]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-loop-prefetch.c
dojump.h: New header file.
[thirdparty/gcc.git] / gcc / tree-ssa-loop-prefetch.c
CommitLineData
b076a3fd 1/* Array prefetching.
5624e564 2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
b8698a0f 3
b076a3fd 4This file is part of GCC.
b8698a0f 5
b076a3fd
ZD
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
9dcd6f09 8Free Software Foundation; either version 3, or (at your option) any
b076a3fd 9later version.
b8698a0f 10
b076a3fd
ZD
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
b8698a0f 15
b076a3fd 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
b076a3fd
ZD
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
40e23961
MC
24#include "hash-set.h"
25#include "machmode.h"
26#include "vec.h"
27#include "double-int.h"
28#include "input.h"
29#include "alias.h"
30#include "symtab.h"
31#include "wide-int.h"
32#include "inchash.h"
b076a3fd 33#include "tree.h"
40e23961 34#include "fold-const.h"
d8a2d370 35#include "stor-layout.h"
b076a3fd 36#include "tm_p.h"
60393bbc 37#include "predict.h"
60393bbc 38#include "hard-reg-set.h"
60393bbc
AM
39#include "function.h"
40#include "dominance.h"
41#include "cfg.h"
b076a3fd 42#include "basic-block.h"
cf835838 43#include "tree-pretty-print.h"
2fb9a547
AM
44#include "tree-ssa-alias.h"
45#include "internal-fn.h"
46#include "gimple-expr.h"
47#include "is-a.h"
18f429e2 48#include "gimple.h"
45b0be94 49#include "gimplify.h"
5be5c238 50#include "gimple-iterator.h"
18f429e2 51#include "gimplify-me.h"
442b4905 52#include "gimple-ssa.h"
e28030cf
AM
53#include "tree-ssa-loop-ivopts.h"
54#include "tree-ssa-loop-manip.h"
55#include "tree-ssa-loop-niter.h"
442b4905
AM
56#include "tree-ssa-loop.h"
57#include "tree-into-ssa.h"
b076a3fd 58#include "cfgloop.h"
b076a3fd 59#include "tree-pass.h"
b076a3fd 60#include "insn-config.h"
b076a3fd
ZD
61#include "tree-chrec.h"
62#include "tree-scalar-evolution.h"
718f9c0f 63#include "diagnostic-core.h"
b076a3fd
ZD
64#include "params.h"
65#include "langhooks.h"
7f9bc51b 66#include "tree-inline.h"
5417e022 67#include "tree-data-ref.h"
2eb79bbb
SB
68
69
70/* FIXME: Needed for optabs, but this should all be moved to a TBD interface
71 between the GIMPLE and RTL worlds. */
36566b39
PK
72#include "hashtab.h"
73#include "rtl.h"
74#include "flags.h"
75#include "statistics.h"
76#include "real.h"
77#include "fixed-value.h"
78#include "expmed.h"
79#include "dojump.h"
80#include "explow.h"
81#include "calls.h"
82#include "emit-rtl.h"
83#include "varasm.h"
84#include "stmt.h"
2eb79bbb 85#include "expr.h"
b0710fe1 86#include "insn-codes.h"
79f5e442 87#include "optabs.h"
1c1ad7bb 88#include "recog.h"
b076a3fd
ZD
89
90/* This pass inserts prefetch instructions to optimize cache usage during
91 accesses to arrays in loops. It processes loops sequentially and:
92
93 1) Gathers all memory references in the single loop.
94 2) For each of the references it decides when it is profitable to prefetch
95 it. To do it, we evaluate the reuse among the accesses, and determines
96 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
97 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
98 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
99 iterations of the loop that are zero modulo PREFETCH_MOD). For example
100 (assuming cache line size is 64 bytes, char has size 1 byte and there
101 is no hardware sequential prefetch):
102
103 char *a;
104 for (i = 0; i < max; i++)
105 {
106 a[255] = ...; (0)
107 a[i] = ...; (1)
108 a[i + 64] = ...; (2)
109 a[16*i] = ...; (3)
110 a[187*i] = ...; (4)
111 a[187*i + 50] = ...; (5)
112 }
113
114 (0) obviously has PREFETCH_BEFORE 1
115 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
116 location 64 iterations before it, and PREFETCH_MOD 64 (since
117 it hits the same cache line otherwise).
118 (2) has PREFETCH_MOD 64
119 (3) has PREFETCH_MOD 4
120 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
bae077dc 121 the cache line accessed by (5) is the same with probability only
b076a3fd
ZD
122 7/32.
123 (5) has PREFETCH_MOD 1 as well.
124
5417e022
ZD
125 Additionally, we use data dependence analysis to determine for each
126 reference the distance till the first reuse; this information is used
127 to determine the temporality of the issued prefetch instruction.
128
b076a3fd
ZD
129 3) We determine how much ahead we need to prefetch. The number of
130 iterations needed is time to fetch / time spent in one iteration of
131 the loop. The problem is that we do not know either of these values,
132 so we just make a heuristic guess based on a magic (possibly)
133 target-specific constant and size of the loop.
134
135 4) Determine which of the references we prefetch. We take into account
136 that there is a maximum number of simultaneous prefetches (provided
137 by machine description). We prefetch as many prefetches as possible
138 while still within this bound (starting with those with lowest
139 prefetch_mod, since they are responsible for most of the cache
140 misses).
b8698a0f 141
b076a3fd
ZD
142 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
143 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
144 prefetching nonaccessed memory.
145 TODO -- actually implement peeling.
b8698a0f 146
b076a3fd
ZD
147 6) We actually emit the prefetch instructions. ??? Perhaps emit the
148 prefetch instructions with guards in cases where 5) was not sufficient
149 to satisfy the constraints?
150
0bbe50f6
CF
151 A cost model is implemented to determine whether or not prefetching is
152 profitable for a given loop. The cost model has three heuristics:
153
154 1. Function trip_count_to_ahead_ratio_too_small_p implements a
155 heuristic that determines whether or not the loop has too few
156 iterations (compared to ahead). Prefetching is not likely to be
157 beneficial if the trip count to ahead ratio is below a certain
158 minimum.
159
160 2. Function mem_ref_count_reasonable_p implements a heuristic that
161 determines whether the given loop has enough CPU ops that can be
162 overlapped with cache missing memory ops. If not, the loop
163 won't benefit from prefetching. In the implementation,
164 prefetching is not considered beneficial if the ratio between
165 the instruction count and the mem ref count is below a certain
166 minimum.
167
168 3. Function insn_to_prefetch_ratio_too_small_p implements a
169 heuristic that disables prefetching in a loop if the prefetching
170 cost is above a certain limit. The relative prefetching cost is
171 estimated by taking the ratio between the prefetch count and the
172 total intruction count (this models the I-cache cost).
173
db34470d 174 The limits used in these heuristics are defined as parameters with
b8698a0f 175 reasonable default values. Machine-specific default values will be
db34470d 176 added later.
