]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-dse.c
* c-ada-spec.c (max_ada_macros): Move around.
[thirdparty/gcc.git] / gcc / tree-ssa-dse.c
CommitLineData
4ee9c684 1/* Dead store elimination
aad93da1 2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
4ee9c684 3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8c4c00c1 8the Free Software Foundation; either version 3, or (at your option)
4ee9c684 9any later version.
10
11GCC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
4ee9c684 19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
9ef16211 23#include "backend.h"
7c29e30e 24#include "rtl.h"
4ee9c684 25#include "tree.h"
9ef16211 26#include "gimple.h"
7c29e30e 27#include "tree-pass.h"
9ef16211 28#include "ssa.h"
7c29e30e 29#include "gimple-pretty-print.h"
b20a8bb4 30#include "fold-const.h"
dcf1a1ec 31#include "gimple-iterator.h"
073c1fd5 32#include "tree-cfg.h"
073c1fd5 33#include "tree-dfa.h"
4ee9c684 34#include "domwalk.h"
424a4a92 35#include "tree-cfgcleanup.h"
64123137 36#include "params.h"
56ce87e3 37#include "alias.h"
4ee9c684 38
39/* This file implements dead store elimination.
40
41 A dead store is a store into a memory location which will later be
42 overwritten by another store without any intervening loads. In this
43 case the earlier store can be deleted.
44
45 In our SSA + virtual operand world we use immediate uses of virtual
46 operands to detect dead stores. If a store's virtual definition
47 is used precisely once by a later store to the same location which
48e1416a 48 post dominates the first store, then the first store is dead.
4ee9c684 49
50 The single use of the store's virtual definition ensures that
51 there are no intervening aliased loads and the requirement that
52 the second load post dominate the first ensures that if the earlier
53 store executes, then the later stores will execute before the function
54 exits.
55
56 It may help to think of this as first moving the earlier store to
57 the point immediately before the later store. Again, the single
2c763ed4 58 use of the virtual definition and the post-dominance relationship
48e1416a 59 ensure that such movement would be safe. Clearly if there are
4ee9c684 60 back to back stores, then the second is redundant.
61
62 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
63 may also help in understanding this code since it discusses the
64 relationship between dead store and redundant load elimination. In
65 fact, they are the same transformation applied to different views of
66 the CFG. */
75a70cf9 67
4ee9c684 68
d02c8339 69/* Bitmap of blocks that have had EH statements cleaned. We should
70 remove their dead edges eventually. */
71static bitmap need_eh_cleanup;
72
64123137 73/* Return value from dse_classify_store */
74enum dse_store_status
75{
76 DSE_STORE_LIVE,
77 DSE_STORE_MAYBE_PARTIAL_DEAD,
78 DSE_STORE_DEAD
79};
80
81/* STMT is a statement that may write into memory. Analyze it and
82 initialize WRITE to describe how STMT affects memory.
83
84 Return TRUE if the the statement was analyzed, FALSE otherwise.
85
86 It is always safe to return FALSE. But typically better optimziation
87 can be achieved by analyzing more statements. */
88
89static bool
90initialize_ao_ref_for_dse (gimple *stmt, ao_ref *write)
91{
92 /* It's advantageous to handle certain mem* functions. */
93 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
94 {
95 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
96 {
97 case BUILT_IN_MEMCPY:
98 case BUILT_IN_MEMMOVE:
99 case BUILT_IN_MEMSET:
100 {
101 tree size = NULL_TREE;
102 if (gimple_call_num_args (stmt) == 3)
103 size = gimple_call_arg (stmt, 2);
104 tree ptr = gimple_call_arg (stmt, 0);
105 ao_ref_init_from_ptr_and_size (write, ptr, size);
106 return true;
107 }
108 default:
109 break;
110 }
111 }
112 else if (is_gimple_assign (stmt))
113 {
114 ao_ref_init (write, gimple_assign_lhs (stmt));
115 return true;
116 }
117 return false;
118}
119
120/* Given REF from the the alias oracle, return TRUE if it is a valid
121 memory reference for dead store elimination, false otherwise.
