]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-loop-split.c
c++: Handle multiple aggregate overloads [PR95319].
[thirdparty/gcc.git] / gcc / tree-ssa-loop-split.c
CommitLineData
28df8730 1/* Loop splitting.
8d9254fc 2 Copyright (C) 2015-2020 Free Software Foundation, Inc.
28df8730
MM
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "tree.h"
25#include "gimple.h"
26#include "tree-pass.h"
27#include "ssa.h"
28#include "fold-const.h"
29#include "tree-cfg.h"
30#include "tree-ssa.h"
31#include "tree-ssa-loop-niter.h"
32#include "tree-ssa-loop.h"
33#include "tree-ssa-loop-manip.h"
34#include "tree-into-ssa.h"
095f78c6
FX
35#include "tree-inline.h"
36#include "tree-cfgcleanup.h"
28df8730
MM
37#include "cfgloop.h"
38#include "tree-scalar-evolution.h"
39#include "gimple-iterator.h"
40#include "gimple-pretty-print.h"
41#include "cfghooks.h"
42#include "gimple-fold.h"
43#include "gimplify-me.h"
44
095f78c6
FX
45/* This file implements two kinds of loop splitting.
46
47 One transformation of loops like:
28df8730
MM
48
49 for (i = 0; i < 100; i++)
50 {
51 if (i < 50)
52 A;
53 else
54 B;
55 }
56
57 into:
58
59 for (i = 0; i < 50; i++)
60 {
61 A;
62 }
63 for (; i < 100; i++)
64 {
65 B;
66 }
67
68 */
69
70/* Return true when BB inside LOOP is a potential iteration space
71 split point, i.e. ends with a condition like "IV < comp", which
72 is true on one side of the iteration space and false on the other,
73 and the split point can be computed. If so, also return the border
74 point in *BORDER and the comparison induction variable in IV. */
75
76static tree
99b1c316 77split_at_bb_p (class loop *loop, basic_block bb, tree *border, affine_iv *iv)
28df8730
MM
78{
79 gimple *last;
80 gcond *stmt;
81 affine_iv iv2;
82
83 /* BB must end in a simple conditional jump. */
84 last = last_stmt (bb);
85 if (!last || gimple_code (last) != GIMPLE_COND)
86 return NULL_TREE;
87 stmt = as_a <gcond *> (last);
88
89 enum tree_code code = gimple_cond_code (stmt);
90
91 /* Only handle relational comparisons, for equality and non-equality
92 we'd have to split the loop into two loops and a middle statement. */
93 switch (code)
94 {
95 case LT_EXPR:
96 case LE_EXPR:
97 case GT_EXPR:
98 case GE_EXPR:
99 break;
100 default:
101 return NULL_TREE;
102 }
103
104 if (loop_exits_from_bb_p (loop, bb))
105 return NULL_TREE;
106
107 tree op0 = gimple_cond_lhs (stmt);
108 tree op1 = gimple_cond_rhs (stmt);
99b1c316 109 class loop *useloop = loop_containing_stmt (stmt);
28df8730 110
9042295c 111 if (!simple_iv (loop, useloop, op0, iv, false))
28df8730 112 return NULL_TREE;
9042295c 113 if (!simple_iv (loop, useloop, op1, &iv2, false))
28df8730
MM
114 return NULL_TREE;
115
116 /* Make it so that the first argument of the condition is
117 the looping one. */
118 if (!integer_zerop (iv2.step))
119 {
120 std::swap (op0, op1);
121 std::swap (*iv, iv2);
122 code = swap_tree_comparison (code);
123 gimple_cond_set_condition (stmt, code, op0, op1);
124 update_stmt (stmt);
125 }
126 else if (integer_zerop (iv->step))
127 return NULL_TREE;
128 if (!integer_zerop (iv2.step))
129 return NULL_TREE;
9042295c
MM
130 if (!iv->no_overflow)
131 return NULL_TREE;
28df8730
MM
132
133 if (dump_file && (dump_flags & TDF_DETAILS))
134 {
135 fprintf (dump_file, "Found potential split point: ");
136 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
137 fprintf (dump_file, " { ");
138 print_generic_expr (dump_file, iv->base, TDF_SLIM);
139 fprintf (dump_file, " + I*");
140 print_generic_expr (dump_file, iv->step, TDF_SLIM);
141 fprintf (dump_file, " } %s ", get_tree_code_name (code));
142 print_generic_expr (dump_file, iv2.base, TDF_SLIM);
143 fprintf (dump_file, "\n");
144 }
145
146 *border = iv2.base;
147 return op0;
148}
149
150/* Given a GUARD conditional stmt inside LOOP, which we want to make always
151 true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL
152 (a post-increment IV) and NEWBOUND (the comparator) adjust the loop
153 exit test statement to loop back only if the GUARD statement will
154 also be true/false in the next iteration. */
155
156static void
99b1c316 157patch_loop_exit (class loop *loop, gcond *guard, tree nextval, tree newbound,
28df8730
MM
158 bool initial_true)
159{
160 edge exit = single_exit (loop);
161 gcond *stmt = as_a <gcond *> (last_stmt (exit->src));
162 gimple_cond_set_condition (stmt, gimple_cond_code (guard),
163 nextval, newbound);
164 update_stmt (stmt);
165
d886761f 166 edge stay = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
28df8730
MM
167
168 exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
169 stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
170
171 if (initial_true)
172 {
173 exit->flags |= EDGE_FALSE_VALUE;
174 stay->flags |= EDGE_TRUE_VALUE;
175 }
176 else
177 {
178 exit->flags |= EDGE_TRUE_VALUE;
179 stay->flags |= EDGE_FALSE_VALUE;
180 }
181}
182
183/* Give an induction variable GUARD_IV, and its affine descriptor IV,
184 find the loop phi node in LOOP defining it directly, or create
185 such phi node. Return that phi node. */
186
187static gphi *
99b1c316 188find_or_create_guard_phi (class loop *loop, tree guard_iv, affine_iv * /*iv*/)
28df8730
MM
189{
190 gimple *def = SSA_NAME_DEF_STMT (guard_iv);
191 gphi *phi;
192 if ((phi = dyn_cast <gphi *> (def))
193 && gimple_bb (phi) == loop->header)
194 return phi;
195
196 /* XXX Create the PHI instead. */
197 return NULL;
198}
199
09844a5f
MM
200/* Returns true if the exit values of all loop phi nodes can be
201 determined easily (i.e. that connect_loop_phis can determine them). */
202
203static bool
99b1c316 204easy_exit_values (class loop *loop)
09844a5f
MM
205{
206 edge exit = single_exit (loop);
207 edge latch = loop_latch_edge (loop);
208 gphi_iterator psi;
209
210 /* Currently we regard the exit values as easy if they are the same
211 as the value over the backedge. Which is the case if the definition
212 of the backedge value dominates the exit edge. */
213 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
214 {
215 gphi *phi = psi.phi ();
216 tree next = PHI_ARG_DEF_FROM_EDGE (phi, latch);
217 basic_block bb;
218 if (TREE_CODE (next) == SSA_NAME
219 && (bb = gimple_bb (SSA_NAME_DEF_STMT (next)))
220 && !dominated_by_p (CDI_DOMINATORS, exit->src, bb))
221 return false;
222 }
223
224 return true;
225}
226
28df8730
MM
227/* This function updates the SSA form after connect_loops made a new
228 edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate
229 conditional). I.e. the second loop can now be entered either
230 via the original entry or via NEW_E, so the entry values of LOOP2
231 phi nodes are either the original ones or those at the exit
232 of LOOP1. Insert new phi nodes in LOOP2 pre-header reflecting
09844a5f 233 this. The loops need to fulfill easy_exit_values(). */
28df8730
MM
234
235static void
99b1c316 236connect_loop_phis (class loop *loop1, class loop *loop2, edge new_e)
28df8730
MM
237{
238 basic_block rest = loop_preheader_edge (loop2)->src;
239 gcc_assert (new_e->dest == rest);
240 edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e);
241
242 edge firste = loop_preheader_edge (loop1);
243 edge seconde = loop_preheader_edge (loop2);
244 edge firstn = loop_latch_edge (loop1);
245 gphi_iterator psi_first, psi_second;
246 for (psi_first = gsi_start_phis (loop1->header),
247 psi_second = gsi_start_phis (loop2->header);
248 !gsi_end_p (psi_first);
249 gsi_next (&psi_first), gsi_next (&psi_second))
250 {
251 tree init, next, new_init;
252 use_operand_p op;
253 gphi *phi_first = psi_first.phi ();
254 gphi *phi_second = psi_second.phi ();
255
256 init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste);
257 next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn);
258 op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde);
259 gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op)));
260
261 /* Prefer using original variable as a base for the new ssa name.