b8698a0f 177
b076a3fd
ZD
178 Some other TODO:
179 -- write and use more general reuse analysis (that could be also used
180 in other cache aimed loop optimizations)
181 -- make it behave sanely together with the prefetches given by user
182 (now we just ignore them; at the very least we should avoid
183 optimizing loops in that user put his own prefetches)
184 -- we assume cache line size alignment of arrays; this could be
185 improved. */
186
187/* Magic constants follow. These should be replaced by machine specific
188 numbers. */
189
b076a3fd
ZD
190/* True if write can be prefetched by a read prefetch. */
191
192#ifndef WRITE_CAN_USE_READ_PREFETCH
193#define WRITE_CAN_USE_READ_PREFETCH 1
194#endif
195
196/* True if read can be prefetched by a write prefetch. */
197
198#ifndef READ_CAN_USE_WRITE_PREFETCH
199#define READ_CAN_USE_WRITE_PREFETCH 0
200#endif
201
47eb5b32
ZD
202/* The size of the block loaded by a single prefetch. Usually, this is
203 the same as cache line size (at the moment, we only consider one level
204 of cache hierarchy). */
b076a3fd
ZD
205
206#ifndef PREFETCH_BLOCK
47eb5b32 207#define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
b076a3fd
ZD
208#endif
209
210/* Do we have a forward hardware sequential prefetching? */
211
212#ifndef HAVE_FORWARD_PREFETCH
213#define HAVE_FORWARD_PREFETCH 0
214#endif
215
216/* Do we have a backward hardware sequential prefetching? */
217
218#ifndef HAVE_BACKWARD_PREFETCH
219#define HAVE_BACKWARD_PREFETCH 0
220#endif
221
222/* In some cases we are only able to determine that there is a certain
223 probability that the two accesses hit the same cache line. In this
224 case, we issue the prefetches for both of them if this probability
fa10beec 225 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
b076a3fd
ZD
226
227#ifndef ACCEPTABLE_MISS_RATE
228#define ACCEPTABLE_MISS_RATE 50
229#endif
230
231#ifndef HAVE_prefetch
232#define HAVE_prefetch 0
233#endif
234
46cb0441
ZD
235#define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
236#define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
5417e022
ZD
237
238/* We consider a memory access nontemporal if it is not reused sooner than
239 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
240 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
241 so that we use nontemporal prefetches e.g. if single memory location
242 is accessed several times in a single iteration of the loop. */
243#define NONTEMPORAL_FRACTION 16
244
79f5e442
ZD
245/* In case we have to emit a memory fence instruction after the loop that
246 uses nontemporal stores, this defines the builtin to use. */
247
248#ifndef FENCE_FOLLOWING_MOVNT
249#define FENCE_FOLLOWING_MOVNT NULL_TREE
250#endif
251
9bf4598b
CF
252/* It is not profitable to prefetch when the trip count is not at
253 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
254 For example, in a loop with a prefetch ahead distance of 10,
255 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
256 profitable to prefetch when the trip count is greater or equal to
257 40. In that case, 30 out of the 40 iterations will benefit from
258 prefetching. */
259
260#ifndef TRIP_COUNT_TO_AHEAD_RATIO
261#define TRIP_COUNT_TO_AHEAD_RATIO 4
262#endif
263
b076a3fd
ZD
264/* The group of references between that reuse may occur. */
265
266struct mem_ref_group
267{
268 tree base; /* Base of the reference. */
81f32326 269 tree step; /* Step of the reference. */
b076a3fd
ZD
270 struct mem_ref *refs; /* References in the group. */
271 struct mem_ref_group *next; /* Next group of references. */
272};
273
274/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
275
276#define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
277
8532678c
CF
278/* Do not generate a prefetch if the unroll factor is significantly less
279 than what is required by the prefetch. This is to avoid redundant
f7963a7c
CF
280 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
281 2, prefetching requires unrolling the loop 16 times, but
282 the loop is actually unrolled twice. In this case (ratio = 8),
8532678c
CF
283 prefetching is not likely to be beneficial. */
284
285#ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
f7963a7c 286#define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
8532678c
CF
287#endif
288
0bbe50f6
CF
289/* Some of the prefetch computations have quadratic complexity. We want to
290 avoid huge compile times and, therefore, want to limit the amount of
291 memory references per loop where we consider prefetching. */
292
293#ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
294#define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
295#endif
296
b076a3fd
ZD
297/* The memory reference. */
298
299struct mem_ref
300{
726a989a 301 gimple stmt; /* Statement in that the reference appears. */
b076a3fd
ZD
302 tree mem; /* The reference. */
303 HOST_WIDE_INT delta; /* Constant offset of the reference. */
b076a3fd
ZD
304 struct mem_ref_group *group; /* The group of references it belongs to. */
305 unsigned HOST_WIDE_INT prefetch_mod;
306 /* Prefetch only each PREFETCH_MOD-th
307 iteration. */
308 unsigned HOST_WIDE_INT prefetch_before;
309 /* Prefetch only first PREFETCH_BEFORE
310 iterations. */
5417e022
ZD
311 unsigned reuse_distance; /* The amount of data accessed before the first
312 reuse of this value. */
b076a3fd 313 struct mem_ref *next; /* The next reference in the group. */
79f5e442
ZD
314 unsigned write_p : 1; /* Is it a write? */
315 unsigned independent_p : 1; /* True if the reference is independent on
316 all other references inside the loop. */
317 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
318 unsigned storent_p : 1; /* True if we changed the store to a
319 nontemporal one. */
b076a3fd
ZD
320};
321
a5497b12 322/* Dumps information about memory reference */
b076a3fd 323static void
a5497b12
VK
324dump_mem_details (FILE *file, tree base, tree step,
325 HOST_WIDE_INT delta, bool write_p)
b076a3fd 326{
a5497b12
VK
327 fprintf (file, "(base ");
328 print_generic_expr (file, base, TDF_SLIM);
b076a3fd 329 fprintf (file, ", step ");
a5497b12
VK
330 if (cst_and_fits_in_hwi (step))
331 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
81f32326 332 else
a5497b12 333 print_generic_expr (file, step, TDF_TREE);
b076a3fd 334 fprintf (file, ")\n");
e324a72f 335 fprintf (file, " delta ");
a5497b12
VK
336 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
337 fprintf (file, "\n");
338 fprintf (file, " %s\n", write_p ? "write" : "read");
b076a3fd 339 fprintf (file, "\n");
a5497b12 340}
b076a3fd 341
a5497b12 342/* Dumps information about reference REF to FILE. */
b076a3fd 343
a5497b12
VK
344static void
345dump_mem_ref (FILE *file, struct mem_ref *ref)
346{
347 fprintf (file, "Reference %p:\n", (void *) ref);
348
349 fprintf (file, " group %p ", (void *) ref->group);
350
351 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta,
352 ref->write_p);
b076a3fd
ZD
353}
354
355/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
356 exist. */
357
358static struct mem_ref_group *
81f32326 359find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
b076a3fd
ZD
360{
361 struct mem_ref_group *group;
362
363 for (; *groups; groups = &(*groups)->next)
364 {
81f32326 365 if (operand_equal_p ((*groups)->step, step, 0)
b076a3fd
ZD
366 && operand_equal_p ((*groups)->base, base, 0))
367 return *groups;
368
81f32326
CB
369 /* If step is an integer constant, keep the list of groups sorted
370 by decreasing step. */
371 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
372 && int_cst_value ((*groups)->step) < int_cst_value (step))
b076a3fd
ZD
373 break;
374 }
375
5417e022 376 group = XNEW (struct mem_ref_group);
b076a3fd
ZD
377 group->base = base;
378 group->step = step;
379 group->refs = NULL;
380 group->next = *groups;
381 *groups = group;
382
383 return group;
384}
385
386/* Records a memory reference MEM in GROUP with offset DELTA and write status
387 WRITE_P. The reference occurs in statement STMT. */
388
389static void
726a989a 390record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
b076a3fd
ZD
391 HOST_WIDE_INT delta, bool write_p)
392{
393 struct mem_ref **aref;
394
395 /* Do not record the same address twice. */
396 for (aref = &group->refs; *aref; aref = &(*aref)->next)
397 {
398 /* It does not have to be possible for write reference to reuse the read
399 prefetch, or vice versa. */
400 if (!WRITE_CAN_USE_READ_PREFETCH
401 && write_p
402 && !(*aref)->write_p)
403 continue;
404 if (!READ_CAN_USE_WRITE_PREFETCH
405 && !write_p
406 && (*aref)->write_p)
407 continue;
408
409 if ((*aref)->delta == delta)
410 return;
411 }
412
5417e022 413 (*aref) = XNEW (struct mem_ref);
b076a3fd
ZD
414 (*aref)->stmt = stmt;
415 (*aref)->mem = mem;
416 (*aref)->delta = delta;
417 (*aref)->write_p = write_p;
418 (*aref)->prefetch_before = PREFETCH_ALL;
419 (*aref)->prefetch_mod = 1;
5417e022 420 (*aref)->reuse_distance = 0;
b076a3fd
ZD
421 (*aref)->issue_prefetch_p = false;
422 (*aref)->group = group;
423 (*aref)->next = NULL;
79f5e442
ZD
424 (*aref)->independent_p = false;
425 (*aref)->storent_p = false;
b076a3fd
ZD
426
427 if (dump_file && (dump_flags & TDF_DETAILS))
428 dump_mem_ref (dump_file, *aref);
429}
430
431/* Release memory references in GROUPS. */
432
433static void
434release_mem_refs (struct mem_ref_group *groups)
435{
436 struct mem_ref_group *next_g;
437 struct mem_ref *ref, *next_r;
438
439 for (; groups; groups = next_g)
440 {
441 next_g = groups->next;
442 for (ref = groups->refs; ref; ref = next_r)
443 {
444 next_r = ref->next;
445 free (ref);
446 }
447 free (groups);
448 }
449}
450
451/* A structure used to pass arguments to idx_analyze_ref. */
452
453struct ar_data
454{
455 struct loop *loop; /* Loop of the reference. */
726a989a 456 gimple stmt; /* Statement of the reference. */
81f32326 457 tree *step; /* Step of the memory reference. */
b076a3fd
ZD
458 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
459};
460
461/* Analyzes a single INDEX of a memory reference to obtain information
462 described at analyze_ref. Callback for for_each_index. */
463
464static bool
465idx_analyze_ref (tree base, tree *index, void *data)
466{
c22940cd 467 struct ar_data *ar_data = (struct ar_data *) data;
b076a3fd 468 tree ibase, step, stepsize;
81f32326 469 HOST_WIDE_INT idelta = 0, imult = 1;
b076a3fd
ZD
470 affine_iv iv;
471
f017bf5e 472 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
81f32326 473 *index, &iv, true))
b076a3fd
ZD
474 return false;
475 ibase = iv.base;
476 step = iv.step;
477
5be014d5 478 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
b076a3fd
ZD
479 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
480 {
481 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
482 ibase = TREE_OPERAND (ibase, 0);
483 }
484 if (cst_and_fits_in_hwi (ibase))
485 {
486 idelta += int_cst_value (ibase);
ff5e9a94 487 ibase = build_int_cst (TREE_TYPE (ibase), 0);
b076a3fd
ZD
488 }
489
490 if (TREE_CODE (base) == ARRAY_REF)
491 {
492 stepsize = array_ref_element_size (base);
493 if (!cst_and_fits_in_hwi (stepsize))
494 return false;
495 imult = int_cst_value (stepsize);
8fde8b40
CB
496 step = fold_build2 (MULT_EXPR, sizetype,
497 fold_convert (sizetype, step),
498 fold_convert (sizetype, stepsize));
b076a3fd
ZD
499 idelta *= imult;
500 }
501
8fde8b40
CB
502 if (*ar_data->step == NULL_TREE)
503 *ar_data->step = step;
504 else
505 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
506 fold_convert (sizetype, *ar_data->step),
507 fold_convert (sizetype, step));
b076a3fd
ZD
508 *ar_data->delta += idelta;
509 *index = ibase;
510
511 return true;
512}
513
aac8b8ed 514/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
b076a3fd 515 STEP are integer constants and iter is number of iterations of LOOP. The
aac8b8ed
RS
516 reference occurs in statement STMT. Strips nonaddressable component
517 references from REF_P. */
b076a3fd
ZD
518
519static bool
aac8b8ed 520analyze_ref (struct loop *loop, tree *ref_p, tree *base,
81f32326 521 tree *step, HOST_WIDE_INT *delta,
726a989a 522 gimple stmt)
b076a3fd
ZD
523{
524 struct ar_data ar_data;
525 tree off;
526 HOST_WIDE_INT bit_offset;
aac8b8ed 527 tree ref = *ref_p;
b076a3fd 528
81f32326 529 *step = NULL_TREE;
b076a3fd
ZD
530 *delta = 0;
531
7c6dafac
CF
532 /* First strip off the component references. Ignore bitfields.
