]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-loop-prefetch.c
tree-core.h: Include symtab.h.
[thirdparty/gcc.git] / gcc / tree-ssa-loop-prefetch.c
CommitLineData
b076a3fd 1/* Array prefetching.
5624e564 2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
b8698a0f 3
b076a3fd 4This file is part of GCC.
b8698a0f 5
b076a3fd
ZD
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
9dcd6f09 8Free Software Foundation; either version 3, or (at your option) any
b076a3fd 9later version.
b8698a0f 10
b076a3fd
ZD
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
b8698a0f 15
b076a3fd 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
b076a3fd
ZD
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
c7131fb2 23#include "backend.h"
b076a3fd 24#include "tree.h"
c7131fb2
AM
25#include "gimple.h"
26#include "rtl.h"
27#include "alias.h"
40e23961 28#include "fold-const.h"
d8a2d370 29#include "stor-layout.h"
b076a3fd 30#include "tm_p.h"
cf835838 31#include "tree-pretty-print.h"
2fb9a547 32#include "internal-fn.h"
45b0be94 33#include "gimplify.h"
5be5c238 34#include "gimple-iterator.h"
18f429e2 35#include "gimplify-me.h"
442b4905 36#include "gimple-ssa.h"
e28030cf
AM
37#include "tree-ssa-loop-ivopts.h"
38#include "tree-ssa-loop-manip.h"
39#include "tree-ssa-loop-niter.h"
442b4905
AM
40#include "tree-ssa-loop.h"
41#include "tree-into-ssa.h"
b076a3fd 42#include "cfgloop.h"
b076a3fd 43#include "tree-pass.h"
b076a3fd 44#include "insn-config.h"
b076a3fd
ZD
45#include "tree-chrec.h"
46#include "tree-scalar-evolution.h"
718f9c0f 47#include "diagnostic-core.h"
b076a3fd
ZD
48#include "params.h"
49#include "langhooks.h"
7f9bc51b 50#include "tree-inline.h"
5417e022 51#include "tree-data-ref.h"
134b044d 52#include "target.h"
2eb79bbb
SB
53
54
55/* FIXME: Needed for optabs, but this should all be moved to a TBD interface
56 between the GIMPLE and RTL worlds. */
36566b39 57#include "flags.h"
36566b39
PK
58#include "expmed.h"
59#include "dojump.h"
60#include "explow.h"
61#include "calls.h"
62#include "emit-rtl.h"
63#include "varasm.h"
64#include "stmt.h"
2eb79bbb 65#include "expr.h"
b0710fe1 66#include "insn-codes.h"
79f5e442 67#include "optabs.h"
1c1ad7bb 68#include "recog.h"
b076a3fd
ZD
69
70/* This pass inserts prefetch instructions to optimize cache usage during
71 accesses to arrays in loops. It processes loops sequentially and:
72
73 1) Gathers all memory references in the single loop.
74 2) For each of the references it decides when it is profitable to prefetch
75 it. To do it, we evaluate the reuse among the accesses, and determines
76 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
77 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
78 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
79 iterations of the loop that are zero modulo PREFETCH_MOD). For example
80 (assuming cache line size is 64 bytes, char has size 1 byte and there
81 is no hardware sequential prefetch):
82
83 char *a;
84 for (i = 0; i < max; i++)
85 {
86 a[255] = ...; (0)
87 a[i] = ...; (1)
88 a[i + 64] = ...; (2)
89 a[16*i] = ...; (3)
90 a[187*i] = ...; (4)
91 a[187*i + 50] = ...; (5)
92 }
93
94 (0) obviously has PREFETCH_BEFORE 1
95 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
96 location 64 iterations before it, and PREFETCH_MOD 64 (since
97 it hits the same cache line otherwise).
98 (2) has PREFETCH_MOD 64
99 (3) has PREFETCH_MOD 4
100 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
bae077dc 101 the cache line accessed by (5) is the same with probability only
b076a3fd
ZD
102 7/32.
103 (5) has PREFETCH_MOD 1 as well.
104
5417e022
ZD
105 Additionally, we use data dependence analysis to determine for each
106 reference the distance till the first reuse; this information is used
107 to determine the temporality of the issued prefetch instruction.
108
b076a3fd
ZD
109 3) We determine how much ahead we need to prefetch. The number of
110 iterations needed is time to fetch / time spent in one iteration of
111 the loop. The problem is that we do not know either of these values,
112 so we just make a heuristic guess based on a magic (possibly)
113 target-specific constant and size of the loop.
114
115 4) Determine which of the references we prefetch. We take into account
116 that there is a maximum number of simultaneous prefetches (provided
117 by machine description). We prefetch as many prefetches as possible
118 while still within this bound (starting with those with lowest
119 prefetch_mod, since they are responsible for most of the cache
120 misses).
b8698a0f 121
b076a3fd
ZD
122 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
123 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
124 prefetching nonaccessed memory.
125 TODO -- actually implement peeling.
b8698a0f 126
b076a3fd
ZD
127 6) We actually emit the prefetch instructions. ??? Perhaps emit the
128 prefetch instructions with guards in cases where 5) was not sufficient
129 to satisfy the constraints?
130
0bbe50f6
CF
131 A cost model is implemented to determine whether or not prefetching is
132 profitable for a given loop. The cost model has three heuristics:
133
134 1. Function trip_count_to_ahead_ratio_too_small_p implements a
135 heuristic that determines whether or not the loop has too few
136 iterations (compared to ahead). Prefetching is not likely to be
137 beneficial if the trip count to ahead ratio is below a certain
138 minimum.
139
140 2. Function mem_ref_count_reasonable_p implements a heuristic that
141 determines whether the given loop has enough CPU ops that can be
142 overlapped with cache missing memory ops. If not, the loop
143 won't benefit from prefetching. In the implementation,
144 prefetching is not considered beneficial if the ratio between
145 the instruction count and the mem ref count is below a certain
146 minimum.
147
148 3. Function insn_to_prefetch_ratio_too_small_p implements a
149 heuristic that disables prefetching in a loop if the prefetching
150 cost is above a certain limit. The relative prefetching cost is
151 estimated by taking the ratio between the prefetch count and the
152 total intruction count (this models the I-cache cost).
153
db34470d 154 The limits used in these heuristics are defined as parameters with
b8698a0f 155 reasonable default values. Machine-specific default values will be
db34470d 156 added later.
b8698a0f 157
b076a3fd
ZD
158 Some other TODO:
159 -- write and use more general reuse analysis (that could be also used
160 in other cache aimed loop optimizations)
161 -- make it behave sanely together with the prefetches given by user
162 (now we just ignore them; at the very least we should avoid
163 optimizing loops in that user put his own prefetches)
164 -- we assume cache line size alignment of arrays; this could be
165 improved. */
166
167/* Magic constants follow. These should be replaced by machine specific
168 numbers. */
169
b076a3fd
ZD
170/* True if write can be prefetched by a read prefetch. */
171
172#ifndef WRITE_CAN_USE_READ_PREFETCH
173#define WRITE_CAN_USE_READ_PREFETCH 1
174#endif
175
176/* True if read can be prefetched by a write prefetch. */
177
178#ifndef READ_CAN_USE_WRITE_PREFETCH
179#define READ_CAN_USE_WRITE_PREFETCH 0
180#endif
181
47eb5b32
ZD
182/* The size of the block loaded by a single prefetch. Usually, this is
183 the same as cache line size (at the moment, we only consider one level
184 of cache hierarchy). */
b076a3fd
ZD
185
186#ifndef PREFETCH_BLOCK
47eb5b32 187#define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
b076a3fd
ZD
188#endif
189
190/* Do we have a forward hardware sequential prefetching? */
191
192#ifndef HAVE_FORWARD_PREFETCH
193#define HAVE_FORWARD_PREFETCH 0
194#endif
195
196/* Do we have a backward hardware sequential prefetching? */
197
198#ifndef HAVE_BACKWARD_PREFETCH
199#define HAVE_BACKWARD_PREFETCH 0
200#endif
201
202/* In some cases we are only able to determine that there is a certain
203 probability that the two accesses hit the same cache line. In this
204 case, we issue the prefetches for both of them if this probability
fa10beec 205 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
b076a3fd
ZD
206
207#ifndef ACCEPTABLE_MISS_RATE
208#define ACCEPTABLE_MISS_RATE 50
209#endif
210
46cb0441
ZD
211#define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
212#define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
5417e022
ZD
213
214/* We consider a memory access nontemporal if it is not reused sooner than
215 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
216 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
217 so that we use nontemporal prefetches e.g. if single memory location
218 is accessed several times in a single iteration of the loop. */
219#define NONTEMPORAL_FRACTION 16
220
79f5e442
ZD
221/* In case we have to emit a memory fence instruction after the loop that
222 uses nontemporal stores, this defines the builtin to use. */
223
224#ifndef FENCE_FOLLOWING_MOVNT
225#define FENCE_FOLLOWING_MOVNT NULL_TREE
226#endif
227
9bf4598b
CF
228/* It is not profitable to prefetch when the trip count is not at
229 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
230 For example, in a loop with a prefetch ahead distance of 10,
231 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
232 profitable to prefetch when the trip count is greater or equal to
