]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-math-opts.c
PR c++/50531
[thirdparty/gcc.git] / gcc / tree-ssa-math-opts.c
CommitLineData
abacb398 1/* Global, SSA-based optimizations using mathematical identities.
e78306af 2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
7cf0dbf3 3 Free Software Foundation, Inc.
48e1416a 4
abacb398 5This file is part of GCC.
48e1416a 6
abacb398 7GCC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by the
8c4c00c1 9Free Software Foundation; either version 3, or (at your option) any
abacb398 10later version.
48e1416a 11
abacb398 12GCC is distributed in the hope that it will be useful, but WITHOUT
13ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
48e1416a 16
abacb398 17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
abacb398 20
21/* Currently, the only mini-pass in this file tries to CSE reciprocal
22 operations. These are common in sequences such as this one:
23
24 modulus = sqrt(x*x + y*y + z*z);
25 x = x / modulus;
26 y = y / modulus;
27 z = z / modulus;
28
29 that can be optimized to
30
31 modulus = sqrt(x*x + y*y + z*z);
32 rmodulus = 1.0 / modulus;
33 x = x * rmodulus;
34 y = y * rmodulus;
35 z = z * rmodulus;
36
37 We do this for loop invariant divisors, and with this pass whenever
ac70caad 38 we notice that a division has the same divisor multiple times.
39
40 Of course, like in PRE, we don't insert a division if a dominator
41 already has one. However, this cannot be done as an extension of
42 PRE for several reasons.
43
44 First of all, with some experiments it was found out that the
45 transformation is not always useful if there are only two divisions
46 hy the same divisor. This is probably because modern processors
47 can pipeline the divisions; on older, in-order processors it should
48 still be effective to optimize two divisions by the same number.
49 We make this a param, and it shall be called N in the remainder of
50 this comment.
51
52 Second, if trapping math is active, we have less freedom on where
53 to insert divisions: we can only do so in basic blocks that already
54 contain one. (If divisions don't trap, instead, we can insert
55 divisions elsewhere, which will be in blocks that are common dominators
56 of those that have the division).
57
58 We really don't want to compute the reciprocal unless a division will
59 be found. To do this, we won't insert the division in a basic block
60 that has less than N divisions *post-dominating* it.
61
62 The algorithm constructs a subset of the dominator tree, holding the
63 blocks containing the divisions and the common dominators to them,
64 and walk it twice. The first walk is in post-order, and it annotates
65 each block with the number of divisions that post-dominate it: this
66 gives information on where divisions can be inserted profitably.
67 The second walk is in pre-order, and it inserts divisions as explained
68 above, and replaces divisions by multiplications.
69
70 In the best case, the cost of the pass is O(n_statements). In the
71 worst-case, the cost is due to creating the dominator tree subset,
72 with a cost of O(n_basic_blocks ^ 2); however this can only happen
73 for n_statements / n_basic_blocks statements. So, the amortized cost
74 of creating the dominator tree subset is O(n_basic_blocks) and the
75 worst-case cost of the pass is O(n_statements * n_basic_blocks).
76
77 More practically, the cost will be small because there are few
78 divisions, and they tend to be in the same basic block, so insert_bb
79 is called very few times.
80
81 If we did this using domwalk.c, an efficient implementation would have
82 to work on all the variables in a single pass, because we could not
83 work on just a subset of the dominator tree, as we do now, and the
84 cost would also be something like O(n_statements * n_basic_blocks).
85 The data structures would be more complex in order to work on all the
86 variables in a single pass. */
abacb398 87
88#include "config.h"
89#include "system.h"
90#include "coretypes.h"
91#include "tm.h"
92#include "flags.h"
93#include "tree.h"
94#include "tree-flow.h"
abacb398 95#include "timevar.h"
96#include "tree-pass.h"
ac70caad 97#include "alloc-pool.h"
98#include "basic-block.h"
99#include "target.h"
ce084dfc 100#include "gimple-pretty-print.h"
a7a46268 101
102/* FIXME: RTL headers have to be included here for optabs. */
103#include "rtl.h" /* Because optabs.h wants enum rtx_code. */
104#include "expr.h" /* Because optabs.h wants sepops. */
84cc784c 105#include "optabs.h"
ac70caad 106
107/* This structure represents one basic block that either computes a
108 division, or is a common dominator for basic block that compute a
109 division. */
110struct occurrence {
111 /* The basic block represented by this structure. */
112 basic_block bb;
113
114 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
115 inserted in BB. */
116 tree recip_def;
117
75a70cf9 118 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
ac70caad 119 was inserted in BB. */
75a70cf9 120 gimple recip_def_stmt;
ac70caad 121
122 /* Pointer to a list of "struct occurrence"s for blocks dominated
123 by BB. */
124 struct occurrence *children;
125
126 /* Pointer to the next "struct occurrence"s in the list of blocks
127 sharing a common dominator. */
128 struct occurrence *next;
129
130 /* The number of divisions that are in BB before compute_merit. The
131 number of divisions that are in BB or post-dominate it after
132 compute_merit. */
133 int num_divisions;
134
135 /* True if the basic block has a division, false if it is a common
136 dominator for basic blocks that do. If it is false and trapping
137 math is active, BB is not a candidate for inserting a reciprocal. */
138 bool bb_has_division;
139};
140
30c4e60d 141static struct
142{
143 /* Number of 1.0/X ops inserted. */
144 int rdivs_inserted;
145
146 /* Number of 1.0/FUNC ops inserted. */
147 int rfuncs_inserted;
148} reciprocal_stats;
149
150static struct
151{
152 /* Number of cexpi calls inserted. */
153 int inserted;
154} sincos_stats;
155
156static struct
157{
158 /* Number of hand-written 32-bit bswaps found. */
159 int found_32bit;
160
161 /* Number of hand-written 64-bit bswaps found. */
162 int found_64bit;
163} bswap_stats;
164
165static struct
166{
167 /* Number of widening multiplication ops inserted. */
168 int widen_mults_inserted;
169
170 /* Number of integer multiply-and-accumulate ops inserted. */
171 int maccs_inserted;
172
173 /* Number of fp fused multiply-add ops inserted. */
174 int fmas_inserted;
175} widen_mul_stats;
ac70caad 176
177/* The instance of "struct occurrence" representing the highest
178 interesting block in the dominator tree. */
179static struct occurrence *occ_head;
180
181/* Allocation pool for getting instances of "struct occurrence". */
182static alloc_pool occ_pool;
183
184
185
186/* Allocate and return a new struct occurrence for basic block BB, and
187 whose children list is headed by CHILDREN. */
188static struct occurrence *
189occ_new (basic_block bb, struct occurrence *children)
abacb398 190{
ac70caad 191 struct occurrence *occ;
192
f0d6e81c 193 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
ac70caad 194 memset (occ, 0, sizeof (struct occurrence));
195
196 occ->bb = bb;
197 occ->children = children;
198 return occ;
abacb398 199}
200
ac70caad 201
202/* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
203 list of "struct occurrence"s, one per basic block, having IDOM as
204 their common dominator.
205
206 We try to insert NEW_OCC as deep as possible in the tree, and we also
207 insert any other block that is a common dominator for BB and one
208 block already in the tree. */
209
210static void
211insert_bb (struct occurrence *new_occ, basic_block idom,
212 struct occurrence **p_head)
9e583fac 213{
ac70caad 214 struct occurrence *occ, **p_occ;
9e583fac 215
ac70caad 216 for (p_occ = p_head; (occ = *p_occ) != NULL; )
217 {
218 basic_block bb = new_occ->bb, occ_bb = occ->bb;
219 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
220 if (dom == bb)
221 {
222 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
223 from its list. */
224 *p_occ = occ->next;
225 occ->next = new_occ->children;
226 new_occ->children = occ;
227
228 /* Try the next block (it may as well be dominated by BB). */
229 }
230
231 else if (dom == occ_bb)
232 {
233 /* OCC_BB dominates BB. Tail recurse to look deeper. */
234 insert_bb (new_occ, dom, &occ->children);
235 return;
236 }
237
238 else if (dom != idom)
239 {
240 gcc_assert (!dom->aux);
241
242 /* There is a dominator between IDOM and BB, add it and make
243 two children out of NEW_OCC and OCC. First, remove OCC from
244 its list. */
245 *p_occ = occ->next;
246 new_occ->next = occ;
247 occ->next = NULL;
248
249 /* None of the previous blocks has DOM as a dominator: if we tail
250 recursed, we would reexamine them uselessly. Just switch BB with
251 DOM, and go on looking for blocks dominated by DOM. */
252 new_occ = occ_new (dom, new_occ);
253 }
254
255 else
256 {
257 /* Nothing special, go on with the next element. */
258 p_occ = &occ->next;
259 }
260 }
261
262 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
263 new_occ->next = *p_head;
264 *p_head = new_occ;
265}
266
267/* Register that we found a division in BB. */
268
269static inline void
270register_division_in (basic_block bb)
271{
272 struct occurrence *occ;
273
274 occ = (struct occurrence *) bb->aux;
275 if (!occ)
276 {
277 occ = occ_new (bb, NULL);
278 insert_bb (occ, ENTRY_BLOCK_PTR, &occ_head);
279 }
280
281 occ->bb_has_division = true;
282 occ->num_divisions++;
283}
284
285
286/* Compute the number of divisions that postdominate each block in OCC and
287 its children. */
abacb398 288
abacb398 289static void
ac70caad 290compute_merit (struct occurrence *occ)
abacb398 291{
ac70caad 292 struct occurrence *occ_child;
293 basic_block dom = occ->bb;
abacb398 294
ac70caad 295 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
abacb398 296 {
ac70caad 297 basic_block bb;
298 if (occ_child->children)
299 compute_merit (occ_child);
300
301 if (flag_exceptions)
302 bb = single_noncomplex_succ (dom);
303 else
304 bb = dom;
305
306 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
307 occ->num_divisions += occ_child->num_divisions;
308 }
309}
310
311
312/* Return whether USE_STMT is a floating-point division by DEF. */
313static inline bool
75a70cf9 314is_division_by (gimple use_stmt, tree def)
ac70caad 315{
75a70cf9 316 return is_gimple_assign (use_stmt)
317 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
318 && gimple_assign_rhs2 (use_stmt) == def
119368d7 319 /* Do not recognize x / x as valid division, as we are getting
320 confused later by replacing all immediate uses x in such
321 a stmt. */
75a70cf9 322 && gimple_assign_rhs1 (use_stmt) != def;
ac70caad 323}
324
325/* Walk the subset of the dominator tree rooted at OCC, setting the
326 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
327 the given basic block. The field may be left NULL, of course,
328 if it is not possible or profitable to do the optimization.