533 Also strip off the real and imagine parts of a complex, so that
534 they can have the same base. */
535 if (TREE_CODE (ref) == REALPART_EXPR
536 || TREE_CODE (ref) == IMAGPART_EXPR
537 || (TREE_CODE (ref) == COMPONENT_REF
538 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
539 {
540 if (TREE_CODE (ref) == IMAGPART_EXPR)
541 *delta += int_size_in_bytes (TREE_TYPE (ref));
542 ref = TREE_OPERAND (ref, 0);
543 }
b076a3fd 544
aac8b8ed
RS
545 *ref_p = ref;
546
b076a3fd
ZD
547 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
548 {
549 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
550 bit_offset = TREE_INT_CST_LOW (off);
551 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
b8698a0f 552
b076a3fd
ZD
553 *delta += bit_offset / BITS_PER_UNIT;
554 }
555
556 *base = unshare_expr (ref);
557 ar_data.loop = loop;
558 ar_data.stmt = stmt;
559 ar_data.step = step;
560 ar_data.delta = delta;
561 return for_each_index (base, idx_analyze_ref, &ar_data);
562}
563
564/* Record a memory reference REF to the list REFS. The reference occurs in
79f5e442
ZD
565 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
566 reference was recorded, false otherwise. */
b076a3fd 567
79f5e442 568static bool
b076a3fd 569gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
726a989a 570 tree ref, bool write_p, gimple stmt)
b076a3fd 571{
81f32326
CB
572 tree base, step;
573 HOST_WIDE_INT delta;
b076a3fd
ZD
574 struct mem_ref_group *agrp;
575
a80a2701
JJ
576 if (get_base_address (ref) == NULL)
577 return false;
578
aac8b8ed 579 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
79f5e442 580 return false;
81f32326
CB
581 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
582 if (step == NULL_TREE)
583 return false;
b076a3fd 584
756f50ce 585 /* Stop if the address of BASE could not be taken. */
bc068a23
CF
586 if (may_be_nonaddressable_p (base))
587 return false;
588
a5497b12
VK
589 /* Limit non-constant step prefetching only to the innermost loops and
590 only when the step is loop invariant in the entire loop nest. */
591 if (!cst_and_fits_in_hwi (step))
592 {
593 if (loop->inner != NULL)
594 {
595 if (dump_file && (dump_flags & TDF_DETAILS))
596 {
597 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
598 print_generic_expr (dump_file, ref, TDF_TREE);
599 fprintf (dump_file,":");
c3284718 600 dump_mem_details (dump_file, base, step, delta, write_p);
a5497b12
VK
601 fprintf (dump_file,
602 "Ignoring %p, non-constant step prefetching is "
603 "limited to inner most loops \n",
604 (void *) ref);
605 }
606 return false;
607 }
608 else
609 {
610 if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
611 {
612 if (dump_file && (dump_flags & TDF_DETAILS))
613 {
614 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
615 print_generic_expr (dump_file, ref, TDF_TREE);
616 fprintf (dump_file,":");
c3284718 617 dump_mem_details (dump_file, base, step, delta, write_p);
a5497b12
VK
618 fprintf (dump_file,
619 "Not prefetching, ignoring %p due to "
620 "loop variant step\n",
621 (void *) ref);
622 }
623 return false;
624 }
625 }
626 }
50814135 627
b076a3fd
ZD
628 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
629 are integer constants. */
630 agrp = find_or_create_group (refs, base, step);
631 record_ref (agrp, stmt, ref, delta, write_p);
79f5e442
ZD
632
633 return true;
b076a3fd
ZD
634}
635
79f5e442
ZD
636/* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
637 true if there are no other memory references inside the loop. */
b076a3fd
ZD
638
639static struct mem_ref_group *
db34470d 640gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
b076a3fd
ZD
641{
642 basic_block *body = get_loop_body_in_dom_order (loop);
643 basic_block bb;
644 unsigned i;
726a989a
RB
645 gimple_stmt_iterator bsi;
646 gimple stmt;
647 tree lhs, rhs;
b076a3fd
ZD
648 struct mem_ref_group *refs = NULL;
649
79f5e442 650 *no_other_refs = true;
db34470d 651 *ref_count = 0;
79f5e442 652
b076a3fd
ZD
653 /* Scan the loop body in order, so that the former references precede the
654 later ones. */
655 for (i = 0; i < loop->num_nodes; i++)
656 {
657 bb = body[i];
658 if (bb->loop_father != loop)
659 continue;
660
726a989a 661 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
b076a3fd 662 {
726a989a 663 stmt = gsi_stmt (bsi);
79f5e442 664
726a989a 665 if (gimple_code (stmt) != GIMPLE_ASSIGN)
79f5e442 666 {
5006671f 667 if (gimple_vuse (stmt)
726a989a
RB
668 || (is_gimple_call (stmt)
669 && !(gimple_call_flags (stmt) & ECF_CONST)))
79f5e442
ZD
670 *no_other_refs = false;
671 continue;
672 }
b076a3fd 673
726a989a
RB
674 lhs = gimple_assign_lhs (stmt);
675 rhs = gimple_assign_rhs1 (stmt);
b076a3fd
ZD
676
677 if (REFERENCE_CLASS_P (rhs))
db34470d 678 {
79f5e442
ZD
679 *no_other_refs &= gather_memory_references_ref (loop, &refs,
680 rhs, false, stmt);
db34470d
GS
681 *ref_count += 1;
682 }
b076a3fd 683 if (REFERENCE_CLASS_P (lhs))
db34470d 684 {
79f5e442
ZD
685 *no_other_refs &= gather_memory_references_ref (loop, &refs,
686 lhs, true, stmt);
db34470d
GS
687 *ref_count += 1;
688 }
b076a3fd
ZD
689 }
690 }
691 free (body);
692
693 return refs;
694}
695
696/* Prune the prefetch candidate REF using the self-reuse. */
697
698static void
699prune_ref_by_self_reuse (struct mem_ref *ref)
700{
81f32326
CB
701 HOST_WIDE_INT step;
702 bool backward;
703
704 /* If the step size is non constant, we cannot calculate prefetch_mod. */
705 if (!cst_and_fits_in_hwi (ref->group->step))
706 return;
707
708 step = int_cst_value (ref->group->step);
709
710 backward = step < 0;
b076a3fd
ZD
711
712 if (step == 0)
713 {
714 /* Prefetch references to invariant address just once. */
715 ref->prefetch_before = 1;
716 return;
717 }
718
719 if (backward)
720 step = -step;
721
722 if (step > PREFETCH_BLOCK)
723 return;
724
725 if ((backward && HAVE_BACKWARD_PREFETCH)
726 || (!backward && HAVE_FORWARD_PREFETCH))
727 {
728 ref->prefetch_before = 1;
729 return;
730 }
731
732 ref->prefetch_mod = PREFETCH_BLOCK / step;
733}
734
735/* Divides X by BY, rounding down. */
736
737static HOST_WIDE_INT
738ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
739{
740 gcc_assert (by > 0);
741
742 if (x >= 0)
743 return x / by;
744 else
745 return (x + by - 1) / by;
746}
747
b8698a0f
L
748/* Given a CACHE_LINE_SIZE and two inductive memory references
749 with a common STEP greater than CACHE_LINE_SIZE and an address
750 difference DELTA, compute the probability that they will fall
14e444c3
CF
751 in different cache lines. Return true if the computed miss rate
752 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
753 number of distinct iterations after which the pattern repeats itself.