233 40. In that case, 30 out of the 40 iterations will benefit from
234 prefetching. */
235
236#ifndef TRIP_COUNT_TO_AHEAD_RATIO
237#define TRIP_COUNT_TO_AHEAD_RATIO 4
238#endif
239
b076a3fd
ZD
240/* The group of references between that reuse may occur. */
241
242struct mem_ref_group
243{
244 tree base; /* Base of the reference. */
81f32326 245 tree step; /* Step of the reference. */
b076a3fd
ZD
246 struct mem_ref *refs; /* References in the group. */
247 struct mem_ref_group *next; /* Next group of references. */
248};
249
250/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
251
252#define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
253
8532678c
CF
254/* Do not generate a prefetch if the unroll factor is significantly less
255 than what is required by the prefetch. This is to avoid redundant
f7963a7c
CF
256 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
257 2, prefetching requires unrolling the loop 16 times, but
258 the loop is actually unrolled twice. In this case (ratio = 8),
8532678c
CF
259 prefetching is not likely to be beneficial. */
260
261#ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
f7963a7c 262#define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
8532678c
CF
263#endif
264
0bbe50f6
CF
265/* Some of the prefetch computations have quadratic complexity. We want to
266 avoid huge compile times and, therefore, want to limit the amount of
267 memory references per loop where we consider prefetching. */
268
269#ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
270#define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
271#endif
272
b076a3fd
ZD
273/* The memory reference. */
274
275struct mem_ref
276{
726a989a 277 gimple stmt; /* Statement in that the reference appears. */
b076a3fd
ZD
278 tree mem; /* The reference. */
279 HOST_WIDE_INT delta; /* Constant offset of the reference. */
b076a3fd
ZD
280 struct mem_ref_group *group; /* The group of references it belongs to. */
281 unsigned HOST_WIDE_INT prefetch_mod;
282 /* Prefetch only each PREFETCH_MOD-th
283 iteration. */
284 unsigned HOST_WIDE_INT prefetch_before;
285 /* Prefetch only first PREFETCH_BEFORE
286 iterations. */
5417e022
ZD
287 unsigned reuse_distance; /* The amount of data accessed before the first
288 reuse of this value. */
b076a3fd 289 struct mem_ref *next; /* The next reference in the group. */
79f5e442
ZD
290 unsigned write_p : 1; /* Is it a write? */
291 unsigned independent_p : 1; /* True if the reference is independent on
292 all other references inside the loop. */
293 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
294 unsigned storent_p : 1; /* True if we changed the store to a
295 nontemporal one. */
b076a3fd
ZD
296};
297
a5497b12 298/* Dumps information about memory reference */
b076a3fd 299static void
a5497b12
VK
300dump_mem_details (FILE *file, tree base, tree step,
301 HOST_WIDE_INT delta, bool write_p)
b076a3fd 302{
a5497b12
VK
303 fprintf (file, "(base ");
304 print_generic_expr (file, base, TDF_SLIM);
b076a3fd 305 fprintf (file, ", step ");
a5497b12
VK
306 if (cst_and_fits_in_hwi (step))
307 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
81f32326 308 else
a5497b12 309 print_generic_expr (file, step, TDF_TREE);
b076a3fd 310 fprintf (file, ")\n");
e324a72f 311 fprintf (file, " delta ");
a5497b12
VK
312 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
313 fprintf (file, "\n");
314 fprintf (file, " %s\n", write_p ? "write" : "read");
b076a3fd 315 fprintf (file, "\n");
a5497b12 316}
b076a3fd 317
a5497b12 318/* Dumps information about reference REF to FILE. */
b076a3fd 319
a5497b12
VK
320static void
321dump_mem_ref (FILE *file, struct mem_ref *ref)
322{
323 fprintf (file, "Reference %p:\n", (void *) ref);
324
325 fprintf (file, " group %p ", (void *) ref->group);
326
327 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta,
328 ref->write_p);
b076a3fd
ZD
329}
330
331/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
332 exist. */
333
334static struct mem_ref_group *
81f32326 335find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
b076a3fd
ZD
336{
337 struct mem_ref_group *group;
338
339 for (; *groups; groups = &(*groups)->next)
340 {
81f32326 341 if (operand_equal_p ((*groups)->step, step, 0)
b076a3fd
ZD
342 && operand_equal_p ((*groups)->base, base, 0))
343 return *groups;
344
81f32326
CB
345 /* If step is an integer constant, keep the list of groups sorted
346 by decreasing step. */
21c0a521
DM
347 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
348 && int_cst_value ((*groups)->step) < int_cst_value (step))
b076a3fd
ZD
349 break;
350 }
351
5417e022 352 group = XNEW (struct mem_ref_group);
b076a3fd
ZD
353 group->base = base;
354 group->step = step;
355 group->refs = NULL;
356 group->next = *groups;
357 *groups = group;
358
359 return group;
360}
361
362/* Records a memory reference MEM in GROUP with offset DELTA and write status
363 WRITE_P. The reference occurs in statement STMT. */
364
365static void
726a989a 366record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
b076a3fd
ZD
367 HOST_WIDE_INT delta, bool write_p)
368{
369 struct mem_ref **aref;
370
371 /* Do not record the same address twice. */
372 for (aref = &group->refs; *aref; aref = &(*aref)->next)
373 {
374 /* It does not have to be possible for write reference to reuse the read
375 prefetch, or vice versa. */
376 if (!WRITE_CAN_USE_READ_PREFETCH
377 && write_p
378 && !(*aref)->write_p)
379 continue;
380 if (!READ_CAN_USE_WRITE_PREFETCH
381 && !write_p
382 && (*aref)->write_p)
383 continue;
384
385 if ((*aref)->delta == delta)
386 return;
387 }
388
5417e022 389 (*aref) = XNEW (struct mem_ref);
b076a3fd
ZD
390 (*aref)->stmt = stmt;
391 (*aref)->mem = mem;
392 (*aref)->delta = delta;
393 (*aref)->write_p = write_p;
394 (*aref)->prefetch_before = PREFETCH_ALL;
395 (*aref)->prefetch_mod = 1;
5417e022 396 (*aref)->reuse_distance = 0;
b076a3fd
ZD
397 (*aref)->issue_prefetch_p = false;
398 (*aref)->group = group;
399 (*aref)->next = NULL;
79f5e442
ZD
400 (*aref)->independent_p = false;
401 (*aref)->storent_p = false;
b076a3fd
ZD
402
403 if (dump_file && (dump_flags & TDF_DETAILS))
404 dump_mem_ref (dump_file, *aref);
405}
406
407/* Release memory references in GROUPS. */
408
409static void
410release_mem_refs (struct mem_ref_group *groups)
411{
412 struct mem_ref_group *next_g;
413 struct mem_ref *ref, *next_r;
414
415 for (; groups; groups = next_g)
416 {
417 next_g = groups->next;
418 for (ref = groups->refs; ref; ref = next_r)
419 {
420 next_r = ref->next;
421 free (ref);
422 }
423 free (groups);
424 }
425}
426
427/* A structure used to pass arguments to idx_analyze_ref. */
428
429struct ar_data
430{
431 struct loop *loop; /* Loop of the reference. */
726a989a 432 gimple stmt; /* Statement of the reference. */
81f32326 433 tree *step; /* Step of the memory reference. */
b076a3fd
ZD
434 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
435};
436
437/* Analyzes a single INDEX of a memory reference to obtain information
438 described at analyze_ref. Callback for for_each_index. */
439
440static bool
441idx_analyze_ref (tree base, tree *index, void *data)
442{
c22940cd 443 struct ar_data *ar_data = (struct ar_data *) data;
b076a3fd 444 tree ibase, step, stepsize;
81f32326 445 HOST_WIDE_INT idelta = 0, imult = 1;
b076a3fd
ZD
446 affine_iv iv;
447
f017bf5e 448 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
81f32326 449 *index, &iv, true))
b076a3fd
ZD
450 return false;
451 ibase = iv.base;
452 step = iv.step;
453
5be014d5 454 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
b076a3fd
ZD
455 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
456 {
457 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
458 ibase = TREE_OPERAND (ibase, 0);
459 }
460 if (cst_and_fits_in_hwi (ibase))
461 {
462 idelta += int_cst_value (ibase);
ff5e9a94 463 ibase = build_int_cst (TREE_TYPE (ibase), 0);
b076a3fd
ZD
464 }
465
466 if (TREE_CODE (base) == ARRAY_REF)
467 {
468 stepsize = array_ref_element_size (base);
469 if (!cst_and_fits_in_hwi (stepsize))
470 return false;
471 imult = int_cst_value (stepsize);
8fde8b40
CB
472 step = fold_build2 (MULT_EXPR, sizetype,
473 fold_convert (sizetype, step),
474 fold_convert (sizetype, stepsize));
b076a3fd
ZD
475 idelta *= imult;
476 }
477
8fde8b40
CB
478 if (*ar_data->step == NULL_TREE)
479 *ar_data->step = step;
480 else
481 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
482 fold_convert (sizetype, *ar_data->step),
483 fold_convert (sizetype, step));
b076a3fd
ZD
484 *ar_data->delta += idelta;
485 *index = ibase;
486
487 return true;
488}
489
aac8b8ed 490/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
b076a3fd 491 STEP are integer constants and iter is number of iterations of LOOP. The
aac8b8ed
RS
492 reference occurs in statement STMT. Strips nonaddressable component
493 references from REF_P. */
b076a3fd
ZD
494
495static bool
aac8b8ed 496analyze_ref (struct loop *loop, tree *ref_p, tree *base,
81f32326 497 tree *step, HOST_WIDE_INT *delta,
726a989a 498 gimple stmt)
b076a3fd
ZD
499{
500 struct ar_data ar_data;
501 tree off;
502 HOST_WIDE_INT bit_offset;
aac8b8ed 503 tree ref = *ref_p;
b076a3fd 504
81f32326 505 *step = NULL_TREE;
b076a3fd
ZD
506 *delta = 0;
507
7c6dafac
CF
508 /* First strip off the component references. Ignore bitfields.
