]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-loop-prefetch.c
re PR c/20318 (RFE: add attribute to specify that a function never returns NULL)
[thirdparty/gcc.git] / gcc / tree-ssa-loop-prefetch.c
CommitLineData
b076a3fd 1/* Array prefetching.
d1e082c2 2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
b8698a0f 3
b076a3fd 4This file is part of GCC.
b8698a0f 5
b076a3fd
ZD
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
9dcd6f09 8Free Software Foundation; either version 3, or (at your option) any
b076a3fd 9later version.
b8698a0f 10
b076a3fd
ZD
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
b8698a0f 15
b076a3fd 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
b076a3fd
ZD
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "tree.h"
b076a3fd 25#include "tm_p.h"
b076a3fd 26#include "basic-block.h"
cf835838 27#include "tree-pretty-print.h"
7a300452 28#include "tree-ssa.h"
b076a3fd 29#include "cfgloop.h"
b076a3fd 30#include "tree-pass.h"
b076a3fd 31#include "insn-config.h"
b076a3fd
ZD
32#include "hashtab.h"
33#include "tree-chrec.h"
34#include "tree-scalar-evolution.h"
718f9c0f 35#include "diagnostic-core.h"
b076a3fd
ZD
36#include "params.h"
37#include "langhooks.h"
7f9bc51b 38#include "tree-inline.h"
5417e022 39#include "tree-data-ref.h"
2eb79bbb
SB
40
41
42/* FIXME: Needed for optabs, but this should all be moved to a TBD interface
43 between the GIMPLE and RTL worlds. */
44#include "expr.h"
79f5e442 45#include "optabs.h"
1c1ad7bb 46#include "recog.h"
b076a3fd
ZD
47
48/* This pass inserts prefetch instructions to optimize cache usage during
49 accesses to arrays in loops. It processes loops sequentially and:
50
51 1) Gathers all memory references in the single loop.
52 2) For each of the references it decides when it is profitable to prefetch
53 it. To do it, we evaluate the reuse among the accesses, and determines
54 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
55 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
56 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
57 iterations of the loop that are zero modulo PREFETCH_MOD). For example
58 (assuming cache line size is 64 bytes, char has size 1 byte and there
59 is no hardware sequential prefetch):
60
61 char *a;
62 for (i = 0; i < max; i++)
63 {
64 a[255] = ...; (0)
65 a[i] = ...; (1)
66 a[i + 64] = ...; (2)
67 a[16*i] = ...; (3)
68 a[187*i] = ...; (4)
69 a[187*i + 50] = ...; (5)
70 }
71
72 (0) obviously has PREFETCH_BEFORE 1
73 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
74 location 64 iterations before it, and PREFETCH_MOD 64 (since
75 it hits the same cache line otherwise).
76 (2) has PREFETCH_MOD 64
77 (3) has PREFETCH_MOD 4
78 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
bae077dc 79 the cache line accessed by (5) is the same with probability only
b076a3fd
ZD
80 7/32.
81 (5) has PREFETCH_MOD 1 as well.
82
5417e022
ZD
83 Additionally, we use data dependence analysis to determine for each
84 reference the distance till the first reuse; this information is used
85 to determine the temporality of the issued prefetch instruction.
86
b076a3fd
ZD
87 3) We determine how much ahead we need to prefetch. The number of
88 iterations needed is time to fetch / time spent in one iteration of
89 the loop. The problem is that we do not know either of these values,
90 so we just make a heuristic guess based on a magic (possibly)
91 target-specific constant and size of the loop.
92
93 4) Determine which of the references we prefetch. We take into account
94 that there is a maximum number of simultaneous prefetches (provided
95 by machine description). We prefetch as many prefetches as possible
96 while still within this bound (starting with those with lowest
97 prefetch_mod, since they are responsible for most of the cache
98 misses).
b8698a0f 99
b076a3fd
ZD
100 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
101 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
102 prefetching nonaccessed memory.
103 TODO -- actually implement peeling.
b8698a0f 104
b076a3fd
ZD
105 6) We actually emit the prefetch instructions. ??? Perhaps emit the
106 prefetch instructions with guards in cases where 5) was not sufficient
107 to satisfy the constraints?
108
0bbe50f6
CF
109 A cost model is implemented to determine whether or not prefetching is
110 profitable for a given loop. The cost model has three heuristics:
111
112 1. Function trip_count_to_ahead_ratio_too_small_p implements a
113 heuristic that determines whether or not the loop has too few
114 iterations (compared to ahead). Prefetching is not likely to be
115 beneficial if the trip count to ahead ratio is below a certain
116 minimum.
117
118 2. Function mem_ref_count_reasonable_p implements a heuristic that
119 determines whether the given loop has enough CPU ops that can be
120 overlapped with cache missing memory ops. If not, the loop
121 won't benefit from prefetching. In the implementation,
122 prefetching is not considered beneficial if the ratio between
123 the instruction count and the mem ref count is below a certain
124 minimum.
125
126 3. Function insn_to_prefetch_ratio_too_small_p implements a
127 heuristic that disables prefetching in a loop if the prefetching
128 cost is above a certain limit. The relative prefetching cost is
129 estimated by taking the ratio between the prefetch count and the
130 total intruction count (this models the I-cache cost).
131
db34470d 132 The limits used in these heuristics are defined as parameters with
b8698a0f 133 reasonable default values. Machine-specific default values will be
db34470d 134 added later.
b8698a0f 135
b076a3fd
ZD
136 Some other TODO:
137 -- write and use more general reuse analysis (that could be also used
138 in other cache aimed loop optimizations)
139 -- make it behave sanely together with the prefetches given by user
140 (now we just ignore them; at the very least we should avoid
141 optimizing loops in that user put his own prefetches)
142 -- we assume cache line size alignment of arrays; this could be
143 improved. */
144
145/* Magic constants follow. These should be replaced by machine specific
146 numbers. */
147
b076a3fd
ZD
148/* True if write can be prefetched by a read prefetch. */
149
150#ifndef WRITE_CAN_USE_READ_PREFETCH
151#define WRITE_CAN_USE_READ_PREFETCH 1
152#endif
153
154/* True if read can be prefetched by a write prefetch. */
155
156#ifndef READ_CAN_USE_WRITE_PREFETCH
157#define READ_CAN_USE_WRITE_PREFETCH 0
158#endif
159
47eb5b32
ZD
160/* The size of the block loaded by a single prefetch. Usually, this is
161 the same as cache line size (at the moment, we only consider one level
162 of cache hierarchy). */
b076a3fd
ZD
163
164#ifndef PREFETCH_BLOCK
47eb5b32 165#define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
b076a3fd
ZD
166#endif
167
168/* Do we have a forward hardware sequential prefetching? */
169
170#ifndef HAVE_FORWARD_PREFETCH
171#define HAVE_FORWARD_PREFETCH 0
172#endif
173
174/* Do we have a backward hardware sequential prefetching? */
175
176#ifndef HAVE_BACKWARD_PREFETCH
177#define HAVE_BACKWARD_PREFETCH 0
178#endif
179
180/* In some cases we are only able to determine that there is a certain
181 probability that the two accesses hit the same cache line. In this
182 case, we issue the prefetches for both of them if this probability
fa10beec 183 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
b076a3fd
ZD
184
185#ifndef ACCEPTABLE_MISS_RATE
186#define ACCEPTABLE_MISS_RATE 50
187#endif
188
189#ifndef HAVE_prefetch
190#define HAVE_prefetch 0
191#endif
192
46cb0441
ZD
193#define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
194#define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
5417e022
ZD
195
196/* We consider a memory access nontemporal if it is not reused sooner than
197 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
198 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
199 so that we use nontemporal prefetches e.g. if single memory location
200 is accessed several times in a single iteration of the loop. */
201#define NONTEMPORAL_FRACTION 16
202
79f5e442
ZD
203/* In case we have to emit a memory fence instruction after the loop that
204 uses nontemporal stores, this defines the builtin to use. */
205
206#ifndef FENCE_FOLLOWING_MOVNT
207#define FENCE_FOLLOWING_MOVNT NULL_TREE
208#endif
209
9bf4598b
CF
210/* It is not profitable to prefetch when the trip count is not at
211 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
212 For example, in a loop with a prefetch ahead distance of 10,
213 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
214 profitable to prefetch when the trip count is greater or equal to
215 40. In that case, 30 out of the 40 iterations will benefit from
216 prefetching. */
217
218#ifndef TRIP_COUNT_TO_AHEAD_RATIO
219#define TRIP_COUNT_TO_AHEAD_RATIO 4
220#endif
221
b076a3fd
ZD
222/* The group of references between that reuse may occur. */
223
224struct mem_ref_group
225{
