]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-coalesce.c
Change copyright header to refer to version 3 of the GNU General Public License and...
[thirdparty/gcc.git] / gcc / tree-ssa-coalesce.c
CommitLineData
7290d709 1/* Coalesce SSA_NAMES together for the out-of-ssa pass.
3521f3cc 2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
7290d709
AM
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9dcd6f09 9the Free Software Foundation; either version 3, or (at your option)
7290d709
AM
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
7290d709
AM
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "tree.h"
26#include "flags.h"
27#include "diagnostic.h"
28#include "bitmap.h"
29#include "tree-flow.h"
30#include "hashtab.h"
31#include "tree-dump.h"
32#include "tree-ssa-live.h"
33#include "toplev.h"
34
35
36/* This set of routines implements a coalesce_list. This is an object which
37 is used to track pairs of ssa_names which are desirable to coalesce
38 together to avoid copies. Costs are associated with each pair, and when
39 all desired information has been collected, the object can be used to
40 order the pairs for processing. */
41
42/* This structure defines a pair entry. */
43
44typedef struct coalesce_pair
45{
46 int first_element;
47 int second_element;
48 int cost;
49} * coalesce_pair_p;
741ac903 50typedef const struct coalesce_pair *const_coalesce_pair_p;
7290d709
AM
51
52typedef struct cost_one_pair_d
53{
54 int first_element;
55 int second_element;
56 struct cost_one_pair_d *next;
57} * cost_one_pair_p;
58
59/* This structure maintains the list of coalesce pairs. */
60
61typedef struct coalesce_list_d
62{
63 htab_t list; /* Hash table. */
64 coalesce_pair_p *sorted; /* List when sorted. */
65 int num_sorted; /* Number in the sorted list. */
66 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
67} *coalesce_list_p;
68
69#define NO_BEST_COALESCE -1
70#define MUST_COALESCE_COST INT_MAX
71
72
73/* Return cost of execution of copy instruction with FREQUENCY
74 possibly on CRITICAL edge and in HOT basic block. */
75
76static inline int
77coalesce_cost (int frequency, bool hot, bool critical)
78{
79 /* Base costs on BB frequencies bounded by 1. */
80 int cost = frequency;
81
82 if (!cost)
83 cost = 1;
84
85 if (optimize_size)
86 cost = 1;
87 else
88 /* It is more important to coalesce in HOT blocks. */
89 if (hot)
90 cost *= 2;
91
92 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
93 if (critical)
94 cost *= 2;
95 return cost;
96}
97
98
99/* Return the cost of executing a copy instruction in basic block BB. */
100
101static inline int
102coalesce_cost_bb (basic_block bb)
103{
104 return coalesce_cost (bb->frequency, maybe_hot_bb_p (bb), false);
105}
106
107
108/* Return the cost of executing a copy instruction on edge E. */
109
110static inline int
111coalesce_cost_edge (edge e)
112{
113 if (e->flags & EDGE_ABNORMAL)
114 return MUST_COALESCE_COST;
115
116 return coalesce_cost (EDGE_FREQUENCY (e),
117 maybe_hot_bb_p (e->src),
118 EDGE_CRITICAL_P (e));
119}
120
121
122/* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
123 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
124 NO_BEST_COALESCE is returned if there aren't any. */
125
126static inline int
127pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
128{
129 cost_one_pair_p ptr;
130
131 ptr = cl->cost_one_list;
132 if (!ptr)
133 return NO_BEST_COALESCE;
134
135 *p1 = ptr->first_element;
136 *p2 = ptr->second_element;
137 cl->cost_one_list = ptr->next;
138
139 free (ptr);
140
141 return 1;
142}
143
144/* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
145 2 elements via P1 and P2. Their calculated cost is returned by the function.