509 Also strip off the real and imagine parts of a complex, so that
510 they can have the same base. */
511 if (TREE_CODE (ref) == REALPART_EXPR
512 || TREE_CODE (ref) == IMAGPART_EXPR
513 || (TREE_CODE (ref) == COMPONENT_REF
514 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
515 {
516 if (TREE_CODE (ref) == IMAGPART_EXPR)
517 *delta += int_size_in_bytes (TREE_TYPE (ref));
518 ref = TREE_OPERAND (ref, 0);
519 }
b076a3fd 520
aac8b8ed
RS
521 *ref_p = ref;
522
b076a3fd
ZD
523 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
524 {
525 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
526 bit_offset = TREE_INT_CST_LOW (off);
527 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
b8698a0f 528
b076a3fd
ZD
529 *delta += bit_offset / BITS_PER_UNIT;
530 }
531
532 *base = unshare_expr (ref);
533 ar_data.loop = loop;
534 ar_data.stmt = stmt;
535 ar_data.step = step;
536 ar_data.delta = delta;
537 return for_each_index (base, idx_analyze_ref, &ar_data);
538}
539
540/* Record a memory reference REF to the list REFS. The reference occurs in
79f5e442
ZD
541 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
542 reference was recorded, false otherwise. */
b076a3fd 543
79f5e442 544static bool
b076a3fd 545gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
726a989a 546 tree ref, bool write_p, gimple stmt)
b076a3fd 547{
81f32326
CB
548 tree base, step;
549 HOST_WIDE_INT delta;
b076a3fd
ZD
550 struct mem_ref_group *agrp;
551
a80a2701
JJ
552 if (get_base_address (ref) == NULL)
553 return false;
554
aac8b8ed 555 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
79f5e442 556 return false;
81f32326
CB
557 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
558 if (step == NULL_TREE)
559 return false;
b076a3fd 560
756f50ce 561 /* Stop if the address of BASE could not be taken. */
bc068a23
CF
562 if (may_be_nonaddressable_p (base))
563 return false;
564
a5497b12
VK
565 /* Limit non-constant step prefetching only to the innermost loops and
566 only when the step is loop invariant in the entire loop nest. */
567 if (!cst_and_fits_in_hwi (step))
568 {
569 if (loop->inner != NULL)
570 {
571 if (dump_file && (dump_flags & TDF_DETAILS))
572 {
573 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
574 print_generic_expr (dump_file, ref, TDF_TREE);
575 fprintf (dump_file,":");
c3284718 576 dump_mem_details (dump_file, base, step, delta, write_p);
a5497b12
VK
577 fprintf (dump_file,
578 "Ignoring %p, non-constant step prefetching is "
579 "limited to inner most loops \n",
580 (void *) ref);
581 }
582 return false;
583 }
584 else
585 {
586 if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
587 {
588 if (dump_file && (dump_flags & TDF_DETAILS))
589 {
590 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
591 print_generic_expr (dump_file, ref, TDF_TREE);
592 fprintf (dump_file,":");
c3284718 593 dump_mem_details (dump_file, base, step, delta, write_p);
a5497b12
VK
594 fprintf (dump_file,
595 "Not prefetching, ignoring %p due to "
596 "loop variant step\n",
597 (void *) ref);
598 }
599 return false;
600 }
601 }
602 }
50814135 603
b076a3fd
ZD
604 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
605 are integer constants. */
606 agrp = find_or_create_group (refs, base, step);
607 record_ref (agrp, stmt, ref, delta, write_p);
79f5e442
ZD
608
609 return true;
b076a3fd
ZD
610}
611
79f5e442
ZD
612/* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
613 true if there are no other memory references inside the loop. */
b076a3fd
ZD
614
615static struct mem_ref_group *
db34470d 616gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
b076a3fd
ZD
617{
618 basic_block *body = get_loop_body_in_dom_order (loop);
619 basic_block bb;
620 unsigned i;
726a989a
RB
621 gimple_stmt_iterator bsi;
622 gimple stmt;
623 tree lhs, rhs;
b076a3fd
ZD
624 struct mem_ref_group *refs = NULL;
625
79f5e442 626 *no_other_refs = true;
db34470d 627 *ref_count = 0;
79f5e442 628
b076a3fd
ZD
629 /* Scan the loop body in order, so that the former references precede the
630 later ones. */
631 for (i = 0; i < loop->num_nodes; i++)
632 {
633 bb = body[i];
634 if (bb->loop_father != loop)
635 continue;
636
726a989a 637 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
b076a3fd 638 {
726a989a 639 stmt = gsi_stmt (bsi);
79f5e442 640
726a989a 641 if (gimple_code (stmt) != GIMPLE_ASSIGN)
79f5e442 642 {
5006671f 643 if (gimple_vuse (stmt)
726a989a
RB
644 || (is_gimple_call (stmt)
645 && !(gimple_call_flags (stmt) & ECF_CONST)))
79f5e442
ZD
646 *no_other_refs = false;
647 continue;
648 }
b076a3fd 649
726a989a
RB
650 lhs = gimple_assign_lhs (stmt);
651 rhs = gimple_assign_rhs1 (stmt);
b076a3fd
ZD
652
653 if (REFERENCE_CLASS_P (rhs))
db34470d 654 {
79f5e442
ZD
655 *no_other_refs &= gather_memory_references_ref (loop, &refs,
656 rhs, false, stmt);
db34470d
GS
657 *ref_count += 1;
658 }
b076a3fd 659 if (REFERENCE_CLASS_P (lhs))
db34470d 660 {
79f5e442
ZD
661 *no_other_refs &= gather_memory_references_ref (loop, &refs,
662 lhs, true, stmt);
db34470d
GS
663 *ref_count += 1;
664 }
b076a3fd
ZD
665 }
666 }
667 free (body);
668
669 return refs;
670}
671
672/* Prune the prefetch candidate REF using the self-reuse. */
673
674static void
675prune_ref_by_self_reuse (struct mem_ref *ref)
676{
81f32326
CB
677 HOST_WIDE_INT step;
678 bool backward;
679
680 /* If the step size is non constant, we cannot calculate prefetch_mod. */
681 if (!cst_and_fits_in_hwi (ref->group->step))
682 return;
683
684 step = int_cst_value (ref->group->step);
685
686 backward = step < 0;
b076a3fd
ZD
687
688 if (step == 0)
689 {
690 /* Prefetch references to invariant address just once. */
691 ref->prefetch_before = 1;
692 return;
693 }
694
695 if (backward)
696 step = -step;
697
698 if (step > PREFETCH_BLOCK)
699 return;
700
701 if ((backward && HAVE_BACKWARD_PREFETCH)
702 || (!backward && HAVE_FORWARD_PREFETCH))
703 {
704 ref->prefetch_before = 1;
705 return;
706 }
707
708 ref->prefetch_mod = PREFETCH_BLOCK / step;
709}
710
711/* Divides X by BY, rounding down. */
712
713static HOST_WIDE_INT
714ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
715{
716 gcc_assert (by > 0);
717
718 if (x >= 0)
719 return x / by;
720 else
721 return (x + by - 1) / by;
722}
723
b8698a0f
L
724/* Given a CACHE_LINE_SIZE and two inductive memory references
725 with a common STEP greater than CACHE_LINE_SIZE and an address
726 difference DELTA, compute the probability that they will fall
14e444c3
CF
727 in different cache lines. Return true if the computed miss rate
728 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
729 number of distinct iterations after which the pattern repeats itself.
2c6dd136
GS
730 ALIGN_UNIT is the unit of alignment in bytes. */
731
14e444c3
CF
732static bool
733is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
2c6dd136
GS
734 HOST_WIDE_INT step, HOST_WIDE_INT delta,
735 unsigned HOST_WIDE_INT distinct_iters,
736 int align_unit)
737{
738 unsigned align, iter;
14e444c3 739 int total_positions, miss_positions, max_allowed_miss_positions;
2c6dd136
GS
740 int address1, address2, cache_line1, cache_line2;
741
a245c04b
CF
742 /* It always misses if delta is greater than or equal to the cache
743 line size. */
14e444c3
CF
744 if (delta >= (HOST_WIDE_INT) cache_line_size)
745 return false;
a245c04b 746
2c6dd136 747 miss_positions = 0;
14e444c3
CF
748 total_positions = (cache_line_size / align_unit) * distinct_iters;
749 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
b8698a0f 750
2c6dd136
GS
751 /* Iterate through all possible alignments of the first
752 memory reference within its cache line. */
753 for (align = 0; align < cache_line_size; align += align_unit)
754
755 /* Iterate through all distinct iterations. */
756 for (iter = 0; iter < distinct_iters; iter++)
757 {
758 address1 = align + step * iter;
759 address2 = address1 + delta;
760 cache_line1 = address1 / cache_line_size;
761 cache_line2 = address2 / cache_line_size;
2c6dd136 762 if (cache_line1 != cache_line2)
14e444c3
CF
763 {
764 miss_positions += 1;
765 if (miss_positions > max_allowed_miss_positions)
766 return false;
767 }
2c6dd136 768 }
14e444c3 769 return true;
2c6dd136
GS
770}
771
b076a3fd
ZD
772/* Prune the prefetch candidate REF using the reuse with BY.
