]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-loop-prefetch.c
Merger of git branch "gimple-classes-v2-option-3"
[thirdparty/gcc.git] / gcc / tree-ssa-loop-prefetch.c
CommitLineData
8dfbf380 1/* Array prefetching.
3aea1f79 2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
48e1416a 3
8dfbf380 4This file is part of GCC.
48e1416a 5
8dfbf380 6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8c4c00c1 8Free Software Foundation; either version 3, or (at your option) any
8dfbf380 9later version.
48e1416a 10
8dfbf380 11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
48e1416a 15
8dfbf380 16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
8dfbf380 19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "tree.h"
9ed99284 25#include "stor-layout.h"
8dfbf380 26#include "tm_p.h"
94ea8568 27#include "predict.h"
28#include "vec.h"
29#include "hashtab.h"
30#include "hash-set.h"
31#include "machmode.h"
32#include "hard-reg-set.h"
33#include "input.h"
34#include "function.h"
35#include "dominance.h"
36#include "cfg.h"
8dfbf380 37#include "basic-block.h"
ce084dfc 38#include "tree-pretty-print.h"
bc61cadb 39#include "tree-ssa-alias.h"
40#include "internal-fn.h"
41#include "gimple-expr.h"
42#include "is-a.h"
e795d6e1 43#include "gimple.h"
a8783bee 44#include "gimplify.h"
dcf1a1ec 45#include "gimple-iterator.h"
e795d6e1 46#include "gimplify-me.h"
073c1fd5 47#include "gimple-ssa.h"
05d9c18a 48#include "tree-ssa-loop-ivopts.h"
49#include "tree-ssa-loop-manip.h"
50#include "tree-ssa-loop-niter.h"
073c1fd5 51#include "tree-ssa-loop.h"
52#include "tree-into-ssa.h"
8dfbf380 53#include "cfgloop.h"
8dfbf380 54#include "tree-pass.h"
8dfbf380 55#include "insn-config.h"
8dfbf380 56#include "tree-chrec.h"
57#include "tree-scalar-evolution.h"
0b205f4c 58#include "diagnostic-core.h"
8dfbf380 59#include "params.h"
60#include "langhooks.h"
bc8bb825 61#include "tree-inline.h"
5c205353 62#include "tree-data-ref.h"
8e3cb73b 63
64
65/* FIXME: Needed for optabs, but this should all be moved to a TBD interface
66 between the GIMPLE and RTL worlds. */
67#include "expr.h"
34517c64 68#include "insn-codes.h"
5b5037b3 69#include "optabs.h"
aedb7bf8 70#include "recog.h"
8dfbf380 71
72/* This pass inserts prefetch instructions to optimize cache usage during
73 accesses to arrays in loops. It processes loops sequentially and:
74
75 1) Gathers all memory references in the single loop.
76 2) For each of the references it decides when it is profitable to prefetch
77 it. To do it, we evaluate the reuse among the accesses, and determines
78 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
79 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
80 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
81 iterations of the loop that are zero modulo PREFETCH_MOD). For example
82 (assuming cache line size is 64 bytes, char has size 1 byte and there
83 is no hardware sequential prefetch):
84
85 char *a;
86 for (i = 0; i < max; i++)
87 {
88 a[255] = ...; (0)
89 a[i] = ...; (1)
90 a[i + 64] = ...; (2)
91 a[16*i] = ...; (3)
92 a[187*i] = ...; (4)
93 a[187*i + 50] = ...; (5)
94 }
95
96 (0) obviously has PREFETCH_BEFORE 1
97 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
98 location 64 iterations before it, and PREFETCH_MOD 64 (since
99 it hits the same cache line otherwise).
100 (2) has PREFETCH_MOD 64
101 (3) has PREFETCH_MOD 4
102 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
66f19dbb 103 the cache line accessed by (5) is the same with probability only
8dfbf380 104 7/32.
105 (5) has PREFETCH_MOD 1 as well.
106
5c205353 107 Additionally, we use data dependence analysis to determine for each
108 reference the distance till the first reuse; this information is used
109 to determine the temporality of the issued prefetch instruction.
110
8dfbf380 111 3) We determine how much ahead we need to prefetch. The number of
112 iterations needed is time to fetch / time spent in one iteration of
113 the loop. The problem is that we do not know either of these values,
114 so we just make a heuristic guess based on a magic (possibly)
115 target-specific constant and size of the loop.
116
117 4) Determine which of the references we prefetch. We take into account
118 that there is a maximum number of simultaneous prefetches (provided
119 by machine description). We prefetch as many prefetches as possible
120 while still within this bound (starting with those with lowest
121 prefetch_mod, since they are responsible for most of the cache
122 misses).
48e1416a 123
8dfbf380 124 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
125 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
126 prefetching nonaccessed memory.
127 TODO -- actually implement peeling.
48e1416a 128
8dfbf380 129 6) We actually emit the prefetch instructions. ??? Perhaps emit the
130 prefetch instructions with guards in cases where 5) was not sufficient
131 to satisfy the constraints?
132
76595608 133 A cost model is implemented to determine whether or not prefetching is
134 profitable for a given loop. The cost model has three heuristics:
135
136 1. Function trip_count_to_ahead_ratio_too_small_p implements a
137 heuristic that determines whether or not the loop has too few
138 iterations (compared to ahead). Prefetching is not likely to be
139 beneficial if the trip count to ahead ratio is below a certain
140 minimum.
141
142 2. Function mem_ref_count_reasonable_p implements a heuristic that
143 determines whether the given loop has enough CPU ops that can be
144 overlapped with cache missing memory ops. If not, the loop
145 won't benefit from prefetching. In the implementation,
146 prefetching is not considered beneficial if the ratio between
147 the instruction count and the mem ref count is below a certain
148 minimum.
149
150 3. Function insn_to_prefetch_ratio_too_small_p implements a
151 heuristic that disables prefetching in a loop if the prefetching
152 cost is above a certain limit. The relative prefetching cost is
153 estimated by taking the ratio between the prefetch count and the
154 total intruction count (this models the I-cache cost).
155
0ab353e1 156 The limits used in these heuristics are defined as parameters with
48e1416a 157 reasonable default values. Machine-specific default values will be
0ab353e1 158 added later.
48e1416a 159
8dfbf380 160 Some other TODO:
161 -- write and use more general reuse analysis (that could be also used
162 in other cache aimed loop optimizations)
163 -- make it behave sanely together with the prefetches given by user
164 (now we just ignore them; at the very least we should avoid
165 optimizing loops in that user put his own prefetches)
166 -- we assume cache line size alignment of arrays; this could be
167 improved. */
168
169/* Magic constants follow. These should be replaced by machine specific
170 numbers. */
171
8dfbf380 172/* True if write can be prefetched by a read prefetch. */
173
174#ifndef WRITE_CAN_USE_READ_PREFETCH
175#define WRITE_CAN_USE_READ_PREFETCH 1
176#endif
177
178/* True if read can be prefetched by a write prefetch. */
179
180#ifndef READ_CAN_USE_WRITE_PREFETCH
181#define READ_CAN_USE_WRITE_PREFETCH 0
182#endif
183
07804af5 184/* The size of the block loaded by a single prefetch. Usually, this is
185 the same as cache line size (at the moment, we only consider one level
186 of cache hierarchy). */
8dfbf380 187
188#ifndef PREFETCH_BLOCK
07804af5 189#define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
8dfbf380 190#endif
191
192/* Do we have a forward hardware sequential prefetching? */
193
194#ifndef HAVE_FORWARD_PREFETCH
195#define HAVE_FORWARD_PREFETCH 0
196#endif
197
198/* Do we have a backward hardware sequential prefetching? */
199
200#ifndef HAVE_BACKWARD_PREFETCH
201#define HAVE_BACKWARD_PREFETCH 0
202#endif
203
204/* In some cases we are only able to determine that there is a certain
205 probability that the two accesses hit the same cache line. In this
206 case, we issue the prefetches for both of them if this probability
f0b5f617 207 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
8dfbf380 208
209#ifndef ACCEPTABLE_MISS_RATE
210#define ACCEPTABLE_MISS_RATE 50
211#endif
212
213#ifndef HAVE_prefetch
214#define HAVE_prefetch 0
215#endif
216
0c916a7b 217#define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
218#define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
5c205353 219
220/* We consider a memory access nontemporal if it is not reused sooner than
221 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
222 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
223 so that we use nontemporal prefetches e.g. if single memory location
224 is accessed several times in a single iteration of the loop. */
225#define NONTEMPORAL_FRACTION 16
226
5b5037b3 227/* In case we have to emit a memory fence instruction after the loop that
228 uses nontemporal stores, this defines the builtin to use. */
229
230#ifndef FENCE_FOLLOWING_MOVNT
231#define FENCE_FOLLOWING_MOVNT NULL_TREE
232#endif
233
e20bb126 234/* It is not profitable to prefetch when the trip count is not at
235 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
236 For example, in a loop with a prefetch ahead distance of 10,
237 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