262 This is necessary for virtual ops, and useful in order to avoid
263 losing debug info for real ops. */
264 if (TREE_CODE (next) == SSA_NAME
265 && useless_type_conversion_p (TREE_TYPE (next),
266 TREE_TYPE (init)))
267 new_init = copy_ssa_name (next);
268 else if (TREE_CODE (init) == SSA_NAME
269 && useless_type_conversion_p (TREE_TYPE (init),
270 TREE_TYPE (next)))
271 new_init = copy_ssa_name (init);
272 else if (useless_type_conversion_p (TREE_TYPE (next),
273 TREE_TYPE (init)))
274 new_init = make_temp_ssa_name (TREE_TYPE (next), NULL,
275 "unrinittmp");
276 else
277 new_init = make_temp_ssa_name (TREE_TYPE (init), NULL,
278 "unrinittmp");
279
280 gphi * newphi = create_phi_node (new_init, rest);
281 add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION);
282 add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION);
283 SET_USE (op, new_init);
284 }
285}
286
287/* The two loops LOOP1 and LOOP2 were just created by loop versioning,
288 they are still equivalent and placed in two arms of a diamond, like so:
289
290 .------if (cond)------.
291 v v
292 pre1 pre2
293 | |
294 .--->h1 h2<----.
295 | | | |
296 | ex1---. .---ex2 |
297 | / | | \ |
298 '---l1 X | l2---'
299 | |
300 | |
301 '--->join<---'
302
303 This function transforms the program such that LOOP1 is conditionally
304 falling through to LOOP2, or skipping it. This is done by splitting
305 the ex1->join edge at X in the diagram above, and inserting a condition
306 whose one arm goes to pre2, resulting in this situation:
1c0a8806 307
28df8730
MM
308 .------if (cond)------.
309 v v
310 pre1 .---------->pre2
311 | | |
312 .--->h1 | h2<----.
313 | | | | |
314 | ex1---. | .---ex2 |
315 | / v | | \ |
316 '---l1 skip---' | l2---'
317 | |
318 | |
319 '--->join<---'
320
1c0a8806 321
28df8730
MM
322 The condition used is the exit condition of LOOP1, which effectively means
323 that when the first loop exits (for whatever reason) but the real original
324 exit expression is still false the second loop will be entered.
325 The function returns the new edge cond->pre2.
1c0a8806 326
28df8730
MM
327 This doesn't update the SSA form, see connect_loop_phis for that. */
328
329static edge
99b1c316 330connect_loops (class loop *loop1, class loop *loop2)
28df8730
MM
331{
332 edge exit = single_exit (loop1);
333 basic_block skip_bb = split_edge (exit);
334 gcond *skip_stmt;
335 gimple_stmt_iterator gsi;
336 edge new_e, skip_e;
337
338 gimple *stmt = last_stmt (exit->src);
339 skip_stmt = gimple_build_cond (gimple_cond_code (stmt),
340 gimple_cond_lhs (stmt),
341 gimple_cond_rhs (stmt),
342 NULL_TREE, NULL_TREE);
343 gsi = gsi_last_bb (skip_bb);
344 gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT);
345
346 skip_e = EDGE_SUCC (skip_bb, 0);
347 skip_e->flags &= ~EDGE_FALLTHRU;
348 new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0);
349 if (exit->flags & EDGE_TRUE_VALUE)
350 {
351 skip_e->flags |= EDGE_TRUE_VALUE;
352 new_e->flags |= EDGE_FALSE_VALUE;
353 }
354 else
355 {
356 skip_e->flags |= EDGE_FALSE_VALUE;
357 new_e->flags |= EDGE_TRUE_VALUE;
358 }
359
357067f2 360 new_e->probability = profile_probability::likely ();
ef30ab83 361 skip_e->probability = new_e->probability.invert ();
28df8730
MM
362
363 return new_e;
364}
365
366/* This returns the new bound for iterations given the original iteration
367 space in NITER, an arbitrary new bound BORDER, assumed to be some
368 comparison value with a different IV, the initial value GUARD_INIT of
369 that other IV, and the comparison code GUARD_CODE that compares
370 that other IV with BORDER. We return an SSA name, and place any
371 necessary statements for that computation into *STMTS.
372
373 For example for such a loop:
374
375 for (i = beg, j = guard_init; i < end; i++, j++)
376 if (j < border) // this is supposed to be true/false
377 ...
378
379 we want to return a new bound (on j) that makes the loop iterate
380 as long as the condition j < border stays true. We also don't want
381 to iterate more often than the original loop, so we have to introduce
382 some cut-off as well (via min/max), effectively resulting in:
383
384 newend = min (end+guard_init-beg, border)
385 for (i = beg; j = guard_init; j < newend; i++, j++)
386 if (j < c)
387 ...
388
389 Depending on the direction of the IVs and if the exit tests
390 are strict or non-strict we need to use MIN or MAX,
391 and add or subtract 1. This routine computes newend above. */
392
393static tree
99b1c316 394compute_new_first_bound (gimple_seq *stmts, class tree_niter_desc *niter,
28df8730
MM
395 tree border,
396 enum tree_code guard_code, tree guard_init)
397{
398 /* The niter structure contains the after-increment IV, we need
399 the loop-enter base, so subtract STEP once. */
400 tree controlbase = force_gimple_operand (niter->control.base,
401 stmts, true, NULL_TREE);
402 tree controlstep = niter->control.step;
403 tree enddiff;
404 if (POINTER_TYPE_P (TREE_TYPE (controlbase)))
405 {
406 controlstep = gimple_build (stmts, NEGATE_EXPR,
407 TREE_TYPE (controlstep), controlstep);
408 enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
409 TREE_TYPE (controlbase),
410 controlbase, controlstep);
411 }
412 else
413 enddiff = gimple_build (stmts, MINUS_EXPR,
414 TREE_TYPE (controlbase),
415 controlbase, controlstep);
416
09844a5f
MM
417 /* Compute end-beg. */
418 gimple_seq stmts2;
419 tree end = force_gimple_operand (niter->bound, &stmts2,
420 true, NULL_TREE);
421 gimple_seq_add_seq_without_update (stmts, stmts2);
28df8730
MM
422 if (POINTER_TYPE_P (TREE_TYPE (enddiff)))
423 {
09844a5f 424 tree tem = gimple_convert (stmts, sizetype, enddiff);
28df8730
MM
425 tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem);
426 enddiff = gimple_build (stmts, POINTER_PLUS_EXPR,
427 TREE_TYPE (enddiff),
09844a5f 428 end, tem);
28df8730
MM
429 }
430 else
431 enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff),
09844a5f 432 end, enddiff);
28df8730 433
09844a5f
MM
434 /* Compute guard_init + (end-beg). */
435 tree newbound;
436 enddiff = gimple_convert (stmts, TREE_TYPE (guard_init), enddiff);
437 if (POINTER_TYPE_P (TREE_TYPE (guard_init)))
28df8730
MM
438 {
439 enddiff = gimple_convert (stmts, sizetype, enddiff);
28df8730 440 newbound = gimple_build (stmts, POINTER_PLUS_EXPR,
09844a5f
MM
441 TREE_TYPE (guard_init),
442 guard_init, enddiff);
28df8730
MM
443 }
444 else
09844a5f
MM
445 newbound = gimple_build (stmts, PLUS_EXPR, TREE_TYPE (guard_init),
446 guard_init, enddiff);
28df8730
MM
447
448 /* Depending on the direction of the IVs the new bound for the first
449 loop is the minimum or maximum of old bound and border.