773 If BY_IS_BEFORE is true, BY is before REF in the loop. */
774
775static void
776prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
777 bool by_is_before)
778{
81f32326
CB
779 HOST_WIDE_INT step;
780 bool backward;
b076a3fd
ZD
781 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
782 HOST_WIDE_INT delta = delta_b - delta_r;
783 HOST_WIDE_INT hit_from;
784 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
2c6dd136
GS
785 HOST_WIDE_INT reduced_step;
786 unsigned HOST_WIDE_INT reduced_prefetch_block;
787 tree ref_type;
788 int align_unit;
b076a3fd 789
81f32326
CB
790 /* If the step is non constant we cannot calculate prefetch_before. */
791 if (!cst_and_fits_in_hwi (ref->group->step)) {
792 return;
793 }
794
795 step = int_cst_value (ref->group->step);
796
797 backward = step < 0;
798
799
b076a3fd
ZD
800 if (delta == 0)
801 {
802 /* If the references has the same address, only prefetch the
803 former. */
804 if (by_is_before)
805 ref->prefetch_before = 0;
b8698a0f 806
b076a3fd
ZD
807 return;
808 }
809
810 if (!step)
811 {
812 /* If the reference addresses are invariant and fall into the
813 same cache line, prefetch just the first one. */
814 if (!by_is_before)
815 return;
816
817 if (ddown (ref->delta, PREFETCH_BLOCK)
818 != ddown (by->delta, PREFETCH_BLOCK))
819 return;
820
821 ref->prefetch_before = 0;
822 return;
823 }
824
825 /* Only prune the reference that is behind in the array. */
826 if (backward)
827 {
828 if (delta > 0)
829 return;
830
831 /* Transform the data so that we may assume that the accesses
832 are forward. */
833 delta = - delta;
834 step = -step;
835 delta_r = PREFETCH_BLOCK - 1 - delta_r;
836 delta_b = PREFETCH_BLOCK - 1 - delta_b;
837 }
838 else
839 {
840 if (delta < 0)
841 return;
842 }
843
844 /* Check whether the two references are likely to hit the same cache
845 line, and how distant the iterations in that it occurs are from
846 each other. */
847
848 if (step <= PREFETCH_BLOCK)
849 {
850 /* The accesses are sure to meet. Let us check when. */
851 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
852 prefetch_before = (hit_from - delta_r + step - 1) / step;
853
57762e97 854 /* Do not reduce prefetch_before if we meet beyond cache size. */
4c9cf7af 855 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
57762e97 856 prefetch_before = PREFETCH_ALL;
b076a3fd
ZD
857 if (prefetch_before < ref->prefetch_before)
858 ref->prefetch_before = prefetch_before;
859
860 return;
861 }
862
b8698a0f 863 /* A more complicated case with step > prefetch_block. First reduce
2c6dd136 864 the ratio between the step and the cache line size to its simplest
b8698a0f
L
865 terms. The resulting denominator will then represent the number of
866 distinct iterations after which each address will go back to its
867 initial location within the cache line. This computation assumes
2c6dd136 868 that PREFETCH_BLOCK is a power of two. */
b076a3fd 869 prefetch_block = PREFETCH_BLOCK;
2c6dd136
GS
870 reduced_prefetch_block = prefetch_block;
871 reduced_step = step;
872 while ((reduced_step & 1) == 0
873 && reduced_prefetch_block > 1)
b076a3fd 874 {
2c6dd136
GS
875 reduced_step >>= 1;
876 reduced_prefetch_block >>= 1;
b076a3fd
ZD
877 }
878
b076a3fd
ZD
879 prefetch_before = delta / step;
880 delta %= step;
2c6dd136
GS
881 ref_type = TREE_TYPE (ref->mem);
882 align_unit = TYPE_ALIGN (ref_type) / 8;
14e444c3
CF
883 if (is_miss_rate_acceptable (prefetch_block, step, delta,
884 reduced_prefetch_block, align_unit))
b076a3fd 885 {
57762e97
CB
886 /* Do not reduce prefetch_before if we meet beyond cache size. */
887 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
888 prefetch_before = PREFETCH_ALL;
b076a3fd
ZD
889 if (prefetch_before < ref->prefetch_before)
890 ref->prefetch_before = prefetch_before;
891
892 return;
893 }
894
895 /* Try also the following iteration. */
896 prefetch_before++;
897 delta = step - delta;
14e444c3
CF
898 if (is_miss_rate_acceptable (prefetch_block, step, delta,
899 reduced_prefetch_block, align_unit))
b076a3fd
ZD
900 {
901 if (prefetch_before < ref->prefetch_before)
902 ref->prefetch_before = prefetch_before;
903
904 return;
905 }
906
907 /* The ref probably does not reuse by. */
908 return;
909}
910
911/* Prune the prefetch candidate REF using the reuses with other references
912 in REFS. */
913
914static void
915prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
916{
917 struct mem_ref *prune_by;
918 bool before = true;
919
920 prune_ref_by_self_reuse (ref);
921
922 for (prune_by = refs; prune_by; prune_by = prune_by->next)
923 {
924 if (prune_by == ref)
925 {
926 before = false;
927 continue;
928 }
929
930 if (!WRITE_CAN_USE_READ_PREFETCH
931 && ref->write_p
932 && !prune_by->write_p)
933 continue;
934 if (!READ_CAN_USE_WRITE_PREFETCH
935 && !ref->write_p
936 && prune_by->write_p)
937 continue;
938
939 prune_ref_by_group_reuse (ref, prune_by, before);
940 }
941}
942
943/* Prune the prefetch candidates in GROUP using the reuse analysis. */
944
945static void
946prune_group_by_reuse (struct mem_ref_group *group)
947{
948 struct mem_ref *ref_pruned;
949
950 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
951 {
952 prune_ref_by_reuse (ref_pruned, group->refs);
953
954 if (dump_file && (dump_flags & TDF_DETAILS))
955 {
956 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
957
958 if (ref_pruned->prefetch_before == PREFETCH_ALL
959 && ref_pruned->prefetch_mod == 1)
960 fprintf (dump_file, " no restrictions");
961 else if (ref_pruned->prefetch_before == 0)
962 fprintf (dump_file, " do not prefetch");
963 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
964 fprintf (dump_file, " prefetch once");
965 else
966 {
967 if (ref_pruned->prefetch_before != PREFETCH_ALL)
968 {
969 fprintf (dump_file, " prefetch before ");
970 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
971 ref_pruned->prefetch_before);
972 }
973 if (ref_pruned->prefetch_mod != 1)
974 {
975 fprintf (dump_file, " prefetch mod ");
976 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
977 ref_pruned->prefetch_mod);
978 }
979 }
980 fprintf (dump_file, "\n");
981 }
982 }
983}
984
985/* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
986
987static void
988prune_by_reuse (struct mem_ref_group *groups)
989{
990 for (; groups; groups = groups->next)
991 prune_group_by_reuse (groups);
992}
993
994/* Returns true if we should issue prefetch for REF. */
995
996static bool
997should_issue_prefetch_p (struct mem_ref *ref)
998{
999 /* For now do not issue prefetches for only first few of the
1000 iterations. */
1001 if (ref->prefetch_before != PREFETCH_ALL)
a8beb3a7
CB
1002 {
1003 if (dump_file && (dump_flags & TDF_DETAILS))
1004 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
1005 (void *) ref);
1006 return false;
1007 }
b076a3fd 1008
79f5e442
ZD
1009 /* Do not prefetch nontemporal stores. */
1010 if (ref->storent_p)
a8beb3a7
CB
1011 {
1012 if (dump_file && (dump_flags & TDF_DETAILS))
1013 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
1014 return false;
1015 }
79f5e442 1016
b076a3fd
ZD
1017 return true;
1018}
1019
1020/* Decide which of the prefetch candidates in GROUPS to prefetch.