146 NO_BEST_COALESCE is returned if the coalesce list is empty. */
147
148static inline int
149pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
150{
151 coalesce_pair_p node;
152 int ret;
153
154 if (cl->sorted == NULL)
155 return pop_cost_one_pair (cl, p1, p2);
156
157 if (cl->num_sorted == 0)
158 return pop_cost_one_pair (cl, p1, p2);
159
160 node = cl->sorted[--(cl->num_sorted)];
161 *p1 = node->first_element;
162 *p2 = node->second_element;
163 ret = node->cost;
164 free (node);
165
166 return ret;
167}
168
169
170#define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
171
172/* Hash function for coalesce list. Calculate hash for PAIR. */
173
174static unsigned int
175coalesce_pair_map_hash (const void *pair)
176{
741ac903
KG
177 hashval_t a = (hashval_t)(((const_coalesce_pair_p)pair)->first_element);
178 hashval_t b = (hashval_t)(((const_coalesce_pair_p)pair)->second_element);
7290d709
AM
179
180 return COALESCE_HASH_FN (a,b);
181}
182
183
184/* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
2e226e66 185 returning TRUE if the two pairs are equivalent. */
7290d709
AM
186
187static int
188coalesce_pair_map_eq (const void *pair1, const void *pair2)
189{
741ac903
KG
190 const_coalesce_pair_p const p1 = (const_coalesce_pair_p) pair1;
191 const_coalesce_pair_p const p2 = (const_coalesce_pair_p) pair2;
7290d709
AM
192
193 return (p1->first_element == p2->first_element
194 && p1->second_element == p2->second_element);
195}
196
197
198/* Create a new empty coalesce list object and return it. */
199
200static inline coalesce_list_p
201create_coalesce_list (void)
202{
203 coalesce_list_p list;
204 unsigned size = num_ssa_names * 3;
205
206 if (size < 40)
207 size = 40;
208
209 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
210 list->list = htab_create (size, coalesce_pair_map_hash,
211 coalesce_pair_map_eq, NULL);
212 list->sorted = NULL;
213 list->num_sorted = 0;
214 list->cost_one_list = NULL;
215 return list;
216}
217
218
219/* Delete coalesce list CL. */
220
221static inline void
222delete_coalesce_list (coalesce_list_p cl)
223{
224 gcc_assert (cl->cost_one_list == NULL);
225 htab_delete (cl->list);
226 if (cl->sorted)
227 free (cl->sorted);
228 gcc_assert (cl->num_sorted == 0);
229 free (cl);
230}
231
232
233/* Find a matching coalesce pair object in CL for the pair P1 and P2. If
234 one isn't found, return NULL if CREATE is false, otherwise create a new
235 coalesce pair object and return it. */
236
237static coalesce_pair_p
238find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
239{
240 struct coalesce_pair p, *pair;
241 void **slot;
242 unsigned int hash;
243
244 /* Normalize so that p1 is the smaller value. */
245 if (p2 < p1)
246 {
247 p.first_element = p2;
248 p.second_element = p1;
249 }
250 else
251 {
252 p.first_element = p1;
253 p.second_element = p2;
254 }
255
256
257 hash = coalesce_pair_map_hash (&p);
258 pair = (struct coalesce_pair *) htab_find_with_hash (cl->list, &p, hash);
259
260 if (create && !pair)
261 {
262 gcc_assert (cl->sorted == NULL);
c22940cd 263 pair = XNEW (struct coalesce_pair);
7290d709
AM
264 pair->first_element = p.first_element;
265 pair->second_element = p.second_element;
266 pair->cost = 0;
267 slot = htab_find_slot_with_hash (cl->list, pair, hash, INSERT);
268 *(struct coalesce_pair **)slot = pair;
269 }
270
271 return pair;
272}
273
274static inline void
275add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
276{
277 cost_one_pair_p pair;
278
c22940cd 279 pair = XNEW (struct cost_one_pair_d);
7290d709
AM
280 pair->first_element = p1;
281 pair->second_element = p2;
282 pair->next = cl->cost_one_list;
283 cl->cost_one_list = pair;
284}
285
286
287/* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
288
