]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-coalesce.c
Put the CL into the right dir.
[thirdparty/gcc.git] / gcc / tree-ssa-coalesce.c
CommitLineData
2d043327 1/* Coalesce SSA_NAMES together for the out-of-ssa pass.
fbd26352 2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
2d043327 3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
8c4c00c1 9the Free Software Foundation; either version 3, or (at your option)
2d043327 10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
2d043327 20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
9ef16211 24#include "backend.h"
2d043327 25#include "tree.h"
9ef16211 26#include "gimple.h"
7c29e30e 27#include "predict.h"
ad7b10a2 28#include "memmodel.h"
7c29e30e 29#include "tm_p.h"
9ef16211 30#include "ssa.h"
34d91f3c 31#include "tree-ssa.h"
7c29e30e 32#include "tree-pretty-print.h"
33#include "diagnostic-core.h"
b9ed1410 34#include "dumpfile.h"
dcf1a1ec 35#include "gimple-iterator.h"
b23fb4cb 36#include "tree-ssa-live.h"
37#include "tree-ssa-coalesce.h"
94f92c36 38#include "explow.h"
b2df3bbf 39#include "tree-dfa.h"
b2df3bbf 40#include "stor-layout.h"
2d043327 41
42/* This set of routines implements a coalesce_list. This is an object which
43 is used to track pairs of ssa_names which are desirable to coalesce
48e1416a 44 together to avoid copies. Costs are associated with each pair, and when
45 all desired information has been collected, the object can be used to
2d043327 46 order the pairs for processing. */
47
48/* This structure defines a pair entry. */
49
04009ada 50struct coalesce_pair
2d043327 51{
52 int first_element;
53 int second_element;
54 int cost;
d68ee525 55
db176279 56 /* A count of the number of unique partitions this pair would conflict
57 with if coalescing was successful. This is the secondary sort key,
58 given two pairs with equal costs, we will prefer the pair with a smaller
59 conflict set.
60
61 This is lazily initialized when we discover two coalescing pairs have
62 the same primary cost.
63
64 Note this is not updated and propagated as pairs are coalesced. */
65 int conflict_count;
66
d68ee525 67 /* The order in which coalescing pairs are discovered is recorded in this
68 field, which is used as the final tie breaker when sorting coalesce
69 pairs. */
70 int index;
04009ada 71};
2d043327 72
db176279 73/* This represents a conflict graph. Implemented as an array of bitmaps.
74 A full matrix is used for conflicts rather than just upper triangular form.
6fbac353 75 this makes it much simpler and faster to perform conflict merges. */
db176279 76
77struct ssa_conflicts
78{
79 bitmap_obstack obstack; /* A place to allocate our bitmaps. */
80 vec<bitmap> conflicts;
81};
82
83/* The narrow API of the qsort comparison function doesn't allow easy
84 access to additional arguments. So we have two globals (ick) to hold
85 the data we need. They're initialized before the call to qsort and
86 wiped immediately after. */
87static ssa_conflicts *conflicts_;
88static var_map map_;
89
3e871d4d 90/* Coalesce pair hashtable helpers. */
91
770ff93b 92struct coalesce_pair_hasher : nofree_ptr_hash <coalesce_pair>
3e871d4d 93{
9969c043 94 static inline hashval_t hash (const coalesce_pair *);
95 static inline bool equal (const coalesce_pair *, const coalesce_pair *);
3e871d4d 96};
97
98/* Hash function for coalesce list. Calculate hash for PAIR. */
99
100inline hashval_t
9969c043 101coalesce_pair_hasher::hash (const coalesce_pair *pair)
3e871d4d 102{
103 hashval_t a = (hashval_t)(pair->first_element);
104 hashval_t b = (hashval_t)(pair->second_element);
105
106 return b * (b - 1) / 2 + a;
107}
108
109/* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
110 returning TRUE if the two pairs are equivalent. */
111
112inline bool
9969c043 113coalesce_pair_hasher::equal (const coalesce_pair *p1, const coalesce_pair *p2)
3e871d4d 114{
115 return (p1->first_element == p2->first_element
116 && p1->second_element == p2->second_element);
117}
118
c1f445d2 119typedef hash_table<coalesce_pair_hasher> coalesce_table_type;
3e871d4d 120typedef coalesce_table_type::iterator coalesce_iterator_type;
121
122
04009ada 123struct cost_one_pair
2d043327 124{
125 int first_element;
126 int second_element;
04009ada 127 cost_one_pair *next;
128};
2d043327 129
130/* This structure maintains the list of coalesce pairs. */
131
04009ada 132struct coalesce_list
2d043327 133{
c1f445d2 134 coalesce_table_type *list; /* Hash table. */
04009ada 135 coalesce_pair **sorted; /* List when sorted. */
2d043327 136 int num_sorted; /* Number in the sorted list. */
04009ada 137 cost_one_pair *cost_one_list;/* Single use coalesces with cost 1. */
858bf4c8 138 obstack ob;
04009ada 139};
2d043327 140
141#define NO_BEST_COALESCE -1
142#define MUST_COALESCE_COST INT_MAX
143
144
5b835bca 145/* Return cost of execution of copy instruction with FREQUENCY. */
2d043327 146
147static inline int
5b835bca 148coalesce_cost (int frequency, bool optimize_for_size)
2d043327 149{
150 /* Base costs on BB frequencies bounded by 1. */
151 int cost = frequency;
152
153 if (!cost)
154 cost = 1;
155
0bfd8d5c 156 if (optimize_for_size)
2d043327 157 cost = 1;
2d043327 158
2d043327 159 return cost;
160}
161
162
163/* Return the cost of executing a copy instruction in basic block BB. */
164
48e1416a 165static inline int
2d043327 166coalesce_cost_bb (basic_block bb)
167{
fdd2edb6 168 return coalesce_cost (bb->count.to_frequency (cfun),
169 optimize_bb_for_size_p (bb));
2d043327 170}
171
172
173/* Return the cost of executing a copy instruction on edge E. */
174
48e1416a 175static inline int
2d043327 176coalesce_cost_edge (edge e)
177{
5b835bca 178 int mult = 1;
179
180 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
181 if (EDGE_CRITICAL_P (e))
182 mult = 2;
2d043327 183 if (e->flags & EDGE_ABNORMAL)
184 return MUST_COALESCE_COST;
5b835bca 185 if (e->flags & EDGE_EH)
186 {
187 edge e2;
188 edge_iterator ei;
189 FOR_EACH_EDGE (e2, ei, e->dest->preds)
190 if (e2 != e)
191 {
192 /* Putting code on EH edge that leads to BB
193 with multiple predecestors imply splitting of
194 edge too. */
195 if (mult < 2)
196 mult = 2;
197 /* If there are multiple EH predecestors, we
198 also copy EH regions and produce separate
199 landing pad. This is expensive. */
200 if (e2->flags & EDGE_EH)
201 {
202 mult = 5;
203 break;
204 }
205 }
206 }
2d043327 207
48e1416a 208 return coalesce_cost (EDGE_FREQUENCY (e),
5b835bca 209 optimize_edge_for_size_p (e)) * mult;
2d043327 210}
211
212
48e1416a 213/* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
2d043327 214 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
215 NO_BEST_COALESCE is returned if there aren't any. */
216
217static inline int
04009ada 218pop_cost_one_pair (coalesce_list *cl, int *p1, int *p2)
2d043327 219{
04009ada 220 cost_one_pair *ptr;
2d043327 221
222 ptr = cl->cost_one_list;
223 if (!ptr)
224 return NO_BEST_COALESCE;
225
226 *p1 = ptr->first_element;
227 *p2 = ptr->second_element;
228 cl->cost_one_list = ptr->next;
229
2d043327 230 return 1;
231}
232
48e1416a 233/* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
2d043327 234 2 elements via P1 and P2. Their calculated cost is returned by the function.