1021 AHEAD is the number of iterations to prefetch ahead (which corresponds
1022 to the number of simultaneous instances of one prefetch running at a
1023 time). UNROLL_FACTOR is the factor by that the loop is going to be
1024 unrolled. Returns true if there is anything to prefetch. */
1025
1026static bool
1027schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1028 unsigned ahead)
1029{
911b3fdb
ZD
1030 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1031 unsigned slots_per_prefetch;
b076a3fd
ZD
1032 struct mem_ref *ref;
1033 bool any = false;
1034
911b3fdb
ZD
1035 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1036 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
b076a3fd 1037
911b3fdb
ZD
1038 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1039 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1040 it will need a prefetch slot. */
1041 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
b076a3fd 1042 if (dump_file && (dump_flags & TDF_DETAILS))
911b3fdb
ZD
1043 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1044 slots_per_prefetch);
b076a3fd
ZD
1045
1046 /* For now we just take memory references one by one and issue
1047 prefetches for as many as possible. The groups are sorted
1048 starting with the largest step, since the references with
c0220ea4 1049 large step are more likely to cause many cache misses. */
b076a3fd
ZD
1050
1051 for (; groups; groups = groups->next)
1052 for (ref = groups->refs; ref; ref = ref->next)
1053 {
1054 if (!should_issue_prefetch_p (ref))
1055 continue;
1056
8532678c
CF
1057 /* The loop is far from being sufficiently unrolled for this
1058 prefetch. Do not generate prefetch to avoid many redudant
1059 prefetches. */
1060 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1061 continue;
1062
911b3fdb
ZD
1063 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1064 and we unroll the loop UNROLL_FACTOR times, we need to insert
1065 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1066 iteration. */
b076a3fd
ZD
1067 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1068 / ref->prefetch_mod);
911b3fdb
ZD
1069 prefetch_slots = n_prefetches * slots_per_prefetch;
1070
1071 /* If more than half of the prefetches would be lost anyway, do not
1072 issue the prefetch. */
1073 if (2 * remaining_prefetch_slots < prefetch_slots)
1074 continue;
1075
1076 ref->issue_prefetch_p = true;
b076a3fd 1077
911b3fdb
ZD
1078 if (remaining_prefetch_slots <= prefetch_slots)
1079 return true;
1080 remaining_prefetch_slots -= prefetch_slots;
b076a3fd
ZD
1081 any = true;
1082 }
1083
1084 return any;
1085}
1086
d5058523
CF
1087/* Return TRUE if no prefetch is going to be generated in the given
1088 GROUPS. */
1089
1090static bool
1091nothing_to_prefetch_p (struct mem_ref_group *groups)
1092{
1093 struct mem_ref *ref;
1094
1095 for (; groups; groups = groups->next)
1096 for (ref = groups->refs; ref; ref = ref->next)
1097 if (should_issue_prefetch_p (ref))
1098 return false;
1099
1100 return true;
1101}
1102
1103/* Estimate the number of prefetches in the given GROUPS.
1104 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
b076a3fd 1105
db34470d 1106static int
d5058523 1107estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
b076a3fd
ZD
1108{
1109 struct mem_ref *ref;
d5058523 1110 unsigned n_prefetches;
db34470d 1111 int prefetch_count = 0;
b076a3fd
ZD
1112
1113 for (; groups; groups = groups->next)
1114 for (ref = groups->refs; ref; ref = ref->next)
1115 if (should_issue_prefetch_p (ref))
d5058523
CF
1116 {
1117 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1118 / ref->prefetch_mod);
1119 prefetch_count += n_prefetches;
1120 }
b076a3fd 1121
db34470d 1122 return prefetch_count;
b076a3fd
ZD
1123}
1124
1125/* Issue prefetches for the reference REF into loop as decided before.
1126 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
917f1b7e 1127 is the factor by which LOOP was unrolled. */
b076a3fd
ZD
1128
1129static void
1130issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1131{
1132 HOST_WIDE_INT delta;
81f32326 1133 tree addr, addr_base, write_p, local, forward;
538dd0b7 1134 gcall *prefetch;
726a989a 1135 gimple_stmt_iterator bsi;
b076a3fd 1136 unsigned n_prefetches, ap;
5417e022 1137 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
b076a3fd
ZD
1138
1139 if (dump_file && (dump_flags & TDF_DETAILS))
5417e022
ZD
1140 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1141 nontemporal ? " nontemporal" : "",
1142 (void *) ref);
b076a3fd 1143
726a989a 1144 bsi = gsi_for_stmt (ref->stmt);
b076a3fd
ZD
1145
1146 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1147 / ref->prefetch_mod);
1148 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
726a989a
RB
1149 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1150 true, NULL, true, GSI_SAME_STMT);
911b3fdb 1151 write_p = ref->write_p ? integer_one_node : integer_zero_node;
9a9d280e 1152 local = nontemporal ? integer_zero_node : integer_three_node;
b076a3fd
ZD
1153
1154 for (ap = 0; ap < n_prefetches; ap++)
1155 {
81f32326
CB
1156 if (cst_and_fits_in_hwi (ref->group->step))
1157 {
1158 /* Determine the address to prefetch. */
1159 delta = (ahead + ap * ref->prefetch_mod) *
1160 int_cst_value (ref->group->step);
5d49b6a7 1161 addr = fold_build_pointer_plus_hwi (addr_base, delta);
81f32326
CB
1162 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1163 true, GSI_SAME_STMT);
1164 }
1165 else
1166 {
1167 /* The step size is non-constant but loop-invariant. We use the
1168 heuristic to simply prefetch ahead iterations ahead. */
1169 forward = fold_build2 (MULT_EXPR, sizetype,
1170 fold_convert (sizetype, ref->group->step),
1171 fold_convert (sizetype, size_int (ahead)));
5d49b6a7 1172 addr = fold_build_pointer_plus (addr_base, forward);
81f32326
CB
1173 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1174 NULL, true, GSI_SAME_STMT);
1175 }
b076a3fd 1176 /* Create the prefetch instruction. */
e79983f4 1177 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
726a989a
RB
1178 3, addr, write_p, local);
1179 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
b076a3fd
ZD
1180 }
1181}
1182
1183/* Issue prefetches for the references in GROUPS into loop as decided before.
1184 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1185 factor by that LOOP was unrolled. */
1186
1187static void
1188issue_prefetches (struct mem_ref_group *groups,
1189 unsigned unroll_factor, unsigned ahead)
1190{
1191 struct mem_ref *ref;
1192
1193 for (; groups; groups = groups->next)
1194 for (ref = groups->refs; ref; ref = ref->next)
1195 if (ref->issue_prefetch_p)
1196 issue_prefetch_ref (ref, unroll_factor, ahead);
1197}
1198
79f5e442
ZD
1199/* Returns true if REF is a memory write for that a nontemporal store insn
1200 can be used. */
1201
1202static bool
1203nontemporal_store_p (struct mem_ref *ref)
1204{
ef4bddc2 1205 machine_mode mode;
79f5e442
ZD
1206 enum insn_code code;
1207
1208 /* REF must be a write that is not reused. We require it to be independent
1209 on all other memory references in the loop, as the nontemporal stores may
1210 be reordered with respect to other memory references. */
1211 if (!ref->write_p
1212 || !ref->independent_p
1213 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1214 return false;
1215
1216 /* Check that we have the storent instruction for the mode. */
1217 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1218 if (mode == BLKmode)
1219 return false;
1220
947131ba 1221 code = optab_handler (storent_optab, mode);
79f5e442
ZD
1222 return code != CODE_FOR_nothing;
1223}
1224
1225/* If REF is a nontemporal store, we mark the corresponding modify statement
1226 and return true. Otherwise, we return false. */
1227
1228static bool
1229mark_nontemporal_store (struct mem_ref *ref)
1230{
1231 if (!nontemporal_store_p (ref))
1232 return false;
1233
1234 if (dump_file && (dump_flags & TDF_DETAILS))
1235 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1236 (void *) ref);
1237
726a989a 1238 gimple_assign_set_nontemporal_move (ref->stmt, true);
79f5e442
ZD
1239 ref->storent_p = true;
1240
1241 return true;
1242}
1243
1244/* Issue a memory fence instruction after LOOP. */
1245
1246static void
1247emit_mfence_after_loop (struct loop *loop)
1248{
9771b263 1249 vec<edge> exits = get_loop_exit_edges (loop);
79f5e442 1250 edge exit;
538dd0b7 1251 gcall *call;
726a989a 1252 gimple_stmt_iterator bsi;
79f5e442
ZD
1253 unsigned i;
1254
9771b263 1255 FOR_EACH_VEC_ELT (exits, i, exit)
79f5e442 1256 {
726a989a 1257 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
79f5e442
ZD
1258
1259 if (!single_pred_p (exit->dest)
1260 /* If possible, we prefer not to insert the fence on other paths
1261 in cfg. */
1262 && !(exit->flags & EDGE_ABNORMAL))
1263 split_loop_exit_edge (exit);
726a989a 1264 bsi = gsi_after_labels (exit->dest);
79f5e442 1265
726a989a 1266 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
79f5e442
ZD
1267 }
1268
9771b263 1269 exits.release ();
79f5e442
ZD
1270 update_ssa (TODO_update_ssa_only_virtuals);
1271}
1272
1273/* Returns true if we can use storent in loop, false otherwise. */
1274
1275static bool
1276may_use_storent_in_loop_p (struct loop *loop)
1277{
1278 bool ret = true;
1279
1280 if (loop->inner != NULL)
1281 return false;
1282
1283 /* If we must issue a mfence insn after using storent, check that there
1284 is a suitable place for it at each of the loop exits. */
1285 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1286 {
9771b263 1287 vec<edge> exits = get_loop_exit_edges (loop);
79f5e442
ZD
1288 unsigned i;
1289 edge exit;
1290
9771b263 1291 FOR_EACH_VEC_ELT (exits, i, exit)
79f5e442 1292 if ((exit->flags & EDGE_ABNORMAL)
fefa31b5 1293 && exit->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
