]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-loop-prefetch.c
pr40835.c: Require a thumb1 target, do not force -march=armv5e.
[thirdparty/gcc.git] / gcc / tree-ssa-loop-prefetch.c
CommitLineData
b076a3fd 1/* Array prefetching.
fa10beec 2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
b076a3fd
ZD
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
9dcd6f09 8Free Software Foundation; either version 3, or (at your option) any
b076a3fd
ZD
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
b076a3fd
ZD
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "tree.h"
25#include "rtl.h"
26#include "tm_p.h"
27#include "hard-reg-set.h"
28#include "basic-block.h"
29#include "output.h"
30#include "diagnostic.h"
31#include "tree-flow.h"
32#include "tree-dump.h"
33#include "timevar.h"
34#include "cfgloop.h"
35#include "varray.h"
36#include "expr.h"
37#include "tree-pass.h"
38#include "ggc.h"
39#include "insn-config.h"
40#include "recog.h"
41#include "hashtab.h"
42#include "tree-chrec.h"
43#include "tree-scalar-evolution.h"
44#include "toplev.h"
45#include "params.h"
46#include "langhooks.h"
7f9bc51b 47#include "tree-inline.h"
5417e022 48#include "tree-data-ref.h"
79f5e442 49#include "optabs.h"
b076a3fd
ZD
50
51/* This pass inserts prefetch instructions to optimize cache usage during
52 accesses to arrays in loops. It processes loops sequentially and:
53
54 1) Gathers all memory references in the single loop.
55 2) For each of the references it decides when it is profitable to prefetch
56 it. To do it, we evaluate the reuse among the accesses, and determines
57 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
58 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
59 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
60 iterations of the loop that are zero modulo PREFETCH_MOD). For example
61 (assuming cache line size is 64 bytes, char has size 1 byte and there
62 is no hardware sequential prefetch):
63
64 char *a;
65 for (i = 0; i < max; i++)
66 {
67 a[255] = ...; (0)
68 a[i] = ...; (1)
69 a[i + 64] = ...; (2)
70 a[16*i] = ...; (3)
71 a[187*i] = ...; (4)
72 a[187*i + 50] = ...; (5)
73 }
74
75 (0) obviously has PREFETCH_BEFORE 1
76 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
77 location 64 iterations before it, and PREFETCH_MOD 64 (since
78 it hits the same cache line otherwise).
79 (2) has PREFETCH_MOD 64
80 (3) has PREFETCH_MOD 4
81 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
82 the cache line accessed by (4) is the same with probability only
83 7/32.
84 (5) has PREFETCH_MOD 1 as well.
85
5417e022
ZD
86 Additionally, we use data dependence analysis to determine for each
87 reference the distance till the first reuse; this information is used
88 to determine the temporality of the issued prefetch instruction.
89
b076a3fd
ZD
90 3) We determine how much ahead we need to prefetch. The number of
91 iterations needed is time to fetch / time spent in one iteration of
92 the loop. The problem is that we do not know either of these values,
93 so we just make a heuristic guess based on a magic (possibly)
94 target-specific constant and size of the loop.
95
96 4) Determine which of the references we prefetch. We take into account
97 that there is a maximum number of simultaneous prefetches (provided
98 by machine description). We prefetch as many prefetches as possible
99 while still within this bound (starting with those with lowest
100 prefetch_mod, since they are responsible for most of the cache
101 misses).
102
103 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
104 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
105 prefetching nonaccessed memory.
106 TODO -- actually implement peeling.
107
108 6) We actually emit the prefetch instructions. ??? Perhaps emit the
109 prefetch instructions with guards in cases where 5) was not sufficient
110 to satisfy the constraints?
111
db34470d
GS
112 The function is_loop_prefetching_profitable() implements a cost model
113 to determine if prefetching is profitable for a given loop. The cost
114 model has two heuristcs:
115 1. A heuristic that determines whether the given loop has enough CPU
116 ops that can be overlapped with cache missing memory ops.
117 If not, the loop won't benefit from prefetching. This is implemented
118 by requirung the ratio between the instruction count and the mem ref
119 count to be above a certain minimum.
120 2. A heuristic that disables prefetching in a loop with an unknown trip
121 count if the prefetching cost is above a certain limit. The relative
122 prefetching cost is estimated by taking the ratio between the
123 prefetch count and the total intruction count (this models the I-cache
124 cost).
125 The limits used in these heuristics are defined as parameters with
126 reasonable default values. Machine-specific default values will be
127 added later.
128
b076a3fd
ZD
129 Some other TODO:
130 -- write and use more general reuse analysis (that could be also used
131 in other cache aimed loop optimizations)
132 -- make it behave sanely together with the prefetches given by user
133 (now we just ignore them; at the very least we should avoid
134 optimizing loops in that user put his own prefetches)
135 -- we assume cache line size alignment of arrays; this could be
136 improved. */
137
138/* Magic constants follow. These should be replaced by machine specific
139 numbers. */
140
b076a3fd
ZD
141/* True if write can be prefetched by a read prefetch. */
142
143#ifndef WRITE_CAN_USE_READ_PREFETCH
144#define WRITE_CAN_USE_READ_PREFETCH 1
145#endif
146
147/* True if read can be prefetched by a write prefetch. */
148
149#ifndef READ_CAN_USE_WRITE_PREFETCH
150#define READ_CAN_USE_WRITE_PREFETCH 0
151#endif
152
47eb5b32
ZD
153/* The size of the block loaded by a single prefetch. Usually, this is
154 the same as cache line size (at the moment, we only consider one level
155 of cache hierarchy). */
b076a3fd
ZD
156
157#ifndef PREFETCH_BLOCK
47eb5b32 158#define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
b076a3fd
ZD
159#endif
160
161/* Do we have a forward hardware sequential prefetching? */
162
163#ifndef HAVE_FORWARD_PREFETCH
164#define HAVE_FORWARD_PREFETCH 0
165#endif
166
167/* Do we have a backward hardware sequential prefetching? */
168
169#ifndef HAVE_BACKWARD_PREFETCH
170#define HAVE_BACKWARD_PREFETCH 0
171#endif
172
173/* In some cases we are only able to determine that there is a certain
174 probability that the two accesses hit the same cache line. In this
175 case, we issue the prefetches for both of them if this probability
fa10beec 176 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
b076a3fd
ZD
177
178#ifndef ACCEPTABLE_MISS_RATE
179#define ACCEPTABLE_MISS_RATE 50
180#endif
181
182#ifndef HAVE_prefetch
183#define HAVE_prefetch 0
184#endif
185
46cb0441
ZD
186#define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
