]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-loop-prefetch.c
invoke.texi (mfix-rm7000, [...]): Document.
[thirdparty/gcc.git] / gcc / tree-ssa-loop-prefetch.c
CommitLineData
b076a3fd 1/* Array prefetching.
d1e082c2 2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
b8698a0f 3
b076a3fd 4This file is part of GCC.
b8698a0f 5
b076a3fd
ZD
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
9dcd6f09 8Free Software Foundation; either version 3, or (at your option) any
b076a3fd 9later version.
b8698a0f 10
b076a3fd
ZD
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
b8698a0f 15
b076a3fd 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
b076a3fd
ZD
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "tree.h"
d8a2d370 25#include "stor-layout.h"
b076a3fd 26#include "tm_p.h"
b076a3fd 27#include "basic-block.h"
cf835838 28#include "tree-pretty-print.h"
18f429e2 29#include "gimple.h"
45b0be94 30#include "gimplify.h"
5be5c238 31#include "gimple-iterator.h"
18f429e2 32#include "gimplify-me.h"
442b4905 33#include "gimple-ssa.h"
e28030cf
AM
34#include "tree-ssa-loop-ivopts.h"
35#include "tree-ssa-loop-manip.h"
36#include "tree-ssa-loop-niter.h"
442b4905
AM
37#include "tree-ssa-loop.h"
38#include "tree-into-ssa.h"
b076a3fd 39#include "cfgloop.h"
b076a3fd 40#include "tree-pass.h"
b076a3fd 41#include "insn-config.h"
b076a3fd
ZD
42#include "hashtab.h"
43#include "tree-chrec.h"
44#include "tree-scalar-evolution.h"
718f9c0f 45#include "diagnostic-core.h"
b076a3fd
ZD
46#include "params.h"
47#include "langhooks.h"
7f9bc51b 48#include "tree-inline.h"
5417e022 49#include "tree-data-ref.h"
2eb79bbb
SB
50
51
52/* FIXME: Needed for optabs, but this should all be moved to a TBD interface
53 between the GIMPLE and RTL worlds. */
54#include "expr.h"
79f5e442 55#include "optabs.h"
1c1ad7bb 56#include "recog.h"
b076a3fd
ZD
57
58/* This pass inserts prefetch instructions to optimize cache usage during
59 accesses to arrays in loops. It processes loops sequentially and:
60
61 1) Gathers all memory references in the single loop.
62 2) For each of the references it decides when it is profitable to prefetch
63 it. To do it, we evaluate the reuse among the accesses, and determines
64 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
65 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
66 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
67 iterations of the loop that are zero modulo PREFETCH_MOD). For example
68 (assuming cache line size is 64 bytes, char has size 1 byte and there
69 is no hardware sequential prefetch):
70
71 char *a;
72 for (i = 0; i < max; i++)
73 {
74 a[255] = ...; (0)
75 a[i] = ...; (1)
76 a[i + 64] = ...; (2)
77 a[16*i] = ...; (3)
78 a[187*i] = ...; (4)
79 a[187*i + 50] = ...; (5)
80 }
81
82 (0) obviously has PREFETCH_BEFORE 1
83 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
84 location 64 iterations before it, and PREFETCH_MOD 64 (since
85 it hits the same cache line otherwise).
86 (2) has PREFETCH_MOD 64
87 (3) has PREFETCH_MOD 4
88 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
bae077dc 89 the cache line accessed by (5) is the same with probability only
b076a3fd
ZD
90 7/32.
91 (5) has PREFETCH_MOD 1 as well.
92
5417e022
ZD
93 Additionally, we use data dependence analysis to determine for each
94 reference the distance till the first reuse; this information is used
95 to determine the temporality of the issued prefetch instruction.
96
b076a3fd
ZD
97 3) We determine how much ahead we need to prefetch. The number of
98 iterations needed is time to fetch / time spent in one iteration of
99 the loop. The problem is that we do not know either of these values,
100 so we just make a heuristic guess based on a magic (possibly)
101 target-specific constant and size of the loop.
102
103 4) Determine which of the references we prefetch. We take into account
104 that there is a maximum number of simultaneous prefetches (provided
105 by machine description). We prefetch as many prefetches as possible
106 while still within this bound (starting with those with lowest
107 prefetch_mod, since they are responsible for most of the cache
108 misses).
b8698a0f 109
b076a3fd
ZD
110 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
111 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
112 prefetching nonaccessed memory.
113 TODO -- actually implement peeling.
b8698a0f 114
b076a3fd
ZD
115 6) We actually emit the prefetch instructions. ??? Perhaps emit the
116 prefetch instructions with guards in cases where 5) was not sufficient
117 to satisfy the constraints?
118
0bbe50f6
CF
119 A cost model is implemented to determine whether or not prefetching is
120 profitable for a given loop. The cost model has three heuristics:
121
122 1. Function trip_count_to_ahead_ratio_too_small_p implements a
123 heuristic that determines whether or not the loop has too few
124 iterations (compared to ahead). Prefetching is not likely to be
125 beneficial if the trip count to ahead ratio is below a certain
126 minimum.
127
128 2. Function mem_ref_count_reasonable_p implements a heuristic that
129 determines whether the given loop has enough CPU ops that can be
130 overlapped with cache missing memory ops. If not, the loop
131 won't benefit from prefetching. In the implementation,
132 prefetching is not considered beneficial if the ratio between
133 the instruction count and the mem ref count is below a certain
134 minimum.
135
136 3. Function insn_to_prefetch_ratio_too_small_p implements a
137 heuristic that disables prefetching in a loop if the prefetching
138 cost is above a certain limit. The relative prefetching cost is
139 estimated by taking the ratio between the prefetch count and the
140 total intruction count (this models the I-cache cost).
141
db34470d 142 The limits used in these heuristics are defined as parameters with
b8698a0f 143 reasonable default values. Machine-specific default values will be
db34470d 144 added later.
b8698a0f 145
b076a3fd
ZD
146 Some other TODO:
147 -- write and use more general reuse analysis (that could be also used
148 in other cache aimed loop optimizations)
149 -- make it behave sanely together with the prefetches given by user
150 (now we just ignore them; at the very least we should avoid
151 optimizing loops in that user put his own prefetches)
152 -- we assume cache line size alignment of arrays; this could be
153 improved. */
154
155/* Magic constants follow. These should be replaced by machine specific
156 numbers. */
157
b076a3fd
ZD
158/* True if write can be prefetched by a read prefetch. */
159
160#ifndef WRITE_CAN_USE_READ_PREFETCH
161#define WRITE_CAN_USE_READ_PREFETCH 1
162#endif
163
164/* True if read can be prefetched by a write prefetch. */
165
166#ifndef READ_CAN_USE_WRITE_PREFETCH
167#define READ_CAN_USE_WRITE_PREFETCH 0
168#endif
169
47eb5b32
ZD
170/* The size of the block loaded by a single prefetch. Usually, this is
171 the same as cache line size (at the moment, we only consider one level
172 of cache hierarchy). */
b076a3fd
ZD
173
174#ifndef PREFETCH_BLOCK
47eb5b32 175#define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
b076a3fd
ZD
176#endif
177
178/* Do we have a forward hardware sequential prefetching? */
179
180#ifndef HAVE_FORWARD_PREFETCH
181#define HAVE_FORWARD_PREFETCH 0
182#endif
183
184/* Do we have a backward hardware sequential prefetching? */
185
186#ifndef HAVE_BACKWARD_PREFETCH
187#define HAVE_BACKWARD_PREFETCH 0
188#endif
189
190/* In some cases we are only able to determine that there is a certain
191 probability that the two accesses hit the same cache line. In this
192 case, we issue the prefetches for both of them if this probability
fa10beec 193 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
b076a3fd
ZD
194
195#ifndef ACCEPTABLE_MISS_RATE
196#define ACCEPTABLE_MISS_RATE 50
197#endif
198
199#ifndef HAVE_prefetch
200#define HAVE_prefetch 0
201#endif
202
46cb0441
ZD
203#define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
204#define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
5417e022
ZD
205
206/* We consider a memory access nontemporal if it is not reused sooner than
207 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
208 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
209 so that we use nontemporal prefetches e.g. if single memory location
210 is accessed several times in a single iteration of the loop. */
211#define NONTEMPORAL_FRACTION 16
212
79f5e442
ZD
213/* In case we have to emit a memory fence instruction after the loop that
214 uses nontemporal stores, this defines the builtin to use. */
215
216#ifndef FENCE_FOLLOWING_MOVNT
217#define FENCE_FOLLOWING_MOVNT NULL_TREE
218#endif
219
9bf4598b
CF
220/* It is not profitable to prefetch when the trip count is not at
221 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
222 For example, in a loop with a prefetch ahead distance of 10,
223 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
224 profitable to prefetch when the trip count is greater or equal to
225 40. In that case, 30 out of the 40 iterations will benefit from
226 prefetching. */
227
228#ifndef TRIP_COUNT_TO_AHEAD_RATIO
229#define TRIP_COUNT_TO_AHEAD_RATIO 4