122
123 In particular, the reference must have a known base, known maximum
124 size, start at a byte offset and have a size that is one or more
125 bytes. */
126
127static bool
128valid_ao_ref_for_dse (ao_ref *ref)
129{
130 return (ao_ref_base (ref)
131 && ref->max_size != -1
b37570be 132 && ref->size != 0
133 && ref->max_size == ref->size
64123137 134 && (ref->offset % BITS_PER_UNIT) == 0
135 && (ref->size % BITS_PER_UNIT) == 0
136 && (ref->size != -1));
137}
138
139/* Normalize COPY (an ao_ref) relative to REF. Essentially when we are
140 done COPY will only refer bytes found within REF.
141
142 We have already verified that COPY intersects at least one
143 byte with REF. */
144
145static void
146normalize_ref (ao_ref *copy, ao_ref *ref)
147{
148 /* If COPY starts before REF, then reset the beginning of
149 COPY to match REF and decrease the size of COPY by the
150 number of bytes removed from COPY. */
151 if (copy->offset < ref->offset)
152 {
153 copy->size -= (ref->offset - copy->offset);
154 copy->offset = ref->offset;
155 }
156
157 /* If COPY extends beyond REF, chop off its size appropriately. */
158 if (copy->offset + copy->size > ref->offset + ref->size)
159 copy->size -= (copy->offset + copy->size - (ref->offset + ref->size));
160}
161
162/* Clear any bytes written by STMT from the bitmap LIVE_BYTES. The base
163 address written by STMT must match the one found in REF, which must
164 have its base address previously initialized.
165
166 This routine must be conservative. If we don't know the offset or
167 actual size written, assume nothing was written. */
168
169static void
170clear_bytes_written_by (sbitmap live_bytes, gimple *stmt, ao_ref *ref)
171{
172 ao_ref write;
173 if (!initialize_ao_ref_for_dse (stmt, &write))
174 return;
175
176 /* Verify we have the same base memory address, the write
177 has a known size and overlaps with REF. */
178 if (valid_ao_ref_for_dse (&write)
b87372d9 179 && operand_equal_p (write.base, ref->base, OEP_ADDRESS_OF)
64123137 180 && write.size == write.max_size
181 && ((write.offset < ref->offset
182 && write.offset + write.size > ref->offset)
183 || (write.offset >= ref->offset
184 && write.offset < ref->offset + ref->size)))
185 {
186 normalize_ref (&write, ref);
187 bitmap_clear_range (live_bytes,
188 (write.offset - ref->offset) / BITS_PER_UNIT,
189 write.size / BITS_PER_UNIT);
190 }
191}
192
193/* REF is a memory write. Extract relevant information from it and
194 initialize the LIVE_BYTES bitmap. If successful, return TRUE.
195 Otherwise return FALSE. */
196
197static bool
198setup_live_bytes_from_ref (ao_ref *ref, sbitmap live_bytes)
199{
200 if (valid_ao_ref_for_dse (ref)
201 && (ref->size / BITS_PER_UNIT
202 <= PARAM_VALUE (PARAM_DSE_MAX_OBJECT_SIZE)))
203 {
204 bitmap_clear (live_bytes);
205 bitmap_set_range (live_bytes, 0, ref->size / BITS_PER_UNIT);
206 return true;
207 }
208 return false;
209}
210
211/* Compute the number of elements that we can trim from the head and
212 tail of ORIG resulting in a bitmap that is a superset of LIVE.
213
214 Store the number of elements trimmed from the head and tail in
f4826e25 215 TRIM_HEAD and TRIM_TAIL.
216
217 STMT is the statement being trimmed and is used for debugging dump
218 output only. */
64123137 219
220static void
f4826e25 221compute_trims (ao_ref *ref, sbitmap live, int *trim_head, int *trim_tail,
222 gimple *stmt)
64123137 223{
224 /* We use sbitmaps biased such that ref->offset is bit zero and the bitmap
225 extends through ref->size. So we know that in the original bitmap
226 bits 0..ref->size were true. We don't actually need the bitmap, just
227 the REF to compute the trims. */
228
229 /* Now identify how much, if any of the tail we can chop off. */
64123137 230 int last_orig = (ref->size / BITS_PER_UNIT) - 1;
231 int last_live = bitmap_last_set_bit (live);
232 *trim_tail = (last_orig - last_live) & ~0x1;
233
234 /* Identify how much, if any of the head we can chop off. */
235 int first_orig = 0;
236 int first_live = bitmap_first_set_bit (live);
237 *trim_head = (first_live - first_orig) & ~0x1;
f4826e25 238
239 if ((*trim_head || *trim_tail)
240 && dump_file && (dump_flags & TDF_DETAILS))
241 {
242 fprintf (dump_file, " Trimming statement (head = %d, tail = %d): ",
243 *trim_head, *trim_tail);
1ffa4346 244 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
f4826e25 245 fprintf (dump_file, "\n");
246 }
64123137 247}
248
249/* STMT initializes an object from COMPLEX_CST where one or more of the
250 bytes written may be dead stores. REF is a representation of the
251 memory written. LIVE is the bitmap of stores that are actually live.
