]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-loop-prefetch.c
re PR libstdc++/54869 (ext/random/simd_fast_mersenne_twister_engine/cons/default...
[thirdparty/gcc.git] / gcc / tree-ssa-loop-prefetch.c
CommitLineData
b076a3fd 1/* Array prefetching.
9f813990
PC
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
b8698a0f 4
b076a3fd 5This file is part of GCC.
b8698a0f 6
b076a3fd
ZD
7GCC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by the
9dcd6f09 9Free Software Foundation; either version 3, or (at your option) any
b076a3fd 10later version.
b8698a0f 11
b076a3fd
ZD
12GCC is distributed in the hope that it will be useful, but WITHOUT
13ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
b8698a0f 16
b076a3fd 17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
b076a3fd
ZD
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "tree.h"
b076a3fd 26#include "tm_p.h"
b076a3fd 27#include "basic-block.h"
cf835838 28#include "tree-pretty-print.h"
b076a3fd 29#include "tree-flow.h"
b076a3fd 30#include "cfgloop.h"
b076a3fd 31#include "tree-pass.h"
b076a3fd 32#include "insn-config.h"
b076a3fd
ZD
33#include "hashtab.h"
34#include "tree-chrec.h"
35#include "tree-scalar-evolution.h"
718f9c0f 36#include "diagnostic-core.h"
b076a3fd
ZD
37#include "params.h"
38#include "langhooks.h"
7f9bc51b 39#include "tree-inline.h"
5417e022 40#include "tree-data-ref.h"
2eb79bbb
SB
41
42
43/* FIXME: Needed for optabs, but this should all be moved to a TBD interface
44 between the GIMPLE and RTL worlds. */
45#include "expr.h"
79f5e442 46#include "optabs.h"
1c1ad7bb 47#include "recog.h"
b076a3fd
ZD
48
49/* This pass inserts prefetch instructions to optimize cache usage during
50 accesses to arrays in loops. It processes loops sequentially and:
51
52 1) Gathers all memory references in the single loop.
53 2) For each of the references it decides when it is profitable to prefetch
54 it. To do it, we evaluate the reuse among the accesses, and determines
55 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
56 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
57 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
58 iterations of the loop that are zero modulo PREFETCH_MOD). For example
59 (assuming cache line size is 64 bytes, char has size 1 byte and there
60 is no hardware sequential prefetch):
61
62 char *a;
63 for (i = 0; i < max; i++)
64 {
65 a[255] = ...; (0)
66 a[i] = ...; (1)
67 a[i + 64] = ...; (2)
68 a[16*i] = ...; (3)
69 a[187*i] = ...; (4)
70 a[187*i + 50] = ...; (5)
71 }
72
73 (0) obviously has PREFETCH_BEFORE 1
74 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
75 location 64 iterations before it, and PREFETCH_MOD 64 (since
76 it hits the same cache line otherwise).
77 (2) has PREFETCH_MOD 64
78 (3) has PREFETCH_MOD 4
79 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
bae077dc 80 the cache line accessed by (5) is the same with probability only
b076a3fd
ZD
81 7/32.
82 (5) has PREFETCH_MOD 1 as well.
83
5417e022
ZD
84 Additionally, we use data dependence analysis to determine for each
85 reference the distance till the first reuse; this information is used
86 to determine the temporality of the issued prefetch instruction.
87
b076a3fd
ZD
88 3) We determine how much ahead we need to prefetch. The number of
89 iterations needed is time to fetch / time spent in one iteration of
90 the loop. The problem is that we do not know either of these values,
91 so we just make a heuristic guess based on a magic (possibly)
92 target-specific constant and size of the loop.
93
94 4) Determine which of the references we prefetch. We take into account
95 that there is a maximum number of simultaneous prefetches (provided
96 by machine description). We prefetch as many prefetches as possible
97 while still within this bound (starting with those with lowest
98 prefetch_mod, since they are responsible for most of the cache
99 misses).
b8698a0f 100
b076a3fd
ZD
101 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
102 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
103 prefetching nonaccessed memory.
104 TODO -- actually implement peeling.
b8698a0f 105
b076a3fd
ZD
106 6) We actually emit the prefetch instructions. ??? Perhaps emit the
107 prefetch instructions with guards in cases where 5) was not sufficient
108 to satisfy the constraints?
109
0bbe50f6
CF
110 A cost model is implemented to determine whether or not prefetching is
111 profitable for a given loop. The cost model has three heuristics:
112
113 1. Function trip_count_to_ahead_ratio_too_small_p implements a
114 heuristic that determines whether or not the loop has too few
115 iterations (compared to ahead). Prefetching is not likely to be
116 beneficial if the trip count to ahead ratio is below a certain
117 minimum.
118
119 2. Function mem_ref_count_reasonable_p implements a heuristic that
120 determines whether the given loop has enough CPU ops that can be
121 overlapped with cache missing memory ops. If not, the loop
122 won't benefit from prefetching. In the implementation,
123 prefetching is not considered beneficial if the ratio between
124 the instruction count and the mem ref count is below a certain
125 minimum.
126
127 3. Function insn_to_prefetch_ratio_too_small_p implements a
128 heuristic that disables prefetching in a loop if the prefetching
129 cost is above a certain limit. The relative prefetching cost is
130 estimated by taking the ratio between the prefetch count and the
131 total intruction count (this models the I-cache cost).
132
db34470d 133 The limits used in these heuristics are defined as parameters with
b8698a0f 134 reasonable default values. Machine-specific default values will be
db34470d 135 added later.
b8698a0f 136
b076a3fd
ZD
137 Some other TODO:
138 -- write and use more general reuse analysis (that could be also used
139 in other cache aimed loop optimizations)
140 -- make it behave sanely together with the prefetches given by user
141 (now we just ignore them; at the very least we should avoid
142 optimizing loops in that user put his own prefetches)
143 -- we assume cache line size alignment of arrays; this could be
144 improved. */
145
146/* Magic constants follow. These should be replaced by machine specific
147 numbers. */
148
b076a3fd
ZD
149/* True if write can be prefetched by a read prefetch. */
150
151#ifndef WRITE_CAN_USE_READ_PREFETCH
152#define WRITE_CAN_USE_READ_PREFETCH 1
153#endif
154
155/* True if read can be prefetched by a write prefetch. */
156
157#ifndef READ_CAN_USE_WRITE_PREFETCH
158#define READ_CAN_USE_WRITE_PREFETCH 0
159#endif
160
47eb5b32
ZD
161/* The size of the block loaded by a single prefetch. Usually, this is
162 the same as cache line size (at the moment, we only consider one level
163 of cache hierarchy). */
b076a3fd
ZD
164
165#ifndef PREFETCH_BLOCK
47eb5b32 166#define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
b076a3fd
ZD
167#endif
168
169/* Do we have a forward hardware sequential prefetching? */
170
171#ifndef HAVE_FORWARD_PREFETCH
172#define HAVE_FORWARD_PREFETCH 0
173#endif
174
175/* Do we have a backward hardware sequential prefetching? */
176
177#ifndef HAVE_BACKWARD_PREFETCH
178#define HAVE_BACKWARD_PREFETCH 0
179#endif
180
181/* In some cases we are only able to determine that there is a certain
182 probability that the two accesses hit the same cache line. In this
183 case, we issue the prefetches for both of them if this probability
fa10beec 184 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
b076a3fd
ZD
185
186#ifndef ACCEPTABLE_MISS_RATE
187#define ACCEPTABLE_MISS_RATE 50
188#endif
189
190#ifndef HAVE_prefetch
191#define HAVE_prefetch 0
192#endif
193
46cb0441
ZD
194#define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
195#define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
5417e022
ZD
196
197/* We consider a memory access nontemporal if it is not reused sooner than
198 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
199 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
200 so that we use nontemporal prefetches e.g. if single memory location
201 is accessed several times in a single iteration of the loop. */
202#define NONTEMPORAL_FRACTION 16
203
79f5e442
ZD
204/* In case we have to emit a memory fence instruction after the loop that
205 uses nontemporal stores, this defines the builtin to use. */
206
207#ifndef FENCE_FOLLOWING_MOVNT
208#define FENCE_FOLLOWING_MOVNT NULL_TREE
209#endif
210
9bf4598b
CF
211/* It is not profitable to prefetch when the trip count is not at
212 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
213 For example, in a loop with a prefetch ahead distance of 10,
214 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
215 profitable to prefetch when the trip count is greater or equal to
216 40. In that case, 30 out of the 40 iterations will benefit from
217 prefetching. */
218