230#endif
231
b076a3fd
ZD
232/* The group of references between that reuse may occur. */
233
234struct mem_ref_group
235{
236 tree base; /* Base of the reference. */
81f32326 237 tree step; /* Step of the reference. */
b076a3fd
ZD
238 struct mem_ref *refs; /* References in the group. */
239 struct mem_ref_group *next; /* Next group of references. */
240};
241
242/* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
243
244#define PREFETCH_ALL (~(unsigned HOST_WIDE_INT) 0)
245
8532678c
CF
246/* Do not generate a prefetch if the unroll factor is significantly less
247 than what is required by the prefetch. This is to avoid redundant
f7963a7c
CF
248 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
249 2, prefetching requires unrolling the loop 16 times, but
250 the loop is actually unrolled twice. In this case (ratio = 8),
8532678c
CF
251 prefetching is not likely to be beneficial. */
252
253#ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
f7963a7c 254#define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
8532678c
CF
255#endif
256
0bbe50f6
CF
257/* Some of the prefetch computations have quadratic complexity. We want to
258 avoid huge compile times and, therefore, want to limit the amount of
259 memory references per loop where we consider prefetching. */
260
261#ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
262#define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
263#endif
264
b076a3fd
ZD
265/* The memory reference. */
266
267struct mem_ref
268{
726a989a 269 gimple stmt; /* Statement in that the reference appears. */
b076a3fd
ZD
270 tree mem; /* The reference. */
271 HOST_WIDE_INT delta; /* Constant offset of the reference. */
b076a3fd
ZD
272 struct mem_ref_group *group; /* The group of references it belongs to. */
273 unsigned HOST_WIDE_INT prefetch_mod;
274 /* Prefetch only each PREFETCH_MOD-th
275 iteration. */
276 unsigned HOST_WIDE_INT prefetch_before;
277 /* Prefetch only first PREFETCH_BEFORE
278 iterations. */
5417e022
ZD
279 unsigned reuse_distance; /* The amount of data accessed before the first
280 reuse of this value. */
b076a3fd 281 struct mem_ref *next; /* The next reference in the group. */
79f5e442
ZD
282 unsigned write_p : 1; /* Is it a write? */
283 unsigned independent_p : 1; /* True if the reference is independent on
284 all other references inside the loop. */
285 unsigned issue_prefetch_p : 1; /* Should we really issue the prefetch? */
286 unsigned storent_p : 1; /* True if we changed the store to a
287 nontemporal one. */
b076a3fd
ZD
288};
289
a5497b12 290/* Dumps information about memory reference */
b076a3fd 291static void
a5497b12
VK
292dump_mem_details (FILE *file, tree base, tree step,
293 HOST_WIDE_INT delta, bool write_p)
b076a3fd 294{
a5497b12
VK
295 fprintf (file, "(base ");
296 print_generic_expr (file, base, TDF_SLIM);
b076a3fd 297 fprintf (file, ", step ");
a5497b12
VK
298 if (cst_and_fits_in_hwi (step))
299 fprintf (file, HOST_WIDE_INT_PRINT_DEC, int_cst_value (step));
81f32326 300 else
a5497b12 301 print_generic_expr (file, step, TDF_TREE);
b076a3fd 302 fprintf (file, ")\n");
e324a72f 303 fprintf (file, " delta ");
a5497b12
VK
304 fprintf (file, HOST_WIDE_INT_PRINT_DEC, delta);
305 fprintf (file, "\n");
306 fprintf (file, " %s\n", write_p ? "write" : "read");
b076a3fd 307 fprintf (file, "\n");
a5497b12 308}
b076a3fd 309
a5497b12 310/* Dumps information about reference REF to FILE. */
b076a3fd 311
a5497b12
VK
312static void
313dump_mem_ref (FILE *file, struct mem_ref *ref)
314{
315 fprintf (file, "Reference %p:\n", (void *) ref);
316
317 fprintf (file, " group %p ", (void *) ref->group);
318
319 dump_mem_details (file, ref->group->base, ref->group->step, ref->delta,
320 ref->write_p);
b076a3fd
ZD
321}
322
323/* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
324 exist. */
325
326static struct mem_ref_group *
81f32326 327find_or_create_group (struct mem_ref_group **groups, tree base, tree step)
b076a3fd
ZD
328{
329 struct mem_ref_group *group;
330
331 for (; *groups; groups = &(*groups)->next)
332 {
81f32326 333 if (operand_equal_p ((*groups)->step, step, 0)
b076a3fd
ZD
334 && operand_equal_p ((*groups)->base, base, 0))
335 return *groups;
336
81f32326
CB
337 /* If step is an integer constant, keep the list of groups sorted
338 by decreasing step. */
339 if (cst_and_fits_in_hwi ((*groups)->step) && cst_and_fits_in_hwi (step)
340 && int_cst_value ((*groups)->step) < int_cst_value (step))
b076a3fd
ZD
341 break;
342 }
343
5417e022 344 group = XNEW (struct mem_ref_group);
b076a3fd
ZD
345 group->base = base;
346 group->step = step;
347 group->refs = NULL;
348 group->next = *groups;
349 *groups = group;
350
351 return group;
352}
353
354/* Records a memory reference MEM in GROUP with offset DELTA and write status
355 WRITE_P. The reference occurs in statement STMT. */
356
357static void
726a989a 358record_ref (struct mem_ref_group *group, gimple stmt, tree mem,
b076a3fd
ZD
359 HOST_WIDE_INT delta, bool write_p)
360{
361 struct mem_ref **aref;
362
363 /* Do not record the same address twice. */
364 for (aref = &group->refs; *aref; aref = &(*aref)->next)
365 {
366 /* It does not have to be possible for write reference to reuse the read
367 prefetch, or vice versa. */
368 if (!WRITE_CAN_USE_READ_PREFETCH
369 && write_p
370 && !(*aref)->write_p)
371 continue;
372 if (!READ_CAN_USE_WRITE_PREFETCH
373 && !write_p
374 && (*aref)->write_p)
375 continue;
376
377 if ((*aref)->delta == delta)
378 return;
379 }
380
5417e022 381 (*aref) = XNEW (struct mem_ref);
b076a3fd
ZD
382 (*aref)->stmt = stmt;
383 (*aref)->mem = mem;
384 (*aref)->delta = delta;
385 (*aref)->write_p = write_p;
386 (*aref)->prefetch_before = PREFETCH_ALL;
387 (*aref)->prefetch_mod = 1;
5417e022 388 (*aref)->reuse_distance = 0;
b076a3fd
ZD
389 (*aref)->issue_prefetch_p = false;
390 (*aref)->group = group;
391 (*aref)->next = NULL;
79f5e442
ZD
392 (*aref)->independent_p = false;
393 (*aref)->storent_p = false;
b076a3fd
ZD
394
395 if (dump_file && (dump_flags & TDF_DETAILS))
396 dump_mem_ref (dump_file, *aref);
397}
398
399/* Release memory references in GROUPS. */
400
401static void
402release_mem_refs (struct mem_ref_group *groups)
403{
404 struct mem_ref_group *next_g;
405 struct mem_ref *ref, *next_r;
406
407 for (; groups; groups = next_g)
408 {
409 next_g = groups->next;
410 for (ref = groups->refs; ref; ref = next_r)
411 {
412 next_r = ref->next;
413 free (ref);
414 }
415 free (groups);
416 }
417}
418
419/* A structure used to pass arguments to idx_analyze_ref. */
420
421struct ar_data
422{
423 struct loop *loop; /* Loop of the reference. */
726a989a 424 gimple stmt; /* Statement of the reference. */
81f32326 425 tree *step; /* Step of the memory reference. */
b076a3fd
ZD
426 HOST_WIDE_INT *delta; /* Offset of the memory reference. */
427};
428
429/* Analyzes a single INDEX of a memory reference to obtain information
430 described at analyze_ref. Callback for for_each_index. */
431
432static bool
433idx_analyze_ref (tree base, tree *index, void *data)
434{
c22940cd 435 struct ar_data *ar_data = (struct ar_data *) data;
b076a3fd 436 tree ibase, step, stepsize;
81f32326 437 HOST_WIDE_INT idelta = 0, imult = 1;
b076a3fd
ZD
438 affine_iv iv;
439
f017bf5e 440 if (!simple_iv (ar_data->loop, loop_containing_stmt (ar_data->stmt),
81f32326 441 *index, &iv, true))
b076a3fd
ZD
442 return false;
443 ibase = iv.base;
444 step = iv.step;
445
5be014d5 446 if (TREE_CODE (ibase) == POINTER_PLUS_EXPR
b076a3fd
ZD
447 && cst_and_fits_in_hwi (TREE_OPERAND (ibase, 1)))
448 {
449 idelta = int_cst_value (TREE_OPERAND (ibase, 1));
450 ibase = TREE_OPERAND (ibase, 0);
451 }
452 if (cst_and_fits_in_hwi (ibase))
453 {
454 idelta += int_cst_value (ibase);
ff5e9a94 455 ibase = build_int_cst (TREE_TYPE (ibase), 0);
b076a3fd
ZD
456 }
457
458 if (TREE_CODE (base) == ARRAY_REF)
459 {
460 stepsize = array_ref_element_size (base);
461 if (!cst_and_fits_in_hwi (stepsize))
462 return false;
463 imult = int_cst_value (stepsize);
8fde8b40
CB
464 step = fold_build2 (MULT_EXPR, sizetype,
465 fold_convert (sizetype, step),
466 fold_convert (sizetype, stepsize));
b076a3fd
ZD
467 idelta *= imult;
468 }
469
8fde8b40
CB
470 if (*ar_data->step == NULL_TREE)
471 *ar_data->step = step;
472 else
473 *ar_data->step = fold_build2 (PLUS_EXPR, sizetype,
474 fold_convert (sizetype, *ar_data->step),
475 fold_convert (sizetype, step));
b076a3fd
ZD
476 *ar_data->delta += idelta;
477 *index = ibase;
478
479 return true;
480}
481
aac8b8ed 482/* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
b076a3fd 483 STEP are integer constants and iter is number of iterations of LOOP. The
aac8b8ed
RS
484 reference occurs in statement STMT. Strips nonaddressable component
485 references from REF_P. */
b076a3fd
ZD
486
487static bool
aac8b8ed 488analyze_ref (struct loop *loop, tree *ref_p, tree *base,
81f32326 489 tree *step, HOST_WIDE_INT *delta,
726a989a 490 gimple stmt)
b076a3fd
ZD
491{
492 struct ar_data ar_data;
493 tree off;
494 HOST_WIDE_INT bit_offset;
aac8b8ed 495 tree ref = *ref_p;
b076a3fd 496
81f32326 497 *step = NULL_TREE;
b076a3fd
ZD
498 *delta = 0;
499
7c6dafac
CF
500 /* First strip off the component references. Ignore bitfields.