79f5e442
ZD
1294 ret = false;
1295
9771b263 1296 exits.release ();
79f5e442
ZD
1297 }
1298
1299 return ret;
1300}
1301
1302/* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1303 references in the loop. */
1304
1305static void
1306mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1307{
1308 struct mem_ref *ref;
1309 bool any = false;
1310
1311 if (!may_use_storent_in_loop_p (loop))
1312 return;
1313
1314 for (; groups; groups = groups->next)
1315 for (ref = groups->refs; ref; ref = ref->next)
1316 any |= mark_nontemporal_store (ref);
1317
1318 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1319 emit_mfence_after_loop (loop);
1320}
1321
b076a3fd
ZD
1322/* Determines whether we can profitably unroll LOOP FACTOR times, and if
1323 this is the case, fill in DESC by the description of number of
1324 iterations. */
1325
1326static bool
1327should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1328 unsigned factor)
1329{
1330 if (!can_unroll_loop_p (loop, factor, desc))
1331 return false;
1332
1333 /* We only consider loops without control flow for unrolling. This is not
1334 a hard restriction -- tree_unroll_loop works with arbitrary loops
1335 as well; but the unrolling/prefetching is usually more profitable for
1336 loops consisting of a single basic block, and we want to limit the
1337 code growth. */
1338 if (loop->num_nodes > 2)
1339 return false;
1340
1341 return true;
1342}
1343
1344/* Determine the coefficient by that unroll LOOP, from the information
1345 contained in the list of memory references REFS. Description of
2711355f
ZD
1346 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1347 insns of the LOOP. EST_NITER is the estimated number of iterations of
1348 the loop, or -1 if no estimate is available. */
b076a3fd
ZD
1349
1350static unsigned
1351determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
2711355f
ZD
1352 unsigned ninsns, struct tree_niter_desc *desc,
1353 HOST_WIDE_INT est_niter)
b076a3fd 1354{
911b3fdb
ZD
1355 unsigned upper_bound;
1356 unsigned nfactor, factor, mod_constraint;
b076a3fd
ZD
1357 struct mem_ref_group *agp;
1358 struct mem_ref *ref;
1359
911b3fdb
ZD
1360 /* First check whether the loop is not too large to unroll. We ignore
1361 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1362 from unrolling them enough to make exactly one cache line covered by each
1363 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1364 us from unrolling the loops too many times in cases where we only expect
1365 gains from better scheduling and decreasing loop overhead, which is not
1366 the case here. */
1367 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
2711355f
ZD
1368
1369 /* If we unrolled the loop more times than it iterates, the unrolled version
1370 of the loop would be never entered. */
1371 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1372 upper_bound = est_niter;
1373
911b3fdb 1374 if (upper_bound <= 1)
b076a3fd
ZD
1375 return 1;
1376
911b3fdb
ZD
1377 /* Choose the factor so that we may prefetch each cache just once,
1378 but bound the unrolling by UPPER_BOUND. */
1379 factor = 1;
b076a3fd
ZD
1380 for (agp = refs; agp; agp = agp->next)
1381 for (ref = agp->refs; ref; ref = ref->next)
911b3fdb
ZD
1382 if (should_issue_prefetch_p (ref))
1383 {
1384 mod_constraint = ref->prefetch_mod;
1385 nfactor = least_common_multiple (mod_constraint, factor);
1386 if (nfactor <= upper_bound)
1387 factor = nfactor;
1388 }
b076a3fd
ZD
1389
1390 if (!should_unroll_loop_p (loop, desc, factor))
1391 return 1;
1392
1393 return factor;
1394}
1395
5417e022
ZD
1396/* Returns the total volume of the memory references REFS, taking into account
1397 reuses in the innermost loop and cache line size. TODO -- we should also
1398 take into account reuses across the iterations of the loops in the loop
1399 nest. */
1400
1401static unsigned
1402volume_of_references (struct mem_ref_group *refs)
1403{
1404 unsigned volume = 0;
1405 struct mem_ref_group *gr;
1406 struct mem_ref *ref;
1407
1408 for (gr = refs; gr; gr = gr->next)
1409 for (ref = gr->refs; ref; ref = ref->next)
1410 {
1411 /* Almost always reuses another value? */
1412 if (ref->prefetch_before != PREFETCH_ALL)
1413 continue;
1414
1415 /* If several iterations access the same cache line, use the size of
1416 the line divided by this number. Otherwise, a cache line is
1417 accessed in each iteration. TODO -- in the latter case, we should
1418 take the size of the reference into account, rounding it up on cache
1419 line size multiple. */
1420 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1421 }
1422 return volume;
1423}
1424
1425/* Returns the volume of memory references accessed across VEC iterations of
1426 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1427 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1428
1429static unsigned
1430volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1431{
1432 unsigned i;
1433
1434 for (i = 0; i < n; i++)
1435 if (vec[i] != 0)
1436 break;
1437
1438 if (i == n)
1439 return 0;
1440
1441 gcc_assert (vec[i] > 0);
1442
1443 /* We ignore the parts of the distance vector in subloops, since usually
1444 the numbers of iterations are much smaller. */
1445 return loop_sizes[i] * vec[i];
1446}
1447
1448/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1449 at the position corresponding to the loop of the step. N is the depth
1450 of the considered loop nest, and, LOOP is its innermost loop. */
1451
1452static void
1453add_subscript_strides (tree access_fn, unsigned stride,
1454 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1455{
1456 struct loop *aloop;
1457 tree step;
1458 HOST_WIDE_INT astep;
1459 unsigned min_depth = loop_depth (loop) - n;
1460
1461 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1462 {
1463 aloop = get_chrec_loop (access_fn);
1464 step = CHREC_RIGHT (access_fn);
1465 access_fn = CHREC_LEFT (access_fn);
1466
1467 if ((unsigned) loop_depth (aloop) <= min_depth)
1468 continue;
1469
9541ffee 1470 if (tree_fits_shwi_p (step))
9439e9a1 1471 astep = tree_to_shwi (step);
5417e022
ZD
1472 else
1473 astep = L1_CACHE_LINE_SIZE;
1474
1475 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1476
1477 }
1478}
1479
1480/* Returns the volume of memory references accessed between two consecutive
1481 self-reuses of the reference DR. We consider the subscripts of DR in N
1482 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1483 loops. LOOP is the innermost loop of the current loop nest. */
1484
1485static unsigned
1486self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1487 struct loop *loop)
1488{
1489 tree stride, access_fn;
1490 HOST_WIDE_INT *strides, astride;
9771b263 1491 vec<tree> access_fns;
5417e022
ZD
1492 tree ref = DR_REF (dr);
1493 unsigned i, ret = ~0u;
1494
1495 /* In the following example:
1496
1497 for (i = 0; i < N; i++)
1498 for (j = 0; j < N; j++)
1499 use (a[j][i]);
1500 the same cache line is accessed each N steps (except if the change from
1501 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1502 we cannot rely purely on the results of the data dependence analysis.
1503
1504 Instead, we compute the stride of the reference in each loop, and consider
1505 the innermost loop in that the stride is less than cache size. */
1506
1507 strides = XCNEWVEC (HOST_WIDE_INT, n);
1508 access_fns = DR_ACCESS_FNS (dr);
1509
9771b263 1510 FOR_EACH_VEC_ELT (access_fns, i, access_fn)
5417e022
ZD
1511 {
1512 /* Keep track of the reference corresponding to the subscript, so that we
1513 know its stride. */
1514 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1515 ref = TREE_OPERAND (ref, 0);
b8698a0f 1516
5417e022
ZD
1517 if (TREE_CODE (ref) == ARRAY_REF)
1518 {
1519 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
cc269bb6 1520 if (tree_fits_uhwi_p (stride))
ae7e9ddd 1521 astride = tree_to_uhwi (stride);
5417e022
ZD
1522 else
1523 astride = L1_CACHE_LINE_SIZE;
1524
1525 ref = TREE_OPERAND (ref, 0);
1526 }
1527 else
1528 astride = 1;
1529
1530 add_subscript_strides (access_fn, astride, strides, n, loop);
1531 }
1532
1533 for (i = n; i-- > 0; )
1534 {
1535 unsigned HOST_WIDE_INT s;
1536
1537 s = strides[i] < 0 ? -strides[i] : strides[i];
1538
1539 if (s < (unsigned) L1_CACHE_LINE_SIZE
1540 && (loop_sizes[i]
1541 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1542 {
1543 ret = loop_sizes[i];
1544 break;
1545 }
1546 }
1547
1548 free (strides);
1549 return ret;
1550}
1551
1552/* Determines the distance till the first reuse of each reference in REFS
79f5e442 1553 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1e373390 1554 memory references in the loop. Return false if the analysis fails. */
5417e022 1555
1e373390 1556static bool
79f5e442
ZD
1557determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1558 bool no_other_refs)
5417e022
ZD
1559{
1560 struct loop *nest, *aloop;
6e1aa848
DN
1561 vec<data_reference_p> datarefs = vNULL;
1562 vec<ddr_p> dependences = vNULL;
5417e022 1563 struct mem_ref_group *gr;
79f5e442 1564 struct mem_ref *ref, *refb;
6e1aa848 1565 vec<loop_p> vloops = vNULL;
5417e022
ZD
1566 unsigned *loop_data_size;
1567 unsigned i, j, n;
1568 unsigned volume, dist, adist;
1569 HOST_WIDE_INT vol;
1570 data_reference_p dr;
1571 ddr_p dep;
1572
1573 if (loop->inner)
1e373390 1574 return true;
5417e022
ZD
1575
1576 /* Find the outermost loop of the loop nest of loop (we require that
1577 there are no sibling loops inside the nest). */
1578 nest = loop;
1579 while (1)
1580 {
1581 aloop = loop_outer (nest);
1582
1583 if (aloop == current_loops->tree_root
1584 || aloop->inner->next)
1585 break;
1586
1587 nest = aloop;
1588 }
1589
1590 /* For each loop, determine the amount of data accessed in each iteration.
