CASE_CONVERT:
9c382ce9
SP
2637 return instantiate_scev_convert (instantiate_below, evolution_loop, chrec,
2638 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
2639 fold_conversions, cache, size_expr);
9baba81b 2640
4b9d48a1 2641 case NEGATE_EXPR:
418df9d7 2642 case BIT_NOT_EXPR:
4b9d48a1 2643 return instantiate_scev_not (instantiate_below, evolution_loop, chrec,
20179b0d
SP
2644 TREE_CODE (chrec), TREE_TYPE (chrec),
2645 TREE_OPERAND (chrec, 0),
4b9d48a1 2646 fold_conversions, cache, size_expr);
418df9d7 2647
4c7d6755 2648 case ADDR_EXPR:
9baba81b
SP
2649 case SCEV_NOT_KNOWN:
2650 return chrec_dont_know;
2651
2652 case SCEV_KNOWN:
2653 return chrec_known;
15fda317 2654
dbc08079
SP
2655 case ARRAY_REF:
2656 return instantiate_array_ref (instantiate_below, evolution_loop, chrec,
2657 fold_conversions, cache, size_expr);
2658
9baba81b
SP
2659 default:
2660 break;
2661 }
2662
0dfb0dc6
SP
2663 if (VL_EXP_CLASS_P (chrec))
2664 return chrec_dont_know;
2665
9baba81b
SP
2666 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2667 {
2668 case 3:
d814176c
SP
2669 return instantiate_scev_3 (instantiate_below, evolution_loop, chrec,
2670 fold_conversions, cache, size_expr);
9baba81b
SP
2671
2672 case 2:
9e5dc77f
SP
2673 return instantiate_scev_2 (instantiate_below, evolution_loop, chrec,
2674 fold_conversions, cache, size_expr);
7ec0665d 2675
9baba81b 2676 case 1:
9e5dc77f
SP
2677 return instantiate_scev_1 (instantiate_below, evolution_loop, chrec,
2678 fold_conversions, cache, size_expr);
9baba81b
SP
2679
2680 case 0:
2681 return chrec;
2682
2683 default:
2684 break;
2685 }
2686
2687 /* Too complicated to handle. */
2688 return chrec_dont_know;
2689}
e9eb809d
ZD
2690
2691/* Analyze all the parameters of the chrec that were left under a
a213b219
SP
2692 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2693 recursive instantiation of parameters: a parameter is a variable
2694 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2695 a function parameter. */
e9eb809d
ZD
2696
2697tree
a213b219 2698instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
3f227a8c 2699 tree chrec)
e9eb809d 2700{
9baba81b 2701 tree res;
eb0bc7af 2702 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
9baba81b 2703
dfedbe40 2704 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b 2705 {
3f227a8c 2706 fprintf (dump_file, "(instantiate_scev \n");
a213b219 2707 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
3f227a8c 2708 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
9baba81b
SP
2709 fprintf (dump_file, " (chrec = ");
2710 print_generic_expr (dump_file, chrec, 0);
2711 fprintf (dump_file, ")\n");
2712 }
b8698a0f 2713
9e5dc77f 2714 res = instantiate_scev_r (instantiate_below, evolution_loop, chrec, false,
5b78fc3e 2715 cache, 0);
9baba81b 2716
dfedbe40 2717 if (dump_file && (dump_flags & TDF_SCEV))
9baba81b
SP
2718 {
2719 fprintf (dump_file, " (res = ");
2720 print_generic_expr (dump_file, res, 0);
2721 fprintf (dump_file, "))\n");
2722 }
eb0bc7af
ZD
2723
2724 htab_delete (cache);
b8698a0f 2725
9baba81b
SP
2726 return res;
2727}
2728
2729/* Similar to instantiate_parameters, but does not introduce the
2282a0e6
ZD
2730 evolutions in outer loops for LOOP invariants in CHREC, and does not
2731 care about causing overflows, as long as they do not affect value
2732 of an expression. */
9baba81b 2733
3cb960c7 2734tree
9baba81b
SP
2735resolve_mixers (struct loop *loop, tree chrec)
2736{
eb0bc7af 2737 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
9e5dc77f 2738 tree ret = instantiate_scev_r (block_before_loop (loop), loop, chrec, true,
a213b219 2739 cache, 0);
eb0bc7af
ZD
2740 htab_delete (cache);
2741 return ret;
9baba81b
SP
2742}
2743
b8698a0f 2744/* Entry point for the analysis of the number of iterations pass.