501 Also strip off the real and imagine parts of a complex, so that
502 they can have the same base. */
503 if (TREE_CODE (ref) == REALPART_EXPR
504 || TREE_CODE (ref) == IMAGPART_EXPR
505 || (TREE_CODE (ref) == COMPONENT_REF
506 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref, 1))))
507 {
508 if (TREE_CODE (ref) == IMAGPART_EXPR)
509 *delta += int_size_in_bytes (TREE_TYPE (ref));
510 ref = TREE_OPERAND (ref, 0);
511 }
b076a3fd 512
aac8b8ed
RS
513 *ref_p = ref;
514
b076a3fd
ZD
515 for (; TREE_CODE (ref) == COMPONENT_REF; ref = TREE_OPERAND (ref, 0))
516 {
517 off = DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1));
518 bit_offset = TREE_INT_CST_LOW (off);
519 gcc_assert (bit_offset % BITS_PER_UNIT == 0);
b8698a0f 520
b076a3fd
ZD
521 *delta += bit_offset / BITS_PER_UNIT;
522 }
523
524 *base = unshare_expr (ref);
525 ar_data.loop = loop;
526 ar_data.stmt = stmt;
527 ar_data.step = step;
528 ar_data.delta = delta;
529 return for_each_index (base, idx_analyze_ref, &ar_data);
530}
531
532/* Record a memory reference REF to the list REFS. The reference occurs in
79f5e442
ZD
533 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
534 reference was recorded, false otherwise. */
b076a3fd 535
79f5e442 536static bool
b076a3fd 537gather_memory_references_ref (struct loop *loop, struct mem_ref_group **refs,
726a989a 538 tree ref, bool write_p, gimple stmt)
b076a3fd 539{
81f32326
CB
540 tree base, step;
541 HOST_WIDE_INT delta;
b076a3fd
ZD
542 struct mem_ref_group *agrp;
543
a80a2701
JJ
544 if (get_base_address (ref) == NULL)
545 return false;
546
aac8b8ed 547 if (!analyze_ref (loop, &ref, &base, &step, &delta, stmt))
79f5e442 548 return false;
81f32326
CB
549 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
550 if (step == NULL_TREE)
551 return false;
b076a3fd 552
756f50ce 553 /* Stop if the address of BASE could not be taken. */
bc068a23
CF
554 if (may_be_nonaddressable_p (base))
555 return false;
556
a5497b12
VK
557 /* Limit non-constant step prefetching only to the innermost loops and
558 only when the step is loop invariant in the entire loop nest. */
559 if (!cst_and_fits_in_hwi (step))
560 {
561 if (loop->inner != NULL)
562 {
563 if (dump_file && (dump_flags & TDF_DETAILS))
564 {
565 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
566 print_generic_expr (dump_file, ref, TDF_TREE);
567 fprintf (dump_file,":");
c3284718 568 dump_mem_details (dump_file, base, step, delta, write_p);
a5497b12
VK
569 fprintf (dump_file,
570 "Ignoring %p, non-constant step prefetching is "
571 "limited to inner most loops \n",
572 (void *) ref);
573 }
574 return false;
575 }
576 else
577 {
578 if (!expr_invariant_in_loop_p (loop_outermost (loop), step))
579 {
580 if (dump_file && (dump_flags & TDF_DETAILS))
581 {
582 fprintf (dump_file, "Memory expression %p\n",(void *) ref );
583 print_generic_expr (dump_file, ref, TDF_TREE);
584 fprintf (dump_file,":");
c3284718 585 dump_mem_details (dump_file, base, step, delta, write_p);
a5497b12
VK
586 fprintf (dump_file,
587 "Not prefetching, ignoring %p due to "
588 "loop variant step\n",
589 (void *) ref);
590 }
591 return false;
592 }
593 }
594 }
50814135 595
b076a3fd
ZD
596 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
597 are integer constants. */
598 agrp = find_or_create_group (refs, base, step);
599 record_ref (agrp, stmt, ref, delta, write_p);
79f5e442
ZD
600
601 return true;
b076a3fd
ZD
602}
603
79f5e442
ZD
604/* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
605 true if there are no other memory references inside the loop. */
b076a3fd
ZD
606
607static struct mem_ref_group *
db34470d 608gather_memory_references (struct loop *loop, bool *no_other_refs, unsigned *ref_count)
b076a3fd
ZD
609{
610 basic_block *body = get_loop_body_in_dom_order (loop);
611 basic_block bb;
612 unsigned i;
726a989a
RB
613 gimple_stmt_iterator bsi;
614 gimple stmt;
615 tree lhs, rhs;
b076a3fd
ZD
616 struct mem_ref_group *refs = NULL;
617
79f5e442 618 *no_other_refs = true;
db34470d 619 *ref_count = 0;
79f5e442 620
b076a3fd
ZD
621 /* Scan the loop body in order, so that the former references precede the
622 later ones. */
623 for (i = 0; i < loop->num_nodes; i++)
624 {
625 bb = body[i];
626 if (bb->loop_father != loop)
627 continue;
628
726a989a 629 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
b076a3fd 630 {
726a989a 631 stmt = gsi_stmt (bsi);
79f5e442 632
726a989a 633 if (gimple_code (stmt) != GIMPLE_ASSIGN)
79f5e442 634 {
5006671f 635 if (gimple_vuse (stmt)
726a989a
RB
636 || (is_gimple_call (stmt)
637 && !(gimple_call_flags (stmt) & ECF_CONST)))
79f5e442
ZD
638 *no_other_refs = false;
639 continue;
640 }
b076a3fd 641
726a989a
RB
642 lhs = gimple_assign_lhs (stmt);
643 rhs = gimple_assign_rhs1 (stmt);
b076a3fd
ZD
644
645 if (REFERENCE_CLASS_P (rhs))
db34470d 646 {
79f5e442
ZD
647 *no_other_refs &= gather_memory_references_ref (loop, &refs,
648 rhs, false, stmt);
db34470d
GS
649 *ref_count += 1;
650 }
b076a3fd 651 if (REFERENCE_CLASS_P (lhs))
db34470d 652 {
79f5e442
ZD
653 *no_other_refs &= gather_memory_references_ref (loop, &refs,
654 lhs, true, stmt);
db34470d
GS
655 *ref_count += 1;
656 }
b076a3fd
ZD
657 }
658 }
659 free (body);
660
661 return refs;
662}
663
664/* Prune the prefetch candidate REF using the self-reuse. */
665
666static void
667prune_ref_by_self_reuse (struct mem_ref *ref)
668{
81f32326
CB
669 HOST_WIDE_INT step;
670 bool backward;
671
672 /* If the step size is non constant, we cannot calculate prefetch_mod. */
673 if (!cst_and_fits_in_hwi (ref->group->step))
674 return;
675
676 step = int_cst_value (ref->group->step);
677
678 backward = step < 0;
b076a3fd
ZD
679
680 if (step == 0)
681 {
682 /* Prefetch references to invariant address just once. */
683 ref->prefetch_before = 1;
684 return;
685 }
686
687 if (backward)
688 step = -step;
689
690 if (step > PREFETCH_BLOCK)
691 return;
692
693 if ((backward && HAVE_BACKWARD_PREFETCH)
694 || (!backward && HAVE_FORWARD_PREFETCH))
695 {
696 ref->prefetch_before = 1;
697 return;
698 }
699
700 ref->prefetch_mod = PREFETCH_BLOCK / step;
701}
702
703/* Divides X by BY, rounding down. */
704
705static HOST_WIDE_INT
706ddown (HOST_WIDE_INT x, unsigned HOST_WIDE_INT by)
707{
708 gcc_assert (by > 0);
709
710 if (x >= 0)
711 return x / by;
712 else
713 return (x + by - 1) / by;
714}
715
b8698a0f
L
716/* Given a CACHE_LINE_SIZE and two inductive memory references
717 with a common STEP greater than CACHE_LINE_SIZE and an address
718 difference DELTA, compute the probability that they will fall
14e444c3
CF
719 in different cache lines. Return true if the computed miss rate
720 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
721 number of distinct iterations after which the pattern repeats itself.
2c6dd136
GS
722 ALIGN_UNIT is the unit of alignment in bytes. */
723
14e444c3
CF
724static bool
725is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size,
2c6dd136
GS
726 HOST_WIDE_INT step, HOST_WIDE_INT delta,
727 unsigned HOST_WIDE_INT distinct_iters,
728 int align_unit)
729{
730 unsigned align, iter;
14e444c3 731 int total_positions, miss_positions, max_allowed_miss_positions;
2c6dd136
GS
732 int address1, address2, cache_line1, cache_line2;
733
a245c04b
CF
734 /* It always misses if delta is greater than or equal to the cache
735 line size. */
14e444c3
CF
736 if (delta >= (HOST_WIDE_INT) cache_line_size)
737 return false;
a245c04b 738
2c6dd136 739 miss_positions = 0;
14e444c3
CF
740 total_positions = (cache_line_size / align_unit) * distinct_iters;
741 max_allowed_miss_positions = (ACCEPTABLE_MISS_RATE * total_positions) / 1000;
b8698a0f 742
2c6dd136
GS
743 /* Iterate through all possible alignments of the first
744 memory reference within its cache line. */
745 for (align = 0; align < cache_line_size; align += align_unit)
746
747 /* Iterate through all distinct iterations. */
748 for (iter = 0; iter < distinct_iters; iter++)
749 {
750 address1 = align + step * iter;
751 address2 = address1 + delta;
752 cache_line1 = address1 / cache_line_size;
753 cache_line2 = address2 / cache_line_size;
2c6dd136 754 if (cache_line1 != cache_line2)
14e444c3
CF
755 {
756 miss_positions += 1;
757 if (miss_positions > max_allowed_miss_positions)
758 return false;
759 }
2c6dd136 760 }
14e444c3 761 return true;
2c6dd136
GS
762}
763
b076a3fd
ZD
764/* Prune the prefetch candidate REF using the reuse with BY.