289static inline void
290add_coalesce (coalesce_list_p cl, int p1, int p2,
291 int value)
292{
293 coalesce_pair_p node;
294
295 gcc_assert (cl->sorted == NULL);
296 if (p1 == p2)
297 return;
298
299 node = find_coalesce_pair (cl, p1, p2, true);
300
301 /* Once the value is MUST_COALESCE_COST, leave it that way. */
302 if (node->cost != MUST_COALESCE_COST)
303 {
304 if (value == MUST_COALESCE_COST)
305 node->cost = value;
306 else
307 node->cost += value;
308 }
309}
310
311
2e226e66 312/* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
7290d709
AM
313
314static int
315compare_pairs (const void *p1, const void *p2)
316{
741ac903
KG
317 return (*(const_coalesce_pair_p const*)p1)->cost
318 - (*(const_coalesce_pair_p const*)p2)->cost;
7290d709
AM
319}
320
321
322/* Return the number of unique coalesce pairs in CL. */
323
324static inline int
325num_coalesce_pairs (coalesce_list_p cl)
326{
327 return htab_elements (cl->list);
328}
329
330
331/* Iterator over hash table pairs. */
332typedef struct
333{
334 htab_iterator hti;
335} coalesce_pair_iterator;
336
337
338/* Return first partition pair from list CL, initializing iterator ITER. */
339
340static inline coalesce_pair_p
341first_coalesce_pair (coalesce_list_p cl, coalesce_pair_iterator *iter)
342{
343 coalesce_pair_p pair;
344
345 pair = (coalesce_pair_p) first_htab_element (&(iter->hti), cl->list);
346 return pair;
347}
348
349
350/* Return TRUE if there are no more partitions in for ITER to process. */
351
352static inline bool
353end_coalesce_pair_p (coalesce_pair_iterator *iter)
354{
355 return end_htab_p (&(iter->hti));
356}
357
358
2e226e66 359/* Return the next partition pair to be visited by ITER. */
7290d709
AM
360
361static inline coalesce_pair_p
362next_coalesce_pair (coalesce_pair_iterator *iter)
363{
364 coalesce_pair_p pair;
365
366 pair = (coalesce_pair_p) next_htab_element (&(iter->hti));
367 return pair;
368}
369
370
371/* Iterate over CL using ITER, returning values in PAIR. */
372
373#define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
374 for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \
375 !end_coalesce_pair_p (&(ITER)); \
376 (PAIR) = next_coalesce_pair (&(ITER)))
377
378
379/* Prepare CL for removal of preferred pairs. When finished they are sorted
380 in order from most important coalesce to least important. */
381
382static void
383sort_coalesce_list (coalesce_list_p cl)
384{
385 unsigned x, num;
386 coalesce_pair_p p;
387 coalesce_pair_iterator ppi;
388
389 gcc_assert (cl->sorted == NULL);
390
391 num = num_coalesce_pairs (cl);
392 cl->num_sorted = num;
393 if (num == 0)
394 return;
395
396 /* Allocate a vector for the pair pointers. */
397 cl->sorted = XNEWVEC (coalesce_pair_p, num);
398
399 /* Populate the vector with pointers to the pairs. */
400 x = 0;
401 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
402 cl->sorted[x++] = p;
403 gcc_assert (x == num);
404
405 /* Already sorted. */
406 if (num == 1)
407 return;
408
409 /* If there are only 2, just pick swap them if the order isn't correct. */
410 if (num == 2)
411 {
412 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
413 {
414 p = cl->sorted[0];
415 cl->sorted[0] = cl->sorted[1];
416 cl->sorted[1] = p;
417 }
418 return;
419 }
420
421 /* Only call qsort if there are more than 2 items. */
422 if (num > 2)
423 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
424}
425
426
427/* Send debug info for coalesce list CL to file F. */
428
429static void
430dump_coalesce_list (FILE *f, coalesce_list_p cl)
431{
432 coalesce_pair_p node;
433 coalesce_pair_iterator ppi;
434 int x;
435 tree var;
436
437 if (cl->sorted == NULL)
438 {
439 fprintf (f, "Coalesce List:\n");
440 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
441 {