187#define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
5417e022
ZD
188
189/* We consider a memory access nontemporal if it is not reused sooner than
190 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
191 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
192 so that we use nontemporal prefetches e.g. if single memory location
193 is accessed several times in a single iteration of the loop. */
194#define NONTEMPORAL_FRACTION 16
195
79f5e442
ZD
196/* In case we have to emit a memory fence instruction after the loop that
197 uses nontemporal stores, this defines the builtin to use. */
198
199#ifndef FENCE_FOLLOWING_MOVNT
200#define FENCE_FOLLOWING_MOVNT NULL_TREE
201#endif
202
b076a3fd
ZD
203/* The group of references between that reuse may occur. */
204
205struct mem_ref_group
206{
207 tree base; /* Base of the reference. */
208 HOST_WIDE_INT step; /* Step of the reference. */
209 struct mem_ref *refs; /* References in the group. */
210 struct mem_ref_group *next; /* Next group of references. */
211};
212
213/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
214
215#define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
216
217/* The memory reference. */
218
219struct mem_ref
220{
726a989a 221 gimple stmt; /* Statement in that the reference appears. */
b076a3fd
ZD
222 tree mem; /* The reference. */
223 HOST_WIDE_INT delta; /* Constant offset of the reference. */
b076a3fd
ZD
224 struct mem_ref_group *group; /* The group of references it belongs to. */
225 unsigned HOST_WIDE_INT prefetch_mod;
226 /* Prefetch only each PREFETCH_MOD-th
227 iteration. */
228 unsigned HOST_WIDE_INT prefetch_before;
229 /* Prefetch only first PREFETCH_BEFORE
230 iterations. */
5417e022
ZD
231 unsigned reuse_distance; /* The amount of data accessed before the first
232 reuse of this value. */
b076a3fd 233 struct mem_ref *next; /* The next reference in the group. */
79f5e442
ZD
234 unsigned write_p : 1; /* Is it a write? */
235 unsigned independent_p : 1; /* True if the reference is independent on
236 all other references inside the loop. */
237 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
238 unsigned storent_p : 1; /* True if we changed the store to a
239 nontemporal one. */
b076a3fd
ZD
240};
241
75c40d56 242/* Dumps information about reference REF to FILE. */
b076a3fd
ZD
243
244static void
245dump_mem_ref (FILE *file, struct mem_ref *ref)
246{
247 fprintf (file, "Reference %p:\n", (void *) ref);
248
249 fprintf (file, " group %p (base ", (void *) ref->group);
250 print_generic_expr (file, ref->group->base, TDF_SLIM);
251 fprintf (file, ", step ");
252 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->group->step);
253 fprintf (file, ")\n");
254
e324a72f 255 fprintf (file, " delta ");
b076a3fd
ZD
256 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
257 fprintf (file, "\n");
258
259 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
260
261 fprintf (file, "\n");
262}
263
264/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
265 exist. */
266
267static struct mem_ref_group *
268find_or_create_group (struct mem_ref_group **groups, tree base,
269 HOST_WIDE_INT step)
270{
271 struct mem_ref_group *group;
272
273 for (; *groups; groups = &(*groups)->next)
274 {
275 if ((*groups)->step == step
276 && operand_equal_p ((*groups)->base, base, 0))
277 return *groups;
278
279 /* Keep the list of groups sorted by decreasing step. */
280 if ((*groups)->step < step)
281 break;
282 }
283
5417e022 284 group = XNEW (struct mem_ref_group);
b076a3fd
ZD
285 group->base = base;
286 group->step = step;
287 group->refs = NULL;
288 group->next = *groups;
289 *groups = group;
290
291 return group;
292}
293
294/* Records a memory reference MEM in GROUP with offset DELTA and write status
295 WRITE_P. The reference occurs in statement STMT. */
296
297static void
726a989a 298record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
b076a3fd
ZD
299 HOST_WIDE_INT delta, bool write_p)
300{
301 struct mem_ref **aref;
302
303 /* Do not record the same address twice. */
304 for (aref = &group->refs; *aref; aref = &(*aref)->next)
305 {
306 /* It does not have to be possible for write reference to reuse the read
307 prefetch, or vice versa. */
308 if (!WRITE_CAN_USE_READ_PREFETCH
309 && write_p
310 && !(*aref)->write_p)
311 continue;
312 if (!READ_CAN_USE_WRITE_PREFETCH
313 && !write_p
314 && (*aref)->write_p)
315 continue;
316
317 if ((*aref)->delta == delta)
318 return;
319 }
320
5417e022 321 (*aref) = XNEW (struct mem_ref);
b076a3fd
ZD
322 (*aref)->stmt = stmt;
323 (*aref)->mem = mem;
324 (*aref)->delta = delta;
325 (*aref)->write_p = write_p;
326 (*aref)->prefetch_before = PREFETCH_ALL;
327 (*aref)->prefetch_mod = 1;
5417e022 328 (*aref)->reuse_distance = 0;
b076a3fd
ZD
329 (*aref)->issue_prefetch_p = false;
330 (*aref)->group = group;
331 (*aref)->next = NULL;
79f5e442
ZD
332 (*aref)->independent_p = false;
333 (*aref)->storent_p = false;
b076a3fd
ZD
334
335 if (dump_file && (dump_flags & TDF_DETAILS))
336 dump_mem_ref (dump_file, *aref);
337}
338
339/* Release memory references in GROUPS. */
340
341static void
342release_mem_refs (struct mem_ref_group *groups)
343{
344 struct mem_ref_group *next_g;
345 struct mem_ref *ref, *next_r;
346
347 for (; groups; groups = next_g)
348 {
349 next_g = groups->next;
350 for (ref = groups->refs; ref; ref = next_r)
351 {
352 next_r = ref->next;
353 free (ref);
354 }
355 free (groups);
356 }
357}
358
359/* A structure used to pass arguments to idx_analyze_ref. */
360
361struct ar_data
362{
363 struct loop *loop; /* Loop of the reference. */
726a989a 364 gimple stmt; /* Statement of the reference. */
b076a3fd
ZD
365 HOST_WIDE_INT *step; /* Step of the memory reference. */
366 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
367};
368
369/* Analyzes a single INDEX of a memory reference to obtain information
370 described at analyze_ref. Callback for for_each_index. */
371
372static bool
373idx_analyze_ref (tree base, tree *index, void *data)
374{
c22940cd 375 struct ar_data *ar_data = (struct ar_data *) data;
b076a3fd
ZD
376 tree ibase, step, stepsize;
377 HOST_WIDE_INT istep, idelta = 0, imult = 1;
378 affine_iv iv;
379
380 if (TREE_CODE (base) == MISALIGNED_INDIRECT_REF
381 || TREE_CODE (base) == ALIGN_INDIRECT_REF)
382 return false;
383
f017bf5e
ZD
384 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
385 *index, &iv, false))
b076a3fd
ZD
386 return false;
387 ibase = iv.base;
388 step = iv.step;
389
6e42ce54
ZD
390 if (!cst_and_fits_in_hwi (step))
391 return false;
392 istep = int_cst_value (step);
b076a3fd 393
5be014d5 394 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
b076a3fd
ZD
395 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
396 {
397 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
398 ibase = TREE_OPERAND (ibase, 0);
399 }