238 profitable to prefetch when the trip count is greater or equal to
239 40. In that case, 30 out of the 40 iterations will benefit from
240 prefetching. */
241
242#ifndef TRIP_COUNT_TO_AHEAD_RATIO
243#define TRIP_COUNT_TO_AHEAD_RATIO 4
244#endif
245
8dfbf380 246/* The group of references between that reuse may occur. */
247
248struct mem_ref_group
249{
250 tree base; /* Base of the reference. */
81d2a38f 251 tree step; /* Step of the reference. */
8dfbf380 252 struct mem_ref *refs; /* References in the group. */
253 struct mem_ref_group *next; /* Next group of references. */
254};
255
256/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
257
258#define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
259
c0a0de5e 260/* Do not generate a prefetch if the unroll factor is significantly less
261 than what is required by the prefetch. This is to avoid redundant
1aabe697 262 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
263 2, prefetching requires unrolling the loop 16 times, but
264 the loop is actually unrolled twice. In this case (ratio = 8),
c0a0de5e 265 prefetching is not likely to be beneficial. */
266
267#ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
1aabe697 268#define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
c0a0de5e 269#endif
270
76595608 271/* Some of the prefetch computations have quadratic complexity. We want to
272 avoid huge compile times and, therefore, want to limit the amount of
273 memory references per loop where we consider prefetching. */
274
275#ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
276#define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
277#endif
278
8dfbf380 279/* The memory reference. */
280
281struct mem_ref
282{
75a70cf9 283 gimple stmt; /* Statement in that the reference appears. */
8dfbf380 284 tree mem; /* The reference. */
285 HOST_WIDE_INT delta; /* Constant offset of the reference. */
8dfbf380 286 struct mem_ref_group *group; /* The group of references it belongs to. */
287 unsigned HOST_WIDE_INT prefetch_mod;
288 /* Prefetch only each PREFETCH_MOD-th
289 iteration. */
290 unsigned HOST_WIDE_INT prefetch_before;
291 /* Prefetch only first PREFETCH_BEFORE
292 iterations. */
5c205353 293 unsigned reuse_distance; /* The amount of data accessed before the first
294 reuse of this value. */
8dfbf380 295 struct mem_ref *next; /* The next reference in the group. */
5b5037b3 296 unsigned write_p : 1; /* Is it a write? */
297 unsigned independent_p : 1; /* True if the reference is independent on
298 all other references inside the loop. */
299 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
300 unsigned storent_p : 1; /* True if we changed the store to a
301 nontemporal one. */
8dfbf380 302};
303
7b64e7e0 304/* Dumps information about memory reference */
8dfbf380 305static void
7b64e7e0 306dump_mem_details (FILE *file, tree base, tree step,
307 HOST_WIDE_INT delta, bool write_p)
8dfbf380 308{
7b64e7e0 309 fprintf (file, "(base ");
310 print_generic_expr (file, base, TDF_SLIM);
8dfbf380 311 fprintf (file, ", step ");
7b64e7e0 312 if (cst_and_fits_in_hwi (step))
313 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
81d2a38f 314 else
7b64e7e0 315 print_generic_expr (file, step, TDF_TREE);
8dfbf380 316 fprintf (file, ")\n");
1da72d7c 317 fprintf (file, " delta ");
7b64e7e0 318 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
319 fprintf (file, "\n");
320 fprintf (file, " %s\n", write_p ? "write" : "read");
8dfbf380 321 fprintf (file, "\n");
7b64e7e0 322}
8dfbf380 323
7b64e7e0 324/* Dumps information about reference REF to FILE. */
8dfbf380 325
7b64e7e0 326static void
327dump_mem_ref (FILE *file, struct mem_ref *ref)
328{
329 fprintf (file, "Reference %p:\n", (void *) ref);
330
331 fprintf (file, " group %p ", (void *) ref->group);
332
333 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta,
334 ref->write_p);
8dfbf380 335}
336
337/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
338 exist. */
339
340static struct mem_ref_group *
81d2a38f 341find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
8dfbf380 342{
343 struct mem_ref_group *group;
344
345 for (; *groups; groups = &(*groups)->next)
346 {
81d2a38f 347 if (operand_equal_p ((*groups)->step, step, 0)
8dfbf380 348 && operand_equal_p ((*groups)->base, base, 0))
349 return *groups;
350
81d2a38f 351 /* If step is an integer constant, keep the list of groups sorted
352 by decreasing step. */
353 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
354 && int_cst_value ((*groups)->step) < int_cst_value (step))
8dfbf380 355 break;
356 }
357
5c205353 358 group = XNEW (struct mem_ref_group);
8dfbf380 359 group->base = base;
360 group->step = step;
361 group->refs = NULL;
362 group->next = *groups;
363 *groups = group;
364
365 return group;
366}
367
368/* Records a memory reference MEM in GROUP with offset DELTA and write status
369 WRITE_P. The reference occurs in statement STMT. */
370
371static void
75a70cf9 372record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
8dfbf380 373 HOST_WIDE_INT delta, bool write_p)
374{
375 struct mem_ref **aref;
376
377 /* Do not record the same address twice. */
378 for (aref = &group->refs; *aref; aref = &(*aref)->next)
379 {
380 /* It does not have to be possible for write reference to reuse the read
381 prefetch, or vice versa. */
382 if (!WRITE_CAN_USE_READ_PREFETCH
383 && write_p
384 && !(*aref)->write_p)
385 continue;
386 if (!READ_CAN_USE_WRITE_PREFETCH
387 && !write_p
388 && (*aref)->write_p)
389 continue;
390
391 if ((*aref)->delta == delta)
392 return;
393 }
394
5c205353 395 (*aref) = XNEW (struct mem_ref);
8dfbf380 396 (*aref)->stmt = stmt;
397 (*aref)->mem = mem;
398 (*aref)->delta = delta;
399 (*aref)->write_p = write_p;
400 (*aref)->prefetch_before = PREFETCH_ALL;
401 (*aref)->prefetch_mod = 1;
5c205353 402 (*aref)->reuse_distance = 0;
8dfbf380 403 (*aref)->issue_prefetch_p = false;
404 (*aref)->group = group;
405 (*aref)->next = NULL;
5b5037b3 406 (*aref)->independent_p = false;
407 (*aref)->storent_p = false;
8dfbf380 408
409 if (dump_file && (dump_flags & TDF_DETAILS))
410 dump_mem_ref (dump_file, *aref);
411}
412
413/* Release memory references in GROUPS. */
414
415static void
416release_mem_refs (struct mem_ref_group *groups)
417{
418 struct mem_ref_group *next_g;
419 struct mem_ref *ref, *next_r;
420
421 for (; groups; groups = next_g)
422 {
423 next_g = groups->next;
424 for (ref = groups->refs; ref; ref = next_r)
425 {
426 next_r = ref->next;
427 free (ref);
428 }
429 free (groups);
430 }
431}
432
433/* A structure used to pass arguments to idx_analyze_ref. */
434
435struct ar_data
436{
437 struct loop *loop; /* Loop of the reference. */
75a70cf9 438 gimple stmt; /* Statement of the reference. */
81d2a38f 439 tree *step; /* Step of the memory reference. */
8dfbf380 440 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
441};
442
443/* Analyzes a single INDEX of a memory reference to obtain information
444 described at analyze_ref. Callback for for_each_index. */
445
446static bool
447idx_analyze_ref (tree base, tree *index, void *data)
448{
f0d6e81c 449 struct ar_data *ar_data = (struct ar_data *) data;
8dfbf380 450 tree ibase, step, stepsize;
81d2a38f 451 HOST_WIDE_INT idelta = 0, imult = 1;
8dfbf380 452 affine_iv iv;
453
76610704 454 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
81d2a38f 455 *index, &iv, true))
8dfbf380 456 return false;
457 ibase = iv.base;
458 step = iv.step;
459
0de36bdb 460 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
8dfbf380 461 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
462 {
463 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
464 ibase = TREE_OPERAND (ibase, 0);
465 }
466 if (cst_and_fits_in_hwi (ibase))
467 {
468 idelta += int_cst_value (ibase);
05db596e 469 ibase = build_int_cst (TREE_TYPE (ibase), 0);
8dfbf380 470 }
471
472 if (TREE_CODE (base) == ARRAY_REF)
473 {
474 stepsize = array_ref_element_size (base);
475 if (!cst_and_fits_in_hwi (stepsize))
476 return false;
477 imult = int_cst_value (stepsize);
f547ca12 478 step = fold_build2 (MULT_EXPR, sizetype,
479 fold_convert (sizetype, step),
480 fold_convert (sizetype, stepsize));
8dfbf380 481 idelta *= imult;
482 }
483
f547ca12 484 if (*ar_data->step == NULL_TREE)
485 *ar_data->step = step;
486 else
487 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
488 fold_convert (sizetype, *ar_data->step),
489 fold_convert (sizetype, step));
8dfbf380 490 *ar_data->delta += idelta;
491 *index = ibase;
492
493 return true;
494}
495
6dce7ee9 496/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
8dfbf380 497 STEP are integer constants and iter is number of iterations of LOOP. The
6dce7ee9 498 reference occurs in statement STMT. Strips nonaddressable component
499 references from REF_P. */
8dfbf380 500
501static bool
6dce7ee9 502analyze_ref (struct loop *loop, tree *ref_p, tree *base,
81d2a38f 503 tree *step, HOST_WIDE_INT *delta,
75a70cf9 504 gimple stmt)
8dfbf380 505{
506 struct ar_data ar_data;
507 tree off;
508 HOST_WIDE_INT bit_offset;
6dce7ee9 509 tree ref = *ref_p;
8dfbf380 510
81d2a38f 511 *step = NULL_TREE;
8dfbf380 512 *delta = 0;
513
0e948838 514 /* First strip off the component references. Ignore bitfields.