442 tree var1 = ssa_name (node->first_element);
443 tree var2 = ssa_name (node->second_element);
444 print_generic_expr (f, var1, TDF_SLIM);
445 fprintf (f, " <-> ");
446 print_generic_expr (f, var2, TDF_SLIM);
447 fprintf (f, " (%1d), ", node->cost);
448 fprintf (f, "\n");
449 }
450 }
451 else
452 {
453 fprintf (f, "Sorted Coalesce list:\n");
454 for (x = cl->num_sorted - 1 ; x >=0; x--)
455 {
456 node = cl->sorted[x];
457 fprintf (f, "(%d) ", node->cost);
458 var = ssa_name (node->first_element);
459 print_generic_expr (f, var, TDF_SLIM);
460 fprintf (f, " <-> ");
461 var = ssa_name (node->second_element);
462 print_generic_expr (f, var, TDF_SLIM);
463 fprintf (f, "\n");
464 }
465 }
466}
467
468
469/* This represents a conflict graph. Implemented as an array of bitmaps.
2e226e66 470 A full matrix is used for conflicts rather than just upper triangular form.
7290d709
AM
471 this make sit much simpler and faster to perform conflict merges. */
472
473typedef struct ssa_conflicts_d
474{
475 unsigned size;
476 bitmap *conflicts;
477} * ssa_conflicts_p;
478
479
110abdbc 480/* Return an empty new conflict graph for SIZE elements. */
7290d709
AM
481
482static inline ssa_conflicts_p
483ssa_conflicts_new (unsigned size)
484{
485 ssa_conflicts_p ptr;
486
487 ptr = XNEW (struct ssa_conflicts_d);
488 ptr->conflicts = XCNEWVEC (bitmap, size);
489 ptr->size = size;
490 return ptr;
491}
492
493
494/* Free storage for conflict graph PTR. */
495
496static inline void
497ssa_conflicts_delete (ssa_conflicts_p ptr)
498{
499 unsigned x;
500 for (x = 0; x < ptr->size; x++)
501 if (ptr->conflicts[x])
502 BITMAP_FREE (ptr->conflicts[x]);
503
504 free (ptr->conflicts);
505 free (ptr);
506}
507
508
509/* Test if elements X and Y conflict in graph PTR. */
510
511static inline bool
512ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
513{
514 bitmap b;
515
516#ifdef ENABLE_CHECKING
517 gcc_assert (x < ptr->size);
518 gcc_assert (y < ptr->size);
519 gcc_assert (x != y);
520#endif
521
522 b = ptr->conflicts[x];
523 if (b)
524 /* Avoid the lookup if Y has no conflicts. */
525 return ptr->conflicts[y] ? bitmap_bit_p (b, y) : false;
526 else
527 return false;
528}
529
530
531/* Add a conflict with Y to the bitmap for X in graph PTR. */
532
533static inline void
534ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
535{
536 /* If there are no conflicts yet, allocate the bitmap and set bit. */
537 if (!ptr->conflicts[x])
538 ptr->conflicts[x] = BITMAP_ALLOC (NULL);
539 bitmap_set_bit (ptr->conflicts[x], y);
540}
541
542
543/* Add conflicts between X and Y in graph PTR. */
544
545static inline void
546ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
547{
548#ifdef ENABLE_CHECKING
549 gcc_assert (x < ptr->size);
550 gcc_assert (y < ptr->size);
551 gcc_assert (x != y);
552#endif
553 ssa_conflicts_add_one (ptr, x, y);
554 ssa_conflicts_add_one (ptr, y, x);
555}
556
557
558/* Merge all Y's conflict into X in graph PTR. */
559
560static inline void
561ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
562{
563 unsigned z;
564 bitmap_iterator bi;
565
566 gcc_assert (x != y);
567 if (!(ptr->conflicts[y]))
568 return;
569
570 /* Add a conflict between X and every one Y has. If the bitmap doesn't
571 exist, then it has already been coalesced, and we dont need to add a
572 conflict. */
573 EXECUTE_IF_SET_IN_BITMAP (ptr->conflicts[y], 0, z, bi)
574 if (ptr->conflicts[z])
575 bitmap_set_bit (ptr->conflicts[z], x);
576
577 if (ptr->conflicts[x])
578 {
579 /* If X has conflicts, add Y's to X. */
580 bitmap_ior_into (ptr->conflicts[x], ptr->conflicts[y]);
581 BITMAP_FREE (ptr->conflicts[y]);
582 }
583 else
584 {
585 /* If X has no conflicts, simply use Y's. */
586 ptr->conflicts[x] = ptr->conflicts[y];
587 ptr->conflicts[y] = NULL;