400 if (cst_and_fits_in_hwi (ibase))
401 {
402 idelta += int_cst_value (ibase);
ff5e9a94 403 ibase = build_int_cst (TREE_TYPE (ibase), 0);
b076a3fd
ZD
404 }
405
406 if (TREE_CODE (base) == ARRAY_REF)
407 {
408 stepsize = array_ref_element_size (base);
409 if (!cst_and_fits_in_hwi (stepsize))
410 return false;
411 imult = int_cst_value (stepsize);
412
413 istep *= imult;
414 idelta *= imult;
415 }
416
417 *ar_data->step += istep;
418 *ar_data->delta += idelta;
419 *index = ibase;
420
421 return true;
422}
423
aac8b8ed 424/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
b076a3fd 425 STEP are integer constants and iter is number of iterations of LOOP. The
aac8b8ed
RS
426 reference occurs in statement STMT. Strips nonaddressable component
427 references from REF_P. */
b076a3fd
ZD
428
429static bool
aac8b8ed 430analyze_ref (struct loop *loop, tree *ref_p, tree *base,
b076a3fd 431 HOST_WIDE_INT *step, HOST_WIDE_INT *delta,
726a989a 432 gimple stmt)
b076a3fd
ZD
433{
434 struct ar_data ar_data;
435 tree off;
436 HOST_WIDE_INT bit_offset;
aac8b8ed 437 tree ref = *ref_p;
b076a3fd
ZD
438
439 *step = 0;
440 *delta = 0;
441
442 /* First strip off the component references. Ignore bitfields. */
443 if (TREE_CODE (ref) == COMPONENT_REF
444 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1)))
445 ref = TREE_OPERAND (ref, 0);
446
aac8b8ed
RS
447 *ref_p = ref;
448
b076a3fd
ZD
449 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
450 {
451 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
452 bit_offset = TREE_INT_CST_LOW (off);
453 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
454
455 *delta += bit_offset / BITS_PER_UNIT;
456 }
457
458 *base = unshare_expr (ref);
459 ar_data.loop = loop;
460 ar_data.stmt = stmt;
461 ar_data.step = step;
462 ar_data.delta = delta;
463 return for_each_index (base, idx_analyze_ref, &ar_data);
464}
465
466/* Record a memory reference REF to the list REFS. The reference occurs in
79f5e442
ZD
467 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
468 reference was recorded, false otherwise. */
b076a3fd 469
79f5e442 470static bool
b076a3fd 471gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
726a989a 472 tree ref, bool write_p, gimple stmt)
b076a3fd
ZD
473{
474 tree base;
475 HOST_WIDE_INT step, delta;
476 struct mem_ref_group *agrp;
477
a80a2701
JJ
478 if (get_base_address (ref) == NULL)
479 return false;
480
aac8b8ed 481 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
79f5e442 482 return false;
b076a3fd
ZD
483
484 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
485 are integer constants. */
486 agrp = find_or_create_group (refs, base, step);
487 record_ref (agrp, stmt, ref, delta, write_p);
79f5e442
ZD
488
489 return true;
b076a3fd
ZD
490}
491
79f5e442
ZD
492/* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
493 true if there are no other memory references inside the loop. */
b076a3fd
ZD
494
495static struct mem_ref_group *
db34470d 496gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
b076a3fd
ZD
497{
498 basic_block *body = get_loop_body_in_dom_order (loop);
499 basic_block bb;
500 unsigned i;
726a989a
RB
501 gimple_stmt_iterator bsi;
502 gimple stmt;
503 tree lhs, rhs;
b076a3fd
ZD
504 struct mem_ref_group *refs = NULL;
505
79f5e442 506 *no_other_refs = true;
db34470d 507 *ref_count = 0;
79f5e442 508
b076a3fd
ZD
509 /* Scan the loop body in order, so that the former references precede the
510 later ones. */
511 for (i = 0; i < loop->num_nodes; i++)
512 {
513 bb = body[i];
514 if (bb->loop_father != loop)
515 continue;
516
726a989a 517 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
b076a3fd 518 {
726a989a 519 stmt = gsi_stmt (bsi);
79f5e442 520
726a989a 521 if (gimple_code (stmt) != GIMPLE_ASSIGN)
79f5e442 522 {
5006671f 523 if (gimple_vuse (stmt)
726a989a
RB
524 || (is_gimple_call (stmt)
525 && !(gimple_call_flags (stmt) & ECF_CONST)))
79f5e442
ZD
526 *no_other_refs = false;
527 continue;
528 }
b076a3fd 529
726a989a
RB
530 lhs = gimple_assign_lhs (stmt);
531 rhs = gimple_assign_rhs1 (stmt);
b076a3fd
ZD
532
533 if (REFERENCE_CLASS_P (rhs))
db34470d 534 {
79f5e442
ZD
535 *no_other_refs &= gather_memory_references_ref (loop, &refs,
536 rhs, false, stmt);
db34470d
GS
537 *ref_count += 1;
538 }
b076a3fd 539 if (REFERENCE_CLASS_P (lhs))
db34470d 540 {
79f5e442
ZD
541 *no_other_refs &= gather_memory_references_ref (loop, &refs,
542 lhs, true, stmt);
db34470d
GS
543 *ref_count += 1;
544 }
b076a3fd
ZD
545 }
546 }
547 free (body);
548
549 return refs;
550}
551
552/* Prune the prefetch candidate REF using the self-reuse. */
553
554static void
555prune_ref_by_self_reuse (struct mem_ref *ref)
556{
557 HOST_WIDE_INT step = ref->group->step;
558 bool backward = step < 0;
559
560 if (step == 0)
561 {
562 /* Prefetch references to invariant address just once. */
563 ref->prefetch_before = 1;
564 return;
565 }
566
567 if (backward)
568 step = -step;
569
570 if (step > PREFETCH_BLOCK)
571 return;
572
573 if ((backward && HAVE_BACKWARD_PREFETCH)
574 || (!backward && HAVE_FORWARD_PREFETCH))
575 {
576 ref->prefetch_before = 1;
577 return;
578 }
579
580 ref->prefetch_mod = PREFETCH_BLOCK / step;
581}
582
583/* Divides X by BY, rounding down. */
584
585static HOST_WIDE_INT
586ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
587{
588 gcc_assert (by > 0);
589
590 if (x >= 0)
591 return x / by;
592 else
593 return (x + by - 1) / by;
594}
595
2c6dd136
GS
596/* Given a CACHE_LINE_SIZE and two inductive memory references
597 with a common STEP greater than CACHE_LINE_SIZE and an address
598 difference DELTA, compute the probability that they will fall
599 in different cache lines. DISTINCT_ITERS is the number of
600 distinct iterations after which the pattern repeats itself.
601 ALIGN_UNIT is the unit of alignment in bytes. */
602
603static int
604compute_miss_rate (unsigned HOST_WIDE_INT cache_line_size,
605 HOST_WIDE_INT step, HOST_WIDE_INT delta,
606 unsigned HOST_WIDE_INT distinct_iters,
607 int align_unit)
608{
609 unsigned align, iter;
610 int total_positions, miss_positions, miss_rate;
611 int address1, address2, cache_line1, cache_line2;
612
613 total_positions = 0;
614 miss_positions = 0;
615
616 /* Iterate through all possible alignments of the first
617 memory reference within its cache line. */
618 for (align = 0; align < cache_line_size; align += align_unit)
619
620 /* Iterate through all distinct iterations. */
621 for (iter = 0; iter < distinct_iters; iter++)
622 {
623 address1 = align + step * iter;
624 address2 = address1 + delta;
625 cache_line1 = address1 / cache_line_size;
626 cache_line2 = address2 / cache_line_size;
627 total_positions += 1;
628 if (cache_line1 != cache_line2)
629 miss_positions += 1;
630 }
631 miss_rate = 1000 * miss_positions / total_positions;
632 return miss_rate;
633}
634
b076a3fd
ZD
635/* Prune the prefetch candidate REF using the reuse with BY.