2c6dd136
GS
754 ALIGN_UNIT is the unit of alignment in bytes. */
755
14e444c3
CF
756static bool
757is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
2c6dd136
GS
758 HOST_WIDE_INT step, HOST_WIDE_INT delta,
759 unsigned HOST_WIDE_INT distinct_iters,
760 int align_unit)
761{
762 unsigned align, iter;
14e444c3 763 int total_positions, miss_positions, max_allowed_miss_positions;
2c6dd136
GS
764 int address1, address2, cache_line1, cache_line2;
765
a245c04b
CF
766 /* It always misses if delta is greater than or equal to the cache
767 line size. */
14e444c3
CF
768 if (delta >= (HOST_WIDE_INT) cache_line_size)
769 return false;
a245c04b 770
2c6dd136 771 miss_positions = 0;
14e444c3
CF
772 total_positions = (cache_line_size / align_unit) * distinct_iters;
773 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
b8698a0f 774
2c6dd136
GS
775 /* Iterate through all possible alignments of the first
776 memory reference within its cache line. */
777 for (align = 0; align < cache_line_size; align += align_unit)
778
779 /* Iterate through all distinct iterations. */
780 for (iter = 0; iter < distinct_iters; iter++)
781 {
782 address1 = align + step * iter;
783 address2 = address1 + delta;
784 cache_line1 = address1 / cache_line_size;
785 cache_line2 = address2 / cache_line_size;
2c6dd136 786 if (cache_line1 != cache_line2)
14e444c3
CF
787 {
788 miss_positions += 1;
789 if (miss_positions > max_allowed_miss_positions)
790 return false;
791 }
2c6dd136 792 }
14e444c3 793 return true;
2c6dd136
GS
794}
795
b076a3fd
ZD
796/* Prune the prefetch candidate REF using the reuse with BY.
797 If BY_IS_BEFORE is true, BY is before REF in the loop. */
798
799static void
800prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
801 bool by_is_before)
802{
81f32326
CB
803 HOST_WIDE_INT step;
804 bool backward;
b076a3fd
ZD
805 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
806 HOST_WIDE_INT delta = delta_b - delta_r;
807 HOST_WIDE_INT hit_from;
808 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
2c6dd136
GS
809 HOST_WIDE_INT reduced_step;
810 unsigned HOST_WIDE_INT reduced_prefetch_block;
811 tree ref_type;
812 int align_unit;
b076a3fd 813
81f32326
CB
814 /* If the step is non constant we cannot calculate prefetch_before. */
815 if (!cst_and_fits_in_hwi (ref->group->step)) {
816 return;
817 }
818
819 step = int_cst_value (ref->group->step);
820
821 backward = step < 0;
822
823
b076a3fd
ZD
824 if (delta == 0)
825 {
826 /* If the references has the same address, only prefetch the
827 former. */
828 if (by_is_before)
829 ref->prefetch_before = 0;
b8698a0f 830
b076a3fd
ZD
831 return;
832 }
833
834 if (!step)
835 {
836 /* If the reference addresses are invariant and fall into the
837 same cache line, prefetch just the first one. */
838 if (!by_is_before)
839 return;
840
841 if (ddown (ref->delta, PREFETCH_BLOCK)
842 != ddown (by->delta, PREFETCH_BLOCK))
843 return;
844
845 ref->prefetch_before = 0;
846 return;
847 }
848
849 /* Only prune the reference that is behind in the array. */
850 if (backward)
851 {
852 if (delta > 0)
853 return;
854
855 /* Transform the data so that we may assume that the accesses
856 are forward. */
857 delta = - delta;
858 step = -step;
859 delta_r = PREFETCH_BLOCK - 1 - delta_r;
860 delta_b = PREFETCH_BLOCK - 1 - delta_b;
861 }
862 else
863 {
864 if (delta < 0)
865 return;
866 }
867
868 /* Check whether the two references are likely to hit the same cache
869 line, and how distant the iterations in that it occurs are from
870 each other. */
871
872 if (step <= PREFETCH_BLOCK)
873 {
874 /* The accesses are sure to meet. Let us check when. */
875 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
876 prefetch_before = (hit_from - delta_r + step - 1) / step;
877
57762e97 878 /* Do not reduce prefetch_before if we meet beyond cache size. */
4c9cf7af 879 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
57762e97 880 prefetch_before = PREFETCH_ALL;
b076a3fd
ZD
881 if (prefetch_before < ref->prefetch_before)
882 ref->prefetch_before = prefetch_before;
883
884 return;
885 }
886
b8698a0f 887 /* A more complicated case with step > prefetch_block. First reduce
2c6dd136 888 the ratio between the step and the cache line size to its simplest
b8698a0f
L
889 terms. The resulting denominator will then represent the number of
890 distinct iterations after which each address will go back to its
891 initial location within the cache line. This computation assumes
2c6dd136 892 that PREFETCH_BLOCK is a power of two. */
b076a3fd 893 prefetch_block = PREFETCH_BLOCK;
2c6dd136
GS
894 reduced_prefetch_block = prefetch_block;
895 reduced_step = step;
896 while ((reduced_step & 1) == 0
897 && reduced_prefetch_block > 1)
b076a3fd 898 {
2c6dd136
GS
899 reduced_step >>= 1;
900 reduced_prefetch_block >>= 1;
b076a3fd
ZD
901 }
902
b076a3fd
ZD
903 prefetch_before = delta / step;
904 delta %= step;
2c6dd136
GS
905 ref_type = TREE_TYPE (ref->mem);
906 align_unit = TYPE_ALIGN (ref_type) / 8;
14e444c3
CF
907 if (is_miss_rate_acceptable (prefetch_block, step, delta,
908 reduced_prefetch_block, align_unit))
b076a3fd 909 {
57762e97
CB
910 /* Do not reduce prefetch_before if we meet beyond cache size. */
911 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
912 prefetch_before = PREFETCH_ALL;
b076a3fd
ZD
913 if (prefetch_before < ref->prefetch_before)
914 ref->prefetch_before = prefetch_before;
915
916 return;
917 }
918
919 /* Try also the following iteration. */
920 prefetch_before++;
921 delta = step - delta;
14e444c3
CF
922 if (is_miss_rate_acceptable (prefetch_block, step, delta,
923 reduced_prefetch_block, align_unit))
b076a3fd
ZD
924 {
925 if (prefetch_before < ref->prefetch_before)
926 ref->prefetch_before = prefetch_before;
927
928 return;
929 }
930
931 /* The ref probably does not reuse by. */
932 return;
933}
934
935/* Prune the prefetch candidate REF using the reuses with other references
936 in REFS. */
937
938static void
939prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
940{
941 struct mem_ref *prune_by;
942 bool before = true;
943
944 prune_ref_by_self_reuse (ref);
945
946 for (prune_by = refs; prune_by; prune_by = prune_by->next)
947 {
948 if (prune_by == ref)
949 {
950 before = false;
951 continue;
952 }
953
954 if (!WRITE_CAN_USE_READ_PREFETCH
955 && ref->write_p
956 && !prune_by->write_p)
957 continue;
958 if (!READ_CAN_USE_WRITE_PREFETCH
959 && !ref->write_p
960 && prune_by->write_p)
961 continue;
962
963 prune_ref_by_group_reuse (ref, prune_by, before);
964 }
965}
966
967/* Prune the prefetch candidates in GROUP using the reuse analysis. */
968
969static void
970prune_group_by_reuse (struct mem_ref_group *group)
971{
972 struct mem_ref *ref_pruned;
973
974 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
975 {
976 prune_ref_by_reuse (ref_pruned, group->refs);
977
978 if (dump_file && (dump_flags & TDF_DETAILS))
979 {
980 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
981
982 if (ref_pruned->prefetch_before == PREFETCH_ALL
983 && ref_pruned->prefetch_mod == 1)
984 fprintf (dump_file, " no restrictions");
985 else if (ref_pruned->prefetch_before == 0)
986 fprintf (dump_file, " do not prefetch");
987 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
988 fprintf (dump_file, " prefetch once");
989 else
990 {
991 if (ref_pruned->prefetch_before != PREFETCH_ALL)
992 {
993 fprintf (dump_file, " prefetch before ");
994 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
995 ref_pruned->prefetch_before);
996 }
997 if (ref_pruned->prefetch_mod != 1)
998 {
999 fprintf (dump_file, " prefetch mod ");
1000 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
1001 ref_pruned->prefetch_mod);
1002 }
1003 }
1004 fprintf (dump_file, "\n");
1005 }
1006 }
1007}
1008
1009/* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
1010
1011static void
1012prune_by_reuse (struct mem_ref_group *groups)
1013{
1014 for (; groups; groups = groups->next)
1015 prune_group_by_reuse (groups);
1016}
1017
1018/* Returns true if we should issue prefetch for REF. */
1019
1020static bool
1021should_issue_prefetch_p (struct mem_ref *ref)
1022{
1023 /* For now do not issue prefetches for only first few of the
1024 iterations. */
1025 if (ref->prefetch_before != PREFETCH_ALL)
a8beb3a7
CB
1026 {
1027 if (dump_file && (dump_flags & TDF_DETAILS))
1028 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
1029 (void *) ref);
1030 return false;
1031 }
b076a3fd 1032
79f5e442
ZD
1033 /* Do not prefetch nontemporal stores. */
1034 if (ref->storent_p)
a8beb3a7
CB
1035 {
1036 if (dump_file && (dump_flags & TDF_DETAILS))
1037 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
1038 return false;
1039 }
79f5e442 1040
b076a3fd
ZD
1041 return true;
1042}
1043
1044/* Decide which of the prefetch candidates in GROUPS to prefetch.