588 }
589}
590
591
592/* This structure is used to efficiently record the current status of live
593 SSA_NAMES when building a conflict graph.
594 LIVE_BASE_VAR has a bit set for each base variable which has at least one
595 ssa version live.
596 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
597 index, and is used to track what partitions of each base variable are
598 live. This makes it easy to add conflicts between just live partitions
599 with the same base variable.
600 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
601 marked as being live. This delays clearing of these bitmaps until
602 they are actually needed again. */
603
604typedef struct live_track_d
605{
606 bitmap live_base_var; /* Indicates if a basevar is live. */
607 bitmap *live_base_partitions; /* Live partitions for each basevar. */
608 var_map map; /* Var_map being used for partition mapping. */
609} * live_track_p;
610
611
612/* This routine will create a new live track structure based on the partitions
613 in MAP. */
614
615static live_track_p
616new_live_track (var_map map)
617{
618 live_track_p ptr;
619 int lim, x;
620
621 /* Make sure there is a partition view in place. */
622 gcc_assert (map->partition_to_base_index != NULL);
623
624 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
625 ptr->map = map;
626 lim = num_basevars (map);
627 ptr->live_base_partitions = (bitmap *) xmalloc(sizeof (bitmap *) * lim);
628 ptr->live_base_var = BITMAP_ALLOC (NULL);
629 for (x = 0; x < lim; x++)
630 ptr->live_base_partitions[x] = BITMAP_ALLOC (NULL);
631 return ptr;
632}
633
634
635/* This routine will free the memory associated with PTR. */
636
637static void
638delete_live_track (live_track_p ptr)
639{
640 int x, lim;
641
642 lim = num_basevars (ptr->map);
643 for (x = 0; x < lim; x++)
644 BITMAP_FREE (ptr->live_base_partitions[x]);
645 BITMAP_FREE (ptr->live_base_var);
646 free (ptr->live_base_partitions);
647 free (ptr);
648}
649
650
651/* This function will remove PARTITION from the live list in PTR. */
652
653static inline void
654live_track_remove_partition (live_track_p ptr, int partition)
655{
656 int root;
657
658 root = basevar_index (ptr->map, partition);
659 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
660 /* If the element list is empty, make the base variable not live either. */
661 if (bitmap_empty_p (ptr->live_base_partitions[root]))
662 bitmap_clear_bit (ptr->live_base_var, root);
663}
664
665
666/* This function will adds PARTITION to the live list in PTR. */
667
668static inline void
669live_track_add_partition (live_track_p ptr, int partition)
670{
671 int root;
672
673 root = basevar_index (ptr->map, partition);
674 /* If this base var wasn't live before, it is now. Clear the element list
675 since it was delayed until needed. */
676 if (!bitmap_bit_p (ptr->live_base_var, root))
677 {
678 bitmap_set_bit (ptr->live_base_var, root);
679 bitmap_clear (ptr->live_base_partitions[root]);
680 }
681 bitmap_set_bit (ptr->live_base_partitions[root], partition);
682
683}
684
685
686/* Clear the live bit for VAR in PTR. */
687
688static inline void
689live_track_clear_var (live_track_p ptr, tree var)
690{
691 int p;
692
693 p = var_to_partition (ptr->map, var);
694 if (p != NO_PARTITION)
695 live_track_remove_partition (ptr, p);
696}
697
698
699/* Return TRUE if VAR is live in PTR. */
700
701static inline bool
702live_track_live_p (live_track_p ptr, tree var)
703{
704 int p, root;
705
706 p = var_to_partition (ptr->map, var);
707 if (p != NO_PARTITION)
708 {
709 root = basevar_index (ptr->map, p);
710 if (bitmap_bit_p (ptr->live_base_var, root))
711 return bitmap_bit_p (ptr->live_base_partitions[root], p);
712 }
713 return false;
714}
715
716
717/* This routine will add USE to PTR. USE will be marked as live in both the
718 ssa live map and the live bitmap for the root of USE. */
719
720static inline void
721live_track_process_use (live_track_p ptr, tree use)
722{
723 int p;
724
725 p = var_to_partition (ptr->map, use);
726 if (p == NO_PARTITION)
727 return;
728
729 /* Mark as live in the appropriate live list. */
730 live_track_add_partition (ptr, p);
731}
732
733
734/* This routine will process a DEF in PTR. DEF will be removed from the live
735 lists, and if there are any other live partitions with the same base
736 variable, conflicts will be added to GRAPH. */
737
738static inline void
739live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
740{
741 int p, root;
742 bitmap b;
743 unsigned x;
744 bitmap_iterator bi;
745
746 p = var_to_partition (ptr->map, def);
747 if (p == NO_PARTITION)
748 return;
749
750 /* Clear the liveness bit. */
751 live_track_remove_partition (ptr, p);
752
753 /* If the bitmap isn't empty now, conflicts need to be added. */
754 root = basevar_index (ptr->map, p);
755 if (bitmap_bit_p (ptr->live_base_var, root))
756 {
757 b = ptr->live_base_partitions[root];
758 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
759 ssa_conflicts_add (graph, p, x);
760 }
761}
762
763
764/* Initialize PTR with the partitions set in INIT. */
765
766static inline void
767live_track_init (live_track_p ptr, bitmap init)
768{
769 unsigned p;
770 bitmap_iterator bi;
771
772 /* Mark all live on exit partitions. */
773 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
774 live_track_add_partition (ptr, p);
775}
776
777
778/* This routine will clear all live partitions in PTR. */
779
780static inline void
781live_track_clear_base_vars (live_track_p ptr)
782{
783 /* Simply clear the live base list. Anything marked as live in the element
784 lists will be cleared later if/when the base variable ever comes alive
785 again. */
786 bitmap_clear (ptr->live_base_var);
787}
788
789
790/* Build a conflict graph based on LIVEINFO. Any partitions which are in the
2e226e66 791 partition view of the var_map liveinfo is based on get entries in the
7290d709 792 conflict graph. Only conflicts between ssa_name partitions with the same
2e226e66 793 base variable are added. */
7290d709
AM
794
795static ssa_conflicts_p
796build_ssa_conflict_graph (tree_live_info_p liveinfo)
797{
798 ssa_conflicts_p graph;
799 var_map map;
800 basic_block bb;
801 ssa_op_iter iter;
802 live_track_p live;
803
804 map = live_var_map (liveinfo);
805 graph = ssa_conflicts_new (num_var_partitions (map));
806
807 live = new_live_track (map);
808
809 FOR_EACH_BB (bb)
810 {
811 block_stmt_iterator bsi;
812 tree phi;
813
814 /* Start with live on exit temporaries. */
815 live_track_init (live, live_on_exit (liveinfo, bb));
816
817 for (bsi = bsi_last (bb); !bsi_end_p (bsi); bsi_prev (&bsi))
818 {
819 tree var;
820 tree stmt = bsi_stmt (bsi);
821
822 /* A copy between 2 partitions does not introduce an interference
823 by itself. If they did, you would never be able to coalesce
824 two things which are copied. If the two variables really do
825 conflict, they will conflict elsewhere in the program.
826
827 This is handled by simply removing the SRC of the copy from the
828 live list, and processing the stmt normally. */
829 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
830 {
831 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
832 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
833 if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
834 live_track_clear_var (live, rhs);
835 }
836
837 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
838 live_track_process_def (live, var, graph);
839
840 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
841 live_track_process_use (live, var);
842 }
843
844 /* If result of a PHI is unused, looping over the statements will not
845 record any conflicts since the def was never live. Since the PHI node
846 is going to be translated out of SSA form, it will insert a copy.