9baba81b
SP
2745 This function tries to safely approximate the number of iterations
2746 the loop will run. When this property is not decidable at compile
0a74c758
SP
2747 time, the result is chrec_dont_know. Otherwise the result is a
2748 scalar or a symbolic parameter. When the number of iterations may
2749 be equal to zero and the property cannot be determined at compile
2750 time, the result is a COND_EXPR that represents in a symbolic form
2751 the conditions under which the number of iterations is not zero.
b8698a0f 2752
9baba81b 2753 Example of analysis: suppose that the loop has an exit condition:
b8698a0f 2754
9baba81b 2755 "if (b > 49) goto end_loop;"
b8698a0f 2756
9baba81b
SP
2757 and that in a previous analysis we have determined that the
2758 variable 'b' has an evolution function:
b8698a0f
L
2759
2760 "EF = {23, +, 5}_2".
2761
9baba81b
SP
2762 When we evaluate the function at the point 5, i.e. the value of the
2763 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2764 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2765 the loop body has been executed 6 times. */
2766
b8698a0f 2767tree
a14865db 2768number_of_latch_executions (struct loop *loop)
9baba81b 2769{
9baba81b
SP
2770 edge exit;
2771 struct tree_niter_desc niter_desc;
0a74c758
SP
2772 tree may_be_zero;
2773 tree res;
9baba81b 2774
0a74c758 2775 /* Determine whether the number of iterations in loop has already
9baba81b
SP
2776 been computed. */
2777 res = loop->nb_iterations;
2778 if (res)
2779 return res;
0a74c758
SP
2780
2781 may_be_zero = NULL_TREE;
9baba81b 2782
dfedbe40 2783 if (dump_file && (dump_flags & TDF_SCEV))
0a74c758 2784 fprintf (dump_file, "(number_of_iterations_in_loop = \n");
b8698a0f 2785
0a74c758 2786 res = chrec_dont_know;
ac8f6c69 2787 exit = single_exit (loop);
9baba81b 2788
0a74c758
SP
2789 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
2790 {
2791 may_be_zero = niter_desc.may_be_zero;
2792 res = niter_desc.niter;
2793 }
2794
2795 if (res == chrec_dont_know
2796 || !may_be_zero
2797 || integer_zerop (may_be_zero))
2798 ;
2799 else if (integer_nonzerop (may_be_zero))
2800 res = build_int_cst (TREE_TYPE (res), 0);
9baba81b 2801
0a74c758
SP
2802 else if (COMPARISON_CLASS_P (may_be_zero))
2803 res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero,
2804 build_int_cst (TREE_TYPE (res), 0), res);
9baba81b
SP
2805 else
2806 res = chrec_dont_know;
2807
dfedbe40 2808 if (dump_file && (dump_flags & TDF_SCEV))
0a74c758
SP
2809 {
2810 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
2811 print_generic_expr (dump_file, res, 0);
2812 fprintf (dump_file, "))\n");
2813 }
2814
2815 loop->nb_iterations = res;
2816 return res;
9baba81b
SP
2817}
2818
a14865db
ZD
2819/* Returns the number of executions of the exit condition of LOOP,
2820 i.e., the number by one higher than number_of_latch_executions.
fa10beec 2821 Note that unlike number_of_latch_executions, this number does
a14865db
ZD
2822 not necessarily fit in the unsigned variant of the type of
2823 the control variable -- if the number of iterations is a constant,
2824 we return chrec_dont_know if adding one to number_of_latch_executions
2825 overflows; however, in case the number of iterations is symbolic
2826 expression, the caller is responsible for dealing with this
2827 the possible overflow. */
2828
b8698a0f 2829tree
a14865db
ZD
2830number_of_exit_cond_executions (struct loop *loop)
2831{
2832 tree ret = number_of_latch_executions (loop);
2833 tree type = chrec_type (ret);
2834
2835 if (chrec_contains_undetermined (ret))
2836 return ret;
2837
2838 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2839 if (TREE_CODE (ret) == INTEGER_CST
2840 && TREE_OVERFLOW (ret))
2841 return chrec_dont_know;
2842
2843 return ret;
2844}
2845
9baba81b
SP
2846/* One of the drivers for testing the scalar evolutions analysis.