226 tree base; /* Base of the reference. */
81f32326 227 tree step; /* Step of the reference. */
b076a3fd
ZD
228 struct mem_ref *refs; /* References in the group. */
229 struct mem_ref_group *next; /* Next group of references. */
230};
231
232/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
233
234#define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
235
8532678c
CF
236/* Do not generate a prefetch if the unroll factor is significantly less
237 than what is required by the prefetch. This is to avoid redundant
f7963a7c
CF
238 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
239 2, prefetching requires unrolling the loop 16 times, but
240 the loop is actually unrolled twice. In this case (ratio = 8),
8532678c
CF
241 prefetching is not likely to be beneficial. */
242
243#ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
f7963a7c 244#define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
8532678c
CF
245#endif
246
0bbe50f6
CF
247/* Some of the prefetch computations have quadratic complexity. We want to
248 avoid huge compile times and, therefore, want to limit the amount of
249 memory references per loop where we consider prefetching. */
250
251#ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
252#define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
253#endif
254
b076a3fd
ZD
255/* The memory reference. */
256
257struct mem_ref
258{
726a989a 259 gimple stmt; /* Statement in that the reference appears. */
b076a3fd
ZD
260 tree mem; /* The reference. */
261 HOST_WIDE_INT delta; /* Constant offset of the reference. */
b076a3fd
ZD
262 struct mem_ref_group *group; /* The group of references it belongs to. */
263 unsigned HOST_WIDE_INT prefetch_mod;
264 /* Prefetch only each PREFETCH_MOD-th
265 iteration. */
266 unsigned HOST_WIDE_INT prefetch_before;
267 /* Prefetch only first PREFETCH_BEFORE
268 iterations. */
5417e022
ZD
269 unsigned reuse_distance; /* The amount of data accessed before the first
270 reuse of this value. */
b076a3fd 271 struct mem_ref *next; /* The next reference in the group. */
79f5e442
ZD
272 unsigned write_p : 1; /* Is it a write? */
273 unsigned independent_p : 1; /* True if the reference is independent on
274 all other references inside the loop. */
275 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
276 unsigned storent_p : 1; /* True if we changed the store to a
277 nontemporal one. */
b076a3fd
ZD
278};
279
a5497b12 280/* Dumps information about memory reference */
b076a3fd 281static void
a5497b12
VK
282dump_mem_details (FILE *file, tree base, tree step,
283 HOST_WIDE_INT delta, bool write_p)
b076a3fd 284{
a5497b12
VK
285 fprintf (file, "(base ");
286 print_generic_expr (file, base, TDF_SLIM);
b076a3fd 287 fprintf (file, ", step ");
a5497b12
VK
288 if (cst_and_fits_in_hwi (step))
289 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
81f32326 290 else
a5497b12 291 print_generic_expr (file, step, TDF_TREE);
b076a3fd 292 fprintf (file, ")\n");
e324a72f 293 fprintf (file, " delta ");
a5497b12
VK
294 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
295 fprintf (file, "\n");
296 fprintf (file, " %s\n", write_p ? "write" : "read");
b076a3fd 297 fprintf (file, "\n");
a5497b12 298}
b076a3fd 299
a5497b12 300/* Dumps information about reference REF to FILE. */
b076a3fd 301
a5497b12
VK
302static void
303dump_mem_ref (FILE *file, struct mem_ref *ref)
304{
305 fprintf (file, "Reference %p:\n", (void *) ref);
306
307 fprintf (file, " group %p ", (void *) ref->group);
308
309 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta,
310 ref->write_p);
b076a3fd
ZD
311}
312
313/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
314 exist. */
315
316static struct mem_ref_group *
81f32326 317find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
b076a3fd
ZD
318{
319 struct mem_ref_group *group;
320
321 for (; *groups; groups = &(*groups)->next)
322 {
81f32326 323 if (operand_equal_p ((*groups)->step, step, 0)
b076a3fd
ZD
324 && operand_equal_p ((*groups)->base, base, 0))
325 return *groups;
326
81f32326
CB
327 /* If step is an integer constant, keep the list of groups sorted
328 by decreasing step. */
329 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
330 && int_cst_value ((*groups)->step) < int_cst_value (step))
b076a3fd
ZD
331 break;
332 }
333
5417e022 334 group = XNEW (struct mem_ref_group);
b076a3fd
ZD
335 group->base = base;
336 group->step = step;
337 group->refs = NULL;
338 group->next = *groups;
339 *groups = group;
340
341 return group;
342}
343
344/* Records a memory reference MEM in GROUP with offset DELTA and write status
345 WRITE_P. The reference occurs in statement STMT. */
346
347static void
726a989a 348record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
b076a3fd
ZD
349 HOST_WIDE_INT delta, bool write_p)
350{
351 struct mem_ref **aref;
352
353 /* Do not record the same address twice. */
354 for (aref = &group->refs; *aref; aref = &(*aref)->next)
355 {
356 /* It does not have to be possible for write reference to reuse the read
357 prefetch, or vice versa. */
358 if (!WRITE_CAN_USE_READ_PREFETCH
359 && write_p
360 && !(*aref)->write_p)
361 continue;
362 if (!READ_CAN_USE_WRITE_PREFETCH
363 && !write_p
364 && (*aref)->write_p)
365 continue;
366
367 if ((*aref)->delta == delta)
368 return;
369 }
370
5417e022 371 (*aref) = XNEW (struct mem_ref);
b076a3fd
ZD
372 (*aref)->stmt = stmt;
373 (*aref)->mem = mem;
374 (*aref)->delta = delta;
375 (*aref)->write_p = write_p;
376 (*aref)->prefetch_before = PREFETCH_ALL;
377 (*aref)->prefetch_mod = 1;
5417e022 378 (*aref)->reuse_distance = 0;
b076a3fd
ZD
379 (*aref)->issue_prefetch_p = false;
380 (*aref)->group = group;
381 (*aref)->next = NULL;
79f5e442
ZD
382 (*aref)->independent_p = false;
383 (*aref)->storent_p = false;
b076a3fd
ZD
384
385 if (dump_file && (dump_flags & TDF_DETAILS))
386 dump_mem_ref (dump_file, *aref);
387}
388
389/* Release memory references in GROUPS. */
390
391static void
392release_mem_refs (struct mem_ref_group *groups)
393{
394 struct mem_ref_group *next_g;
395 struct mem_ref *ref, *next_r;
396
397 for (; groups; groups = next_g)
398 {
399 next_g = groups->next;
400 for (ref = groups->refs; ref; ref = next_r)
401 {
402 next_r = ref->next;
403 free (ref);
404 }
405 free (groups);
406 }
407}
408
409/* A structure used to pass arguments to idx_analyze_ref. */
410
411struct ar_data
412{
413 struct loop *loop; /* Loop of the reference. */
726a989a 414 gimple stmt; /* Statement of the reference. */
81f32326 415 tree *step; /* Step of the memory reference. */
b076a3fd
ZD
416 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
417};
418
419/* Analyzes a single INDEX of a memory reference to obtain information
420 described at analyze_ref. Callback for for_each_index. */
421
422static bool
423idx_analyze_ref (tree base, tree *index, void *data)
424{
c22940cd 425 struct ar_data *ar_data = (struct ar_data *) data;
b076a3fd 426 tree ibase, step, stepsize;
81f32326 427 HOST_WIDE_INT idelta = 0, imult = 1;
b076a3fd
ZD
428 affine_iv iv;
429
f017bf5e 430 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
81f32326 431 *index, &iv, true))
b076a3fd
ZD
432 return false;
433 ibase = iv.base;
434 step = iv.step;
435
5be014d5 436 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
b076a3fd
ZD
437 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
438 {
439 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
440 ibase = TREE_OPERAND (ibase, 0);
441 }
442 if (cst_and_fits_in_hwi (ibase))
443 {
444 idelta += int_cst_value (ibase);
ff5e9a94 445 ibase = build_int_cst (TREE_TYPE (ibase), 0);
b076a3fd
ZD
446 }
447
448 if (TREE_CODE (base) == ARRAY_REF)
449 {
450 stepsize = array_ref_element_size (base);
451 if (!cst_and_fits_in_hwi (stepsize))
452 return false;
453 imult = int_cst_value (stepsize);
8fde8b40
CB
454 step = fold_build2 (MULT_EXPR, sizetype,
455 fold_convert (sizetype, step),
456 fold_convert (sizetype, stepsize));
b076a3fd
ZD
457 idelta *= imult;
458 }
459
8fde8b40
CB
460 if (*ar_data->step == NULL_TREE)
461 *ar_data->step = step;
462 else
463 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
464 fold_convert (sizetype, *ar_data->step),
465 fold_convert (sizetype, step));
b076a3fd
ZD
466 *ar_data->delta += idelta;
467 *index = ibase;
468
469 return true;
470}
471
aac8b8ed 472/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
b076a3fd 473 STEP are integer constants and iter is number of iterations of LOOP. The
aac8b8ed
RS
474 reference occurs in statement STMT. Strips nonaddressable component
475 references from REF_P. */
b076a3fd
ZD
476
477static bool
aac8b8ed 478analyze_ref (struct loop *loop, tree *ref_p, tree *base,
81f32326 479 tree *step, HOST_WIDE_INT *delta,
726a989a 480 gimple stmt)
b076a3fd
ZD
481{
482 struct ar_data ar_data;
483 tree off;
484 HOST_WIDE_INT bit_offset;
aac8b8ed 485 tree ref = *ref_p;
b076a3fd 486
81f32326 487 *step = NULL_TREE;
b076a3fd
ZD
488 *delta = 0;
489
7c6dafac
CF
490 /* First strip off the component references. Ignore bitfields.