252
253 Attempt to rewrite STMT so that only the real or imaginary part of
254 the object is actually stored. */
255
256static void
257maybe_trim_complex_store (ao_ref *ref, sbitmap live, gimple *stmt)
258{
259 int trim_head, trim_tail;
f4826e25 260 compute_trims (ref, live, &trim_head, &trim_tail, stmt);
64123137 261
262 /* The amount of data trimmed from the head or tail must be at
263 least half the size of the object to ensure we're trimming
264 the entire real or imaginary half. By writing things this
265 way we avoid more O(n) bitmap operations. */
266 if (trim_tail * 2 >= ref->size / BITS_PER_UNIT)
267 {
268 /* TREE_REALPART is live */
269 tree x = TREE_REALPART (gimple_assign_rhs1 (stmt));
270 tree y = gimple_assign_lhs (stmt);
271 y = build1 (REALPART_EXPR, TREE_TYPE (x), y);
272 gimple_assign_set_lhs (stmt, y);
273 gimple_assign_set_rhs1 (stmt, x);
274 }
275 else if (trim_head * 2 >= ref->size / BITS_PER_UNIT)
276 {
277 /* TREE_IMAGPART is live */
278 tree x = TREE_IMAGPART (gimple_assign_rhs1 (stmt));
279 tree y = gimple_assign_lhs (stmt);
280 y = build1 (IMAGPART_EXPR, TREE_TYPE (x), y);
281 gimple_assign_set_lhs (stmt, y);
282 gimple_assign_set_rhs1 (stmt, x);
283 }
284
285 /* Other cases indicate parts of both the real and imag subobjects
286 are live. We do not try to optimize those cases. */
287}
288
56ce87e3 289/* STMT initializes an object using a CONSTRUCTOR where one or more of the
290 bytes written are dead stores. ORIG is the bitmap of bytes stored by
291 STMT. LIVE is the bitmap of stores that are actually live.
292
293 Attempt to rewrite STMT so that only the real or imaginary part of
294 the object is actually stored.
295
296 The most common case for getting here is a CONSTRUCTOR with no elements
297 being used to zero initialize an object. We do not try to handle other
298 cases as those would force us to fully cover the object with the
299 CONSTRUCTOR node except for the components that are dead. */
300
301static void
302maybe_trim_constructor_store (ao_ref *ref, sbitmap live, gimple *stmt)
303{
304 tree ctor = gimple_assign_rhs1 (stmt);
305
306 /* This is the only case we currently handle. It actually seems to
307 catch most cases of actual interest. */
308 gcc_assert (CONSTRUCTOR_NELTS (ctor) == 0);
309
310 int head_trim = 0;
311 int tail_trim = 0;
f4826e25 312 compute_trims (ref, live, &head_trim, &tail_trim, stmt);
56ce87e3 313
314 /* Now we want to replace the constructor initializer
315 with memset (object + head_trim, 0, size - head_trim - tail_trim). */
316 if (head_trim || tail_trim)
317 {
318 /* We want &lhs for the MEM_REF expression. */
319 tree lhs_addr = build_fold_addr_expr (gimple_assign_lhs (stmt));
320
321 if (! is_gimple_min_invariant (lhs_addr))
322 return;
323
324 /* The number of bytes for the new constructor. */
325 int count = (ref->size / BITS_PER_UNIT) - head_trim - tail_trim;
326
327 /* And the new type for the CONSTRUCTOR. Essentially it's just
328 a char array large enough to cover the non-trimmed parts of
329 the original CONSTRUCTOR. Note we want explicit bounds here
330 so that we know how many bytes to clear when expanding the
331 CONSTRUCTOR. */
332 tree type = build_array_type_nelts (char_type_node, count);
333
334 /* Build a suitable alias type rather than using alias set zero
335 to avoid pessimizing. */
336 tree alias_type = reference_alias_ptr_type (gimple_assign_lhs (stmt));