235 NO_BEST_COALESCE is returned if the coalesce list is empty. */
236
237static inline int
04009ada 238pop_best_coalesce (coalesce_list *cl, int *p1, int *p2)
2d043327 239{
04009ada 240 coalesce_pair *node;
2d043327 241 int ret;
242
243 if (cl->sorted == NULL)
244 return pop_cost_one_pair (cl, p1, p2);
245
246 if (cl->num_sorted == 0)
247 return pop_cost_one_pair (cl, p1, p2);
248
249 node = cl->sorted[--(cl->num_sorted)];
250 *p1 = node->first_element;
251 *p2 = node->second_element;
252 ret = node->cost;
2d043327 253
254 return ret;
255}
256
257
2d043327 258/* Create a new empty coalesce list object and return it. */
259
04009ada 260static inline coalesce_list *
2d043327 261create_coalesce_list (void)
262{
04009ada 263 coalesce_list *list;
2d043327 264 unsigned size = num_ssa_names * 3;
265
48e1416a 266 if (size < 40)
2d043327 267 size = 40;
268
04009ada 269 list = (coalesce_list *) xmalloc (sizeof (struct coalesce_list));
c1f445d2 270 list->list = new coalesce_table_type (size);
2d043327 271 list->sorted = NULL;
272 list->num_sorted = 0;
273 list->cost_one_list = NULL;
858bf4c8 274 gcc_obstack_init (&list->ob);
2d043327 275 return list;
276}
277
278
279/* Delete coalesce list CL. */
280
48e1416a 281static inline void
04009ada 282delete_coalesce_list (coalesce_list *cl)
2d043327 283{
284 gcc_assert (cl->cost_one_list == NULL);
c1f445d2 285 delete cl->list;
286 cl->list = NULL;
dd045aee 287 free (cl->sorted);
2d043327 288 gcc_assert (cl->num_sorted == 0);
858bf4c8 289 obstack_free (&cl->ob, NULL);
2d043327 290 free (cl);
291}
292
d68ee525 293/* Return the number of unique coalesce pairs in CL. */
294
295static inline int
296num_coalesce_pairs (coalesce_list *cl)
297{
298 return cl->list->elements ();
299}
2d043327 300
48e1416a 301/* Find a matching coalesce pair object in CL for the pair P1 and P2. If
302 one isn't found, return NULL if CREATE is false, otherwise create a new
2d043327 303 coalesce pair object and return it. */
304
04009ada 305static coalesce_pair *
306find_coalesce_pair (coalesce_list *cl, int p1, int p2, bool create)
2d043327 307{
88006128 308 struct coalesce_pair p;
3e871d4d 309 coalesce_pair **slot;
2d043327 310 unsigned int hash;
48e1416a 311
2d043327 312 /* Normalize so that p1 is the smaller value. */
313 if (p2 < p1)
314 {
315 p.first_element = p2;
316 p.second_element = p1;
317 }
318 else
319 {
320 p.first_element = p1;
321 p.second_element = p2;
322 }
48e1416a 323
3e871d4d 324 hash = coalesce_pair_hasher::hash (&p);
c1f445d2 325 slot = cl->list->find_slot_with_hash (&p, hash, create ? INSERT : NO_INSERT);
88006128 326 if (!slot)
327 return NULL;
2d043327 328
88006128 329 if (!*slot)
2d043327 330 {
858bf4c8 331 struct coalesce_pair * pair = XOBNEW (&cl->ob, struct coalesce_pair);
2d043327 332 gcc_assert (cl->sorted == NULL);
2d043327 333 pair->first_element = p.first_element;
334 pair->second_element = p.second_element;
335 pair->cost = 0;
d68ee525 336 pair->index = num_coalesce_pairs (cl);
db176279 337 pair->conflict_count = 0;
3e871d4d 338 *slot = pair;
2d043327 339 }
340
88006128 341 return (struct coalesce_pair *) *slot;
2d043327 342}
343
344static inline void
04009ada 345add_cost_one_coalesce (coalesce_list *cl, int p1, int p2)
2d043327 346{
04009ada 347 cost_one_pair *pair;
2d043327 348
858bf4c8 349 pair = XOBNEW (&cl->ob, cost_one_pair);
2d043327 350 pair->first_element = p1;
351 pair->second_element = p2;
352 pair->next = cl->cost_one_list;
353 cl->cost_one_list = pair;
354}
355
356
357/* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
358
48e1416a 359static inline void
04009ada 360add_coalesce (coalesce_list *cl, int p1, int p2, int value)
2d043327 361{
04009ada 362 coalesce_pair *node;
2d043327 363
364 gcc_assert (cl->sorted == NULL);
365 if (p1 == p2)
366 return;
367
368 node = find_coalesce_pair (cl, p1, p2, true);
369
bbe1fc8f 370 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
371 if (node->cost < MUST_COALESCE_COST - 1)
2d043327 372 {
bbe1fc8f 373 if (value < MUST_COALESCE_COST - 1)
2d043327 374 node->cost += value;
bbe1fc8f 375 else
376 node->cost = value;
2d043327 377 }
378}
379
db176279 380/* Compute and record how many unique conflicts would exist for the
381 representative partition for each coalesce pair in CL.
382
383 CONFLICTS is the conflict graph and MAP is the current partition view. */
384
385static void
386initialize_conflict_count (coalesce_pair *p,
387 ssa_conflicts *conflicts,
388 var_map map)
389{
390 int p1 = var_to_partition (map, ssa_name (p->first_element));
391 int p2 = var_to_partition (map, ssa_name (p->second_element));
392
393 /* 4 cases. If both P1 and P2 have conflicts, then build their
394 union and count the members. Else handle the degenerate cases
395 in the obvious ways. */
396 if (conflicts->conflicts[p1] && conflicts->conflicts[p2])
397 p->conflict_count = bitmap_count_unique_bits (conflicts->conflicts[p1],
398 conflicts->conflicts[p2]);
399 else if (conflicts->conflicts[p1])
400 p->conflict_count = bitmap_count_bits (conflicts->conflicts[p1]);
401 else if (conflicts->conflicts[p2])
402 p->conflict_count = bitmap_count_bits (conflicts->conflicts[p2]);
403 else
404 p->conflict_count = 0;
405}
406
2d043327 407
7920eed5 408/* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
2d043327 409
48e1416a 410static int
2d043327 411compare_pairs (const void *p1, const void *p2)
412{
db176279 413 coalesce_pair *const *const pp1 = (coalesce_pair *const *) p1;
414 coalesce_pair *const *const pp2 = (coalesce_pair *const *) p2;
6a0a4c31 415 int result;
416
a8dd994c 417 result = (* pp1)->cost - (* pp2)->cost;
db176279 418 /* We use the size of the resulting conflict set as the secondary sort key.