765 If BY_IS_BEFORE is true, BY is before REF in the loop. */
766
767static void
768prune_ref_by_group_reuse (struct mem_ref *ref, struct mem_ref *by,
769 bool by_is_before)
770{
81f32326
CB
771 HOST_WIDE_INT step;
772 bool backward;
b076a3fd
ZD
773 HOST_WIDE_INT delta_r = ref->delta, delta_b = by->delta;
774 HOST_WIDE_INT delta = delta_b - delta_r;
775 HOST_WIDE_INT hit_from;
776 unsigned HOST_WIDE_INT prefetch_before, prefetch_block;
2c6dd136
GS
777 HOST_WIDE_INT reduced_step;
778 unsigned HOST_WIDE_INT reduced_prefetch_block;
779 tree ref_type;
780 int align_unit;
b076a3fd 781
81f32326
CB
782 /* If the step is non constant we cannot calculate prefetch_before. */
783 if (!cst_and_fits_in_hwi (ref->group->step)) {
784 return;
785 }
786
787 step = int_cst_value (ref->group->step);
788
789 backward = step < 0;
790
791
b076a3fd
ZD
792 if (delta == 0)
793 {
794 /* If the references has the same address, only prefetch the
795 former. */
796 if (by_is_before)
797 ref->prefetch_before = 0;
b8698a0f 798
b076a3fd
ZD
799 return;
800 }
801
802 if (!step)
803 {
804 /* If the reference addresses are invariant and fall into the
805 same cache line, prefetch just the first one. */
806 if (!by_is_before)
807 return;
808
809 if (ddown (ref->delta, PREFETCH_BLOCK)
810 != ddown (by->delta, PREFETCH_BLOCK))
811 return;
812
813 ref->prefetch_before = 0;
814 return;
815 }
816
817 /* Only prune the reference that is behind in the array. */
818 if (backward)
819 {
820 if (delta > 0)
821 return;
822
823 /* Transform the data so that we may assume that the accesses
824 are forward. */
825 delta = - delta;
826 step = -step;
827 delta_r = PREFETCH_BLOCK - 1 - delta_r;
828 delta_b = PREFETCH_BLOCK - 1 - delta_b;
829 }
830 else
831 {
832 if (delta < 0)
833 return;
834 }
835
836 /* Check whether the two references are likely to hit the same cache
837 line, and how distant the iterations in that it occurs are from
838 each other. */
839
840 if (step <= PREFETCH_BLOCK)
841 {
842 /* The accesses are sure to meet. Let us check when. */
843 hit_from = ddown (delta_b, PREFETCH_BLOCK) * PREFETCH_BLOCK;
844 prefetch_before = (hit_from - delta_r + step - 1) / step;
845
57762e97 846 /* Do not reduce prefetch_before if we meet beyond cache size. */
4c9cf7af 847 if (prefetch_before > absu_hwi (L2_CACHE_SIZE_BYTES / step))
57762e97 848 prefetch_before = PREFETCH_ALL;
b076a3fd
ZD
849 if (prefetch_before < ref->prefetch_before)
850 ref->prefetch_before = prefetch_before;
851
852 return;
853 }
854
b8698a0f 855 /* A more complicated case with step > prefetch_block. First reduce
2c6dd136 856 the ratio between the step and the cache line size to its simplest
b8698a0f
L
857 terms. The resulting denominator will then represent the number of
858 distinct iterations after which each address will go back to its
859 initial location within the cache line. This computation assumes
2c6dd136 860 that PREFETCH_BLOCK is a power of two. */
b076a3fd 861 prefetch_block = PREFETCH_BLOCK;
2c6dd136
GS
862 reduced_prefetch_block = prefetch_block;
863 reduced_step = step;
864 while ((reduced_step & 1) == 0
865 && reduced_prefetch_block > 1)
b076a3fd 866 {
2c6dd136
GS
867 reduced_step >>= 1;
868 reduced_prefetch_block >>= 1;
b076a3fd
ZD
869 }
870
b076a3fd
ZD
871 prefetch_before = delta / step;
872 delta %= step;
2c6dd136
GS
873 ref_type = TREE_TYPE (ref->mem);
874 align_unit = TYPE_ALIGN (ref_type) / 8;
14e444c3
CF
875 if (is_miss_rate_acceptable (prefetch_block, step, delta,
876 reduced_prefetch_block, align_unit))
b076a3fd 877 {
57762e97
CB
878 /* Do not reduce prefetch_before if we meet beyond cache size. */
879 if (prefetch_before > L2_CACHE_SIZE_BYTES / PREFETCH_BLOCK)
880 prefetch_before = PREFETCH_ALL;
b076a3fd
ZD
881 if (prefetch_before < ref->prefetch_before)
882 ref->prefetch_before = prefetch_before;
883
884 return;
885 }
886
887 /* Try also the following iteration. */
888 prefetch_before++;
889 delta = step - delta;
14e444c3
CF
890 if (is_miss_rate_acceptable (prefetch_block, step, delta,
891 reduced_prefetch_block, align_unit))
b076a3fd
ZD
892 {
893 if (prefetch_before < ref->prefetch_before)
894 ref->prefetch_before = prefetch_before;
895
896 return;
897 }
898
899 /* The ref probably does not reuse by. */
900 return;
901}
902
903/* Prune the prefetch candidate REF using the reuses with other references
904 in REFS. */
905
906static void
907prune_ref_by_reuse (struct mem_ref *ref, struct mem_ref *refs)
908{
909 struct mem_ref *prune_by;
910 bool before = true;
911
912 prune_ref_by_self_reuse (ref);
913
914 for (prune_by = refs; prune_by; prune_by = prune_by->next)
915 {
916 if (prune_by == ref)
917 {
918 before = false;
919 continue;
920 }
921
922 if (!WRITE_CAN_USE_READ_PREFETCH
923 && ref->write_p
924 && !prune_by->write_p)
925 continue;
926 if (!READ_CAN_USE_WRITE_PREFETCH
927 && !ref->write_p
928 && prune_by->write_p)
929 continue;
930
931 prune_ref_by_group_reuse (ref, prune_by, before);
932 }
933}
934
935/* Prune the prefetch candidates in GROUP using the reuse analysis. */
936
937static void
938prune_group_by_reuse (struct mem_ref_group *group)
939{
940 struct mem_ref *ref_pruned;
941
942 for (ref_pruned = group->refs; ref_pruned; ref_pruned = ref_pruned->next)
943 {
944 prune_ref_by_reuse (ref_pruned, group->refs);
945
946 if (dump_file && (dump_flags & TDF_DETAILS))
947 {
948 fprintf (dump_file, "Reference %p:", (void *) ref_pruned);
949
950 if (ref_pruned->prefetch_before == PREFETCH_ALL
951 && ref_pruned->prefetch_mod == 1)
952 fprintf (dump_file, " no restrictions");
953 else if (ref_pruned->prefetch_before == 0)
954 fprintf (dump_file, " do not prefetch");
955 else if (ref_pruned->prefetch_before <= ref_pruned->prefetch_mod)
956 fprintf (dump_file, " prefetch once");
957 else
958 {
959 if (ref_pruned->prefetch_before != PREFETCH_ALL)
960 {
961 fprintf (dump_file, " prefetch before ");
962 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
963 ref_pruned->prefetch_before);
964 }
965 if (ref_pruned->prefetch_mod != 1)
966 {
967 fprintf (dump_file, " prefetch mod ");
968 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC,
969 ref_pruned->prefetch_mod);
970 }
971 }
972 fprintf (dump_file, "\n");
973 }
974 }
975}
976
977/* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
978
979static void
980prune_by_reuse (struct mem_ref_group *groups)
981{
982 for (; groups; groups = groups->next)
983 prune_group_by_reuse (groups);
984}
985
986/* Returns true if we should issue prefetch for REF. */
987
988static bool
989should_issue_prefetch_p (struct mem_ref *ref)
990{
991 /* For now do not issue prefetches for only first few of the
992 iterations. */
993 if (ref->prefetch_before != PREFETCH_ALL)
a8beb3a7
CB
994 {
995 if (dump_file && (dump_flags & TDF_DETAILS))
996 fprintf (dump_file, "Ignoring %p due to prefetch_before\n",
997 (void *) ref);
998 return false;
999 }
b076a3fd 1000
79f5e442
ZD
1001 /* Do not prefetch nontemporal stores. */
1002 if (ref->storent_p)
a8beb3a7
CB
1003 {
1004 if (dump_file && (dump_flags & TDF_DETAILS))
1005 fprintf (dump_file, "Ignoring nontemporal store %p\n", (void *) ref);
1006 return false;
1007 }
79f5e442 1008
b076a3fd
ZD
1009 return true;
1010}
1011
1012/* Decide which of the prefetch candidates in GROUPS to prefetch.
1013 AHEAD is the number of iterations to prefetch ahead (which corresponds
1014 to the number of simultaneous instances of one prefetch running at a
1015 time). UNROLL_FACTOR is the factor by that the loop is going to be
1016 unrolled. Returns true if there is anything to prefetch. */
1017
1018static bool
1019schedule_prefetches (struct mem_ref_group *groups, unsigned unroll_factor,
1020 unsigned ahead)
1021{
911b3fdb
ZD
1022 unsigned remaining_prefetch_slots, n_prefetches, prefetch_slots;
1023 unsigned slots_per_prefetch;
b076a3fd
ZD
1024 struct mem_ref *ref;
1025 bool any = false;
1026
911b3fdb
ZD
1027 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1028 remaining_prefetch_slots = SIMULTANEOUS_PREFETCHES;
b076a3fd 1029
911b3fdb
ZD
1030 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1031 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1032 it will need a prefetch slot. */
1033 slots_per_prefetch = (ahead + unroll_factor / 2) / unroll_factor;
b076a3fd 1034 if (dump_file && (dump_flags & TDF_DETAILS))
911b3fdb
ZD
1035 fprintf (dump_file, "Each prefetch instruction takes %u prefetch slots.\n",
1036 slots_per_prefetch);
b076a3fd
ZD
1037
1038 /* For now we just take memory references one by one and issue
1039 prefetches for as many as possible. The groups are sorted
1040 starting with the largest step, since the references with
c0220ea4 1041 large step are more likely to cause many cache misses. */
b076a3fd
ZD
1042
1043 for (; groups; groups = groups->next)
1044 for (ref = groups->refs; ref; ref = ref->next)
1045 {
1046 if (!should_issue_prefetch_p (ref))
1047 continue;
1048
8532678c
CF
1049 /* The loop is far from being sufficiently unrolled for this
1050 prefetch. Do not generate prefetch to avoid many redudant
1051 prefetches. */
1052 if (ref->prefetch_mod / unroll_factor > PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO)
1053 continue;
1054
911b3fdb
ZD
1055 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1056 and we unroll the loop UNROLL_FACTOR times, we need to insert
1057 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1058 iteration. */
b076a3fd
ZD
1059 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1060 / ref->prefetch_mod);
911b3fdb
ZD
1061 prefetch_slots = n_prefetches * slots_per_prefetch;
1062
1063 /* If more than half of the prefetches would be lost anyway, do not
1064 issue the prefetch. */
1065 if (2 * remaining_prefetch_slots < prefetch_slots)
1066 continue;
1067
1068 ref->issue_prefetch_p = true;
b076a3fd 1069
911b3fdb
ZD
1070 if (remaining_prefetch_slots <= prefetch_slots)
1071 return true;
1072 remaining_prefetch_slots -= prefetch_slots;
b076a3fd
ZD
1073 any = true;
1074 }
1075
1076 return any;
1077}
1078
d5058523
CF
1079/* Return TRUE if no prefetch is going to be generated in the given
1080 GROUPS. */
1081
1082static bool
1083nothing_to_prefetch_p (struct mem_ref_group *groups)
1084{
1085 struct mem_ref *ref;
1086
1087 for (; groups; groups = groups->next)
1088 for (ref = groups->refs; ref; ref = ref->next)
1089 if (should_issue_prefetch_p (ref))
1090 return false;
1091
1092 return true;
1093}
1094
1095/* Estimate the number of prefetches in the given GROUPS.