847 There must be a conflict recorded between the result of the PHI and
848 any variables that are live. Otherwise the out-of-ssa translation
849 may create incorrect code. */
850 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
851 {
852 tree result = PHI_RESULT (phi);
853 if (live_track_live_p (live, result))
854 live_track_process_def (live, result, graph);
855 }
856
857 live_track_clear_base_vars (live);
858 }
859
860 delete_live_track (live);
861 return graph;
862}
863
864
865/* Shortcut routine to print messages to file F of the form:
866 "STR1 EXPR1 STR2 EXPR2 STR3." */
867
868static inline void
869print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
870 tree expr2, const char *str3)
871{
872 fprintf (f, "%s", str1);
873 print_generic_expr (f, expr1, TDF_SLIM);
874 fprintf (f, "%s", str2);
875 print_generic_expr (f, expr2, TDF_SLIM);
876 fprintf (f, "%s", str3);
877}
878
879
880/* Called if a coalesce across and abnormal edge cannot be performed. PHI is
881 the phi node at fault, I is the argument index at fault. A message is
882 printed and compilation is then terminated. */
883
884static inline void
885abnormal_corrupt (tree phi, int i)
886{
887 edge e = PHI_ARG_EDGE (phi, i);
888 tree res = PHI_RESULT (phi);
889 tree arg = PHI_ARG_DEF (phi, i);
890
891 fprintf (stderr, " Corrupt SSA across abnormal edge BB%d->BB%d\n",
892 e->src->index, e->dest->index);
893 fprintf (stderr, "Argument %d (", i);
894 print_generic_expr (stderr, arg, TDF_SLIM);
895 if (TREE_CODE (arg) != SSA_NAME)
896 fprintf (stderr, ") is not an SSA_NAME.\n");
897 else
898 {
899 gcc_assert (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg));
900 fprintf (stderr, ") does not have the same base variable as the result ");
901 print_generic_stmt (stderr, res, TDF_SLIM);
902 }
903
904 internal_error ("SSA corruption");
905}
906
907
908/* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
909
910static inline void
911fail_abnormal_edge_coalesce (int x, int y)
912{
068c623d 913 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
7290d709
AM
914 fprintf (stderr, " which are marked as MUST COALESCE.\n");
915 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
916 fprintf (stderr, " and ");
917 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
918
919 internal_error ("SSA corruption");
920}
921
922
923/* This function creates a var_map for the current function as well as creating
924 a coalesce list for use later in the out of ssa process. */
925
926static var_map
927create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
928{
929 block_stmt_iterator bsi;
930 basic_block bb;
931 tree var;
932 tree stmt;
933 tree first;
934 var_map map;
935 ssa_op_iter iter;
936 int v1, v2, cost;
937 unsigned i;
938
939#ifdef ENABLE_CHECKING
940 bitmap used_in_real_ops;
941 bitmap used_in_virtual_ops;
942
943 used_in_real_ops = BITMAP_ALLOC (NULL);
944 used_in_virtual_ops = BITMAP_ALLOC (NULL);
945#endif
946
947 map = init_var_map (num_ssa_names + 1);
948
949 FOR_EACH_BB (bb)
950 {
951 tree phi, arg;
952
953 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
954 {
955 int i;
956 int ver;
957 tree res;
958 bool saw_copy = false;
959
960 res = PHI_RESULT (phi);
961 ver = SSA_NAME_VERSION (res);
962 register_ssa_partition (map, res);
963
964 /* Register ssa_names and coalesces between the args and the result
965 of all PHI. */
966 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
967 {
968 edge e = PHI_ARG_EDGE (phi, i);
969 arg = PHI_ARG_DEF (phi, i);
970 if (TREE_CODE (arg) == SSA_NAME)
971 register_ssa_partition (map, arg);
972 if (TREE_CODE (arg) == SSA_NAME
973 && SSA_NAME_VAR (arg) == SSA_NAME_VAR (res))
974 {
975 saw_copy = true;
976 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
977 if ((e->flags & EDGE_ABNORMAL) == 0)
978 {
979 int cost = coalesce_cost_edge (e);
40b448ef 980 if (cost == 1 && has_single_use (arg))
7290d709
AM
981 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
982 else
983 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
984 }
985 }
986 else
987 if (e->flags & EDGE_ABNORMAL)
988 abnormal_corrupt (phi, i);
989 }
990 if (saw_copy)
991 bitmap_set_bit (used_in_copy, ver);
992 }
993
994 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
995 {
996 stmt = bsi_stmt (bsi);
997
998 /* Register USE and DEF operands in each statement. */
999 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1000 register_ssa_partition (map, var);
1001
1002 /* Check for copy coalesces. */
1003 switch (TREE_CODE (stmt))
1004 {
1005 case GIMPLE_MODIFY_STMT:
1006 {
1007 tree op1 = GIMPLE_STMT_OPERAND (stmt, 0);
1008 tree op2 = GIMPLE_STMT_OPERAND (stmt, 1);
1009 if (TREE_CODE (op1) == SSA_NAME
1010 && TREE_CODE (op2) == SSA_NAME
1011 && SSA_NAME_VAR (op1) == SSA_NAME_VAR (op2))
1012 {