329
330 DEF_BSI is an iterator pointing at the statement defining DEF.
331 If RECIP_DEF is set, a dominator already has a computation that can
332 be used. */
333
334static void
75a70cf9 335insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
ac70caad 336 tree def, tree recip_def, int threshold)
337{
75a70cf9 338 tree type;
339 gimple new_stmt;
340 gimple_stmt_iterator gsi;
ac70caad 341 struct occurrence *occ_child;
342
343 if (!recip_def
344 && (occ->bb_has_division || !flag_trapping_math)
345 && occ->num_divisions >= threshold)
346 {
347 /* Make a variable with the replacement and substitute it. */
348 type = TREE_TYPE (def);
349 recip_def = make_rename_temp (type, "reciptmp");
75a70cf9 350 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
351 build_one_cst (type), def);
48e1416a 352
ac70caad 353 if (occ->bb_has_division)
354 {
355 /* Case 1: insert before an existing division. */
75a70cf9 356 gsi = gsi_after_labels (occ->bb);
357 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
358 gsi_next (&gsi);
ac70caad 359
75a70cf9 360 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
ac70caad 361 }
75a70cf9 362 else if (def_gsi && occ->bb == def_gsi->bb)
685b24f5 363 {
ac70caad 364 /* Case 2: insert right after the definition. Note that this will
365 never happen if the definition statement can throw, because in
366 that case the sole successor of the statement's basic block will
367 dominate all the uses as well. */
75a70cf9 368 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
685b24f5 369 }
ac70caad 370 else
371 {
372 /* Case 3: insert in a basic block not containing defs/uses. */
75a70cf9 373 gsi = gsi_after_labels (occ->bb);
374 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
ac70caad 375 }
376
30c4e60d 377 reciprocal_stats.rdivs_inserted++;
378
ac70caad 379 occ->recip_def_stmt = new_stmt;
abacb398 380 }
381
ac70caad 382 occ->recip_def = recip_def;
383 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
75a70cf9 384 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
ac70caad 385}
386
387
388/* Replace the division at USE_P with a multiplication by the reciprocal, if
389 possible. */
390
391static inline void
392replace_reciprocal (use_operand_p use_p)
393{
75a70cf9 394 gimple use_stmt = USE_STMT (use_p);
395 basic_block bb = gimple_bb (use_stmt);
ac70caad 396 struct occurrence *occ = (struct occurrence *) bb->aux;
397
0bfd8d5c 398 if (optimize_bb_for_speed_p (bb)
399 && occ->recip_def && use_stmt != occ->recip_def_stmt)
ac70caad 400 {
50aacf4c 401 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
75a70cf9 402 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
ac70caad 403 SET_USE (use_p, occ->recip_def);
50aacf4c 404 fold_stmt_inplace (&gsi);
ac70caad 405 update_stmt (use_stmt);
406 }
407}
408
409
410/* Free OCC and return one more "struct occurrence" to be freed. */
411
412static struct occurrence *
413free_bb (struct occurrence *occ)
414{
415 struct occurrence *child, *next;
416
417 /* First get the two pointers hanging off OCC. */
418 next = occ->next;
419 child = occ->children;
420 occ->bb->aux = NULL;
421 pool_free (occ_pool, occ);
422
423 /* Now ensure that we don't recurse unless it is necessary. */
424 if (!child)
425 return next;
9e583fac 426 else
ac70caad 427 {
428 while (next)
429 next = free_bb (next);
430
431 return child;
432 }
433}
434
435
436/* Look for floating-point divisions among DEF's uses, and try to
437 replace them by multiplications with the reciprocal. Add
438 as many statements computing the reciprocal as needed.
439
440 DEF must be a GIMPLE register of a floating-point type. */
441
442static void
75a70cf9 443execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
ac70caad 444{
445 use_operand_p use_p;
446 imm_use_iterator use_iter;
447 struct occurrence *occ;
448 int count = 0, threshold;
abacb398 449
ac70caad 450 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
451
452 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
abacb398 453 {
75a70cf9 454 gimple use_stmt = USE_STMT (use_p);
ac70caad 455 if (is_division_by (use_stmt, def))
abacb398 456 {
75a70cf9 457 register_division_in (gimple_bb (use_stmt));
ac70caad 458 count++;
abacb398 459 }
460 }
48e1416a 461
ac70caad 462 /* Do the expensive part only if we can hope to optimize something. */
463 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
464 if (count >= threshold)
465 {
75a70cf9 466 gimple use_stmt;
ac70caad 467 for (occ = occ_head; occ; occ = occ->next)
468 {
469 compute_merit (occ);
75a70cf9 470 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
ac70caad 471 }
472
09aca5bc 473 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
ac70caad 474 {
ac70caad 475 if (is_division_by (use_stmt, def))
09aca5bc 476 {
477 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
478 replace_reciprocal (use_p);
479 }
ac70caad 480 }
481 }
482
483 for (occ = occ_head; occ; )
484 occ = free_bb (occ);
485
486 occ_head = NULL;
abacb398 487}
488
ac70caad 489static bool
490gate_cse_reciprocals (void)
491{
0bfd8d5c 492 return optimize && flag_reciprocal_math;
ac70caad 493}
494
ac70caad 495/* Go through all the floating-point SSA_NAMEs, and call
496 execute_cse_reciprocals_1 on each of them. */
2a1990e9 497static unsigned int
abacb398 498execute_cse_reciprocals (void)
499{
500 basic_block bb;
51b60a11 501 tree arg;
685b24f5 502
ac70caad 503 occ_pool = create_alloc_pool ("dominators for recip",
504 sizeof (struct occurrence),
505 n_basic_blocks / 3 + 1);
685b24f5 506
30c4e60d 507 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
c136ae61 508 calculate_dominance_info (CDI_DOMINATORS);
509 calculate_dominance_info (CDI_POST_DOMINATORS);
ac70caad 510
511#ifdef ENABLE_CHECKING
512 FOR_EACH_BB (bb)
513 gcc_assert (!bb->aux);
514#endif
515
1767a056 516 for (arg = DECL_ARGUMENTS (cfun->decl); arg; arg = DECL_CHAIN (arg))
2d04fd8d 517 if (gimple_default_def (cfun, arg)
ac70caad 518 && FLOAT_TYPE_P (TREE_TYPE (arg))
519 && is_gimple_reg (arg))
2d04fd8d 520 execute_cse_reciprocals_1 (NULL, gimple_default_def (cfun, arg));
51b60a11 521
abacb398 522 FOR_EACH_BB (bb)
523 {
75a70cf9 524 gimple_stmt_iterator gsi;
525 gimple phi;
526 tree def;
abacb398 527
75a70cf9 528 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
abacb398 529 {
75a70cf9 530 phi = gsi_stmt (gsi);
abacb398 531 def = PHI_RESULT (phi);
532 if (FLOAT_TYPE_P (TREE_TYPE (def))
533 && is_gimple_reg (def))
ac70caad 534 execute_cse_reciprocals_1 (NULL, def);
abacb398 535 }
536
75a70cf9 537 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
abacb398 538 {
75a70cf9 539 gimple stmt = gsi_stmt (gsi);
a0315874 540
75a70cf9 541 if (gimple_has_lhs (stmt)
abacb398 542 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
543 && FLOAT_TYPE_P (TREE_TYPE (def))
51b60a11 544 && TREE_CODE (def) == SSA_NAME)
75a70cf9 545 execute_cse_reciprocals_1 (&gsi, def);
abacb398 546 }
e174638f 547
0bfd8d5c 548 if (optimize_bb_for_size_p (bb))
549 continue;
550
e174638f 551 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
75a70cf9 552 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
e174638f 553 {
75a70cf9 554 gimple stmt = gsi_stmt (gsi);
e174638f 555 tree fndecl;
556
75a70cf9 557 if (is_gimple_assign (stmt)
558 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
e174638f 559 {
75a70cf9 560 tree arg1 = gimple_assign_rhs2 (stmt);
561 gimple stmt1;
2cd360b6 562
563 if (TREE_CODE (arg1) != SSA_NAME)
564 continue;
565
566 stmt1 = SSA_NAME_DEF_STMT (arg1);
e174638f 567
75a70cf9 568 if (is_gimple_call (stmt1)
569 && gimple_call_lhs (stmt1)
570 && (fndecl = gimple_call_fndecl (stmt1))
e174638f 571 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
572 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
573 {
574 enum built_in_function code;
774b1cdd 575 bool md_code, fail;
576 imm_use_iterator ui;
577 use_operand_p use_p;
e174638f 578
579 code = DECL_FUNCTION_CODE (fndecl);
2cd360b6 580 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
581
582 fndecl = targetm.builtin_reciprocal (code, md_code, false);
e174638f 583 if (!fndecl)
584 continue;
585
774b1cdd 586 /* Check that all uses of the SSA name are divisions,
587 otherwise replacing the defining statement will do
588 the wrong thing. */
589 fail = false;
590 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
591 {
592 gimple stmt2 = USE_STMT (use_p);
593 if (is_gimple_debug (stmt2))
594 continue;
595 if (!is_gimple_assign (stmt2)
596 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
597 || gimple_assign_rhs1 (stmt2) == arg1
598 || gimple_assign_rhs2 (stmt2) != arg1)
599 {
600 fail = true;
601 break;
602 }
603 }
604 if (fail)
605 continue;
606
5fb3d93f 607 gimple_replace_lhs (stmt1, arg1);
0acacf9e 608 gimple_call_set_fndecl (stmt1, fndecl);
e174638f 609 update_stmt (stmt1);
30c4e60d 610 reciprocal_stats.rfuncs_inserted++;
e174638f 611
774b1cdd 612 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
613 {
50aacf4c 614 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
774b1cdd 615 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
50aacf4c 616 fold_stmt_inplace (&gsi);
774b1cdd 617 update_stmt (stmt);
618 }
e174638f 619 }
620 }
621 }
abacb398 622 }
685b24f5 623
30c4e60d 624 statistics_counter_event (cfun, "reciprocal divs inserted",
625 reciprocal_stats.rdivs_inserted);
626 statistics_counter_event (cfun, "reciprocal functions inserted",
627 reciprocal_stats.rfuncs_inserted);
628
c136ae61 629 free_dominance_info (CDI_DOMINATORS);
630 free_dominance_info (CDI_POST_DOMINATORS);
ac70caad 631 free_alloc_pool (occ_pool);
2a1990e9 632 return 0;
abacb398 633}
634
20099e35 635struct gimple_opt_pass pass_cse_reciprocals =
abacb398 636{
20099e35 637 {
638 GIMPLE_PASS,
abacb398 639 "recip", /* name */
640 gate_cse_reciprocals, /* gate */
641 execute_cse_reciprocals, /* execute */
642 NULL, /* sub */
643 NULL, /* next */
644 0, /* static_pass_number */
0b1615c1 645 TV_NONE, /* tv_id */
abacb398 646 PROP_ssa, /* properties_required */
647 0, /* properties_provided */
648 0, /* properties_destroyed */
649 0, /* todo_flags_start */
771e2890 650 TODO_update_ssa | TODO_verify_ssa
20099e35 651 | TODO_verify_stmts /* todo_flags_finish */
652 }
abacb398 653};
a0315874 654
0d424440 655/* Records an occurrence at statement USE_STMT in the vector of trees
a0315874 656 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
0d424440 657 is not yet initialized. Returns true if the occurrence was pushed on
a0315874 658 the vector. Adjusts *TOP_BB to be the basic block dominating all
659 statements in the vector. */
660
661static bool
75a70cf9 662maybe_record_sincos (VEC(gimple, heap) **stmts,
663 basic_block *top_bb, gimple use_stmt)
a0315874 664{
75a70cf9 665 basic_block use_bb = gimple_bb (use_stmt);
a0315874 666 if (*top_bb
667 && (*top_bb == use_bb
668 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
75a70cf9 669 VEC_safe_push (gimple, heap, *stmts, use_stmt);
a0315874 670 else if (!*top_bb
671 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
672 {
75a70cf9 673 VEC_safe_push (gimple, heap, *stmts, use_stmt);
a0315874 674 *top_bb = use_bb;
675 }
676 else
677 return false;
678
679 return true;
680}
681
682/* Look for sin, cos and cexpi calls with the same argument NAME and
683 create a single call to cexpi CSEing the result in this case.