491 Also strip off the real and imagine parts of a complex, so that
492 they can have the same base. */
493 if (TREE_CODE (ref) == REALPART_EXPR
494 || TREE_CODE (ref) == IMAGPART_EXPR
495 || (TREE_CODE (ref) == COMPONENT_REF
496 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
497 {
498 if (TREE_CODE (ref) == IMAGPART_EXPR)
499 *delta += int_size_in_bytes (TREE_TYPE (ref));
500 ref = TREE_OPERAND (ref, 0);
501 }
b076a3fd 502
aac8b8ed
RS
503 *ref_p = ref;
504
b076a3fd
ZD
505 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
506 {
507 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
508 bit_offset = TREE_INT_CST_LOW (off);
509 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
b8698a0f 510
b076a3fd
ZD
511 *delta += bit_offset / BITS_PER_UNIT;
512 }
513
514 *base = unshare_expr (ref);
515 ar_data.loop = loop;
516 ar_data.stmt = stmt;
517 ar_data.step = step;
518 ar_data.delta = delta;
519 return for_each_index (base, idx_analyze_ref, &ar_data);
520}
521
522/* Record a memory reference REF to the list REFS. The reference occurs in
79f5e442
ZD
523 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
524 reference was recorded, false otherwise. */
b076a3fd 525
79f5e442 526static bool
b076a3fd 527gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
726a989a 528 tree ref, bool write_p, gimple stmt)
b076a3fd 529{
81f32326
CB
530 tree base, step;
531 HOST_WIDE_INT delta;
b076a3fd
ZD
532 struct mem_ref_group *agrp;
533
a80a2701
JJ
534 if (get_base_address (ref) == NULL)
535 return false;
536
aac8b8ed 537 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
79f5e442 538 return false;
81f32326
CB
539 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
540 if (step == NULL_TREE)
541 return false;
b076a3fd 542
756f50ce 543 /* Stop if the address of BASE could not be taken. */
bc068a23
CF
544 if (may_be_nonaddressable_p (base))
545 return false;
546
a5497b12
VK
547 /* Limit non-constant step prefetching only to the innermost loops and
548 only when the step is loop invariant in the entire loop nest. */
549 if (!cst_and_fits_in_hwi (step))
550 {
551 if (loop->inner != NULL)
552 {
553 if (dump_file && (dump_flags & TDF_DETAILS))
554 {
555 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
556 print_generic_expr (dump_file, ref, TDF_TREE);
557 fprintf (dump_file,":");
c3284718 558 dump_mem_details (dump_file, base, step, delta, write_p);
a5497b12
VK
559 fprintf (dump_file,
560 "Ignoring %p, non-constant step prefetching is "
561 "limited to inner most loops \n",
562 (void *) ref);
563 }
564 return false;
565 }
566 else
567 {
568 if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
569 {
570 if (dump_file && (dump_flags & TDF_DETAILS))
571 {
572 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
573 print_generic_expr (dump_file, ref, TDF_TREE);
574 fprintf (dump_file,":");
c3284718 575 dump_mem_details (dump_file, base, step, delta, write_p);
a5497b12
VK
576 fprintf (dump_file,
577 "Not prefetching, ignoring %p due to "
578 "loop variant step\n",
579 (void *) ref);
580 }
581 return false;
582 }
583 }
584 }
50814135 585
b076a3fd
ZD
586 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
587 are integer constants. */
588 agrp = find_or_create_group (refs, base, step);
589 record_ref (agrp, stmt, ref, delta, write_p);
79f5e442
ZD
590
591 return true;
b076a3fd
ZD
592}
593
79f5e442
ZD
594/* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
595 true if there are no other memory references inside the loop. */
b076a3fd
ZD
596
597static struct mem_ref_group *
db34470d 598gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
b076a3fd
ZD
599{
600 basic_block *body = get_loop_body_in_dom_order (loop);
601 basic_block bb;
602 unsigned i;
726a989a
RB
603 gimple_stmt_iterator bsi;
604 gimple stmt;
605 tree lhs, rhs;
b076a3fd
ZD
606 struct mem_ref_group *refs = NULL;
607
79f5e442 608 *no_other_refs = true;
db34470d 609 *ref_count = 0;
79f5e442 610
b076a3fd
ZD
611 /* Scan the loop body in order, so that the former references precede the
612 later ones. */
613 for (i = 0; i < loop->num_nodes; i++)
614 {
615 bb = body[i];
616 if (bb->loop_father != loop)
617 continue;
618
726a989a 619 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
b076a3fd 620 {
726a989a 621 stmt = gsi_stmt (bsi);
79f5e442 622
726a989a 623 if (gimple_code (stmt) != GIMPLE_ASSIGN)
79f5e442 624 {
5006671f 625 if (gimple_vuse (stmt)
726a989a
RB
626 || (is_gimple_call (stmt)
627 && !(gimple_call_flags (stmt) & ECF_CONST)))
79f5e442
ZD
628 *no_other_refs = false;
629 continue;
630 }
b076a3fd 631
726a989a
RB
632 lhs = gimple_assign_lhs (stmt);
633 rhs = gimple_assign_rhs1 (stmt);
b076a3fd
ZD
634
635 if (REFERENCE_CLASS_P (rhs))
db34470d 636 {
79f5e442
ZD
637 *no_other_refs &= gather_memory_references_ref (loop, &refs,
638 rhs, false, stmt);
db34470d
GS
639 *ref_count += 1;
640 }
b076a3fd 641 if (REFERENCE_CLASS_P (lhs))
db34470d 642 {
79f5e442
ZD
643 *no_other_refs &= gather_memory_references_ref (loop, &refs,
644 lhs, true, stmt);
db34470d
GS
645 *ref_count += 1;
646 }
b076a3fd
ZD
647 }
648 }
649 free (body);
650
651 return refs;
652}
653
654/* Prune the prefetch candidate REF using the self-reuse. */
655
656static void
657prune_ref_by_self_reuse (struct mem_ref *ref)
658{
81f32326
CB
659 HOST_WIDE_INT step;
660 bool backward;
661
662 /* If the step size is non constant, we cannot calculate prefetch_mod. */
663 if (!cst_and_fits_in_hwi (ref->group->step))
664 return;
665
666 step = int_cst_value (ref->group->step);
667
668 backward = step < 0;
b076a3fd
ZD
669
670 if (step == 0)
671 {
672 /* Prefetch references to invariant address just once. */
673 ref->prefetch_before = 1;
674 return;
675 }
676
677 if (backward)
678 step = -step;
679
680 if (step > PREFETCH_BLOCK)
681 return;
682
683 if ((backward && HAVE_BACKWARD_PREFETCH)
684 || (!backward && HAVE_FORWARD_PREFETCH))
685 {
686 ref->prefetch_before = 1;
687 return;
688 }
689
690 ref->prefetch_mod = PREFETCH_BLOCK / step;
691}
692
693/* Divides X by BY, rounding down. */
694
695static HOST_WIDE_INT
696ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
697{
698 gcc_assert (by > 0);
699
700 if (x >= 0)
701 return x / by;
702 else
703 return (x + by - 1) / by;
704}
705
b8698a0f
L
706/* Given a CACHE_LINE_SIZE and two inductive memory references
707 with a common STEP greater than CACHE_LINE_SIZE and an address
708 difference DELTA, compute the probability that they will fall
14e444c3
CF
709 in different cache lines. Return true if the computed miss rate
710 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
711 number of distinct iterations after which the pattern repeats itself.
2c6dd136
GS
712 ALIGN_UNIT is the unit of alignment in bytes. */
713
14e444c3
CF
714static bool
715is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
2c6dd136
GS
716 HOST_WIDE_INT step, HOST_WIDE_INT delta,
717 unsigned HOST_WIDE_INT distinct_iters,
718 int align_unit)
719{
720 unsigned align, iter;
14e444c3 721 int total_positions, miss_positions, max_allowed_miss_positions;
2c6dd136
GS
722 int address1, address2, cache_line1, cache_line2;
723
a245c04b
CF
724 /* It always misses if delta is greater than or equal to the cache
725 line size. */
14e444c3
CF
726 if (delta >= (HOST_WIDE_INT) cache_line_size)
727 return false;
a245c04b 728
2c6dd136 729 miss_positions = 0;
14e444c3
CF
730 total_positions = (cache_line_size / align_unit) * distinct_iters;
731 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
b8698a0f 732
2c6dd136
GS
733 /* Iterate through all possible alignments of the first
734 memory reference within its cache line. */
735 for (align = 0; align < cache_line_size; align += align_unit)
736
737 /* Iterate through all distinct iterations. */
738 for (iter = 0; iter < distinct_iters; iter++)
739 {
740 address1 = align + step * iter;
741 address2 = address1 + delta;
742 cache_line1 = address1 / cache_line_size;
743 cache_line2 = address2 / cache_line_size;
2c6dd136 744 if (cache_line1 != cache_line2)
14e444c3
CF
745 {
746 miss_positions += 1;
747 if (miss_positions > max_allowed_miss_positions)
748 return false;
749 }
2c6dd136 750 }
14e444c3 751 return true;
2c6dd136
GS
752}
753
b076a3fd
ZD
754/* Prune the prefetch candidate REF using the reuse with BY.