337
338 /* Build a MEM_REF representing the whole accessed area, starting
339 at the first byte not trimmed. */
340 tree exp = fold_build2 (MEM_REF, type, lhs_addr,
341 build_int_cst (alias_type, head_trim));
342
343 /* Now update STMT with a new RHS and LHS. */
344 gimple_assign_set_lhs (stmt, exp);
345 gimple_assign_set_rhs1 (stmt, build_constructor (type, NULL));
346 }
347}
348
339f327d 349/* STMT is a memcpy, memmove or memset. Decrement the number of bytes
350 copied/set by DECREMENT. */
351static void
352decrement_count (gimple *stmt, int decrement)
353{
354 tree *countp = gimple_call_arg_ptr (stmt, 2);
355 gcc_assert (TREE_CODE (*countp) == INTEGER_CST);
356 *countp = wide_int_to_tree (TREE_TYPE (*countp), (TREE_INT_CST_LOW (*countp)
357 - decrement));
358
359}
360
361static void
362increment_start_addr (gimple *stmt, tree *where, int increment)
363{
364 if (TREE_CODE (*where) == SSA_NAME)
365 {
366 tree tem = make_ssa_name (TREE_TYPE (*where));
367 gassign *newop
368 = gimple_build_assign (tem, POINTER_PLUS_EXPR, *where,
369 build_int_cst (sizetype, increment));
370 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
371 gsi_insert_before (&gsi, newop, GSI_SAME_STMT);
372 *where = tem;
373 update_stmt (gsi_stmt (gsi));
374 return;
375 }
376
377 *where = build_fold_addr_expr (fold_build2 (MEM_REF, char_type_node,
378 *where,
379 build_int_cst (ptr_type_node,
380 increment)));
381}
382
383/* STMT is builtin call that writes bytes in bitmap ORIG, some bytes are dead
384 (ORIG & ~NEW) and need not be stored. Try to rewrite STMT to reduce
385 the amount of data it actually writes.
386
387 Right now we only support trimming from the head or the tail of the
388 memory region. In theory we could split the mem* call, but it's
389 likely of marginal value. */
390
391static void
392maybe_trim_memstar_call (ao_ref *ref, sbitmap live, gimple *stmt)
393{
394 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
395 {
396 case BUILT_IN_MEMCPY:
397 case BUILT_IN_MEMMOVE:
398 {
399 int head_trim, tail_trim;
f4826e25 400 compute_trims (ref, live, &head_trim, &tail_trim, stmt);
339f327d 401
402 /* Tail trimming is easy, we can just reduce the count. */
403 if (tail_trim)
404 decrement_count (stmt, tail_trim);
405
406 /* Head trimming requires adjusting all the arguments. */
407 if (head_trim)
408 {
409 tree *dst = gimple_call_arg_ptr (stmt, 0);
410 increment_start_addr (stmt, dst, head_trim);
411 tree *src = gimple_call_arg_ptr (stmt, 1);
412 increment_start_addr (stmt, src, head_trim);
413 decrement_count (stmt, head_trim);
414 }
415 break;
416 }
417
418 case BUILT_IN_MEMSET:
419 {
420 int head_trim, tail_trim;
f4826e25 421 compute_trims (ref, live, &head_trim, &tail_trim, stmt);
339f327d 422
423 /* Tail trimming is easy, we can just reduce the count. */
424 if (tail_trim)
425 decrement_count (stmt, tail_trim);
426
427 /* Head trimming requires adjusting all the arguments. */
428 if (head_trim)
429 {
430 tree *dst = gimple_call_arg_ptr (stmt, 0);
431 increment_start_addr (stmt, dst, head_trim);
432 decrement_count (stmt, head_trim);
433 }
434 break;
435 }
436
437 default:
438 break;
439 }
440}
441
64123137 442/* STMT is a memory write where one or more bytes written are dead
443 stores. ORIG is the bitmap of bytes stored by STMT. LIVE is the
444 bitmap of stores that are actually live.