1096 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
b076a3fd 1097
db34470d 1098static int
d5058523 1099estimate_prefetch_count (struct mem_ref_group *groups, unsigned unroll_factor)
b076a3fd
ZD
1100{
1101 struct mem_ref *ref;
d5058523 1102 unsigned n_prefetches;
db34470d 1103 int prefetch_count = 0;
b076a3fd
ZD
1104
1105 for (; groups; groups = groups->next)
1106 for (ref = groups->refs; ref; ref = ref->next)
1107 if (should_issue_prefetch_p (ref))
d5058523
CF
1108 {
1109 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1110 / ref->prefetch_mod);
1111 prefetch_count += n_prefetches;
1112 }
b076a3fd 1113
db34470d 1114 return prefetch_count;
b076a3fd
ZD
1115}
1116
1117/* Issue prefetches for the reference REF into loop as decided before.
1118 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
917f1b7e 1119 is the factor by which LOOP was unrolled. */
b076a3fd
ZD
1120
1121static void
1122issue_prefetch_ref (struct mem_ref *ref, unsigned unroll_factor, unsigned ahead)
1123{
1124 HOST_WIDE_INT delta;
81f32326 1125 tree addr, addr_base, write_p, local, forward;
726a989a
RB
1126 gimple prefetch;
1127 gimple_stmt_iterator bsi;
b076a3fd 1128 unsigned n_prefetches, ap;
5417e022 1129 bool nontemporal = ref->reuse_distance >= L2_CACHE_SIZE_BYTES;
b076a3fd
ZD
1130
1131 if (dump_file && (dump_flags & TDF_DETAILS))
5417e022
ZD
1132 fprintf (dump_file, "Issued%s prefetch for %p.\n",
1133 nontemporal ? " nontemporal" : "",
1134 (void *) ref);
b076a3fd 1135
726a989a 1136 bsi = gsi_for_stmt (ref->stmt);
b076a3fd
ZD
1137
1138 n_prefetches = ((unroll_factor + ref->prefetch_mod - 1)
1139 / ref->prefetch_mod);
1140 addr_base = build_fold_addr_expr_with_type (ref->mem, ptr_type_node);
726a989a
RB
1141 addr_base = force_gimple_operand_gsi (&bsi, unshare_expr (addr_base),
1142 true, NULL, true, GSI_SAME_STMT);
911b3fdb 1143 write_p = ref->write_p ? integer_one_node : integer_zero_node;
9a9d280e 1144 local = nontemporal ? integer_zero_node : integer_three_node;
b076a3fd
ZD
1145
1146 for (ap = 0; ap < n_prefetches; ap++)
1147 {
81f32326
CB
1148 if (cst_and_fits_in_hwi (ref->group->step))
1149 {
1150 /* Determine the address to prefetch. */
1151 delta = (ahead + ap * ref->prefetch_mod) *
1152 int_cst_value (ref->group->step);
5d49b6a7 1153 addr = fold_build_pointer_plus_hwi (addr_base, delta);
81f32326
CB
1154 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true, NULL,
1155 true, GSI_SAME_STMT);
1156 }
1157 else
1158 {
1159 /* The step size is non-constant but loop-invariant. We use the
1160 heuristic to simply prefetch ahead iterations ahead. */
1161 forward = fold_build2 (MULT_EXPR, sizetype,
1162 fold_convert (sizetype, ref->group->step),
1163 fold_convert (sizetype, size_int (ahead)));
5d49b6a7 1164 addr = fold_build_pointer_plus (addr_base, forward);
81f32326
CB
1165 addr = force_gimple_operand_gsi (&bsi, unshare_expr (addr), true,
1166 NULL, true, GSI_SAME_STMT);
1167 }
b076a3fd 1168 /* Create the prefetch instruction. */
e79983f4 1169 prefetch = gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH),
726a989a
RB
1170 3, addr, write_p, local);
1171 gsi_insert_before (&bsi, prefetch, GSI_SAME_STMT);
b076a3fd
ZD
1172 }
1173}
1174
1175/* Issue prefetches for the references in GROUPS into loop as decided before.
1176 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1177 factor by that LOOP was unrolled. */
1178
1179static void
1180issue_prefetches (struct mem_ref_group *groups,
1181 unsigned unroll_factor, unsigned ahead)
1182{
1183 struct mem_ref *ref;
1184
1185 for (; groups; groups = groups->next)
1186 for (ref = groups->refs; ref; ref = ref->next)
1187 if (ref->issue_prefetch_p)
1188 issue_prefetch_ref (ref, unroll_factor, ahead);
1189}
1190
79f5e442
ZD
1191/* Returns true if REF is a memory write for that a nontemporal store insn
1192 can be used. */
1193
1194static bool
1195nontemporal_store_p (struct mem_ref *ref)
1196{
1197 enum machine_mode mode;
1198 enum insn_code code;
1199
1200 /* REF must be a write that is not reused. We require it to be independent
1201 on all other memory references in the loop, as the nontemporal stores may
1202 be reordered with respect to other memory references. */
1203 if (!ref->write_p
1204 || !ref->independent_p
1205 || ref->reuse_distance < L2_CACHE_SIZE_BYTES)
1206 return false;
1207
1208 /* Check that we have the storent instruction for the mode. */
1209 mode = TYPE_MODE (TREE_TYPE (ref->mem));
1210 if (mode == BLKmode)
1211 return false;
1212
947131ba 1213 code = optab_handler (storent_optab, mode);
79f5e442
ZD
1214 return code != CODE_FOR_nothing;
1215}
1216
1217/* If REF is a nontemporal store, we mark the corresponding modify statement
1218 and return true. Otherwise, we return false. */
1219
1220static bool
1221mark_nontemporal_store (struct mem_ref *ref)
1222{
1223 if (!nontemporal_store_p (ref))
1224 return false;
1225
1226 if (dump_file && (dump_flags & TDF_DETAILS))
1227 fprintf (dump_file, "Marked reference %p as a nontemporal store.\n",
1228 (void *) ref);
1229
726a989a 1230 gimple_assign_set_nontemporal_move (ref->stmt, true);
79f5e442
ZD
1231 ref->storent_p = true;
1232
1233 return true;
1234}
1235
1236/* Issue a memory fence instruction after LOOP. */
1237
1238static void
1239emit_mfence_after_loop (struct loop *loop)
1240{
9771b263 1241 vec<edge> exits = get_loop_exit_edges (loop);
79f5e442 1242 edge exit;
726a989a
RB
1243 gimple call;
1244 gimple_stmt_iterator bsi;
79f5e442
ZD
1245 unsigned i;
1246
9771b263 1247 FOR_EACH_VEC_ELT (exits, i, exit)
79f5e442 1248 {
726a989a 1249 call = gimple_build_call (FENCE_FOLLOWING_MOVNT, 0);
79f5e442
ZD
1250
1251 if (!single_pred_p (exit->dest)
1252 /* If possible, we prefer not to insert the fence on other paths
1253 in cfg. */
1254 && !(exit->flags & EDGE_ABNORMAL))
1255 split_loop_exit_edge (exit);
726a989a 1256 bsi = gsi_after_labels (exit->dest);
79f5e442 1257
726a989a 1258 gsi_insert_before (&bsi, call, GSI_NEW_STMT);
79f5e442
ZD
1259 }
1260
9771b263 1261 exits.release ();
79f5e442
ZD
1262 update_ssa (TODO_update_ssa_only_virtuals);
1263}
1264
1265/* Returns true if we can use storent in loop, false otherwise. */
1266
1267static bool
1268may_use_storent_in_loop_p (struct loop *loop)
1269{
1270 bool ret = true;
1271
1272 if (loop->inner != NULL)
1273 return false;
1274
1275 /* If we must issue a mfence insn after using storent, check that there
1276 is a suitable place for it at each of the loop exits. */
1277 if (FENCE_FOLLOWING_MOVNT != NULL_TREE)
1278 {
9771b263 1279 vec<edge> exits = get_loop_exit_edges (loop);
79f5e442
ZD
1280 unsigned i;
1281 edge exit;
1282
9771b263 1283 FOR_EACH_VEC_ELT (exits, i, exit)
79f5e442
ZD
1284 if ((exit->flags & EDGE_ABNORMAL)
1285 && exit->dest == EXIT_BLOCK_PTR)
1286 ret = false;
1287
9771b263 1288 exits.release ();
79f5e442
ZD
1289 }
1290
1291 return ret;
1292}
1293
1294/* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1295 references in the loop. */
1296
1297static void
1298mark_nontemporal_stores (struct loop *loop, struct mem_ref_group *groups)
1299{
1300 struct mem_ref *ref;
1301 bool any = false;
1302
1303 if (!may_use_storent_in_loop_p (loop))
1304 return;
1305
1306 for (; groups; groups = groups->next)
1307 for (ref = groups->refs; ref; ref = ref->next)
1308 any |= mark_nontemporal_store (ref);
1309
1310 if (any && FENCE_FOLLOWING_MOVNT != NULL_TREE)
1311 emit_mfence_after_loop (loop);
1312}
1313
b076a3fd
ZD
1314/* Determines whether we can profitably unroll LOOP FACTOR times, and if
1315 this is the case, fill in DESC by the description of number of
1316 iterations. */
1317
1318static bool
1319should_unroll_loop_p (struct loop *loop, struct tree_niter_desc *desc,
1320 unsigned factor)
1321{
1322 if (!can_unroll_loop_p (loop, factor, desc))
1323 return false;
1324
1325 /* We only consider loops without control flow for unrolling. This is not
1326 a hard restriction -- tree_unroll_loop works with arbitrary loops
1327 as well; but the unrolling/prefetching is usually more profitable for
1328 loops consisting of a single basic block, and we want to limit the
1329 code growth. */
1330 if (loop->num_nodes > 2)
1331 return false;
1332
1333 return true;
1334}
1335
1336/* Determine the coefficient by that unroll LOOP, from the information
1337 contained in the list of memory references REFS. Description of