419 Given two equal costing coalesce pairs, we want to prefer the pair that
420 has the smaller conflict set. */
6a0a4c31 421 if (result == 0)
db176279 422 {
423 if (flag_expensive_optimizations)
424 {
425 /* Lazily initialize the conflict counts as it's fairly expensive
426 to compute. */
427 if ((*pp2)->conflict_count == 0)
428 initialize_conflict_count (*pp2, conflicts_, map_);
429 if ((*pp1)->conflict_count == 0)
430 initialize_conflict_count (*pp1, conflicts_, map_);
431
432 result = (*pp2)->conflict_count - (*pp1)->conflict_count;
433 }
434
435 /* And if everything else is equal, then sort based on which
436 coalesce pair was found first. */
437 if (result == 0)
438 result = (*pp2)->index - (*pp1)->index;
439 }
6a0a4c31 440
441 return result;
2d043327 442}
443
2d043327 444/* Iterate over CL using ITER, returning values in PAIR. */
445
446#define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
c1f445d2 447 FOR_EACH_HASH_TABLE_ELEMENT (*(CL)->list, (PAIR), coalesce_pair_p, (ITER))
2d043327 448
449
450/* Prepare CL for removal of preferred pairs. When finished they are sorted
451 in order from most important coalesce to least important. */
452
453static void
db176279 454sort_coalesce_list (coalesce_list *cl, ssa_conflicts *conflicts, var_map map)
2d043327 455{
456 unsigned x, num;
04009ada 457 coalesce_pair *p;
3e871d4d 458 coalesce_iterator_type ppi;
2d043327 459
460 gcc_assert (cl->sorted == NULL);
461
462 num = num_coalesce_pairs (cl);
463 cl->num_sorted = num;
464 if (num == 0)
465 return;
466
467 /* Allocate a vector for the pair pointers. */
04009ada 468 cl->sorted = XNEWVEC (coalesce_pair *, num);
2d043327 469
470 /* Populate the vector with pointers to the pairs. */
471 x = 0;
472 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
473 cl->sorted[x++] = p;
474 gcc_assert (x == num);
475
476 /* Already sorted. */
477 if (num == 1)
478 return;
479
db176279 480 /* We don't want to depend on qsort_r, so we have to stuff away
481 additional data into globals so it can be referenced in
482 compare_pairs. */
483 conflicts_ = conflicts;
484 map_ = map;
485 qsort (cl->sorted, num, sizeof (coalesce_pair *), compare_pairs);
486 conflicts_ = NULL;
487 map_ = NULL;
2d043327 488}
489
490
491/* Send debug info for coalesce list CL to file F. */
492
48e1416a 493static void
04009ada 494dump_coalesce_list (FILE *f, coalesce_list *cl)
2d043327 495{
04009ada 496 coalesce_pair *node;
3e871d4d 497 coalesce_iterator_type ppi;
498
2d043327 499 int x;
500 tree var;
501
502 if (cl->sorted == NULL)
503 {
504 fprintf (f, "Coalesce List:\n");
505 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
506 {
507 tree var1 = ssa_name (node->first_element);
508 tree var2 = ssa_name (node->second_element);
509 print_generic_expr (f, var1, TDF_SLIM);
510 fprintf (f, " <-> ");
511 print_generic_expr (f, var2, TDF_SLIM);
db176279 512 fprintf (f, " (%1d, %1d), ", node->cost, node->conflict_count);
2d043327 513 fprintf (f, "\n");
514 }
515 }
516 else
517 {
518 fprintf (f, "Sorted Coalesce list:\n");
519 for (x = cl->num_sorted - 1 ; x >=0; x--)
520 {
521 node = cl->sorted[x];
db176279 522 fprintf (f, "(%d, %d) ", node->cost, node->conflict_count);
2d043327 523 var = ssa_name (node->first_element);
524 print_generic_expr (f, var, TDF_SLIM);
525 fprintf (f, " <-> ");
526 var = ssa_name (node->second_element);
527 print_generic_expr (f, var, TDF_SLIM);
528 fprintf (f, "\n");
529 }
530 }
531}
532
533
80777cd8 534/* Return an empty new conflict graph for SIZE elements. */
2d043327 535
04009ada 536static inline ssa_conflicts *
2d043327 537ssa_conflicts_new (unsigned size)
538{
04009ada 539 ssa_conflicts *ptr;
2d043327 540
04009ada 541 ptr = XNEW (ssa_conflicts);
83fadd66 542 bitmap_obstack_initialize (&ptr->obstack);
f1f41a6c 543 ptr->conflicts.create (size);
544 ptr->conflicts.safe_grow_cleared (size);
2d043327 545 return ptr;
546}
547
548
549/* Free storage for conflict graph PTR. */
550
551static inline void
04009ada 552ssa_conflicts_delete (ssa_conflicts *ptr)
2d043327 553{
83fadd66 554 bitmap_obstack_release (&ptr->obstack);
f1f41a6c 555 ptr->conflicts.release ();
2d043327 556 free (ptr);
557}
558
559
560/* Test if elements X and Y conflict in graph PTR. */
561
562static inline bool
04009ada 563ssa_conflicts_test_p (ssa_conflicts *ptr, unsigned x, unsigned y)
2d043327 564{
f1f41a6c 565 bitmap bx = ptr->conflicts[x];
566 bitmap by = ptr->conflicts[y];
2d043327 567
1b4345f7 568 gcc_checking_assert (x != y);
2d043327 569
83fadd66 570 if (bx)
2d043327 571 /* Avoid the lookup if Y has no conflicts. */
83fadd66 572 return by ? bitmap_bit_p (bx, y) : false;
2d043327 573 else
574 return false;
575}
576
577
578/* Add a conflict with Y to the bitmap for X in graph PTR. */
579
580static inline void
04009ada 581ssa_conflicts_add_one (ssa_conflicts *ptr, unsigned x, unsigned y)
2d043327 582{
f1f41a6c 583 bitmap bx = ptr->conflicts[x];
2d043327 584 /* If there are no conflicts yet, allocate the bitmap and set bit. */
83fadd66 585 if (! bx)
f1f41a6c 586 bx = ptr->conflicts[x] = BITMAP_ALLOC (&ptr->obstack);
83fadd66 587 bitmap_set_bit (bx, y);
2d043327 588}
589
590
591/* Add conflicts between X and Y in graph PTR. */
592
593static inline void
04009ada 594ssa_conflicts_add (ssa_conflicts *ptr, unsigned x, unsigned y)
2d043327 595{
1b4345f7 596 gcc_checking_assert (x != y);
2d043327 597 ssa_conflicts_add_one (ptr, x, y);
598 ssa_conflicts_add_one (ptr, y, x);
599}
600
601
602/* Merge all Y's conflict into X in graph PTR. */
603
604static inline void
04009ada 605ssa_conflicts_merge (ssa_conflicts *ptr, unsigned x, unsigned y)
2d043327 606{
607 unsigned z;
608 bitmap_iterator bi;
f1f41a6c 609 bitmap bx = ptr->conflicts[x];
610 bitmap by = ptr->conflicts[y];
2d043327 611
83fadd66 612 gcc_checking_assert (x != y);
613 if (! by)
2d043327 614 return;
615
616 /* Add a conflict between X and every one Y has. If the bitmap doesn't
f0b5f617 617 exist, then it has already been coalesced, and we don't need to add a
2d043327 618 conflict. */
83fadd66 619 EXECUTE_IF_SET_IN_BITMAP (by, 0, z, bi)
620 {
f1f41a6c 621 bitmap bz = ptr->conflicts[z];
83fadd66 622 if (bz)
2ab0b416 623 {
624 bool was_there = bitmap_clear_bit (bz, y);
625 gcc_checking_assert (was_there);
626 bitmap_set_bit (bz, x);
627 }
83fadd66 628 }
2d043327 629
83fadd66 630 if (bx)
2d043327 631 {
632 /* If X has conflicts, add Y's to X. */
83fadd66 633 bitmap_ior_into (bx, by);
634 BITMAP_FREE (by);
f1f41a6c 635 ptr->conflicts[y] = NULL;
2d043327 636 }
637 else
638 {
639 /* If X has no conflicts, simply use Y's. */
f1f41a6c 640 ptr->conflicts[x] = by;
641 ptr->conflicts[y] = NULL;
2d043327 642 }
643}
644
645
5f6261a7 646/* Dump a conflicts graph. */
647
648static void
04009ada 649ssa_conflicts_dump (FILE *file, ssa_conflicts *ptr)
5f6261a7 650{
651 unsigned x;
83fadd66 652 bitmap b;
5f6261a7 653
654 fprintf (file, "\nConflict graph:\n");
655
f1f41a6c 656 FOR_EACH_VEC_ELT (ptr->conflicts, x, b)
83fadd66 657 if (b)
5f6261a7 658 {
7bf60644 659 fprintf (file, "%d: ", x);
83fadd66 660 dump_bitmap (file, b);
5f6261a7 661 }
662}
663
664
48e1416a 665/* This structure is used to efficiently record the current status of live
666 SSA_NAMES when building a conflict graph.
2d043327 667 LIVE_BASE_VAR has a bit set for each base variable which has at least one
668 ssa version live.
48e1416a 669 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
670 index, and is used to track what partitions of each base variable are
671 live. This makes it easy to add conflicts between just live partitions
672 with the same base variable.