636 If BY_IS_BEFORE is true, BY is before REF in the loop. */
637
638static void
639prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
640 bool by_is_before)
641{
642 HOST_WIDE_INT step = ref->group->step;
643 bool backward = step < 0;
644 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
645 HOST_WIDE_INT delta = delta_b - delta_r;
646 HOST_WIDE_INT hit_from;
647 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
2c6dd136
GS
648 int miss_rate;
649 HOST_WIDE_INT reduced_step;
650 unsigned HOST_WIDE_INT reduced_prefetch_block;
651 tree ref_type;
652 int align_unit;
b076a3fd
ZD
653
654 if (delta == 0)
655 {
656 /* If the references has the same address, only prefetch the
657 former. */
658 if (by_is_before)
659 ref->prefetch_before = 0;
660
661 return;
662 }
663
664 if (!step)
665 {
666 /* If the reference addresses are invariant and fall into the
667 same cache line, prefetch just the first one. */
668 if (!by_is_before)
669 return;
670
671 if (ddown (ref->delta, PREFETCH_BLOCK)
672 != ddown (by->delta, PREFETCH_BLOCK))
673 return;
674
675 ref->prefetch_before = 0;
676 return;
677 }
678
679 /* Only prune the reference that is behind in the array. */
680 if (backward)
681 {
682 if (delta > 0)
683 return;
684
685 /* Transform the data so that we may assume that the accesses
686 are forward. */
687 delta = - delta;
688 step = -step;
689 delta_r = PREFETCH_BLOCK - 1 - delta_r;
690 delta_b = PREFETCH_BLOCK - 1 - delta_b;
691 }
692 else
693 {
694 if (delta < 0)
695 return;
696 }
697
698 /* Check whether the two references are likely to hit the same cache
699 line, and how distant the iterations in that it occurs are from
700 each other. */
701
702 if (step <= PREFETCH_BLOCK)
703 {
704 /* The accesses are sure to meet. Let us check when. */
705 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
706 prefetch_before = (hit_from - delta_r + step - 1) / step;
707
708 if (prefetch_before < ref->prefetch_before)
709 ref->prefetch_before = prefetch_before;
710
711 return;
712 }
713
2c6dd136
GS
714 /* A more complicated case with step > prefetch_block. First reduce
715 the ratio between the step and the cache line size to its simplest
716 terms. The resulting denominator will then represent the number of
717 distinct iterations after which each address will go back to its
718 initial location within the cache line. This computation assumes
719 that PREFETCH_BLOCK is a power of two. */
b076a3fd 720 prefetch_block = PREFETCH_BLOCK;
2c6dd136
GS
721 reduced_prefetch_block = prefetch_block;
722 reduced_step = step;
723 while ((reduced_step & 1) == 0
724 && reduced_prefetch_block > 1)
b076a3fd 725 {
2c6dd136
GS
726 reduced_step >>= 1;
727 reduced_prefetch_block >>= 1;
b076a3fd
ZD
728 }
729
b076a3fd
ZD
730 prefetch_before = delta / step;
731 delta %= step;
2c6dd136
GS
732 ref_type = TREE_TYPE (ref->mem);
733 align_unit = TYPE_ALIGN (ref_type) / 8;
734 miss_rate = compute_miss_rate(prefetch_block, step, delta,
735 reduced_prefetch_block, align_unit);
736 if (miss_rate <= ACCEPTABLE_MISS_RATE)
b076a3fd
ZD
737 {
738 if (prefetch_before < ref->prefetch_before)
739 ref->prefetch_before = prefetch_before;
740
741 return;
742 }
743
744 /* Try also the following iteration. */
745 prefetch_before++;
746 delta = step - delta;
2c6dd136
GS
747 miss_rate = compute_miss_rate(prefetch_block, step, delta,
748 reduced_prefetch_block, align_unit);
749 if (miss_rate <= ACCEPTABLE_MISS_RATE)
b076a3fd
ZD
750 {
751 if (prefetch_before < ref->prefetch_before)
752 ref->prefetch_before = prefetch_before;
753
754 return;
755 }
756
757 /* The ref probably does not reuse by. */
758 return;
759}
760
761/* Prune the prefetch candidate REF using the reuses with other references
762 in REFS. */
763
764static void
765prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
766{
767 struct mem_ref *prune_by;
768 bool before = true;
769
770 prune_ref_by_self_reuse (ref);
771
772 for (prune_by = refs; prune_by; prune_by = prune_by->next)
773 {
774 if (prune_by == ref)
775 {
776 before = false;
777 continue;
778 }
779
780 if (!WRITE_CAN_USE_READ_PREFETCH
781 && ref->write_p
782 && !prune_by->write_p)
783 continue;
784 if (!READ_CAN_USE_WRITE_PREFETCH
785 && !ref->write_p
786 && prune_by->write_p)
787 continue;
788
789 prune_ref_by_group_reuse (ref, prune_by, before);
790 }
791}
792
793/* Prune the prefetch candidates in GROUP using the reuse analysis. */
794
795static void
796prune_group_by_reuse (struct mem_ref_group *group)
797{
798 struct mem_ref *ref_pruned;
799
800 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
801 {
802 prune_ref_by_reuse (ref_pruned, group->refs);
803
804 if (dump_file && (dump_flags & TDF_DETAILS))
805 {
806 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
807
808 if (ref_pruned->prefetch_before == PREFETCH_ALL
809 && ref_pruned->prefetch_mod == 1)
810 fprintf (dump_file, " no restrictions");
811 else if (ref_pruned->prefetch_before == 0)
812 fprintf (dump_file, " do not prefetch");
813 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
814 fprintf (dump_file, " prefetch once");
815 else
816 {
817 if (ref_pruned->prefetch_before != PREFETCH_ALL)
818 {
819 fprintf (dump_file, " prefetch before ");
820 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
821 ref_pruned->prefetch_before);
822 }
823 if (ref_pruned->prefetch_mod != 1)
824 {
825 fprintf (dump_file, " prefetch mod ");
826 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
827 ref_pruned->prefetch_mod);
828 }
829 }
830 fprintf (dump_file, "\n");
831 }
832 }
833}
834
835/* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
836
837static void
838prune_by_reuse (struct mem_ref_group *groups)
839{
840 for (; groups; groups = groups->next)
841 prune_group_by_reuse (groups);
842}
843
844/* Returns true if we should issue prefetch for REF. */
845
846static bool
847should_issue_prefetch_p (struct mem_ref *ref)
848{
849 /* For now do not issue prefetches for only first few of the
850 iterations. */
851 if (ref->prefetch_before != PREFETCH_ALL)
852 return false;
853
79f5e442
ZD
854 /* Do not prefetch nontemporal stores. */
855 if (ref->storent_p)
856 return false;
857
b076a3fd
ZD
858 return true;
859}
860
861/* Decide which of the prefetch candidates in GROUPS to prefetch.
862 AHEAD is the number of iterations to prefetch ahead (which corresponds
863 to the number of simultaneous instances of one prefetch running at a
864 time). UNROLL_FACTOR is the factor by that the loop is going to be
865 unrolled. Returns true if there is anything to prefetch. */
866
867static bool
868schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
869 unsigned ahead)
870{
911b3fdb
ZD
871 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
872 unsigned slots_per_prefetch;
b076a3fd
ZD
873 struct mem_ref *ref;
874 bool any = false;
875
911b3fdb
ZD
876 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
877 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
b076a3fd 878
911b3fdb
ZD
879 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
880 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
881 it will need a prefetch slot. */
882 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
b076a3fd 883 if (dump_file && (dump_flags & TDF_DETAILS))
911b3fdb
ZD
884 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
885 slots_per_prefetch);
b076a3fd
ZD
886
887 /* For now we just take memory references one by one and issue
888 prefetches for as many as possible. The groups are sorted
889 starting with the largest step, since the references with
c0220ea4 890 large step are more likely to cause many cache misses. */
b076a3fd
ZD
891
892 for (; groups; groups = groups->next)
893 for (ref = groups->refs; ref; ref = ref->next)
894 {
895 if (!should_issue_prefetch_p (ref))
896 continue;
897
911b3fdb
ZD
898 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
899 and we unroll the loop UNROLL_FACTOR times, we need to insert
900 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
901 iteration. */
b076a3fd
ZD
902 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
903 / ref->prefetch_mod);
911b3fdb
ZD
904 prefetch_slots = n_prefetches * slots_per_prefetch;
905
906 /* If more than half of the prefetches would be lost anyway, do not
907 issue the prefetch. */
908 if (2 * remaining_prefetch_slots < prefetch_slots)
909 continue;
910
911 ref->issue_prefetch_p = true;
b076a3fd 912
911b3fdb
ZD
913 if (remaining_prefetch_slots <= prefetch_slots)
914 return true;
915 remaining_prefetch_slots -= prefetch_slots;
b076a3fd
ZD
916 any = true;
917 }
918
919 return any;
920}
921
db34470d 922/* Estimate the number of prefetches in the given GROUPS. */
b076a3fd 923
db34470d
GS
924static int
925estimate_prefetch_count (struct mem_ref_group *groups)
b076a3fd
ZD
926{
927 struct mem_ref *ref;
db34470d 928 int prefetch_count = 0;
b076a3fd
ZD
929
930 for (; groups; groups = groups->next)
931 for (ref = groups->refs; ref; ref = ref->next)
932 if (should_issue_prefetch_p (ref))
db34470d 933 prefetch_count++;
b076a3fd 934
db34470d 935 return prefetch_count;
b076a3fd
ZD
936}
937
938/* Issue prefetches for the reference REF into loop as decided before.