755 If BY_IS_BEFORE is true, BY is before REF in the loop. */
756
757static void
758prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
759 bool by_is_before)
760{
81f32326
CB
761 HOST_WIDE_INT step;
762 bool backward;
b076a3fd
ZD
763 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
764 HOST_WIDE_INT delta = delta_b - delta_r;
765 HOST_WIDE_INT hit_from;
766 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
2c6dd136
GS
767 HOST_WIDE_INT reduced_step;
768 unsigned HOST_WIDE_INT reduced_prefetch_block;
769 tree ref_type;
770 int align_unit;
b076a3fd 771
81f32326
CB
772 /* If the step is non constant we cannot calculate prefetch_before. */
773 if (!cst_and_fits_in_hwi (ref->group->step)) {
774 return;
775 }
776
777 step = int_cst_value (ref->group->step);
778
779 backward = step < 0;
780
781
b076a3fd
ZD
782 if (delta == 0)
783 {
784 /* If the references has the same address, only prefetch the
785 former. */
786 if (by_is_before)
787 ref->prefetch_before = 0;
b8698a0f 788
b076a3fd
ZD
789 return;
790 }
791
792 if (!step)
793 {
794 /* If the reference addresses are invariant and fall into the
795 same cache line, prefetch just the first one. */
796 if (!by_is_before)
797 return;
798
799 if (ddown (ref->delta, PREFETCH_BLOCK)
800 != ddown (by->delta, PREFETCH_BLOCK))
801 return;
802
803 ref->prefetch_before = 0;
804 return;
805 }
806
807 /* Only prune the reference that is behind in the array. */
808 if (backward)
809 {
810 if (delta > 0)
811 return;
812
813 /* Transform the data so that we may assume that the accesses
814 are forward. */
815 delta = - delta;
816 step = -step;
817 delta_r = PREFETCH_BLOCK - 1 - delta_r;
818 delta_b = PREFETCH_BLOCK - 1 - delta_b;
819 }
820 else
821 {
822 if (delta < 0)
823 return;
824 }
825
826 /* Check whether the two references are likely to hit the same cache
827 line, and how distant the iterations in that it occurs are from
828 each other. */
829
830 if (step <= PREFETCH_BLOCK)
831 {
832 /* The accesses are sure to meet. Let us check when. */
833 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
834 prefetch_before = (hit_from - delta_r + step - 1) / step;
835
57762e97 836 /* Do not reduce prefetch_before if we meet beyond cache size. */
4c9cf7af 837 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
57762e97 838 prefetch_before = PREFETCH_ALL;
b076a3fd
ZD
839 if (prefetch_before < ref->prefetch_before)
840 ref->prefetch_before = prefetch_before;
841
842 return;
843 }
844
b8698a0f 845 /* A more complicated case with step > prefetch_block. First reduce
2c6dd136 846 the ratio between the step and the cache line size to its simplest
b8698a0f
L
847 terms. The resulting denominator will then represent the number of
848 distinct iterations after which each address will go back to its
849 initial location within the cache line. This computation assumes
2c6dd136 850 that PREFETCH_BLOCK is a power of two. */
b076a3fd 851 prefetch_block = PREFETCH_BLOCK;
2c6dd136
GS
852 reduced_prefetch_block = prefetch_block;
853 reduced_step = step;
854 while ((reduced_step & 1) == 0
855 && reduced_prefetch_block > 1)
b076a3fd 856 {
2c6dd136
GS
857 reduced_step >>= 1;
858 reduced_prefetch_block >>= 1;
b076a3fd
ZD
859 }
860
b076a3fd
ZD
861 prefetch_before = delta / step;
862 delta %= step;
2c6dd136
GS
863 ref_type = TREE_TYPE (ref->mem);
864 align_unit = TYPE_ALIGN (ref_type) / 8;
14e444c3
CF
865 if (is_miss_rate_acceptable (prefetch_block, step, delta,
866 reduced_prefetch_block, align_unit))
b076a3fd 867 {
57762e97
CB
868 /* Do not reduce prefetch_before if we meet beyond cache size. */
869 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
870 prefetch_before = PREFETCH_ALL;
b076a3fd
ZD
871 if (prefetch_before < ref->prefetch_before)
872 ref->prefetch_before = prefetch_before;
873
874 return;
875 }
876
877 /* Try also the following iteration. */
878 prefetch_before++;
879 delta = step - delta;
14e444c3
CF
880 if (is_miss_rate_acceptable (prefetch_block, step, delta,
881 reduced_prefetch_block, align_unit))
b076a3fd
ZD
882 {
883 if (prefetch_before < ref->prefetch_before)
884 ref->prefetch_before = prefetch_before;
885
886 return;
887 }
888
889 /* The ref probably does not reuse by. */
890 return;
891}
892
893/* Prune the prefetch candidate REF using the reuses with other references
894 in REFS. */
895
896static void
897prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
898{
899 struct mem_ref *prune_by;
900 bool before = true;
901
902 prune_ref_by_self_reuse (ref);
903
904 for (prune_by = refs; prune_by; prune_by = prune_by->next)
905 {
906 if (prune_by == ref)
907 {
908 before = false;
909 continue;
910 }
911
912 if (!WRITE_CAN_USE_READ_PREFETCH
913 && ref->write_p
914 && !prune_by->write_p)
915 continue;
916 if (!READ_CAN_USE_WRITE_PREFETCH
917 && !ref->write_p
918 && prune_by->write_p)
919 continue;
920
921 prune_ref_by_group_reuse (ref, prune_by, before);
922 }
923}
924
925/* Prune the prefetch candidates in GROUP using the reuse analysis. */
926
927static void
928prune_group_by_reuse (struct mem_ref_group *group)
929{
930 struct mem_ref *ref_pruned;
931
932 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
933 {
934 prune_ref_by_reuse (ref_pruned, group->refs);
935
936 if (dump_file && (dump_flags & TDF_DETAILS))
937 {
938 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
939
940 if (ref_pruned->prefetch_before == PREFETCH_ALL
941 && ref_pruned->prefetch_mod == 1)
942 fprintf (dump_file, " no restrictions");
943 else if (ref_pruned->prefetch_before == 0)
944 fprintf (dump_file, " do not prefetch");
945 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
946 fprintf (dump_file, " prefetch once");
947 else
948 {
949 if (ref_pruned->prefetch_before != PREFETCH_ALL)
950 {
951 fprintf (dump_file, " prefetch before ");
952 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
953 ref_pruned->prefetch_before);
954 }
955 if (ref_pruned->prefetch_mod != 1)
956 {
957 fprintf (dump_file, " prefetch mod ");
958 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
959 ref_pruned->prefetch_mod);
960 }
961 }
962 fprintf (dump_file, "\n");
963 }
964 }
965}
966
967/* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
968
969static void
970prune_by_reuse (struct mem_ref_group *groups)
971{
972 for (; groups; groups = groups->next)
973 prune_group_by_reuse (groups);
974}
975
976/* Returns true if we should issue prefetch for REF. */
977
978static bool
979should_issue_prefetch_p (struct mem_ref *ref)
980{
981 /* For now do not issue prefetches for only first few of the
982 iterations. */
983 if (ref->prefetch_before != PREFETCH_ALL)
a8beb3a7
CB
984 {
985 if (dump_file && (dump_flags & TDF_DETAILS))
986 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
987 (void *) ref);
988 return false;
989 }
b076a3fd 990
79f5e442
ZD
991 /* Do not prefetch nontemporal stores. */
992 if (ref->storent_p)
a8beb3a7
CB
993 {
994 if (dump_file && (dump_flags & TDF_DETAILS))
995 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
996 return false;
997 }
79f5e442 998
b076a3fd
ZD
999 return true;
1000}
1001
1002/* Decide which of the prefetch candidates in GROUPS to prefetch.