684 We first walk over all immediate uses of the argument collecting
685 statements that we can CSE in a vector and in a second pass replace
686 the statement rhs with a REALPART or IMAGPART expression on the
687 result of the cexpi call we insert before the use statement that
688 dominates all other candidates. */
689
4c80086d 690static bool
a0315874 691execute_cse_sincos_1 (tree name)
692{
75a70cf9 693 gimple_stmt_iterator gsi;
a0315874 694 imm_use_iterator use_iter;
75a70cf9 695 tree fndecl, res, type;
696 gimple def_stmt, use_stmt, stmt;
a0315874 697 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
75a70cf9 698 VEC(gimple, heap) *stmts = NULL;
a0315874 699 basic_block top_bb = NULL;
700 int i;
4c80086d 701 bool cfg_changed = false;
a0315874 702
703 type = TREE_TYPE (name);
704 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
705 {
75a70cf9 706 if (gimple_code (use_stmt) != GIMPLE_CALL
707 || !gimple_call_lhs (use_stmt)
708 || !(fndecl = gimple_call_fndecl (use_stmt))
a0315874 709 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
710 continue;
711
712 switch (DECL_FUNCTION_CODE (fndecl))
713 {
714 CASE_FLT_FN (BUILT_IN_COS):
715 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
716 break;
717
718 CASE_FLT_FN (BUILT_IN_SIN):
719 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
720 break;
721
722 CASE_FLT_FN (BUILT_IN_CEXPI):
723 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
724 break;
725
726 default:;
727 }
728 }
729
730 if (seen_cos + seen_sin + seen_cexpi <= 1)
731 {
75a70cf9 732 VEC_free(gimple, heap, stmts);
4c80086d 733 return false;
a0315874 734 }
735
736 /* Simply insert cexpi at the beginning of top_bb but not earlier than
737 the name def statement. */
738 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
739 if (!fndecl)
4c80086d 740 return false;
741 res = create_tmp_reg (TREE_TYPE (TREE_TYPE (fndecl)), "sincostmp");
75a70cf9 742 stmt = gimple_build_call (fndecl, 1, name);
4c80086d 743 res = make_ssa_name (res, stmt);
75a70cf9 744 gimple_call_set_lhs (stmt, res);
745
a0315874 746 def_stmt = SSA_NAME_DEF_STMT (name);
8090c12d 747 if (!SSA_NAME_IS_DEFAULT_DEF (name)
75a70cf9 748 && gimple_code (def_stmt) != GIMPLE_PHI
749 && gimple_bb (def_stmt) == top_bb)
a0315874 750 {
75a70cf9 751 gsi = gsi_for_stmt (def_stmt);
752 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
a0315874 753 }
754 else
755 {
75a70cf9 756 gsi = gsi_after_labels (top_bb);
757 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
a0315874 758 }
759 update_stmt (stmt);
30c4e60d 760 sincos_stats.inserted++;
a0315874 761
762 /* And adjust the recorded old call sites. */
75a70cf9 763 for (i = 0; VEC_iterate(gimple, stmts, i, use_stmt); ++i)
a0315874 764 {
75a70cf9 765 tree rhs = NULL;
766 fndecl = gimple_call_fndecl (use_stmt);
767
a0315874 768 switch (DECL_FUNCTION_CODE (fndecl))
769 {
770 CASE_FLT_FN (BUILT_IN_COS):
75a70cf9 771 rhs = fold_build1 (REALPART_EXPR, type, res);
a0315874 772 break;
773
774 CASE_FLT_FN (BUILT_IN_SIN):
75a70cf9 775 rhs = fold_build1 (IMAGPART_EXPR, type, res);
a0315874 776 break;
777
778 CASE_FLT_FN (BUILT_IN_CEXPI):
75a70cf9 779 rhs = res;
a0315874 780 break;
781
782 default:;
783 gcc_unreachable ();
784 }
785
75a70cf9 786 /* Replace call with a copy. */
787 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
788
789 gsi = gsi_for_stmt (use_stmt);
4c80086d 790 gsi_replace (&gsi, stmt, true);
791 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
792 cfg_changed = true;
a0315874 793 }
794
75a70cf9 795 VEC_free(gimple, heap, stmts);
4c80086d 796
797 return cfg_changed;
a0315874 798}
799
e9a6c4bc 800/* To evaluate powi(x,n), the floating point value x raised to the
801 constant integer exponent n, we use a hybrid algorithm that
802 combines the "window method" with look-up tables. For an
803 introduction to exponentiation algorithms and "addition chains",
804 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
805 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
806 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
807 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
808
809/* Provide a default value for POWI_MAX_MULTS, the maximum number of
810 multiplications to inline before calling the system library's pow
811 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
812 so this default never requires calling pow, powf or powl. */
813
814#ifndef POWI_MAX_MULTS
815#define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
816#endif
817
818/* The size of the "optimal power tree" lookup table. All
819 exponents less than this value are simply looked up in the
820 powi_table below. This threshold is also used to size the
821 cache of pseudo registers that hold intermediate results. */
822#define POWI_TABLE_SIZE 256
823
824/* The size, in bits of the window, used in the "window method"
825 exponentiation algorithm. This is equivalent to a radix of
826 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
827#define POWI_WINDOW_SIZE 3
828
829/* The following table is an efficient representation of an
830 "optimal power tree". For each value, i, the corresponding
831 value, j, in the table states than an optimal evaluation
832 sequence for calculating pow(x,i) can be found by evaluating
833 pow(x,j)*pow(x,i-j). An optimal power tree for the first
834 100 integers is given in Knuth's "Seminumerical algorithms". */
835
836static const unsigned char powi_table[POWI_TABLE_SIZE] =
837 {
838 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
839 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
840 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
841 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
842 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
843 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
844 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
845 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
846 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
847 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
848 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
849 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
850 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
851 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
852 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
853 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
854 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
855 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
856 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
857 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
858 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
859 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
860 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
861 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
862 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
863 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
864 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
865 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
866 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
867 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
868 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
869 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
870 };
871
872
873/* Return the number of multiplications required to calculate
874 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
875 subroutine of powi_cost. CACHE is an array indicating
876 which exponents have already been calculated. */
877
878static int
879powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
880{
881 /* If we've already calculated this exponent, then this evaluation
882 doesn't require any additional multiplications. */
883 if (cache[n])
884 return 0;
885
886 cache[n] = true;
887 return powi_lookup_cost (n - powi_table[n], cache)
888 + powi_lookup_cost (powi_table[n], cache) + 1;
889}
890
891/* Return the number of multiplications required to calculate
892 powi(x,n) for an arbitrary x, given the exponent N. This
893 function needs to be kept in sync with powi_as_mults below. */
894
895static int
896powi_cost (HOST_WIDE_INT n)
897{
898 bool cache[POWI_TABLE_SIZE];
899 unsigned HOST_WIDE_INT digit;
900 unsigned HOST_WIDE_INT val;
901 int result;
902
903 if (n == 0)
904 return 0;
905
906 /* Ignore the reciprocal when calculating the cost. */
907 val = (n < 0) ? -n : n;
908
909 /* Initialize the exponent cache. */
910 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
911 cache[1] = true;
912
913 result = 0;
914
915 while (val >= POWI_TABLE_SIZE)
916 {
917 if (val & 1)
918 {
919 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
920 result += powi_lookup_cost (digit, cache)
921 + POWI_WINDOW_SIZE + 1;
922 val >>= POWI_WINDOW_SIZE;
923 }
924 else
925 {
926 val >>= 1;
927 result++;
928 }
929 }
930
931 return result + powi_lookup_cost (val, cache);
932}
933
934/* Recursive subroutine of powi_as_mults. This function takes the
935 array, CACHE, of already calculated exponents and an exponent N and
936 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
937
938static tree
939powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
940 HOST_WIDE_INT n, tree *cache, tree target)
941{
942 tree op0, op1, ssa_target;
943 unsigned HOST_WIDE_INT digit;
944 gimple mult_stmt;
945
946 if (n < POWI_TABLE_SIZE && cache[n])
947 return cache[n];
948
949 ssa_target = make_ssa_name (target, NULL);
950
951 if (n < POWI_TABLE_SIZE)
952 {
953 cache[n] = ssa_target;
954 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache, target);
955 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache, target);
956 }
957 else if (n & 1)
958 {
959 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
960 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache, target);
961 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache, target);
962 }
963 else
964 {
965 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache, target);
966 op1 = op0;
967 }
968
969 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
ae43b05e 970 gimple_set_location (mult_stmt, loc);
e9a6c4bc 971 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
972
973 return ssa_target;
974}
975
976/* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
977 This function needs to be kept in sync with powi_cost above. */
978
979static tree
980powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
981 tree arg0, HOST_WIDE_INT n)
982{
983 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0), target;
984 gimple div_stmt;
985
986 if (n == 0)
987 return build_real (type, dconst1);
988
989 memset (cache, 0, sizeof (cache));
990 cache[1] = arg0;
991
a5c384c1 992 target = create_tmp_reg (type, "powmult");
e9a6c4bc 993 add_referenced_var (target);
994
995 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache, target);
996
997 if (n >= 0)
998 return result;
999
1000 /* If the original exponent was negative, reciprocate the result. */
1001 target = make_ssa_name (target, NULL);
1002 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1003 build_real (type, dconst1),
1004 result);
ae43b05e 1005 gimple_set_location (div_stmt, loc);
e9a6c4bc 1006 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1007
1008 return target;
1009}
1010
1011/* ARG0 and N are the two arguments to a powi builtin in GSI with
1012 location info LOC. If the arguments are appropriate, create an
1013 equivalent sequence of statements prior to GSI using an optimal
1014 number of multiplications, and return an expession holding the
1015 result. */
1016
1017static tree
1018gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1019 tree arg0, HOST_WIDE_INT n)
1020{
1021 /* Avoid largest negative number. */
1022 if (n != -n
1023 && ((n >= -1 && n <= 2)
1024 || (optimize_function_for_speed_p (cfun)
1025 && powi_cost (n) <= POWI_MAX_MULTS)))
1026 return powi_as_mults (gsi, loc, arg0, n);
1027
1028 return NULL_TREE;
1029}
1030
ae43b05e 1031/* Build a gimple call statement that calls FN with argument ARG.