1045 AHEAD is the number of iterations to prefetch ahead (which corresponds
1046 to the number of simultaneous instances of one prefetch running at a
1047 time). UNROLL_FACTOR is the factor by that the loop is going to be
1048 unrolled. Returns true if there is anything to prefetch. */
1049
1050static bool
1051schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1052 unsigned ahead)
1053{
911b3fdb
ZD
1054 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1055 unsigned slots_per_prefetch;
b076a3fd
ZD
1056 struct mem_ref *ref;
1057 bool any = false;
1058
911b3fdb
ZD
1059 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1060 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
b076a3fd 1061
911b3fdb
ZD
1062 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1063 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1064 it will need a prefetch slot. */
1065 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
b076a3fd 1066 if (dump_file && (dump_flags & TDF_DETAILS))
911b3fdb
ZD
1067 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1068 slots_per_prefetch);
b076a3fd
ZD
1069
1070 /* For now we just take memory references one by one and issue
1071 prefetches for as many as possible. The groups are sorted
1072 starting with the largest step, since the references with
c0220ea4 1073 large step are more likely to cause many cache misses. */
b076a3fd
ZD
1074
1075 for (; groups; groups = groups->next)
1076 for (ref = groups->refs; ref; ref = ref->next)
1077 {
1078 if (!should_issue_prefetch_p (ref))
1079 continue;
1080
8532678c
CF
1081 /* The loop is far from being sufficiently unrolled for this
1082 prefetch. Do not generate prefetch to avoid many redudant
1083 prefetches. */
1084 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1085 continue;
1086
911b3fdb
ZD
1087 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1088 and we unroll the loop UNROLL_FACTOR times, we need to insert
1089 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1090 iteration. */
b076a3fd
ZD
1091 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1092 / ref->prefetch_mod);
911b3fdb
ZD
1093 prefetch_slots = n_prefetches * slots_per_prefetch;
1094
1095 /* If more than half of the prefetches would be lost anyway, do not
1096 issue the prefetch. */
1097 if (2 * remaining_prefetch_slots < prefetch_slots)
1098 continue;
1099
1100 ref->issue_prefetch_p = true;
b076a3fd 1101
911b3fdb
ZD
1102 if (remaining_prefetch_slots <= prefetch_slots)
1103 return true;
1104 remaining_prefetch_slots -= prefetch_slots;
b076a3fd
ZD
1105 any = true;
1106 }
1107
1108 return any;
1109}
1110
d5058523
CF
1111/* Return TRUE if no prefetch is going to be generated in the given
1112 GROUPS. */
1113
1114static bool
1115nothing_to_prefetch_p (struct mem_ref_group *groups)
1116{
1117 struct mem_ref *ref;
1118
1119 for (; groups; groups = groups->next)
1120 for (ref = groups->refs; ref; ref = ref->next)
1121 if (should_issue_prefetch_p (ref))
1122 return false;
1123
1124 return true;
1125}
1126
1127/* Estimate the number of prefetches in the given GROUPS.
1128 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
b076a3fd 1129
db34470d 1130static int
d5058523 1131estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
b076a3fd
ZD
1132{
1133 struct mem_ref *ref;
d5058523 1134 unsigned n_prefetches;
db34470d 1135 int prefetch_count = 0;
b076a3fd
ZD
1136
1137 for (; groups; groups = groups->next)
1138 for (ref = groups->refs; ref; ref = ref->next)
1139 if (should_issue_prefetch_p (ref))
d5058523
CF
1140 {
1141 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1142 / ref->prefetch_mod);
1143 prefetch_count += n_prefetches;
1144 }
b076a3fd 1145
db34470d 1146 return prefetch_count;
b076a3fd
ZD
1147}
1148
1149/* Issue prefetches for the reference REF into loop as decided before.
1150 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
917f1b7e 1151 is the factor by which LOOP was unrolled. */
b076a3fd
ZD
1152
1153static void
1154issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1155{
1156 HOST_WIDE_INT delta;
81f32326 1157 tree addr, addr_base, write_p, local, forward;
538dd0b7 1158 gcall *prefetch;
726a989a 1159 gimple_stmt_iterator bsi;
b076a3fd 1160 unsigned n_prefetches, ap;
5417e022 1161 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
b076a3fd
ZD
1162
1163 if (dump_file && (dump_flags & TDF_DETAILS))
5417e022
ZD
1164 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1165 nontemporal ? " nontemporal" : "",
1166 (void *) ref);
b076a3fd 1167
726a989a 1168 bsi = gsi_for_stmt (ref->stmt);
b076a3fd
ZD
1169
1170 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1171 / ref->prefetch_mod);
1172 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
726a989a
RB
1173 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1174 true, NULL, true, GSI_SAME_STMT);
911b3fdb 1175 write_p = ref->write_p ? integer_one_node : integer_zero_node;
9a9d280e 1176 local = nontemporal ? integer_zero_node : integer_three_node;
b076a3fd
ZD
1177
1178 for (ap = 0; ap < n_prefetches; ap++)
1179 {
81f32326
CB
1180 if (cst_and_fits_in_hwi (ref->group->step))
1181 {
1182 /* Determine the address to prefetch. */
1183 delta = (ahead + ap * ref->prefetch_mod) *
1184 int_cst_value (ref->group->step);
5d49b6a7 1185 addr = fold_build_pointer_plus_hwi (addr_base, delta);
81f32326
CB
1186 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1187 true, GSI_SAME_STMT);
1188 }
1189 else
1190 {
1191 /* The step size is non-constant but loop-invariant. We use the
1192 heuristic to simply prefetch ahead iterations ahead. */
1193 forward = fold_build2 (MULT_EXPR, sizetype,
1194 fold_convert (sizetype, ref->group->step),
1195 fold_convert (sizetype, size_int (ahead)));
5d49b6a7 1196 addr = fold_build_pointer_plus (addr_base, forward);
81f32326
CB
1197 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1198 NULL, true, GSI_SAME_STMT);
1199 }
b076a3fd 1200 /* Create the prefetch instruction. */
e79983f4 1201 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
726a989a
RB
1202 3, addr, write_p, local);
1203 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
b076a3fd
ZD
1204 }
1205}
1206
1207/* Issue prefetches for the references in GROUPS into loop as decided before.
1208 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1209 factor by that LOOP was unrolled. */
1210
1211static void
1212issue_prefetches (struct mem_ref_group *groups,
1213 unsigned unroll_factor, unsigned ahead)
1214{
1215 struct mem_ref *ref;
1216
1217 for (; groups; groups = groups->next)
1218 for (ref = groups->refs; ref; ref = ref->next)
1219 if (ref->issue_prefetch_p)
1220 issue_prefetch_ref (ref, unroll_factor, ahead);
1221}
1222
79f5e442
ZD
1223/* Returns true if REF is a memory write for that a nontemporal store insn
1224 can be used. */
1225
1226static bool
1227nontemporal_store_p (struct mem_ref *ref)
1228{
ef4bddc2 1229 machine_mode mode;
79f5e442
ZD
1230 enum insn_code code;
1231
1232 /* REF must be a write that is not reused. We require it to be independent
1233 on all other memory references in the loop, as the nontemporal stores may
1234 be reordered with respect to other memory references. */
1235 if (!ref->write_p
1236 || !ref->independent_p
1237 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1238 return false;
1239
1240 /* Check that we have the storent instruction for the mode. */
1241 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1242 if (mode == BLKmode)
1243 return false;
1244
947131ba 1245 code = optab_handler (storent_optab, mode);
79f5e442
ZD
1246 return code != CODE_FOR_nothing;
1247}
1248
1249/* If REF is a nontemporal store, we mark the corresponding modify statement
1250 and return true. Otherwise, we return false. */
1251
1252static bool
1253mark_nontemporal_store (struct mem_ref *ref)
1254{
1255 if (!nontemporal_store_p (ref))
1256 return false;
1257
1258 if (dump_file && (dump_flags & TDF_DETAILS))
1259 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1260 (void *) ref);
1261
726a989a 1262 gimple_assign_set_nontemporal_move (ref->stmt, true);
79f5e442
ZD
1263 ref->storent_p = true;
1264
1265 return true;
1266}
1267
1268/* Issue a memory fence instruction after LOOP. */
1269
1270static void
1271emit_mfence_after_loop (struct loop *loop)
1272{
9771b263 1273 vec<edge> exits = get_loop_exit_edges (loop);
79f5e442 1274 edge exit;
538dd0b7 1275 gcall *call;
726a989a 1276 gimple_stmt_iterator bsi;
79f5e442
ZD
1277 unsigned i;
1278
9771b263 1279 FOR_EACH_VEC_ELT (exits, i, exit)
79f5e442 1280 {
726a989a 1281 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
79f5e442
ZD
1282
1283 if (!single_pred_p (exit->dest)
1284 /* If possible, we prefer not to insert the fence on other paths
1285 in cfg. */
1286 && !(exit->flags & EDGE_ABNORMAL))
1287 split_loop_exit_edge (exit);
726a989a 1288 bsi = gsi_after_labels (exit->dest);
79f5e442 1289
726a989a 1290 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
79f5e442
ZD
1291 }
1292
9771b263 1293 exits.release ();
79f5e442
ZD
1294 update_ssa (TODO_update_ssa_only_virtuals);
1295}
1296
1297/* Returns true if we can use storent in loop, false otherwise. */
1298
1299static bool
1300may_use_storent_in_loop_p (struct loop *loop)
1301{
1302 bool ret = true;
1303
1304 if (loop->inner != NULL)
1305 return false;
1306
1307 /* If we must issue a mfence insn after using storent, check that there
1308 is a suitable place for it at each of the loop exits. */
1309 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1310 {
9771b263 1311 vec<edge> exits = get_loop_exit_edges (loop);
79f5e442
ZD
1312 unsigned i;
1313 edge exit;
1314
9771b263 1315 FOR_EACH_VEC_ELT (exits, i, exit)
79f5e442 1316 if ((exit->flags & EDGE_ABNORMAL)
fefa31b5 1317 && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