1003 AHEAD is the number of iterations to prefetch ahead (which corresponds
1004 to the number of simultaneous instances of one prefetch running at a
1005 time). UNROLL_FACTOR is the factor by that the loop is going to be
1006 unrolled. Returns true if there is anything to prefetch. */
1007
1008static bool
1009schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1010 unsigned ahead)
1011{
911b3fdb
ZD
1012 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1013 unsigned slots_per_prefetch;
b076a3fd
ZD
1014 struct mem_ref *ref;
1015 bool any = false;
1016
911b3fdb
ZD
1017 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1018 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
b076a3fd 1019
911b3fdb
ZD
1020 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1021 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1022 it will need a prefetch slot. */
1023 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
b076a3fd 1024 if (dump_file && (dump_flags & TDF_DETAILS))
911b3fdb
ZD
1025 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1026 slots_per_prefetch);
b076a3fd
ZD
1027
1028 /* For now we just take memory references one by one and issue
1029 prefetches for as many as possible. The groups are sorted
1030 starting with the largest step, since the references with
c0220ea4 1031 large step are more likely to cause many cache misses. */
b076a3fd
ZD
1032
1033 for (; groups; groups = groups->next)
1034 for (ref = groups->refs; ref; ref = ref->next)
1035 {
1036 if (!should_issue_prefetch_p (ref))
1037 continue;
1038
8532678c
CF
1039 /* The loop is far from being sufficiently unrolled for this
1040 prefetch. Do not generate prefetch to avoid many redudant
1041 prefetches. */
1042 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1043 continue;
1044
911b3fdb
ZD
1045 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1046 and we unroll the loop UNROLL_FACTOR times, we need to insert
1047 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1048 iteration. */
b076a3fd
ZD
1049 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1050 / ref->prefetch_mod);
911b3fdb
ZD
1051 prefetch_slots = n_prefetches * slots_per_prefetch;
1052
1053 /* If more than half of the prefetches would be lost anyway, do not
1054 issue the prefetch. */
1055 if (2 * remaining_prefetch_slots < prefetch_slots)
1056 continue;
1057
1058 ref->issue_prefetch_p = true;
b076a3fd 1059
911b3fdb
ZD
1060 if (remaining_prefetch_slots <= prefetch_slots)
1061 return true;
1062 remaining_prefetch_slots -= prefetch_slots;
b076a3fd
ZD
1063 any = true;
1064 }
1065
1066 return any;
1067}
1068
d5058523
CF
1069/* Return TRUE if no prefetch is going to be generated in the given
1070 GROUPS. */
1071
1072static bool
1073nothing_to_prefetch_p (struct mem_ref_group *groups)
1074{
1075 struct mem_ref *ref;
1076
1077 for (; groups; groups = groups->next)
1078 for (ref = groups->refs; ref; ref = ref->next)
1079 if (should_issue_prefetch_p (ref))
1080 return false;
1081
1082 return true;
1083}
1084
1085/* Estimate the number of prefetches in the given GROUPS.
1086 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
b076a3fd 1087
db34470d 1088static int
d5058523 1089estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
b076a3fd
ZD
1090{
1091 struct mem_ref *ref;
d5058523 1092 unsigned n_prefetches;
db34470d 1093 int prefetch_count = 0;
b076a3fd
ZD
1094
1095 for (; groups; groups = groups->next)
1096 for (ref = groups->refs; ref; ref = ref->next)
1097 if (should_issue_prefetch_p (ref))
d5058523
CF
1098 {
1099 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1100 / ref->prefetch_mod);
1101 prefetch_count += n_prefetches;
1102 }
b076a3fd 1103
db34470d 1104 return prefetch_count;
b076a3fd
ZD
1105}
1106
1107/* Issue prefetches for the reference REF into loop as decided before.
1108 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
917f1b7e 1109 is the factor by which LOOP was unrolled. */
b076a3fd
ZD
1110
1111static void
1112issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1113{
1114 HOST_WIDE_INT delta;
81f32326 1115 tree addr, addr_base, write_p, local, forward;
726a989a
RB
1116 gimple prefetch;
1117 gimple_stmt_iterator bsi;
b076a3fd 1118 unsigned n_prefetches, ap;
5417e022 1119 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
b076a3fd
ZD
1120
1121 if (dump_file && (dump_flags & TDF_DETAILS))
5417e022
ZD
1122 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1123 nontemporal ? " nontemporal" : "",
1124 (void *) ref);
b076a3fd 1125
726a989a 1126 bsi = gsi_for_stmt (ref->stmt);
b076a3fd
ZD
1127
1128 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1129 / ref->prefetch_mod);
1130 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
726a989a
RB
1131 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1132 true, NULL, true, GSI_SAME_STMT);
911b3fdb 1133 write_p = ref->write_p ? integer_one_node : integer_zero_node;
9a9d280e 1134 local = nontemporal ? integer_zero_node : integer_three_node;
b076a3fd
ZD
1135
1136 for (ap = 0; ap < n_prefetches; ap++)
1137 {
81f32326
CB
1138 if (cst_and_fits_in_hwi (ref->group->step))
1139 {
1140 /* Determine the address to prefetch. */
1141 delta = (ahead + ap * ref->prefetch_mod) *
1142 int_cst_value (ref->group->step);
5d49b6a7 1143 addr = fold_build_pointer_plus_hwi (addr_base, delta);
81f32326
CB
1144 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1145 true, GSI_SAME_STMT);
1146 }
1147 else
1148 {
1149 /* The step size is non-constant but loop-invariant. We use the
1150 heuristic to simply prefetch ahead iterations ahead. */
1151 forward = fold_build2 (MULT_EXPR, sizetype,
1152 fold_convert (sizetype, ref->group->step),
1153 fold_convert (sizetype, size_int (ahead)));
5d49b6a7 1154 addr = fold_build_pointer_plus (addr_base, forward);
81f32326
CB
1155 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1156 NULL, true, GSI_SAME_STMT);
1157 }
b076a3fd 1158 /* Create the prefetch instruction. */
e79983f4 1159 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
726a989a
RB
1160 3, addr, write_p, local);
1161 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
b076a3fd
ZD
1162 }
1163}
1164
1165/* Issue prefetches for the references in GROUPS into loop as decided before.
1166 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1167 factor by that LOOP was unrolled. */
1168
1169static void
1170issue_prefetches (struct mem_ref_group *groups,
1171 unsigned unroll_factor, unsigned ahead)
1172{
1173 struct mem_ref *ref;
1174
1175 for (; groups; groups = groups->next)
1176 for (ref = groups->refs; ref; ref = ref->next)
1177 if (ref->issue_prefetch_p)
1178 issue_prefetch_ref (ref, unroll_factor, ahead);
1179}
1180
79f5e442
ZD
1181/* Returns true if REF is a memory write for that a nontemporal store insn
1182 can be used. */
1183
1184static bool
1185nontemporal_store_p (struct mem_ref *ref)
1186{
1187 enum machine_mode mode;
1188 enum insn_code code;
1189
1190 /* REF must be a write that is not reused. We require it to be independent
1191 on all other memory references in the loop, as the nontemporal stores may
1192 be reordered with respect to other memory references. */
1193 if (!ref->write_p
1194 || !ref->independent_p
1195 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1196 return false;
1197
1198 /* Check that we have the storent instruction for the mode. */
1199 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1200 if (mode == BLKmode)
1201 return false;
1202
947131ba 1203 code = optab_handler (storent_optab, mode);
79f5e442
ZD
1204 return code != CODE_FOR_nothing;
1205}
1206
1207/* If REF is a nontemporal store, we mark the corresponding modify statement
1208 and return true. Otherwise, we return false. */
1209
1210static bool
1211mark_nontemporal_store (struct mem_ref *ref)
1212{
1213 if (!nontemporal_store_p (ref))
1214 return false;
1215
1216 if (dump_file && (dump_flags & TDF_DETAILS))
1217 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1218 (void *) ref);
1219
726a989a 1220 gimple_assign_set_nontemporal_move (ref->stmt, true);
79f5e442
ZD
1221 ref->storent_p = true;
1222
1223 return true;
1224}
1225
1226/* Issue a memory fence instruction after LOOP. */
1227
1228static void
1229emit_mfence_after_loop (struct loop *loop)
1230{
9771b263 1231 vec<edge> exits = get_loop_exit_edges (loop);
79f5e442 1232 edge exit;
726a989a
RB
1233 gimple call;
1234 gimple_stmt_iterator bsi;
79f5e442