939 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
917f1b7e 940 is the factor by which LOOP was unrolled. */
b076a3fd
ZD
941
942static void
943issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
944{
945 HOST_WIDE_INT delta;
726a989a
RB
946 tree addr, addr_base, write_p, local;
947 gimple prefetch;
948 gimple_stmt_iterator bsi;
b076a3fd 949 unsigned n_prefetches, ap;
5417e022 950 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
b076a3fd
ZD
951
952 if (dump_file && (dump_flags & TDF_DETAILS))
5417e022
ZD
953 fprintf (dump_file, "Issued%s prefetch for %p.\n",
954 nontemporal ? " nontemporal" : "",
955 (void *) ref);
b076a3fd 956
726a989a 957 bsi = gsi_for_stmt (ref->stmt);
b076a3fd
ZD
958
959 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
960 / ref->prefetch_mod);
961 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
726a989a
RB
962 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
963 true, NULL, true, GSI_SAME_STMT);
911b3fdb 964 write_p = ref->write_p ? integer_one_node : integer_zero_node;
5417e022 965 local = build_int_cst (integer_type_node, nontemporal ? 0 : 3);
b076a3fd
ZD
966
967 for (ap = 0; ap < n_prefetches; ap++)
968 {
969 /* Determine the address to prefetch. */
970 delta = (ahead + ap * ref->prefetch_mod) * ref->group->step;
5be014d5
AP
971 addr = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node,
972 addr_base, size_int (delta));
726a989a
RB
973 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
974 true, GSI_SAME_STMT);
b076a3fd
ZD
975
976 /* Create the prefetch instruction. */
726a989a
RB
977 prefetch = gimple_build_call (built_in_decls[BUILT_IN_PREFETCH],
978 3, addr, write_p, local);
979 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
b076a3fd
ZD
980 }
981}
982
983/* Issue prefetches for the references in GROUPS into loop as decided before.
984 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
985 factor by that LOOP was unrolled. */
986
987static void
988issue_prefetches (struct mem_ref_group *groups,
989 unsigned unroll_factor, unsigned ahead)
990{
991 struct mem_ref *ref;
992
993 for (; groups; groups = groups->next)
994 for (ref = groups->refs; ref; ref = ref->next)
995 if (ref->issue_prefetch_p)
996 issue_prefetch_ref (ref, unroll_factor, ahead);
997}
998
79f5e442
ZD
999/* Returns true if REF is a memory write for that a nontemporal store insn
1000 can be used. */
1001
1002static bool
1003nontemporal_store_p (struct mem_ref *ref)
1004{
1005 enum machine_mode mode;
1006 enum insn_code code;
1007
1008 /* REF must be a write that is not reused. We require it to be independent
1009 on all other memory references in the loop, as the nontemporal stores may
1010 be reordered with respect to other memory references. */
1011 if (!ref->write_p
1012 || !ref->independent_p
1013 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1014 return false;
1015
1016 /* Check that we have the storent instruction for the mode. */
1017 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1018 if (mode == BLKmode)
1019 return false;
1020
166cdb08 1021 code = optab_handler (storent_optab, mode)->insn_code;
79f5e442
ZD
1022 return code != CODE_FOR_nothing;
1023}
1024
1025/* If REF is a nontemporal store, we mark the corresponding modify statement
1026 and return true. Otherwise, we return false. */
1027
1028static bool
1029mark_nontemporal_store (struct mem_ref *ref)
1030{
1031 if (!nontemporal_store_p (ref))
1032 return false;
1033
1034 if (dump_file && (dump_flags & TDF_DETAILS))
1035 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1036 (void *) ref);
1037
726a989a 1038 gimple_assign_set_nontemporal_move (ref->stmt, true);
79f5e442
ZD
1039 ref->storent_p = true;
1040
1041 return true;
1042}
1043
1044/* Issue a memory fence instruction after LOOP. */
1045
1046static void
1047emit_mfence_after_loop (struct loop *loop)
1048{
1049 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1050 edge exit;
726a989a
RB
1051 gimple call;
1052 gimple_stmt_iterator bsi;
79f5e442
ZD
1053 unsigned i;
1054
1055 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1056 {
726a989a 1057 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
79f5e442
ZD
1058
1059 if (!single_pred_p (exit->dest)
1060 /* If possible, we prefer not to insert the fence on other paths
1061 in cfg. */
1062 && !(exit->flags & EDGE_ABNORMAL))
1063 split_loop_exit_edge (exit);
726a989a 1064 bsi = gsi_after_labels (exit->dest);
79f5e442 1065
726a989a 1066 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
79f5e442
ZD
1067 mark_virtual_ops_for_renaming (call);
1068 }
1069
1070 VEC_free (edge, heap, exits);
1071 update_ssa (TODO_update_ssa_only_virtuals);
1072}
1073
1074/* Returns true if we can use storent in loop, false otherwise. */
1075
1076static bool
1077may_use_storent_in_loop_p (struct loop *loop)
1078{
1079 bool ret = true;
1080
1081 if (loop->inner != NULL)
1082 return false;
1083
1084 /* If we must issue a mfence insn after using storent, check that there
1085 is a suitable place for it at each of the loop exits. */
1086 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1087 {
1088 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1089 unsigned i;
1090 edge exit;
1091
1092 for (i = 0; VEC_iterate (edge, exits, i, exit); i++)
1093 if ((exit->flags & EDGE_ABNORMAL)
1094 && exit->dest == EXIT_BLOCK_PTR)
1095 ret = false;
1096
1097 VEC_free (edge, heap, exits);
1098 }
1099
1100 return ret;
1101}
1102
1103/* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1104 references in the loop. */
1105
1106static void
1107mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1108{
1109 struct mem_ref *ref;
1110 bool any = false;
1111
1112 if (!may_use_storent_in_loop_p (loop))
1113 return;
1114
1115 for (; groups; groups = groups->next)
1116 for (ref = groups->refs; ref; ref = ref->next)
1117 any |= mark_nontemporal_store (ref);
1118
1119 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1120 emit_mfence_after_loop (loop);
1121}
1122
b076a3fd
ZD
1123/* Determines whether we can profitably unroll LOOP FACTOR times, and if
1124 this is the case, fill in DESC by the description of number of
1125 iterations. */
1126
1127static bool
1128should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1129 unsigned factor)
1130{
1131 if (!can_unroll_loop_p (loop, factor, desc))
1132 return false;
1133
1134 /* We only consider loops without control flow for unrolling. This is not
1135 a hard restriction -- tree_unroll_loop works with arbitrary loops
1136 as well; but the unrolling/prefetching is usually more profitable for
1137 loops consisting of a single basic block, and we want to limit the
1138 code growth. */
1139 if (loop->num_nodes > 2)
1140 return false;
1141
1142 return true;
1143}
1144
1145/* Determine the coefficient by that unroll LOOP, from the information
1146 contained in the list of memory references REFS. Description of
2711355f
ZD
1147 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1148 insns of the LOOP. EST_NITER is the estimated number of iterations of
1149 the loop, or -1 if no estimate is available. */
b076a3fd
ZD
1150
1151static unsigned
1152determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
2711355f
ZD
1153 unsigned ninsns, struct tree_niter_desc *desc,
1154 HOST_WIDE_INT est_niter)
b076a3fd 1155{
911b3fdb
ZD
1156 unsigned upper_bound;
1157 unsigned nfactor, factor, mod_constraint;
b076a3fd
ZD
1158 struct mem_ref_group *agp;