2847 This function computes the number of iterations for all the loops
2848 from the EXIT_CONDITIONS array. */
2849
b8698a0f 2850static void
726a989a 2851number_of_iterations_for_all_loops (VEC(gimple,heap) **exit_conditions)
9baba81b
SP
2852{
2853 unsigned int i;
2854 unsigned nb_chrec_dont_know_loops = 0;
2855 unsigned nb_static_loops = 0;
726a989a 2856 gimple cond;
b8698a0f 2857
ac47786e 2858 FOR_EACH_VEC_ELT (gimple, *exit_conditions, i, cond)
9baba81b 2859 {
a14865db 2860 tree res = number_of_latch_executions (loop_containing_stmt (cond));
9baba81b
SP
2861 if (chrec_contains_undetermined (res))
2862 nb_chrec_dont_know_loops++;
2863 else
2864 nb_static_loops++;
2865 }
b8698a0f 2866
9baba81b
SP
2867 if (dump_file)
2868 {
2869 fprintf (dump_file, "\n(\n");
2870 fprintf (dump_file, "-----------------------------------------\n");
2871 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2872 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
42fd6772 2873 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
9baba81b
SP
2874 fprintf (dump_file, "-----------------------------------------\n");
2875 fprintf (dump_file, ")\n\n");
b8698a0f 2876
0c8efed8 2877 print_loops (dump_file, 3);
9baba81b
SP
2878 }
2879}
2880
2881\f
2882
2883/* Counters for the stats. */
2884
b8698a0f 2885struct chrec_stats
9baba81b
SP
2886{
2887 unsigned nb_chrecs;
2888 unsigned nb_affine;
2889 unsigned nb_affine_multivar;
2890 unsigned nb_higher_poly;
2891 unsigned nb_chrec_dont_know;
2892 unsigned nb_undetermined;
2893};
2894
2895/* Reset the counters. */
2896
2897static inline void
2898reset_chrecs_counters (struct chrec_stats *stats)
2899{
2900 stats->nb_chrecs = 0;
2901 stats->nb_affine = 0;
2902 stats->nb_affine_multivar = 0;
2903 stats->nb_higher_poly = 0;
2904 stats->nb_chrec_dont_know = 0;
2905 stats->nb_undetermined = 0;
2906}
2907
2908/* Dump the contents of a CHREC_STATS structure. */
2909
2910static void
2911dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2912{
2913 fprintf (file, "\n(\n");
2914 fprintf (file, "-----------------------------------------\n");
2915 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2916 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
b8698a0f 2917 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
9baba81b
SP
2918 stats->nb_higher_poly);
2919 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2920 fprintf (file, "-----------------------------------------\n");
2921 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
b8698a0f 2922 fprintf (file, "%d\twith undetermined coefficients\n",
9baba81b
SP
2923 stats->nb_undetermined);
2924 fprintf (file, "-----------------------------------------\n");
b8698a0f 2925 fprintf (file, "%d\tchrecs in the scev database\n",
9baba81b
SP
2926 (int) htab_elements (scalar_evolution_info));
2927 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2928 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2929 fprintf (file, "-----------------------------------------\n");
2930 fprintf (file, ")\n\n");
2931}
2932
2933/* Gather statistics about CHREC. */
2934
2935static void
2936gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2937{
2938 if (dump_file && (dump_flags & TDF_STATS))
2939 {
2940 fprintf (dump_file, "(classify_chrec ");
2941 print_generic_expr (dump_file, chrec, 0);
2942 fprintf (dump_file, "\n");
2943 }
b8698a0f 2944
9baba81b 2945 stats->nb_chrecs++;
b8698a0f 2946
9baba81b
SP
2947 if (chrec == NULL_TREE)
2948 {
2949 stats->nb_undetermined++;
2950 return;
2951 }
b8698a0f 2952
9baba81b
SP
2953 switch (TREE_CODE (chrec))
2954 {
2955 case POLYNOMIAL_CHREC:
2956 if (evolution_function_is_affine_p (chrec))
2957 {
2958 if (dump_file && (dump_flags & TDF_STATS))
2959 fprintf (dump_file, " affine_univariate\n");
2960 stats->nb_affine++;
2961 }
a50411de 2962 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
9baba81b
SP
2963 {
2964 if (dump_file && (dump_flags & TDF_STATS))
2965 fprintf (dump_file, " affine_multivariate\n");
2966 stats->nb_affine_multivar++;
2967 }
2968 else
2969 {
2970 if (dump_file && (dump_flags & TDF_STATS))
2971 fprintf (dump_file, " higher_degree_polynomial\n");
2972 stats->nb_higher_poly++;
2973 }
b8698a0f 2974
9baba81b
SP
2975 break;
2976
2977 default:
2978 break;
2979 }
b8698a0f 2980
9baba81b
SP
2981 if (chrec_contains_undetermined (chrec))
2982 {
2983 if (dump_file && (dump_flags & TDF_STATS))
2984 fprintf (dump_file, " undetermined\n");
2985 stats->nb_undetermined++;
2986 }
b8698a0f 2987
9baba81b
SP
2988 if (dump_file && (dump_flags & TDF_STATS))
2989 fprintf (dump_file, ")\n");
2990}
2991
2992/* One of the drivers for testing the scalar evolutions analysis.