450 Also, if the guard condition isn't strictly less or greater,
451 we need to adjust the bound. */
452 int addbound = 0;
453 enum tree_code minmax;
454 if (niter->cmp == LT_EXPR)
455 {
456 /* GT and LE are the same, inverted. */
457 if (guard_code == GT_EXPR || guard_code == LE_EXPR)
458 addbound = -1;
459 minmax = MIN_EXPR;
460 }
461 else
462 {
463 gcc_assert (niter->cmp == GT_EXPR);
464 if (guard_code == GE_EXPR || guard_code == LT_EXPR)
465 addbound = 1;
466 minmax = MAX_EXPR;
467 }
468
469 if (addbound)
470 {
471 tree type2 = TREE_TYPE (newbound);
472 if (POINTER_TYPE_P (type2))
473 type2 = sizetype;
474 newbound = gimple_build (stmts,
475 POINTER_TYPE_P (TREE_TYPE (newbound))
476 ? POINTER_PLUS_EXPR : PLUS_EXPR,
477 TREE_TYPE (newbound),
478 newbound,
479 build_int_cst (type2, addbound));
480 }
481
28df8730
MM
482 tree newend = gimple_build (stmts, minmax, TREE_TYPE (border),
483 border, newbound);
484 return newend;
485}
486
487/* Checks if LOOP contains an conditional block whose condition
488 depends on which side in the iteration space it is, and if so
489 splits the iteration space into two loops. Returns true if the
490 loop was split. NITER must contain the iteration descriptor for the
491 single exit of LOOP. */
492
493static bool
095f78c6 494split_loop (class loop *loop1)
28df8730 495{
095f78c6 496 class tree_niter_desc niter;
28df8730
MM
497 basic_block *bbs;
498 unsigned i;
499 bool changed = false;
500 tree guard_iv;
d61d5fcd 501 tree border = NULL_TREE;
28df8730
MM
502 affine_iv iv;
503
095f78c6
FX
504 if (!single_exit (loop1)
505 /* ??? We could handle non-empty latches when we split the latch edge
506 (not the exit edge), and put the new exit condition in the new block.
507 OTOH this executes some code unconditionally that might have been
508 skipped by the original exit before. */
509 || !empty_block_p (loop1->latch)
510 || !easy_exit_values (loop1)
511 || !number_of_iterations_exit (loop1, single_exit (loop1), &niter,
512 false, true)
513 || niter.cmp == ERROR_MARK
514 /* We can't yet handle loops controlled by a != predicate. */
515 || niter.cmp == NE_EXPR)
516 return false;
517
28df8730
MM
518 bbs = get_loop_body (loop1);
519
095f78c6
FX
520 if (!can_copy_bbs_p (bbs, loop1->num_nodes))
521 {
522 free (bbs);
523 return false;
524 }
525
28df8730
MM
526 /* Find a splitting opportunity. */
527 for (i = 0; i < loop1->num_nodes; i++)
528 if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv)))
529 {
530 /* Handling opposite steps is not implemented yet. Neither
531 is handling different step sizes. */
532 if ((tree_int_cst_sign_bit (iv.step)
095f78c6
FX
533 != tree_int_cst_sign_bit (niter.control.step))
534 || !tree_int_cst_equal (iv.step, niter.control.step))
28df8730
MM
535 continue;
536
537 /* Find a loop PHI node that defines guard_iv directly,
538 or create one doing that. */
539 gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv);
540 if (!phi)
541 continue;
542 gcond *guard_stmt = as_a<gcond *> (last_stmt (bbs[i]));
543 tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi,
544 loop_preheader_edge (loop1));
545 enum tree_code guard_code = gimple_cond_code (guard_stmt);
546
547 /* Loop splitting is implemented by versioning the loop, placing
548 the new loop after the old loop, make the first loop iterate
549 as long as the conditional stays true (or false) and let the
550 second (new) loop handle the rest of the iterations.
551
552 First we need to determine if the condition will start being true
553 or false in the first loop. */
554 bool initial_true;
555 switch (guard_code)
556 {
557 case LT_EXPR:
558 case LE_EXPR:
559 initial_true = !tree_int_cst_sign_bit (iv.step);
560 break;
561 case GT_EXPR:
562 case GE_EXPR:
563 initial_true = tree_int_cst_sign_bit (iv.step);
564 break;
565 default:
566 gcc_unreachable ();
567 }
568
569 /* Build a condition that will skip the first loop when the
570 guard condition won't ever be true (or false). */
571 gimple_seq stmts2;
572 border = force_gimple_operand (border, &stmts2, true, NULL_TREE);
573 if (stmts2)
574 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
575 stmts2);
576 tree cond = build2 (guard_code, boolean_type_node, guard_init, border);
577 if (!initial_true)
578 cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond);
579
580 /* Now version the loop, placing loop2 after loop1 connecting
581 them, and fix up SSA form for that. */
582 initialize_original_copy_tables ();
583 basic_block cond_bb;
357067f2 584
99b1c316 585 class loop *loop2 = loop_version (loop1, cond, &cond_bb,
357067f2
JH
586 profile_probability::always (),
587 profile_probability::always (),
af2bbc51
JH
588 profile_probability::always (),
589 profile_probability::always (),
5d3ebb71 590 true);
28df8730
MM
591 gcc_assert (loop2);
592 update_ssa (TODO_update_ssa);
593
594 edge new_e = connect_loops (loop1, loop2);
595 connect_loop_phis (loop1, loop2, new_e);
596
597 /* The iterations of the second loop is now already
598 exactly those that the first loop didn't do, but the
599 iteration space of the first loop is still the original one.