1032 Set the lhs of the call statement to a fresh SSA name for
1033 variable VAR. If VAR is NULL, first allocate it. Insert the
1034 statement prior to GSI's current position, and return the fresh
1035 SSA name. */
1036
1037static tree
ca12eb68 1038build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
1039 tree *var, tree fn, tree arg)
ae43b05e 1040{
1041 gimple call_stmt;
1042 tree ssa_target;
1043
1044 if (!*var)
1045 {
a5c384c1 1046 *var = create_tmp_reg (TREE_TYPE (arg), "powroot");
ae43b05e 1047 add_referenced_var (*var);
1048 }
1049
1050 call_stmt = gimple_build_call (fn, 1, arg);
1051 ssa_target = make_ssa_name (*var, NULL);
1052 gimple_set_lhs (call_stmt, ssa_target);
1053 gimple_set_location (call_stmt, loc);
1054 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1055
1056 return ssa_target;
1057}
1058
ca12eb68 1059/* Build a gimple binary operation with the given CODE and arguments
1060 ARG0, ARG1, assigning the result to a new SSA name for variable
1061 TARGET. Insert the statement prior to GSI's current position, and
1062 return the fresh SSA name.*/
1063
1064static tree
1065build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
1066 tree target, enum tree_code code, tree arg0, tree arg1)
1067{
1068 tree result = make_ssa_name (target, NULL);
1069 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1070 gimple_set_location (stmt, loc);
1071 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1072 return result;
1073}
1074
a5c384c1 1075/* Build a gimple reference operation with the given CODE and argument
1076 ARG, assigning the result to a new SSA name for variable TARGET.
1077 Insert the statement prior to GSI's current position, and return
1078 the fresh SSA name. */
1079
1080static inline tree
1081build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
1082 tree target, enum tree_code code, tree arg0)
1083{
1084 tree result = make_ssa_name (target, NULL);
1085 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1086 gimple_set_location (stmt, loc);
1087 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1088 return result;
1089}
1090
aff5fb4d 1091/* Build a gimple assignment to cast VAL to TARGET. Insert the statement
1092 prior to GSI's current position, and return the fresh SSA name. */
1093
1094static tree
1095build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
1096 tree target, tree val)
1097{
1098 return build_and_insert_binop (gsi, loc, target, CONVERT_EXPR, val, NULL);
1099}
1100
e78306af 1101/* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1102 with location info LOC. If possible, create an equivalent and
1103 less expensive sequence of statements prior to GSI, and return an
1104 expession holding the result. */
1105
1106static tree
1107gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1108 tree arg0, tree arg1)
1109{
ae43b05e 1110 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
ca12eb68 1111 REAL_VALUE_TYPE c2, dconst3;
e78306af 1112 HOST_WIDE_INT n;
ca12eb68 1113 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
ae43b05e 1114 tree target = NULL_TREE;
1115 enum machine_mode mode;
1116 bool hw_sqrt_exists;
e78306af 1117
1118 /* If the exponent isn't a constant, there's nothing of interest
1119 to be done. */
1120 if (TREE_CODE (arg1) != REAL_CST)
1121 return NULL_TREE;
1122
ae43b05e 1123 /* If the exponent is equivalent to an integer, expand to an optimal
1124 multiplication sequence when profitable. */
e78306af 1125 c = TREE_REAL_CST (arg1);
1126 n = real_to_integer (&c);
1127 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1128
1129 if (real_identical (&c, &cint)
1130 && ((n >= -1 && n <= 2)
1131 || (flag_unsafe_math_optimizations
1132 && optimize_insn_for_speed_p ()
1133 && powi_cost (n) <= POWI_MAX_MULTS)))
1134 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1135
ae43b05e 1136 /* Attempt various optimizations using sqrt and cbrt. */
1137 type = TREE_TYPE (arg0);
1138 mode = TYPE_MODE (type);
1139 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1140
1141 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1142 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1143 sqrt(-0) = -0. */
1144 if (sqrtfn
1145 && REAL_VALUES_EQUAL (c, dconsthalf)
1146 && !HONOR_SIGNED_ZEROS (mode))
ca12eb68 1147 return build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
ae43b05e 1148
1149 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1150 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1151 so do this optimization even if -Os. Don't do this optimization
1152 if we don't have a hardware sqrt insn. */
1153 dconst1_4 = dconst1;
1154 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
a5c384c1 1155 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
ae43b05e 1156
1157 if (flag_unsafe_math_optimizations
1158 && sqrtfn
1159 && REAL_VALUES_EQUAL (c, dconst1_4)
1160 && hw_sqrt_exists)
1161 {
1162 /* sqrt(x) */
ca12eb68 1163 sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
ae43b05e 1164
1165 /* sqrt(sqrt(x)) */
ca12eb68 1166 return build_and_insert_call (gsi, loc, &target, sqrtfn, sqrt_arg0);
ae43b05e 1167 }
1168
1169 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1170 optimizing for space. Don't do this optimization if we don't have
1171 a hardware sqrt insn. */
1172 real_from_integer (&dconst3_4, VOIDmode, 3, 0, 0);
1173 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1174
1175 if (flag_unsafe_math_optimizations
1176 && sqrtfn
1177 && optimize_function_for_speed_p (cfun)
1178 && REAL_VALUES_EQUAL (c, dconst3_4)
1179 && hw_sqrt_exists)
1180 {
1181 /* sqrt(x) */
ca12eb68 1182 sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
ae43b05e 1183
1184 /* sqrt(sqrt(x)) */
ca12eb68 1185 sqrt_sqrt = build_and_insert_call (gsi, loc, &target, sqrtfn, sqrt_arg0);
ae43b05e 1186
1187 /* sqrt(x) * sqrt(sqrt(x)) */
ca12eb68 1188 return build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1189 sqrt_arg0, sqrt_sqrt);
ae43b05e 1190 }
1191
1192 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1193 optimizations since 1./3. is not exactly representable. If x
1194 is negative and finite, the correct value of pow(x,1./3.) is
1195 a NaN with the "invalid" exception raised, because the value
1196 of 1./3. actually has an even denominator. The correct value
1197 of cbrt(x) is a negative real value. */
1198 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1199 dconst1_3 = real_value_truncate (mode, dconst_third ());
1200
1201 if (flag_unsafe_math_optimizations
1202 && cbrtfn
0b7ad900 1203 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
ae43b05e 1204 && REAL_VALUES_EQUAL (c, dconst1_3))
ca12eb68 1205 return build_and_insert_call (gsi, loc, &target, cbrtfn, arg0);
ae43b05e 1206
1207 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1208 if we don't have a hardware sqrt insn. */
1209 dconst1_6 = dconst1_3;
1210 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1211
1212 if (flag_unsafe_math_optimizations
1213 && sqrtfn
1214 && cbrtfn
0b7ad900 1215 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
ae43b05e 1216 && optimize_function_for_speed_p (cfun)
1217 && hw_sqrt_exists
1218 && REAL_VALUES_EQUAL (c, dconst1_6))
1219 {
1220 /* sqrt(x) */
ca12eb68 1221 sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
ae43b05e 1222
1223 /* cbrt(sqrt(x)) */
ca12eb68 1224 return build_and_insert_call (gsi, loc, &target, cbrtfn, sqrt_arg0);
1225 }
1226
1227 /* Optimize pow(x,c), where n = 2c for some nonzero integer n, into
1228
1229 sqrt(x) * powi(x, n/2), n > 0;
1230 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1231
1232 Do not calculate the powi factor when n/2 = 0. */
1233 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1234 n = real_to_integer (&c2);
1235 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1236
1237 if (flag_unsafe_math_optimizations
1238 && sqrtfn
1239 && real_identical (&c2, &cint))
1240 {
1241 tree powi_x_ndiv2 = NULL_TREE;
1242
1243 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1244 possible or profitable, give up. Skip the degenerate case when
1245 n is 1 or -1, where the result is always 1. */
b1757d46 1246 if (absu_hwi (n) != 1)
ca12eb68 1247 {
5ebd604f 1248 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1249 abs_hwi (n / 2));
ca12eb68 1250 if (!powi_x_ndiv2)
1251 return NULL_TREE;
1252 }
1253
1254 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1255 result of the optimal multiply sequence just calculated. */
1256 sqrt_arg0 = build_and_insert_call (gsi, loc, &target, sqrtfn, arg0);
1257
b1757d46 1258 if (absu_hwi (n) == 1)
ca12eb68 1259 result = sqrt_arg0;
1260 else
1261 result = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1262 sqrt_arg0, powi_x_ndiv2);
1263
1264 /* If n is negative, reciprocate the result. */
1265 if (n < 0)
1266 result = build_and_insert_binop (gsi, loc, target, RDIV_EXPR,
1267 build_real (type, dconst1), result);
1268 return result;
1269 }
1270
1271 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1272
1273 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1274 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1275
1276 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1277 different from pow(x, 1./3.) due to rounding and behavior with
1278 negative x, we need to constrain this transformation to unsafe
1279 math and positive x or finite math. */
1280 real_from_integer (&dconst3, VOIDmode, 3, 0, 0);
1281 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1282 real_round (&c2, mode, &c2);
1283 n = real_to_integer (&c2);
1284 real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
1285 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1286 real_convert (&c2, mode, &c2);
1287
1288 if (flag_unsafe_math_optimizations
1289 && cbrtfn
0b7ad900 1290 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
ca12eb68 1291 && real_identical (&c2, &c)
1292 && optimize_function_for_speed_p (cfun)
1293 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1294 {
1295 tree powi_x_ndiv3 = NULL_TREE;
1296
1297 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1298 possible or profitable, give up. Skip the degenerate case when
1299 abs(n) < 3, where the result is always 1. */
b1757d46 1300 if (absu_hwi (n) >= 3)
ca12eb68 1301 {