2711355f
ZD
1338 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1339 insns of the LOOP. EST_NITER is the estimated number of iterations of
1340 the loop, or -1 if no estimate is available. */
b076a3fd
ZD
1341
1342static unsigned
1343determine_unroll_factor (struct loop *loop, struct mem_ref_group *refs,
2711355f
ZD
1344 unsigned ninsns, struct tree_niter_desc *desc,
1345 HOST_WIDE_INT est_niter)
b076a3fd 1346{
911b3fdb
ZD
1347 unsigned upper_bound;
1348 unsigned nfactor, factor, mod_constraint;
b076a3fd
ZD
1349 struct mem_ref_group *agp;
1350 struct mem_ref *ref;
1351
911b3fdb
ZD
1352 /* First check whether the loop is not too large to unroll. We ignore
1353 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1354 from unrolling them enough to make exactly one cache line covered by each
1355 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1356 us from unrolling the loops too many times in cases where we only expect
1357 gains from better scheduling and decreasing loop overhead, which is not
1358 the case here. */
1359 upper_bound = PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS) / ninsns;
2711355f
ZD
1360
1361 /* If we unrolled the loop more times than it iterates, the unrolled version
1362 of the loop would be never entered. */
1363 if (est_niter >= 0 && est_niter < (HOST_WIDE_INT) upper_bound)
1364 upper_bound = est_niter;
1365
911b3fdb 1366 if (upper_bound <= 1)
b076a3fd
ZD
1367 return 1;
1368
911b3fdb
ZD
1369 /* Choose the factor so that we may prefetch each cache just once,
1370 but bound the unrolling by UPPER_BOUND. */
1371 factor = 1;
b076a3fd
ZD
1372 for (agp = refs; agp; agp = agp->next)
1373 for (ref = agp->refs; ref; ref = ref->next)
911b3fdb
ZD
1374 if (should_issue_prefetch_p (ref))
1375 {
1376 mod_constraint = ref->prefetch_mod;
1377 nfactor = least_common_multiple (mod_constraint, factor);
1378 if (nfactor <= upper_bound)
1379 factor = nfactor;
1380 }
b076a3fd
ZD
1381
1382 if (!should_unroll_loop_p (loop, desc, factor))
1383 return 1;
1384
1385 return factor;
1386}
1387
5417e022
ZD
1388/* Returns the total volume of the memory references REFS, taking into account
1389 reuses in the innermost loop and cache line size. TODO -- we should also
1390 take into account reuses across the iterations of the loops in the loop
1391 nest. */
1392
1393static unsigned
1394volume_of_references (struct mem_ref_group *refs)
1395{
1396 unsigned volume = 0;
1397 struct mem_ref_group *gr;
1398 struct mem_ref *ref;
1399
1400 for (gr = refs; gr; gr = gr->next)
1401 for (ref = gr->refs; ref; ref = ref->next)
1402 {
1403 /* Almost always reuses another value? */
1404 if (ref->prefetch_before != PREFETCH_ALL)
1405 continue;
1406
1407 /* If several iterations access the same cache line, use the size of
1408 the line divided by this number. Otherwise, a cache line is
1409 accessed in each iteration. TODO -- in the latter case, we should
1410 take the size of the reference into account, rounding it up on cache
1411 line size multiple. */
1412 volume += L1_CACHE_LINE_SIZE / ref->prefetch_mod;
1413 }
1414 return volume;
1415}
1416
1417/* Returns the volume of memory references accessed across VEC iterations of
1418 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1419 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1420
1421static unsigned
1422volume_of_dist_vector (lambda_vector vec, unsigned *loop_sizes, unsigned n)
1423{
1424 unsigned i;
1425
1426 for (i = 0; i < n; i++)
1427 if (vec[i] != 0)
1428 break;
1429
1430 if (i == n)
1431 return 0;
1432
1433 gcc_assert (vec[i] > 0);
1434
1435 /* We ignore the parts of the distance vector in subloops, since usually
1436 the numbers of iterations are much smaller. */
1437 return loop_sizes[i] * vec[i];
1438}
1439
1440/* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1441 at the position corresponding to the loop of the step. N is the depth
1442 of the considered loop nest, and, LOOP is its innermost loop. */
1443
1444static void
1445add_subscript_strides (tree access_fn, unsigned stride,
1446 HOST_WIDE_INT *strides, unsigned n, struct loop *loop)
1447{
1448 struct loop *aloop;
1449 tree step;
1450 HOST_WIDE_INT astep;
1451 unsigned min_depth = loop_depth (loop) - n;
1452
1453 while (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
1454 {
1455 aloop = get_chrec_loop (access_fn);
1456 step = CHREC_RIGHT (access_fn);
1457 access_fn = CHREC_LEFT (access_fn);
1458
1459 if ((unsigned) loop_depth (aloop) <= min_depth)
1460 continue;
1461
9541ffee 1462 if (tree_fits_shwi_p (step))
9439e9a1 1463 astep = tree_to_shwi (step);
5417e022
ZD
1464 else
1465 astep = L1_CACHE_LINE_SIZE;
1466
1467 strides[n - 1 - loop_depth (loop) + loop_depth (aloop)] += astep * stride;
1468
1469 }
1470}
1471
1472/* Returns the volume of memory references accessed between two consecutive
1473 self-reuses of the reference DR. We consider the subscripts of DR in N
1474 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1475 loops. LOOP is the innermost loop of the current loop nest. */
1476
1477static unsigned
1478self_reuse_distance (data_reference_p dr, unsigned *loop_sizes, unsigned n,
1479 struct loop *loop)
1480{
1481 tree stride, access_fn;
1482 HOST_WIDE_INT *strides, astride;
9771b263 1483 vec<tree> access_fns;
5417e022
ZD
1484 tree ref = DR_REF (dr);
1485 unsigned i, ret = ~0u;
1486
1487 /* In the following example:
1488
1489 for (i = 0; i < N; i++)
1490 for (j = 0; j < N; j++)
1491 use (a[j][i]);
1492 the same cache line is accessed each N steps (except if the change from
1493 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1494 we cannot rely purely on the results of the data dependence analysis.
1495
1496 Instead, we compute the stride of the reference in each loop, and consider
1497 the innermost loop in that the stride is less than cache size. */
1498
1499 strides = XCNEWVEC (HOST_WIDE_INT, n);
1500 access_fns = DR_ACCESS_FNS (dr);
1501
9771b263 1502 FOR_EACH_VEC_ELT (access_fns, i, access_fn)
5417e022
ZD
1503 {
1504 /* Keep track of the reference corresponding to the subscript, so that we
1505 know its stride. */
1506 while (handled_component_p (ref) && TREE_CODE (ref) != ARRAY_REF)
1507 ref = TREE_OPERAND (ref, 0);
b8698a0f 1508
5417e022
ZD
1509 if (TREE_CODE (ref) == ARRAY_REF)
1510 {
1511 stride = TYPE_SIZE_UNIT (TREE_TYPE (ref));
cc269bb6 1512 if (tree_fits_uhwi_p (stride))
ae7e9ddd 1513 astride = tree_to_uhwi (stride);
5417e022
ZD
1514 else
1515 astride = L1_CACHE_LINE_SIZE;
1516
1517 ref = TREE_OPERAND (ref, 0);
1518 }
1519 else
1520 astride = 1;
1521
1522 add_subscript_strides (access_fn, astride, strides, n, loop);
1523 }
1524
1525 for (i = n; i-- > 0; )
1526 {
1527 unsigned HOST_WIDE_INT s;
1528
1529 s = strides[i] < 0 ? -strides[i] : strides[i];
1530
1531 if (s < (unsigned) L1_CACHE_LINE_SIZE
1532 && (loop_sizes[i]
1533 > (unsigned) (L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)))
1534 {
1535 ret = loop_sizes[i];
1536 break;
1537 }
1538 }
1539
1540 free (strides);
1541 return ret;
1542}
1543
1544/* Determines the distance till the first reuse of each reference in REFS
79f5e442 1545 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1e373390 1546 memory references in the loop. Return false if the analysis fails. */
5417e022 1547
1e373390 1548static bool
79f5e442
ZD
1549determine_loop_nest_reuse (struct loop *loop, struct mem_ref_group *refs,
1550 bool no_other_refs)
5417e022
ZD
1551{
1552 struct loop *nest, *aloop;
6e1aa848
DN
1553 vec<data_reference_p> datarefs = vNULL;
1554 vec<ddr_p> dependences = vNULL;
5417e022 1555 struct mem_ref_group *gr;
79f5e442 1556 struct mem_ref *ref, *refb;
6e1aa848 1557 vec<loop_p> vloops = vNULL;
5417e022
ZD
1558 unsigned *loop_data_size;
1559 unsigned i, j, n;
1560 unsigned volume, dist, adist;
1561 HOST_WIDE_INT vol;
1562 data_reference_p dr;
1563 ddr_p dep;
1564
1565 if (loop->inner)
1e373390 1566 return true;
5417e022
ZD
1567
1568 /* Find the outermost loop of the loop nest of loop (we require that
1569 there are no sibling loops inside the nest). */
1570 nest = loop;
1571 while (1)
1572 {
1573 aloop = loop_outer (nest);
1574
1575 if (aloop == current_loops->tree_root
1576 || aloop->inner->next)
1577 break;
1578
1579 nest = aloop;
1580 }
1581
1582 /* For each loop, determine the amount of data accessed in each iteration.