219#ifndef TRIP_COUNT_TO_AHEAD_RATIO
220#define TRIP_COUNT_TO_AHEAD_RATIO 4
221#endif
222
b076a3fd
ZD
223/* The group of references between that reuse may occur. */
224
225struct mem_ref_group
226{
227 tree base; /* Base of the reference. */
81f32326 228 tree step; /* Step of the reference. */
b076a3fd
ZD
229 struct mem_ref *refs; /* References in the group. */
230 struct mem_ref_group *next; /* Next group of references. */
231};
232
233/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
234
235#define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
236
8532678c
CF
237/* Do not generate a prefetch if the unroll factor is significantly less
238 than what is required by the prefetch. This is to avoid redundant
f7963a7c
CF
239 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
240 2, prefetching requires unrolling the loop 16 times, but
241 the loop is actually unrolled twice. In this case (ratio = 8),
8532678c
CF
242 prefetching is not likely to be beneficial. */
243
244#ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
f7963a7c 245#define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
8532678c
CF
246#endif
247
0bbe50f6
CF
248/* Some of the prefetch computations have quadratic complexity. We want to
249 avoid huge compile times and, therefore, want to limit the amount of
250 memory references per loop where we consider prefetching. */
251
252#ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
253#define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
254#endif
255
b076a3fd
ZD
256/* The memory reference. */
257
258struct mem_ref
259{
726a989a 260 gimple stmt; /* Statement in that the reference appears. */
b076a3fd
ZD
261 tree mem; /* The reference. */
262 HOST_WIDE_INT delta; /* Constant offset of the reference. */
b076a3fd
ZD
263 struct mem_ref_group *group; /* The group of references it belongs to. */
264 unsigned HOST_WIDE_INT prefetch_mod;
265 /* Prefetch only each PREFETCH_MOD-th
266 iteration. */
267 unsigned HOST_WIDE_INT prefetch_before;
268 /* Prefetch only first PREFETCH_BEFORE
269 iterations. */
5417e022
ZD
270 unsigned reuse_distance; /* The amount of data accessed before the first
271 reuse of this value. */
b076a3fd 272 struct mem_ref *next; /* The next reference in the group. */
79f5e442
ZD
273 unsigned write_p : 1; /* Is it a write? */
274 unsigned independent_p : 1; /* True if the reference is independent on
275 all other references inside the loop. */
276 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
277 unsigned storent_p : 1; /* True if we changed the store to a
278 nontemporal one. */
b076a3fd
ZD
279};
280
75c40d56 281/* Dumps information about reference REF to FILE. */
b076a3fd
ZD
282
283static void
284dump_mem_ref (FILE *file, struct mem_ref *ref)
285{
286 fprintf (file, "Reference %p:\n", (void *) ref);
287
288 fprintf (file, " group %p (base ", (void *) ref->group);
289 print_generic_expr (file, ref->group->base, TDF_SLIM);
290 fprintf (file, ", step ");
81f32326
CB
291 if (cst_and_fits_in_hwi (ref->group->step))
292 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (ref->group->step));
293 else
294 print_generic_expr (file, ref->group->step, TDF_TREE);
b076a3fd
ZD
295 fprintf (file, ")\n");
296
e324a72f 297 fprintf (file, " delta ");
b076a3fd
ZD
298 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ref->delta);
299 fprintf (file, "\n");
300
301 fprintf (file, " %s\n", ref->write_p ? "write" : "read");
302
303 fprintf (file, "\n");
304}
305
306/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
307 exist. */
308
309static struct mem_ref_group *
81f32326 310find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
b076a3fd
ZD
311{
312 struct mem_ref_group *group;
313
314 for (; *groups; groups = &(*groups)->next)
315 {
81f32326 316 if (operand_equal_p ((*groups)->step, step, 0)
b076a3fd
ZD
317 && operand_equal_p ((*groups)->base, base, 0))
318 return *groups;
319
81f32326
CB
320 /* If step is an integer constant, keep the list of groups sorted
321 by decreasing step. */
322 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
323 && int_cst_value ((*groups)->step) < int_cst_value (step))
b076a3fd
ZD
324 break;
325 }
326
5417e022 327 group = XNEW (struct mem_ref_group);
b076a3fd
ZD
328 group->base = base;
329 group->step = step;
330 group->refs = NULL;
331 group->next = *groups;
332 *groups = group;
333
334 return group;
335}
336
337/* Records a memory reference MEM in GROUP with offset DELTA and write status
338 WRITE_P. The reference occurs in statement STMT. */
339
340static void
726a989a 341record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
b076a3fd
ZD
342 HOST_WIDE_INT delta, bool write_p)
343{
344 struct mem_ref **aref;
345
346 /* Do not record the same address twice. */
347 for (aref = &group->refs; *aref; aref = &(*aref)->next)
348 {
349 /* It does not have to be possible for write reference to reuse the read
350 prefetch, or vice versa. */
351 if (!WRITE_CAN_USE_READ_PREFETCH
352 && write_p
353 && !(*aref)->write_p)
354 continue;
355 if (!READ_CAN_USE_WRITE_PREFETCH
356 && !write_p
357 && (*aref)->write_p)
358 continue;
359
360 if ((*aref)->delta == delta)
361 return;
362 }
363
5417e022 364 (*aref) = XNEW (struct mem_ref);
b076a3fd
ZD
365 (*aref)->stmt = stmt;
366 (*aref)->mem = mem;
367 (*aref)->delta = delta;
368 (*aref)->write_p = write_p;
369 (*aref)->prefetch_before = PREFETCH_ALL;
370 (*aref)->prefetch_mod = 1;
5417e022 371 (*aref)->reuse_distance = 0;
b076a3fd
ZD
372 (*aref)->issue_prefetch_p = false;
373 (*aref)->group = group;
374 (*aref)->next = NULL;
79f5e442
ZD
375 (*aref)->independent_p = false;
376 (*aref)->storent_p = false;
b076a3fd
ZD
377
378 if (dump_file && (dump_flags & TDF_DETAILS))
379 dump_mem_ref (dump_file, *aref);
380}
381
382/* Release memory references in GROUPS. */
383
384static void
385release_mem_refs (struct mem_ref_group *groups)
386{
387 struct mem_ref_group *next_g;
388 struct mem_ref *ref, *next_r;
389
390 for (; groups; groups = next_g)
391 {
392 next_g = groups->next;
393 for (ref = groups->refs; ref; ref = next_r)
394 {
395 next_r = ref->next;
396 free (ref);
397 }
398 free (groups);
399 }
400}
401
402/* A structure used to pass arguments to idx_analyze_ref. */
403
404struct ar_data
405{
406 struct loop *loop; /* Loop of the reference. */
726a989a 407 gimple stmt; /* Statement of the reference. */
81f32326 408 tree *step; /* Step of the memory reference. */
b076a3fd
ZD
409 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
410};
411
412/* Analyzes a single INDEX of a memory reference to obtain information
413 described at analyze_ref. Callback for for_each_index. */
414
415static bool
416idx_analyze_ref (tree base, tree *index, void *data)
417{
c22940cd 418 struct ar_data *ar_data = (struct ar_data *) data;
b076a3fd 419 tree ibase, step, stepsize;
81f32326 420 HOST_WIDE_INT idelta = 0, imult = 1;
b076a3fd
ZD
421 affine_iv iv;
422
f017bf5e 423 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
81f32326 424 *index, &iv, true))
b076a3fd
ZD
425 return false;
426 ibase = iv.base;
427 step = iv.step;
428
5be014d5 429 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
b076a3fd
ZD
430 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
431 {
432 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
433 ibase = TREE_OPERAND (ibase, 0);
434 }
435 if (cst_and_fits_in_hwi (ibase))
436 {
437 idelta += int_cst_value (ibase);
ff5e9a94 438 ibase = build_int_cst (TREE_TYPE (ibase), 0);
b076a3fd
ZD
439 }
440
441 if (TREE_CODE (base) == ARRAY_REF)
442 {
443 stepsize = array_ref_element_size (base);
444 if (!cst_and_fits_in_hwi (stepsize))
445 return false;
446 imult = int_cst_value (stepsize);
8fde8b40
CB
447 step = fold_build2 (MULT_EXPR, sizetype,
448 fold_convert (sizetype, step),
449 fold_convert (sizetype, stepsize));
b076a3fd
ZD
450 idelta *= imult;
451 }
452
8fde8b40
CB
453 if (*ar_data->step == NULL_TREE)
454 *ar_data->step = step;
455 else
456 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
457 fold_convert (sizetype, *ar_data->step),
458 fold_convert (sizetype, step));
b076a3fd
ZD
459 *ar_data->delta += idelta;
460 *index = ibase;
461
462 return true;
463}
464
aac8b8ed 465/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
b076a3fd 466 STEP are integer constants and iter is number of iterations of LOOP. The
aac8b8ed
RS
467 reference occurs in statement STMT. Strips nonaddressable component
468 references from REF_P. */
b076a3fd
ZD
469
470static bool
aac8b8ed 471analyze_ref (struct loop *loop, tree *ref_p, tree *base,
81f32326 472 tree *step, HOST_WIDE_INT *delta,
726a989a 473 gimple stmt)
b076a3fd
ZD
474{
475 struct ar_data ar_data;
476 tree off;
477 HOST_WIDE_INT bit_offset;
aac8b8ed 478 tree ref = *ref_p;
b076a3fd 479
81f32326 480 *step = NULL_TREE;
b076a3fd
ZD
481 *delta = 0;
482
7c6dafac
CF
483 /* First strip off the component references. Ignore bitfields.