1159 struct mem_ref *ref;
1160
911b3fdb
ZD
1161 /* First check whether the loop is not too large to unroll. We ignore
1162 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1163 from unrolling them enough to make exactly one cache line covered by each
1164 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1165 us from unrolling the loops too many times in cases where we only expect
1166 gains from better scheduling and decreasing loop overhead, which is not
1167 the case here. */
1168 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
2711355f
ZD
1169
1170 /* If we unrolled the loop more times than it iterates, the unrolled version
1171 of the loop would be never entered. */
1172 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1173 upper_bound = est_niter;
1174
911b3fdb 1175 if (upper_bound <= 1)
b076a3fd
ZD
1176 return 1;
1177
911b3fdb
ZD
1178 /* Choose the factor so that we may prefetch each cache just once,
1179 but bound the unrolling by UPPER_BOUND. */
1180 factor = 1;
b076a3fd
ZD
1181 for (agp = refs; agp; agp = agp->next)
1182 for (ref = agp->refs; ref; ref = ref->next)
911b3fdb
ZD
1183 if (should_issue_prefetch_p (ref))
1184 {
1185 mod_constraint = ref->prefetch_mod;
1186 nfactor = least_common_multiple (mod_constraint, factor);
1187 if (nfactor <= upper_bound)
1188 factor = nfactor;
1189 }
b076a3fd
ZD
1190
1191 if (!should_unroll_loop_p (loop, desc, factor))
1192 return 1;
1193
1194 return factor;
1195}
1196
5417e022
ZD
1197/* Returns the total volume of the memory references REFS, taking into account
1198 reuses in the innermost loop and cache line size. TODO -- we should also
1199 take into account reuses across the iterations of the loops in the loop
1200 nest. */
1201
1202static unsigned
1203volume_of_references (struct mem_ref_group *refs)
1204{
1205 unsigned volume = 0;
1206 struct mem_ref_group *gr;
1207 struct mem_ref *ref;
1208
1209 for (gr = refs; gr; gr = gr->next)
1210 for (ref = gr->refs; ref; ref = ref->next)
1211 {
1212 /* Almost always reuses another value? */
1213 if (ref->prefetch_before != PREFETCH_ALL)
1214 continue;
1215
1216 /* If several iterations access the same cache line, use the size of
1217 the line divided by this number. Otherwise, a cache line is
1218 accessed in each iteration. TODO -- in the latter case, we should
1219 take the size of the reference into account, rounding it up on cache
1220 line size multiple. */
1221 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1222 }
1223 return volume;
1224}
1225
1226/* Returns the volume of memory references accessed across VEC iterations of
1227 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1228 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1229
1230static unsigned
1231volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1232{
1233 unsigned i;
1234
1235 for (i = 0; i < n; i++)
1236 if (vec[i] != 0)
1237 break;
1238
1239 if (i == n)
1240 return 0;
1241
1242 gcc_assert (vec[i] > 0);
1243
1244 /* We ignore the parts of the distance vector in subloops, since usually
1245 the numbers of iterations are much smaller. */
1246 return loop_sizes[i] * vec[i];
1247}
1248
1249/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1250 at the position corresponding to the loop of the step. N is the depth
1251 of the considered loop nest, and, LOOP is its innermost loop. */
1252
1253static void
1254add_subscript_strides (tree access_fn, unsigned stride,
1255 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1256{
1257 struct loop *aloop;
1258 tree step;
1259 HOST_WIDE_INT astep;
1260 unsigned min_depth = loop_depth (loop) - n;
1261
1262 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1263 {
1264 aloop = get_chrec_loop (access_fn);
1265 step = CHREC_RIGHT (access_fn);
1266 access_fn = CHREC_LEFT (access_fn);
1267
1268 if ((unsigned) loop_depth (aloop) <= min_depth)
1269 continue;
1270
1271 if (host_integerp (step, 0))
1272 astep = tree_low_cst (step, 0);
1273 else
1274 astep = L1_CACHE_LINE_SIZE;
1275
1276 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1277
1278 }
1279}
1280
1281/* Returns the volume of memory references accessed between two consecutive
1282 self-reuses of the reference DR. We consider the subscripts of DR in N
1283 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1284 loops. LOOP is the innermost loop of the current loop nest. */
1285
1286static unsigned
1287self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1288 struct loop *loop)
1289{
1290 tree stride, access_fn;
1291 HOST_WIDE_INT *strides, astride;
1292 VEC (tree, heap) *access_fns;
1293 tree ref = DR_REF (dr);
1294 unsigned i, ret = ~0u;
1295
1296 /* In the following example:
1297
1298 for (i = 0; i < N; i++)
1299 for (j = 0; j < N; j++)
1300 use (a[j][i]);
1301 the same cache line is accessed each N steps (except if the change from
1302 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1303 we cannot rely purely on the results of the data dependence analysis.
1304
1305 Instead, we compute the stride of the reference in each loop, and consider
1306 the innermost loop in that the stride is less than cache size. */
1307
1308 strides = XCNEWVEC (HOST_WIDE_INT, n);
1309 access_fns = DR_ACCESS_FNS (dr);
1310
1311 for (i = 0; VEC_iterate (tree, access_fns, i, access_fn); i++)
1312 {
1313 /* Keep track of the reference corresponding to the subscript, so that we
1314 know its stride. */
1315 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1316 ref = TREE_OPERAND (ref, 0);
1317
1318 if (TREE_CODE (ref) == ARRAY_REF)
1319 {
1320 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1321 if (host_integerp (stride, 1))
1322 astride = tree_low_cst (stride, 1);
1323 else
1324 astride = L1_CACHE_LINE_SIZE;
1325
1326 ref = TREE_OPERAND (ref, 0);
1327 }
1328 else
1329 astride = 1;
1330
1331 add_subscript_strides (access_fn, astride, strides, n, loop);
1332 }
1333
1334 for (i = n; i-- > 0; )
1335 {
1336 unsigned HOST_WIDE_INT s;
1337
1338 s = strides[i] < 0 ? -strides[i] : strides[i];
1339
1340 if (s < (unsigned) L1_CACHE_LINE_SIZE
1341 && (loop_sizes[i]
1342 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1343 {
1344 ret = loop_sizes[i];
1345 break;
1346 }
1347 }
1348
1349 free (strides);
1350 return ret;
1351}
1352
1353/* Determines the distance till the first reuse of each reference in REFS
79f5e442
ZD
1354 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1355 memory references in the loop. */
5417e022
ZD
1356
1357static void
79f5e442
ZD
1358determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1359 bool no_other_refs)
5417e022
ZD
1360{
1361 struct loop *nest, *aloop;
1362 VEC (data_reference_p, heap) *datarefs = NULL;
1363 VEC (ddr_p, heap) *dependences = NULL;
1364 struct mem_ref_group *gr;
79f5e442 1365 struct mem_ref *ref, *refb;
5417e022
ZD
1366 VEC (loop_p, heap) *vloops = NULL;
1367 unsigned *loop_data_size;
1368 unsigned i, j, n;
1369 unsigned volume, dist, adist;
1370 HOST_WIDE_INT vol;
1371 data_reference_p dr;
1372 ddr_p dep;
1373
1374 if (loop->inner)
1375 return;
1376
1377 /* Find the outermost loop of the loop nest of loop (we require that
1378 there are no sibling loops inside the nest). */
1379 nest = loop;
1380 while (1)
1381 {
1382 aloop = loop_outer (nest);
1383
1384 if (aloop == current_loops->tree_root
1385 || aloop->inner->next)
1386 break;
1387
1388 nest = aloop;
1389 }
1390
1391 /* For each loop, determine the amount of data accessed in each iteration.