515 Also strip off the real and imagine parts of a complex, so that
516 they can have the same base. */
517 if (TREE_CODE (ref) == REALPART_EXPR
518 || TREE_CODE (ref) == IMAGPART_EXPR
519 || (TREE_CODE (ref) == COMPONENT_REF
520 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
521 {
522 if (TREE_CODE (ref) == IMAGPART_EXPR)
523 *delta += int_size_in_bytes (TREE_TYPE (ref));
524 ref = TREE_OPERAND (ref, 0);
525 }
8dfbf380 526
6dce7ee9 527 *ref_p = ref;
528
8dfbf380 529 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
530 {
531 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
532 bit_offset = TREE_INT_CST_LOW (off);
533 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
48e1416a 534
8dfbf380 535 *delta += bit_offset / BITS_PER_UNIT;
536 }
537
538 *base = unshare_expr (ref);
539 ar_data.loop = loop;
540 ar_data.stmt = stmt;
541 ar_data.step = step;
542 ar_data.delta = delta;
543 return for_each_index (base, idx_analyze_ref, &ar_data);
544}
545
546/* Record a memory reference REF to the list REFS. The reference occurs in
5b5037b3 547 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
548 reference was recorded, false otherwise. */
8dfbf380 549
5b5037b3 550static bool
8dfbf380 551gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
75a70cf9 552 tree ref, bool write_p, gimple stmt)
8dfbf380 553{
81d2a38f 554 tree base, step;
555 HOST_WIDE_INT delta;
8dfbf380 556 struct mem_ref_group *agrp;
557
5d4305e1 558 if (get_base_address (ref) == NULL)
559 return false;
560
6dce7ee9 561 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
5b5037b3 562 return false;
81d2a38f 563 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
564 if (step == NULL_TREE)
565 return false;
8dfbf380 566
bd62669e 567 /* Stop if the address of BASE could not be taken. */
09a6f6f5 568 if (may_be_nonaddressable_p (base))
569 return false;
570
7b64e7e0 571 /* Limit non-constant step prefetching only to the innermost loops and
572 only when the step is loop invariant in the entire loop nest. */
573 if (!cst_and_fits_in_hwi (step))
574 {
575 if (loop->inner != NULL)
576 {
577 if (dump_file && (dump_flags & TDF_DETAILS))
578 {
579 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
580 print_generic_expr (dump_file, ref, TDF_TREE);
581 fprintf (dump_file,":");
9af5ce0c 582 dump_mem_details (dump_file, base, step, delta, write_p);
7b64e7e0 583 fprintf (dump_file,
584 "Ignoring %p, non-constant step prefetching is "
585 "limited to inner most loops \n",
586 (void *) ref);
587 }
588 return false;
589 }
590 else
591 {
592 if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
593 {
594 if (dump_file && (dump_flags & TDF_DETAILS))
595 {
596 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
597 print_generic_expr (dump_file, ref, TDF_TREE);
598 fprintf (dump_file,":");
9af5ce0c 599 dump_mem_details (dump_file, base, step, delta, write_p);
7b64e7e0 600 fprintf (dump_file,
601 "Not prefetching, ignoring %p due to "
602 "loop variant step\n",
603 (void *) ref);
604 }
605 return false;
606 }
607 }
608 }
94ce9ff0 609
8dfbf380 610 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
611 are integer constants. */
612 agrp = find_or_create_group (refs, base, step);
613 record_ref (agrp, stmt, ref, delta, write_p);
5b5037b3 614
615 return true;
8dfbf380 616}
617
5b5037b3 618/* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
619 true if there are no other memory references inside the loop. */
8dfbf380 620
621static struct mem_ref_group *
0ab353e1 622gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
8dfbf380 623{
624 basic_block *body = get_loop_body_in_dom_order (loop);
625 basic_block bb;
626 unsigned i;
75a70cf9 627 gimple_stmt_iterator bsi;
628 gimple stmt;
629 tree lhs, rhs;
8dfbf380 630 struct mem_ref_group *refs = NULL;
631
5b5037b3 632 *no_other_refs = true;
0ab353e1 633 *ref_count = 0;
5b5037b3 634
8dfbf380 635 /* Scan the loop body in order, so that the former references precede the
636 later ones. */
637 for (i = 0; i < loop->num_nodes; i++)
638 {
639 bb = body[i];
640 if (bb->loop_father != loop)
641 continue;
642
75a70cf9 643 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
8dfbf380 644 {
75a70cf9 645 stmt = gsi_stmt (bsi);
5b5037b3 646
75a70cf9 647 if (gimple_code (stmt) != GIMPLE_ASSIGN)
5b5037b3 648 {
dd277d48 649 if (gimple_vuse (stmt)
75a70cf9 650 || (is_gimple_call (stmt)
651 && !(gimple_call_flags (stmt) & ECF_CONST)))
5b5037b3 652 *no_other_refs = false;
653 continue;
654 }
8dfbf380 655
75a70cf9 656 lhs = gimple_assign_lhs (stmt);
657 rhs = gimple_assign_rhs1 (stmt);
8dfbf380 658
659 if (REFERENCE_CLASS_P (rhs))
0ab353e1 660 {
5b5037b3 661 *no_other_refs &= gather_memory_references_ref (loop, &refs,
662 rhs, false, stmt);
0ab353e1 663 *ref_count += 1;
664 }
8dfbf380 665 if (REFERENCE_CLASS_P (lhs))
0ab353e1 666 {
5b5037b3 667 *no_other_refs &= gather_memory_references_ref (loop, &refs,
668 lhs, true, stmt);
0ab353e1 669 *ref_count += 1;
670 }
8dfbf380 671 }
672 }
673 free (body);
674
675 return refs;
676}
677
678/* Prune the prefetch candidate REF using the self-reuse. */
679
680static void
681prune_ref_by_self_reuse (struct mem_ref *ref)
682{
81d2a38f 683 HOST_WIDE_INT step;
684 bool backward;
685
686 /* If the step size is non constant, we cannot calculate prefetch_mod. */
687 if (!cst_and_fits_in_hwi (ref->group->step))
688 return;
689
690 step = int_cst_value (ref->group->step);
691
692 backward = step < 0;
8dfbf380 693
694 if (step == 0)
695 {
696 /* Prefetch references to invariant address just once. */
697 ref->prefetch_before = 1;
698 return;
699 }
700
701 if (backward)
702 step = -step;
703
704 if (step > PREFETCH_BLOCK)
705 return;
706
707 if ((backward && HAVE_BACKWARD_PREFETCH)
708 || (!backward && HAVE_FORWARD_PREFETCH))
709 {
710 ref->prefetch_before = 1;
711 return;
712 }
713
714 ref->prefetch_mod = PREFETCH_BLOCK / step;
715}
716
717/* Divides X by BY, rounding down. */
718
719static HOST_WIDE_INT
720ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
721{
722 gcc_assert (by > 0);
723
724 if (x >= 0)
725 return x / by;
726 else
727 return (x + by - 1) / by;
728}
729
48e1416a 730/* Given a CACHE_LINE_SIZE and two inductive memory references
731 with a common STEP greater than CACHE_LINE_SIZE and an address
732 difference DELTA, compute the probability that they will fall
3a2f43cf 733 in different cache lines. Return true if the computed miss rate
734 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
735 number of distinct iterations after which the pattern repeats itself.
e17cf2c8 736 ALIGN_UNIT is the unit of alignment in bytes. */
737
3a2f43cf 738static bool
739is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
e17cf2c8 740 HOST_WIDE_INT step, HOST_WIDE_INT delta,
741 unsigned HOST_WIDE_INT distinct_iters,
742 int align_unit)
743{
744 unsigned align, iter;
3a2f43cf 745 int total_positions, miss_positions, max_allowed_miss_positions;
e17cf2c8 746 int address1, address2, cache_line1, cache_line2;
747
5a91155f 748 /* It always misses if delta is greater than or equal to the cache
749 line size. */
3a2f43cf 750 if (delta >= (HOST_WIDE_INT) cache_line_size)
751 return false;
5a91155f 752
e17cf2c8 753 miss_positions = 0;
3a2f43cf 754 total_positions = (cache_line_size / align_unit) * distinct_iters;
755 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
48e1416a 756
e17cf2c8 757 /* Iterate through all possible alignments of the first
758 memory reference within its cache line. */
759 for (align = 0; align < cache_line_size; align += align_unit)
760
761 /* Iterate through all distinct iterations. */
762 for (iter = 0; iter < distinct_iters; iter++)
763 {
764 address1 = align + step * iter;
765 address2 = address1 + delta;
766 cache_line1 = address1 / cache_line_size;
767 cache_line2 = address2 / cache_line_size;
e17cf2c8 768 if (cache_line1 != cache_line2)
3a2f43cf 769 {
770 miss_positions += 1;
771 if (miss_positions > max_allowed_miss_positions)
772 return false;
773 }
e17cf2c8 774 }
3a2f43cf 775 return true;
e17cf2c8 776}
777
8dfbf380 778/* Prune the prefetch candidate REF using the reuse with BY.