1583 We use this to estimate whether the reference is evicted from the
1584 cache before its reuse. */
1585 find_loop_nest (nest, &vloops);
9771b263 1586 n = vloops.length ();
5417e022
ZD
1587 loop_data_size = XNEWVEC (unsigned, n);
1588 volume = volume_of_references (refs);
1589 i = n;
1590 while (i-- != 0)
1591 {
1592 loop_data_size[i] = volume;
1593 /* Bound the volume by the L2 cache size, since above this bound,
1594 all dependence distances are equivalent. */
1595 if (volume > L2_CACHE_SIZE_BYTES)
1596 continue;
1597
9771b263 1598 aloop = vloops[i];
652c4c71 1599 vol = estimated_stmt_executions_int (aloop);
e5b332cd 1600 if (vol == -1)
5417e022
ZD
1601 vol = expected_loop_iterations (aloop);
1602 volume *= vol;
1603 }
1604
1605 /* Prepare the references in the form suitable for data dependence
0d52bcc1 1606 analysis. We ignore unanalyzable data references (the results
5417e022
ZD
1607 are used just as a heuristics to estimate temporality of the
1608 references, hence we do not need to worry about correctness). */
1609 for (gr = refs; gr; gr = gr->next)
1610 for (ref = gr->refs; ref; ref = ref->next)
1611 {
5c640e29
SP
1612 dr = create_data_ref (nest, loop_containing_stmt (ref->stmt),
1613 ref->mem, ref->stmt, !ref->write_p);
5417e022
ZD
1614
1615 if (dr)
1616 {
1617 ref->reuse_distance = volume;
1618 dr->aux = ref;
9771b263 1619 datarefs.safe_push (dr);
5417e022 1620 }
79f5e442
ZD
1621 else
1622 no_other_refs = false;
5417e022
ZD
1623 }
1624
9771b263 1625 FOR_EACH_VEC_ELT (datarefs, i, dr)
5417e022
ZD
1626 {
1627 dist = self_reuse_distance (dr, loop_data_size, n, loop);
3d9a9f94 1628 ref = (struct mem_ref *) dr->aux;
5417e022
ZD
1629 if (ref->reuse_distance > dist)
1630 ref->reuse_distance = dist;
79f5e442
ZD
1631
1632 if (no_other_refs)
1633 ref->independent_p = true;
5417e022
ZD
1634 }
1635
1e373390
RG
1636 if (!compute_all_dependences (datarefs, &dependences, vloops, true))
1637 return false;
5417e022 1638
9771b263 1639 FOR_EACH_VEC_ELT (dependences, i, dep)
5417e022
ZD
1640 {
1641 if (DDR_ARE_DEPENDENT (dep) == chrec_known)
1642 continue;
1643
3d9a9f94
KG
1644 ref = (struct mem_ref *) DDR_A (dep)->aux;
1645 refb = (struct mem_ref *) DDR_B (dep)->aux;
79f5e442 1646
5417e022
ZD
1647 if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
1648 || DDR_NUM_DIST_VECTS (dep) == 0)
1649 {
0d52bcc1 1650 /* If the dependence cannot be analyzed, assume that there might be
5417e022
ZD
1651 a reuse. */
1652 dist = 0;
b8698a0f 1653
79f5e442
ZD
1654 ref->independent_p = false;
1655 refb->independent_p = false;
5417e022
ZD
1656 }
1657 else
1658 {
0d52bcc1 1659 /* The distance vectors are normalized to be always lexicographically
5417e022
ZD
1660 positive, hence we cannot tell just from them whether DDR_A comes
1661 before DDR_B or vice versa. However, it is not important,
1662 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1663 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1664 in cache (and marking it as nontemporal would not affect
1665 anything). */
1666
1667 dist = volume;
1668 for (j = 0; j < DDR_NUM_DIST_VECTS (dep); j++)
1669 {
1670 adist = volume_of_dist_vector (DDR_DIST_VECT (dep, j),
1671 loop_data_size, n);
1672
79f5e442
ZD
1673 /* If this is a dependence in the innermost loop (i.e., the
1674 distances in all superloops are zero) and it is not
1675 the trivial self-dependence with distance zero, record that
1676 the references are not completely independent. */
1677 if (lambda_vector_zerop (DDR_DIST_VECT (dep, j), n - 1)
1678 && (ref != refb
1679 || DDR_DIST_VECT (dep, j)[n-1] != 0))
1680 {
1681 ref->independent_p = false;
1682 refb->independent_p = false;
1683 }
1684
5417e022
ZD
1685 /* Ignore accesses closer than
1686 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1687 so that we use nontemporal prefetches e.g. if single memory
1688 location is accessed several times in a single iteration of
1689 the loop. */
1690 if (adist < L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION)
1691 continue;
1692
1693 if (adist < dist)
1694 dist = adist;
1695 }
1696 }
1697
5417e022
ZD
1698 if (ref->reuse_distance > dist)
1699 ref->reuse_distance = dist;
79f5e442
ZD
1700 if (refb->reuse_distance > dist)
1701 refb->reuse_distance = dist;
5417e022
ZD
1702 }
1703
1704 free_dependence_relations (dependences);
1705 free_data_refs (datarefs);
1706 free (loop_data_size);
1707
1708 if (dump_file && (dump_flags & TDF_DETAILS))
1709 {
1710 fprintf (dump_file, "Reuse distances:\n");
1711 for (gr = refs; gr; gr = gr->next)
1712 for (ref = gr->refs; ref; ref = ref->next)
1713 fprintf (dump_file, " ref %p distance %u\n",
1714 (void *) ref, ref->reuse_distance);
1715 }
1e373390
RG
1716
1717 return true;
5417e022
ZD
1718}
1719
0bbe50f6
CF
1720/* Determine whether or not the trip count to ahead ratio is too small based
1721 on prefitablility consideration.
db34470d 1722 AHEAD: the iteration ahead distance,
0bbe50f6
CF
1723 EST_NITER: the estimated trip count. */
1724
1725static bool
1726trip_count_to_ahead_ratio_too_small_p (unsigned ahead, HOST_WIDE_INT est_niter)
1727{
1728 /* Assume trip count to ahead ratio is big enough if the trip count could not
1729 be estimated at compile time. */
1730 if (est_niter < 0)
1731 return false;
1732
1733 if (est_niter < (HOST_WIDE_INT) (TRIP_COUNT_TO_AHEAD_RATIO * ahead))
1734 {
1735 if (dump_file && (dump_flags & TDF_DETAILS))
1736 fprintf (dump_file,
1737 "Not prefetching -- loop estimated to roll only %d times\n",
1738 (int) est_niter);
1739 return true;
1740 }
1741
1742 return false;
1743}
1744
1745/* Determine whether or not the number of memory references in the loop is
1746 reasonable based on the profitablity and compilation time considerations.
db34470d 1747 NINSNS: estimated number of instructions in the loop,
db34470d
GS
1748 MEM_REF_COUNT: total number of memory references in the loop. */
1749
b8698a0f 1750static bool
0bbe50f6 1751mem_ref_count_reasonable_p (unsigned ninsns, unsigned mem_ref_count)
db34470d 1752{
0bbe50f6 1753 int insn_to_mem_ratio;
db34470d
GS
1754
1755 if (mem_ref_count == 0)
1756 return false;
1757
0bbe50f6
CF
1758 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1759 (compute_all_dependences) have high costs based on quadratic complexity.
1760 To avoid huge compilation time, we give up prefetching if mem_ref_count
1761 is too large. */
1762 if (mem_ref_count > PREFETCH_MAX_MEM_REFS_PER_LOOP)
1763 return false;
1764
b8698a0f
L
1765 /* Prefetching improves performance by overlapping cache missing
1766 memory accesses with CPU operations. If the loop does not have
1767 enough CPU operations to overlap with memory operations, prefetching
1768 won't give a significant benefit. One approximate way of checking
1769 this is to require the ratio of instructions to memory references to
db34470d
GS
1770 be above a certain limit. This approximation works well in practice.
1771 TODO: Implement a more precise computation by estimating the time
1772 for each CPU or memory op in the loop. Time estimates for memory ops
1773 should account for cache misses. */
b8698a0f 1774 insn_to_mem_ratio = ninsns / mem_ref_count;
db34470d
GS
1775
1776 if (insn_to_mem_ratio < PREFETCH_MIN_INSN_TO_MEM_RATIO)
55e5a2eb
CF
1777 {
1778 if (dump_file && (dump_flags & TDF_DETAILS))
1779 fprintf (dump_file,
1780 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1781 insn_to_mem_ratio);
1782 return false;
1783 }
db34470d 1784
0bbe50f6
CF
1785 return true;
1786}
1787
1788/* Determine whether or not the instruction to prefetch ratio in the loop is
1789 too small based on the profitablity consideration.
1790 NINSNS: estimated number of instructions in the loop,
1791 PREFETCH_COUNT: an estimate of the number of prefetches,
1792 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1793
1794static bool
1795insn_to_prefetch_ratio_too_small_p (unsigned ninsns, unsigned prefetch_count,
1796 unsigned unroll_factor)
1797{
1798 int insn_to_prefetch_ratio;
1799
d3a9b459
CF
1800 /* Prefetching most likely causes performance degradation when the instruction
1801 to prefetch ratio is too small. Too many prefetch instructions in a loop
1802 may reduce the I-cache performance.