1392 We use this to estimate whether the reference is evicted from the
1393 cache before its reuse. */
1394 find_loop_nest (nest, &vloops);
1395 n = VEC_length (loop_p, vloops);
1396 loop_data_size = XNEWVEC (unsigned, n);
1397 volume = volume_of_references (refs);
1398 i = n;
1399 while (i-- != 0)
1400 {
1401 loop_data_size[i] = volume;
1402 /* Bound the volume by the L2 cache size, since above this bound,
1403 all dependence distances are equivalent. */
1404 if (volume > L2_CACHE_SIZE_BYTES)
1405 continue;
1406
1407 aloop = VEC_index (loop_p, vloops, i);
1408 vol = estimated_loop_iterations_int (aloop, false);
1409 if (vol < 0)
1410 vol = expected_loop_iterations (aloop);
1411 volume *= vol;
1412 }
1413
1414 /* Prepare the references in the form suitable for data dependence
0d52bcc1 1415 analysis. We ignore unanalyzable data references (the results
5417e022
ZD
1416 are used just as a heuristics to estimate temporality of the
1417 references, hence we do not need to worry about correctness). */
1418 for (gr = refs; gr; gr = gr->next)
1419 for (ref = gr->refs; ref; ref = ref->next)
1420 {
1421 dr = create_data_ref (nest, ref->mem, ref->stmt, !ref->write_p);
1422
1423 if (dr)
1424 {
1425 ref->reuse_distance = volume;
1426 dr->aux = ref;
1427 VEC_safe_push (data_reference_p, heap, datarefs, dr);
1428 }
79f5e442
ZD
1429 else
1430 no_other_refs = false;
5417e022
ZD
1431 }
1432
1433 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1434 {
1435 dist = self_reuse_distance (dr, loop_data_size, n, loop);
3d9a9f94 1436 ref = (struct mem_ref *) dr->aux;
5417e022
ZD
1437 if (ref->reuse_distance > dist)
1438 ref->reuse_distance = dist;
79f5e442
ZD
1439
1440 if (no_other_refs)
1441 ref->independent_p = true;
5417e022
ZD
1442 }
1443
1444 compute_all_dependences (datarefs, &dependences, vloops, true);
1445
1446 for (i = 0; VEC_iterate (ddr_p, dependences, i, dep); i++)
1447 {
1448 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1449 continue;
1450
3d9a9f94
KG
1451 ref = (struct mem_ref *) DDR_A (dep)->aux;
1452 refb = (struct mem_ref *) DDR_B (dep)->aux;
79f5e442 1453
5417e022
ZD
1454 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1455 || DDR_NUM_DIST_VECTS (dep) == 0)
1456 {
0d52bcc1 1457 /* If the dependence cannot be analyzed, assume that there might be
5417e022
ZD
1458 a reuse. */
1459 dist = 0;
79f5e442
ZD
1460
1461 ref->independent_p = false;
1462 refb->independent_p = false;
5417e022
ZD
1463 }
1464 else
1465 {
0d52bcc1 1466 /* The distance vectors are normalized to be always lexicographically
5417e022
ZD
1467 positive, hence we cannot tell just from them whether DDR_A comes
1468 before DDR_B or vice versa. However, it is not important,
1469 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1470 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1471 in cache (and marking it as nontemporal would not affect
1472 anything). */
1473
1474 dist = volume;
1475 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1476 {
1477 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1478 loop_data_size, n);
1479
79f5e442
ZD
1480 /* If this is a dependence in the innermost loop (i.e., the
1481 distances in all superloops are zero) and it is not
1482 the trivial self-dependence with distance zero, record that
1483 the references are not completely independent. */
1484 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1485 && (ref != refb
1486 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1487 {
1488 ref->independent_p = false;
1489 refb->independent_p = false;
1490 }
1491
5417e022
ZD
1492 /* Ignore accesses closer than
1493 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1494 so that we use nontemporal prefetches e.g. if single memory
1495 location is accessed several times in a single iteration of
1496 the loop. */
1497 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1498 continue;
1499
1500 if (adist < dist)
1501 dist = adist;
1502 }
1503 }
1504
5417e022
ZD
1505 if (ref->reuse_distance > dist)
1506 ref->reuse_distance = dist;
79f5e442
ZD
1507 if (refb->reuse_distance > dist)
1508 refb->reuse_distance = dist;
5417e022
ZD
1509 }
1510
1511 free_dependence_relations (dependences);
1512 free_data_refs (datarefs);
1513 free (loop_data_size);
1514
1515 if (dump_file && (dump_flags & TDF_DETAILS))
1516 {
1517 fprintf (dump_file, "Reuse distances:\n");
1518 for (gr = refs; gr; gr = gr->next)
1519 for (ref = gr->refs; ref; ref = ref->next)
1520 fprintf (dump_file, " ref %p distance %u\n",
1521 (void *) ref, ref->reuse_distance);
1522 }
1523}
1524
db34470d
GS
1525/* Do a cost-benefit analysis to determine if prefetching is profitable
1526 for the current loop given the following parameters:
1527 AHEAD: the iteration ahead distance,
1528 EST_NITER: the estimated trip count,
1529 NINSNS: estimated number of instructions in the loop,
1530 PREFETCH_COUNT: an estimate of the number of prefetches
1531 MEM_REF_COUNT: total number of memory references in the loop. */
1532
1533static bool
1534is_loop_prefetching_profitable (unsigned ahead, HOST_WIDE_INT est_niter,
1535 unsigned ninsns, unsigned prefetch_count,
1536 unsigned mem_ref_count)
1537{
1538 int insn_to_mem_ratio, insn_to_prefetch_ratio;
1539
1540 if (mem_ref_count == 0)
1541 return false;
1542
1543 /* Prefetching improves performance by overlapping cache missing
1544 memory accesses with CPU operations. If the loop does not have
1545 enough CPU operations to overlap with memory operations, prefetching
1546 won't give a significant benefit. One approximate way of checking
1547 this is to require the ratio of instructions to memory references to
1548 be above a certain limit. This approximation works well in practice.
1549 TODO: Implement a more precise computation by estimating the time
1550 for each CPU or memory op in the loop. Time estimates for memory ops
1551 should account for cache misses. */
1552 insn_to_mem_ratio = ninsns / mem_ref_count;
1553
1554 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
1555 return false;
1556
1557 /* Profitability of prefetching is highly dependent on the trip count.