673 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
2d043327 674 marked as being live. This delays clearing of these bitmaps until
675 they are actually needed again. */
676
251317e4 677class live_track
2d043327 678{
251317e4 679public:
83fadd66 680 bitmap_obstack obstack; /* A place to allocate our bitmaps. */
858bf4c8 681 bitmap_head live_base_var; /* Indicates if a basevar is live. */
682 bitmap_head *live_base_partitions; /* Live partitions for each basevar. */
2d043327 683 var_map map; /* Var_map being used for partition mapping. */
04009ada 684};
2d043327 685
686
687/* This routine will create a new live track structure based on the partitions
688 in MAP. */
689
04009ada 690static live_track *
2d043327 691new_live_track (var_map map)
692{
04009ada 693 live_track *ptr;
2d043327 694 int lim, x;
695
696 /* Make sure there is a partition view in place. */
697 gcc_assert (map->partition_to_base_index != NULL);
698
858bf4c8 699 ptr = XNEW (live_track);
2d043327 700 ptr->map = map;
701 lim = num_basevars (map);
83fadd66 702 bitmap_obstack_initialize (&ptr->obstack);
858bf4c8 703 ptr->live_base_partitions = XNEWVEC (bitmap_head, lim);
704 bitmap_initialize (&ptr->live_base_var, &ptr->obstack);
2d043327 705 for (x = 0; x < lim; x++)
858bf4c8 706 bitmap_initialize (&ptr->live_base_partitions[x], &ptr->obstack);
2d043327 707 return ptr;
708}
709
710
711/* This routine will free the memory associated with PTR. */
712
713static void
04009ada 714delete_live_track (live_track *ptr)
2d043327 715{
83fadd66 716 bitmap_obstack_release (&ptr->obstack);
858bf4c8 717 XDELETEVEC (ptr->live_base_partitions);
718 XDELETE (ptr);
2d043327 719}
720
721
722/* This function will remove PARTITION from the live list in PTR. */
723
724static inline void
04009ada 725live_track_remove_partition (live_track *ptr, int partition)
2d043327 726{
727 int root;
728
729 root = basevar_index (ptr->map, partition);
858bf4c8 730 bitmap_clear_bit (&ptr->live_base_partitions[root], partition);
2d043327 731 /* If the element list is empty, make the base variable not live either. */
858bf4c8 732 if (bitmap_empty_p (&ptr->live_base_partitions[root]))
733 bitmap_clear_bit (&ptr->live_base_var, root);
2d043327 734}
735
736
737/* This function will adds PARTITION to the live list in PTR. */
738
739static inline void
04009ada 740live_track_add_partition (live_track *ptr, int partition)
2d043327 741{
742 int root;
743
744 root = basevar_index (ptr->map, partition);
48e1416a 745 /* If this base var wasn't live before, it is now. Clear the element list
2d043327 746 since it was delayed until needed. */
858bf4c8 747 if (bitmap_set_bit (&ptr->live_base_var, root))
748 bitmap_clear (&ptr->live_base_partitions[root]);
749 bitmap_set_bit (&ptr->live_base_partitions[root], partition);
48e1416a 750
2d043327 751}
752
753
754/* Clear the live bit for VAR in PTR. */
755
756static inline void
04009ada 757live_track_clear_var (live_track *ptr, tree var)
2d043327 758{
759 int p;
760
761 p = var_to_partition (ptr->map, var);
762 if (p != NO_PARTITION)
763 live_track_remove_partition (ptr, p);
764}
765
766
767/* Return TRUE if VAR is live in PTR. */
768
769static inline bool
04009ada 770live_track_live_p (live_track *ptr, tree var)
2d043327 771{
772 int p, root;
773
774 p = var_to_partition (ptr->map, var);
775 if (p != NO_PARTITION)
776 {
777 root = basevar_index (ptr->map, p);
858bf4c8 778 if (bitmap_bit_p (&ptr->live_base_var, root))
779 return bitmap_bit_p (&ptr->live_base_partitions[root], p);
2d043327 780 }
781 return false;
782}
783
784
48e1416a 785/* This routine will add USE to PTR. USE will be marked as live in both the
2d043327 786 ssa live map and the live bitmap for the root of USE. */
787
788static inline void
04009ada 789live_track_process_use (live_track *ptr, tree use)
2d043327 790{
791 int p;
792
793 p = var_to_partition (ptr->map, use);
794 if (p == NO_PARTITION)
795 return;
796
797 /* Mark as live in the appropriate live list. */
798 live_track_add_partition (ptr, p);
799}
800
801
802/* This routine will process a DEF in PTR. DEF will be removed from the live
48e1416a 803 lists, and if there are any other live partitions with the same base
2d043327 804 variable, conflicts will be added to GRAPH. */
805
806static inline void
04009ada 807live_track_process_def (live_track *ptr, tree def, ssa_conflicts *graph)
2d043327 808{
809 int p, root;
810 bitmap b;
811 unsigned x;
812 bitmap_iterator bi;
813
814 p = var_to_partition (ptr->map, def);
815 if (p == NO_PARTITION)
816 return;
817
818 /* Clear the liveness bit. */
819 live_track_remove_partition (ptr, p);
820
821 /* If the bitmap isn't empty now, conflicts need to be added. */
822 root = basevar_index (ptr->map, p);
858bf4c8 823 if (bitmap_bit_p (&ptr->live_base_var, root))
2d043327 824 {
858bf4c8 825 b = &ptr->live_base_partitions[root];
2d043327 826 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
827 ssa_conflicts_add (graph, p, x);
828 }
829}
830
831
832/* Initialize PTR with the partitions set in INIT. */
833
834static inline void
04009ada 835live_track_init (live_track *ptr, bitmap init)
2d043327 836{
837 unsigned p;
838 bitmap_iterator bi;
839
840 /* Mark all live on exit partitions. */
841 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
842 live_track_add_partition (ptr, p);
843}
844
845
846/* This routine will clear all live partitions in PTR. */
847
848static inline void
04009ada 849live_track_clear_base_vars (live_track *ptr)
2d043327 850{
851 /* Simply clear the live base list. Anything marked as live in the element
852 lists will be cleared later if/when the base variable ever comes alive
853 again. */
858bf4c8 854 bitmap_clear (&ptr->live_base_var);
2d043327 855}
856
857
858/* Build a conflict graph based on LIVEINFO. Any partitions which are in the
48e1416a 859 partition view of the var_map liveinfo is based on get entries in the
860 conflict graph. Only conflicts between ssa_name partitions with the same
7920eed5 861 base variable are added. */
2d043327 862
04009ada 863static ssa_conflicts *
2d043327 864build_ssa_conflict_graph (tree_live_info_p liveinfo)
865{
04009ada 866 ssa_conflicts *graph;
2d043327 867 var_map map;
868 basic_block bb;
869 ssa_op_iter iter;
04009ada 870 live_track *live;
94f92c36 871 basic_block entry;
872
873 /* If inter-variable coalescing is enabled, we may attempt to
874 coalesce variables from different base variables, including
875 different parameters, so we have to make sure default defs live
876 at the entry block conflict with each other. */
877 if (flag_tree_coalesce_vars)
878 entry = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
879 else
880 entry = NULL;
2d043327 881
882 map = live_var_map (liveinfo);
883 graph = ssa_conflicts_new (num_var_partitions (map));
884
885 live = new_live_track (map);
886
74bfe107 887 for (unsigned i = 0; liveinfo->map->vec_bbs.iterate (i, &bb); ++i)
2d043327 888 {
2d043327 889 /* Start with live on exit temporaries. */
890 live_track_init (live, live_on_exit (liveinfo, bb));
891
1a91d914 892 for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
893 gsi_prev (&gsi))
2d043327 894 {
895 tree var;
42acab1c 896 gimple *stmt = gsi_stmt (gsi);
2d043327 897
48e1416a 898 /* A copy between 2 partitions does not introduce an interference
899 by itself. If they did, you would never be able to coalesce
900 two things which are copied. If the two variables really do
901 conflict, they will conflict elsewhere in the program.
902
903 This is handled by simply removing the SRC of the copy from the
2d043327 904 live list, and processing the stmt normally. */
75a70cf9 905 if (is_gimple_assign (stmt))
2d043327 906 {
75a70cf9 907 tree lhs = gimple_assign_lhs (stmt);
908 tree rhs1 = gimple_assign_rhs1 (stmt);
909 if (gimple_assign_copy_p (stmt)
910 && TREE_CODE (lhs) == SSA_NAME
911 && TREE_CODE (rhs1) == SSA_NAME)
912 live_track_clear_var (live, rhs1);
2d043327 913 }
9845d120 914 else if (is_gimple_debug (stmt))
915 continue;
2d043327 916
e97d1706 917 /* For stmts with more than one SSA_NAME definition pretend all the
918 SSA_NAME outputs but the first one are live at this point, so
919 that conflicts are added in between all those even when they are
920 actually not really live after the asm, because expansion might
921 copy those into pseudos after the asm and if multiple outputs
922 share the same partition, it might overwrite those that should
923 be live. E.g.