1591 We use this to estimate whether the reference is evicted from the
1592 cache before its reuse. */
1593 find_loop_nest (nest, &vloops);
9771b263 1594 n = vloops.length ();
5417e022
ZD
1595 loop_data_size = XNEWVEC (unsigned, n);
1596 volume = volume_of_references (refs);
1597 i = n;
1598 while (i-- != 0)
1599 {
1600 loop_data_size[i] = volume;
1601 /* Bound the volume by the L2 cache size, since above this bound,
1602 all dependence distances are equivalent. */
1603 if (volume > L2_CACHE_SIZE_BYTES)
1604 continue;
1605
9771b263 1606 aloop = vloops[i];
652c4c71 1607 vol = estimated_stmt_executions_int (aloop);
e5b332cd 1608 if (vol == -1)
5417e022
ZD
1609 vol = expected_loop_iterations (aloop);
1610 volume *= vol;
1611 }
1612
1613 /* Prepare the references in the form suitable for data dependence
0d52bcc1 1614 analysis. We ignore unanalyzable data references (the results
5417e022
ZD
1615 are used just as a heuristics to estimate temporality of the
1616 references, hence we do not need to worry about correctness). */
1617 for (gr = refs; gr; gr = gr->next)
1618 for (ref = gr->refs; ref; ref = ref->next)
1619 {
5c640e29
SP
1620 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1621 ref->mem, ref->stmt, !ref->write_p);
5417e022
ZD
1622
1623 if (dr)
1624 {
1625 ref->reuse_distance = volume;
1626 dr->aux = ref;
9771b263 1627 datarefs.safe_push (dr);
5417e022 1628 }
79f5e442
ZD
1629 else
1630 no_other_refs = false;
5417e022
ZD
1631 }
1632
9771b263 1633 FOR_EACH_VEC_ELT (datarefs, i, dr)
5417e022
ZD
1634 {
1635 dist = self_reuse_distance (dr, loop_data_size, n, loop);
3d9a9f94 1636 ref = (struct mem_ref *) dr->aux;
5417e022
ZD
1637 if (ref->reuse_distance > dist)
1638 ref->reuse_distance = dist;
79f5e442
ZD
1639
1640 if (no_other_refs)
1641 ref->independent_p = true;
5417e022
ZD
1642 }
1643
1e373390
RG
1644 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1645 return false;
5417e022 1646
9771b263 1647 FOR_EACH_VEC_ELT (dependences, i, dep)
5417e022
ZD
1648 {
1649 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1650 continue;
1651
3d9a9f94
KG
1652 ref = (struct mem_ref *) DDR_A (dep)->aux;
1653 refb = (struct mem_ref *) DDR_B (dep)->aux;
79f5e442 1654
5417e022
ZD
1655 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1656 || DDR_NUM_DIST_VECTS (dep) == 0)
1657 {
0d52bcc1 1658 /* If the dependence cannot be analyzed, assume that there might be
5417e022
ZD
1659 a reuse. */
1660 dist = 0;
b8698a0f 1661
79f5e442
ZD
1662 ref->independent_p = false;
1663 refb->independent_p = false;
5417e022
ZD
1664 }
1665 else
1666 {
0d52bcc1 1667 /* The distance vectors are normalized to be always lexicographically
5417e022
ZD
1668 positive, hence we cannot tell just from them whether DDR_A comes
1669 before DDR_B or vice versa. However, it is not important,
1670 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1671 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1672 in cache (and marking it as nontemporal would not affect
1673 anything). */
1674
1675 dist = volume;
1676 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1677 {
1678 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1679 loop_data_size, n);
1680
79f5e442
ZD
1681 /* If this is a dependence in the innermost loop (i.e., the
1682 distances in all superloops are zero) and it is not
1683 the trivial self-dependence with distance zero, record that
1684 the references are not completely independent. */
1685 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1686 && (ref != refb
1687 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1688 {
1689 ref->independent_p = false;
1690 refb->independent_p = false;
1691 }
1692
5417e022
ZD
1693 /* Ignore accesses closer than
1694 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1695 so that we use nontemporal prefetches e.g. if single memory
1696 location is accessed several times in a single iteration of
1697 the loop. */
1698 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1699 continue;
1700
1701 if (adist < dist)
1702 dist = adist;
1703 }
1704 }
1705
5417e022
ZD
1706 if (ref->reuse_distance > dist)
1707 ref->reuse_distance = dist;
79f5e442
ZD
1708 if (refb->reuse_distance > dist)
1709 refb->reuse_distance = dist;
5417e022
ZD
1710 }
1711
1712 free_dependence_relations (dependences);
1713 free_data_refs (datarefs);
1714 free (loop_data_size);
1715
1716 if (dump_file && (dump_flags & TDF_DETAILS))
1717 {
1718 fprintf (dump_file, "Reuse distances:\n");
1719 for (gr = refs; gr; gr = gr->next)
1720 for (ref = gr->refs; ref; ref = ref->next)
1721 fprintf (dump_file, " ref %p distance %u\n",
1722 (void *) ref, ref->reuse_distance);
1723 }
1e373390
RG
1724
1725 return true;
5417e022
ZD
1726}
1727
0bbe50f6
CF
1728/* Determine whether or not the trip count to ahead ratio is too small based
1729 on prefitablility consideration.
db34470d 1730 AHEAD: the iteration ahead distance,
0bbe50f6
CF
1731 EST_NITER: the estimated trip count. */
1732
1733static bool
1734trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1735{
1736 /* Assume trip count to ahead ratio is big enough if the trip count could not
1737 be estimated at compile time. */
1738 if (est_niter < 0)
1739 return false;
1740
1741 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1742 {
1743 if (dump_file && (dump_flags & TDF_DETAILS))
1744 fprintf (dump_file,
1745 "Not prefetching -- loop estimated to roll only %d times\n",
1746 (int) est_niter);
1747 return true;
1748 }
1749
1750 return false;
1751}
1752
1753/* Determine whether or not the number of memory references in the loop is
1754 reasonable based on the profitablity and compilation time considerations.
db34470d 1755 NINSNS: estimated number of instructions in the loop,
db34470d
GS
1756 MEM_REF_COUNT: total number of memory references in the loop. */
1757
b8698a0f 1758static bool
0bbe50f6 1759mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
db34470d 1760{
0bbe50f6 1761 int insn_to_mem_ratio;
db34470d
GS
1762
1763 if (mem_ref_count == 0)
1764 return false;
1765
0bbe50f6
CF
1766 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1767 (compute_all_dependences) have high costs based on quadratic complexity.
1768 To avoid huge compilation time, we give up prefetching if mem_ref_count
1769 is too large. */
1770 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1771 return false;
1772
b8698a0f
L
1773 /* Prefetching improves performance by overlapping cache missing
1774 memory accesses with CPU operations. If the loop does not have
1775 enough CPU operations to overlap with memory operations, prefetching
1776 won't give a significant benefit. One approximate way of checking
1777 this is to require the ratio of instructions to memory references to
db34470d
GS
1778 be above a certain limit. This approximation works well in practice.
1779 TODO: Implement a more precise computation by estimating the time
1780 for each CPU or memory op in the loop. Time estimates for memory ops
1781 should account for cache misses. */
b8698a0f 1782 insn_to_mem_ratio = ninsns / mem_ref_count;
db34470d
GS
1783
1784 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
55e5a2eb
CF
1785 {
1786 if (dump_file && (dump_flags & TDF_DETAILS))
1787 fprintf (dump_file,
1788 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1789 insn_to_mem_ratio);
1790 return false;
1791 }
db34470d 1792
0bbe50f6
CF
1793 return true;
1794}
1795
1796/* Determine whether or not the instruction to prefetch ratio in the loop is
1797 too small based on the profitablity consideration.