445
446 Attempt to rewrite STMT so that it writes fewer memory locations. Right
447 now we only support trimming at the start or end of the memory region.
448 It's not clear how much there is to be gained by trimming from the middle
449 of the region. */
450
451static void
452maybe_trim_partially_dead_store (ao_ref *ref, sbitmap live, gimple *stmt)
453{
1bcbd566 454 if (is_gimple_assign (stmt)
455 && TREE_CODE (gimple_assign_lhs (stmt)) != TARGET_MEM_REF)
64123137 456 {
457 switch (gimple_assign_rhs_code (stmt))
458 {
56ce87e3 459 case CONSTRUCTOR:
460 maybe_trim_constructor_store (ref, live, stmt);
461 break;
64123137 462 case COMPLEX_CST:
463 maybe_trim_complex_store (ref, live, stmt);
464 break;
465 default:
466 break;
467 }
468 }
469}
4ee9c684 470
4fb5e5ca 471/* A helper of dse_optimize_stmt.
258bd648 472 Given a GIMPLE_ASSIGN in STMT that writes to REF, find a candidate
473 statement *USE_STMT that may prove STMT to be dead.
4fb5e5ca 474 Return TRUE if the above conditions are met, otherwise FALSE. */
475
64123137 476static dse_store_status
477dse_classify_store (ao_ref *ref, gimple *stmt, gimple **use_stmt,
478 bool byte_tracking_enabled, sbitmap live_bytes)
4fb5e5ca 479{
42acab1c 480 gimple *temp;
dd277d48 481 unsigned cnt = 0;
4fb5e5ca 482
4fb5e5ca 483 *use_stmt = NULL;
4fb5e5ca 484
dd277d48 485 /* Find the first dominated statement that clobbers (part of) the
486 memory stmt stores to with no intermediate statement that may use
487 part of the memory stmt stores. That is, find a store that may
488 prove stmt to be a dead store. */
489 temp = stmt;
490 do
491 {
42acab1c 492 gimple *use_stmt, *defvar_def;
dd277d48 493 imm_use_iterator ui;
494 bool fail = false;
495 tree defvar;
496
497 /* Limit stmt walking to be linear in the number of possibly
498 dead stores. */
499 if (++cnt > 256)
64123137 500 return DSE_STORE_LIVE;
4fb5e5ca 501
75a70cf9 502 if (gimple_code (temp) == GIMPLE_PHI)
dd277d48 503 defvar = PHI_RESULT (temp);
504 else
505 defvar = gimple_vdef (temp);
48089971 506 defvar_def = temp;
dd277d48 507 temp = NULL;
508 FOR_EACH_IMM_USE_STMT (use_stmt, ui, defvar)
77ad2905 509 {
dd277d48 510 cnt++;
161fe168 511
43e2b34d 512 /* If we ever reach our DSE candidate stmt again fail. We
513 cannot handle dead stores in loops. */
514 if (use_stmt == stmt)
515 {
516 fail = true;
517 BREAK_FROM_IMM_USE_STMT (ui);
518 }
dd277d48 519 /* In simple cases we can look through PHI nodes, but we
520 have to be careful with loops and with memory references
521 containing operands that are also operands of PHI nodes.