1302 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
5ebd604f 1303 abs_hwi (n / 3));
ca12eb68 1304 if (!powi_x_ndiv3)
1305 return NULL_TREE;
1306 }
1307
1308 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1309 as that creates an unnecessary variable. Instead, just produce
1310 either cbrt(x) or cbrt(x) * cbrt(x). */
1311 cbrt_x = build_and_insert_call (gsi, loc, &target, cbrtfn, arg0);
1312
b1757d46 1313 if (absu_hwi (n) % 3 == 1)
ca12eb68 1314 powi_cbrt_x = cbrt_x;
1315 else
1316 powi_cbrt_x = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1317 cbrt_x, cbrt_x);
1318
1319 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
b1757d46 1320 if (absu_hwi (n) < 3)
ca12eb68 1321 result = powi_cbrt_x;
1322 else
1323 result = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1324 powi_x_ndiv3, powi_cbrt_x);
1325
1326 /* If n is negative, reciprocate the result. */
1327 if (n < 0)
1328 result = build_and_insert_binop (gsi, loc, target, RDIV_EXPR,
1329 build_real (type, dconst1), result);
1330
1331 return result;
ae43b05e 1332 }
1333
ca12eb68 1334 /* No optimizations succeeded. */
e78306af 1335 return NULL_TREE;
1336}
1337
a5c384c1 1338/* ARG is the argument to a cabs builtin call in GSI with location info
1339 LOC. Create a sequence of statements prior to GSI that calculates
1340 sqrt(R*R + I*I), where R and I are the real and imaginary components
1341 of ARG, respectively. Return an expression holding the result. */
1342
1343static tree
1344gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1345{
1346 tree target, real_part, imag_part, addend1, addend2, sum, result;
1347 tree type = TREE_TYPE (TREE_TYPE (arg));
1348 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1349 enum machine_mode mode = TYPE_MODE (type);
1350
1351 if (!flag_unsafe_math_optimizations
1352 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1353 || !sqrtfn
1354 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1355 return NULL_TREE;
1356
1357 target = create_tmp_reg (type, "cabs");
1358 add_referenced_var (target);
1359
1360 real_part = build_and_insert_ref (gsi, loc, type, target,
1361 REALPART_EXPR, arg);
1362 addend1 = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1363 real_part, real_part);
1364 imag_part = build_and_insert_ref (gsi, loc, type, target,
1365 IMAGPART_EXPR, arg);
1366 addend2 = build_and_insert_binop (gsi, loc, target, MULT_EXPR,
1367 imag_part, imag_part);
1368 sum = build_and_insert_binop (gsi, loc, target, PLUS_EXPR, addend1, addend2);
1369 result = build_and_insert_call (gsi, loc, &target, sqrtfn, sum);
1370
1371 return result;
1372}
1373
a0315874 1374/* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
e9a6c4bc 1375 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1376 an optimal number of multiplies, when n is a constant. */
a0315874 1377
1378static unsigned int
1379execute_cse_sincos (void)
1380{
1381 basic_block bb;
4c80086d 1382 bool cfg_changed = false;
a0315874 1383
1384 calculate_dominance_info (CDI_DOMINATORS);
30c4e60d 1385 memset (&sincos_stats, 0, sizeof (sincos_stats));
a0315874 1386
1387 FOR_EACH_BB (bb)
1388 {
75a70cf9 1389 gimple_stmt_iterator gsi;
a0315874 1390
75a70cf9 1391 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
a0315874 1392 {
75a70cf9 1393 gimple stmt = gsi_stmt (gsi);
a0315874 1394 tree fndecl;
1395
75a70cf9 1396 if (is_gimple_call (stmt)
1397 && gimple_call_lhs (stmt)
1398 && (fndecl = gimple_call_fndecl (stmt))
a0315874 1399 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1400 {
e9a6c4bc 1401 tree arg, arg0, arg1, result;
1402 HOST_WIDE_INT n;
1403 location_t loc;
a0315874 1404
1405 switch (DECL_FUNCTION_CODE (fndecl))
1406 {
1407 CASE_FLT_FN (BUILT_IN_COS):
1408 CASE_FLT_FN (BUILT_IN_SIN):
1409 CASE_FLT_FN (BUILT_IN_CEXPI):
d312d7df 1410 /* Make sure we have either sincos or cexp. */
1411 if (!TARGET_HAS_SINCOS && !TARGET_C99_FUNCTIONS)
1412 break;
1413
75a70cf9 1414 arg = gimple_call_arg (stmt, 0);
a0315874 1415 if (TREE_CODE (arg) == SSA_NAME)
4c80086d 1416 cfg_changed |= execute_cse_sincos_1 (arg);
a0315874 1417 break;
1418
e78306af 1419 CASE_FLT_FN (BUILT_IN_POW):
1420 arg0 = gimple_call_arg (stmt, 0);
1421 arg1 = gimple_call_arg (stmt, 1);
1422
1423 loc = gimple_location (stmt);
1424 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1425
1426 if (result)
1427 {
1428 tree lhs = gimple_get_lhs (stmt);
1429 gimple new_stmt = gimple_build_assign (lhs, result);
1430 gimple_set_location (new_stmt, loc);
1431 unlink_stmt_vdef (stmt);
1432 gsi_replace (&gsi, new_stmt, true);
1433 }
1434 break;
1435
e9a6c4bc 1436 CASE_FLT_FN (BUILT_IN_POWI):
1437 arg0 = gimple_call_arg (stmt, 0);
1438 arg1 = gimple_call_arg (stmt, 1);
1439 if (!host_integerp (arg1, 0))
1440 break;
1441
1442 n = TREE_INT_CST_LOW (arg1);
1443 loc = gimple_location (stmt);
1444 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1445
1446 if (result)
1447 {
1448 tree lhs = gimple_get_lhs (stmt);
1449 gimple new_stmt = gimple_build_assign (lhs, result);
1450 gimple_set_location (new_stmt, loc);
a5c384c1 1451 unlink_stmt_vdef (stmt);
1452 gsi_replace (&gsi, new_stmt, true);
1453 }
1454 break;
1455
1456 CASE_FLT_FN (BUILT_IN_CABS):
1457 arg0 = gimple_call_arg (stmt, 0);
1458 loc = gimple_location (stmt);
1459 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1460
1461 if (result)
1462 {
1463 tree lhs = gimple_get_lhs (stmt);
1464 gimple new_stmt = gimple_build_assign (lhs, result);
1465 gimple_set_location (new_stmt, loc);
e9a6c4bc 1466 unlink_stmt_vdef (stmt);
1467 gsi_replace (&gsi, new_stmt, true);
1468 }
1469 break;
1470
a0315874 1471 default:;
1472 }
1473 }
1474 }
1475 }
1476
30c4e60d 1477 statistics_counter_event (cfun, "sincos statements inserted",
1478 sincos_stats.inserted);
1479
a0315874 1480 free_dominance_info (CDI_DOMINATORS);
4c80086d 1481 return cfg_changed ? TODO_cleanup_cfg : 0;
a0315874 1482}
1483
1484static bool
1485gate_cse_sincos (void)
1486{
e9a6c4bc 1487 /* We no longer require either sincos or cexp, since powi expansion
1488 piggybacks on this pass. */
1489 return optimize;
a0315874 1490}
1491
20099e35 1492struct gimple_opt_pass pass_cse_sincos =
a0315874 1493{
20099e35 1494 {
1495 GIMPLE_PASS,
a0315874 1496 "sincos", /* name */
1497 gate_cse_sincos, /* gate */
1498 execute_cse_sincos, /* execute */
1499 NULL, /* sub */
1500 NULL, /* next */
1501 0, /* static_pass_number */
0b1615c1 1502 TV_NONE, /* tv_id */
a0315874 1503 PROP_ssa, /* properties_required */
1504 0, /* properties_provided */
1505 0, /* properties_destroyed */
1506 0, /* todo_flags_start */
771e2890 1507 TODO_update_ssa | TODO_verify_ssa
20099e35 1508 | TODO_verify_stmts /* todo_flags_finish */
1509 }
a0315874 1510};
e174638f 1511
84cc784c 1512/* A symbolic number is used to detect byte permutation and selection
1513 patterns. Therefore the field N contains an artificial number
1514 consisting of byte size markers:
1515
1516 0 - byte has the value 0
1517 1..size - byte contains the content of the byte
1518 number indexed with that value minus one */
1519
1520struct symbolic_number {
1521 unsigned HOST_WIDEST_INT n;
1522 int size;
1523};
1524
1525/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1526 number N. Return false if the requested operation is not permitted
1527 on a symbolic number. */
1528
1529static inline bool
1530do_shift_rotate (enum tree_code code,
1531 struct symbolic_number *n,
1532 int count)
1533{
1534 if (count % 8 != 0)
1535 return false;
1536
1537 /* Zero out the extra bits of N in order to avoid them being shifted
1538 into the significant bits. */
1539 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1540 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
1541
1542 switch (code)
1543 {
1544 case LSHIFT_EXPR:
1545 n->n <<= count;
1546 break;
1547 case RSHIFT_EXPR:
1548 n->n >>= count;
1549 break;
1550 case LROTATE_EXPR:
1551 n->n = (n->n << count) | (n->n >> ((n->size * BITS_PER_UNIT) - count));
1552 break;
1553 case RROTATE_EXPR:
1554 n->n = (n->n >> count) | (n->n << ((n->size * BITS_PER_UNIT) - count));
1555 break;
1556 default:
1557 return false;
1558 }
0f09ed00 1559 /* Zero unused bits for size. */
1560 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1561 n->n &= ((unsigned HOST_WIDEST_INT)1 << (n->size * BITS_PER_UNIT)) - 1;
84cc784c 1562 return true;
1563}
1564
1565/* Perform sanity checking for the symbolic number N and the gimple
1566 statement STMT. */
1567
1568static inline bool
1569verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1570{
1571 tree lhs_type;
1572
1573 lhs_type = gimple_expr_type (stmt);
1574
1575 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1576 return false;
1577
1578 if (TYPE_PRECISION (lhs_type) != n->size * BITS_PER_UNIT)
1579 return false;
1580
1581 return true;
1582}
1583
1584/* find_bswap_1 invokes itself recursively with N and tries to perform
1585 the operation given by the rhs of STMT on the result. If the
1586 operation could successfully be executed the function returns the
1587 tree expression of the source operand and NULL otherwise. */
1588
1589static tree
1590find_bswap_1 (gimple stmt, struct symbolic_number *n, int limit)
1591{
1592 enum tree_code code;
1593 tree rhs1, rhs2 = NULL;
1594 gimple rhs1_stmt, rhs2_stmt;
1595 tree source_expr1;
1596 enum gimple_rhs_class rhs_class;
1597
1598 if (!limit || !is_gimple_assign (stmt))
1599 return NULL_TREE;
1600
1601 rhs1 = gimple_assign_rhs1 (stmt);
1602
1603 if (TREE_CODE (rhs1) != SSA_NAME)
1604 return NULL_TREE;
1605
1606 code = gimple_assign_rhs_code (stmt);
1607 rhs_class = gimple_assign_rhs_class (stmt);
1608 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1609
1610 if (rhs_class == GIMPLE_BINARY_RHS)
1611 rhs2 = gimple_assign_rhs2 (stmt);
1612
1613 /* Handle unary rhs and binary rhs with integer constants as second
1614 operand. */
1615
1616 if (rhs_class == GIMPLE_UNARY_RHS
1617 || (rhs_class == GIMPLE_BINARY_RHS
1618 && TREE_CODE (rhs2) == INTEGER_CST))
1619 {
1620 if (code != BIT_AND_EXPR
1621 && code != LSHIFT_EXPR
1622 && code != RSHIFT_EXPR
1623 && code != LROTATE_EXPR
1624 && code != RROTATE_EXPR
1625 && code != NOP_EXPR
1626 && code != CONVERT_EXPR)
1627 return NULL_TREE;
1628
1629 source_expr1 = find_bswap_1 (rhs1_stmt, n, limit - 1);
1630