600 Compute the new bound for the guarding IV and patch the
601 loop exit to use it instead of original IV and bound. */
602 gimple_seq stmts = NULL;
095f78c6 603 tree newend = compute_new_first_bound (&stmts, &niter, border,
28df8730
MM
604 guard_code, guard_init);
605 if (stmts)
606 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1),
607 stmts);
608 tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1));
609 patch_loop_exit (loop1, guard_stmt, guard_next, newend, initial_true);
610
611 /* Finally patch out the two copies of the condition to be always
612 true/false (or opposite). */
613 gcond *force_true = as_a<gcond *> (last_stmt (bbs[i]));
614 gcond *force_false = as_a<gcond *> (last_stmt (get_bb_copy (bbs[i])));
615 if (!initial_true)
616 std::swap (force_true, force_false);
617 gimple_cond_make_true (force_true);
618 gimple_cond_make_false (force_false);
619 update_stmt (force_true);
620 update_stmt (force_false);
621
622 free_original_copy_tables ();
623
624 /* We destroyed LCSSA form above. Eventually we might be able
625 to fix it on the fly, for now simply punt and use the helper. */
626 rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1);
627
628 changed = true;
629 if (dump_file && (dump_flags & TDF_DETAILS))
630 fprintf (dump_file, ";; Loop split.\n");
631
632 /* Only deal with the first opportunity. */
633 break;
634 }
635
636 free (bbs);
637 return changed;
638}
639
095f78c6
FX
640/* Another transformation of loops like:
641
642 for (i = INIT (); CHECK (i); i = NEXT ())
643 {
644 if (expr (a_1, a_2, ..., a_n)) // expr is pure
645 a_j = ...; // change at least one a_j
646 else
647 S; // not change any a_j
648 }
649
650 into:
651
652 for (i = INIT (); CHECK (i); i = NEXT ())
653 {
654 if (expr (a_1, a_2, ..., a_n))
655 a_j = ...;
656 else
657 {
658 S;
659 i = NEXT ();
660 break;
661 }
662 }
663
664 for (; CHECK (i); i = NEXT ())
665 {
666 S;
667 }
668
669 */
670
671/* Data structure to hold temporary information during loop split upon
672 semi-invariant conditional statement. */
673class split_info {
674public:
675 /* Array of all basic blocks in a loop, returned by get_loop_body(). */
676 basic_block *bbs;
677
678 /* All memory store/clobber statements in a loop. */
679 auto_vec<gimple *> memory_stores;
680
681 /* Whether above memory stores vector has been filled. */
682 int need_init;
683
684 /* Control dependencies of basic blocks in a loop. */
685 auto_vec<hash_set<basic_block> *> control_deps;
686
687 split_info () : bbs (NULL), need_init (true) { }
688
689 ~split_info ()
690 {
691 if (bbs)
692 free (bbs);
693
694 for (unsigned i = 0; i < control_deps.length (); i++)
695 delete control_deps[i];
696 }
697};
698
699/* Find all statements with memory-write effect in LOOP, including memory
700 store and non-pure function call, and keep those in a vector. This work
701 is only done one time, for the vector should be constant during analysis
702 stage of semi-invariant condition. */
703
704static void
705find_vdef_in_loop (struct loop *loop)
706{
707 split_info *info = (split_info *) loop->aux;
708 gphi *vphi = get_virtual_phi (loop->header);
709
710 /* Indicate memory store vector has been filled. */
711 info->need_init = false;
712
713 /* If loop contains memory operation, there must be a virtual PHI node in
714 loop header basic block. */
715 if (vphi == NULL)
716 return;
717
718 /* All virtual SSA names inside the loop are connected to be a cyclic
719 graph via virtual PHI nodes. The virtual PHI node in loop header just
720 links the first and the last virtual SSA names, by using the last as
721 PHI operand to define the first. */
722 const edge latch = loop_latch_edge (loop);
723 const tree first = gimple_phi_result (vphi);
724 const tree last = PHI_ARG_DEF_FROM_EDGE (vphi, latch);
725
726 /* The virtual SSA cyclic graph might consist of only one SSA name, who
727 is defined by itself.
728
729 .MEM_1 = PHI <.MEM_2(loop entry edge), .MEM_1(latch edge)>
730
731 This means the loop contains only memory loads, so we can skip it. */
732 if (first == last)
733 return;
734
735 auto_vec<gimple *> other_stores;
736 auto_vec<tree> worklist;
737 auto_bitmap visited;
738
739 bitmap_set_bit (visited, SSA_NAME_VERSION (first));
740 bitmap_set_bit (visited, SSA_NAME_VERSION (last));
741 worklist.safe_push (last);
742
743 do
744 {
745 tree vuse = worklist.pop ();
746 gimple *stmt = SSA_NAME_DEF_STMT (vuse);
747
748 /* We mark the first and last SSA names as visited at the beginning,
749 and reversely start the process from the last SSA name towards the
750 first, which ensures that this do-while will not touch SSA names
751 defined outside the loop. */
752 gcc_assert (gimple_bb (stmt)
753 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)));
754
755 if (gimple_code (stmt) == GIMPLE_PHI)
756 {
757 gphi *phi = as_a <gphi *> (stmt);
758
759 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
760 {
761 tree arg = gimple_phi_arg_def (stmt, i);
762
763 if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
764 worklist.safe_push (arg);
765 }
766 }
767 else
768 {
769 tree prev = gimple_vuse (stmt);
770
771 /* Non-pure call statement is conservatively assumed to impact all
772 memory locations. So place call statements ahead of other memory
700d4cb0 773 stores in the vector with an idea of using them as shortcut
095f78c6
FX
774 terminators to memory alias analysis. */
775 if (gimple_code (stmt) == GIMPLE_CALL)
776 info->memory_stores.safe_push (stmt);
777 else
778 other_stores.safe_push (stmt);
779
780 if (bitmap_set_bit (visited, SSA_NAME_VERSION (prev)))
781 worklist.safe_push (prev);
782 }
783 } while (!worklist.is_empty ());
784
785 info->memory_stores.safe_splice (other_stores);
786}
787
788/* Two basic blocks have equivalent control dependency if one dominates to
789 the other, and it is post-dominated by the latter. Given a basic block
790 BB in LOOP, find farest equivalent dominating basic block. For BB, there
791 is a constraint that BB does not post-dominate loop header of LOOP, this
792 means BB is control-dependent on at least one basic block in LOOP. */
793
794static basic_block
795get_control_equiv_head_block (struct loop *loop, basic_block bb)
796{
797 while (!bb->aux)
798 {
799 basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
800
801 gcc_checking_assert (dom_bb && flow_bb_inside_loop_p (loop, dom_bb));
802
803 if (!dominated_by_p (CDI_POST_DOMINATORS, dom_bb, bb))
804 break;
805
806 bb = dom_bb;
807 }
808 return bb;
809}
810
811/* Given a BB in LOOP, find out all basic blocks in LOOP that BB is control-
812 dependent on. */
813
814static hash_set<basic_block> *
815find_control_dep_blocks (struct loop *loop, basic_block bb)
816{
817 /* BB has same control dependency as loop header, then it is not control-
818 dependent on any basic block in LOOP. */
819 if (dominated_by_p (CDI_POST_DOMINATORS, loop->header, bb))
820 return NULL;
821
822 basic_block equiv_head = get_control_equiv_head_block (loop, bb);
823
824 if (equiv_head->aux)
825 {
826 /* There is a basic block containing control dependency equivalent
827 to BB. No need to recompute that, and also set this information
828 to other equivalent basic blocks. */
829 for (; bb != equiv_head;
830 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
831 bb->aux = equiv_head->aux;
832 return (hash_set<basic_block> *) equiv_head->aux;
833 }
834
835 /* A basic block X is control-dependent on another Y iff there exists
836 a path from X to Y, in which every basic block other than X and Y
837 is post-dominated by Y, but X is not post-dominated by Y.