924 asm volatile (".." : "=r" (a) : "=r" (b) : "0" (a), "1" (a));
925 return a;
926 See PR70593. */
927 bool first = true;
928 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
929 if (first)
930 first = false;
931 else
932 live_track_process_use (live, var);
933
2d043327 934 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
935 live_track_process_def (live, var, graph);
936
937 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
938 live_track_process_use (live, var);
939 }
940
48e1416a 941 /* If result of a PHI is unused, looping over the statements will not
2d043327 942 record any conflicts since the def was never live. Since the PHI node
943 is going to be translated out of SSA form, it will insert a copy.
48e1416a 944 There must be a conflict recorded between the result of the PHI and
945 any variables that are live. Otherwise the out-of-ssa translation
2d043327 946 may create incorrect code. */
1a91d914 947 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
948 gsi_next (&gsi))
2d043327 949 {
1a91d914 950 gphi *phi = gsi.phi ();
2d043327 951 tree result = PHI_RESULT (phi);
74bfe107 952 if (virtual_operand_p (result))
953 continue;
2d043327 954 if (live_track_live_p (live, result))
955 live_track_process_def (live, result, graph);
956 }
957
94f92c36 958 /* Pretend there are defs for params' default defs at the start
b2df3bbf 959 of the (post-)entry block. This will prevent PARM_DECLs from
960 coalescing into the same partition. Although RESULT_DECLs'
961 default defs don't have a useful initial value, we have to
962 prevent them from coalescing with PARM_DECLs' default defs
963 too, otherwise assign_parms would attempt to assign different
964 RTL to the same partition. */
94f92c36 965 if (bb == entry)
966 {
b2df3bbf 967 unsigned i;
f211616e 968 tree var;
b2df3bbf 969
f211616e 970 FOR_EACH_SSA_NAME (i, var, cfun)
971 {
972 if (!SSA_NAME_IS_DEFAULT_DEF (var)
b2df3bbf 973 || !SSA_NAME_VAR (var)
974 || VAR_P (SSA_NAME_VAR (var)))
975 continue;
976
977 live_track_process_def (live, var, graph);
978 /* Process a use too, so that it remains live and
979 conflicts with other parms' default defs, even unused
980 ones. */
981 live_track_process_use (live, var);
94f92c36 982 }
983 }
984
2d043327 985 live_track_clear_base_vars (live);
986 }
987
988 delete_live_track (live);
989 return graph;
990}
991
2d043327 992/* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
993
994static inline void
995fail_abnormal_edge_coalesce (int x, int y)
996{
43f13e2b 997 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
2d043327 998 fprintf (stderr, " which are marked as MUST COALESCE.\n");
999 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
1000 fprintf (stderr, " and ");
1001 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
1002
1003 internal_error ("SSA corruption");
1004}
1005
b2df3bbf 1006/* If VAR is an SSA_NAME associated with a PARM_DECL or a RESULT_DECL,
1007 and the DECL's default def is unused (i.e., it was introduced by
74bfe107 1008 create_default_def for out-of-ssa), mark VAR and the default def for
b2df3bbf 1009 coalescing. */
1010
1011static void
04009ada 1012coalesce_with_default (tree var, coalesce_list *cl, bitmap used_in_copy)
b2df3bbf 1013{
1014 if (SSA_NAME_IS_DEFAULT_DEF (var)
1015 || !SSA_NAME_VAR (var)
1016 || VAR_P (SSA_NAME_VAR (var)))
1017 return;
1018
1019 tree ssa = ssa_default_def (cfun, SSA_NAME_VAR (var));
1020 if (!has_zero_uses (ssa))
1021 return;
1022
1023 add_cost_one_coalesce (cl, SSA_NAME_VERSION (ssa), SSA_NAME_VERSION (var));
1024 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
74bfe107 1025 /* Default defs will have their used_in_copy bits set at the beginning of
1026 populate_coalesce_list_for_outofssa. */
b2df3bbf 1027}
2d043327 1028
2d043327 1029
74bfe107 1030/* Given var_map MAP for a region, this function creates and returns a coalesce
1031 list as well as recording related ssa names in USED_IN_COPIES for use later
1032 in the out-of-ssa or live range computation process. */
1033
1034static coalesce_list *
1035create_coalesce_list_for_region (var_map map, bitmap used_in_copy)
2d043327 1036{
75a70cf9 1037 gimple_stmt_iterator gsi;
2d043327 1038 basic_block bb;
74bfe107 1039 coalesce_list *cl = create_coalesce_list ();
42acab1c 1040 gimple *stmt;
2d043327 1041 int v1, v2, cost;
b2df3bbf 1042
74bfe107 1043 for (unsigned j = 0; map->vec_bbs.iterate (j, &bb); ++j)
2d043327 1044 {
75a70cf9 1045 tree arg;
2d043327 1046
1a91d914 1047 for (gphi_iterator gpi = gsi_start_phis (bb);
1048 !gsi_end_p (gpi);
1049 gsi_next (&gpi))
2d043327 1050 {
1a91d914 1051 gphi *phi = gpi.phi ();
75a70cf9 1052 size_t i;
2d043327 1053 int ver;
1054 tree res;
1055 bool saw_copy = false;
1056
75a70cf9 1057 res = gimple_phi_result (phi);
74bfe107 1058 if (virtual_operand_p (res))
1059 continue;
2d043327 1060 ver = SSA_NAME_VERSION (res);
2d043327 1061
48e1416a 1062 /* Register ssa_names and coalesces between the args and the result
2d043327 1063 of all PHI. */
75a70cf9 1064 for (i = 0; i < gimple_phi_num_args (phi); i++)
2d043327 1065 {
75a70cf9 1066 edge e = gimple_phi_arg_edge (phi, i);
2d043327 1067 arg = PHI_ARG_DEF (phi, i);
ec11736b 1068 if (TREE_CODE (arg) != SSA_NAME)
1069 continue;
1070
f82f0ea5 1071 if (gimple_can_coalesce_p (arg, res)
ec11736b 1072 || (e->flags & EDGE_ABNORMAL))
1073 {
2d043327 1074 saw_copy = true;
1075 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
1076 if ((e->flags & EDGE_ABNORMAL) == 0)
1077 {
1078 int cost = coalesce_cost_edge (e);
d860e1f9 1079 if (cost == 1 && has_single_use (arg))
ec11736b 1080 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
2d043327 1081 else
1082 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
1083 }
1084 }
2d043327 1085 }
1086 if (saw_copy)
1087 bitmap_set_bit (used_in_copy, ver);
1088 }
1089
75a70cf9 1090 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2d043327 1091 {
75a70cf9 1092 stmt = gsi_stmt (gsi);
2d043327 1093
9845d120 1094 if (is_gimple_debug (stmt))
1095 continue;
1096
2d043327 1097 /* Check for copy coalesces. */
75a70cf9 1098 switch (gimple_code (stmt))
2d043327 1099 {