1631 /* If find_bswap_1 returned NULL STMT is a leaf node and we have
1632 to initialize the symbolic number. */
1633 if (!source_expr1)
1634 {
1635 /* Set up the symbolic number N by setting each byte to a
1636 value between 1 and the byte size of rhs1. The highest
f9a210c9 1637 order byte is set to n->size and the lowest order
1638 byte to 1. */
84cc784c 1639 n->size = TYPE_PRECISION (TREE_TYPE (rhs1));
1640 if (n->size % BITS_PER_UNIT != 0)
1641 return NULL_TREE;
1642 n->size /= BITS_PER_UNIT;
1643 n->n = (sizeof (HOST_WIDEST_INT) < 8 ? 0 :
f9a210c9 1644 (unsigned HOST_WIDEST_INT)0x08070605 << 32 | 0x04030201);
1645
1646 if (n->size < (int)sizeof (HOST_WIDEST_INT))
1647 n->n &= ((unsigned HOST_WIDEST_INT)1 <<
1648 (n->size * BITS_PER_UNIT)) - 1;
84cc784c 1649
1650 source_expr1 = rhs1;
1651 }
1652
1653 switch (code)
1654 {
1655 case BIT_AND_EXPR:
1656 {
1657 int i;
1658 unsigned HOST_WIDEST_INT val = widest_int_cst_value (rhs2);
1659 unsigned HOST_WIDEST_INT tmp = val;
1660
1661 /* Only constants masking full bytes are allowed. */
1662 for (i = 0; i < n->size; i++, tmp >>= BITS_PER_UNIT)
1663 if ((tmp & 0xff) != 0 && (tmp & 0xff) != 0xff)
1664 return NULL_TREE;
1665
1666 n->n &= val;
1667 }
1668 break;
1669 case LSHIFT_EXPR:
1670 case RSHIFT_EXPR:
1671 case LROTATE_EXPR:
1672 case RROTATE_EXPR:
1673 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
1674 return NULL_TREE;
1675 break;
1676 CASE_CONVERT:
1677 {
1678 int type_size;
1679
1680 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1681 if (type_size % BITS_PER_UNIT != 0)
1682 return NULL_TREE;
1683
84cc784c 1684 if (type_size / BITS_PER_UNIT < (int)(sizeof (HOST_WIDEST_INT)))
1685 {
1686 /* If STMT casts to a smaller type mask out the bits not
1687 belonging to the target type. */
84cc784c 1688 n->n &= ((unsigned HOST_WIDEST_INT)1 << type_size) - 1;
1689 }
f9a210c9 1690 n->size = type_size / BITS_PER_UNIT;
84cc784c 1691 }
1692 break;
1693 default:
1694 return NULL_TREE;
1695 };
1696 return verify_symbolic_number_p (n, stmt) ? source_expr1 : NULL;
1697 }
1698
1699 /* Handle binary rhs. */
1700
1701 if (rhs_class == GIMPLE_BINARY_RHS)
1702 {
1703 struct symbolic_number n1, n2;
1704 tree source_expr2;
1705
1706 if (code != BIT_IOR_EXPR)
1707 return NULL_TREE;
1708
1709 if (TREE_CODE (rhs2) != SSA_NAME)
1710 return NULL_TREE;
1711
1712 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1713
1714 switch (code)
1715 {
1716 case BIT_IOR_EXPR:
1717 source_expr1 = find_bswap_1 (rhs1_stmt, &n1, limit - 1);
1718
1719 if (!source_expr1)
1720 return NULL_TREE;
1721
1722 source_expr2 = find_bswap_1 (rhs2_stmt, &n2, limit - 1);
1723
1724 if (source_expr1 != source_expr2
1725 || n1.size != n2.size)
1726 return NULL_TREE;
1727
1728 n->size = n1.size;
1729 n->n = n1.n | n2.n;
1730
1731 if (!verify_symbolic_number_p (n, stmt))
1732 return NULL_TREE;
1733
1734 break;
1735 default:
1736 return NULL_TREE;
1737 }
1738 return source_expr1;
1739 }
1740 return NULL_TREE;
1741}
1742
1743/* Check if STMT completes a bswap implementation consisting of ORs,
1744 SHIFTs and ANDs. Return the source tree expression on which the
1745 byte swap is performed and NULL if no bswap was found. */
1746
1747static tree
1748find_bswap (gimple stmt)
1749{
1750/* The number which the find_bswap result should match in order to
f9a210c9 1751 have a full byte swap. The number is shifted to the left according
1752 to the size of the symbolic number before using it. */
84cc784c 1753 unsigned HOST_WIDEST_INT cmp =
1754 sizeof (HOST_WIDEST_INT) < 8 ? 0 :
f9a210c9 1755 (unsigned HOST_WIDEST_INT)0x01020304 << 32 | 0x05060708;
84cc784c 1756
1757 struct symbolic_number n;
1758 tree source_expr;
0f09ed00 1759 int limit;
84cc784c 1760
9bc1852a 1761 /* The last parameter determines the depth search limit. It usually
1762 correlates directly to the number of bytes to be touched. We
0f09ed00 1763 increase that number by three here in order to also
1764 cover signed -> unsigned converions of the src operand as can be seen
1765 in libgcc, and for initial shift/and operation of the src operand. */
1766 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
1767 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1768 source_expr = find_bswap_1 (stmt, &n, limit);
84cc784c 1769
1770 if (!source_expr)
1771 return NULL_TREE;
1772
1773 /* Zero out the extra bits of N and CMP. */
1774 if (n.size < (int)sizeof (HOST_WIDEST_INT))
1775 {
1776 unsigned HOST_WIDEST_INT mask =
1777 ((unsigned HOST_WIDEST_INT)1 << (n.size * BITS_PER_UNIT)) - 1;
1778
1779 n.n &= mask;
f9a210c9 1780 cmp >>= (sizeof (HOST_WIDEST_INT) - n.size) * BITS_PER_UNIT;
84cc784c 1781 }
1782
1783 /* A complete byte swap should make the symbolic number to start
1784 with the largest digit in the highest order byte. */
1785 if (cmp != n.n)
1786 return NULL_TREE;
1787
1788 return source_expr;
1789}
1790
1791/* Find manual byte swap implementations and turn them into a bswap
1792 builtin invokation. */
1793
1794static unsigned int
1795execute_optimize_bswap (void)
1796{
1797 basic_block bb;
1798 bool bswap32_p, bswap64_p;
1799 bool changed = false;
0af25806 1800 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
84cc784c 1801
1802 if (BITS_PER_UNIT != 8)
1803 return 0;
1804
1805 if (sizeof (HOST_WIDEST_INT) < 8)
1806 return 0;
1807
b9a16870 1808 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
d6bf3b14 1809 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
b9a16870 1810 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
d6bf3b14 1811 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
3328b1fb 1812 || (bswap32_p && word_mode == SImode)));
84cc784c 1813
1814 if (!bswap32_p && !bswap64_p)
1815 return 0;
1816
0af25806 1817 /* Determine the argument type of the builtins. The code later on
1818 assumes that the return and argument type are the same. */
1819 if (bswap32_p)
1820 {
b9a16870 1821 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
0af25806 1822 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1823 }
1824
1825 if (bswap64_p)
1826 {
b9a16870 1827 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
0af25806 1828 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
1829 }
1830
30c4e60d 1831 memset (&bswap_stats, 0, sizeof (bswap_stats));
1832
84cc784c 1833 FOR_EACH_BB (bb)
1834 {
1835 gimple_stmt_iterator gsi;
1836
0ec31268 1837 /* We do a reverse scan for bswap patterns to make sure we get the
1838 widest match. As bswap pattern matching doesn't handle
1839 previously inserted smaller bswap replacements as sub-
1840 patterns, the wider variant wouldn't be detected. */
1841 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
84cc784c 1842 {
1843 gimple stmt = gsi_stmt (gsi);
0af25806 1844 tree bswap_src, bswap_type;
1845 tree bswap_tmp;
84cc784c 1846 tree fndecl = NULL_TREE;
1847 int type_size;
1848 gimple call;
1849
1850 if (!is_gimple_assign (stmt)
1851 || gimple_assign_rhs_code (stmt) != BIT_IOR_EXPR)
1852 continue;
1853
1854 type_size = TYPE_PRECISION (gimple_expr_type (stmt));
1855
1856 switch (type_size)
1857 {
1858 case 32:
1859 if (bswap32_p)
0af25806 1860 {
b9a16870 1861 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
0af25806 1862 bswap_type = bswap32_type;
1863 }
84cc784c 1864 break;
1865 case 64:
1866 if (bswap64_p)
0af25806 1867 {
b9a16870 1868 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
0af25806 1869 bswap_type = bswap64_type;
1870 }
84cc784c 1871 break;
1872 default:
1873 continue;
1874 }
1875
1876 if (!fndecl)
1877 continue;
1878
1879 bswap_src = find_bswap (stmt);
1880
1881 if (!bswap_src)
1882 continue;
1883
1884 changed = true;
30c4e60d 1885 if (type_size == 32)
1886 bswap_stats.found_32bit++;
1887 else
1888 bswap_stats.found_64bit++;
0af25806 1889
1890 bswap_tmp = bswap_src;
1891
1892 /* Convert the src expression if necessary. */
1893 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1894 {
1895 gimple convert_stmt;
1896
1897 bswap_tmp = create_tmp_var (bswap_type, "bswapsrc");
1898 add_referenced_var (bswap_tmp);
1899 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1900
1901 convert_stmt = gimple_build_assign_with_ops (
1902 CONVERT_EXPR, bswap_tmp, bswap_src, NULL);
1903 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
1904 }
1905
1906 call = gimple_build_call (fndecl, 1, bswap_tmp);
1907
1908 bswap_tmp = gimple_assign_lhs (stmt);
1909
1910 /* Convert the result if necessary. */
1911 if (!useless_type_conversion_p (TREE_TYPE (bswap_tmp), bswap_type))
1912 {
1913 gimple convert_stmt;
1914
1915 bswap_tmp = create_tmp_var (bswap_type, "bswapdst");
1916 add_referenced_var (bswap_tmp);
1917 bswap_tmp = make_ssa_name (bswap_tmp, NULL);
1918 convert_stmt = gimple_build_assign_with_ops (
1919 CONVERT_EXPR, gimple_assign_lhs (stmt), bswap_tmp, NULL);
1920 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
1921 }
1922
1923 gimple_call_set_lhs (call, bswap_tmp);
84cc784c 1924
1925 if (dump_file)
1926 {
1927 fprintf (dump_file, "%d bit bswap implementation found at: ",
1928 (int)type_size);
1929 print_gimple_stmt (dump_file, stmt, 0, 0);
1930 }
1931
1932 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
1933 gsi_remove (&gsi, true);
1934 }
1935 }
1936
30c4e60d 1937 statistics_counter_event (cfun, "32-bit bswap implementations found",
1938 bswap_stats.found_32bit);
1939 statistics_counter_event (cfun, "64-bit bswap implementations found",
1940 bswap_stats.found_64bit);
1941
771e2890 1942 return (changed ? TODO_update_ssa | TODO_verify_ssa
84cc784c 1943 | TODO_verify_stmts : 0);
1944}
1945
1946static bool
1947gate_optimize_bswap (void)
1948{
1949 return flag_expensive_optimizations && optimize;
1950}
1951
1952struct gimple_opt_pass pass_optimize_bswap =
1953{
1954 {
1955 GIMPLE_PASS,
1956 "bswap", /* name */
1957 gate_optimize_bswap, /* gate */
1958 execute_optimize_bswap, /* execute */
1959 NULL, /* sub */
1960 NULL, /* next */
1961 0, /* static_pass_number */
1962 TV_NONE, /* tv_id */
1963 PROP_ssa, /* properties_required */
1964 0, /* properties_provided */
1965 0, /* properties_destroyed */
1966 0, /* todo_flags_start */
1967 0 /* todo_flags_finish */
1968 }
1969};
62be004c 1970
0989f516 1971/* Return true if RHS is a suitable operand for a widening multiplication,
1972 assuming a target type of TYPE.