79f5e442
ZD
1318 ret = false;
1319
9771b263 1320 exits.release ();
79f5e442
ZD
1321 }
1322
1323 return ret;
1324}
1325
1326/* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1327 references in the loop. */
1328
1329static void
1330mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1331{
1332 struct mem_ref *ref;
1333 bool any = false;
1334
1335 if (!may_use_storent_in_loop_p (loop))
1336 return;
1337
1338 for (; groups; groups = groups->next)
1339 for (ref = groups->refs; ref; ref = ref->next)
1340 any |= mark_nontemporal_store (ref);
1341
1342 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1343 emit_mfence_after_loop (loop);
1344}
1345
b076a3fd
ZD
1346/* Determines whether we can profitably unroll LOOP FACTOR times, and if
1347 this is the case, fill in DESC by the description of number of
1348 iterations. */
1349
1350static bool
1351should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1352 unsigned factor)
1353{
1354 if (!can_unroll_loop_p (loop, factor, desc))
1355 return false;
1356
1357 /* We only consider loops without control flow for unrolling. This is not
1358 a hard restriction -- tree_unroll_loop works with arbitrary loops
1359 as well; but the unrolling/prefetching is usually more profitable for
1360 loops consisting of a single basic block, and we want to limit the
1361 code growth. */
1362 if (loop->num_nodes > 2)
1363 return false;
1364
1365 return true;
1366}
1367
1368/* Determine the coefficient by that unroll LOOP, from the information
1369 contained in the list of memory references REFS. Description of
2711355f
ZD
1370 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1371 insns of the LOOP. EST_NITER is the estimated number of iterations of
1372 the loop, or -1 if no estimate is available. */
b076a3fd
ZD
1373
1374static unsigned
1375determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
2711355f
ZD
1376 unsigned ninsns, struct tree_niter_desc *desc,
1377 HOST_WIDE_INT est_niter)
b076a3fd 1378{
911b3fdb
ZD
1379 unsigned upper_bound;
1380 unsigned nfactor, factor, mod_constraint;
b076a3fd
ZD
1381 struct mem_ref_group *agp;
1382 struct mem_ref *ref;
1383
911b3fdb
ZD
1384 /* First check whether the loop is not too large to unroll. We ignore
1385 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1386 from unrolling them enough to make exactly one cache line covered by each
1387 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1388 us from unrolling the loops too many times in cases where we only expect
1389 gains from better scheduling and decreasing loop overhead, which is not
1390 the case here. */
1391 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
2711355f
ZD
1392
1393 /* If we unrolled the loop more times than it iterates, the unrolled version
1394 of the loop would be never entered. */
1395 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1396 upper_bound = est_niter;
1397
911b3fdb 1398 if (upper_bound <= 1)
b076a3fd
ZD
1399 return 1;
1400
911b3fdb
ZD
1401 /* Choose the factor so that we may prefetch each cache just once,
1402 but bound the unrolling by UPPER_BOUND. */
1403 factor = 1;
b076a3fd
ZD
1404 for (agp = refs; agp; agp = agp->next)
1405 for (ref = agp->refs; ref; ref = ref->next)
911b3fdb
ZD
1406 if (should_issue_prefetch_p (ref))
1407 {
1408 mod_constraint = ref->prefetch_mod;
1409 nfactor = least_common_multiple (mod_constraint, factor);
1410 if (nfactor <= upper_bound)
1411 factor = nfactor;
1412 }
b076a3fd
ZD
1413
1414 if (!should_unroll_loop_p (loop, desc, factor))
1415 return 1;
1416
1417 return factor;
1418}
1419
5417e022
ZD
1420/* Returns the total volume of the memory references REFS, taking into account
1421 reuses in the innermost loop and cache line size. TODO -- we should also
1422 take into account reuses across the iterations of the loops in the loop
1423 nest. */
1424
1425static unsigned
1426volume_of_references (struct mem_ref_group *refs)
1427{
1428 unsigned volume = 0;
1429 struct mem_ref_group *gr;
1430 struct mem_ref *ref;
1431
1432 for (gr = refs; gr; gr = gr->next)
1433 for (ref = gr->refs; ref; ref = ref->next)
1434 {
1435 /* Almost always reuses another value? */
1436 if (ref->prefetch_before != PREFETCH_ALL)
1437 continue;
1438
1439 /* If several iterations access the same cache line, use the size of
1440 the line divided by this number. Otherwise, a cache line is
1441 accessed in each iteration. TODO -- in the latter case, we should
1442 take the size of the reference into account, rounding it up on cache
1443 line size multiple. */
1444 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1445 }
1446 return volume;
1447}
1448
1449/* Returns the volume of memory references accessed across VEC iterations of
1450 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1451 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1452
1453static unsigned
1454volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1455{
1456 unsigned i;
1457
1458 for (i = 0; i < n; i++)
1459 if (vec[i] != 0)
1460 break;
1461
1462 if (i == n)
1463 return 0;
1464
1465 gcc_assert (vec[i] > 0);
1466
1467 /* We ignore the parts of the distance vector in subloops, since usually
1468 the numbers of iterations are much smaller. */
1469 return loop_sizes[i] * vec[i];
1470}
1471
1472/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1473 at the position corresponding to the loop of the step. N is the depth
1474 of the considered loop nest, and, LOOP is its innermost loop. */
1475
1476static void
1477add_subscript_strides (tree access_fn, unsigned stride,
1478 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1479{
1480 struct loop *aloop;
1481 tree step;
1482 HOST_WIDE_INT astep;
1483 unsigned min_depth = loop_depth (loop) - n;
1484
1485 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1486 {
1487 aloop = get_chrec_loop (access_fn);
1488 step = CHREC_RIGHT (access_fn);
1489 access_fn = CHREC_LEFT (access_fn);
1490
1491 if ((unsigned) loop_depth (aloop) <= min_depth)
1492 continue;
1493
9541ffee 1494 if (tree_fits_shwi_p (step))
9439e9a1 1495 astep = tree_to_shwi (step);
5417e022
ZD
1496 else
1497 astep = L1_CACHE_LINE_SIZE;
1498
1499 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1500
1501 }
1502}
1503
1504/* Returns the volume of memory references accessed between two consecutive
1505 self-reuses of the reference DR. We consider the subscripts of DR in N
1506 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1507 loops. LOOP is the innermost loop of the current loop nest. */
1508
1509static unsigned
1510self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1511 struct loop *loop)
1512{
1513 tree stride, access_fn;
1514 HOST_WIDE_INT *strides, astride;
9771b263 1515 vec<tree> access_fns;
5417e022
ZD
1516 tree ref = DR_REF (dr);
1517 unsigned i, ret = ~0u;
1518
1519 /* In the following example:
1520
1521 for (i = 0; i < N; i++)
1522 for (j = 0; j < N; j++)
1523 use (a[j][i]);
1524 the same cache line is accessed each N steps (except if the change from
1525 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1526 we cannot rely purely on the results of the data dependence analysis.
1527
1528 Instead, we compute the stride of the reference in each loop, and consider
1529 the innermost loop in that the stride is less than cache size. */
1530
1531 strides = XCNEWVEC (HOST_WIDE_INT, n);
1532 access_fns = DR_ACCESS_FNS (dr);
1533
9771b263 1534 FOR_EACH_VEC_ELT (access_fns, i, access_fn)
5417e022
ZD
1535 {
1536 /* Keep track of the reference corresponding to the subscript, so that we
1537 know its stride. */
1538 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1539 ref = TREE_OPERAND (ref, 0);
b8698a0f 1540
5417e022
ZD
1541 if (TREE_CODE (ref) == ARRAY_REF)
1542 {
1543 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
cc269bb6 1544 if (tree_fits_uhwi_p (stride))
ae7e9ddd 1545 astride = tree_to_uhwi (stride);
5417e022
ZD
1546 else
1547 astride = L1_CACHE_LINE_SIZE;
1548
1549 ref = TREE_OPERAND (ref, 0);
1550 }
1551 else
1552 astride = 1;
1553
1554 add_subscript_strides (access_fn, astride, strides, n, loop);
1555 }
1556
1557 for (i = n; i-- > 0; )
1558 {
1559 unsigned HOST_WIDE_INT s;
1560
1561 s = strides[i] < 0 ? -strides[i] : strides[i];
1562
1563 if (s < (unsigned) L1_CACHE_LINE_SIZE
1564 && (loop_sizes[i]
1565 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1566 {
1567 ret = loop_sizes[i];
1568 break;
1569 }
1570 }
1571
1572 free (strides);
1573 return ret;
1574}
1575
1576/* Determines the distance till the first reuse of each reference in REFS
79f5e442 1577 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1e373390 1578 memory references in the loop. Return false if the analysis fails. */
5417e022 1579
1e373390 1580static bool
79f5e442
ZD
1581determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1582 bool no_other_refs)
5417e022
ZD
1583{
1584 struct loop *nest, *aloop;
6e1aa848
DN
1585 vec<data_reference_p> datarefs = vNULL;
1586 vec<ddr_p> dependences = vNULL;
5417e022 1587 struct mem_ref_group *gr;
79f5e442 1588 struct mem_ref *ref, *refb;
6e1aa848 1589 vec<loop_p> vloops = vNULL;
5417e022
ZD
1590 unsigned *loop_data_size;
1591 unsigned i, j, n;
1592 unsigned volume, dist, adist;
1593 HOST_WIDE_INT vol;
1594 data_reference_p dr;
1595 ddr_p dep;
1596
1597 if (loop->inner)
1e373390 1598 return true;
5417e022
ZD
1599
1600 /* Find the outermost loop of the loop nest of loop (we require that
1601 there are no sibling loops inside the nest). */
1602 nest = loop;
1603 while (1)
1604 {
1605 aloop = loop_outer (nest);
1606
1607 if (aloop == current_loops->tree_root
1608 || aloop->inner->next)
1609 break;
1610
1611 nest = aloop;
1612 }
1613
1614 /* For each loop, determine the amount of data accessed in each iteration.