484 Also strip off the real and imagine parts of a complex, so that
485 they can have the same base. */
486 if (TREE_CODE (ref) == REALPART_EXPR
487 || TREE_CODE (ref) == IMAGPART_EXPR
488 || (TREE_CODE (ref) == COMPONENT_REF
489 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
490 {
491 if (TREE_CODE (ref) == IMAGPART_EXPR)
492 *delta += int_size_in_bytes (TREE_TYPE (ref));
493 ref = TREE_OPERAND (ref, 0);
494 }
b076a3fd 495
aac8b8ed
RS
496 *ref_p = ref;
497
b076a3fd
ZD
498 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
499 {
500 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
501 bit_offset = TREE_INT_CST_LOW (off);
502 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
b8698a0f 503
b076a3fd
ZD
504 *delta += bit_offset / BITS_PER_UNIT;
505 }
506
507 *base = unshare_expr (ref);
508 ar_data.loop = loop;
509 ar_data.stmt = stmt;
510 ar_data.step = step;
511 ar_data.delta = delta;
512 return for_each_index (base, idx_analyze_ref, &ar_data);
513}
514
515/* Record a memory reference REF to the list REFS. The reference occurs in
79f5e442
ZD
516 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
517 reference was recorded, false otherwise. */
b076a3fd 518
79f5e442 519static bool
b076a3fd 520gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
726a989a 521 tree ref, bool write_p, gimple stmt)
b076a3fd 522{
81f32326
CB
523 tree base, step;
524 HOST_WIDE_INT delta;
b076a3fd
ZD
525 struct mem_ref_group *agrp;
526
a80a2701
JJ
527 if (get_base_address (ref) == NULL)
528 return false;
529
aac8b8ed 530 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
79f5e442 531 return false;
81f32326
CB
532 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
533 if (step == NULL_TREE)
534 return false;
b076a3fd 535
756f50ce 536 /* Stop if the address of BASE could not be taken. */
bc068a23
CF
537 if (may_be_nonaddressable_p (base))
538 return false;
539
50814135
CF
540 /* Limit non-constant step prefetching only to the innermost loops. */
541 if (!cst_and_fits_in_hwi (step) && loop->inner != NULL)
542 return false;
543
b076a3fd
ZD
544 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
545 are integer constants. */
546 agrp = find_or_create_group (refs, base, step);
547 record_ref (agrp, stmt, ref, delta, write_p);
79f5e442
ZD
548
549 return true;
b076a3fd
ZD
550}
551
79f5e442
ZD
552/* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
553 true if there are no other memory references inside the loop. */
b076a3fd
ZD
554
555static struct mem_ref_group *
db34470d 556gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
b076a3fd
ZD
557{
558 basic_block *body = get_loop_body_in_dom_order (loop);
559 basic_block bb;
560 unsigned i;
726a989a
RB
561 gimple_stmt_iterator bsi;
562 gimple stmt;
563 tree lhs, rhs;
b076a3fd
ZD
564 struct mem_ref_group *refs = NULL;
565
79f5e442 566 *no_other_refs = true;
db34470d 567 *ref_count = 0;
79f5e442 568
b076a3fd
ZD
569 /* Scan the loop body in order, so that the former references precede the
570 later ones. */
571 for (i = 0; i < loop->num_nodes; i++)
572 {
573 bb = body[i];
574 if (bb->loop_father != loop)
575 continue;
576
726a989a 577 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
b076a3fd 578 {
726a989a 579 stmt = gsi_stmt (bsi);
79f5e442 580
726a989a 581 if (gimple_code (stmt) != GIMPLE_ASSIGN)
79f5e442 582 {
5006671f 583 if (gimple_vuse (stmt)
726a989a
RB
584 || (is_gimple_call (stmt)
585 && !(gimple_call_flags (stmt) & ECF_CONST)))
79f5e442
ZD
586 *no_other_refs = false;
587 continue;
588 }
b076a3fd 589
726a989a
RB
590 lhs = gimple_assign_lhs (stmt);
591 rhs = gimple_assign_rhs1 (stmt);
b076a3fd
ZD
592
593 if (REFERENCE_CLASS_P (rhs))
db34470d 594 {
79f5e442
ZD
595 *no_other_refs &= gather_memory_references_ref (loop, &refs,
596 rhs, false, stmt);
db34470d
GS
597 *ref_count += 1;
598 }
b076a3fd 599 if (REFERENCE_CLASS_P (lhs))
db34470d 600 {
79f5e442
ZD
601 *no_other_refs &= gather_memory_references_ref (loop, &refs,
602 lhs, true, stmt);
db34470d
GS
603 *ref_count += 1;
604 }
b076a3fd
ZD
605 }
606 }
607 free (body);
608
609 return refs;
610}
611
612/* Prune the prefetch candidate REF using the self-reuse. */
613
614static void
615prune_ref_by_self_reuse (struct mem_ref *ref)
616{
81f32326
CB
617 HOST_WIDE_INT step;
618 bool backward;
619
620 /* If the step size is non constant, we cannot calculate prefetch_mod. */
621 if (!cst_and_fits_in_hwi (ref->group->step))
622 return;
623
624 step = int_cst_value (ref->group->step);
625
626 backward = step < 0;
b076a3fd
ZD
627
628 if (step == 0)
629 {
630 /* Prefetch references to invariant address just once. */
631 ref->prefetch_before = 1;
632 return;
633 }
634
635 if (backward)
636 step = -step;
637
638 if (step > PREFETCH_BLOCK)
639 return;
640
641 if ((backward && HAVE_BACKWARD_PREFETCH)
642 || (!backward && HAVE_FORWARD_PREFETCH))
643 {
644 ref->prefetch_before = 1;
645 return;
646 }
647
648 ref->prefetch_mod = PREFETCH_BLOCK / step;
649}
650
651/* Divides X by BY, rounding down. */
652
653static HOST_WIDE_INT
654ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
655{
656 gcc_assert (by > 0);
657
658 if (x >= 0)
659 return x / by;
660 else
661 return (x + by - 1) / by;
662}
663
b8698a0f
L
664/* Given a CACHE_LINE_SIZE and two inductive memory references
665 with a common STEP greater than CACHE_LINE_SIZE and an address
666 difference DELTA, compute the probability that they will fall
14e444c3
CF
667 in different cache lines. Return true if the computed miss rate
668 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
669 number of distinct iterations after which the pattern repeats itself.
2c6dd136
GS
670 ALIGN_UNIT is the unit of alignment in bytes. */
671
14e444c3
CF
672static bool
673is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
2c6dd136
GS
674 HOST_WIDE_INT step, HOST_WIDE_INT delta,
675 unsigned HOST_WIDE_INT distinct_iters,
676 int align_unit)
677{
678 unsigned align, iter;
14e444c3 679 int total_positions, miss_positions, max_allowed_miss_positions;
2c6dd136
GS
680 int address1, address2, cache_line1, cache_line2;
681
a245c04b
CF
682 /* It always misses if delta is greater than or equal to the cache
683 line size. */
14e444c3
CF
684 if (delta >= (HOST_WIDE_INT) cache_line_size)
685 return false;
a245c04b 686
2c6dd136 687 miss_positions = 0;
14e444c3
CF
688 total_positions = (cache_line_size / align_unit) * distinct_iters;
689 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
b8698a0f 690
2c6dd136
GS
691 /* Iterate through all possible alignments of the first
692 memory reference within its cache line. */
693 for (align = 0; align < cache_line_size; align += align_unit)
694
695 /* Iterate through all distinct iterations. */
696 for (iter = 0; iter < distinct_iters; iter++)
697 {
698 address1 = align + step * iter;
699 address2 = address1 + delta;
700 cache_line1 = address1 / cache_line_size;
701 cache_line2 = address2 / cache_line_size;
2c6dd136 702 if (cache_line1 != cache_line2)
14e444c3
CF
703 {
704 miss_positions += 1;
705 if (miss_positions > max_allowed_miss_positions)
706 return false;
707 }
2c6dd136 708 }
14e444c3 709 return true;
2c6dd136
GS
710}
711
b076a3fd
ZD
712/* Prune the prefetch candidate REF using the reuse with BY.