7e4c867e 1973 There are two cases:
1974
aff5fb4d 1975 - RHS makes some value at least twice as wide. Store that value
1976 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
7e4c867e 1977
1978 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
1979 but leave *TYPE_OUT untouched. */
00f4f705 1980
1981static bool
0989f516 1982is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
1983 tree *new_rhs_out)
7e4c867e 1984{
1985 gimple stmt;
0989f516 1986 tree type1, rhs1;
7e4c867e 1987 enum tree_code rhs_code;
1988
1989 if (TREE_CODE (rhs) == SSA_NAME)
1990 {
7e4c867e 1991 stmt = SSA_NAME_DEF_STMT (rhs);
0989f516 1992 if (is_gimple_assign (stmt))
1993 {
1994 rhs_code = gimple_assign_rhs_code (stmt);
1995 if (TREE_CODE (type) == INTEGER_TYPE
1996 ? !CONVERT_EXPR_CODE_P (rhs_code)
1997 : rhs_code != FIXED_CONVERT_EXPR)
1998 rhs1 = rhs;
1999 else
ffebd9c5 2000 {
2001 rhs1 = gimple_assign_rhs1 (stmt);
2002
2003 if (TREE_CODE (rhs1) == INTEGER_CST)
2004 {
2005 *new_rhs_out = rhs1;
2006 *type_out = NULL;
2007 return true;
2008 }
2009 }
0989f516 2010 }
2011 else
2012 rhs1 = rhs;
7e4c867e 2013
7e4c867e 2014 type1 = TREE_TYPE (rhs1);
0989f516 2015
7e4c867e 2016 if (TREE_CODE (type1) != TREE_CODE (type)
aff5fb4d 2017 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
7e4c867e 2018 return false;
2019
2020 *new_rhs_out = rhs1;
2021 *type_out = type1;
2022 return true;
2023 }
2024
2025 if (TREE_CODE (rhs) == INTEGER_CST)
2026 {
2027 *new_rhs_out = rhs;
2028 *type_out = NULL;
2029 return true;
2030 }
2031
2032 return false;
2033}
2034
0989f516 2035/* Return true if STMT performs a widening multiplication, assuming the
2036 output type is TYPE. If so, store the unwidened types of the operands
2037 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2038 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2039 and *TYPE2_OUT would give the operands of the multiplication. */
7e4c867e 2040
2041static bool
0989f516 2042is_widening_mult_p (tree type, gimple stmt,
7e4c867e 2043 tree *type1_out, tree *rhs1_out,
2044 tree *type2_out, tree *rhs2_out)
00f4f705 2045{
7e4c867e 2046 if (TREE_CODE (type) != INTEGER_TYPE
2047 && TREE_CODE (type) != FIXED_POINT_TYPE)
2048 return false;
00f4f705 2049
0989f516 2050 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2051 rhs1_out))
00f4f705 2052 return false;
2053
0989f516 2054 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2055 rhs2_out))
7e4c867e 2056 return false;
00f4f705 2057
7e4c867e 2058 if (*type1_out == NULL)
00f4f705 2059 {
7e4c867e 2060 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
00f4f705 2061 return false;
7e4c867e 2062 *type1_out = *type2_out;
00f4f705 2063 }
00f4f705 2064
7e4c867e 2065 if (*type2_out == NULL)
00f4f705 2066 {
7e4c867e 2067 if (!int_fits_type_p (*rhs2_out, *type1_out))
00f4f705 2068 return false;
7e4c867e 2069 *type2_out = *type1_out;
00f4f705 2070 }
00f4f705 2071
287c271c 2072 /* Ensure that the larger of the two operands comes first. */
2073 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2074 {
2075 tree tmp;
2076 tmp = *type1_out;
2077 *type1_out = *type2_out;
2078 *type2_out = tmp;
2079 tmp = *rhs1_out;
2080 *rhs1_out = *rhs2_out;
2081 *rhs2_out = tmp;
2082 }
aff5fb4d 2083
7e4c867e 2084 return true;
2085}
00f4f705 2086
7e4c867e 2087/* Process a single gimple statement STMT, which has a MULT_EXPR as
2088 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2089 value is true iff we converted the statement. */
2090
2091static bool
aff5fb4d 2092convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
7e4c867e 2093{
3f2ab719 2094 tree lhs, rhs1, rhs2, type, type1, type2, tmp = NULL;
7e4c867e 2095 enum insn_code handler;
aff5fb4d 2096 enum machine_mode to_mode, from_mode, actual_mode;
5a574e8b 2097 optab op;
aff5fb4d 2098 int actual_precision;
2099 location_t loc = gimple_location (stmt);
3f2ab719 2100 bool from_unsigned1, from_unsigned2;
7e4c867e 2101
2102 lhs = gimple_assign_lhs (stmt);
2103 type = TREE_TYPE (lhs);
2104 if (TREE_CODE (type) != INTEGER_TYPE)
00f4f705 2105 return false;
2106
0989f516 2107 if (!is_widening_mult_p (type, stmt, &type1, &rhs1, &type2, &rhs2))
00f4f705 2108 return false;
2109
5a574e8b 2110 to_mode = TYPE_MODE (type);
2111 from_mode = TYPE_MODE (type1);
3f2ab719 2112 from_unsigned1 = TYPE_UNSIGNED (type1);
2113 from_unsigned2 = TYPE_UNSIGNED (type2);
5a574e8b 2114
3f2ab719 2115 if (from_unsigned1 && from_unsigned2)
5a574e8b 2116 op = umul_widen_optab;
3f2ab719 2117 else if (!from_unsigned1 && !from_unsigned2)
5a574e8b 2118 op = smul_widen_optab;
00f4f705 2119 else
5a574e8b 2120 op = usmul_widen_optab;
2121
aff5fb4d 2122 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2123 0, &actual_mode);
7e4c867e 2124
2125 if (handler == CODE_FOR_nothing)
3f2ab719 2126 {
2127 if (op != smul_widen_optab)
2128 {
22ffd684 2129 /* We can use a signed multiply with unsigned types as long as
2130 there is a wider mode to use, or it is the smaller of the two
2131 types that is unsigned. Note that type1 >= type2, always. */
2132 if ((TYPE_UNSIGNED (type1)
2133 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2134 || (TYPE_UNSIGNED (type2)
2135 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2136 {
2137 from_mode = GET_MODE_WIDER_MODE (from_mode);
2138 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2139 return false;
2140 }
3f2ab719 2141
2142 op = smul_widen_optab;
2143 handler = find_widening_optab_handler_and_mode (op, to_mode,
2144 from_mode, 0,
2145 &actual_mode);
2146
2147 if (handler == CODE_FOR_nothing)
2148 return false;
2149
2150 from_unsigned1 = from_unsigned2 = false;
2151 }
2152 else
2153 return false;
2154 }
7e4c867e 2155
aff5fb4d 2156 /* Ensure that the inputs to the handler are in the correct precison
2157 for the opcode. This will be the full mode size. */
2158 actual_precision = GET_MODE_PRECISION (actual_mode);
3f2ab719 2159 if (actual_precision != TYPE_PRECISION (type1)
2160 || from_unsigned1 != TYPE_UNSIGNED (type1))
aff5fb4d 2161 {
2162 tmp = create_tmp_var (build_nonstandard_integer_type
3f2ab719 2163 (actual_precision, from_unsigned1),
aff5fb4d 2164 NULL);
2165 rhs1 = build_and_insert_cast (gsi, loc, tmp, rhs1);
3f2ab719 2166 }
2167 if (actual_precision != TYPE_PRECISION (type2)
2168 || from_unsigned2 != TYPE_UNSIGNED (type2))
2169 {
aff5fb4d 2170 /* Reuse the same type info, if possible. */
3f2ab719 2171 if (!tmp || from_unsigned1 != from_unsigned2)
aff5fb4d 2172 tmp = create_tmp_var (build_nonstandard_integer_type
3f2ab719 2173 (actual_precision, from_unsigned2),
aff5fb4d 2174 NULL);
2175 rhs2 = build_and_insert_cast (gsi, loc, tmp, rhs2);
2176 }
2177
ffebd9c5 2178 /* Handle constants. */
2179 if (TREE_CODE (rhs1) == INTEGER_CST)
2180 rhs1 = fold_convert (type1, rhs1);
2181 if (TREE_CODE (rhs2) == INTEGER_CST)
2182 rhs2 = fold_convert (type2, rhs2);
2183
aff5fb4d 2184 gimple_assign_set_rhs1 (stmt, rhs1);
2185 gimple_assign_set_rhs2 (stmt, rhs2);
00f4f705 2186 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2187 update_stmt (stmt);
30c4e60d 2188 widen_mul_stats.widen_mults_inserted++;
00f4f705 2189 return true;
2190}
2191
2192/* Process a single gimple statement STMT, which is found at the
2193 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2194 rhs (given by CODE), and try to convert it into a
2195 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2196 is true iff we converted the statement. */
2197
2198static bool
2199convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2200 enum tree_code code)
2201{
2202 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
07ea3e5c 2203 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
3f2ab719 2204 tree type, type1, type2, optype, tmp = NULL;
00f4f705 2205 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2206 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2207 optab this_optab;
2208 enum tree_code wmult_code;
aff5fb4d 2209 enum insn_code handler;
2210 enum machine_mode to_mode, from_mode, actual_mode;
2211 location_t loc = gimple_location (stmt);
2212 int actual_precision;
3f2ab719 2213 bool from_unsigned1, from_unsigned2;
00f4f705 2214
2215 lhs = gimple_assign_lhs (stmt);
2216 type = TREE_TYPE (lhs);
7e4c867e 2217 if (TREE_CODE (type) != INTEGER_TYPE
2218 && TREE_CODE (type) != FIXED_POINT_TYPE)
00f4f705 2219 return false;
2220
2221 if (code == MINUS_EXPR)
2222 wmult_code = WIDEN_MULT_MINUS_EXPR;
2223 else
2224 wmult_code = WIDEN_MULT_PLUS_EXPR;
2225
00f4f705 2226 rhs1 = gimple_assign_rhs1 (stmt);
2227 rhs2 = gimple_assign_rhs2 (stmt);
2228
2229 if (TREE_CODE (rhs1) == SSA_NAME)
2230 {
2231 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2232 if (is_gimple_assign (rhs1_stmt))
2233 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2234 }
00f4f705 2235
2236 if (TREE_CODE (rhs2) == SSA_NAME)
2237 {
2238 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2239 if (is_gimple_assign (rhs2_stmt))
2240 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2241 }
00f4f705 2242
07ea3e5c 2243 /* Allow for one conversion statement between the multiply
2244 and addition/subtraction statement. If there are more than
2245 one conversions then we assume they would invalidate this
2246 transformation. If that's not the case then they should have
2247 been folded before now. */
2248 if (CONVERT_EXPR_CODE_P (rhs1_code))
2249 {
2250 conv1_stmt = rhs1_stmt;
2251 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2252 if (TREE_CODE (rhs1) == SSA_NAME)
2253 {
2254 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2255 if (is_gimple_assign (rhs1_stmt))
2256 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2257 }
2258 else
2259 return false;
2260 }
2261 if (CONVERT_EXPR_CODE_P (rhs2_code))
2262 {
2263 conv2_stmt = rhs2_stmt;
2264 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2265 if (TREE_CODE (rhs2) == SSA_NAME)
2266 {
2267 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2268 if (is_gimple_assign (rhs2_stmt))
2269 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2270 }
2271 else
2272 return false;
2273 }
2274
aff5fb4d 2275 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2276 is_widening_mult_p, but we still need the rhs returns.