1558 For a given AHEAD distance, the first AHEAD iterations do not benefit
1559 from prefetching, and the last AHEAD iterations execute useless
1560 prefetches. So, if the trip count is not large enough relative to AHEAD,
1561 prefetching may cause serious performance degradation. To avoid this
1562 problem when the trip count is not known at compile time, we
1563 conservatively skip loops with high prefetching costs. For now, only
1564 the I-cache cost is considered. The relative I-cache cost is estimated
1565 by taking the ratio between the number of prefetches and the total
1566 number of instructions. Since we are using integer arithmetic, we
1567 compute the reciprocal of this ratio.
1568 TODO: Account for loop unrolling, which may reduce the costs of
1569 shorter stride prefetches. Note that not accounting for loop
1570 unrolling over-estimates the cost and hence gives more conservative
1571 results. */
1572 if (est_niter < 0)
1573 {
1574 insn_to_prefetch_ratio = ninsns / prefetch_count;
1575 return insn_to_prefetch_ratio >= MIN_INSN_TO_PREFETCH_RATIO;
1576 }
1577
1578 if (est_niter <= (HOST_WIDE_INT) ahead)
1579 {
1580 if (dump_file && (dump_flags & TDF_DETAILS))
1581 fprintf (dump_file,
1582 "Not prefetching -- loop estimated to roll only %d times\n",
1583 (int) est_niter);
1584 return false;
1585 }
1586 return true;
1587}
1588
1589
b076a3fd 1590/* Issue prefetch instructions for array references in LOOP. Returns
d73be268 1591 true if the LOOP was unrolled. */
b076a3fd
ZD
1592
1593static bool
d73be268 1594loop_prefetch_arrays (struct loop *loop)
b076a3fd
ZD
1595{
1596 struct mem_ref_group *refs;
2711355f
ZD
1597 unsigned ahead, ninsns, time, unroll_factor;
1598 HOST_WIDE_INT est_niter;
b076a3fd 1599 struct tree_niter_desc desc;
79f5e442 1600 bool unrolled = false, no_other_refs;
db34470d
GS
1601 unsigned prefetch_count;
1602 unsigned mem_ref_count;
b076a3fd 1603
efd8f750 1604 if (optimize_loop_nest_for_size_p (loop))
2732d767
ZD
1605 {
1606 if (dump_file && (dump_flags & TDF_DETAILS))
1607 fprintf (dump_file, " ignored (cold area)\n");
1608 return false;
1609 }
1610
b076a3fd 1611 /* Step 1: gather the memory references. */
db34470d 1612 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
b076a3fd
ZD
1613
1614 /* Step 2: estimate the reuse effects. */
1615 prune_by_reuse (refs);
1616
db34470d
GS
1617 prefetch_count = estimate_prefetch_count (refs);
1618 if (prefetch_count == 0)
b076a3fd
ZD
1619 goto fail;
1620
79f5e442 1621 determine_loop_nest_reuse (loop, refs, no_other_refs);
5417e022 1622
b076a3fd
ZD
1623 /* Step 3: determine the ahead and unroll factor. */
1624
2711355f
ZD
1625 /* FIXME: the time should be weighted by the probabilities of the blocks in
1626 the loop body. */
1627 time = tree_num_loop_insns (loop, &eni_time_weights);
1628 ahead = (PREFETCH_LATENCY + time - 1) / time;
db34470d 1629 est_niter = estimated_loop_iterations_int (loop, false);
79f5e442 1630
2711355f
ZD
1631 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1632 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1633 est_niter);
1634 if (dump_file && (dump_flags & TDF_DETAILS))
d81f5387
GS
1635 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
1636 HOST_WIDE_INT_PRINT_DEC "\n"
db34470d 1637 "insn count %d, mem ref count %d, prefetch count %d\n",
d81f5387
GS
1638 ahead, unroll_factor, est_niter,
1639 ninsns, mem_ref_count, prefetch_count);
db34470d
GS
1640
1641 if (!is_loop_prefetching_profitable (ahead, est_niter, ninsns,
1642 prefetch_count, mem_ref_count))
1643 goto fail;
1644
1645 mark_nontemporal_stores (loop, refs);
2711355f 1646
b076a3fd
ZD
1647 /* Step 4: what to prefetch? */
1648 if (!schedule_prefetches (refs, unroll_factor, ahead))
1649 goto fail;
1650
1651 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1652 iterations so that we do not issue superfluous prefetches. */
1653 if (unroll_factor != 1)
1654 {
d73be268 1655 tree_unroll_loop (loop, unroll_factor,
b076a3fd
ZD
1656 single_dom_exit (loop), &desc);
1657 unrolled = true;
1658 }
1659
1660 /* Step 6: issue the prefetches. */
1661 issue_prefetches (refs, unroll_factor, ahead);
1662
1663fail:
1664 release_mem_refs (refs);
1665 return unrolled;
1666}
1667
d73be268 1668/* Issue prefetch instructions for array references in loops. */
b076a3fd 1669
c7f965b6 1670unsigned int
d73be268 1671tree_ssa_prefetch_arrays (void)
b076a3fd 1672{
42fd6772 1673 loop_iterator li;
b076a3fd
ZD
1674 struct loop *loop;
1675 bool unrolled = false;
c7f965b6 1676 int todo_flags = 0;
b076a3fd
ZD
1677
1678 if (!HAVE_prefetch
1679 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1680 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1681 of processor costs and i486 does not have prefetch, but
1682 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1683 || PREFETCH_BLOCK == 0)
c7f965b6 1684 return 0;
b076a3fd 1685
47eb5b32
ZD
1686 if (dump_file && (dump_flags & TDF_DETAILS))
1687 {
1688 fprintf (dump_file, "Prefetching parameters:\n");
1689 fprintf (dump_file, " simultaneous prefetches: %d\n",
1690 SIMULTANEOUS_PREFETCHES);
1691 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
47eb5b32 1692 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
46cb0441
ZD
1693 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1694 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
5417e022 1695 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
db34470d
GS
1696 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1697 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
1698 MIN_INSN_TO_PREFETCH_RATIO);
1699 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
1700 PREFETCH_MIN_INSN_TO_MEM_RATIO);
47eb5b32
ZD
1701 fprintf (dump_file, "\n");
1702 }
1703
b076a3fd
ZD
1704 initialize_original_copy_tables ();
1705
1706 if (!built_in_decls[BUILT_IN_PREFETCH])
1707 {
1708 tree type = build_function_type (void_type_node,
1709 tree_cons (NULL_TREE,
1710 const_ptr_type_node,
1711 NULL_TREE));
c79efc4d
RÁE
1712 tree decl = add_builtin_function ("__builtin_prefetch", type,
1713 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1714 NULL, NULL_TREE);
b076a3fd
ZD
1715 DECL_IS_NOVOPS (decl) = true;
1716 built_in_decls[BUILT_IN_PREFETCH] = decl;
1717 }
1718
1719 /* We assume that size of cache line is a power of two, so verify this
1720 here. */
1721 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1722
42fd6772 1723 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
b076a3fd 1724 {
b076a3fd
ZD
1725 if (dump_file && (dump_flags & TDF_DETAILS))
1726 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1727
d73be268 1728 unrolled |= loop_prefetch_arrays (loop);
b076a3fd
ZD
1729
1730 if (dump_file && (dump_flags & TDF_DETAILS))
1731 fprintf (dump_file, "\n\n");
1732 }
1733
1734 if (unrolled)
1735 {
1736 scev_reset ();
c7f965b6 1737 todo_flags |= TODO_cleanup_cfg;
b076a3fd
ZD
1738 }
1739
1740 free_original_copy_tables ();
c7f965b6 1741 return todo_flags;
b076a3fd 1742}