713 If BY_IS_BEFORE is true, BY is before REF in the loop. */
714
715static void
716prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
717 bool by_is_before)
718{
81f32326
CB
719 HOST_WIDE_INT step;
720 bool backward;
b076a3fd
ZD
721 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
722 HOST_WIDE_INT delta = delta_b - delta_r;
723 HOST_WIDE_INT hit_from;
724 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
2c6dd136
GS
725 HOST_WIDE_INT reduced_step;
726 unsigned HOST_WIDE_INT reduced_prefetch_block;
727 tree ref_type;
728 int align_unit;
b076a3fd 729
81f32326
CB
730 /* If the step is non constant we cannot calculate prefetch_before. */
731 if (!cst_and_fits_in_hwi (ref->group->step)) {
732 return;
733 }
734
735 step = int_cst_value (ref->group->step);
736
737 backward = step < 0;
738
739
b076a3fd
ZD
740 if (delta == 0)
741 {
742 /* If the references has the same address, only prefetch the
743 former. */
744 if (by_is_before)
745 ref->prefetch_before = 0;
b8698a0f 746
b076a3fd
ZD
747 return;
748 }
749
750 if (!step)
751 {
752 /* If the reference addresses are invariant and fall into the
753 same cache line, prefetch just the first one. */
754 if (!by_is_before)
755 return;
756
757 if (ddown (ref->delta, PREFETCH_BLOCK)
758 != ddown (by->delta, PREFETCH_BLOCK))
759 return;
760
761 ref->prefetch_before = 0;
762 return;
763 }
764
765 /* Only prune the reference that is behind in the array. */
766 if (backward)
767 {
768 if (delta > 0)
769 return;
770
771 /* Transform the data so that we may assume that the accesses
772 are forward. */
773 delta = - delta;
774 step = -step;
775 delta_r = PREFETCH_BLOCK - 1 - delta_r;
776 delta_b = PREFETCH_BLOCK - 1 - delta_b;
777 }
778 else
779 {
780 if (delta < 0)
781 return;
782 }
783
784 /* Check whether the two references are likely to hit the same cache
785 line, and how distant the iterations in that it occurs are from
786 each other. */
787
788 if (step <= PREFETCH_BLOCK)
789 {
790 /* The accesses are sure to meet. Let us check when. */
791 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
792 prefetch_before = (hit_from - delta_r + step - 1) / step;
793
57762e97 794 /* Do not reduce prefetch_before if we meet beyond cache size. */
4c9cf7af 795 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
57762e97 796 prefetch_before = PREFETCH_ALL;
b076a3fd
ZD
797 if (prefetch_before < ref->prefetch_before)
798 ref->prefetch_before = prefetch_before;
799
800 return;
801 }
802
b8698a0f 803 /* A more complicated case with step > prefetch_block. First reduce
2c6dd136 804 the ratio between the step and the cache line size to its simplest
b8698a0f
L
805 terms. The resulting denominator will then represent the number of
806 distinct iterations after which each address will go back to its
807 initial location within the cache line. This computation assumes
2c6dd136 808 that PREFETCH_BLOCK is a power of two. */
b076a3fd 809 prefetch_block = PREFETCH_BLOCK;
2c6dd136
GS
810 reduced_prefetch_block = prefetch_block;
811 reduced_step = step;
812 while ((reduced_step & 1) == 0
813 && reduced_prefetch_block > 1)
b076a3fd 814 {
2c6dd136
GS
815 reduced_step >>= 1;
816 reduced_prefetch_block >>= 1;
b076a3fd
ZD
817 }
818
b076a3fd
ZD
819 prefetch_before = delta / step;
820 delta %= step;
2c6dd136
GS
821 ref_type = TREE_TYPE (ref->mem);
822 align_unit = TYPE_ALIGN (ref_type) / 8;
14e444c3
CF
823 if (is_miss_rate_acceptable (prefetch_block, step, delta,
824 reduced_prefetch_block, align_unit))
b076a3fd 825 {
57762e97
CB
826 /* Do not reduce prefetch_before if we meet beyond cache size. */
827 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
828 prefetch_before = PREFETCH_ALL;
b076a3fd
ZD
829 if (prefetch_before < ref->prefetch_before)
830 ref->prefetch_before = prefetch_before;
831
832 return;
833 }
834
835 /* Try also the following iteration. */
836 prefetch_before++;
837 delta = step - delta;
14e444c3
CF
838 if (is_miss_rate_acceptable (prefetch_block, step, delta,
839 reduced_prefetch_block, align_unit))
b076a3fd
ZD
840 {
841 if (prefetch_before < ref->prefetch_before)
842 ref->prefetch_before = prefetch_before;
843
844 return;
845 }
846
847 /* The ref probably does not reuse by. */
848 return;
849}
850
851/* Prune the prefetch candidate REF using the reuses with other references
852 in REFS. */
853
854static void
855prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
856{
857 struct mem_ref *prune_by;
858 bool before = true;
859
860 prune_ref_by_self_reuse (ref);
861
862 for (prune_by = refs; prune_by; prune_by = prune_by->next)
863 {
864 if (prune_by == ref)
865 {
866 before = false;
867 continue;
868 }
869
870 if (!WRITE_CAN_USE_READ_PREFETCH
871 && ref->write_p
872 && !prune_by->write_p)
873 continue;
874 if (!READ_CAN_USE_WRITE_PREFETCH
875 && !ref->write_p
876 && prune_by->write_p)
877 continue;
878
879 prune_ref_by_group_reuse (ref, prune_by, before);
880 }
881}
882
883/* Prune the prefetch candidates in GROUP using the reuse analysis. */
884
885static void
886prune_group_by_reuse (struct mem_ref_group *group)
887{
888 struct mem_ref *ref_pruned;
889
890 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
891 {
892 prune_ref_by_reuse (ref_pruned, group->refs);
893
894 if (dump_file && (dump_flags & TDF_DETAILS))
895 {
896 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
897
898 if (ref_pruned->prefetch_before == PREFETCH_ALL
899 && ref_pruned->prefetch_mod == 1)
900 fprintf (dump_file, " no restrictions");
901 else if (ref_pruned->prefetch_before == 0)
902 fprintf (dump_file, " do not prefetch");
903 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
904 fprintf (dump_file, " prefetch once");
905 else
906 {
907 if (ref_pruned->prefetch_before != PREFETCH_ALL)
908 {
909 fprintf (dump_file, " prefetch before ");
910 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
911 ref_pruned->prefetch_before);
912 }
913 if (ref_pruned->prefetch_mod != 1)
914 {
915 fprintf (dump_file, " prefetch mod ");
916 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
917 ref_pruned->prefetch_mod);
918 }
919 }
920 fprintf (dump_file, "\n");
921 }
922 }
923}
924
925/* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
926
927static void
928prune_by_reuse (struct mem_ref_group *groups)
929{
930 for (; groups; groups = groups->next)
931 prune_group_by_reuse (groups);
932}
933
934/* Returns true if we should issue prefetch for REF. */
935
936static bool
937should_issue_prefetch_p (struct mem_ref *ref)
938{
939 /* For now do not issue prefetches for only first few of the
940 iterations. */
941 if (ref->prefetch_before != PREFETCH_ALL)
a8beb3a7
CB
942 {
943 if (dump_file && (dump_flags & TDF_DETAILS))
944 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
945 (void *) ref);
946 return false;
947 }
b076a3fd 948
79f5e442
ZD
949 /* Do not prefetch nontemporal stores. */
950 if (ref->storent_p)
a8beb3a7
CB
951 {
952 if (dump_file && (dump_flags & TDF_DETAILS))
953 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
954 return false;
955 }
79f5e442 956
b076a3fd
ZD
957 return true;
958}
959
960/* Decide which of the prefetch candidates in GROUPS to prefetch.