1615 We use this to estimate whether the reference is evicted from the
1616 cache before its reuse. */
1617 find_loop_nest (nest, &vloops);
9771b263 1618 n = vloops.length ();
5417e022
ZD
1619 loop_data_size = XNEWVEC (unsigned, n);
1620 volume = volume_of_references (refs);
1621 i = n;
1622 while (i-- != 0)
1623 {
1624 loop_data_size[i] = volume;
1625 /* Bound the volume by the L2 cache size, since above this bound,
1626 all dependence distances are equivalent. */
1627 if (volume > L2_CACHE_SIZE_BYTES)
1628 continue;
1629
9771b263 1630 aloop = vloops[i];
652c4c71 1631 vol = estimated_stmt_executions_int (aloop);
e5b332cd 1632 if (vol == -1)
5417e022
ZD
1633 vol = expected_loop_iterations (aloop);
1634 volume *= vol;
1635 }
1636
1637 /* Prepare the references in the form suitable for data dependence
0d52bcc1 1638 analysis. We ignore unanalyzable data references (the results
5417e022
ZD
1639 are used just as a heuristics to estimate temporality of the
1640 references, hence we do not need to worry about correctness). */
1641 for (gr = refs; gr; gr = gr->next)
1642 for (ref = gr->refs; ref; ref = ref->next)
1643 {
5c640e29
SP
1644 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1645 ref->mem, ref->stmt, !ref->write_p);
5417e022
ZD
1646
1647 if (dr)
1648 {
1649 ref->reuse_distance = volume;
1650 dr->aux = ref;
9771b263 1651 datarefs.safe_push (dr);
5417e022 1652 }
79f5e442
ZD
1653 else
1654 no_other_refs = false;
5417e022
ZD
1655 }
1656
9771b263 1657 FOR_EACH_VEC_ELT (datarefs, i, dr)
5417e022
ZD
1658 {
1659 dist = self_reuse_distance (dr, loop_data_size, n, loop);
3d9a9f94 1660 ref = (struct mem_ref *) dr->aux;
5417e022
ZD
1661 if (ref->reuse_distance > dist)
1662 ref->reuse_distance = dist;
79f5e442
ZD
1663
1664 if (no_other_refs)
1665 ref->independent_p = true;
5417e022
ZD
1666 }
1667
1e373390
RG
1668 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1669 return false;
5417e022 1670
9771b263 1671 FOR_EACH_VEC_ELT (dependences, i, dep)
5417e022
ZD
1672 {
1673 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1674 continue;
1675
3d9a9f94
KG
1676 ref = (struct mem_ref *) DDR_A (dep)->aux;
1677 refb = (struct mem_ref *) DDR_B (dep)->aux;
79f5e442 1678
5417e022
ZD
1679 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1680 || DDR_NUM_DIST_VECTS (dep) == 0)
1681 {
0d52bcc1 1682 /* If the dependence cannot be analyzed, assume that there might be
5417e022
ZD
1683 a reuse. */
1684 dist = 0;
b8698a0f 1685
79f5e442
ZD
1686 ref->independent_p = false;
1687 refb->independent_p = false;
5417e022
ZD
1688 }
1689 else
1690 {
0d52bcc1 1691 /* The distance vectors are normalized to be always lexicographically
5417e022
ZD
1692 positive, hence we cannot tell just from them whether DDR_A comes
1693 before DDR_B or vice versa. However, it is not important,
1694 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1695 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1696 in cache (and marking it as nontemporal would not affect
1697 anything). */
1698
1699 dist = volume;
1700 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1701 {
1702 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1703 loop_data_size, n);
1704
79f5e442
ZD
1705 /* If this is a dependence in the innermost loop (i.e., the
1706 distances in all superloops are zero) and it is not
1707 the trivial self-dependence with distance zero, record that
1708 the references are not completely independent. */
1709 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1710 && (ref != refb
1711 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1712 {
1713 ref->independent_p = false;
1714 refb->independent_p = false;
1715 }
1716
5417e022
ZD
1717 /* Ignore accesses closer than
1718 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1719 so that we use nontemporal prefetches e.g. if single memory
1720 location is accessed several times in a single iteration of
1721 the loop. */
1722 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1723 continue;
1724
1725 if (adist < dist)
1726 dist = adist;
1727 }
1728 }
1729
5417e022
ZD
1730 if (ref->reuse_distance > dist)
1731 ref->reuse_distance = dist;
79f5e442
ZD
1732 if (refb->reuse_distance > dist)
1733 refb->reuse_distance = dist;
5417e022
ZD
1734 }
1735
1736 free_dependence_relations (dependences);
1737 free_data_refs (datarefs);
1738 free (loop_data_size);
1739
1740 if (dump_file && (dump_flags & TDF_DETAILS))
1741 {
1742 fprintf (dump_file, "Reuse distances:\n");
1743 for (gr = refs; gr; gr = gr->next)
1744 for (ref = gr->refs; ref; ref = ref->next)
1745 fprintf (dump_file, " ref %p distance %u\n",
1746 (void *) ref, ref->reuse_distance);
1747 }
1e373390
RG
1748
1749 return true;
5417e022
ZD
1750}
1751
0bbe50f6
CF
1752/* Determine whether or not the trip count to ahead ratio is too small based
1753 on prefitablility consideration.
db34470d 1754 AHEAD: the iteration ahead distance,
0bbe50f6
CF
1755 EST_NITER: the estimated trip count. */
1756
1757static bool
1758trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1759{
1760 /* Assume trip count to ahead ratio is big enough if the trip count could not
1761 be estimated at compile time. */
1762 if (est_niter < 0)
1763 return false;
1764
1765 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1766 {
1767 if (dump_file && (dump_flags & TDF_DETAILS))
1768 fprintf (dump_file,
1769 "Not prefetching -- loop estimated to roll only %d times\n",
1770 (int) est_niter);
1771 return true;
1772 }
1773
1774 return false;
1775}
1776
1777/* Determine whether or not the number of memory references in the loop is
1778 reasonable based on the profitablity and compilation time considerations.
db34470d 1779 NINSNS: estimated number of instructions in the loop,
db34470d
GS
1780 MEM_REF_COUNT: total number of memory references in the loop. */
1781
b8698a0f 1782static bool
0bbe50f6 1783mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
db34470d 1784{
0bbe50f6 1785 int insn_to_mem_ratio;
db34470d
GS
1786
1787 if (mem_ref_count == 0)
1788 return false;
1789
0bbe50f6
CF
1790 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1791 (compute_all_dependences) have high costs based on quadratic complexity.
1792 To avoid huge compilation time, we give up prefetching if mem_ref_count
1793 is too large. */
1794 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1795 return false;
1796
b8698a0f
L
1797 /* Prefetching improves performance by overlapping cache missing
1798 memory accesses with CPU operations. If the loop does not have
1799 enough CPU operations to overlap with memory operations, prefetching
1800 won't give a significant benefit. One approximate way of checking
1801 this is to require the ratio of instructions to memory references to
db34470d
GS
1802 be above a certain limit. This approximation works well in practice.
1803 TODO: Implement a more precise computation by estimating the time
1804 for each CPU or memory op in the loop. Time estimates for memory ops
1805 should account for cache misses. */
b8698a0f 1806 insn_to_mem_ratio = ninsns / mem_ref_count;
db34470d
GS
1807
1808 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
55e5a2eb
CF
1809 {
1810 if (dump_file && (dump_flags & TDF_DETAILS))
1811 fprintf (dump_file,
1812 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1813 insn_to_mem_ratio);
1814 return false;
1815 }
db34470d 1816
0bbe50f6
CF
1817 return true;
1818}
1819
1820/* Determine whether or not the instruction to prefetch ratio in the loop is
1821 too small based on the profitablity consideration.