75a70cf9 1100 case GIMPLE_ASSIGN:
2d043327 1101 {
75a70cf9 1102 tree lhs = gimple_assign_lhs (stmt);
1103 tree rhs1 = gimple_assign_rhs1 (stmt);
688425e8 1104 if (gimple_assign_ssa_name_copy_p (stmt)
f82f0ea5 1105 && gimple_can_coalesce_p (lhs, rhs1))
2d043327 1106 {
75a70cf9 1107 v1 = SSA_NAME_VERSION (lhs);
1108 v2 = SSA_NAME_VERSION (rhs1);
2d043327 1109 cost = coalesce_cost_bb (bb);
1110 add_coalesce (cl, v1, v2, cost);
1111 bitmap_set_bit (used_in_copy, v1);
1112 bitmap_set_bit (used_in_copy, v2);
1113 }
1114 }
1115 break;
1116
b2df3bbf 1117 case GIMPLE_RETURN:
1118 {
1119 tree res = DECL_RESULT (current_function_decl);
1120 if (VOID_TYPE_P (TREE_TYPE (res))
1121 || !is_gimple_reg (res))
1122 break;
1123 tree rhs1 = gimple_return_retval (as_a <greturn *> (stmt));
1124 if (!rhs1)
1125 break;
1126 tree lhs = ssa_default_def (cfun, res);
1127 gcc_assert (lhs);
1128 if (TREE_CODE (rhs1) == SSA_NAME
1129 && gimple_can_coalesce_p (lhs, rhs1))
1130 {
1131 v1 = SSA_NAME_VERSION (lhs);
1132 v2 = SSA_NAME_VERSION (rhs1);
1133 cost = coalesce_cost_bb (bb);
1134 add_coalesce (cl, v1, v2, cost);
1135 bitmap_set_bit (used_in_copy, v1);
1136 bitmap_set_bit (used_in_copy, v2);
1137 }
1138 break;
1139 }
1140
75a70cf9 1141 case GIMPLE_ASM:
2d043327 1142 {
1a91d914 1143 gasm *asm_stmt = as_a <gasm *> (stmt);
2d043327 1144 unsigned long noutputs, i;
75a70cf9 1145 unsigned long ninputs;
2d043327 1146 tree *outputs, link;
1a91d914 1147 noutputs = gimple_asm_noutputs (asm_stmt);
1148 ninputs = gimple_asm_ninputs (asm_stmt);
2d043327 1149 outputs = (tree *) alloca (noutputs * sizeof (tree));
83fadd66 1150 for (i = 0; i < noutputs; ++i)
1151 {
1a91d914 1152 link = gimple_asm_output_op (asm_stmt, i);
83fadd66 1153 outputs[i] = TREE_VALUE (link);
1154 }
2d043327 1155
75a70cf9 1156 for (i = 0; i < ninputs; ++i)
2d043327 1157 {
75a70cf9 1158 const char *constraint;
1159 tree input;
2d043327 1160 char *end;
1161 unsigned long match;
1162
1a91d914 1163 link = gimple_asm_input_op (asm_stmt, i);
75a70cf9 1164 constraint
1165 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1166 input = TREE_VALUE (link);
1167
a849aec4 1168 if (TREE_CODE (input) != SSA_NAME)
2d043327 1169 continue;
1170
1171 match = strtoul (constraint, &end, 10);
1172 if (match >= noutputs || end == constraint)
1173 continue;
1174
1175 if (TREE_CODE (outputs[match]) != SSA_NAME)
1176 continue;
1177
1178 v1 = SSA_NAME_VERSION (outputs[match]);
1179 v2 = SSA_NAME_VERSION (input);
1180
f82f0ea5 1181 if (gimple_can_coalesce_p (outputs[match], input))
2d043327 1182 {
48e1416a 1183 cost = coalesce_cost (REG_BR_PROB_BASE,
5b835bca 1184 optimize_bb_for_size_p (bb));
2d043327 1185 add_coalesce (cl, v1, v2, cost);
1186 bitmap_set_bit (used_in_copy, v1);
1187 bitmap_set_bit (used_in_copy, v2);
1188 }
1189 }
1190 break;
1191 }
1192
1193 default:
1194 break;
1195 }
2d043327 1196 }
1197 }
1198
74bfe107 1199 return cl;
1200}
1201
1202
1203/* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
1204
1205struct ssa_name_var_hash : nofree_ptr_hash <tree_node>
1206{
1207 static inline hashval_t hash (const tree_node *);
1208 static inline int equal (const tree_node *, const tree_node *);
1209};
1210
1211inline hashval_t
1212ssa_name_var_hash::hash (const_tree n)
1213{
1214 return DECL_UID (SSA_NAME_VAR (n));
1215}
1216
1217inline int
1218ssa_name_var_hash::equal (const tree_node *n1, const tree_node *n2)
1219{
1220 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1221}
1222
1223
1224/* This function populates coalesce list CL as well as recording related ssa
1225 names in USED_IN_COPIES for use later in the out-of-ssa process. */
1226
1227static void
1228populate_coalesce_list_for_outofssa (coalesce_list *cl, bitmap used_in_copy)
1229{
1230 tree var;
1231 tree first;
1232 int v1, v2, cost;
1233 unsigned i;
1234
1235 /* Process result decls and live on entry variables for entry into the
1236 coalesce list. */
2d043327 1237 first = NULL_TREE;
f211616e 1238 FOR_EACH_SSA_NAME (i, var, cfun)
2d043327 1239 {
f211616e 1240 if (!virtual_operand_p (var))
2d043327 1241 {
b2df3bbf 1242 coalesce_with_default (var, cl, used_in_copy);
1243
2d043327 1244 /* Add coalesces between all the result decls. */
ec11736b 1245 if (SSA_NAME_VAR (var)
1246 && TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
2d043327 1247 {
b2df3bbf 1248 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
2d043327 1249 if (first == NULL_TREE)
1250 first = var;
1251 else
1252 {
f82f0ea5 1253 gcc_assert (gimple_can_coalesce_p (var, first));
2d043327 1254 v1 = SSA_NAME_VERSION (first);
1255 v2 = SSA_NAME_VERSION (var);
34154e27 1256 cost = coalesce_cost_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
2d043327 1257 add_coalesce (cl, v1, v2, cost);
1258 }
1259 }
1260 /* Mark any default_def variables as being in the coalesce list
1261 since they will have to be coalesced with the base variable. If
1262 not marked as present, they won't be in the coalesce view. */
c6dfe037 1263 if (SSA_NAME_IS_DEFAULT_DEF (var)
b2df3bbf 1264 && (!has_zero_uses (var)
1265 || (SSA_NAME_VAR (var)
1266 && !VAR_P (SSA_NAME_VAR (var)))))
2d043327 1267 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1268 }
1269 }
1270
74bfe107 1271 /* If this optimization is disabled, we need to coalesce all the
1272 names originating from the same SSA_NAME_VAR so debug info
1273 remains undisturbed. */
1274 if (!flag_tree_coalesce_vars)
1275 {
1276 tree a;
1277 hash_table<ssa_name_var_hash> ssa_name_hash (10);
1278
1279 FOR_EACH_SSA_NAME (i, a, cfun)
1280 {
1281 if (SSA_NAME_VAR (a)
1282 && !DECL_IGNORED_P (SSA_NAME_VAR (a))
1283 && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)
1284 || !VAR_P (SSA_NAME_VAR (a))))
1285 {
1286 tree *slot = ssa_name_hash.find_slot (a, INSERT);
1287
1288 if (!*slot)
1289 *slot = a;
1290 else
1291 {
1292 /* If the variable is a PARM_DECL or a RESULT_DECL, we
1293 _require_ that all the names originating from it be
1294 coalesced, because there must be a single partition
1295 containing all the names so that it can be assigned
1296 the canonical RTL location of the DECL safely.