2993 This function analyzes the scalar evolution of all the scalars
2994 defined as loop phi nodes in one of the loops from the
b8698a0f
L
2995 EXIT_CONDITIONS array.
2996
9baba81b
SP
2997 TODO Optimization: A loop is in canonical form if it contains only
2998 a single scalar loop phi node. All the other scalars that have an
2999 evolution in the loop are rewritten in function of this single
3000 index. This allows the parallelization of the loop. */
3001
b8698a0f 3002static void
726a989a 3003analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(gimple,heap) **exit_conditions)
9baba81b
SP
3004{
3005 unsigned int i;
3006 struct chrec_stats stats;
726a989a
RB
3007 gimple cond, phi;
3008 gimple_stmt_iterator psi;
b8698a0f 3009
9baba81b 3010 reset_chrecs_counters (&stats);
b8698a0f 3011
ac47786e 3012 FOR_EACH_VEC_ELT (gimple, *exit_conditions, i, cond)
9baba81b
SP
3013 {
3014 struct loop *loop;
3015 basic_block bb;
726a989a 3016 tree chrec;
b8698a0f 3017
5310bac6 3018 loop = loop_containing_stmt (cond);
9baba81b 3019 bb = loop->header;
b8698a0f 3020
726a989a
RB
3021 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
3022 {
3023 phi = gsi_stmt (psi);
3024 if (is_gimple_reg (PHI_RESULT (phi)))
3025 {
b8698a0f
L
3026 chrec = instantiate_parameters
3027 (loop,
726a989a 3028 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
b8698a0f 3029
726a989a
RB
3030 if (dump_file && (dump_flags & TDF_STATS))
3031 gather_chrec_stats (chrec, &stats);
3032 }
3033 }
9baba81b 3034 }
b8698a0f 3035
9baba81b
SP
3036 if (dump_file && (dump_flags & TDF_STATS))
3037 dump_chrecs_stats (dump_file, &stats);
3038}
3039
3040/* Callback for htab_traverse, gathers information on chrecs in the
3041 hashtable. */
3042
3043static int
3044gather_stats_on_scev_database_1 (void **slot, void *stats)
3045{
cceb1885 3046 struct scev_info_str *entry = (struct scev_info_str *) *slot;
9baba81b 3047
cceb1885 3048 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
9baba81b
SP
3049
3050 return 1;
3051}
3052
3053/* Classify the chrecs of the whole database. */
3054
b8698a0f 3055void
9baba81b
SP
3056gather_stats_on_scev_database (void)
3057{
3058 struct chrec_stats stats;
b8698a0f 3059
9baba81b
SP
3060 if (!dump_file)
3061 return;
b8698a0f 3062
9baba81b 3063 reset_chrecs_counters (&stats);
b8698a0f 3064
9baba81b
SP
3065 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
3066 &stats);
3067
3068 dump_chrecs_stats (dump_file, &stats);
3069}
3070
3071\f
3072
3073/* Initializer. */
3074
3075static void
3076initialize_scalar_evolutions_analyzer (void)
3077{
3078 /* The elements below are unique. */
3079 if (chrec_dont_know == NULL_TREE)
3080 {
3081 chrec_not_analyzed_yet = NULL_TREE;
3082 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
3083 chrec_known = make_node (SCEV_KNOWN);
d5ab5675
ZD
3084 TREE_TYPE (chrec_dont_know) = void_type_node;
3085 TREE_TYPE (chrec_known) = void_type_node;
9baba81b
SP
3086 }
3087}
3088
3089/* Initialize the analysis of scalar evolutions for LOOPS. */
3090
3091void
d73be268 3092scev_initialize (void)
9baba81b 3093{
42fd6772
ZD
3094 loop_iterator li;
3095 struct loop *loop;
9baba81b 3096
a9429e29
LB
3097
3098 scalar_evolution_info = htab_create_ggc (100, hash_scev_info, eq_scev_info,
3099 del_scev_info);
b8698a0f 3100
9baba81b
SP
3101 initialize_scalar_evolutions_analyzer ();
3102
42fd6772
ZD
3103 FOR_EACH_LOOP (li, loop, 0)
3104 {
3105 loop->nb_iterations = NULL_TREE;
3106 }
9baba81b
SP
3107}
3108
a7bf45de
SP