779 If BY_IS_BEFORE is true, BY is before REF in the loop. */
780
781static void
782prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
783 bool by_is_before)
784{
81d2a38f 785 HOST_WIDE_INT step;
786 bool backward;
8dfbf380 787 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
788 HOST_WIDE_INT delta = delta_b - delta_r;
789 HOST_WIDE_INT hit_from;
790 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
e17cf2c8 791 HOST_WIDE_INT reduced_step;
792 unsigned HOST_WIDE_INT reduced_prefetch_block;
793 tree ref_type;
794 int align_unit;
8dfbf380 795
81d2a38f 796 /* If the step is non constant we cannot calculate prefetch_before. */
797 if (!cst_and_fits_in_hwi (ref->group->step)) {
798 return;
799 }
800
801 step = int_cst_value (ref->group->step);
802
803 backward = step < 0;
804
805
8dfbf380 806 if (delta == 0)
807 {
808 /* If the references has the same address, only prefetch the
809 former. */
810 if (by_is_before)
811 ref->prefetch_before = 0;
48e1416a 812
8dfbf380 813 return;
814 }
815
816 if (!step)
817 {
818 /* If the reference addresses are invariant and fall into the
819 same cache line, prefetch just the first one. */
820 if (!by_is_before)
821 return;
822
823 if (ddown (ref->delta, PREFETCH_BLOCK)
824 != ddown (by->delta, PREFETCH_BLOCK))
825 return;
826
827 ref->prefetch_before = 0;
828 return;
829 }
830
831 /* Only prune the reference that is behind in the array. */
832 if (backward)
833 {
834 if (delta > 0)
835 return;
836
837 /* Transform the data so that we may assume that the accesses
838 are forward. */
839 delta = - delta;
840 step = -step;
841 delta_r = PREFETCH_BLOCK - 1 - delta_r;
842 delta_b = PREFETCH_BLOCK - 1 - delta_b;
843 }
844 else
845 {
846 if (delta < 0)
847 return;
848 }
849
850 /* Check whether the two references are likely to hit the same cache
851 line, and how distant the iterations in that it occurs are from
852 each other. */
853
854 if (step <= PREFETCH_BLOCK)
855 {
856 /* The accesses are sure to meet. Let us check when. */
857 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
858 prefetch_before = (hit_from - delta_r + step - 1) / step;
859
8234f090 860 /* Do not reduce prefetch_before if we meet beyond cache size. */
b1757d46 861 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
8234f090 862 prefetch_before = PREFETCH_ALL;
8dfbf380 863 if (prefetch_before < ref->prefetch_before)
864 ref->prefetch_before = prefetch_before;
865
866 return;
867 }
868
48e1416a 869 /* A more complicated case with step > prefetch_block. First reduce
e17cf2c8 870 the ratio between the step and the cache line size to its simplest
48e1416a 871 terms. The resulting denominator will then represent the number of
872 distinct iterations after which each address will go back to its
873 initial location within the cache line. This computation assumes
e17cf2c8 874 that PREFETCH_BLOCK is a power of two. */
8dfbf380 875 prefetch_block = PREFETCH_BLOCK;
e17cf2c8 876 reduced_prefetch_block = prefetch_block;
877 reduced_step = step;
878 while ((reduced_step & 1) == 0
879 && reduced_prefetch_block > 1)
8dfbf380 880 {
e17cf2c8 881 reduced_step >>= 1;
882 reduced_prefetch_block >>= 1;
8dfbf380 883 }
884
8dfbf380 885 prefetch_before = delta / step;
886 delta %= step;
e17cf2c8 887 ref_type = TREE_TYPE (ref->mem);
888 align_unit = TYPE_ALIGN (ref_type) / 8;
3a2f43cf 889 if (is_miss_rate_acceptable (prefetch_block, step, delta,
890 reduced_prefetch_block, align_unit))
8dfbf380 891 {
8234f090 892 /* Do not reduce prefetch_before if we meet beyond cache size. */
893 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
894 prefetch_before = PREFETCH_ALL;
8dfbf380 895 if (prefetch_before < ref->prefetch_before)
896 ref->prefetch_before = prefetch_before;
897
898 return;
899 }
900
901 /* Try also the following iteration. */
902 prefetch_before++;
903 delta = step - delta;
3a2f43cf 904 if (is_miss_rate_acceptable (prefetch_block, step, delta,
905 reduced_prefetch_block, align_unit))
8dfbf380 906 {
907 if (prefetch_before < ref->prefetch_before)
908 ref->prefetch_before = prefetch_before;
909
910 return;
911 }
912
913 /* The ref probably does not reuse by. */
914 return;
915}
916
917/* Prune the prefetch candidate REF using the reuses with other references
918 in REFS. */
919
920static void
921prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
922{
923 struct mem_ref *prune_by;
924 bool before = true;
925
926 prune_ref_by_self_reuse (ref);
927
928 for (prune_by = refs; prune_by; prune_by = prune_by->next)
929 {
930 if (prune_by == ref)
931 {
932 before = false;
933 continue;
934 }
935
936 if (!WRITE_CAN_USE_READ_PREFETCH
937 && ref->write_p
938 && !prune_by->write_p)
939 continue;
940 if (!READ_CAN_USE_WRITE_PREFETCH
941 && !ref->write_p
942 && prune_by->write_p)
943 continue;
944
945 prune_ref_by_group_reuse (ref, prune_by, before);
946 }
947}
948
949/* Prune the prefetch candidates in GROUP using the reuse analysis. */
950
951static void
952prune_group_by_reuse (struct mem_ref_group *group)
953{
954 struct mem_ref *ref_pruned;
955
956 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
957 {
958 prune_ref_by_reuse (ref_pruned, group->refs);
959
960 if (dump_file && (dump_flags & TDF_DETAILS))
961 {
962 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
963
964 if (ref_pruned->prefetch_before == PREFETCH_ALL
965 && ref_pruned->prefetch_mod == 1)
966 fprintf (dump_file, " no restrictions");
967 else if (ref_pruned->prefetch_before == 0)
968 fprintf (dump_file, " do not prefetch");
969 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
970 fprintf (dump_file, " prefetch once");
971 else
972 {
973 if (ref_pruned->prefetch_before != PREFETCH_ALL)
974 {
975 fprintf (dump_file, " prefetch before ");
976 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
977 ref_pruned->prefetch_before);
978 }
979 if (ref_pruned->prefetch_mod != 1)
980 {
981 fprintf (dump_file, " prefetch mod ");
982 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
983 ref_pruned->prefetch_mod);
984 }
985 }
986 fprintf (dump_file, "\n");
987 }
988 }
989}
990
991/* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
992
993static void
994prune_by_reuse (struct mem_ref_group *groups)
995{
996 for (; groups; groups = groups->next)
997 prune_group_by_reuse (groups);
998}
999
1000/* Returns true if we should issue prefetch for REF. */
1001
1002static bool
1003should_issue_prefetch_p (struct mem_ref *ref)
1004{
1005 /* For now do not issue prefetches for only first few of the
1006 iterations. */
1007 if (ref->prefetch_before != PREFETCH_ALL)
5d68c00f 1008 {
1009 if (dump_file && (dump_flags & TDF_DETAILS))
1010 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
1011 (void *) ref);
1012 return false;
1013 }
8dfbf380 1014
5b5037b3 1015 /* Do not prefetch nontemporal stores. */
1016 if (ref->storent_p)
5d68c00f 1017 {
1018 if (dump_file && (dump_flags & TDF_DETAILS))
1019 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
1020 return false;
1021 }
5b5037b3 1022
8dfbf380 1023 return true;
1024}
1025
1026/* Decide which of the prefetch candidates in GROUPS to prefetch.