838
839 According to this rule, traverse basic blocks in the loop backwards
840 starting from BB, if a basic block is post-dominated by BB, extend
841 current post-dominating path to this block, otherwise it is another
842 one that BB is control-dependent on. */
843
844 auto_vec<basic_block> pdom_worklist;
845 hash_set<basic_block> pdom_visited;
846 hash_set<basic_block> *dep_bbs = new hash_set<basic_block>;
847
848 pdom_worklist.safe_push (equiv_head);
849
850 do
851 {
852 basic_block pdom_bb = pdom_worklist.pop ();
853 edge_iterator ei;
854 edge e;
855
856 if (pdom_visited.add (pdom_bb))
857 continue;
858
859 FOR_EACH_EDGE (e, ei, pdom_bb->preds)
860 {
861 basic_block pred_bb = e->src;
862
863 if (!dominated_by_p (CDI_POST_DOMINATORS, pred_bb, bb))
864 {
865 dep_bbs->add (pred_bb);
866 continue;
867 }
868
869 pred_bb = get_control_equiv_head_block (loop, pred_bb);
870
871 if (pdom_visited.contains (pred_bb))
872 continue;
873
874 if (!pred_bb->aux)
875 {
876 pdom_worklist.safe_push (pred_bb);
877 continue;
878 }
879
880 /* If control dependency of basic block is available, fast extend
881 post-dominating path using the information instead of advancing
882 forward step-by-step. */
883 hash_set<basic_block> *pred_dep_bbs
884 = (hash_set<basic_block> *) pred_bb->aux;
885
886 for (hash_set<basic_block>::iterator iter = pred_dep_bbs->begin ();
887 iter != pred_dep_bbs->end (); ++iter)
888 {
889 basic_block pred_dep_bb = *iter;
890
891 /* Basic blocks can either be in control dependency of BB, or
892 must be post-dominated by BB, if so, extend the path from
893 these basic blocks. */
894 if (!dominated_by_p (CDI_POST_DOMINATORS, pred_dep_bb, bb))
895 dep_bbs->add (pred_dep_bb);
896 else if (!pdom_visited.contains (pred_dep_bb))
897 pdom_worklist.safe_push (pred_dep_bb);
898 }
899 }
900 } while (!pdom_worklist.is_empty ());
901
902 /* Record computed control dependencies in loop so that we can reach them
903 when reclaiming resources. */
904 ((split_info *) loop->aux)->control_deps.safe_push (dep_bbs);
905
906 /* Associate control dependence with related equivalent basic blocks. */
907 for (equiv_head->aux = dep_bbs; bb != equiv_head;
908 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
909 bb->aux = dep_bbs;
910
911 return dep_bbs;
912}
913
914/* Forward declaration */
915
916static bool
917stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt,
918 const_basic_block skip_head,
919 hash_map<gimple *, bool> &stmt_stat);
920
921/* Given STMT, memory load or pure call statement, check whether it is impacted
922 by some memory store in LOOP, excluding trace starting from SKIP_HEAD (the
923 trace is composed of SKIP_HEAD and those basic block dominated by it, always
924 corresponds to one branch of a conditional statement). If SKIP_HEAD is
925 NULL, all basic blocks of LOOP are checked. */
926
927static bool
928vuse_semi_invariant_p (struct loop *loop, gimple *stmt,
929 const_basic_block skip_head)
930{
931 split_info *info = (split_info *) loop->aux;
932 tree rhs = NULL_TREE;
933 ao_ref ref;
934 gimple *store;
935 unsigned i;
936
937 /* Collect memory store/clobber statements if haven't done that. */
938 if (info->need_init)
939 find_vdef_in_loop (loop);
940
941 if (is_gimple_assign (stmt))
942 rhs = gimple_assign_rhs1 (stmt);
943
944 ao_ref_init (&ref, rhs);
945
946 FOR_EACH_VEC_ELT (info->memory_stores, i, store)
947 {
948 /* Skip basic blocks dominated by SKIP_HEAD, if non-NULL. */
949 if (skip_head
950 && dominated_by_p (CDI_DOMINATORS, gimple_bb (store), skip_head))
951 continue;
952
953 if (!ref.ref || stmt_may_clobber_ref_p_1 (store, &ref))
954 return false;
955 }
956
957 return true;
958}
959
960/* Suppose one condition branch, led by SKIP_HEAD, is not executed since
961 certain iteration of LOOP, check whether an SSA name (NAME) remains
962 unchanged in next iteration. We call this characteristic semi-
963 invariantness. SKIP_HEAD might be NULL, if so, nothing excluded, all basic
964 blocks and control flows in the loop will be considered. Semi-invariant
965 state of checked statement is cached in hash map STMT_STAT to avoid
966 redundant computation in possible following re-check. */
967
968static inline bool
969ssa_semi_invariant_p (struct loop *loop, tree name,
970 const_basic_block skip_head,
971 hash_map<gimple *, bool> &stmt_stat)
972{
973 gimple *def = SSA_NAME_DEF_STMT (name);
974 const_basic_block def_bb = gimple_bb (def);
975
976 /* An SSA name defined outside loop is definitely semi-invariant. */
977 if (!def_bb || !flow_bb_inside_loop_p (loop, def_bb))
978 return true;
979
980 return stmt_semi_invariant_p_1 (loop, def, skip_head, stmt_stat);
981}
982
983/* Check whether a loop iteration PHI node (LOOP_PHI) defines a value that is
984 semi-invariant in LOOP. Basic blocks dominated by SKIP_HEAD (if non-NULL),
985 are excluded from LOOP. */
986
987static bool
988loop_iter_phi_semi_invariant_p (struct loop *loop, gphi *loop_phi,
989 const_basic_block skip_head)
990{
991 const_edge latch = loop_latch_edge (loop);
992 tree name = gimple_phi_result (loop_phi);
993 tree from = PHI_ARG_DEF_FROM_EDGE (loop_phi, latch);
994
995 gcc_checking_assert (from);
996
997 /* Loop iteration PHI node locates in loop header, and it has two source
998 operands, one is an initial value coming from outside the loop, the other
999 is a value through latch of the loop, which is derived in last iteration,
1000 we call the latter latch value. From the PHI node to definition of latch
1001 value, if excluding branch trace starting from SKIP_HEAD, except copy-
1002 assignment or likewise, there is no other kind of value redefinition, SSA
1003 name defined by the PHI node is semi-invariant.
1004
1005 loop entry
1006 | .--- latch ---.