1798 NINSNS: estimated number of instructions in the loop,
1799 PREFETCH_COUNT: an estimate of the number of prefetches,
1800 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1801
1802static bool
1803insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1804 unsigned unroll_factor)
1805{
1806 int insn_to_prefetch_ratio;
1807
d3a9b459
CF
1808 /* Prefetching most likely causes performance degradation when the instruction
1809 to prefetch ratio is too small. Too many prefetch instructions in a loop
1810 may reduce the I-cache performance.
ccacf0e1
CF
1811 (unroll_factor * ninsns) is used to estimate the number of instructions in
1812 the unrolled loop. This implementation is a bit simplistic -- the number
1813 of issued prefetch instructions is also affected by unrolling. So,
1814 prefetch_mod and the unroll factor should be taken into account when
1815 determining prefetch_count. Also, the number of insns of the unrolled
1816 loop will usually be significantly smaller than the number of insns of the
1817 original loop * unroll_factor (at least the induction variable increases
1818 and the exit branches will get eliminated), so it might be better to use
1819 tree_estimate_loop_size + estimated_unrolled_size. */
d3a9b459
CF
1820 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1821 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
db34470d 1822 {
d3a9b459
CF
1823 if (dump_file && (dump_flags & TDF_DETAILS))
1824 fprintf (dump_file,
1825 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1826 insn_to_prefetch_ratio);
0bbe50f6 1827 return true;
db34470d 1828 }
b8698a0f 1829
0bbe50f6 1830 return false;
db34470d
GS
1831}
1832
1833
b076a3fd 1834/* Issue prefetch instructions for array references in LOOP. Returns
d73be268 1835 true if the LOOP was unrolled. */
b076a3fd
ZD
1836
1837static bool
d73be268 1838loop_prefetch_arrays (struct loop *loop)
b076a3fd
ZD
1839{
1840 struct mem_ref_group *refs;
2711355f
ZD
1841 unsigned ahead, ninsns, time, unroll_factor;
1842 HOST_WIDE_INT est_niter;
b076a3fd 1843 struct tree_niter_desc desc;
79f5e442 1844 bool unrolled = false, no_other_refs;
db34470d
GS
1845 unsigned prefetch_count;
1846 unsigned mem_ref_count;
b076a3fd 1847
efd8f750 1848 if (optimize_loop_nest_for_size_p (loop))
2732d767
ZD
1849 {
1850 if (dump_file && (dump_flags & TDF_DETAILS))
1851 fprintf (dump_file, " ignored (cold area)\n");
1852 return false;
1853 }
1854
0bbe50f6
CF
1855 /* FIXME: the time should be weighted by the probabilities of the blocks in
1856 the loop body. */
1857 time = tree_num_loop_insns (loop, &eni_time_weights);
1858 if (time == 0)
1859 return false;
1860
1861 ahead = (PREFETCH_LATENCY + time - 1) / time;
652c4c71 1862 est_niter = estimated_stmt_executions_int (loop);
e5b332cd
RG
1863 if (est_niter == -1)
1864 est_niter = max_stmt_executions_int (loop);
0bbe50f6
CF
1865
1866 /* Prefetching is not likely to be profitable if the trip count to ahead
1867 ratio is too small. */
1868 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1869 return false;
1870
1871 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1872
b076a3fd 1873 /* Step 1: gather the memory references. */
db34470d 1874 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
b076a3fd 1875
0bbe50f6
CF
1876 /* Give up prefetching if the number of memory references in the
1877 loop is not reasonable based on profitablity and compilation time
1878 considerations. */
1879 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1880 goto fail;
1881
b076a3fd
ZD
1882 /* Step 2: estimate the reuse effects. */
1883 prune_by_reuse (refs);
1884
d5058523 1885 if (nothing_to_prefetch_p (refs))
b076a3fd
ZD
1886 goto fail;
1887
1e373390
RG
1888 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1889 goto fail;
5417e022 1890
0bbe50f6 1891 /* Step 3: determine unroll factor. */
2711355f
ZD
1892 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1893 est_niter);
d5058523
CF
1894
1895 /* Estimate prefetch count for the unrolled loop. */
1896 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1897 if (prefetch_count == 0)
1898 goto fail;
1899
2711355f 1900 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 1901 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
d81f5387 1902 HOST_WIDE_INT_PRINT_DEC "\n"
b8698a0f
L
1903 "insn count %d, mem ref count %d, prefetch count %d\n",
1904 ahead, unroll_factor, est_niter,
1905 ninsns, mem_ref_count, prefetch_count);
db34470d 1906
0bbe50f6
CF
1907 /* Prefetching is not likely to be profitable if the instruction to prefetch
1908 ratio is too small. */
1909 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1910 unroll_factor))
db34470d
GS
1911 goto fail;
1912
1913 mark_nontemporal_stores (loop, refs);
2711355f 1914
b076a3fd
ZD
1915 /* Step 4: what to prefetch? */
1916 if (!schedule_prefetches (refs, unroll_factor, ahead))
1917 goto fail;
1918
1919 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1920 iterations so that we do not issue superfluous prefetches. */
1921 if (unroll_factor != 1)
1922 {
d73be268 1923 tree_unroll_loop (loop, unroll_factor,
b076a3fd
ZD
1924 single_dom_exit (loop), &desc);
1925 unrolled = true;
1926 }
1927
1928 /* Step 6: issue the prefetches. */
1929 issue_prefetches (refs, unroll_factor, ahead);
1930
1931fail:
1932 release_mem_refs (refs);
1933 return unrolled;
1934}
1935
d73be268 1936/* Issue prefetch instructions for array references in loops. */
b076a3fd 1937
c7f965b6 1938unsigned int
d73be268 1939tree_ssa_prefetch_arrays (void)
b076a3fd 1940{
b076a3fd
ZD
1941 struct loop *loop;
1942 bool unrolled = false;
c7f965b6 1943 int todo_flags = 0;
b076a3fd 1944
134b044d 1945 if (!targetm.have_prefetch ()
b076a3fd
ZD
1946 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1947 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1948 of processor costs and i486 does not have prefetch, but
134b044d 1949 -march=pentium4 causes targetm.have_prefetch to be true. Ugh. */
b076a3fd 1950 || PREFETCH_BLOCK == 0)
c7f965b6 1951 return 0;
b076a3fd 1952
47eb5b32
ZD
1953 if (dump_file && (dump_flags & TDF_DETAILS))
1954 {
1955 fprintf (dump_file, "Prefetching parameters:\n");
1956 fprintf (dump_file, " simultaneous prefetches: %d\n",
1957 SIMULTANEOUS_PREFETCHES);
1958 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
47eb5b32 1959 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
46cb0441
ZD
1960 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1961 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
5417e022 1962 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
b8698a0f
L
1963 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1964 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
db34470d 1965 MIN_INSN_TO_PREFETCH_RATIO);
b8698a0f 1966 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
db34470d 1967 PREFETCH_MIN_INSN_TO_MEM_RATIO);
47eb5b32
ZD
1968 fprintf (dump_file, "\n");
1969 }
1970
b076a3fd
ZD
1971 initialize_original_copy_tables ();
1972
e79983f4 1973 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
b076a3fd 1974 {
6a4825bd
NF
1975 tree type = build_function_type_list (void_type_node,
1976 const_ptr_type_node, NULL_TREE);
c79efc4d
RÁE
1977 tree decl = add_builtin_function ("__builtin_prefetch", type,
1978 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1979 NULL, NULL_TREE);
b076a3fd 1980 DECL_IS_NOVOPS (decl) = true;
e79983f4 1981 set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
b076a3fd
ZD
1982 }
1983
1984 /* We assume that size of cache line is a power of two, so verify this
1985 here. */
1986 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1987
f0bd40b1 1988 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
b076a3fd 1989 {
b076a3fd
ZD
1990 if (dump_file && (dump_flags & TDF_DETAILS))
1991 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1992
d73be268 1993 unrolled |= loop_prefetch_arrays (loop);
b076a3fd
ZD
1994
1995 if (dump_file && (dump_flags & TDF_DETAILS))
1996 fprintf (dump_file, "\n\n");
1997 }
1998
1999 if (unrolled)
2000 {
2001 scev_reset ();
c7f965b6 2002 todo_flags |= TODO_cleanup_cfg;
b076a3fd
ZD
2003 }
2004
2005 free_original_copy_tables ();
c7f965b6 2006 return todo_flags;
b076a3fd 2007}
71343877
AM
2008
2009/* Prefetching. */
2010
71343877
AM
2011namespace {
2012
2013const pass_data pass_data_loop_prefetch =
2014{
2015 GIMPLE_PASS, /* type */
2016 "aprefetch", /* name */
2017 OPTGROUP_LOOP, /* optinfo_flags */
71343877
AM
2018 TV_TREE_PREFETCH, /* tv_id */
2019 ( PROP_cfg | PROP_ssa ), /* properties_required */
2020 0, /* properties_provided */
2021 0, /* properties_destroyed */
2022 0, /* todo_flags_start */
2023 0, /* todo_flags_finish */
2024};
2025
2026class pass_loop_prefetch : public gimple_opt_pass
2027{
2028public:
2029 pass_loop_prefetch (gcc::context *ctxt)
2030 : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2031 {}
2032
2033 /* opt_pass methods: */
1a3d085c 2034 virtual bool gate (function *) { return flag_prefetch_loop_arrays > 0; }
be55bfe6 2035 virtual unsigned int execute (function *);
71343877
AM
2036
2037}; // class pass_loop_prefetch
2038
be55bfe6
TS
2039unsigned int
2040pass_loop_prefetch::execute (function *fun)
2041{
2042 if (number_of_loops (fun) <= 1)
2043 return 0;
2044
2045 return tree_ssa_prefetch_arrays ();
2046}
2047
71343877
AM
2048} // anon namespace
2049
2050gimple_opt_pass *
2051make_pass_loop_prefetch (gcc::context *ctxt)
2052{
2053 return new pass_loop_prefetch (ctxt);
2054}
2055
2056