961 AHEAD is the number of iterations to prefetch ahead (which corresponds
962 to the number of simultaneous instances of one prefetch running at a
963 time). UNROLL_FACTOR is the factor by that the loop is going to be
964 unrolled. Returns true if there is anything to prefetch. */
965
966static bool
967schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
968 unsigned ahead)
969{
911b3fdb
ZD
970 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
971 unsigned slots_per_prefetch;
b076a3fd
ZD
972 struct mem_ref *ref;
973 bool any = false;
974
911b3fdb
ZD
975 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
976 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
b076a3fd 977
911b3fdb
ZD
978 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
979 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
980 it will need a prefetch slot. */
981 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
b076a3fd 982 if (dump_file && (dump_flags & TDF_DETAILS))
911b3fdb
ZD
983 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
984 slots_per_prefetch);
b076a3fd
ZD
985
986 /* For now we just take memory references one by one and issue
987 prefetches for as many as possible. The groups are sorted
988 starting with the largest step, since the references with
c0220ea4 989 large step are more likely to cause many cache misses. */
b076a3fd
ZD
990
991 for (; groups; groups = groups->next)
992 for (ref = groups->refs; ref; ref = ref->next)
993 {
994 if (!should_issue_prefetch_p (ref))
995 continue;
996
8532678c
CF
997 /* The loop is far from being sufficiently unrolled for this
998 prefetch. Do not generate prefetch to avoid many redudant
999 prefetches. */
1000 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1001 continue;
1002
911b3fdb
ZD
1003 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1004 and we unroll the loop UNROLL_FACTOR times, we need to insert
1005 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1006 iteration. */
b076a3fd
ZD
1007 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1008 / ref->prefetch_mod);
911b3fdb
ZD
1009 prefetch_slots = n_prefetches * slots_per_prefetch;
1010
1011 /* If more than half of the prefetches would be lost anyway, do not
1012 issue the prefetch. */
1013 if (2 * remaining_prefetch_slots < prefetch_slots)
1014 continue;
1015
1016 ref->issue_prefetch_p = true;
b076a3fd 1017
911b3fdb
ZD
1018 if (remaining_prefetch_slots <= prefetch_slots)
1019 return true;
1020 remaining_prefetch_slots -= prefetch_slots;
b076a3fd
ZD
1021 any = true;
1022 }
1023
1024 return any;
1025}
1026
d5058523
CF
1027/* Return TRUE if no prefetch is going to be generated in the given
1028 GROUPS. */
1029
1030static bool
1031nothing_to_prefetch_p (struct mem_ref_group *groups)
1032{
1033 struct mem_ref *ref;
1034
1035 for (; groups; groups = groups->next)
1036 for (ref = groups->refs; ref; ref = ref->next)
1037 if (should_issue_prefetch_p (ref))
1038 return false;
1039
1040 return true;
1041}
1042
1043/* Estimate the number of prefetches in the given GROUPS.
1044 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
b076a3fd 1045
db34470d 1046static int
d5058523 1047estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
b076a3fd
ZD
1048{
1049 struct mem_ref *ref;
d5058523 1050 unsigned n_prefetches;
db34470d 1051 int prefetch_count = 0;
b076a3fd
ZD
1052
1053 for (; groups; groups = groups->next)
1054 for (ref = groups->refs; ref; ref = ref->next)
1055 if (should_issue_prefetch_p (ref))
d5058523
CF
1056 {
1057 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1058 / ref->prefetch_mod);
1059 prefetch_count += n_prefetches;
1060 }
b076a3fd 1061
db34470d 1062 return prefetch_count;
b076a3fd
ZD
1063}
1064
1065/* Issue prefetches for the reference REF into loop as decided before.
1066 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
917f1b7e 1067 is the factor by which LOOP was unrolled. */
b076a3fd
ZD
1068
1069static void
1070issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1071{
1072 HOST_WIDE_INT delta;
81f32326 1073 tree addr, addr_base, write_p, local, forward;
726a989a
RB
1074 gimple prefetch;
1075 gimple_stmt_iterator bsi;
b076a3fd 1076 unsigned n_prefetches, ap;
5417e022 1077 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
b076a3fd
ZD
1078
1079 if (dump_file && (dump_flags & TDF_DETAILS))
5417e022
ZD
1080 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1081 nontemporal ? " nontemporal" : "",
1082 (void *) ref);
b076a3fd 1083
726a989a 1084 bsi = gsi_for_stmt (ref->stmt);
b076a3fd
ZD
1085
1086 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1087 / ref->prefetch_mod);
1088 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
726a989a
RB
1089 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1090 true, NULL, true, GSI_SAME_STMT);
911b3fdb 1091 write_p = ref->write_p ? integer_one_node : integer_zero_node;
9a9d280e 1092 local = nontemporal ? integer_zero_node : integer_three_node;
b076a3fd
ZD
1093
1094 for (ap = 0; ap < n_prefetches; ap++)
1095 {
81f32326
CB
1096 if (cst_and_fits_in_hwi (ref->group->step))
1097 {
1098 /* Determine the address to prefetch. */
1099 delta = (ahead + ap * ref->prefetch_mod) *
1100 int_cst_value (ref->group->step);
5d49b6a7 1101 addr = fold_build_pointer_plus_hwi (addr_base, delta);
81f32326
CB
1102 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1103 true, GSI_SAME_STMT);
1104 }
1105 else
1106 {
1107 /* The step size is non-constant but loop-invariant. We use the
1108 heuristic to simply prefetch ahead iterations ahead. */
1109 forward = fold_build2 (MULT_EXPR, sizetype,
1110 fold_convert (sizetype, ref->group->step),
1111 fold_convert (sizetype, size_int (ahead)));
5d49b6a7 1112 addr = fold_build_pointer_plus (addr_base, forward);
81f32326
CB
1113 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1114 NULL, true, GSI_SAME_STMT);
1115 }
b076a3fd 1116 /* Create the prefetch instruction. */
e79983f4 1117 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
726a989a
RB
1118 3, addr, write_p, local);
1119 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
b076a3fd
ZD
1120 }
1121}
1122
1123/* Issue prefetches for the references in GROUPS into loop as decided before.
1124 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1125 factor by that LOOP was unrolled. */
1126
1127static void
1128issue_prefetches (struct mem_ref_group *groups,
1129 unsigned unroll_factor, unsigned ahead)
1130{
1131 struct mem_ref *ref;
1132
1133 for (; groups; groups = groups->next)
1134 for (ref = groups->refs; ref; ref = ref->next)
1135 if (ref->issue_prefetch_p)
1136 issue_prefetch_ref (ref, unroll_factor, ahead);
1137}
1138
79f5e442
ZD
1139/* Returns true if REF is a memory write for that a nontemporal store insn
1140 can be used. */
1141
1142static bool
1143nontemporal_store_p (struct mem_ref *ref)
1144{
1145 enum machine_mode mode;
1146 enum insn_code code;
1147
1148 /* REF must be a write that is not reused. We require it to be independent
1149 on all other memory references in the loop, as the nontemporal stores may
1150 be reordered with respect to other memory references. */
1151 if (!ref->write_p
1152 || !ref->independent_p
1153 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1154 return false;
1155
1156 /* Check that we have the storent instruction for the mode. */
1157 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1158 if (mode == BLKmode)
1159 return false;
1160
947131ba 1161 code = optab_handler (storent_optab, mode);
79f5e442
ZD
1162 return code != CODE_FOR_nothing;
1163}
1164
1165/* If REF is a nontemporal store, we mark the corresponding modify statement
1166 and return true. Otherwise, we return false. */
1167
1168static bool
1169mark_nontemporal_store (struct mem_ref *ref)
1170{
1171 if (!nontemporal_store_p (ref))
1172 return false;
1173
1174 if (dump_file && (dump_flags & TDF_DETAILS))
1175 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1176 (void *) ref);
1177
726a989a 1178 gimple_assign_set_nontemporal_move (ref->stmt, true);
79f5e442
ZD
1179 ref->storent_p = true;
1180
1181 return true;
1182}
1183
1184/* Issue a memory fence instruction after LOOP. */
1185
1186static void
1187emit_mfence_after_loop (struct loop *loop)
1188{
1189 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1190 edge exit;
726a989a
RB
1191 gimple call;
1192 gimple_stmt_iterator bsi;
79f5e442
ZD
1193 unsigned i;
1194
ac47786e 1195 FOR_EACH_VEC_ELT (edge, exits, i, exit)
79f5e442 1196 {
726a989a 1197 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
79f5e442
ZD
1198
1199 if (!single_pred_p (exit->dest)
1200 /* If possible, we prefer not to insert the fence on other paths
1201 in cfg. */
1202 && !(exit->flags & EDGE_ABNORMAL))
1203 split_loop_exit_edge (exit);
726a989a 1204 bsi = gsi_after_labels (exit->dest);
79f5e442 1205
726a989a 1206 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
79f5e442
ZD
1207 }
1208
1209 VEC_free (edge, heap, exits);
1210 update_ssa (TODO_update_ssa_only_virtuals);
1211}
1212
1213/* Returns true if we can use storent in loop, false otherwise. */
1214
1215static bool
1216may_use_storent_in_loop_p (struct loop *loop)
1217{
1218 bool ret = true;
1219
1220 if (loop->inner != NULL)
1221 return false;
1222
1223 /* If we must issue a mfence insn after using storent, check that there
1224 is a suitable place for it at each of the loop exits. */
1225 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1226 {
1227 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
1228 unsigned i;
1229 edge exit;
1230
ac47786e 1231 FOR_EACH_VEC_ELT (edge, exits, i, exit)
79f5e442
ZD
1232 if ((exit->flags & EDGE_ABNORMAL)
1233 && exit->dest == EXIT_BLOCK_PTR)