3109/* Cleans up the information cached by the scalar evolutions analysis
3110 in the hash table. */
3111
3112void
3113scev_reset_htab (void)
3114{
3115 if (!scalar_evolution_info)
3116 return;
3117
3118 htab_empty (scalar_evolution_info);
3119}
3120
3121/* Cleans up the information cached by the scalar evolutions analysis
3122 in the hash table and in the loop->nb_iterations. */
9baba81b
SP
3123
3124void
3125scev_reset (void)
3126{
42fd6772 3127 loop_iterator li;
9baba81b
SP
3128 struct loop *loop;
3129
a7bf45de
SP
3130 scev_reset_htab ();
3131
3132 if (!current_loops)
9baba81b
SP
3133 return;
3134
42fd6772 3135 FOR_EACH_LOOP (li, loop, 0)
9baba81b 3136 {
42fd6772 3137 loop->nb_iterations = NULL_TREE;
9baba81b 3138 }
e9eb809d
ZD
3139}
3140
f017bf5e
ZD
3141/* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3142 respect to WRTO_LOOP and returns its base and step in IV if possible
3143 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3144 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3145 invariant in LOOP. Otherwise we require it to be an integer constant.
b8698a0f 3146
f017bf5e
ZD
3147 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3148 because it is computed in signed arithmetics). Consequently, adding an
3149 induction variable
b8698a0f 3150
f017bf5e
ZD
3151 for (i = IV->base; ; i += IV->step)
3152
3153 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3154 false for the type of the induction variable, or you can prove that i does
3155 not wrap by some other argument. Otherwise, this might introduce undefined
3156 behavior, and
b8698a0f 3157
f017bf5e
ZD
3158 for (i = iv->base; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3159
3160 must be used instead. */
e9eb809d
ZD
3161
3162bool
f017bf5e
ZD
3163simple_iv (struct loop *wrto_loop, struct loop *use_loop, tree op,
3164 affine_iv *iv, bool allow_nonconstant_step)
e9eb809d 3165{
9baba81b 3166 tree type, ev;
a6f778b2 3167 bool folded_casts;
9baba81b 3168
a6f778b2
ZD
3169 iv->base = NULL_TREE;
3170 iv->step = NULL_TREE;
3171 iv->no_overflow = false;
9baba81b
SP
3172
3173 type = TREE_TYPE (op);
3174 if (TREE_CODE (type) != INTEGER_TYPE
3175 && TREE_CODE (type) != POINTER_TYPE)
3176 return false;
3177
f017bf5e 3178 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
a6f778b2 3179 &folded_casts);
f017bf5e
ZD
3180 if (chrec_contains_undetermined (ev)
3181 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
9baba81b
SP
3182 return false;
3183
f017bf5e 3184 if (tree_does_not_contain_chrecs (ev))
9baba81b 3185 {
a6f778b2 3186 iv->base = ev;
6e42ce54 3187 iv->step = build_int_cst (TREE_TYPE (ev), 0);
a6f778b2 3188 iv->no_overflow = true;
9baba81b
SP
3189 return true;
3190 }
3191
3192 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
f017bf5e 3193 || CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
9baba81b
SP
3194 return false;
3195
a6f778b2 3196 iv->step = CHREC_RIGHT (ev);
f017bf5e
ZD
3197 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
3198 || tree_contains_chrecs (iv->step, NULL))
9baba81b 3199 return false;
9be872b7 3200
a6f778b2 3201 iv->base = CHREC_LEFT (ev);
f017bf5e 3202 if (tree_contains_chrecs (iv->base, NULL))
9baba81b
SP
3203 return false;
3204
eeef0e45
ILT
3205 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
3206
9baba81b
SP
3207 return true;
3208}
3209
3210/* Runs the analysis of scalar evolutions. */
3211
3212void
3213scev_analysis (void)
3214{
726a989a 3215 VEC(gimple,heap) *exit_conditions;
b8698a0f 3216