1822 NINSNS: estimated number of instructions in the loop,
1823 PREFETCH_COUNT: an estimate of the number of prefetches,
1824 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1825
1826static bool
1827insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1828 unsigned unroll_factor)
1829{
1830 int insn_to_prefetch_ratio;
1831
d3a9b459
CF
1832 /* Prefetching most likely causes performance degradation when the instruction
1833 to prefetch ratio is too small. Too many prefetch instructions in a loop
1834 may reduce the I-cache performance.
ccacf0e1
CF
1835 (unroll_factor * ninsns) is used to estimate the number of instructions in
1836 the unrolled loop. This implementation is a bit simplistic -- the number
1837 of issued prefetch instructions is also affected by unrolling. So,
1838 prefetch_mod and the unroll factor should be taken into account when
1839 determining prefetch_count. Also, the number of insns of the unrolled
1840 loop will usually be significantly smaller than the number of insns of the
1841 original loop * unroll_factor (at least the induction variable increases
1842 and the exit branches will get eliminated), so it might be better to use
1843 tree_estimate_loop_size + estimated_unrolled_size. */
d3a9b459
CF
1844 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1845 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
db34470d 1846 {
d3a9b459
CF
1847 if (dump_file && (dump_flags & TDF_DETAILS))
1848 fprintf (dump_file,
1849 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1850 insn_to_prefetch_ratio);
0bbe50f6 1851 return true;
db34470d 1852 }
b8698a0f 1853
0bbe50f6 1854 return false;
db34470d
GS
1855}
1856
1857
b076a3fd 1858/* Issue prefetch instructions for array references in LOOP. Returns
d73be268 1859 true if the LOOP was unrolled. */
b076a3fd
ZD
1860
1861static bool
d73be268 1862loop_prefetch_arrays (struct loop *loop)
b076a3fd
ZD
1863{
1864 struct mem_ref_group *refs;
2711355f
ZD
1865 unsigned ahead, ninsns, time, unroll_factor;
1866 HOST_WIDE_INT est_niter;
b076a3fd 1867 struct tree_niter_desc desc;
79f5e442 1868 bool unrolled = false, no_other_refs;
db34470d
GS
1869 unsigned prefetch_count;
1870 unsigned mem_ref_count;
b076a3fd 1871
efd8f750 1872 if (optimize_loop_nest_for_size_p (loop))
2732d767
ZD
1873 {
1874 if (dump_file && (dump_flags & TDF_DETAILS))
1875 fprintf (dump_file, " ignored (cold area)\n");
1876 return false;
1877 }
1878
0bbe50f6
CF
1879 /* FIXME: the time should be weighted by the probabilities of the blocks in
1880 the loop body. */
1881 time = tree_num_loop_insns (loop, &eni_time_weights);
1882 if (time == 0)
1883 return false;
1884
1885 ahead = (PREFETCH_LATENCY + time - 1) / time;
652c4c71 1886 est_niter = estimated_stmt_executions_int (loop);
e5b332cd
RG
1887 if (est_niter == -1)
1888 est_niter = max_stmt_executions_int (loop);
0bbe50f6
CF
1889
1890 /* Prefetching is not likely to be profitable if the trip count to ahead
1891 ratio is too small. */
1892 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1893 return false;
1894
1895 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1896
b076a3fd 1897 /* Step 1: gather the memory references. */
db34470d 1898 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
b076a3fd 1899
0bbe50f6
CF
1900 /* Give up prefetching if the number of memory references in the
1901 loop is not reasonable based on profitablity and compilation time
1902 considerations. */
1903 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1904 goto fail;
1905
b076a3fd
ZD
1906 /* Step 2: estimate the reuse effects. */
1907 prune_by_reuse (refs);
1908
d5058523 1909 if (nothing_to_prefetch_p (refs))
b076a3fd
ZD
1910 goto fail;
1911
1e373390
RG
1912 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1913 goto fail;
5417e022 1914
0bbe50f6 1915 /* Step 3: determine unroll factor. */
2711355f
ZD
1916 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1917 est_niter);
d5058523
CF
1918
1919 /* Estimate prefetch count for the unrolled loop. */
1920 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1921 if (prefetch_count == 0)
1922 goto fail;
1923
2711355f 1924 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 1925 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
d81f5387 1926 HOST_WIDE_INT_PRINT_DEC "\n"
b8698a0f
L
1927 "insn count %d, mem ref count %d, prefetch count %d\n",
1928 ahead, unroll_factor, est_niter,
1929 ninsns, mem_ref_count, prefetch_count);
db34470d 1930
0bbe50f6
CF
1931 /* Prefetching is not likely to be profitable if the instruction to prefetch
1932 ratio is too small. */
1933 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1934 unroll_factor))
db34470d
GS
1935 goto fail;
1936
1937 mark_nontemporal_stores (loop, refs);
2711355f 1938
b076a3fd
ZD
1939 /* Step 4: what to prefetch? */
1940 if (!schedule_prefetches (refs, unroll_factor, ahead))
1941 goto fail;
1942
1943 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1944 iterations so that we do not issue superfluous prefetches. */
1945 if (unroll_factor != 1)
1946 {
d73be268 1947 tree_unroll_loop (loop, unroll_factor,
b076a3fd
ZD
1948 single_dom_exit (loop), &desc);
1949 unrolled = true;
1950 }
1951
1952 /* Step 6: issue the prefetches. */
1953 issue_prefetches (refs, unroll_factor, ahead);
1954
1955fail:
1956 release_mem_refs (refs);
1957 return unrolled;
1958}
1959
d73be268 1960/* Issue prefetch instructions for array references in loops. */
b076a3fd 1961
c7f965b6 1962unsigned int
d73be268 1963tree_ssa_prefetch_arrays (void)
b076a3fd 1964{
b076a3fd
ZD
1965 struct loop *loop;
1966 bool unrolled = false;
c7f965b6 1967 int todo_flags = 0;
b076a3fd
ZD
1968
1969 if (!HAVE_prefetch
1970 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1971 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1972 of processor costs and i486 does not have prefetch, but
1973 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1974 || PREFETCH_BLOCK == 0)
c7f965b6 1975 return 0;
b076a3fd 1976
47eb5b32
ZD
1977 if (dump_file && (dump_flags & TDF_DETAILS))
1978 {
1979 fprintf (dump_file, "Prefetching parameters:\n");
1980 fprintf (dump_file, " simultaneous prefetches: %d\n",
1981 SIMULTANEOUS_PREFETCHES);
1982 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
47eb5b32 1983 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
46cb0441
ZD
1984 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1985 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
5417e022 1986 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
b8698a0f
L
1987 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1988 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
db34470d 1989 MIN_INSN_TO_PREFETCH_RATIO);
b8698a0f 1990 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
db34470d 1991 PREFETCH_MIN_INSN_TO_MEM_RATIO);
47eb5b32
ZD
1992 fprintf (dump_file, "\n");
1993 }
1994
b076a3fd
ZD
1995 initialize_original_copy_tables ();
1996
e79983f4 1997 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
b076a3fd 1998 {
6a4825bd
NF
1999 tree type = build_function_type_list (void_type_node,
2000 const_ptr_type_node, NULL_TREE);
c79efc4d
RÁE
2001 tree decl = add_builtin_function ("__builtin_prefetch", type,
2002 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
2003 NULL, NULL_TREE);
b076a3fd 2004 DECL_IS_NOVOPS (decl) = true;
e79983f4 2005 set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
b076a3fd
ZD
2006 }
2007
2008 /* We assume that size of cache line is a power of two, so verify this
2009 here. */
2010 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
2011
f0bd40b1 2012 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
b076a3fd 2013 {
b076a3fd
ZD
2014 if (dump_file && (dump_flags & TDF_DETAILS))
2015 fprintf (dump_file, "Processing loop %d:\n", loop->num);
2016
d73be268 2017 unrolled |= loop_prefetch_arrays (loop);
b076a3fd
ZD
2018
2019 if (dump_file && (dump_flags & TDF_DETAILS))
2020 fprintf (dump_file, "\n\n");
2021 }
2022
2023 if (unrolled)
2024 {
2025 scev_reset ();
c7f965b6 2026 todo_flags |= TODO_cleanup_cfg;
b076a3fd
ZD
2027 }
2028
2029 free_original_copy_tables ();
c7f965b6 2030 return todo_flags;
b076a3fd 2031}
71343877
AM
2032
2033/* Prefetching. */
2034
71343877
AM
2035namespace {
2036
2037const pass_data pass_data_loop_prefetch =
2038{
2039 GIMPLE_PASS, /* type */
2040 "aprefetch", /* name */
2041 OPTGROUP_LOOP, /* optinfo_flags */
71343877
AM
2042 TV_TREE_PREFETCH, /* tv_id */
2043 ( PROP_cfg | PROP_ssa ), /* properties_required */
2044 0, /* properties_provided */
2045 0, /* properties_destroyed */
2046 0, /* todo_flags_start */
2047 0, /* todo_flags_finish */
2048};
2049
2050class pass_loop_prefetch : public gimple_opt_pass
2051{
2052public:
2053 pass_loop_prefetch (gcc::context *ctxt)
2054 : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2055 {}
2056
2057 /* opt_pass methods: */
1a3d085c 2058 virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; }
be55bfe6 2059 virtual unsigned int execute (function *);
71343877
AM
2060
2061}; // class pass_loop_prefetch
2062
be55bfe6
TS
2063unsigned int
2064pass_loop_prefetch::execute (function *fun)
2065{
2066 if (number_of_loops (fun) <= 1)
2067 return 0;
2068
2069 return tree_ssa_prefetch_arrays ();
2070}
2071
71343877
AM
2072} // anon namespace
2073
2074gimple_opt_pass *
2075make_pass_loop_prefetch (gcc::context *ctxt)
2076{
2077 return new pass_loop_prefetch (ctxt);
2078}
2079
2080