ZD
1235 unsigned i;
1236
9771b263 1237 FOR_EACH_VEC_ELT (exits, i, exit)
79f5e442 1238 {
726a989a 1239 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
79f5e442
ZD
1240
1241 if (!single_pred_p (exit->dest)
1242 /* If possible, we prefer not to insert the fence on other paths
1243 in cfg. */
1244 && !(exit->flags & EDGE_ABNORMAL))
1245 split_loop_exit_edge (exit);
726a989a 1246 bsi = gsi_after_labels (exit->dest);
79f5e442 1247
726a989a 1248 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
79f5e442
ZD
1249 }
1250
9771b263 1251 exits.release ();
79f5e442
ZD
1252 update_ssa (TODO_update_ssa_only_virtuals);
1253}
1254
1255/* Returns true if we can use storent in loop, false otherwise. */
1256
1257static bool
1258may_use_storent_in_loop_p (struct loop *loop)
1259{
1260 bool ret = true;
1261
1262 if (loop->inner != NULL)
1263 return false;
1264
1265 /* If we must issue a mfence insn after using storent, check that there
1266 is a suitable place for it at each of the loop exits. */
1267 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1268 {
9771b263 1269 vec<edge> exits = get_loop_exit_edges (loop);
79f5e442
ZD
1270 unsigned i;
1271 edge exit;
1272
9771b263 1273 FOR_EACH_VEC_ELT (exits, i, exit)
79f5e442
ZD
1274 if ((exit->flags & EDGE_ABNORMAL)
1275 && exit->dest == EXIT_BLOCK_PTR)
1276 ret = false;
1277
9771b263 1278 exits.release ();
79f5e442
ZD
1279 }
1280
1281 return ret;
1282}
1283
1284/* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1285 references in the loop. */
1286
1287static void
1288mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1289{
1290 struct mem_ref *ref;
1291 bool any = false;
1292
1293 if (!may_use_storent_in_loop_p (loop))
1294 return;
1295
1296 for (; groups; groups = groups->next)
1297 for (ref = groups->refs; ref; ref = ref->next)
1298 any |= mark_nontemporal_store (ref);
1299
1300 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1301 emit_mfence_after_loop (loop);
1302}
1303
b076a3fd
ZD
1304/* Determines whether we can profitably unroll LOOP FACTOR times, and if
1305 this is the case, fill in DESC by the description of number of
1306 iterations. */
1307
1308static bool
1309should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1310 unsigned factor)
1311{
1312 if (!can_unroll_loop_p (loop, factor, desc))
1313 return false;
1314
1315 /* We only consider loops without control flow for unrolling. This is not
1316 a hard restriction -- tree_unroll_loop works with arbitrary loops
1317 as well; but the unrolling/prefetching is usually more profitable for
1318 loops consisting of a single basic block, and we want to limit the
1319 code growth. */
1320 if (loop->num_nodes > 2)
1321 return false;
1322
1323 return true;
1324}
1325
1326/* Determine the coefficient by that unroll LOOP, from the information
1327 contained in the list of memory references REFS. Description of
2711355f
ZD
1328 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1329 insns of the LOOP. EST_NITER is the estimated number of iterations of
1330 the loop, or -1 if no estimate is available. */
b076a3fd
ZD
1331
1332static unsigned
1333determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
2711355f
ZD
1334 unsigned ninsns, struct tree_niter_desc *desc,
1335 HOST_WIDE_INT est_niter)
b076a3fd 1336{
911b3fdb
ZD
1337 unsigned upper_bound;
1338 unsigned nfactor, factor, mod_constraint;
b076a3fd
ZD
1339 struct mem_ref_group *agp;
1340 struct mem_ref *ref;
1341
911b3fdb
ZD
1342 /* First check whether the loop is not too large to unroll. We ignore
1343 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1344 from unrolling them enough to make exactly one cache line covered by each
1345 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1346 us from unrolling the loops too many times in cases where we only expect
1347 gains from better scheduling and decreasing loop overhead, which is not
1348 the case here. */
1349 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
2711355f
ZD
1350
1351 /* If we unrolled the loop more times than it iterates, the unrolled version
1352 of the loop would be never entered. */
1353 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1354 upper_bound = est_niter;
1355
911b3fdb 1356 if (upper_bound <= 1)
b076a3fd
ZD
1357 return 1;
1358
911b3fdb
ZD
1359 /* Choose the factor so that we may prefetch each cache just once,
1360 but bound the unrolling by UPPER_BOUND. */
1361 factor = 1;
b076a3fd
ZD
1362 for (agp = refs; agp; agp = agp->next)
1363 for (ref = agp->refs; ref; ref = ref->next)
911b3fdb
ZD
1364 if (should_issue_prefetch_p (ref))
1365 {
1366 mod_constraint = ref->prefetch_mod;
1367 nfactor = least_common_multiple (mod_constraint, factor);
1368 if (nfactor <= upper_bound)
1369 factor = nfactor;
1370 }
b076a3fd
ZD
1371
1372 if (!should_unroll_loop_p (loop, desc, factor))
1373 return 1;
1374
1375 return factor;
1376}
1377
5417e022
ZD
1378/* Returns the total volume of the memory references REFS, taking into account
1379 reuses in the innermost loop and cache line size. TODO -- we should also
1380 take into account reuses across the iterations of the loops in the loop
1381 nest. */
1382
1383static unsigned
1384volume_of_references (struct mem_ref_group *refs)
1385{
1386 unsigned volume = 0;
1387 struct mem_ref_group *gr;
1388 struct mem_ref *ref;
1389
1390 for (gr = refs; gr; gr = gr->next)
1391 for (ref = gr->refs; ref; ref = ref->next)
1392 {
1393 /* Almost always reuses another value? */
1394 if (ref->prefetch_before != PREFETCH_ALL)
1395 continue;
1396
1397 /* If several iterations access the same cache line, use the size of
1398 the line divided by this number. Otherwise, a cache line is
1399 accessed in each iteration. TODO -- in the latter case, we should
1400 take the size of the reference into account, rounding it up on cache
1401 line size multiple. */
1402 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1403 }
1404 return volume;
1405}
1406
1407/* Returns the volume of memory references accessed across VEC iterations of
1408 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1409 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1410
1411static unsigned
1412volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1413{
1414 unsigned i;
1415
1416 for (i = 0; i < n; i++)
1417 if (vec[i] != 0)
1418 break;
1419
1420 if (i == n)
1421 return 0;
1422
1423 gcc_assert (vec[i] > 0);
1424
1425 /* We ignore the parts of the distance vector in subloops, since usually
1426 the numbers of iterations are much smaller. */
1427 return loop_sizes[i] * vec[i];
1428}
1429
1430/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1431 at the position corresponding to the loop of the step. N is the depth
1432 of the considered loop nest, and, LOOP is its innermost loop. */
1433
1434static void
1435add_subscript_strides (tree access_fn, unsigned stride,
1436 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1437{
1438 struct loop *aloop;
1439 tree step;
1440 HOST_WIDE_INT astep;
1441 unsigned min_depth = loop_depth (loop) - n;
1442
1443 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1444 {
1445 aloop = get_chrec_loop (access_fn);
1446 step = CHREC_RIGHT (access_fn);
1447 access_fn = CHREC_LEFT (access_fn);
1448
1449 if ((unsigned) loop_depth (aloop) <= min_depth)
1450 continue;
1451
1452 if (host_integerp (step, 0))
1453 astep = tree_low_cst (step, 0);
1454 else
1455 astep = L1_CACHE_LINE_SIZE;
1456
1457 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1458
1459 }
1460}
1461
1462/* Returns the volume of memory references accessed between two consecutive
1463 self-reuses of the reference DR. We consider the subscripts of DR in N
1464 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1465 loops. LOOP is the innermost loop of the current loop nest. */
1466
1467static unsigned
1468self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1469 struct loop *loop)
1470{
1471 tree stride, access_fn;
1472 HOST_WIDE_INT *strides, astride;
9771b263 1473 vec<tree> access_fns;
5417e022
ZD
1474 tree ref = DR_REF (dr);
1475 unsigned i, ret = ~0u;
1476
1477 /* In the following example:
1478
1479 for (i = 0; i < N; i++)
1480 for (j = 0; j < N; j++)
1481 use (a[j][i]);
1482 the same cache line is accessed each N steps (except if the change from
1483 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1484 we cannot rely purely on the results of the data dependence analysis.