1013 v1 = SSA_NAME_VERSION (op1);
1014 v2 = SSA_NAME_VERSION (op2);
1015 cost = coalesce_cost_bb (bb);
1016 add_coalesce (cl, v1, v2, cost);
1017 bitmap_set_bit (used_in_copy, v1);
1018 bitmap_set_bit (used_in_copy, v2);
1019 }
1020 }
1021 break;
1022
1023 case ASM_EXPR:
1024 {
1025 unsigned long noutputs, i;
1026 tree *outputs, link;
1027 noutputs = list_length (ASM_OUTPUTS (stmt));
1028 outputs = (tree *) alloca (noutputs * sizeof (tree));
1029 for (i = 0, link = ASM_OUTPUTS (stmt); link;
1030 ++i, link = TREE_CHAIN (link))
1031 outputs[i] = TREE_VALUE (link);
1032
1033 for (link = ASM_INPUTS (stmt); link; link = TREE_CHAIN (link))
1034 {
1035 const char *constraint
1036 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1037 tree input = TREE_VALUE (link);
1038 char *end;
1039 unsigned long match;
1040
3521f3cc 1041 if (TREE_CODE (input) != SSA_NAME)
7290d709
AM
1042 continue;
1043
1044 match = strtoul (constraint, &end, 10);
1045 if (match >= noutputs || end == constraint)
1046 continue;
1047
1048 if (TREE_CODE (outputs[match]) != SSA_NAME)
1049 continue;
1050
1051 v1 = SSA_NAME_VERSION (outputs[match]);
1052 v2 = SSA_NAME_VERSION (input);
1053
1054 if (SSA_NAME_VAR (outputs[match]) == SSA_NAME_VAR (input))
1055 {
1056 cost = coalesce_cost (REG_BR_PROB_BASE,
1057 maybe_hot_bb_p (bb),
1058 false);
1059 add_coalesce (cl, v1, v2, cost);
1060 bitmap_set_bit (used_in_copy, v1);
1061 bitmap_set_bit (used_in_copy, v2);
1062 }
1063 }
1064 break;
1065 }
1066
1067 default:
1068 break;
1069 }
1070
1071#ifdef ENABLE_CHECKING
1072 /* Mark real uses and defs. */
1073 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1074 bitmap_set_bit (used_in_real_ops, DECL_UID (SSA_NAME_VAR (var)));
1075
1076 /* Validate that virtual ops don't get used in funny ways. */
38635499 1077 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_VIRTUALS)
7290d709
AM
1078 {
1079 bitmap_set_bit (used_in_virtual_ops,
1080 DECL_UID (SSA_NAME_VAR (var)));
1081 }
1082
1083#endif /* ENABLE_CHECKING */
1084 }
1085 }
1086
1087 /* Now process result decls and live on entry variables for entry into
1088 the coalesce list. */
1089 first = NULL_TREE;
1090 for (i = 1; i < num_ssa_names; i++)
1091 {
1092 var = map->partition_to_var[i];
1093 if (var != NULL_TREE)
1094 {
1095 /* Add coalesces between all the result decls. */
1096 if (TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1097 {
1098 if (first == NULL_TREE)
1099 first = var;
1100 else
1101 {
1102 gcc_assert (SSA_NAME_VAR (var) == SSA_NAME_VAR (first));
1103 v1 = SSA_NAME_VERSION (first);
1104 v2 = SSA_NAME_VERSION (var);
1105 bitmap_set_bit (used_in_copy, v1);
1106 bitmap_set_bit (used_in_copy, v2);
1107 cost = coalesce_cost_bb (EXIT_BLOCK_PTR);
1108 add_coalesce (cl, v1, v2, cost);
1109 }
1110 }
1111 /* Mark any default_def variables as being in the coalesce list
1112 since they will have to be coalesced with the base variable. If
1113 not marked as present, they won't be in the coalesce view. */
1114 if (gimple_default_def (cfun, SSA_NAME_VAR (var)) == var)
1115 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1116 }
1117 }
1118
1119#if defined ENABLE_CHECKING
1120 {
1121 unsigned i;
1122 bitmap both = BITMAP_ALLOC (NULL);
1123 bitmap_and (both, used_in_real_ops, used_in_virtual_ops);
1124 if (!bitmap_empty_p (both))
1125 {
1126 bitmap_iterator bi;
1127
1128 EXECUTE_IF_SET_IN_BITMAP (both, 0, i, bi)
1129 fprintf (stderr, "Variable %s used in real and virtual operands\n",
1130 get_name (referenced_var (i)));
1131 internal_error ("SSA corruption");
1132 }
1133
1134 BITMAP_FREE (used_in_real_ops);
1135 BITMAP_FREE (used_in_virtual_ops);
1136 BITMAP_FREE (both);
1137 }
1138#endif
1139
1140 return map;
1141}
1142
1143
2e226e66 1144/* Attempt to coalesce ssa versions X and Y together using the partition
7290d709
AM
1145 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1146 DEBUG, if it is nun-NULL. */
1147
1148static inline bool
1149attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1150 FILE *debug)
1151{
1152 int z;
1153 tree var1, var2;
1154 int p1, p2;
1155
1156 p1 = var_to_partition (map, ssa_name (x));
1157 p2 = var_to_partition (map, ssa_name (y));
1158
1159 if (debug)
1160 {
1161 fprintf (debug, "(%d)", x);
1162 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1163 fprintf (debug, " & (%d)", y);
1164 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1165 }
1166
1167 if (p1 == p2)
1168 {
1169 if (debug)
1170 fprintf (debug, ": Already Coalesced.\n");
1171 return true;
1172 }
1173
1174 if (debug)
1175 fprintf (debug, " [map: %d, %d] ", p1, p2);
1176
1177
1178 if (!ssa_conflicts_test_p (graph, p1, p2))
1179 {
1180 var1 = partition_to_var (map, p1);
1181 var2 = partition_to_var (map, p2);
1182 z = var_union (map, var1, var2);
1183 if (z == NO_PARTITION)
1184 {
1185 if (debug)