1007 | | |
1008 v v |
1009 x_1 = PHI <x_0, x_3> |
1010 | |
1011 v |
1012 .------- if (cond) -------. |
1013 | | |
1014 | [ SKIP ] |
1015 | | |
1016 | x_2 = ... |
1017 | | |
1018 '---- T ---->.<---- F ----' |
1019 | |
1020 v |
1021 x_3 = PHI <x_1, x_2> |
1022 | |
1023 '----------------------'
1024
1025 Suppose in certain iteration, execution flow in above graph goes through
1026 true branch, which means that one source value to define x_3 in false
1027 branch (x_2) is skipped, x_3 only comes from x_1, and x_1 in next
1028 iterations is defined by x_3, we know that x_1 will never changed if COND
1029 always chooses true branch from then on. */
1030
1031 while (from != name)
1032 {
1033 /* A new value comes from a CONSTANT. */
1034 if (TREE_CODE (from) != SSA_NAME)
1035 return false;
1036
1037 gimple *stmt = SSA_NAME_DEF_STMT (from);
1038 const_basic_block bb = gimple_bb (stmt);
1039
1040 /* A new value comes from outside the loop. */
1041 if (!bb || !flow_bb_inside_loop_p (loop, bb))
1042 return false;
1043
1044 from = NULL_TREE;
1045
1046 if (gimple_code (stmt) == GIMPLE_PHI)
1047 {
1048 gphi *phi = as_a <gphi *> (stmt);
1049
1050 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
1051 {
1052 if (skip_head)
1053 {
1054 const_edge e = gimple_phi_arg_edge (phi, i);
1055
1056 /* Don't consider redefinitions in excluded basic blocks. */
1057 if (dominated_by_p (CDI_DOMINATORS, e->src, skip_head))
1058 continue;
1059 }
1060
1061 tree arg = gimple_phi_arg_def (phi, i);
1062
1063 if (!from)
1064 from = arg;
1065 else if (!operand_equal_p (from, arg, 0))
1066 /* There are more than one source operands that provide
1067 different values to the SSA name, it is variant. */
1068 return false;
1069 }
1070 }
1071 else if (gimple_code (stmt) == GIMPLE_ASSIGN)
1072 {
1073 /* For simple value copy, check its rhs instead. */
1074 if (gimple_assign_ssa_name_copy_p (stmt))
1075 from = gimple_assign_rhs1 (stmt);
1076 }
1077
1078 /* Any other kind of definition is deemed to introduce a new value
1079 to the SSA name. */
1080 if (!from)
1081 return false;
1082 }
1083 return true;
1084}
1085
1086/* Check whether conditional predicates that BB is control-dependent on, are
1087 semi-invariant in LOOP. Basic blocks dominated by SKIP_HEAD (if non-NULL),
1088 are excluded from LOOP. Semi-invariant state of checked statement is cached
1089 in hash map STMT_STAT. */
1090
1091static bool
1092control_dep_semi_invariant_p (struct loop *loop, basic_block bb,
1093 const_basic_block skip_head,
1094 hash_map<gimple *, bool> &stmt_stat)
1095{
1096 hash_set<basic_block> *dep_bbs = find_control_dep_blocks (loop, bb);
1097
1098 if (!dep_bbs)
1099 return true;
1100
1101 for (hash_set<basic_block>::iterator iter = dep_bbs->begin ();
1102 iter != dep_bbs->end (); ++iter)
1103 {
1104 gimple *last = last_stmt (*iter);
1105
1106 if (!last)
1107 return false;
1108
1109 /* Only check condition predicates. */
1110 if (gimple_code (last) != GIMPLE_COND
1111 && gimple_code (last) != GIMPLE_SWITCH)
1112 return false;
1113
1114 if (!stmt_semi_invariant_p_1 (loop, last, skip_head, stmt_stat))
1115 return false;
1116 }
1117
1118 return true;
1119}
1120
1121/* Check whether STMT is semi-invariant in LOOP, iff all its operands are
1122 semi-invariant, consequently, all its defined values are semi-invariant.
1123 Basic blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP.
1124 Semi-invariant state of checked statement is cached in hash map
1125 STMT_STAT. */
1126
1127static bool
1128stmt_semi_invariant_p_1 (struct loop *loop, gimple *stmt,
1129 const_basic_block skip_head,
1130 hash_map<gimple *, bool> &stmt_stat)
1131{
1132 bool existed;
1133 bool &invar = stmt_stat.get_or_insert (stmt, &existed);
1134
1135 if (existed)
1136 return invar;
1137
1138 /* A statement might depend on itself, which is treated as variant. So set
1139 state of statement under check to be variant to ensure that. */
1140 invar = false;
1141
1142 if (gimple_code (stmt) == GIMPLE_PHI)
1143 {
1144 gphi *phi = as_a <gphi *> (stmt);
1145
1146 if (gimple_bb (stmt) == loop->header)
1147 {
1148 invar = loop_iter_phi_semi_invariant_p (loop, phi, skip_head);
1149 return invar;
1150 }
1151
1152 /* For a loop PHI node that does not locate in loop header, it is semi-
1153 invariant only if two conditions are met. The first is its source
1154 values are derived from CONSTANT (including loop-invariant value), or
1155 from SSA name defined by semi-invariant loop iteration PHI node. The
1156 second is its source incoming edges are control-dependent on semi-
1157 invariant conditional predicates. */
1158 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
1159 {
1160 const_edge e = gimple_phi_arg_edge (phi, i);
1161 tree arg = gimple_phi_arg_def (phi, i);
1162
1163 if (TREE_CODE (arg) == SSA_NAME)
1164 {
1165 if (!ssa_semi_invariant_p (loop, arg, skip_head, stmt_stat))
1166 return false;
1167
1168 /* If source value is defined in location from where the source
1169 edge comes in, no need to check control dependency again
1170 since this has been done in above SSA name check stage. */
1171 if (e->src == gimple_bb (SSA_NAME_DEF_STMT (arg)))
1172 continue;
1173 }
1174
1175 if (!control_dep_semi_invariant_p (loop, e->src, skip_head,
1176 stmt_stat))
1177 return false;
1178 }
1179 }
1180 else
1181 {
1182 ssa_op_iter iter;
1183 tree use;
1184
1185 /* Volatile memory load or return of normal (non-const/non-pure) call
1186 should not be treated as constant in each iteration of loop. */
1187 if (gimple_has_side_effects (stmt))
1188 return false;
1189
1190 /* Check if any memory store may kill memory load at this place. */
1191 if (gimple_vuse (stmt) && !vuse_semi_invariant_p (loop, stmt, skip_head))
1192 return false;
1193
1194 /* Although operand of a statement might be SSA name, CONSTANT or
1195 VARDECL, here we only need to check SSA name operands. This is
1196 because check on VARDECL operands, which involve memory loads,
1197 must have been done prior to invocation of this function in
1198 vuse_semi_invariant_p. */
1199 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
1200 if (!ssa_semi_invariant_p (loop, use, skip_head, stmt_stat))
1201 return false;
1202 }
1203
1204 if (!control_dep_semi_invariant_p (loop, gimple_bb (stmt), skip_head,
1205 stmt_stat))
1206 return false;
1207
1208 /* Here we SHOULD NOT use invar = true, since hash map might be changed due
1209 to new insertion, and thus invar may point to invalid memory. */
1210 stmt_stat.put (stmt, true);
1211 return true;
1212}
1213
1214/* A helper function to check whether STMT is semi-invariant in LOOP. Basic
1215 blocks dominated by SKIP_HEAD (if non-NULL), are excluded from LOOP. */
1216
1217static bool
1218stmt_semi_invariant_p (struct loop *loop, gimple *stmt,
1219 const_basic_block skip_head)
1220{