1027 AHEAD is the number of iterations to prefetch ahead (which corresponds
1028 to the number of simultaneous instances of one prefetch running at a
1029 time). UNROLL_FACTOR is the factor by that the loop is going to be
1030 unrolled. Returns true if there is anything to prefetch. */
1031
1032static bool
1033schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1034 unsigned ahead)
1035{
53d4d5cc 1036 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1037 unsigned slots_per_prefetch;
8dfbf380 1038 struct mem_ref *ref;
1039 bool any = false;
1040
53d4d5cc 1041 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1042 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
8dfbf380 1043
53d4d5cc 1044 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1045 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1046 it will need a prefetch slot. */
1047 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
8dfbf380 1048 if (dump_file && (dump_flags & TDF_DETAILS))
53d4d5cc 1049 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1050 slots_per_prefetch);
8dfbf380 1051
1052 /* For now we just take memory references one by one and issue
1053 prefetches for as many as possible. The groups are sorted
1054 starting with the largest step, since the references with
334ec2d8 1055 large step are more likely to cause many cache misses. */
8dfbf380 1056
1057 for (; groups; groups = groups->next)
1058 for (ref = groups->refs; ref; ref = ref->next)
1059 {
1060 if (!should_issue_prefetch_p (ref))
1061 continue;
1062
c0a0de5e 1063 /* The loop is far from being sufficiently unrolled for this
1064 prefetch. Do not generate prefetch to avoid many redudant
1065 prefetches. */
1066 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1067 continue;
1068
53d4d5cc 1069 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1070 and we unroll the loop UNROLL_FACTOR times, we need to insert
1071 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1072 iteration. */
8dfbf380 1073 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1074 / ref->prefetch_mod);
53d4d5cc 1075 prefetch_slots = n_prefetches * slots_per_prefetch;
1076
1077 /* If more than half of the prefetches would be lost anyway, do not
1078 issue the prefetch. */
1079 if (2 * remaining_prefetch_slots < prefetch_slots)
1080 continue;
1081
1082 ref->issue_prefetch_p = true;
8dfbf380 1083
53d4d5cc 1084 if (remaining_prefetch_slots <= prefetch_slots)
1085 return true;
1086 remaining_prefetch_slots -= prefetch_slots;
8dfbf380 1087 any = true;
1088 }
1089
1090 return any;
1091}
1092
5da8318c 1093/* Return TRUE if no prefetch is going to be generated in the given
1094 GROUPS. */
1095
1096static bool
1097nothing_to_prefetch_p (struct mem_ref_group *groups)
1098{
1099 struct mem_ref *ref;
1100
1101 for (; groups; groups = groups->next)
1102 for (ref = groups->refs; ref; ref = ref->next)
1103 if (should_issue_prefetch_p (ref))
1104 return false;
1105
1106 return true;
1107}
1108
1109/* Estimate the number of prefetches in the given GROUPS.
1110 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
8dfbf380 1111
0ab353e1 1112static int
5da8318c 1113estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
8dfbf380 1114{
1115 struct mem_ref *ref;
5da8318c 1116 unsigned n_prefetches;
0ab353e1 1117 int prefetch_count = 0;
8dfbf380 1118
1119 for (; groups; groups = groups->next)
1120 for (ref = groups->refs; ref; ref = ref->next)
1121 if (should_issue_prefetch_p (ref))
5da8318c 1122 {
1123 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1124 / ref->prefetch_mod);
1125 prefetch_count += n_prefetches;
1126 }
8dfbf380 1127
0ab353e1 1128 return prefetch_count;
8dfbf380 1129}
1130
1131/* Issue prefetches for the reference REF into loop as decided before.
1132 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
9ca2c29a 1133 is the factor by which LOOP was unrolled. */
8dfbf380 1134
1135static void
1136issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1137{
1138 HOST_WIDE_INT delta;
81d2a38f 1139 tree addr, addr_base, write_p, local, forward;
1a91d914 1140 gcall *prefetch;
75a70cf9 1141 gimple_stmt_iterator bsi;
8dfbf380 1142 unsigned n_prefetches, ap;
5c205353 1143 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
8dfbf380 1144
1145 if (dump_file && (dump_flags & TDF_DETAILS))
5c205353 1146 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1147 nontemporal ? " nontemporal" : "",
1148 (void *) ref);
8dfbf380 1149
75a70cf9 1150 bsi = gsi_for_stmt (ref->stmt);
8dfbf380 1151
1152 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1153 / ref->prefetch_mod);
1154 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
75a70cf9 1155 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1156 true, NULL, true, GSI_SAME_STMT);
53d4d5cc 1157 write_p = ref->write_p ? integer_one_node : integer_zero_node;
2512209b 1158 local = nontemporal ? integer_zero_node : integer_three_node;
8dfbf380 1159
1160 for (ap = 0; ap < n_prefetches; ap++)
1161 {
81d2a38f 1162 if (cst_and_fits_in_hwi (ref->group->step))
1163 {
1164 /* Determine the address to prefetch. */
1165 delta = (ahead + ap * ref->prefetch_mod) *
1166 int_cst_value (ref->group->step);
2cc66f2a 1167 addr = fold_build_pointer_plus_hwi (addr_base, delta);
81d2a38f 1168 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1169 true, GSI_SAME_STMT);
1170 }
1171 else
1172 {
1173 /* The step size is non-constant but loop-invariant. We use the
1174 heuristic to simply prefetch ahead iterations ahead. */
1175 forward = fold_build2 (MULT_EXPR, sizetype,
1176 fold_convert (sizetype, ref->group->step),
1177 fold_convert (sizetype, size_int (ahead)));
2cc66f2a 1178 addr = fold_build_pointer_plus (addr_base, forward);
81d2a38f 1179 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1180 NULL, true, GSI_SAME_STMT);
1181 }
8dfbf380 1182 /* Create the prefetch instruction. */
b9a16870 1183 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
75a70cf9 1184 3, addr, write_p, local);
1185 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
8dfbf380 1186 }
1187}
1188
1189/* Issue prefetches for the references in GROUPS into loop as decided before.
1190 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1191 factor by that LOOP was unrolled. */
1192
1193static void
1194issue_prefetches (struct mem_ref_group *groups,
1195 unsigned unroll_factor, unsigned ahead)
1196{
1197 struct mem_ref *ref;
1198
1199 for (; groups; groups = groups->next)
1200 for (ref = groups->refs; ref; ref = ref->next)
1201 if (ref->issue_prefetch_p)
1202 issue_prefetch_ref (ref, unroll_factor, ahead);
1203}
1204
5b5037b3 1205/* Returns true if REF is a memory write for that a nontemporal store insn
1206 can be used. */
1207
1208static bool
1209nontemporal_store_p (struct mem_ref *ref)
1210{
3754d046 1211 machine_mode mode;
5b5037b3 1212 enum insn_code code;
1213
1214 /* REF must be a write that is not reused. We require it to be independent
1215 on all other memory references in the loop, as the nontemporal stores may
1216 be reordered with respect to other memory references. */
1217 if (!ref->write_p
1218 || !ref->independent_p
1219 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1220 return false;
1221
1222 /* Check that we have the storent instruction for the mode. */
1223 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1224 if (mode == BLKmode)
1225 return false;
1226
d6bf3b14 1227 code = optab_handler (storent_optab, mode);
5b5037b3 1228 return code != CODE_FOR_nothing;
1229}
1230
1231/* If REF is a nontemporal store, we mark the corresponding modify statement
1232 and return true. Otherwise, we return false. */
1233
1234static bool
1235mark_nontemporal_store (struct mem_ref *ref)
1236{
1237 if (!nontemporal_store_p (ref))
1238 return false;
1239
1240 if (dump_file && (dump_flags & TDF_DETAILS))
1241 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1242 (void *) ref);
1243
75a70cf9 1244 gimple_assign_set_nontemporal_move (ref->stmt, true);
5b5037b3 1245 ref->storent_p = true;
1246
1247 return true;
1248}
1249
1250/* Issue a memory fence instruction after LOOP. */
1251
1252static void
1253emit_mfence_after_loop (struct loop *loop)
1254{
f1f41a6c 1255 vec<edge> exits = get_loop_exit_edges (loop);
5b5037b3 1256 edge exit;
1a91d914 1257 gcall *call;
75a70cf9 1258 gimple_stmt_iterator bsi;
5b5037b3 1259 unsigned i;
1260
f1f41a6c 1261 FOR_EACH_VEC_ELT (exits, i, exit)
5b5037b3 1262 {
75a70cf9 1263 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
5b5037b3 1264
1265 if (!single_pred_p (exit->dest)
1266 /* If possible, we prefer not to insert the fence on other paths
1267 in cfg. */
1268 && !(exit->flags & EDGE_ABNORMAL))
1269 split_loop_exit_edge (exit);
75a70cf9 1270 bsi = gsi_after_labels (exit->dest);
5b5037b3 1271
75a70cf9 1272 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
5b5037b3 1273 }
1274
f1f41a6c 1275 exits.release ();
5b5037b3 1276 update_ssa (TODO_update_ssa_only_virtuals);
1277}
1278
1279/* Returns true if we can use storent in loop, false otherwise. */
1280
1281static bool
1282may_use_storent_in_loop_p (struct loop *loop)
1283{
1284 bool ret = true;
1285
1286 if (loop->inner != NULL)
1287 return false;
1288
1289 /* If we must issue a mfence insn after using storent, check that there
1290 is a suitable place for it at each of the loop exits. */
1291 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1292 {
f1f41a6c 1293 vec<edge> exits = get_loop_exit_edges (loop);
5b5037b3 1294 unsigned i;
1295 edge exit;
1296
f1f41a6c 1297 FOR_EACH_VEC_ELT (exits, i, exit)
5b5037b3 1298 if ((exit->flags & EDGE_ABNORMAL)
34154e27 1299 && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5b5037b3 1300 ret = false;