726a989a 3217 exit_conditions = VEC_alloc (gimple, heap, 37);
d73be268 3218 select_loops_exit_conditions (&exit_conditions);
9baba81b
SP
3219
3220 if (dump_file && (dump_flags & TDF_STATS))
5310bac6 3221 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
b8698a0f 3222
5310bac6 3223 number_of_iterations_for_all_loops (&exit_conditions);
726a989a 3224 VEC_free (gimple, heap, exit_conditions);
e9eb809d 3225}
9baba81b
SP
3226
3227/* Finalize the scalar evolution analysis. */
3228
3229void
3230scev_finalize (void)
3231{
d51157de
ZD
3232 if (!scalar_evolution_info)
3233 return;
9baba81b 3234 htab_delete (scalar_evolution_info);
c7b852c8 3235 scalar_evolution_info = NULL;
9baba81b
SP
3236}
3237
771f882e
ZD
3238/* Returns true if the expression EXPR is considered to be too expensive
3239 for scev_const_prop. */
3240
3241bool
3242expression_expensive_p (tree expr)
3243{
3244 enum tree_code code;
3245
3246 if (is_gimple_val (expr))
3247 return false;
3248
3249 code = TREE_CODE (expr);
3250 if (code == TRUNC_DIV_EXPR
3251 || code == CEIL_DIV_EXPR
3252 || code == FLOOR_DIV_EXPR
3253 || code == ROUND_DIV_EXPR
3254 || code == TRUNC_MOD_EXPR
3255 || code == CEIL_MOD_EXPR
3256 || code == FLOOR_MOD_EXPR
3257 || code == ROUND_MOD_EXPR
3258 || code == EXACT_DIV_EXPR)
3259 {
3260 /* Division by power of two is usually cheap, so we allow it.
3261 Forbid anything else. */
3262 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
3263 return true;
3264 }
3265
3266 switch (TREE_CODE_CLASS (code))
3267 {
3268 case tcc_binary:
3269 case tcc_comparison:
3270 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
3271 return true;
3272
3273 /* Fallthru. */
3274 case tcc_unary:
3275 return expression_expensive_p (TREE_OPERAND (expr, 0));
3276
3277 default:
3278 return true;
3279 }
3280}
3281
684aaf29 3282/* Replace ssa names for that scev can prove they are constant by the
3ac01fde
ZD
3283 appropriate constants. Also perform final value replacement in loops,
3284 in case the replacement expressions are cheap.
b8698a0f 3285
684aaf29
ZD
3286 We only consider SSA names defined by phi nodes; rest is left to the
3287 ordinary constant propagation pass. */
3288
c2924966 3289unsigned int
684aaf29
ZD
3290scev_const_prop (void)
3291{
3292 basic_block bb;
726a989a
RB
3293 tree name, type, ev;
3294 gimple phi, ass;
3ac01fde 3295 struct loop *loop, *ex_loop;
684aaf29 3296 bitmap ssa_names_to_remove = NULL;
3ac01fde 3297 unsigned i;
42fd6772 3298 loop_iterator li;
726a989a 3299 gimple_stmt_iterator psi;
684aaf29 3300
d51157de 3301 if (number_of_loops () <= 1)
c2924966 3302 return 0;
684aaf29
ZD
3303
3304 FOR_EACH_BB (bb)
3305 {
3306 loop = bb->loop_father;
3307
726a989a 3308 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
684aaf29 3309 {
726a989a 3310 phi = gsi_stmt (psi);
684aaf29
ZD
3311 name = PHI_RESULT (phi);
3312
3313 if (!is_gimple_reg (name))
3314 continue;
3315
3316 type = TREE_TYPE (name);
3317
3318 if (!POINTER_TYPE_P (type)
3319 && !INTEGRAL_TYPE_P (type))
3320 continue;
3321
3322 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
3323 if (!is_gimple_min_invariant (ev)
3324 || !may_propagate_copy (name, ev))
3325 continue;
3326
3327 /* Replace the uses of the name. */
18aed06a
SP
3328 if (name != ev)
3329 replace_uses_by (name, ev);
684aaf29
ZD
3330
3331 if (!ssa_names_to_remove)
3332 ssa_names_to_remove = BITMAP_ALLOC (NULL);
3333 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
3334 }
3335 }
3336
9b3b55a1
DN