522 See gcc.c-torture/execute/20051110-*.c. */
43e2b34d 523 else if (gimple_code (use_stmt) == GIMPLE_PHI)
dd277d48 524 {
525 if (temp
43e2b34d 526 /* Make sure we are not in a loop latch block. */
527 || gimple_bb (stmt) == gimple_bb (use_stmt)
dd277d48 528 || dominated_by_p (CDI_DOMINATORS,
43e2b34d 529 gimple_bb (stmt), gimple_bb (use_stmt))
530 /* We can look through PHIs to regions post-dominating
531 the DSE candidate stmt. */
532 || !dominated_by_p (CDI_POST_DOMINATORS,
533 gimple_bb (stmt), gimple_bb (use_stmt)))
dd277d48 534 {
535 fail = true;
536 BREAK_FROM_IMM_USE_STMT (ui);
537 }
64123137 538 /* Do not consider the PHI as use if it dominates the
48089971 539 stmt defining the virtual operand we are processing,
540 we have processed it already in this case. */
541 if (gimple_bb (defvar_def) != gimple_bb (use_stmt)
542 && !dominated_by_p (CDI_DOMINATORS,
543 gimple_bb (defvar_def),
544 gimple_bb (use_stmt)))
545 temp = use_stmt;
dd277d48 546 }
547 /* If the statement is a use the store is not dead. */
258bd648 548 else if (ref_maybe_used_by_stmt_p (use_stmt, ref))
161fe168 549 {
550 fail = true;
dd277d48 551 BREAK_FROM_IMM_USE_STMT (ui);
552 }
553 /* If this is a store, remember it or bail out if we have
554 multiple ones (the will be in different CFG parts then). */
555 else if (gimple_vdef (use_stmt))
556 {
557 if (temp)
558 {
559 fail = true;
560 BREAK_FROM_IMM_USE_STMT (ui);
561 }
562 temp = use_stmt;
161fe168 563 }
564 }
565
dd277d48 566 if (fail)
64123137 567 {
568 /* STMT might be partially dead and we may be able to reduce
569 how many memory locations it stores into. */
570 if (byte_tracking_enabled && !gimple_clobber_p (stmt))
571 return DSE_STORE_MAYBE_PARTIAL_DEAD;
572 return DSE_STORE_LIVE;
573 }
dd277d48 574
575 /* If we didn't find any definition this means the store is dead
576 if it isn't a store to global reachable memory. In this case
577 just pretend the stmt makes itself dead. Otherwise fail. */
578 if (!temp)
4fb5e5ca 579 {
258bd648 580 if (ref_may_alias_global_p (ref))
64123137 581 return DSE_STORE_LIVE;
dd277d48 582
583 temp = stmt;
789aa951 584 break;
4fb5e5ca 585 }
64123137 586
587 if (byte_tracking_enabled && temp)
588 clear_bytes_written_by (live_bytes, temp, ref);
4fb5e5ca 589 }
64123137 590 /* Continue walking until we reach a full kill as a single statement
591 or there are no more live bytes. */
592 while (!stmt_kills_ref_p (temp, ref)
593 && !(byte_tracking_enabled && bitmap_empty_p (live_bytes)));
4fb5e5ca 594
dd277d48 595 *use_stmt = temp;
64123137 596 return DSE_STORE_DEAD;
597}
598
599
600class dse_dom_walker : public dom_walker
601{
602public:
603 dse_dom_walker (cdi_direction direction)
07a7b947 604 : dom_walker (direction),
605 m_live_bytes (PARAM_VALUE (PARAM_DSE_MAX_OBJECT_SIZE)),
606 m_byte_tracking_enabled (false) {}
64123137 607
608 virtual edge before_dom_children (basic_block);
609
610private:
07a7b947 611 auto_sbitmap m_live_bytes;
64123137 612 bool m_byte_tracking_enabled;
613 void dse_optimize_stmt (gimple_stmt_iterator *);
614};
615
a0b1e585 616/* Delete a dead call at GSI, which is mem* call of some kind. */
64123137 617static void
ec40332f 618delete_dead_call (gimple_stmt_iterator *gsi)
64123137 619{
ec40332f 620 gimple *stmt = gsi_stmt (*gsi);
64123137 621 if (dump_file && (dump_flags & TDF_DETAILS))
622 {
623 fprintf (dump_file, " Deleted dead call: ");
1ffa4346 624 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
64123137 625 fprintf (dump_file, "\n");
626 }
627
628 tree lhs = gimple_call_lhs (stmt);
64123137 629 if (lhs)
630 {
631 tree ptr = gimple_call_arg (stmt, 0);
632 gimple *new_stmt = gimple_build_assign (lhs, ptr);
633 unlink_stmt_vdef (stmt);
ec40332f 634 if (gsi_replace (gsi, new_stmt, true))
64123137 635 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
636 }
637 else
638 {
639 /* Then we need to fix the operand of the consuming stmt. */
640 unlink_stmt_vdef (stmt);
641
642 /* Remove the dead store. */
ec40332f 643 if (gsi_remove (gsi, true))
64123137 644 bitmap_set_bit (need_eh_cleanup, gimple_bb (stmt)->index);
645 release_defs (stmt);
646 }
4fb5e5ca 647}
648
a0b1e585 649/* Delete a dead store at GSI, which is a gimple assignment. */
64123137 650
651static void
ec40332f 652delete_dead_assignment (gimple_stmt_iterator *gsi)
64123137 653{
ec40332f 654 gimple *stmt = gsi_stmt (*gsi);
64123137 655 if (dump_file && (dump_flags & TDF_DETAILS))
656 {
657 fprintf (dump_file, " Deleted dead store: ");
1ffa4346 658 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
64123137 659 fprintf (dump_file, "\n");
660 }
661
662 /* Then we need to fix the operand of the consuming stmt. */
663 unlink_stmt_vdef (stmt);
664
665 /* Remove the dead store. */
64123137 666 basic_block bb = gimple_bb (stmt);
ec40332f 667 if (gsi_remove (gsi, true))
64123137 668 bitmap_set_bit (need_eh_cleanup, bb->index);
669
670 /* And release any SSA_NAMEs set in this statement back to the
671 SSA_NAME manager. */
672 release_defs (stmt);
673}
4fb5e5ca 674
4ee9c684 675/* Attempt to eliminate dead stores in the statement referenced by BSI.