1301
f1f41a6c 1302 exits.release ();
5b5037b3 1303 }
1304
1305 return ret;
1306}
1307
1308/* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1309 references in the loop. */
1310
1311static void
1312mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1313{
1314 struct mem_ref *ref;
1315 bool any = false;
1316
1317 if (!may_use_storent_in_loop_p (loop))
1318 return;
1319
1320 for (; groups; groups = groups->next)
1321 for (ref = groups->refs; ref; ref = ref->next)
1322 any |= mark_nontemporal_store (ref);
1323
1324 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1325 emit_mfence_after_loop (loop);
1326}
1327
8dfbf380 1328/* Determines whether we can profitably unroll LOOP FACTOR times, and if
1329 this is the case, fill in DESC by the description of number of
1330 iterations. */
1331
1332static bool
1333should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1334 unsigned factor)
1335{
1336 if (!can_unroll_loop_p (loop, factor, desc))
1337 return false;
1338
1339 /* We only consider loops without control flow for unrolling. This is not
1340 a hard restriction -- tree_unroll_loop works with arbitrary loops
1341 as well; but the unrolling/prefetching is usually more profitable for
1342 loops consisting of a single basic block, and we want to limit the
1343 code growth. */
1344 if (loop->num_nodes > 2)
1345 return false;
1346
1347 return true;
1348}
1349
1350/* Determine the coefficient by that unroll LOOP, from the information
1351 contained in the list of memory references REFS. Description of
78f46d45 1352 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1353 insns of the LOOP. EST_NITER is the estimated number of iterations of
1354 the loop, or -1 if no estimate is available. */
8dfbf380 1355
1356static unsigned
1357determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
78f46d45 1358 unsigned ninsns, struct tree_niter_desc *desc,
1359 HOST_WIDE_INT est_niter)
8dfbf380 1360{
53d4d5cc 1361 unsigned upper_bound;
1362 unsigned nfactor, factor, mod_constraint;
8dfbf380 1363 struct mem_ref_group *agp;
1364 struct mem_ref *ref;
1365
53d4d5cc 1366 /* First check whether the loop is not too large to unroll. We ignore
1367 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1368 from unrolling them enough to make exactly one cache line covered by each
1369 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1370 us from unrolling the loops too many times in cases where we only expect
1371 gains from better scheduling and decreasing loop overhead, which is not
1372 the case here. */
1373 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
78f46d45 1374
1375 /* If we unrolled the loop more times than it iterates, the unrolled version
1376 of the loop would be never entered. */
1377 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1378 upper_bound = est_niter;
1379
53d4d5cc 1380 if (upper_bound <= 1)
8dfbf380 1381 return 1;
1382
53d4d5cc 1383 /* Choose the factor so that we may prefetch each cache just once,
1384 but bound the unrolling by UPPER_BOUND. */
1385 factor = 1;
8dfbf380 1386 for (agp = refs; agp; agp = agp->next)
1387 for (ref = agp->refs; ref; ref = ref->next)
53d4d5cc 1388 if (should_issue_prefetch_p (ref))
1389 {
1390 mod_constraint = ref->prefetch_mod;
1391 nfactor = least_common_multiple (mod_constraint, factor);
1392 if (nfactor <= upper_bound)
1393 factor = nfactor;
1394 }
8dfbf380 1395
1396 if (!should_unroll_loop_p (loop, desc, factor))
1397 return 1;
1398
1399 return factor;
1400}
1401
5c205353 1402/* Returns the total volume of the memory references REFS, taking into account
1403 reuses in the innermost loop and cache line size. TODO -- we should also
1404 take into account reuses across the iterations of the loops in the loop
1405 nest. */
1406
1407static unsigned
1408volume_of_references (struct mem_ref_group *refs)
1409{
1410 unsigned volume = 0;
1411 struct mem_ref_group *gr;
1412 struct mem_ref *ref;
1413
1414 for (gr = refs; gr; gr = gr->next)
1415 for (ref = gr->refs; ref; ref = ref->next)
1416 {
1417 /* Almost always reuses another value? */
1418 if (ref->prefetch_before != PREFETCH_ALL)
1419 continue;
1420
1421 /* If several iterations access the same cache line, use the size of
1422 the line divided by this number. Otherwise, a cache line is
1423 accessed in each iteration. TODO -- in the latter case, we should
1424 take the size of the reference into account, rounding it up on cache
1425 line size multiple. */
1426 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1427 }
1428 return volume;
1429}
1430
1431/* Returns the volume of memory references accessed across VEC iterations of
1432 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1433 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1434
1435static unsigned
1436volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1437{
1438 unsigned i;
1439
1440 for (i = 0; i < n; i++)
1441 if (vec[i] != 0)
1442 break;
1443
1444 if (i == n)
1445 return 0;
1446
1447 gcc_assert (vec[i] > 0);
1448
1449 /* We ignore the parts of the distance vector in subloops, since usually
1450 the numbers of iterations are much smaller. */
1451 return loop_sizes[i] * vec[i];
1452}
1453
1454/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1455 at the position corresponding to the loop of the step. N is the depth
1456 of the considered loop nest, and, LOOP is its innermost loop. */
1457
1458static void
1459add_subscript_strides (tree access_fn, unsigned stride,
1460 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1461{
1462 struct loop *aloop;
1463 tree step;
1464 HOST_WIDE_INT astep;
1465 unsigned min_depth = loop_depth (loop) - n;
1466
1467 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1468 {
1469 aloop = get_chrec_loop (access_fn);
1470 step = CHREC_RIGHT (access_fn);
1471 access_fn = CHREC_LEFT (access_fn);
1472
1473 if ((unsigned) loop_depth (aloop) <= min_depth)
1474 continue;
1475
35ec552a 1476 if (tree_fits_shwi_p (step))
fcb97e84 1477 astep = tree_to_shwi (step);
5c205353 1478 else
1479 astep = L1_CACHE_LINE_SIZE;
1480
1481 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1482
1483 }
1484}
1485
1486/* Returns the volume of memory references accessed between two consecutive
1487 self-reuses of the reference DR. We consider the subscripts of DR in N
1488 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1489 loops. LOOP is the innermost loop of the current loop nest. */
1490
1491static unsigned
1492self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1493 struct loop *loop)
1494{
1495 tree stride, access_fn;
1496 HOST_WIDE_INT *strides, astride;
f1f41a6c 1497 vec<tree> access_fns;
5c205353 1498 tree ref = DR_REF (dr);
1499 unsigned i, ret = ~0u;
1500
1501 /* In the following example:
1502
1503 for (i = 0; i < N; i++)
1504 for (j = 0; j < N; j++)
1505 use (a[j][i]);
1506 the same cache line is accessed each N steps (except if the change from
1507 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1508 we cannot rely purely on the results of the data dependence analysis.
1509
1510 Instead, we compute the stride of the reference in each loop, and consider
1511 the innermost loop in that the stride is less than cache size. */
1512
1513 strides = XCNEWVEC (HOST_WIDE_INT, n);
1514 access_fns = DR_ACCESS_FNS (dr);
1515
f1f41a6c 1516 FOR_EACH_VEC_ELT (access_fns, i, access_fn)
5c205353 1517 {
1518 /* Keep track of the reference corresponding to the subscript, so that we
1519 know its stride. */
1520 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1521 ref = TREE_OPERAND (ref, 0);
48e1416a 1522
5c205353 1523 if (TREE_CODE (ref) == ARRAY_REF)
1524 {
1525 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
cd4547bf 1526 if (tree_fits_uhwi_p (stride))
6a0712d4 1527 astride = tree_to_uhwi (stride);
5c205353 1528 else
1529 astride = L1_CACHE_LINE_SIZE;
1530
1531 ref = TREE_OPERAND (ref, 0);
1532 }
1533 else
1534 astride = 1;
1535
1536 add_subscript_strides (access_fn, astride, strides, n, loop);
1537 }
1538
1539 for (i = n; i-- > 0; )
1540 {
1541 unsigned HOST_WIDE_INT s;
1542
1543 s = strides[i] < 0 ? -strides[i] : strides[i];
1544
1545 if (s < (unsigned) L1_CACHE_LINE_SIZE
1546 && (loop_sizes[i]
1547 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1548 {
1549 ret = loop_sizes[i];
1550 break;
1551 }
1552 }
1553
1554 free (strides);
1555 return ret;
1556}
1557
1558/* Determines the distance till the first reuse of each reference in REFS
5b5037b3 1559 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
b920ee38 1560 memory references in the loop. Return false if the analysis fails. */
5c205353 1561
b920ee38 1562static bool
5b5037b3 1563determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1564 bool no_other_refs)
5c205353 1565{
1566 struct loop *nest, *aloop;
1e094109 1567 vec<data_reference_p> datarefs = vNULL;
1568 vec<ddr_p> dependences = vNULL;
5c205353 1569 struct mem_ref_group *gr;
5b5037b3 1570 struct mem_ref *ref, *refb;
1e094109 1571 vec<loop_p> vloops = vNULL;
5c205353 1572 unsigned *loop_data_size;
1573 unsigned i, j, n;
1574 unsigned volume, dist, adist;
1575 HOST_WIDE_INT vol;
1576 data_reference_p dr;
1577 ddr_p dep;
1578
1579 if (loop->inner)
b920ee38 1580 return true;
5c205353 1581
1582 /* Find the outermost loop of the loop nest of loop (we require that
1583 there are no sibling loops inside the nest). */
1584 nest = loop;
1585 while (1)
1586 {
1587 aloop = loop_outer (nest);
1588
1589 if (aloop == current_loops->tree_root
1590 || aloop->inner->next)
1591 break;
1592
1593 nest = aloop;
1594 }
1595
1596 /* For each loop, determine the amount of data accessed in each iteration.