ccacf0e1
CF
1803 (unroll_factor * ninsns) is used to estimate the number of instructions in
1804 the unrolled loop. This implementation is a bit simplistic -- the number
1805 of issued prefetch instructions is also affected by unrolling. So,
1806 prefetch_mod and the unroll factor should be taken into account when
1807 determining prefetch_count. Also, the number of insns of the unrolled
1808 loop will usually be significantly smaller than the number of insns of the
1809 original loop * unroll_factor (at least the induction variable increases
1810 and the exit branches will get eliminated), so it might be better to use
1811 tree_estimate_loop_size + estimated_unrolled_size. */
d3a9b459
CF
1812 insn_to_prefetch_ratio = (unroll_factor * ninsns) / prefetch_count;
1813 if (insn_to_prefetch_ratio < MIN_INSN_TO_PREFETCH_RATIO)
db34470d 1814 {
d3a9b459
CF
1815 if (dump_file && (dump_flags & TDF_DETAILS))
1816 fprintf (dump_file,
1817 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1818 insn_to_prefetch_ratio);
0bbe50f6 1819 return true;
db34470d 1820 }
b8698a0f 1821
0bbe50f6 1822 return false;
db34470d
GS
1823}
1824
1825
b076a3fd 1826/* Issue prefetch instructions for array references in LOOP. Returns
d73be268 1827 true if the LOOP was unrolled. */
b076a3fd
ZD
1828
1829static bool
d73be268 1830loop_prefetch_arrays (struct loop *loop)
b076a3fd
ZD
1831{
1832 struct mem_ref_group *refs;
2711355f
ZD
1833 unsigned ahead, ninsns, time, unroll_factor;
1834 HOST_WIDE_INT est_niter;
b076a3fd 1835 struct tree_niter_desc desc;
79f5e442 1836 bool unrolled = false, no_other_refs;
db34470d
GS
1837 unsigned prefetch_count;
1838 unsigned mem_ref_count;
b076a3fd 1839
efd8f750 1840 if (optimize_loop_nest_for_size_p (loop))
2732d767
ZD
1841 {
1842 if (dump_file && (dump_flags & TDF_DETAILS))
1843 fprintf (dump_file, " ignored (cold area)\n");
1844 return false;
1845 }
1846
0bbe50f6
CF
1847 /* FIXME: the time should be weighted by the probabilities of the blocks in
1848 the loop body. */
1849 time = tree_num_loop_insns (loop, &eni_time_weights);
1850 if (time == 0)
1851 return false;
1852
1853 ahead = (PREFETCH_LATENCY + time - 1) / time;
652c4c71 1854 est_niter = estimated_stmt_executions_int (loop);
e5b332cd
RG
1855 if (est_niter == -1)
1856 est_niter = max_stmt_executions_int (loop);
0bbe50f6
CF
1857
1858 /* Prefetching is not likely to be profitable if the trip count to ahead
1859 ratio is too small. */
1860 if (trip_count_to_ahead_ratio_too_small_p (ahead, est_niter))
1861 return false;
1862
1863 ninsns = tree_num_loop_insns (loop, &eni_size_weights);
1864
b076a3fd 1865 /* Step 1: gather the memory references. */
db34470d 1866 refs = gather_memory_references (loop, &no_other_refs, &mem_ref_count);
b076a3fd 1867
0bbe50f6
CF
1868 /* Give up prefetching if the number of memory references in the
1869 loop is not reasonable based on profitablity and compilation time
1870 considerations. */
1871 if (!mem_ref_count_reasonable_p (ninsns, mem_ref_count))
1872 goto fail;
1873
b076a3fd
ZD
1874 /* Step 2: estimate the reuse effects. */
1875 prune_by_reuse (refs);
1876
d5058523 1877 if (nothing_to_prefetch_p (refs))
b076a3fd
ZD
1878 goto fail;
1879
1e373390
RG
1880 if (!determine_loop_nest_reuse (loop, refs, no_other_refs))
1881 goto fail;
5417e022 1882
0bbe50f6 1883 /* Step 3: determine unroll factor. */
2711355f
ZD
1884 unroll_factor = determine_unroll_factor (loop, refs, ninsns, &desc,
1885 est_niter);
d5058523
CF
1886
1887 /* Estimate prefetch count for the unrolled loop. */
1888 prefetch_count = estimate_prefetch_count (refs, unroll_factor);
1889 if (prefetch_count == 0)
1890 goto fail;
1891
2711355f 1892 if (dump_file && (dump_flags & TDF_DETAILS))
b8698a0f 1893 fprintf (dump_file, "Ahead %d, unroll factor %d, trip count "
d81f5387 1894 HOST_WIDE_INT_PRINT_DEC "\n"
b8698a0f
L
1895 "insn count %d, mem ref count %d, prefetch count %d\n",
1896 ahead, unroll_factor, est_niter,
1897 ninsns, mem_ref_count, prefetch_count);
db34470d 1898
0bbe50f6
CF
1899 /* Prefetching is not likely to be profitable if the instruction to prefetch
1900 ratio is too small. */
1901 if (insn_to_prefetch_ratio_too_small_p (ninsns, prefetch_count,
1902 unroll_factor))
db34470d
GS
1903 goto fail;
1904
1905 mark_nontemporal_stores (loop, refs);
2711355f 1906
b076a3fd
ZD
1907 /* Step 4: what to prefetch? */
1908 if (!schedule_prefetches (refs, unroll_factor, ahead))
1909 goto fail;
1910
1911 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1912 iterations so that we do not issue superfluous prefetches. */
1913 if (unroll_factor != 1)
1914 {
d73be268 1915 tree_unroll_loop (loop, unroll_factor,
b076a3fd
ZD
1916 single_dom_exit (loop), &desc);
1917 unrolled = true;
1918 }
1919
1920 /* Step 6: issue the prefetches. */
1921 issue_prefetches (refs, unroll_factor, ahead);
1922
1923fail:
1924 release_mem_refs (refs);
1925 return unrolled;
1926}
1927
d73be268 1928/* Issue prefetch instructions for array references in loops. */
b076a3fd 1929
c7f965b6 1930unsigned int
d73be268 1931tree_ssa_prefetch_arrays (void)
b076a3fd 1932{
b076a3fd
ZD
1933 struct loop *loop;
1934 bool unrolled = false;
c7f965b6 1935 int todo_flags = 0;
b076a3fd
ZD
1936
1937 if (!HAVE_prefetch
1938 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1939 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1940 of processor costs and i486 does not have prefetch, but
1941 -march=pentium4 causes HAVE_prefetch to be true. Ugh. */
1942 || PREFETCH_BLOCK == 0)
c7f965b6 1943 return 0;
b076a3fd 1944
47eb5b32
ZD
1945 if (dump_file && (dump_flags & TDF_DETAILS))
1946 {
1947 fprintf (dump_file, "Prefetching parameters:\n");
1948 fprintf (dump_file, " simultaneous prefetches: %d\n",
1949 SIMULTANEOUS_PREFETCHES);
1950 fprintf (dump_file, " prefetch latency: %d\n", PREFETCH_LATENCY);
47eb5b32 1951 fprintf (dump_file, " prefetch block size: %d\n", PREFETCH_BLOCK);
46cb0441
ZD
1952 fprintf (dump_file, " L1 cache size: %d lines, %d kB\n",
1953 L1_CACHE_SIZE_BYTES / L1_CACHE_LINE_SIZE, L1_CACHE_SIZE);
5417e022 1954 fprintf (dump_file, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE);
b8698a0f
L
1955 fprintf (dump_file, " L2 cache size: %d kB\n", L2_CACHE_SIZE);
1956 fprintf (dump_file, " min insn-to-prefetch ratio: %d \n",
db34470d 1957 MIN_INSN_TO_PREFETCH_RATIO);
b8698a0f 1958 fprintf (dump_file, " min insn-to-mem ratio: %d \n",
db34470d 1959 PREFETCH_MIN_INSN_TO_MEM_RATIO);
47eb5b32
ZD
1960 fprintf (dump_file, "\n");
1961 }
1962
b076a3fd
ZD
1963 initialize_original_copy_tables ();
1964
e79983f4 1965 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH))
b076a3fd 1966 {
6a4825bd
NF
1967 tree type = build_function_type_list (void_type_node,
1968 const_ptr_type_node, NULL_TREE);
c79efc4d
RÁE
1969 tree decl = add_builtin_function ("__builtin_prefetch", type,
1970 BUILT_IN_PREFETCH, BUILT_IN_NORMAL,
1971 NULL, NULL_TREE);
b076a3fd 1972 DECL_IS_NOVOPS (decl) = true;
e79983f4 1973 set_builtin_decl (BUILT_IN_PREFETCH, decl, false);
b076a3fd
ZD
1974 }
1975
1976 /* We assume that size of cache line is a power of two, so verify this
1977 here. */
1978 gcc_assert ((PREFETCH_BLOCK & (PREFETCH_BLOCK - 1)) == 0);
1979
f0bd40b1 1980 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
b076a3fd 1981 {
b076a3fd
ZD
1982 if (dump_file && (dump_flags & TDF_DETAILS))
1983 fprintf (dump_file, "Processing loop %d:\n", loop->num);
1984
d73be268 1985 unrolled |= loop_prefetch_arrays (loop);
b076a3fd
ZD
1986
1987 if (dump_file && (dump_flags & TDF_DETAILS))
1988 fprintf (dump_file, "\n\n");
1989 }
1990
1991 if (unrolled)
1992 {
1993 scev_reset ();
c7f965b6 1994 todo_flags |= TODO_cleanup_cfg;
b076a3fd
ZD
1995 }
1996
1997 free_original_copy_tables ();
c7f965b6 1998 return todo_flags;
b076a3fd 1999}
71343877
AM
2000
2001/* Prefetching. */
2002
2003static unsigned int
2004tree_ssa_loop_prefetch (void)
2005{
2006 if (number_of_loops (cfun) <= 1)
2007 return 0;
2008
2009 return tree_ssa_prefetch_arrays ();
2010}
2011
2012static bool
2013gate_tree_ssa_loop_prefetch (void)
2014{
2015 return flag_prefetch_loop_arrays > 0;
2016}
2017
2018namespace {
2019
2020const pass_data pass_data_loop_prefetch =
2021{
2022 GIMPLE_PASS, /* type */
2023 "aprefetch", /* name */
2024 OPTGROUP_LOOP, /* optinfo_flags */
2025 true, /* has_gate */
2026 true, /* has_execute */
2027 TV_TREE_PREFETCH, /* tv_id */
2028 ( PROP_cfg | PROP_ssa ), /* properties_required */
2029 0, /* properties_provided */
2030 0, /* properties_destroyed */
2031 0, /* todo_flags_start */
2032 0, /* todo_flags_finish */
2033};
2034
2035class pass_loop_prefetch : public gimple_opt_pass
2036{
2037public:
2038 pass_loop_prefetch (gcc::context *ctxt)
2039 : gimple_opt_pass (pass_data_loop_prefetch, ctxt)
2040 {}
2041
2042 /* opt_pass methods: */
2043 bool gate () { return gate_tree_ssa_loop_prefetch (); }
2044 unsigned int execute () { return tree_ssa_loop_prefetch (); }
2045
2046}; // class pass_loop_prefetch
2047
2048} // anon namespace
2049
2050gimple_opt_pass *
2051make_pass_loop_prefetch (gcc::context *ctxt)
2052{
2053 return new pass_loop_prefetch (ctxt);
2054}
2055
2056