1221 hash_map<gimple *, bool> stmt_stat;
1222 return stmt_semi_invariant_p_1 (loop, stmt, skip_head, stmt_stat);
1223}
1224
1225/* Determine when conditional statement never transfers execution to one of its
1226 branch, whether we can remove the branch's leading basic block (BRANCH_BB)
1227 and those basic blocks dominated by BRANCH_BB. */
1228
1229static bool
1230branch_removable_p (basic_block branch_bb)
1231{
1232 edge_iterator ei;
1233 edge e;
1234
1235 if (single_pred_p (branch_bb))
1236 return true;
1237
1238 FOR_EACH_EDGE (e, ei, branch_bb->preds)
1239 {
1240 if (dominated_by_p (CDI_DOMINATORS, e->src, branch_bb))
1241 continue;
1242
1243 if (dominated_by_p (CDI_DOMINATORS, branch_bb, e->src))
1244 continue;
1245
1246 /* The branch can be reached from opposite branch, or from some
1247 statement not dominated by the conditional statement. */
1248 return false;
1249 }
1250
1251 return true;
1252}
1253
1254/* Find out which branch of a conditional statement (COND) is invariant in the
1255 execution context of LOOP. That is: once the branch is selected in certain
1256 iteration of the loop, any operand that contributes to computation of the
1257 conditional statement remains unchanged in all following iterations. */
1258
1259static edge
1260get_cond_invariant_branch (struct loop *loop, gcond *cond)
1261{
1262 basic_block cond_bb = gimple_bb (cond);
1263 basic_block targ_bb[2];
1264 bool invar[2];
1265 unsigned invar_checks = 0;
1266
1267 for (unsigned i = 0; i < 2; i++)
1268 {
1269 targ_bb[i] = EDGE_SUCC (cond_bb, i)->dest;
1270
1271 /* One branch directs to loop exit, no need to perform loop split upon
1272 this conditional statement. Firstly, it is trivial if the exit branch
1273 is semi-invariant, for the statement is just to break loop. Secondly,
1274 if the opposite branch is semi-invariant, it means that the statement
1275 is real loop-invariant, which is covered by loop unswitch. */
1276 if (!flow_bb_inside_loop_p (loop, targ_bb[i]))
1277 return NULL;
1278 }
1279
1280 for (unsigned i = 0; i < 2; i++)
1281 {
1282 invar[!i] = false;
1283
1284 if (!branch_removable_p (targ_bb[i]))
1285 continue;
1286
1287 /* Given a semi-invariant branch, if its opposite branch dominates
1288 loop latch, it and its following trace will only be executed in
1289 final iteration of loop, namely it is not part of repeated body
1290 of the loop. Similar to the above case that the branch is loop
1291 exit, no need to split loop. */
1292 if (dominated_by_p (CDI_DOMINATORS, loop->latch, targ_bb[i]))
1293 continue;
1294
1295 invar[!i] = stmt_semi_invariant_p (loop, cond, targ_bb[i]);
1296 invar_checks++;
1297 }
1298
1299 /* With both branches being invariant (handled by loop unswitch) or
1300 variant is not what we want. */
1301 if (invar[0] ^ !invar[1])
1302 return NULL;
1303
1304 /* Found a real loop-invariant condition, do nothing. */
1305 if (invar_checks < 2 && stmt_semi_invariant_p (loop, cond, NULL))
1306 return NULL;
1307
1308 return EDGE_SUCC (cond_bb, invar[0] ? 0 : 1);
1309}
1310
1311/* Calculate increased code size measured by estimated insn number if applying
1312 loop split upon certain branch (BRANCH_EDGE) of a conditional statement. */
1313
1314static int
1315compute_added_num_insns (struct loop *loop, const_edge branch_edge)
1316{
1317 basic_block cond_bb = branch_edge->src;
1318 unsigned branch = EDGE_SUCC (cond_bb, 1) == branch_edge;
1319 basic_block opposite_bb = EDGE_SUCC (cond_bb, !branch)->dest;
1320 basic_block *bbs = ((split_info *) loop->aux)->bbs;
1321 int num = 0;
1322
1323 for (unsigned i = 0; i < loop->num_nodes; i++)
1324 {
1325 /* Do no count basic blocks only in opposite branch. */
1326 if (dominated_by_p (CDI_DOMINATORS, bbs[i], opposite_bb))
1327 continue;
1328
1329 num += estimate_num_insns_seq (bb_seq (bbs[i]), &eni_size_weights);
1330 }
1331
1332 /* It is unnecessary to evaluate expression of the conditional statement
1333 in new loop that contains only invariant branch. This expression should
1334 be constant value (either true or false). Exclude code size of insns
1335 that contribute to computation of the expression. */
1336
1337 auto_vec<gimple *> worklist;
1338 hash_set<gimple *> removed;
1339 gimple *stmt = last_stmt (cond_bb);
1340
1341 worklist.safe_push (stmt);
1342 removed.add (stmt);
1343 num -= estimate_num_insns (stmt, &eni_size_weights);
1344
1345 do
1346 {
1347 ssa_op_iter opnd_iter;
1348 use_operand_p opnd_p;
1349
1350 stmt = worklist.pop ();
1351 FOR_EACH_PHI_OR_STMT_USE (opnd_p, stmt, opnd_iter, SSA_OP_USE)
1352 {
1353 tree opnd = USE_FROM_PTR (opnd_p);
1354
1355 if (TREE_CODE (opnd) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (opnd))
1356 continue;
1357
1358 gimple *opnd_stmt = SSA_NAME_DEF_STMT (opnd);
1359 use_operand_p use_p;
1360 imm_use_iterator use_iter;
1361
1362 if (removed.contains (opnd_stmt)
1363 || !flow_bb_inside_loop_p (loop, gimple_bb (opnd_stmt)))
1364 continue;
1365
1366 FOR_EACH_IMM_USE_FAST (use_p, use_iter, opnd)
1367 {
1368 gimple *use_stmt = USE_STMT (use_p);
1369
1370 if (!is_gimple_debug (use_stmt) && !removed.contains (use_stmt))
1371 {
1372 opnd_stmt = NULL;
1373 break;
1374 }
1375 }
1376
1377 if (opnd_stmt)
1378 {
1379 worklist.safe_push (opnd_stmt);
1380 removed.add (opnd_stmt);
1381 num -= estimate_num_insns (opnd_stmt, &eni_size_weights);
1382 }
1383 }
1384 } while (!worklist.is_empty ());
1385
1386 gcc_assert (num >= 0);
1387 return num;
1388}
1389
1390/* Find out loop-invariant branch of a conditional statement (COND) if it has,
1391 and check whether it is eligible and profitable to perform loop split upon
1392 this branch in LOOP. */
1393
1394static edge
1395get_cond_branch_to_split_loop (struct loop *loop, gcond *cond)
1396{
1397 edge invar_branch = get_cond_invariant_branch (loop, cond);
1398 if (!invar_branch)
1399 return NULL;
1400
1401 /* When accurate profile information is available, and execution
1402 frequency of the branch is too low, just let it go. */
1403 profile_probability prob = invar_branch->probability;
1404 if (prob.reliable_p ())
1405 {
028d4092 1406 int thres = param_min_loop_cond_split_prob;
095f78c6
FX
1407
1408 if (prob < profile_probability::always ().apply_scale (thres, 100))
1409 return NULL;
1410 }
1411
1412 /* Add a threshold for increased code size to disable loop split. */
028d4092 1413 if (compute_added_num_insns (loop, invar_branch) > param_max_peeled_insns)
095f78c6
FX
1414 return NULL;
1415
1416 return invar_branch;
1417}
1418
1419/* Given a loop (LOOP1) with a loop-invariant branch (INVAR_BRANCH) of some
1420 conditional statement, perform loop split transformation illustrated
1421 as the following graph.
1422
1423 .-------T------ if (true) ------F------.
1424 | .---------------. |
1425 | | | |
1426 v | v v
1427 pre-header | pre-header
1428 | .------------. | | .------------.