1186 fprintf (debug, ": Unable to perform partition union.\n");
1187 return false;
1188 }
1189
1190 /* z is the new combined partition. Remove the other partition from
1191 the list, and merge the conflicts. */
1192 if (z == p1)
1193 ssa_conflicts_merge (graph, p1, p2);
1194 else
1195 ssa_conflicts_merge (graph, p2, p1);
1196
1197 if (debug)
1198 fprintf (debug, ": Success -> %d\n", z);
1199 return true;
1200 }
1201
1202 if (debug)
1203 fprintf (debug, ": Fail due to conflict\n");
1204
1205 return false;
1206}
1207
1208
1209/* Attempt to Coalesce partitions in MAP which occur in the list CL using
1210 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1211
1212static void
1213coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1214 FILE *debug)
1215{
1216 int x = 0, y = 0;
1217 tree var1, var2, phi;
1218 int cost;
1219 basic_block bb;
1220 edge e;
1221 edge_iterator ei;
1222
2e226e66
KH
1223 /* First, coalesce all the copies across abnormal edges. These are not placed
1224 in the coalesce list because they do not need to be sorted, and simply
7290d709
AM
1225 consume extra memory/compilation time in large programs. */
1226
1227 FOR_EACH_BB (bb)
1228 {
1229 FOR_EACH_EDGE (e, ei, bb->preds)
1230 if (e->flags & EDGE_ABNORMAL)
1231 {
1232 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1233 {
1234 tree res = PHI_RESULT (phi);
1235 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1236 int v1 = SSA_NAME_VERSION (res);
1237 int v2 = SSA_NAME_VERSION (arg);
1238
1239 if (SSA_NAME_VAR (arg) != SSA_NAME_VAR (res))
1240 abnormal_corrupt (phi, e->dest_idx);
1241
1242 if (debug)
1243 fprintf (debug, "Abnormal coalesce: ");
1244
1245 if (!attempt_coalesce (map, graph, v1, v2, debug))
1246 fail_abnormal_edge_coalesce (v1, v2);
1247 }
1248 }
1249 }
1250
1251 /* Now process the items in the coalesce list. */
1252
1253 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1254 {
1255 var1 = ssa_name (x);
1256 var2 = ssa_name (y);
1257
1258 /* Assert the coalesces have the same base variable. */
1259 gcc_assert (SSA_NAME_VAR (var1) == SSA_NAME_VAR (var2));
1260
1261 if (debug)
1262 fprintf (debug, "Coalesce list: ");
1263 attempt_coalesce (map, graph, x, y, debug);
1264 }
1265}
1266
1267
1268/* Reduce the number of copies by coalescing variables in the function. Return
1269 a partition map with the resulting coalesces. */
1270
1271extern var_map
1272coalesce_ssa_name (void)
1273{
1274 unsigned num, x;
1275 tree_live_info_p liveinfo;
1276 ssa_conflicts_p graph;
1277 coalesce_list_p cl;
1278 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1279 var_map map;
1280
1281 cl = create_coalesce_list ();
1282 map = create_outofssa_var_map (cl, used_in_copies);
1283
1284 /* Don't calculate live ranges for variables not in the coalesce list. */
1285 partition_view_bitmap (map, used_in_copies, true);
1286 BITMAP_FREE (used_in_copies);
1287
0d700450 1288 if (num_var_partitions (map) < 1)
7290d709
AM
1289 {
1290 delete_coalesce_list (cl);
1291 return map;
1292 }
1293
1294 if (dump_file && (dump_flags & TDF_DETAILS))
1295 dump_var_map (dump_file, map);
1296
1297 liveinfo = calculate_live_ranges (map);
1298
1299 if (dump_file && (dump_flags & TDF_DETAILS))
1300 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1301
1302 /* Build a conflict graph. */
1303 graph = build_ssa_conflict_graph (liveinfo);
1304 delete_tree_live_info (liveinfo);
1305
1306 sort_coalesce_list (cl);
1307
1308 if (dump_file && (dump_flags & TDF_DETAILS))
1309 {
1310 fprintf (dump_file, "\nAfter sorting:\n");
1311 dump_coalesce_list (dump_file, cl);
1312 }
1313
1314 /* First, coalesce all live on entry variables to their base variable.
1315 This will ensure the first use is coming from the correct location. */
1316
1317 num = num_var_partitions (map);
1318 for (x = 0 ; x < num; x++)
1319 {
1320 tree var = partition_to_var (map, x);
1321 tree root;
1322
1323 if (TREE_CODE (var) != SSA_NAME)
1324 continue;
1325
1326 root = SSA_NAME_VAR (var);
1327 if (gimple_default_def (cfun, root) == var)
1328 {
1329 /* This root variable should have not already been assigned
1330 to another partition which is not coalesced with this one. */
1331 gcc_assert (!var_ann (root)->out_of_ssa_tag);
1332
1333 if (dump_file && (dump_flags & TDF_DETAILS))
1334 {
1335 print_exprs (dump_file, "Must coalesce ", var,
1336 " with the root variable ", root, ".\n");
1337 }
1338 change_partition_var (map, root, x);
1339 }
1340 }
1341
1342 if (dump_file && (dump_flags & TDF_DETAILS))
1343 dump_var_map (dump_file, map);
1344
1345 /* Now coalesce everything in the list. */
1346 coalesce_partitions (map, graph, cl,
1347 ((dump_flags & TDF_DETAILS) ? dump_file
1348 : NULL));
1349
1350 delete_coalesce_list (cl);
1351 ssa_conflicts_delete (graph);
1352
1353 return map;
1354}
1355