1485
1486 Instead, we compute the stride of the reference in each loop, and consider
1487 the innermost loop in that the stride is less than cache size. */
1488
1489 strides = XCNEWVEC (HOST_WIDE_INT, n);
1490 access_fns = DR_ACCESS_FNS (dr);
1491
9771b263 1492 FOR_EACH_VEC_ELT (access_fns, i, access_fn)
5417e022
ZD
1493 {
1494 /* Keep track of the reference corresponding to the subscript, so that we
1495 know its stride. */
1496 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1497 ref = TREE_OPERAND (ref, 0);
b8698a0f 1498
5417e022
ZD
1499 if (TREE_CODE (ref) == ARRAY_REF)
1500 {
1501 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1502 if (host_integerp (stride, 1))
1503 astride = tree_low_cst (stride, 1);
1504 else
1505 astride = L1_CACHE_LINE_SIZE;
1506
1507 ref = TREE_OPERAND (ref, 0);
1508 }
1509 else
1510 astride = 1;
1511
1512 add_subscript_strides (access_fn, astride, strides, n, loop);
1513 }
1514
1515 for (i = n; i-- > 0; )
1516 {
1517 unsigned HOST_WIDE_INT s;
1518
1519 s = strides[i] < 0 ? -strides[i] : strides[i];
1520
1521 if (s < (unsigned) L1_CACHE_LINE_SIZE
1522 && (loop_sizes[i]
1523 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1524 {
1525 ret = loop_sizes[i];
1526 break;
1527 }
1528 }
1529
1530 free (strides);
1531 return ret;
1532}
1533
1534/* Determines the distance till the first reuse of each reference in REFS
79f5e442 1535 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1e373390 1536 memory references in the loop. Return false if the analysis fails. */
5417e022 1537
1e373390 1538static bool
79f5e442
ZD
1539determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1540 bool no_other_refs)
5417e022
ZD
1541{
1542 struct loop *nest, *aloop;
6e1aa848
DN
1543 vec<data_reference_p> datarefs = vNULL;
1544 vec<ddr_p> dependences = vNULL;
5417e022 1545 struct mem_ref_group *gr;
79f5e442 1546 struct mem_ref *ref, *refb;
6e1aa848 1547 vec<loop_p> vloops = vNULL;
5417e022
ZD
1548 unsigned *loop_data_size;
1549 unsigned i, j, n;
1550 unsigned volume, dist, adist;
1551 HOST_WIDE_INT vol;
1552 data_reference_p dr;
1553 ddr_p dep;
1554
1555 if (loop->inner)
1e373390 1556 return true;
5417e022
ZD
1557
1558 /* Find the outermost loop of the loop nest of loop (we require that
1559 there are no sibling loops inside the nest). */
1560 nest = loop;
1561 while (1)
1562 {
1563 aloop = loop_outer (nest);
1564
1565 if (aloop == current_loops->tree_root
1566 || aloop->inner->next)
1567 break;
1568
1569 nest = aloop;
1570 }
1571
1572 /* For each loop, determine the amount of data accessed in each iteration.
1573 We use this to estimate whether the reference is evicted from the
1574 cache before its reuse. */
1575 find_loop_nest (nest, &vloops);
9771b263 1576 n = vloops.length ();
5417e022
ZD
1577 loop_data_size = XNEWVEC (unsigned, n);
1578 volume = volume_of_references (refs);
1579 i = n;
1580 while (i-- != 0)
1581 {
1582 loop_data_size[i] = volume;
1583 /* Bound the volume by the L2 cache size, since above this bound,
1584 all dependence distances are equivalent. */
1585 if (volume > L2_CACHE_SIZE_BYTES)
1586 continue;
1587
9771b263 1588 aloop = vloops[i];
652c4c71 1589 vol = estimated_stmt_executions_int (aloop);
e5b332cd 1590 if (vol == -1)
5417e022
ZD
1591 vol = expected_loop_iterations (aloop);
1592 volume *= vol;
1593 }
1594
1595 /* Prepare the references in the form suitable for data dependence
0d52bcc1 1596 analysis. We ignore unanalyzable data references (the results
5417e022
ZD
1597 are used just as a heuristics to estimate temporality of the
1598 references, hence we do not need to worry about correctness). */
1599 for (gr = refs; gr; gr = gr->next)
1600 for (ref = gr->refs; ref; ref = ref->next)
1601 {
5c640e29
SP
1602 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1603 ref->mem, ref->stmt, !ref->write_p);
5417e022
ZD
1604
1605 if (dr)
1606 {
1607 ref->reuse_distance = volume;
1608 dr->aux = ref;
9771b263 1609 datarefs.safe_push (dr);
5417e022 1610 }
79f5e442
ZD
1611 else
1612 no_other_refs = false;
5417e022
ZD
1613 }
1614
9771b263 1615 FOR_EACH_VEC_ELT (datarefs, i, dr)
5417e022
ZD
1616 {
1617 dist = self_reuse_distance (dr, loop_data_size, n, loop);
3d9a9f94 1618 ref = (struct mem_ref *) dr->aux;
5417e022
ZD
1619 if (ref->reuse_distance > dist)
1620 ref->reuse_distance = dist;
79f5e442
ZD
1621
1622 if (no_other_refs)
1623 ref->independent_p = true;
5417e022
ZD
1624 }
1625
1e373390
RG
1626 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1627 return false;
5417e022 1628
9771b263 1629 FOR_EACH_VEC_ELT (dependences, i, dep)
5417e022
ZD
1630 {
1631 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1632 continue;
1633
3d9a9f94
KG
1634 ref = (struct mem_ref *) DDR_A (dep)->aux;
1635 refb = (struct mem_ref *) DDR_B (dep)->aux;
79f5e442 1636
5417e022
ZD
1637 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1638 || DDR_NUM_DIST_VECTS (dep) == 0)
1639 {
0d52bcc1 1640 /* If the dependence cannot be analyzed, assume that there might be
5417e022
ZD
1641 a reuse. */
1642 dist = 0;
b8698a0f 1643
79f5e442
ZD
1644 ref->independent_p = false;
1645 refb->independent_p = false;
5417e022
ZD
1646 }
1647 else
1648 {
0d52bcc1 1649 /* The distance vectors are normalized to be always lexicographically
5417e022
ZD
1650 positive, hence we cannot tell just from them whether DDR_A comes
1651 before DDR_B or vice versa. However, it is not important,
1652 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1653 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1654 in cache (and marking it as nontemporal would not affect
1655 anything). */
1656
1657 dist = volume;
1658 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1659 {
1660 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1661 loop_data_size, n);
1662
79f5e442
ZD
1663 /* If this is a dependence in the innermost loop (i.e., the
1664 distances in all superloops are zero) and it is not
1665 the trivial self-dependence with distance zero, record that
1666 the references are not completely independent. */
1667 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1668 && (ref != refb
1669 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1670 {
1671 ref->independent_p = false;
1672 refb->independent_p = false;
1673 }
1674
5417e022
ZD
1675 /* Ignore accesses closer than
1676 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1677 so that we use nontemporal prefetches e.g. if single memory
1678 location is accessed several times in a single iteration of
1679 the loop. */
1680 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1681 continue;
1682
1683 if (adist < dist)
1684 dist = adist;
1685 }
1686 }
1687
5417e022
ZD
1688 if (ref->reuse_distance > dist)
1689 ref->reuse_distance = dist;
79f5e442
ZD
1690 if (refb->reuse_distance > dist)
1691 refb->reuse_distance = dist;
5417e022
ZD
1692 }
1693
1694 free_dependence_relations (dependences);
1695 free_data_refs (datarefs);
1696 free (loop_data_size);
1697
1698 if (dump_file && (dump_flags & TDF_DETAILS))
1699 {
1700 fprintf (dump_file, "Reuse distances:\n");
1701 for (gr = refs; gr; gr = gr->next)
1702 for (ref = gr->refs; ref; ref = ref->next)
1703 fprintf (dump_file, " ref %p distance %u\n",
1704 (void *) ref, ref->reuse_distance);
1705 }
1e373390
RG
1706
1707 return true;
5417e022
ZD
1708}
1709
0bbe50f6
CF
1710/* Determine whether or not the trip count to ahead ratio is too small based
1711 on prefitablility consideration.
db34470d 1712 AHEAD: the iteration ahead distance,
0bbe50f6
CF
1713 EST_NITER: the estimated trip count. */
1714
1715static bool
1716trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1717{
1718 /* Assume trip count to ahead ratio is big enough if the trip count could not
1719 be estimated at compile time. */
1720 if (est_niter < 0)
1721 return false;
1722
1723 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1724 {
1725 if (dump_file && (dump_flags & TDF_DETAILS))
1726 fprintf (dump_file,
1727 "Not prefetching -- loop estimated to roll only %d times\n",
1728 (int) est_niter);
1729 return true;
1730 }
1731
1732 return false;
1733}
1734
1735/* Determine whether or not the number of memory references in the loop is
1736 reasonable based on the profitablity and compilation time considerations.
db34470d 1737 NINSNS: estimated number of instructions in the loop,
db34470d
GS
1738 MEM_REF_COUNT: total number of memory references in the loop. */
1739
b8698a0f 1740static bool
0bbe50f6 1741mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
db34470d 1742{
0bbe50f6 1743 int insn_to_mem_ratio;
db34470d
GS
1744
1745 if (mem_ref_count == 0)
1746 return false;
1747
0bbe50f6
CF
1748 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1749 (compute_all_dependences) have high costs based on quadratic complexity.
1750 To avoid huge compilation time, we give up prefetching if mem_ref_count
1751 is too large. */
1752 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1753 return false;
1754
b8698a0f
L
1755 /* Prefetching improves performance by overlapping cache missing
1756 memory accesses with CPU operations. If the loop does not have
1757 enough CPU operations to overlap with memory operations, prefetching
1758 won't give a significant benefit. One approximate way of checking
1759 this is to require the ratio of instructions to memory references to
db34470d
GS
1760 be above a certain limit. This approximation works well in practice.