1429 | | | | | | |
1430 | v | | | v |
1431 header | | header |
1432 | | | | |
1433 .--- if (cond) ---. | | .--- if (true) ---. |
1434 | | | | | | |
1435 invariant | | | invariant | |
1436 | | | | | | |
1437 '---T--->.<---F---' | | '---T--->.<---F---' |
1438 | | / | |
1439 stmts | / stmts |
1440 | F T | |
1441 / \ | / / \ |
1442 .-------* * [ if (cond) ] .-------* * |
1443 | | | | | |
1444 | latch | | latch |
1445 | | | | | |
1446 | '------------' | '------------'
1447 '------------------------. .-----------'
1448 loop1 | | loop2
1449 v v
1450 exits
1451
1452 In the graph, loop1 represents the part derived from original one, and
1453 loop2 is duplicated using loop_version (), which corresponds to the part
1454 of original one being splitted out. In original latch edge of loop1, we
1455 insert a new conditional statement duplicated from the semi-invariant cond,
1456 and one of its branch goes back to loop1 header as a latch edge, and the
1457 other branch goes to loop2 pre-header as an entry edge. And also in loop2,
1458 we abandon the variant branch of the conditional statement by setting a
1459 constant bool condition, based on which branch is semi-invariant. */
1460
1461static bool
1462do_split_loop_on_cond (struct loop *loop1, edge invar_branch)
1463{
1464 basic_block cond_bb = invar_branch->src;
1465 bool true_invar = !!(invar_branch->flags & EDGE_TRUE_VALUE);
1466 gcond *cond = as_a <gcond *> (last_stmt (cond_bb));
1467
1468 gcc_assert (cond_bb->loop_father == loop1);
1469
1470 if (dump_enabled_p ())
1471 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, cond,
1472 "loop split on semi-invariant condition at %s branch\n",
1473 true_invar ? "true" : "false");
1474
1475 initialize_original_copy_tables ();
1476
1477 struct loop *loop2 = loop_version (loop1, boolean_true_node, NULL,
1478 profile_probability::always (),
1479 profile_probability::never (),
1480 profile_probability::always (),
1481 profile_probability::always (),
1482 true);
1483 if (!loop2)
1484 {
1485 free_original_copy_tables ();
1486 return false;
1487 }
1488
1489 basic_block cond_bb_copy = get_bb_copy (cond_bb);
1490 gcond *cond_copy = as_a<gcond *> (last_stmt (cond_bb_copy));
1491
1492 /* Replace the condition in loop2 with a bool constant to let PassManager
1493 remove the variant branch after current pass completes. */
1494 if (true_invar)
1495 gimple_cond_make_true (cond_copy);
1496 else
1497 gimple_cond_make_false (cond_copy);
1498
1499 update_stmt (cond_copy);
1500
1501 /* Insert a new conditional statement on latch edge of loop1, its condition
1502 is duplicated from the semi-invariant. This statement acts as a switch
1503 to transfer execution from loop1 to loop2, when loop1 enters into
1504 invariant state. */
1505 basic_block latch_bb = split_edge (loop_latch_edge (loop1));
1506 basic_block break_bb = split_edge (single_pred_edge (latch_bb));
1507 gimple *break_cond = gimple_build_cond (gimple_cond_code(cond),
1508 gimple_cond_lhs (cond),
1509 gimple_cond_rhs (cond),
1510 NULL_TREE, NULL_TREE);
1511
1512 gimple_stmt_iterator gsi = gsi_last_bb (break_bb);
1513 gsi_insert_after (&gsi, break_cond, GSI_NEW_STMT);
1514
1515 edge to_loop1 = single_succ_edge (break_bb);
1516 edge to_loop2 = make_edge (break_bb, loop_preheader_edge (loop2)->src, 0);
1517
1518 to_loop1->flags &= ~EDGE_FALLTHRU;
1519 to_loop1->flags |= true_invar ? EDGE_FALSE_VALUE : EDGE_TRUE_VALUE;
1520 to_loop2->flags |= true_invar ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE;
1521
1522 update_ssa (TODO_update_ssa);
1523
1524 /* Due to introduction of a control flow edge from loop1 latch to loop2
1525 pre-header, we should update PHIs in loop2 to reflect this connection
1526 between loop1 and loop2. */
1527 connect_loop_phis (loop1, loop2, to_loop2);
1528
1529 free_original_copy_tables ();
1530
1531 rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1);
1532
1533 return true;
1534}
1535
1536/* Traverse all conditional statements in LOOP, to find out a good candidate
1537 upon which we can do loop split. */
1538
1539static bool
1540split_loop_on_cond (struct loop *loop)
1541{
1542 split_info *info = new split_info ();
1543 basic_block *bbs = info->bbs = get_loop_body (loop);
1544 bool do_split = false;
1545
1546 /* Allocate an area to keep temporary info, and associate its address
1547 with loop aux field. */
1548 loop->aux = info;
1549
1550 for (unsigned i = 0; i < loop->num_nodes; i++)
1551 bbs[i]->aux = NULL;
1552
1553 for (unsigned i = 0; i < loop->num_nodes; i++)
1554 {
1555 basic_block bb = bbs[i];
1556
1557 /* We only consider conditional statement, which be executed at most once
1558 in each iteration of the loop. So skip statements in inner loops. */
1559 if ((bb->loop_father != loop) || (bb->flags & BB_IRREDUCIBLE_LOOP))
1560 continue;
1561
1562 /* Actually this check is not a must constraint. With it, we can ensure
1563 conditional statement will always be executed in each iteration. */
1564 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1565 continue;
1566
1567 gimple *last = last_stmt (bb);
1568
1569 if (!last || gimple_code (last) != GIMPLE_COND)
1570 continue;
1571
1572 gcond *cond = as_a <gcond *> (last);
1573 edge branch_edge = get_cond_branch_to_split_loop (loop, cond);
1574
1575 if (branch_edge)
1576 {
1577 do_split_loop_on_cond (loop, branch_edge);
1578 do_split = true;
1579 break;
1580 }
1581 }
1582
1583 delete info;
1584 loop->aux = NULL;
1585
1586 return do_split;
1587}
1588
28df8730
MM
1589/* Main entry point. Perform loop splitting on all suitable loops. */
1590
1591static unsigned int
1592tree_ssa_split_loops (void)
1593{
99b1c316 1594 class loop *loop;
28df8730
MM
1595 bool changed = false;
1596
1597 gcc_assert (scev_initialized_p ());
095f78c6
FX
1598
1599 calculate_dominance_info (CDI_POST_DOMINATORS);
1600
06d1ff90 1601 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
28df8730
MM
1602 loop->aux = NULL;
1603
1604 /* Go through all loops starting from innermost. */
1605 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1606 {
28df8730
MM
1607 if (loop->aux)
1608 {
1609 /* If any of our inner loops was split, don't split us,
1610 and mark our containing loop as having had splits as well. */
1611 loop_outer (loop)->aux = loop;
1612 continue;
1613 }
1614
095f78c6
FX
1615 if (optimize_loop_for_size_p (loop))
1616 continue;
1617
1618 if (split_loop (loop) || split_loop_on_cond (loop))
28df8730 1619 {
095f78c6
FX
1620 /* Mark our containing loop as having had some split inner loops. */
1621 loop_outer (loop)->aux = loop;
1622 changed = true;
28df8730
MM
1623 }
1624 }
1625
06d1ff90 1626 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
28df8730
MM
1627 loop->aux = NULL;
1628
095f78c6
FX
1629 clear_aux_for_blocks ();
1630
1631 free_dominance_info (CDI_POST_DOMINATORS);
1632
28df8730
MM
1633 if (changed)
1634 return TODO_cleanup_cfg;
1635 return 0;
1636}
1637
1638/* Loop splitting pass. */
1639
1640namespace {
1641
1642const pass_data pass_data_loop_split =
1643{
1644 GIMPLE_PASS, /* type */
1645 "lsplit", /* name */
1646 OPTGROUP_LOOP, /* optinfo_flags */
1647 TV_LOOP_SPLIT, /* tv_id */
1648 PROP_cfg, /* properties_required */
1649 0, /* properties_provided */
1650 0, /* properties_destroyed */
1651 0, /* todo_flags_start */
1652 0, /* todo_flags_finish */
1653};
1654
1655class pass_loop_split : public gimple_opt_pass
1656{
1657public:
1658 pass_loop_split (gcc::context *ctxt)
1659 : gimple_opt_pass (pass_data_loop_split, ctxt)
1660 {}
1661
1662 /* opt_pass methods: */
1663 virtual bool gate (function *) { return flag_split_loops != 0; }
1664 virtual unsigned int execute (function *);
1665
1666}; // class pass_loop_split
1667
1668unsigned int
1669pass_loop_split::execute (function *fun)
1670{
1671 if (number_of_loops (fun) <= 1)
1672 return 0;
1673
1674 return tree_ssa_split_loops ();
1675}
1676
1677} // anon namespace
1678
1679gimple_opt_pass *
1680make_pass_loop_split (gcc::context *ctxt)
1681{
1682 return new pass_loop_split (ctxt);
1683}