676
677 A dead store is a store into a memory location which will later be
678 overwritten by another store without any intervening loads. In this
679 case the earlier store can be deleted.
680
681 In our SSA + virtual operand world we use immediate uses of virtual
682 operands to detect dead stores. If a store's virtual definition
683 is used precisely once by a later store to the same location which
684 post dominates the first store, then the first store is dead. */
685
64123137 686void
687dse_dom_walker::dse_optimize_stmt (gimple_stmt_iterator *gsi)
4ee9c684 688{
42acab1c 689 gimple *stmt = gsi_stmt (*gsi);
4ee9c684 690
e920115e 691 /* If this statement has no virtual defs, then there is nothing
4ee9c684 692 to do. */
dd277d48 693 if (!gimple_vdef (stmt))
4ee9c684 694 return;
695
9f559b20 696 /* Don't return early on *this_2(D) ={v} {CLOBBER}. */
697 if (gimple_has_volatile_ops (stmt)
698 && (!gimple_clobber_p (stmt)
699 || TREE_CODE (gimple_assign_lhs (stmt)) != MEM_REF))
52c2a307 700 return;
701
64123137 702 ao_ref ref;
703 if (!initialize_ao_ref_for_dse (stmt, &ref))
704 return;
705
258bd648 706 /* We know we have virtual definitions. We can handle assignments and
707 some builtin calls. */
708 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
709 {
710 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)))
711 {
712 case BUILT_IN_MEMCPY:
713 case BUILT_IN_MEMMOVE:
714 case BUILT_IN_MEMSET:
715 {
b37570be 716 /* Occasionally calls with an explicit length of zero
717 show up in the IL. It's pointless to do analysis
718 on them, they're trivially dead. */
719 tree size = gimple_call_arg (stmt, 2);
720 if (integer_zerop (size))
721 {
722 delete_dead_call (gsi);
723 return;
724 }
725
42acab1c 726 gimple *use_stmt;
64123137 727 enum dse_store_status store_status;
728 m_byte_tracking_enabled
729 = setup_live_bytes_from_ref (&ref, m_live_bytes);
730 store_status = dse_classify_store (&ref, stmt, &use_stmt,
731 m_byte_tracking_enabled,
732 m_live_bytes);
733 if (store_status == DSE_STORE_LIVE)
258bd648 734 return;
735
64123137 736 if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
258bd648 737 {
339f327d 738 maybe_trim_memstar_call (&ref, m_live_bytes, stmt);
64123137 739 return;
258bd648 740 }
258bd648 741
64123137 742 if (store_status == DSE_STORE_DEAD)
ec40332f 743 delete_dead_call (gsi);
64123137 744 return;
258bd648 745 }
64123137 746
258bd648 747 default:
748 return;
749 }
750 }
751
75a70cf9 752 if (is_gimple_assign (stmt))
4ee9c684 753 {
42acab1c 754 gimple *use_stmt;
4ee9c684 755
258bd648 756 /* Self-assignments are zombies. */
757 if (operand_equal_p (gimple_assign_rhs1 (stmt),
758 gimple_assign_lhs (stmt), 0))
759 use_stmt = stmt;
760 else
761 {
64123137 762 m_byte_tracking_enabled
763 = setup_live_bytes_from_ref (&ref, m_live_bytes);
764 enum dse_store_status store_status;
765 store_status = dse_classify_store (&ref, stmt, &use_stmt,
766 m_byte_tracking_enabled,
767 m_live_bytes);
768 if (store_status == DSE_STORE_LIVE)
258bd648 769 return;
64123137 770
771 if (store_status == DSE_STORE_MAYBE_PARTIAL_DEAD)