1597 We use this to estimate whether the reference is evicted from the
1598 cache before its reuse. */
1599 find_loop_nest (nest, &vloops);
f1f41a6c 1600 n = vloops.length ();
5c205353 1601 loop_data_size = XNEWVEC (unsigned, n);
1602 volume = volume_of_references (refs);
1603 i = n;
1604 while (i-- != 0)
1605 {
1606 loop_data_size[i] = volume;
1607 /* Bound the volume by the L2 cache size, since above this bound,
1608 all dependence distances are equivalent. */
1609 if (volume > L2_CACHE_SIZE_BYTES)
1610 continue;
1611
f1f41a6c 1612 aloop = vloops[i];
fee017b3 1613 vol = estimated_stmt_executions_int (aloop);
b0b097b4 1614 if (vol == -1)
5c205353 1615 vol = expected_loop_iterations (aloop);
1616 volume *= vol;
1617 }
1618
1619 /* Prepare the references in the form suitable for data dependence
bef304b8 1620 analysis. We ignore unanalyzable data references (the results
5c205353 1621 are used just as a heuristics to estimate temporality of the
1622 references, hence we do not need to worry about correctness). */
1623 for (gr = refs; gr; gr = gr->next)
1624 for (ref = gr->refs; ref; ref = ref->next)
1625 {
221a697e 1626 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1627 ref->mem, ref->stmt, !ref->write_p);
5c205353 1628
1629 if (dr)
1630 {
1631 ref->reuse_distance = volume;
1632 dr->aux = ref;
f1f41a6c 1633 datarefs.safe_push (dr);
5c205353 1634 }
5b5037b3 1635 else
1636 no_other_refs = false;
5c205353 1637 }
1638
f1f41a6c 1639 FOR_EACH_VEC_ELT (datarefs, i, dr)
5c205353 1640 {
1641 dist = self_reuse_distance (dr, loop_data_size, n, loop);
45ba1503 1642 ref = (struct mem_ref *) dr->aux;
5c205353 1643 if (ref->reuse_distance > dist)
1644 ref->reuse_distance = dist;
5b5037b3 1645
1646 if (no_other_refs)
1647 ref->independent_p = true;
5c205353 1648 }
1649
b920ee38 1650 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1651 return false;
5c205353 1652
f1f41a6c 1653 FOR_EACH_VEC_ELT (dependences, i, dep)
5c205353 1654 {
1655 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1656 continue;
1657
45ba1503 1658 ref = (struct mem_ref *) DDR_A (dep)->aux;
1659 refb = (struct mem_ref *) DDR_B (dep)->aux;
5b5037b3 1660
5c205353 1661 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1662 || DDR_NUM_DIST_VECTS (dep) == 0)
1663 {
bef304b8 1664 /* If the dependence cannot be analyzed, assume that there might be
5c205353 1665 a reuse. */
1666 dist = 0;
48e1416a 1667
5b5037b3 1668 ref->independent_p = false;
1669 refb->independent_p = false;
5c205353 1670 }
1671 else
1672 {
bef304b8 1673 /* The distance vectors are normalized to be always lexicographically
5c205353 1674 positive, hence we cannot tell just from them whether DDR_A comes
1675 before DDR_B or vice versa. However, it is not important,
1676 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1677 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1678 in cache (and marking it as nontemporal would not affect
1679 anything). */
1680
1681 dist = volume;
1682 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1683 {
1684 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1685 loop_data_size, n);
1686
5b5037b3 1687 /* If this is a dependence in the innermost loop (i.e., the
1688 distances in all superloops are zero) and it is not
1689 the trivial self-dependence with distance zero, record that
1690 the references are not completely independent. */
1691 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1692 && (ref != refb
1693 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1694 {
1695 ref->independent_p = false;
1696 refb->independent_p = false;
1697 }
1698
5c205353 1699 /* Ignore accesses closer than
1700 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1701 so that we use nontemporal prefetches e.g. if single memory
1702 location is accessed several times in a single iteration of
1703 the loop. */
1704 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1705 continue;
1706
1707 if (adist < dist)
1708 dist = adist;
1709 }
1710 }
1711
5c205353 1712 if (ref->reuse_distance > dist)
1713 ref->reuse_distance = dist;
5b5037b3 1714 if (refb->reuse_distance > dist)
1715 refb->reuse_distance = dist;
5c205353 1716 }
1717
1718 free_dependence_relations (dependences);
1719 free_data_refs (datarefs);
1720 free (loop_data_size);
1721
1722 if (dump_file && (dump_flags & TDF_DETAILS))
1723 {
1724 fprintf (dump_file, "Reuse distances:\n");
1725 for (gr = refs; gr; gr = gr->next)
1726 for (ref = gr->refs; ref; ref = ref->next)
1727 fprintf (dump_file, " ref %p distance %u\n",
1728 (void *) ref, ref->reuse_distance);
1729 }
b920ee38 1730
1731 return true;
5c205353 1732}
1733
76595608 1734/* Determine whether or not the trip count to ahead ratio is too small based
1735 on prefitablility consideration.
0ab353e1 1736 AHEAD: the iteration ahead distance,
76595608 1737 EST_NITER: the estimated trip count. */
1738
1739static bool
1740trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1741{
1742 /* Assume trip count to ahead ratio is big enough if the trip count could not
1743 be estimated at compile time. */
1744 if (est_niter < 0)
1745 return false;
1746
1747 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1748 {
1749 if (dump_file && (dump_flags & TDF_DETAILS))
1750 fprintf (dump_file,
1751 "Not prefetching -- loop estimated to roll only %d times\n",
1752 (int) est_niter);
1753 return true;
1754 }
1755
1756 return false;
1757}
1758
1759/* Determine whether or not the number of memory references in the loop is
1760 reasonable based on the profitablity and compilation time considerations.
0ab353e1 1761 NINSNS: estimated number of instructions in the loop,
0ab353e1 1762 MEM_REF_COUNT: total number of memory references in the loop. */
1763
48e1416a 1764static bool
76595608 1765mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
0ab353e1 1766{
76595608 1767 int insn_to_mem_ratio;
0ab353e1 1768
1769 if (mem_ref_count == 0)
1770 return false;
1771
76595608 1772 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1773 (compute_all_dependences) have high costs based on quadratic complexity.
1774 To avoid huge compilation time, we give up prefetching if mem_ref_count
1775 is too large. */
1776 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1777 return false;
1778
48e1416a 1779 /* Prefetching improves performance by overlapping cache missing
1780 memory accesses with CPU operations. If the loop does not have
1781 enough CPU operations to overlap with memory operations, prefetching
1782 won't give a significant benefit. One approximate way of checking
1783 this is to require the ratio of instructions to memory references to
0ab353e1 1784 be above a certain limit. This approximation works well in practice.
1785 TODO: Implement a more precise computation by estimating the time
1786 for each CPU or memory op in the loop. Time estimates for memory ops
1787 should account for cache misses. */
48e1416a 1788 insn_to_mem_ratio = ninsns / mem_ref_count;
0ab353e1 1789
1790 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
3665c1ba 1791 {
1792 if (dump_file && (dump_flags & TDF_DETAILS))
1793 fprintf (dump_file,
1794 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1795 insn_to_mem_ratio);
1796 return false;
1797 }
0ab353e1 1798
76595608 1799 return true;
1800}
1801
1802/* Determine whether or not the instruction to prefetch ratio in the loop is
1803 too small based on the profitablity consideration.
1804 NINSNS: estimated number of instructions in the loop,
1805 PREFETCH_COUNT: an estimate of the number of prefetches,
1806 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1807
1808static bool
1809insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1810 unsigned unroll_factor)
1811{
1812 int insn_to_prefetch_ratio;
1813
016efb93 1814 /* Prefetching most likely causes performance degradation when the instruction
1815 to prefetch ratio is too small. Too many prefetch instructions in a loop
1816 may reduce the I-cache performance.