1297 If in_lto_p, a function could have been compiled
1298 originally with optimizations and only the link
1299 performed at -O0, so we can't actually require it. */
1300 const int cost
1301 = (TREE_CODE (SSA_NAME_VAR (a)) == VAR_DECL || in_lto_p)
1302 ? MUST_COALESCE_COST - 1 : MUST_COALESCE_COST;
1303 add_coalesce (cl, SSA_NAME_VERSION (a),
1304 SSA_NAME_VERSION (*slot), cost);
1305 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (a));
1306 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (*slot));
1307 }
1308 }
1309 }
1310 }
2d043327 1311}
1312
1313
7920eed5 1314/* Attempt to coalesce ssa versions X and Y together using the partition
89e4e54e 1315 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1316 DEBUG, if it is nun-NULL. */
2d043327 1317
1318static inline bool
04009ada 1319attempt_coalesce (var_map map, ssa_conflicts *graph, int x, int y,
2d043327 1320 FILE *debug)
1321{
1322 int z;
1323 tree var1, var2;
1324 int p1, p2;
1325
1326 p1 = var_to_partition (map, ssa_name (x));
1327 p2 = var_to_partition (map, ssa_name (y));
1328
1329 if (debug)
1330 {
1331 fprintf (debug, "(%d)", x);
1332 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1333 fprintf (debug, " & (%d)", y);
1334 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1335 }
1336
48e1416a 1337 if (p1 == p2)
2d043327 1338 {
1339 if (debug)
1340 fprintf (debug, ": Already Coalesced.\n");
1341 return true;
1342 }
1343
1344 if (debug)
1345 fprintf (debug, " [map: %d, %d] ", p1, p2);
1346
1347
89e4e54e 1348 if (!ssa_conflicts_test_p (graph, p1, p2))
2d043327 1349 {
1350 var1 = partition_to_var (map, p1);
1351 var2 = partition_to_var (map, p2);
94f92c36 1352
2d043327 1353 z = var_union (map, var1, var2);
1354 if (z == NO_PARTITION)
1355 {
1356 if (debug)
1357 fprintf (debug, ": Unable to perform partition union.\n");
1358 return false;
1359 }
1360
48e1416a 1361 /* z is the new combined partition. Remove the other partition from
2d043327 1362 the list, and merge the conflicts. */
89e4e54e 1363 if (z == p1)
1364 ssa_conflicts_merge (graph, p1, p2);
1365 else
1366 ssa_conflicts_merge (graph, p2, p1);
2d043327 1367
1368 if (debug)
1369 fprintf (debug, ": Success -> %d\n", z);
94f92c36 1370
2d043327 1371 return true;
1372 }
1373
1374 if (debug)
1375 fprintf (debug, ": Fail due to conflict\n");
1376
1377 return false;
1378}
1379
1380
89e4e54e 1381/* Attempt to Coalesce partitions in MAP which occur in the list CL using
1382 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
2d043327 1383
1384static void
04009ada 1385coalesce_partitions (var_map map, ssa_conflicts *graph, coalesce_list *cl,
89e4e54e 1386 FILE *debug)
2d043327 1387{
89e4e54e 1388 int x = 0, y = 0;
1389 tree var1, var2;
1390 int cost;
2d043327 1391 basic_block bb;
1392 edge e;
1393 edge_iterator ei;
1394
89e4e54e 1395 /* First, coalesce all the copies across abnormal edges. These are not placed
1396 in the coalesce list because they do not need to be sorted, and simply
1397 consume extra memory/compilation time in large programs. */
1398
fc00614f 1399 FOR_EACH_BB_FN (bb, cfun)
2d043327 1400 {
1401 FOR_EACH_EDGE (e, ei, bb->preds)
1402 if (e->flags & EDGE_ABNORMAL)
1403 {
1a91d914 1404 gphi_iterator gsi;
75a70cf9 1405 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1406 gsi_next (&gsi))
2d043327 1407 {
1a91d914 1408 gphi *phi = gsi.phi ();
74bfe107 1409 tree res = PHI_RESULT (phi);
1410 if (virtual_operand_p (res))
1411 continue;
dfad1cc1 1412 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1413 if (SSA_NAME_IS_DEFAULT_DEF (arg)
1414 && (!SSA_NAME_VAR (arg)
1415 || TREE_CODE (SSA_NAME_VAR (arg)) != PARM_DECL))
1416 continue;
1417
2d043327 1418 int v1 = SSA_NAME_VERSION (res);
1419 int v2 = SSA_NAME_VERSION (arg);
1420
2d043327 1421 if (debug)
1422 fprintf (debug, "Abnormal coalesce: ");
1423
89e4e54e 1424 if (!attempt_coalesce (map, graph, v1, v2, debug))
2d043327 1425 fail_abnormal_edge_coalesce (v1, v2);
1426 }
1427 }
1428 }
1429
1430 /* Now process the items in the coalesce list. */
1431
1432 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1433 {
1434 var1 = ssa_name (x);
1435 var2 = ssa_name (y);
1436
1437 /* Assert the coalesces have the same base variable. */
f82f0ea5 1438 gcc_assert (gimple_can_coalesce_p (var1, var2));
2d043327 1439
1440 if (debug)
1441 fprintf (debug, "Coalesce list: ");
1442 attempt_coalesce (map, graph, x, y, debug);
1443 }
1444}
1445
494bbaae 1446
94f92c36 1447/* Output partition map MAP with coalescing plan PART to file F. */
1448
1449void
1450dump_part_var_map (FILE *f, partition part, var_map map)
1451{
1452 int t;
1453 unsigned x, y;
1454 int p;
1455
1456 fprintf (f, "\nCoalescible Partition map \n\n");
1457
1458 for (x = 0; x < map->num_partitions; x++)
1459 {
1460 if (map->view_to_partition != NULL)
1461 p = map->view_to_partition[x];
1462 else
1463 p = x;
1464
1465 if (ssa_name (p) == NULL_TREE
1466 || virtual_operand_p (ssa_name (p)))
1467 continue;
1468
1469 t = 0;
1470 for (y = 1; y < num_ssa_names; y++)
1471 {
1472 tree var = version_to_var (map, y);
1473 if (!var)
1474 continue;
1475 int q = var_to_partition (map, var);
1476 p = partition_find (part, q);
1477 gcc_assert (map->partition_to_base_index[q]
1478 == map->partition_to_base_index[p]);
1479
1480 if (p == (int)x)
1481 {
1482 if (t++ == 0)
1483 {
1484 fprintf (f, "Partition %d, base %d (", x,
1485 map->partition_to_base_index[q]);
1486 print_generic_expr (f, partition_to_var (map, q), TDF_SLIM);
1487 fprintf (f, " - ");
1488 }
1489 fprintf (f, "%d ", y);
1490 }
1491 }
1492 if (t != 0)
1493 fprintf (f, ")\n");
1494 }
1495 fprintf (f, "\n");
1496}
1497
1498/* Given SSA_NAMEs NAME1 and NAME2, return true if they are candidates for
1499 coalescing together, false otherwise.
1500
c887da18 1501 This must stay consistent with compute_samebase_partition_bases and
1502 compute_optimized_partition_bases. */
94f92c36 1503
1504bool
1505gimple_can_coalesce_p (tree name1, tree name2)
1506{
1507 /* First check the SSA_NAME's associated DECL. Without
1508 optimization, we only want to coalesce if they have the same DECL
1509 or both have no associated DECL. */
1510 tree var1 = SSA_NAME_VAR (name1);
1511 tree var2 = SSA_NAME_VAR (name2);
1512 var1 = (var1 && (!VAR_P (var1) || !DECL_IGNORED_P (var1))) ? var1 : NULL_TREE;
1513 var2 = (var2 && (!VAR_P (var2) || !DECL_IGNORED_P (var2))) ? var2 : NULL_TREE;
1514 if (var1 != var2 && !flag_tree_coalesce_vars)
1515 return false;
1516
1517 /* Now check the types. If the types are the same, then we should
1518 try to coalesce V1 and V2. */
1519 tree t1 = TREE_TYPE (name1);
1520 tree t2 = TREE_TYPE (name2);
1521 if (t1 == t2)
1522 {
1523 check_modes:
1524 /* If the base variables are the same, we're good: none of the
1525 other tests below could possibly fail. */
1526 var1 = SSA_NAME_VAR (name1);
1527 var2 = SSA_NAME_VAR (name2);
1528 if (var1 == var2)
1529 return true;
1530
1531 /* We don't want to coalesce two SSA names if one of the base
1532 variables is supposed to be a register while the other is
b2df3bbf 1533 supposed to be on the stack. Anonymous SSA names most often
1534 take registers, but when not optimizing, user variables
1535 should go on the stack, so coalescing them with the anonymous
1536 variable as the partition leader would end up assigning the
1537 user variable to a register. Don't do that! */
1538 bool reg1 = use_register_for_decl (name1);
1539 bool reg2 = use_register_for_decl (name2);
94f92c36 1540 if (reg1 != reg2)
1541 return false;
1542
b2df3bbf 1543 /* Check that the promoted modes and unsignedness are the same.