3337 /* Remove the ssa names that were replaced by constants. We do not
3338 remove them directly in the previous cycle, since this
3339 invalidates scev cache. */
684aaf29
ZD
3340 if (ssa_names_to_remove)
3341 {
3342 bitmap_iterator bi;
684aaf29
ZD
3343
3344 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
3345 {
726a989a 3346 gimple_stmt_iterator psi;
684aaf29
ZD
3347 name = ssa_name (i);
3348 phi = SSA_NAME_DEF_STMT (name);
3349
726a989a
RB
3350 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
3351 psi = gsi_for_stmt (phi);
3352 remove_phi_node (&psi, true);
684aaf29
ZD
3353 }
3354
3355 BITMAP_FREE (ssa_names_to_remove);
3356 scev_reset ();
3357 }
3ac01fde
ZD
3358
3359 /* Now the regular final value replacement. */
42fd6772 3360 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
3ac01fde
ZD
3361 {
3362 edge exit;
726a989a
RB
3363 tree def, rslt, niter;
3364 gimple_stmt_iterator bsi;
3ac01fde 3365
3ac01fde
ZD
3366 /* If we do not know exact number of iterations of the loop, we cannot
3367 replace the final value. */
ac8f6c69 3368 exit = single_exit (loop);
a6f778b2
ZD
3369 if (!exit)
3370 continue;
3371
a14865db 3372 niter = number_of_latch_executions (loop);
b3ce5b6e 3373 if (niter == chrec_dont_know)
3ac01fde 3374 continue;
925196ed
ZD
3375
3376 /* Ensure that it is possible to insert new statements somewhere. */
3377 if (!single_pred_p (exit->dest))
3378 split_loop_exit_edge (exit);
726a989a 3379 bsi = gsi_after_labels (exit->dest);
925196ed 3380
9ba025a2
ZD
3381 ex_loop = superloop_at_depth (loop,
3382 loop_depth (exit->dest->loop_father) + 1);
3ac01fde 3383
726a989a 3384 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
3ac01fde 3385 {
726a989a 3386 phi = gsi_stmt (psi);
925196ed 3387 rslt = PHI_RESULT (phi);
3ac01fde 3388 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
925196ed 3389 if (!is_gimple_reg (def))
726a989a
RB
3390 {
3391 gsi_next (&psi);
3392 continue;
3393 }
3ac01fde
ZD
3394
3395 if (!POINTER_TYPE_P (TREE_TYPE (def))
3396 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
726a989a
RB
3397 {
3398 gsi_next (&psi);
3399 continue;
3400 }
3ac01fde 3401
a6f778b2 3402 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
925196ed 3403 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3ac01fde 3404 if (!tree_does_not_contain_chrecs (def)
e5db3515
ZD
3405 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3406 /* Moving the computation from the loop may prolong life range
3407 of some ssa names, which may cause problems if they appear
3408 on abnormal edges. */
771f882e
ZD
3409 || contains_abnormal_ssa_name_p (def)
3410 /* Do not emit expensive expressions. The rationale is that
3411 when someone writes a code like
3412
3413 while (n > 45) n -= 45;
3414
3415 he probably knows that n is not large, and does not want it
3416 to be turned into n %= 45. */
3417 || expression_expensive_p (def))
726a989a
RB
3418 {
3419 gsi_next (&psi);
3420 continue;
3421 }
3ac01fde 3422
9b3b55a1 3423 /* Eliminate the PHI node and replace it by a computation outside
925196ed
ZD
3424 the loop. */
3425 def = unshare_expr (def);
726a989a
RB
3426 remove_phi_node (&psi, false);
3427
3428 def = force_gimple_operand_gsi (&bsi, def, false, NULL_TREE,
3429 true, GSI_SAME_STMT);
3430 ass = gimple_build_assign (rslt, def);
3431 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
3ac01fde
ZD
3432 }
3433 }
c2924966 3434 return 0;
684aaf29 3435}
9e2f83a5
ZD
3436
3437#include "gt-tree-scalar-evolution.h"