1761 TODO: Implement a more precise computation by estimating the time
1762 for each CPU or memory op in the loop. Time estimates for memory ops
1763 should account for cache misses. */
b8698a0f 1764 insn_to_mem_ratio = ninsns / mem_ref_count;
db34470d
GS
1765
1766 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
55e5a2eb
CF
1767 {
1768 if (dump_file && (dump_flags & TDF_DETAILS))
1769 fprintf (dump_file,
1770 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1771 insn_to_mem_ratio);
1772 return false;
1773 }
db34470d 1774
0bbe50f6
CF
1775 return true;
1776}
1777
1778/* Determine whether or not the instruction to prefetch ratio in the loop is
1779 too small based on the profitablity consideration.
1780 NINSNS: estimated number of instructions in the loop,
1781 PREFETCH_COUNT: an estimate of the number of prefetches,
1782 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1783
1784static bool
1785insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1786 unsigned unroll_factor)
1787{
1788 int insn_to_prefetch_ratio;
1789
d3a9b459
CF
1790 /* Prefetching most likely causes performance degradation when the instruction
1791 to prefetch ratio is too small. Too many prefetch instructions in a loop
1792 may reduce the I-cache performance.
ccacf0e1
CF
1793 (unroll_factor * ninsns) is used to estimate the number of instructions in
1794 the unrolled loop. This implementation is a bit simplistic -- the number
1795 of issued prefetch instructions is also affected by unrolling. So,
1796 prefetch_mod and the unroll factor should be taken into account when
1797 determining prefetch_count. Also, the number of insns of the unrolled
1798 loop will usually be significantly smaller than the number of insns of the
1799 original loop * unroll_factor (at least the induction variable increases
1800 and the exit branches will get eliminated), so it might be better to use
1801 tree_estimate_loop_size + estimated_unrolled_size. */
d3a9b459
CF
1802 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1803 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
db34470d 1804 {
d3a9b459
CF
1805 if (dump_file && (dump_flags & TDF_DETAILS))
1806 fprintf (dump_file,
1807 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1808 insn_to_prefetch_ratio);
0bbe50f6 1809 return true;
db34470d 1810 }
b8698a0f 1811
0bbe50f6 1812 return false;
db34470d
GS
1813}
1814
1815
b076a3fd 1816/* Issue prefetch instructions for array references in LOOP. Returns
d73be268 1817 true if the LOOP was unrolled. */
b076a3fd
ZD
1818
1819static bool
d73be268 1820loop_prefetch_arrays (struct loop *loop)
b076a3fd
ZD
1821{
1822 struct mem_ref_group *refs;
2711355f
ZD
1823 unsigned ahead, ninsns, time, unroll_factor;
1824 HOST_WIDE_INT est_niter;
b076a3fd 1825 struct tree_niter_desc desc;
79f5e442 1826 bool unrolled = false, no_other_refs;
db34470d
GS
1827 unsigned prefetch_count;
1828 unsigned mem_ref_count;
b076a3fd 1829
efd8f750 1830 if (optimize_loop_nest_for_size_p (loop))
2732d767
ZD
1831 {
1832 if (dump_file && (dump_flags & TDF_DETAILS))
1833 fprintf (dump_file, " ignored (cold area)\n");
1834 return false;
1835 }
1836
0bbe50f6
CF
1837 /* FIXME: the time should be weighted by the probabilities of the blocks in
1838 the loop body. */
1839 time = tree_num_loop_insns (loop, &eni_time_weights);
1840 if (time == 0)
1841 return false;
1842
1843 ahead = (PREFETCH_LATENCY + time - 1) / time;
652c4c71 1844 est_niter = estimated_stmt_executions_int (loop);
e5b332cd
RG
1845 if (est_niter == -1)
1846 est_niter = max_stmt_executions_int (loop);
0bbe50f6
CF
1847
1848 /* Prefetching is not likely to be profitable if the trip count to ahead
1849 ratio is too small. */
1850 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1851 return false;
1852
1853 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1854
b076a3fd 1855 /* Step 1: gather the memory references. */
db34470d 1856 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
b076a3fd 1857
0bbe50f6
CF
1858 /* Give up prefetching if the number of memory references in the
1859 loop is not reasonable based on profitablity and compilation time
1860 considerations. */
1861 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1862 goto fail;
1863
b076a3fd
ZD
1864 /* Step 2: estimate the reuse effects. */
1865 prune_by_reuse (refs);
1866
d5058523 1867 if (nothing_to_prefetch_p (refs))
b076a3fd
ZD
1868 goto fail;
1869
1e373390
RG
1870 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1871 goto fail;
5417e022 1872
0bbe50f6 1873 /* Step 3: determine unroll factor. */
2711355f
ZD
1874 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1875 est_niter);
d5058523
CF
1876
1877 /* Estimate prefetch count for the unrolled loop. */
1878 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1879 if (prefetch_count == 0)
1880 goto fail;
1881
2711355f 1882 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 1883 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
d81f5387 1884 HOST_WIDE_INT_PRINT_DEC "\n"
b8698a0f
L
1885 "insn count %d, mem ref count %d, prefetch count %d\n",
1886 ahead, unroll_factor, est_niter,
1887 ninsns, mem_ref_count, prefetch_count);
db34470d 1888
0bbe50f6
CF
1889 /* Prefetching is not likely to be profitable if the instruction to prefetch
1890 ratio is too small. */
1891 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1892 unroll_factor))
db34470d
GS
1893 goto fail;
1894
1895 mark_nontemporal_stores (loop, refs);
2711355f 1896
b076a3fd
ZD
1897 /* Step 4: what to prefetch? */
1898 if (!schedule_prefetches (refs, unroll_factor, ahead))
1899 goto fail;
1900
1901 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1902 iterations so that we do not issue superfluous prefetches. */
1903 if (unroll_factor != 1)
1904 {
d73be268 1905 tree_unroll_loop (loop, unroll_factor,
b076a3fd
ZD
1906 single_dom_exit (loop), &desc);
1907 unrolled = true;
1908 }
1909
1910 /* Step 6: issue the prefetches. */
1911 issue_prefetches (refs, unroll_factor, ahead);
1912
1913fail:
1914 release_mem_refs (refs);
1915 return unrolled;
1916}
1917
d73be268 1918/* Issue prefetch instructions for array references in loops. */
b076a3fd 1919
c7f965b6 1920unsigned int
d73be268 1921tree_ssa_prefetch_arrays (void)
b076a3fd 1922{
42fd6772 1923 loop_iterator li;
b076a3fd
ZD
1924 struct loop *loop;
1925 bool unrolled = false;
c7f965b6 1926 int todo_flags = 0;
b076a3fd
ZD
1927
1928 if (!HAVE_prefetch
1929 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1930 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1931 of processor costs and i486 does not have prefetch, but
1932 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1933 || PREFETCH_BLOCK == 0)
c7f965b6 1934 return 0;
b076a3fd 1935
47eb5b32
ZD
1936 if (dump_file && (dump_flags & TDF_DETAILS))
1937 {
1938 fprintf (dump_file, "Prefetching parameters:\n");
1939 fprintf (dump_file, " simultaneous prefetches: %d\n",
1940 SIMULTANEOUS_PREFETCHES);
1941 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
47eb5b32 1942 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
46cb0441
ZD
1943 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1944 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
5417e022 1945 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
b8698a0f
L
1946 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1947 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
db34470d 1948 MIN_INSN_TO_PREFETCH_RATIO);
b8698a0f 1949 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
db34470d 1950 PREFETCH_MIN_INSN_TO_MEM_RATIO);
47eb5b32
ZD
1951 fprintf (dump_file, "\n");
1952 }
1953
b076a3fd
ZD
1954 initialize_original_copy_tables ();
1955
e79983f4 1956 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
b076a3fd 1957 {
6a4825bd
NF
1958 tree type = build_function_type_list (void_type_node,
1959 const_ptr_type_node, NULL_TREE);
c79efc4d
RÁE
1960 tree decl = add_builtin_function ("__builtin_prefetch", type,
1961 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1962 NULL, NULL_TREE);
b076a3fd 1963 DECL_IS_NOVOPS (decl) = true;
e79983f4 1964 set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
b076a3fd
ZD
1965 }
1966
1967 /* We assume that size of cache line is a power of two, so verify this
1968 here. */
1969 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1970
42fd6772 1971 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
b076a3fd 1972 {
b076a3fd
ZD
1973 if (dump_file && (dump_flags & TDF_DETAILS))
1974 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1975
d73be268 1976 unrolled |= loop_prefetch_arrays (loop);
b076a3fd
ZD
1977
1978 if (dump_file && (dump_flags & TDF_DETAILS))
1979 fprintf (dump_file, "\n\n");
1980 }
1981
1982 if (unrolled)
1983 {
1984 scev_reset ();
c7f965b6 1985 todo_flags |= TODO_cleanup_cfg;
b076a3fd
ZD
1986 }
1987
1988 free_original_copy_tables ();
c7f965b6 1989 return todo_flags;
b076a3fd 1990}