3fa57e84 1817 (unroll_factor * ninsns) is used to estimate the number of instructions in
1818 the unrolled loop. This implementation is a bit simplistic -- the number
1819 of issued prefetch instructions is also affected by unrolling. So,
1820 prefetch_mod and the unroll factor should be taken into account when
1821 determining prefetch_count. Also, the number of insns of the unrolled
1822 loop will usually be significantly smaller than the number of insns of the
1823 original loop * unroll_factor (at least the induction variable increases
1824 and the exit branches will get eliminated), so it might be better to use
1825 tree_estimate_loop_size + estimated_unrolled_size. */
016efb93 1826 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1827 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
0ab353e1 1828 {
016efb93 1829 if (dump_file && (dump_flags & TDF_DETAILS))
1830 fprintf (dump_file,
1831 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1832 insn_to_prefetch_ratio);
76595608 1833 return true;
0ab353e1 1834 }
48e1416a 1835
76595608 1836 return false;
0ab353e1 1837}
1838
1839
8dfbf380 1840/* Issue prefetch instructions for array references in LOOP. Returns
7194de72 1841 true if the LOOP was unrolled. */
8dfbf380 1842
1843static bool
7194de72 1844loop_prefetch_arrays (struct loop *loop)
8dfbf380 1845{
1846 struct mem_ref_group *refs;
78f46d45 1847 unsigned ahead, ninsns, time, unroll_factor;
1848 HOST_WIDE_INT est_niter;
8dfbf380 1849 struct tree_niter_desc desc;
5b5037b3 1850 bool unrolled = false, no_other_refs;
0ab353e1 1851 unsigned prefetch_count;
1852 unsigned mem_ref_count;
8dfbf380 1853
0bfd8d5c 1854 if (optimize_loop_nest_for_size_p (loop))
a30d0a5b 1855 {
1856 if (dump_file && (dump_flags & TDF_DETAILS))
1857 fprintf (dump_file, " ignored (cold area)\n");
1858 return false;
1859 }
1860
76595608 1861 /* FIXME: the time should be weighted by the probabilities of the blocks in
1862 the loop body. */
1863 time = tree_num_loop_insns (loop, &eni_time_weights);
1864 if (time == 0)
1865 return false;
1866
1867 ahead = (PREFETCH_LATENCY + time - 1) / time;
fee017b3 1868 est_niter = estimated_stmt_executions_int (loop);
b0b097b4 1869 if (est_niter == -1)
1870 est_niter = max_stmt_executions_int (loop);
76595608 1871
1872 /* Prefetching is not likely to be profitable if the trip count to ahead
1873 ratio is too small. */
1874 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1875 return false;
1876
1877 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1878
8dfbf380 1879 /* Step 1: gather the memory references. */
0ab353e1 1880 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
8dfbf380 1881
76595608 1882 /* Give up prefetching if the number of memory references in the
1883 loop is not reasonable based on profitablity and compilation time
1884 considerations. */
1885 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1886 goto fail;
1887
8dfbf380 1888 /* Step 2: estimate the reuse effects. */
1889 prune_by_reuse (refs);
1890
5da8318c 1891 if (nothing_to_prefetch_p (refs))
8dfbf380 1892 goto fail;
1893
b920ee38 1894 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1895 goto fail;
5c205353 1896
76595608 1897 /* Step 3: determine unroll factor. */
78f46d45 1898 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1899 est_niter);
5da8318c 1900
1901 /* Estimate prefetch count for the unrolled loop. */
1902 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1903 if (prefetch_count == 0)
1904 goto fail;
1905
78f46d45 1906 if (dump_file && (dump_flags & TDF_DETAILS))
48e1416a 1907 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
f937ec59 1908 HOST_WIDE_INT_PRINT_DEC "\n"
48e1416a 1909 "insn count %d, mem ref count %d, prefetch count %d\n",
1910 ahead, unroll_factor, est_niter,
1911 ninsns, mem_ref_count, prefetch_count);
0ab353e1 1912
76595608 1913 /* Prefetching is not likely to be profitable if the instruction to prefetch
1914 ratio is too small. */
1915 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1916 unroll_factor))
0ab353e1 1917 goto fail;
1918
1919 mark_nontemporal_stores (loop, refs);
78f46d45 1920
8dfbf380 1921 /* Step 4: what to prefetch? */
1922 if (!schedule_prefetches (refs, unroll_factor, ahead))
1923 goto fail;
1924
1925 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1926 iterations so that we do not issue superfluous prefetches. */
1927 if (unroll_factor != 1)
1928 {
7194de72 1929 tree_unroll_loop (loop, unroll_factor,
8dfbf380 1930 single_dom_exit (loop), &desc);
1931 unrolled = true;
1932 }
1933
1934 /* Step 6: issue the prefetches. */
1935 issue_prefetches (refs, unroll_factor, ahead);
1936
1937fail:
1938 release_mem_refs (refs);
1939 return unrolled;
1940}
1941
7194de72 1942/* Issue prefetch instructions for array references in loops. */
8dfbf380 1943
4c641bf8 1944unsigned int
7194de72 1945tree_ssa_prefetch_arrays (void)
8dfbf380 1946{
8dfbf380 1947 struct loop *loop;
1948 bool unrolled = false;
4c641bf8 1949 int todo_flags = 0;
8dfbf380 1950
1951 if (!HAVE_prefetch
1952 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1953 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1954 of processor costs and i486 does not have prefetch, but
1955 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1956 || PREFETCH_BLOCK == 0)
4c641bf8 1957 return 0;
8dfbf380 1958
07804af5 1959 if (dump_file && (dump_flags & TDF_DETAILS))
1960 {
1961 fprintf (dump_file, "Prefetching parameters:\n");
1962 fprintf (dump_file, " simultaneous prefetches: %d\n",
1963 SIMULTANEOUS_PREFETCHES);
1964 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
07804af5 1965 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
0c916a7b 1966 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1967 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
5c205353 1968 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
48e1416a 1969 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1970 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
0ab353e1 1971 MIN_INSN_TO_PREFETCH_RATIO);
48e1416a 1972 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
0ab353e1 1973 PREFETCH_MIN_INSN_TO_MEM_RATIO);
07804af5 1974 fprintf (dump_file, "\n");
1975 }
1976
8dfbf380 1977 initialize_original_copy_tables ();
1978
b9a16870 1979 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
8dfbf380 1980 {
dbdf4b31 1981 tree type = build_function_type_list (void_type_node,
1982 const_ptr_type_node, NULL_TREE);
54be5d7e 1983 tree decl = add_builtin_function ("__builtin_prefetch", type,
1984 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1985 NULL, NULL_TREE);
8dfbf380 1986 DECL_IS_NOVOPS (decl) = true;
b9a16870 1987 set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
8dfbf380 1988 }
1989
1990 /* We assume that size of cache line is a power of two, so verify this
1991 here. */
1992 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1993
f21d4d00 1994 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
8dfbf380 1995 {
8dfbf380 1996 if (dump_file && (dump_flags & TDF_DETAILS))
1997 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1998
7194de72 1999 unrolled |= loop_prefetch_arrays (loop);
8dfbf380 2000
2001 if (dump_file && (dump_flags & TDF_DETAILS))
2002 fprintf (dump_file, "\n\n");
2003 }
2004
2005 if (unrolled)
2006 {
2007 scev_reset ();
4c641bf8 2008 todo_flags |= TODO_cleanup_cfg;
8dfbf380 2009 }
2010
2011 free_original_copy_tables ();
4c641bf8 2012 return todo_flags;
8dfbf380 2013}
f86b328b 2014
2015/* Prefetching. */
2016
f86b328b 2017namespace {
2018
2019const pass_data pass_data_loop_prefetch =
2020{
2021 GIMPLE_PASS, /* type */
2022 "aprefetch", /* name */
2023 OPTGROUP_LOOP, /* optinfo_flags */
f86b328b 2024 TV_TREE_PREFETCH, /* tv_id */
2025 ( PROP_cfg | PROP_ssa ), /* properties_required */
2026 0, /* properties_provided */
2027 0, /* properties_destroyed */
2028 0, /* todo_flags_start */
2029 0, /* todo_flags_finish */
2030};
2031
2032class pass_loop_prefetch : public gimple_opt_pass
2033{
2034public:
2035 pass_loop_prefetch (gcc::context *ctxt)
2036 : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2037 {}
2038
2039 /* opt_pass methods: */
31315c24 2040 virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; }
65b0537f 2041 virtual unsigned int execute (function *);
f86b328b 2042
2043}; // class pass_loop_prefetch
2044
65b0537f 2045unsigned int
2046pass_loop_prefetch::execute (function *fun)
2047{
2048 if (number_of_loops (fun) <= 1)
2049 return 0;
2050
2051 return tree_ssa_prefetch_arrays ();
2052}
2053
f86b328b 2054} // anon namespace
2055
2056gimple_opt_pass *
2057make_pass_loop_prefetch (gcc::context *ctxt)
2058{
2059 return new pass_loop_prefetch (ctxt);
2060}
2061
2062