772 {
773 maybe_trim_partially_dead_store (&ref, m_live_bytes, stmt);
774 return;
775 }
258bd648 776 }
2bf1fefd 777
88114c9f 778 /* Now we know that use_stmt kills the LHS of stmt. */
779
9f559b20 780 /* But only remove *this_2(D) ={v} {CLOBBER} if killed by
781 another clobber stmt. */
782 if (gimple_clobber_p (stmt)
783 && !gimple_clobber_p (use_stmt))
784 return;
785
ec40332f 786 delete_dead_assignment (gsi);
4ee9c684 787 }
788}
789
96752458 790edge
54c91640 791dse_dom_walker::before_dom_children (basic_block bb)
4ee9c684 792{
75a70cf9 793 gimple_stmt_iterator gsi;
4ee9c684 794
3222e348 795 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
796 {
797 dse_optimize_stmt (&gsi);
798 if (gsi_end_p (gsi))
799 gsi = gsi_last_bb (bb);
800 else
801 gsi_prev (&gsi);
802 }
96752458 803 return NULL;
4ee9c684 804}
805
7620bc82 806namespace {
807
808const pass_data pass_data_dse =
65b0537f 809{
810 GIMPLE_PASS, /* type */
811 "dse", /* name */
812 OPTGROUP_NONE, /* optinfo_flags */
65b0537f 813 TV_TREE_DSE, /* tv_id */
814 ( PROP_cfg | PROP_ssa ), /* properties_required */
815 0, /* properties_provided */
816 0, /* properties_destroyed */
817 0, /* todo_flags_start */
8b88439e 818 0, /* todo_flags_finish */
65b0537f 819};
820
7620bc82 821class pass_dse : public gimple_opt_pass
65b0537f 822{
823public:
824 pass_dse (gcc::context *ctxt)
825 : gimple_opt_pass (pass_data_dse, ctxt)
826 {}
827
828 /* opt_pass methods: */
829 opt_pass * clone () { return new pass_dse (m_ctxt); }
830 virtual bool gate (function *) { return flag_tree_dse != 0; }
831 virtual unsigned int execute (function *);
832
833}; // class pass_dse
4fb5e5ca 834
65b0537f 835unsigned int
836pass_dse::execute (function *fun)
4ee9c684 837{
d02c8339 838 need_eh_cleanup = BITMAP_ALLOC (NULL);
839
ec415c45 840 renumber_gimple_stmt_uids ();
4ee9c684 841
842 /* We might consider making this a property of each pass so that it
843 can be [re]computed on an as-needed basis. Particularly since
844 this pass could be seen as an extension of DCE which needs post
845 dominators. */
846 calculate_dominance_info (CDI_POST_DOMINATORS);
dd277d48 847 calculate_dominance_info (CDI_DOMINATORS);
4ee9c684 848
4ee9c684 849 /* Dead store elimination is fundamentally a walk of the post-dominator
850 tree and a backwards walk of statements within each block. */
65b0537f 851 dse_dom_walker (CDI_POST_DOMINATORS).walk (fun->cfg->x_exit_block_ptr);
4ee9c684 852
d02c8339 853 /* Removal of stores may make some EH edges dead. Purge such edges from
854 the CFG as needed. */
855 if (!bitmap_empty_p (need_eh_cleanup))
856 {
857 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
858 cleanup_tree_cfg ();
859 }
860
861 BITMAP_FREE (need_eh_cleanup);
64123137 862
4ee9c684 863 /* For now, just wipe the post-dominator information. */
864 free_dominance_info (CDI_POST_DOMINATORS);
2a1990e9 865 return 0;
4ee9c684 866}
867
7620bc82 868} // anon namespace
869
cbe8bda8 870gimple_opt_pass *
871make_pass_dse (gcc::context *ctxt)
872{
873 return new pass_dse (ctxt);
874}