1234 ret = false;
1235
1236 VEC_free (edge, heap, exits);
1237 }
1238
1239 return ret;
1240}
1241
1242/* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1243 references in the loop. */
1244
1245static void
1246mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1247{
1248 struct mem_ref *ref;
1249 bool any = false;
1250
1251 if (!may_use_storent_in_loop_p (loop))
1252 return;
1253
1254 for (; groups; groups = groups->next)
1255 for (ref = groups->refs; ref; ref = ref->next)
1256 any |= mark_nontemporal_store (ref);
1257
1258 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1259 emit_mfence_after_loop (loop);
1260}
1261
b076a3fd
ZD
1262/* Determines whether we can profitably unroll LOOP FACTOR times, and if
1263 this is the case, fill in DESC by the description of number of
1264 iterations. */
1265
1266static bool
1267should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1268 unsigned factor)
1269{
1270 if (!can_unroll_loop_p (loop, factor, desc))
1271 return false;
1272
1273 /* We only consider loops without control flow for unrolling. This is not
1274 a hard restriction -- tree_unroll_loop works with arbitrary loops
1275 as well; but the unrolling/prefetching is usually more profitable for
1276 loops consisting of a single basic block, and we want to limit the
1277 code growth. */
1278 if (loop->num_nodes > 2)
1279 return false;
1280
1281 return true;
1282}
1283
1284/* Determine the coefficient by that unroll LOOP, from the information
1285 contained in the list of memory references REFS. Description of
2711355f
ZD
1286 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1287 insns of the LOOP. EST_NITER is the estimated number of iterations of
1288 the loop, or -1 if no estimate is available. */
b076a3fd
ZD
1289
1290static unsigned
1291determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
2711355f
ZD
1292 unsigned ninsns, struct tree_niter_desc *desc,
1293 HOST_WIDE_INT est_niter)
b076a3fd 1294{
911b3fdb
ZD
1295 unsigned upper_bound;
1296 unsigned nfactor, factor, mod_constraint;
b076a3fd
ZD
1297 struct mem_ref_group *agp;
1298 struct mem_ref *ref;
1299
911b3fdb
ZD
1300 /* First check whether the loop is not too large to unroll. We ignore
1301 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1302 from unrolling them enough to make exactly one cache line covered by each
1303 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1304 us from unrolling the loops too many times in cases where we only expect
1305 gains from better scheduling and decreasing loop overhead, which is not
1306 the case here. */
1307 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
2711355f
ZD
1308
1309 /* If we unrolled the loop more times than it iterates, the unrolled version
1310 of the loop would be never entered. */
1311 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1312 upper_bound = est_niter;
1313
911b3fdb 1314 if (upper_bound <= 1)
b076a3fd
ZD
1315 return 1;
1316
911b3fdb
ZD
1317 /* Choose the factor so that we may prefetch each cache just once,
1318 but bound the unrolling by UPPER_BOUND. */
1319 factor = 1;
b076a3fd
ZD
1320 for (agp = refs; agp; agp = agp->next)
1321 for (ref = agp->refs; ref; ref = ref->next)
911b3fdb
ZD
1322 if (should_issue_prefetch_p (ref))
1323 {
1324 mod_constraint = ref->prefetch_mod;
1325 nfactor = least_common_multiple (mod_constraint, factor);
1326 if (nfactor <= upper_bound)
1327 factor = nfactor;
1328 }
b076a3fd
ZD
1329
1330 if (!should_unroll_loop_p (loop, desc, factor))
1331 return 1;
1332
1333 return factor;
1334}
1335
5417e022
ZD
1336/* Returns the total volume of the memory references REFS, taking into account
1337 reuses in the innermost loop and cache line size. TODO -- we should also
1338 take into account reuses across the iterations of the loops in the loop
1339 nest. */
1340
1341static unsigned
1342volume_of_references (struct mem_ref_group *refs)
1343{
1344 unsigned volume = 0;
1345 struct mem_ref_group *gr;
1346 struct mem_ref *ref;
1347
1348 for (gr = refs; gr; gr = gr->next)
1349 for (ref = gr->refs; ref; ref = ref->next)
1350 {
1351 /* Almost always reuses another value? */
1352 if (ref->prefetch_before != PREFETCH_ALL)
1353 continue;
1354
1355 /* If several iterations access the same cache line, use the size of
1356 the line divided by this number. Otherwise, a cache line is
1357 accessed in each iteration. TODO -- in the latter case, we should
1358 take the size of the reference into account, rounding it up on cache
1359 line size multiple. */
1360 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1361 }
1362 return volume;
1363}
1364
1365/* Returns the volume of memory references accessed across VEC iterations of
1366 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1367 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1368
1369static unsigned
1370volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1371{
1372 unsigned i;
1373
1374 for (i = 0; i < n; i++)
1375 if (vec[i] != 0)
1376 break;
1377
1378 if (i == n)
1379 return 0;
1380
1381 gcc_assert (vec[i] > 0);
1382
1383 /* We ignore the parts of the distance vector in subloops, since usually
1384 the numbers of iterations are much smaller. */
1385 return loop_sizes[i] * vec[i];
1386}
1387
1388/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1389 at the position corresponding to the loop of the step. N is the depth
1390 of the considered loop nest, and, LOOP is its innermost loop. */
1391
1392static void
1393add_subscript_strides (tree access_fn, unsigned stride,
1394 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1395{
1396 struct loop *aloop;
1397 tree step;
1398 HOST_WIDE_INT astep;
1399 unsigned min_depth = loop_depth (loop) - n;
1400
1401 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1402 {
1403 aloop = get_chrec_loop (access_fn);
1404 step = CHREC_RIGHT (access_fn);
1405 access_fn = CHREC_LEFT (access_fn);
1406
1407 if ((unsigned) loop_depth (aloop) <= min_depth)
1408 continue;
1409
1410 if (host_integerp (step, 0))
1411 astep = tree_low_cst (step, 0);
1412 else
1413 astep = L1_CACHE_LINE_SIZE;
1414
1415 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1416
1417 }
1418}
1419
1420/* Returns the volume of memory references accessed between two consecutive
1421 self-reuses of the reference DR. We consider the subscripts of DR in N
1422 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1423 loops. LOOP is the innermost loop of the current loop nest. */
1424
1425static unsigned
1426self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1427 struct loop *loop)
1428{
1429 tree stride, access_fn;
1430 HOST_WIDE_INT *strides, astride;
1431 VEC (tree, heap) *access_fns;
1432 tree ref = DR_REF (dr);
1433 unsigned i, ret = ~0u;
1434
1435 /* In the following example:
1436
1437 for (i = 0; i < N; i++)
1438 for (j = 0; j < N; j++)
1439 use (a[j][i]);
1440 the same cache line is accessed each N steps (except if the change from
1441 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1442 we cannot rely purely on the results of the data dependence analysis.
1443
1444 Instead, we compute the stride of the reference in each loop, and consider
1445 the innermost loop in that the stride is less than cache size. */
1446
1447 strides = XCNEWVEC (HOST_WIDE_INT, n);
1448 access_fns = DR_ACCESS_FNS (dr);
1449
ac47786e 1450 FOR_EACH_VEC_ELT (tree, access_fns, i, access_fn)
5417e022
ZD
1451 {
1452 /* Keep track of the reference corresponding to the subscript, so that we
1453 know its stride. */
1454 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1455 ref = TREE_OPERAND (ref, 0);
b8698a0f 1456
5417e022
ZD
1457 if (TREE_CODE (ref) == ARRAY_REF)
1458 {
1459 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
1460 if (host_integerp (stride, 1))
1461 astride = tree_low_cst (stride, 1);
1462 else
1463 astride = L1_CACHE_LINE_SIZE;
1464
1465 ref = TREE_OPERAND (ref, 0);
1466 }
1467 else
1468 astride = 1;
1469
1470 add_subscript_strides (access_fn, astride, strides, n, loop);
1471 }
1472
1473 for (i = n; i-- > 0; )
1474 {
1475 unsigned HOST_WIDE_INT s;
1476
1477 s = strides[i] < 0 ? -strides[i] : strides[i];
1478
1479 if (s < (unsigned) L1_CACHE_LINE_SIZE
1480 && (loop_sizes[i]
1481 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1482 {
1483 ret = loop_sizes[i];
1484 break;
1485 }
1486 }
1487
1488 free (strides);
1489 return ret;
1490}
1491
1492/* Determines the distance till the first reuse of each reference in REFS
79f5e442 1493 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1e373390 1494 memory references in the loop. Return false if the analysis fails. */
5417e022 1495
1e373390 1496static bool
79f5e442
ZD
1497determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1498 bool no_other_refs)
5417e022
ZD
1499{
1500 struct loop *nest, *aloop;
1501 VEC (data_reference_p, heap) *datarefs = NULL;
1502 VEC (ddr_p, heap) *dependences = NULL;
1503 struct mem_ref_group *gr;
79f5e442 1504 struct mem_ref *ref, *refb;
5417e022
ZD
1505 VEC (loop_p, heap) *vloops = NULL;
1506 unsigned *loop_data_size;
1507 unsigned i, j, n;
1508 unsigned volume, dist, adist;
1509 HOST_WIDE_INT vol;
1510 data_reference_p dr;
1511 ddr_p dep;
1512
1513 if (loop->inner)
1e373390 1514 return true;
5417e022
ZD
1515
1516 /* Find the outermost loop of the loop nest of loop (we require that
1517 there are no sibling loops inside the nest). */
1518 nest = loop;
1519 while (1)
1520 {
1521 aloop = loop_outer (nest);
1522
1523 if (aloop == current_loops->tree_root
1524 || aloop->inner->next)
1525 break;
1526
1527 nest = aloop;
1528 }
1529
1530 /* For each loop, determine the amount of data accessed in each iteration.