1544 We don't want to coalesce if the promoted modes would be
1545 different, or if they would sign-extend differently. Only
94f92c36 1546 PARM_DECLs and RESULT_DECLs have different promotion rules,
1547 so skip the test if both are variables, or both are anonymous
b2df3bbf 1548 SSA_NAMEs. */
1549 int unsigned1, unsigned2;
94f92c36 1550 return ((!var1 || VAR_P (var1)) && (!var2 || VAR_P (var2)))
b2df3bbf 1551 || ((promote_ssa_mode (name1, &unsigned1)
1552 == promote_ssa_mode (name2, &unsigned2))
1553 && unsigned1 == unsigned2);
94f92c36 1554 }
1555
b2df3bbf 1556 /* If alignment requirements are different, we can't coalesce. */
1557 if (MINIMUM_ALIGNMENT (t1,
1558 var1 ? DECL_MODE (var1) : TYPE_MODE (t1),
1559 var1 ? LOCAL_DECL_ALIGNMENT (var1) : TYPE_ALIGN (t1))
1560 != MINIMUM_ALIGNMENT (t2,
1561 var2 ? DECL_MODE (var2) : TYPE_MODE (t2),
1562 var2 ? LOCAL_DECL_ALIGNMENT (var2) : TYPE_ALIGN (t2)))
1563 return false;
1564
0e24aab6 1565 /* If the types are not the same, see whether they are compatible. This
94f92c36 1566 (for example) allows coalescing when the types are fundamentally the
26e4d5a2 1567 same, but just have different names. */
1568 if (types_compatible_p (t1, t2))
1569 goto check_modes;
94f92c36 1570
1571 return false;
1572}
1573
1574/* Fill in MAP's partition_to_base_index, with one index for each
1575 partition of SSA names USED_IN_COPIES and related by CL coalesce
1576 possibilities. This must match gimple_can_coalesce_p in the
1577 optimized case. */
1578
1579static void
1580compute_optimized_partition_bases (var_map map, bitmap used_in_copies,
04009ada 1581 coalesce_list *cl)
94f92c36 1582{
1583 int parts = num_var_partitions (map);
1584 partition tentative = partition_new (parts);
1585
1586 /* Partition the SSA versions so that, for each coalescible
1587 pair, both of its members are in the same partition in
1588 TENTATIVE. */
1589 gcc_assert (!cl->sorted);
04009ada 1590 coalesce_pair *node;
94f92c36 1591 coalesce_iterator_type ppi;
1592 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
1593 {
1594 tree v1 = ssa_name (node->first_element);
1595 int p1 = partition_find (tentative, var_to_partition (map, v1));
1596 tree v2 = ssa_name (node->second_element);
1597 int p2 = partition_find (tentative, var_to_partition (map, v2));
1598
1599 if (p1 == p2)
1600 continue;
1601
1602 partition_union (tentative, p1, p2);
1603 }
1604
1605 /* We have to deal with cost one pairs too. */
04009ada 1606 for (cost_one_pair *co = cl->cost_one_list; co; co = co->next)
94f92c36 1607 {
1608 tree v1 = ssa_name (co->first_element);
1609 int p1 = partition_find (tentative, var_to_partition (map, v1));
1610 tree v2 = ssa_name (co->second_element);
1611 int p2 = partition_find (tentative, var_to_partition (map, v2));
1612
1613 if (p1 == p2)
1614 continue;
1615
1616 partition_union (tentative, p1, p2);
1617 }
1618
1619 /* And also with abnormal edges. */
1620 basic_block bb;
1621 edge e;
74bfe107 1622 unsigned i;
94f92c36 1623 edge_iterator ei;
74bfe107 1624 for (i = 0; map->vec_bbs.iterate (i, &bb); ++i)
94f92c36 1625 {
1626 FOR_EACH_EDGE (e, ei, bb->preds)
1627 if (e->flags & EDGE_ABNORMAL)
1628 {
1629 gphi_iterator gsi;
1630 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1631 gsi_next (&gsi))
1632 {
1633 gphi *phi = gsi.phi ();
74bfe107 1634 tree res = PHI_RESULT (phi);
1635 if (virtual_operand_p (res))
1636 continue;
94f92c36 1637 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1638 if (SSA_NAME_IS_DEFAULT_DEF (arg)
1639 && (!SSA_NAME_VAR (arg)
1640 || TREE_CODE (SSA_NAME_VAR (arg)) != PARM_DECL))
1641 continue;
1642
94f92c36 1643 int p1 = partition_find (tentative, var_to_partition (map, res));
1644 int p2 = partition_find (tentative, var_to_partition (map, arg));
1645
1646 if (p1 == p2)
1647 continue;
1648
1649 partition_union (tentative, p1, p2);
1650 }
1651 }
1652 }
1653
1654 map->partition_to_base_index = XCNEWVEC (int, parts);
1655 auto_vec<unsigned int> index_map (parts);
1656 if (parts)
1657 index_map.quick_grow (parts);
1658
1659 const unsigned no_part = -1;
1660 unsigned count = parts;
1661 while (count)
1662 index_map[--count] = no_part;
1663
1664 /* Initialize MAP's mapping from partition to base index, using
1665 as base indices an enumeration of the TENTATIVE partitions in
1666 which each SSA version ended up, so that we compute conflicts
1667 between all SSA versions that ended up in the same potential
1668 coalesce partition. */
1669 bitmap_iterator bi;
94f92c36 1670 EXECUTE_IF_SET_IN_BITMAP (used_in_copies, 0, i, bi)
1671 {
1672 int pidx = var_to_partition (map, ssa_name (i));
1673 int base = partition_find (tentative, pidx);
1674 if (index_map[base] != no_part)
1675 continue;
1676 index_map[base] = count++;
1677 }
1678
1679 map->num_basevars = count;
1680
1681 EXECUTE_IF_SET_IN_BITMAP (used_in_copies, 0, i, bi)
1682 {
1683 int pidx = var_to_partition (map, ssa_name (i));
1684 int base = partition_find (tentative, pidx);
1685 gcc_assert (index_map[base] < count);
1686 map->partition_to_base_index[pidx] = index_map[base];
1687 }
1688
1689 if (dump_file && (dump_flags & TDF_DETAILS))
1690 dump_part_var_map (dump_file, tentative, map);
1691
1692 partition_delete (tentative);
1693}
1694
74bfe107 1695/* Given an initial var_map MAP, coalesce variables and return a partition map
1696 with the resulting coalesce. Note that this function is called in either
1697 live range computation context or out-of-ssa context, indicated by MAP. */
2d043327 1698
74bfe107 1699extern void
1700coalesce_ssa_name (var_map map)
2d043327 1701{
2d043327 1702 tree_live_info_p liveinfo;
04009ada 1703 ssa_conflicts *graph;
1704 coalesce_list *cl;
035def86 1705 auto_bitmap used_in_copies;
2d043327 1706
e35f850e 1707 bitmap_tree_view (used_in_copies);
74bfe107 1708 cl = create_coalesce_list_for_region (map, used_in_copies);
1709 if (map->outofssa_p)
1710 populate_coalesce_list_for_outofssa (cl, used_in_copies);
e35f850e 1711 bitmap_list_view (used_in_copies);
2d043327 1712
bff4202c 1713 if (dump_file && (dump_flags & TDF_DETAILS))
1714 dump_var_map (dump_file, map);
1715
94f92c36 1716 partition_view_bitmap (map, used_in_copies);
1717
26e4d5a2 1718 compute_optimized_partition_bases (map, used_in_copies, cl);
94f92c36 1719
b53267a3 1720 if (num_var_partitions (map) < 1)
2d043327 1721 {
1722 delete_coalesce_list (cl);
74bfe107 1723 return;
2d043327 1724 }
1725
1726 if (dump_file && (dump_flags & TDF_DETAILS))
1727 dump_var_map (dump_file, map);
1728
78775228 1729 liveinfo = calculate_live_ranges (map, false);
2d043327 1730
1731 if (dump_file && (dump_flags & TDF_DETAILS))
1732 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1733
1734 /* Build a conflict graph. */
1735 graph = build_ssa_conflict_graph (liveinfo);
1736 delete_tree_live_info (liveinfo);
5f6261a7 1737 if (dump_file && (dump_flags & TDF_DETAILS))
1738 ssa_conflicts_dump (dump_file, graph);
2d043327 1739
db176279 1740 sort_coalesce_list (cl, graph, map);
2d043327 1741
1742 if (dump_file && (dump_flags & TDF_DETAILS))
1743 {
1744 fprintf (dump_file, "\nAfter sorting:\n");
1745 dump_coalesce_list (dump_file, cl);
1746 }
1747
48e1416a 1748 /* First, coalesce all live on entry variables to their base variable.
2d043327 1749 This will ensure the first use is coming from the correct location. */
1750
2d043327 1751 if (dump_file && (dump_flags & TDF_DETAILS))
1752 dump_var_map (dump_file, map);
1753
1754 /* Now coalesce everything in the list. */
48e1416a 1755 coalesce_partitions (map, graph, cl,
94f92c36 1756 ((dump_flags & TDF_DETAILS) ? dump_file : NULL));
2d043327 1757
1758 delete_coalesce_list (cl);
1759 ssa_conflicts_delete (graph);
2d043327 1760}
b2df3bbf 1761