1531 We use this to estimate whether the reference is evicted from the
1532 cache before its reuse. */
1533 find_loop_nest (nest, &vloops);
1534 n = VEC_length (loop_p, vloops);
1535 loop_data_size = XNEWVEC (unsigned, n);
1536 volume = volume_of_references (refs);
1537 i = n;
1538 while (i-- != 0)
1539 {
1540 loop_data_size[i] = volume;
1541 /* Bound the volume by the L2 cache size, since above this bound,
1542 all dependence distances are equivalent. */
1543 if (volume > L2_CACHE_SIZE_BYTES)
1544 continue;
1545
1546 aloop = VEC_index (loop_p, vloops, i);
652c4c71 1547 vol = estimated_stmt_executions_int (aloop);
e5b332cd 1548 if (vol == -1)
5417e022
ZD
1549 vol = expected_loop_iterations (aloop);
1550 volume *= vol;
1551 }
1552
1553 /* Prepare the references in the form suitable for data dependence
0d52bcc1 1554 analysis. We ignore unanalyzable data references (the results
5417e022
ZD
1555 are used just as a heuristics to estimate temporality of the
1556 references, hence we do not need to worry about correctness). */
1557 for (gr = refs; gr; gr = gr->next)
1558 for (ref = gr->refs; ref; ref = ref->next)
1559 {
5c640e29
SP
1560 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1561 ref->mem, ref->stmt, !ref->write_p);
5417e022
ZD
1562
1563 if (dr)
1564 {
1565 ref->reuse_distance = volume;
1566 dr->aux = ref;
1567 VEC_safe_push (data_reference_p, heap, datarefs, dr);
1568 }
79f5e442
ZD
1569 else
1570 no_other_refs = false;
5417e022
ZD
1571 }
1572
ac47786e 1573 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
5417e022
ZD
1574 {
1575 dist = self_reuse_distance (dr, loop_data_size, n, loop);
3d9a9f94 1576 ref = (struct mem_ref *) dr->aux;
5417e022
ZD
1577 if (ref->reuse_distance > dist)
1578 ref->reuse_distance = dist;
79f5e442
ZD
1579
1580 if (no_other_refs)
1581 ref->independent_p = true;
5417e022
ZD
1582 }
1583
1e373390
RG
1584 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1585 return false;
5417e022 1586
ac47786e 1587 FOR_EACH_VEC_ELT (ddr_p, dependences, i, dep)
5417e022
ZD
1588 {
1589 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1590 continue;
1591
3d9a9f94
KG
1592 ref = (struct mem_ref *) DDR_A (dep)->aux;
1593 refb = (struct mem_ref *) DDR_B (dep)->aux;
79f5e442 1594
5417e022
ZD
1595 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1596 || DDR_NUM_DIST_VECTS (dep) == 0)
1597 {
0d52bcc1 1598 /* If the dependence cannot be analyzed, assume that there might be
5417e022
ZD
1599 a reuse. */
1600 dist = 0;
b8698a0f 1601
79f5e442
ZD
1602 ref->independent_p = false;
1603 refb->independent_p = false;
5417e022
ZD
1604 }
1605 else
1606 {
0d52bcc1 1607 /* The distance vectors are normalized to be always lexicographically
5417e022
ZD
1608 positive, hence we cannot tell just from them whether DDR_A comes
1609 before DDR_B or vice versa. However, it is not important,
1610 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1611 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1612 in cache (and marking it as nontemporal would not affect
1613 anything). */
1614
1615 dist = volume;
1616 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1617 {
1618 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1619 loop_data_size, n);
1620
79f5e442
ZD
1621 /* If this is a dependence in the innermost loop (i.e., the
1622 distances in all superloops are zero) and it is not
1623 the trivial self-dependence with distance zero, record that
1624 the references are not completely independent. */
1625 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1626 && (ref != refb
1627 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1628 {
1629 ref->independent_p = false;
1630 refb->independent_p = false;
1631 }
1632
5417e022
ZD
1633 /* Ignore accesses closer than
1634 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1635 so that we use nontemporal prefetches e.g. if single memory
1636 location is accessed several times in a single iteration of
1637 the loop. */
1638 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1639 continue;
1640
1641 if (adist < dist)
1642 dist = adist;
1643 }
1644 }
1645
5417e022
ZD
1646 if (ref->reuse_distance > dist)
1647 ref->reuse_distance = dist;
79f5e442
ZD
1648 if (refb->reuse_distance > dist)
1649 refb->reuse_distance = dist;
5417e022
ZD
1650 }
1651
1652 free_dependence_relations (dependences);
1653 free_data_refs (datarefs);
1654 free (loop_data_size);
1655
1656 if (dump_file && (dump_flags & TDF_DETAILS))
1657 {
1658 fprintf (dump_file, "Reuse distances:\n");
1659 for (gr = refs; gr; gr = gr->next)
1660 for (ref = gr->refs; ref; ref = ref->next)
1661 fprintf (dump_file, " ref %p distance %u\n",
1662 (void *) ref, ref->reuse_distance);
1663 }
1e373390
RG
1664
1665 return true;
5417e022
ZD
1666}
1667
0bbe50f6
CF
1668/* Determine whether or not the trip count to ahead ratio is too small based
1669 on prefitablility consideration.
db34470d 1670 AHEAD: the iteration ahead distance,
0bbe50f6
CF
1671 EST_NITER: the estimated trip count. */
1672
1673static bool
1674trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1675{
1676 /* Assume trip count to ahead ratio is big enough if the trip count could not
1677 be estimated at compile time. */
1678 if (est_niter < 0)
1679 return false;
1680
1681 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1682 {
1683 if (dump_file && (dump_flags & TDF_DETAILS))
1684 fprintf (dump_file,
1685 "Not prefetching -- loop estimated to roll only %d times\n",
1686 (int) est_niter);
1687 return true;
1688 }
1689
1690 return false;
1691}
1692
1693/* Determine whether or not the number of memory references in the loop is
1694 reasonable based on the profitablity and compilation time considerations.
db34470d 1695 NINSNS: estimated number of instructions in the loop,
db34470d
GS
1696 MEM_REF_COUNT: total number of memory references in the loop. */
1697
b8698a0f 1698static bool
0bbe50f6 1699mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
db34470d 1700{
0bbe50f6 1701 int insn_to_mem_ratio;
db34470d
GS
1702
1703 if (mem_ref_count == 0)
1704 return false;
1705
0bbe50f6
CF
1706 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1707 (compute_all_dependences) have high costs based on quadratic complexity.
1708 To avoid huge compilation time, we give up prefetching if mem_ref_count
1709 is too large. */
1710 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1711 return false;
1712
b8698a0f
L
1713 /* Prefetching improves performance by overlapping cache missing
1714 memory accesses with CPU operations. If the loop does not have
1715 enough CPU operations to overlap with memory operations, prefetching
1716 won't give a significant benefit. One approximate way of checking
1717 this is to require the ratio of instructions to memory references to
db34470d
GS
1718 be above a certain limit. This approximation works well in practice.
1719 TODO: Implement a more precise computation by estimating the time
1720 for each CPU or memory op in the loop. Time estimates for memory ops
1721 should account for cache misses. */
b8698a0f 1722 insn_to_mem_ratio = ninsns / mem_ref_count;
db34470d
GS
1723
1724 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
55e5a2eb
CF
1725 {
1726 if (dump_file && (dump_flags & TDF_DETAILS))
1727 fprintf (dump_file,
1728 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1729 insn_to_mem_ratio);
1730 return false;
1731 }
db34470d 1732
0bbe50f6
CF
1733 return true;
1734}
1735
1736/* Determine whether or not the instruction to prefetch ratio in the loop is
1737 too small based on the profitablity consideration.
1738 NINSNS: estimated number of instructions in the loop,
1739 PREFETCH_COUNT: an estimate of the number of prefetches,
1740 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1741
1742static bool
1743insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1744 unsigned unroll_factor)
1745{
1746 int insn_to_prefetch_ratio;
1747
d3a9b459
CF
1748 /* Prefetching most likely causes performance degradation when the instruction
1749 to prefetch ratio is too small. Too many prefetch instructions in a loop
1750 may reduce the I-cache performance.
ccacf0e1
CF
1751 (unroll_factor * ninsns) is used to estimate the number of instructions in
1752 the unrolled loop. This implementation is a bit simplistic -- the number
1753 of issued prefetch instructions is also affected by unrolling. So,
1754 prefetch_mod and the unroll factor should be taken into account when
1755 determining prefetch_count. Also, the number of insns of the unrolled
1756 loop will usually be significantly smaller than the number of insns of the
1757 original loop * unroll_factor (at least the induction variable increases
1758 and the exit branches will get eliminated), so it might be better to use
1759 tree_estimate_loop_size + estimated_unrolled_size. */
d3a9b459
CF
1760 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1761 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
db34470d 1762 {
d3a9b459
CF
1763 if (dump_file && (dump_flags & TDF_DETAILS))
1764 fprintf (dump_file,
1765 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1766 insn_to_prefetch_ratio);
0bbe50f6 1767 return true;
db34470d 1768 }
b8698a0f 1769
0bbe50f6 1770 return false;
db34470d
GS
1771}
1772
1773
b076a3fd 1774/* Issue prefetch instructions for array references in LOOP. Returns
d73be268 1775 true if the LOOP was unrolled. */
b076a3fd
ZD
1776
1777static bool
d73be268 1778loop_prefetch_arrays (struct loop *loop)
b076a3fd
ZD
1779{
1780 struct mem_ref_group *refs;
2711355f
ZD
1781 unsigned ahead, ninsns, time, unroll_factor;
1782 HOST_WIDE_INT est_niter;
b076a3fd 1783 struct tree_niter_desc desc;
79f5e442 1784 bool unrolled = false, no_other_refs;
db34470d
GS
1785 unsigned prefetch_count;
1786 unsigned mem_ref_count;
b076a3fd 1787
efd8f750 1788 if (optimize_loop_nest_for_size_p (loop))
2732d767
ZD
1789 {
1790 if (dump_file && (dump_flags & TDF_DETAILS))
1791 fprintf (dump_file, " ignored (cold area)\n");
1792 return false;
1793 }
1794
0bbe50f6
CF
1795 /* FIXME: the time should be weighted by the probabilities of the blocks in
1796 the loop body. */
1797 time = tree_num_loop_insns (loop, &eni_time_weights);
1798 if (time == 0)
1799 return false;
1800
1801 ahead = (PREFETCH_LATENCY + time - 1) / time;
652c4c71 1802 est_niter = estimated_stmt_executions_int (loop);
e5b332cd
RG
1803 if (est_niter == -1)
1804 est_niter = max_stmt_executions_int (loop);
0bbe50f6
CF
1805
1806 /* Prefetching is not likely to be profitable if the trip count to ahead
1807 ratio is too small. */
1808 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1809 return false;
1810
1811 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1812
b076a3fd 1813 /* Step 1: gather the memory references. */
db34470d 1814 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
b076a3fd 1815
0bbe50f6
CF
1816 /* Give up prefetching if the number of memory references in the
1817 loop is not reasonable based on profitablity and compilation time
1818 considerations. */
1819 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1820 goto fail;
1821
b076a3fd
ZD
1822 /* Step 2: estimate the reuse effects. */
1823 prune_by_reuse (refs);
1824
d5058523 1825 if (nothing_to_prefetch_p (refs))
b076a3fd
ZD
1826 goto fail;
1827
1e373390
RG
1828 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1829 goto fail;
5417e022 1830
0bbe50f6 1831 /* Step 3: determine unroll factor. */
2711355f
ZD
1832 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1833 est_niter);
d5058523
CF
1834
1835 /* Estimate prefetch count for the unrolled loop. */
1836 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1837 if (prefetch_count == 0)
1838 goto fail;
1839
2711355f 1840 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 1841 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
d81f5387 1842 HOST_WIDE_INT_PRINT_DEC "\n"
b8698a0f
L
1843 "insn count %d, mem ref count %d, prefetch count %d\n",
1844 ahead, unroll_factor, est_niter,
1845 ninsns, mem_ref_count, prefetch_count);
db34470d 1846
0bbe50f6
CF
1847 /* Prefetching is not likely to be profitable if the instruction to prefetch
1848 ratio is too small. */
1849 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1850 unroll_factor))
db34470d
GS
1851 goto fail;
1852
1853 mark_nontemporal_stores (loop, refs);
2711355f 1854
b076a3fd
ZD
1855 /* Step 4: what to prefetch? */
1856 if (!schedule_prefetches (refs, unroll_factor, ahead))
1857 goto fail;
1858
1859 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1860 iterations so that we do not issue superfluous prefetches. */
1861 if (unroll_factor != 1)
1862 {
d73be268 1863 tree_unroll_loop (loop, unroll_factor,
b076a3fd
ZD
1864 single_dom_exit (loop), &desc);
1865 unrolled = true;
1866 }
1867
1868 /* Step 6: issue the prefetches. */
1869 issue_prefetches (refs, unroll_factor, ahead);
1870
1871fail:
1872 release_mem_refs (refs);
1873 return unrolled;
1874}
1875
d73be268 1876/* Issue prefetch instructions for array references in loops. */
b076a3fd 1877
c7f965b6 1878unsigned int
d73be268 1879tree_ssa_prefetch_arrays (void)
b076a3fd 1880{
42fd6772 1881 loop_iterator li;
b076a3fd
ZD
1882 struct loop *loop;
1883 bool unrolled = false;
c7f965b6 1884 int todo_flags = 0;
b076a3fd
ZD
1885
1886 if (!HAVE_prefetch
1887 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1888 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1889 of processor costs and i486 does not have prefetch, but
1890 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1891 || PREFETCH_BLOCK == 0)
c7f965b6 1892 return 0;
b076a3fd 1893
47eb5b32
ZD
1894 if (dump_file && (dump_flags & TDF_DETAILS))
1895 {
1896 fprintf (dump_file, "Prefetching parameters:\n");
1897 fprintf (dump_file, " simultaneous prefetches: %d\n",
1898 SIMULTANEOUS_PREFETCHES);
1899 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
47eb5b32 1900 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
46cb0441
ZD
1901 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1902 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
5417e022 1903 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
b8698a0f
L
1904 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1905 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
db34470d 1906 MIN_INSN_TO_PREFETCH_RATIO);
b8698a0f 1907 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
db34470d 1908 PREFETCH_MIN_INSN_TO_MEM_RATIO);
47eb5b32
ZD
1909 fprintf (dump_file, "\n");
1910 }
1911
b076a3fd
ZD
1912 initialize_original_copy_tables ();
1913
e79983f4 1914 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
b076a3fd 1915 {
6a4825bd
NF
1916 tree type = build_function_type_list (void_type_node,
1917 const_ptr_type_node, NULL_TREE);
c79efc4d
RÁE
1918 tree decl = add_builtin_function ("__builtin_prefetch", type,
1919 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1920 NULL, NULL_TREE);
b076a3fd 1921 DECL_IS_NOVOPS (decl) = true;
e79983f4 1922 set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
b076a3fd
ZD
1923 }
1924
1925 /* We assume that size of cache line is a power of two, so verify this
1926 here. */
1927 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1928
42fd6772 1929 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
b076a3fd 1930 {
b076a3fd
ZD
1931 if (dump_file && (dump_flags & TDF_DETAILS))
1932 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1933
d73be268 1934 unrolled |= loop_prefetch_arrays (loop);
b076a3fd
ZD
1935
1936 if (dump_file && (dump_flags & TDF_DETAILS))
1937 fprintf (dump_file, "\n\n");
1938 }
1939
1940 if (unrolled)
1941 {
1942 scev_reset ();
c7f965b6 1943 todo_flags |= TODO_cleanup_cfg;
b076a3fd
ZD
1944 }
1945
1946 free_original_copy_tables ();
c7f965b6 1947 return todo_flags;
b076a3fd 1948}