2277
2278 It might also appear that it would be sufficient to use the existing
2279 operands of the widening multiply, but that would limit the choice of
2280 multiply-and-accumulate instructions. */
2281 if (code == PLUS_EXPR
2282 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
00f4f705 2283 {
0989f516 2284 if (!is_widening_mult_p (type, rhs1_stmt, &type1, &mult_rhs1,
7e4c867e 2285 &type2, &mult_rhs2))
00f4f705 2286 return false;
7e4c867e 2287 add_rhs = rhs2;
07ea3e5c 2288 conv_stmt = conv1_stmt;
00f4f705 2289 }
aff5fb4d 2290 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
00f4f705 2291 {
0989f516 2292 if (!is_widening_mult_p (type, rhs2_stmt, &type1, &mult_rhs1,
7e4c867e 2293 &type2, &mult_rhs2))
00f4f705 2294 return false;
7e4c867e 2295 add_rhs = rhs1;
07ea3e5c 2296 conv_stmt = conv2_stmt;
00f4f705 2297 }
00f4f705 2298 else
2299 return false;
2300
aff5fb4d 2301 to_mode = TYPE_MODE (type);
2302 from_mode = TYPE_MODE (type1);
3f2ab719 2303 from_unsigned1 = TYPE_UNSIGNED (type1);
2304 from_unsigned2 = TYPE_UNSIGNED (type2);
aff5fb4d 2305
3f2ab719 2306 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2307 if (from_unsigned1 != from_unsigned2)
2308 {
22ffd684 2309 /* We can use a signed multiply with unsigned types as long as
2310 there is a wider mode to use, or it is the smaller of the two
2311 types that is unsigned. Note that type1 >= type2, always. */
2312 if ((from_unsigned1
2313 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2314 || (from_unsigned2
2315 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3f2ab719 2316 {
22ffd684 2317 from_mode = GET_MODE_WIDER_MODE (from_mode);
2318 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2319 return false;
3f2ab719 2320 }
22ffd684 2321
2322 from_unsigned1 = from_unsigned2 = false;
3f2ab719 2323 }
815a0224 2324
07ea3e5c 2325 /* If there was a conversion between the multiply and addition
2326 then we need to make sure it fits a multiply-and-accumulate.
2327 The should be a single mode change which does not change the
2328 value. */
2329 if (conv_stmt)
2330 {
3f2ab719 2331 /* We use the original, unmodified data types for this. */
07ea3e5c 2332 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2333 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2334 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2335 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2336
2337 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2338 {
2339 /* Conversion is a truncate. */
2340 if (TYPE_PRECISION (to_type) < data_size)
2341 return false;
2342 }
2343 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2344 {
2345 /* Conversion is an extend. Check it's the right sort. */
2346 if (TYPE_UNSIGNED (from_type) != is_unsigned
2347 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2348 return false;
2349 }
2350 /* else convert is a no-op for our purposes. */
2351 }
2352
815a0224 2353 /* Verify that the machine can perform a widening multiply
2354 accumulate in this mode/signedness combination, otherwise
2355 this transformation is likely to pessimize code. */
3f2ab719 2356 optype = build_nonstandard_integer_type (from_mode, from_unsigned1);
2357 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
aff5fb4d 2358 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2359 from_mode, 0, &actual_mode);
2360
2361 if (handler == CODE_FOR_nothing)
815a0224 2362 return false;
2363
aff5fb4d 2364 /* Ensure that the inputs to the handler are in the correct precison
2365 for the opcode. This will be the full mode size. */
2366 actual_precision = GET_MODE_PRECISION (actual_mode);
3f2ab719 2367 if (actual_precision != TYPE_PRECISION (type1)
2368 || from_unsigned1 != TYPE_UNSIGNED (type1))
aff5fb4d 2369 {
2370 tmp = create_tmp_var (build_nonstandard_integer_type
3f2ab719 2371 (actual_precision, from_unsigned1),
aff5fb4d 2372 NULL);
aff5fb4d 2373 mult_rhs1 = build_and_insert_cast (gsi, loc, tmp, mult_rhs1);
3f2ab719 2374 }
2375 if (actual_precision != TYPE_PRECISION (type2)
2376 || from_unsigned2 != TYPE_UNSIGNED (type2))
2377 {
2378 if (!tmp || from_unsigned1 != from_unsigned2)
2379 tmp = create_tmp_var (build_nonstandard_integer_type
2380 (actual_precision, from_unsigned2),
2381 NULL);
aff5fb4d 2382 mult_rhs2 = build_and_insert_cast (gsi, loc, tmp, mult_rhs2);
2383 }
00f4f705 2384
12421545 2385 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
2386 add_rhs = build_and_insert_cast (gsi, loc, create_tmp_var (type, NULL),
2387 add_rhs);
2388
ffebd9c5 2389 /* Handle constants. */
2390 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
d5a3bb10 2391 mult_rhs1 = fold_convert (type1, mult_rhs1);
ffebd9c5 2392 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
d5a3bb10 2393 mult_rhs2 = fold_convert (type2, mult_rhs2);
ffebd9c5 2394
aff5fb4d 2395 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
00f4f705 2396 add_rhs);
2397 update_stmt (gsi_stmt (*gsi));
30c4e60d 2398 widen_mul_stats.maccs_inserted++;
00f4f705 2399 return true;
2400}
2401
15dbdc8f 2402/* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2403 with uses in additions and subtractions to form fused multiply-add
2404 operations. Returns true if successful and MUL_STMT should be removed. */
b9be572e 2405
2406static bool
15dbdc8f 2407convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
b9be572e 2408{
15dbdc8f 2409 tree mul_result = gimple_get_lhs (mul_stmt);
b9be572e 2410 tree type = TREE_TYPE (mul_result);
44579526 2411 gimple use_stmt, neguse_stmt, fma_stmt;
b9be572e 2412 use_operand_p use_p;
2413 imm_use_iterator imm_iter;
2414
2415 if (FLOAT_TYPE_P (type)
2416 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2417 return false;
2418
2419 /* We don't want to do bitfield reduction ops. */
2420 if (INTEGRAL_TYPE_P (type)
2421 && (TYPE_PRECISION (type)
2422 != GET_MODE_PRECISION (TYPE_MODE (type))))
2423 return false;
2424
2425 /* If the target doesn't support it, don't generate it. We assume that
2426 if fma isn't available then fms, fnma or fnms are not either. */
2427 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2428 return false;
2429
2430 /* Make sure that the multiplication statement becomes dead after
2431 the transformation, thus that all uses are transformed to FMAs.
2432 This means we assume that an FMA operation has the same cost
2433 as an addition. */
2434 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2435 {
2436 enum tree_code use_code;
44579526 2437 tree result = mul_result;
2438 bool negate_p = false;
b9be572e 2439
2440 use_stmt = USE_STMT (use_p);
2441
17a2c727 2442 if (is_gimple_debug (use_stmt))
2443 continue;
2444
b9be572e 2445 /* For now restrict this operations to single basic blocks. In theory
2446 we would want to support sinking the multiplication in
2447 m = a*b;
2448 if ()
2449 ma = m + c;
2450 else
2451 d = m;
2452 to form a fma in the then block and sink the multiplication to the
2453 else block. */
2454 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2455 return false;
2456
44579526 2457 if (!is_gimple_assign (use_stmt))
b9be572e 2458 return false;
2459
44579526 2460 use_code = gimple_assign_rhs_code (use_stmt);
2461
2462 /* A negate on the multiplication leads to FNMA. */
2463 if (use_code == NEGATE_EXPR)
2464 {
805ad414 2465 ssa_op_iter iter;
5715c09b 2466 use_operand_p usep;
805ad414 2467
44579526 2468 result = gimple_assign_lhs (use_stmt);
2469
2470 /* Make sure the negate statement becomes dead with this
2471 single transformation. */
2472 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2473 &use_p, &neguse_stmt))
2474 return false;
2475
805ad414 2476 /* Make sure the multiplication isn't also used on that stmt. */
5715c09b 2477 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2478 if (USE_FROM_PTR (usep) == mul_result)
805ad414 2479 return false;
2480
44579526 2481 /* Re-validate. */
2482 use_stmt = neguse_stmt;
2483 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2484 return false;
2485 if (!is_gimple_assign (use_stmt))
2486 return false;
2487
2488 use_code = gimple_assign_rhs_code (use_stmt);
2489 negate_p = true;
2490 }
b9be572e 2491
44579526 2492 switch (use_code)
2493 {
2494 case MINUS_EXPR:
8a9d0572 2495 if (gimple_assign_rhs2 (use_stmt) == result)
2496 negate_p = !negate_p;
2497 break;
44579526 2498 case PLUS_EXPR:
44579526 2499 break;
44579526 2500 default:
2501 /* FMA can only be formed from PLUS and MINUS. */
2502 return false;
2503 }
b9be572e 2504
44579526 2505 /* We can't handle a * b + a * b. */
2506 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
2507 return false;
8a9d0572 2508
2509 /* While it is possible to validate whether or not the exact form
2510 that we've recognized is available in the backend, the assumption
2511 is that the transformation is never a loss. For instance, suppose
2512 the target only has the plain FMA pattern available. Consider
2513 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
2514 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
2515 still have 3 operations, but in the FMA form the two NEGs are
2516 independant and could be run in parallel. */
b9be572e 2517 }
2518
2519 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2520 {
b9be572e 2521 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
17a2c727 2522 enum tree_code use_code;
15dbdc8f 2523 tree addop, mulop1 = op1, result = mul_result;
44579526 2524 bool negate_p = false;
b9be572e 2525
17a2c727 2526 if (is_gimple_debug (use_stmt))
2527 continue;
2528
2529 use_code = gimple_assign_rhs_code (use_stmt);
44579526 2530 if (use_code == NEGATE_EXPR)
2531 {
2532 result = gimple_assign_lhs (use_stmt);
2533 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2534 gsi_remove (&gsi, true);
2535 release_defs (use_stmt);
2536
2537 use_stmt = neguse_stmt;
2538 gsi = gsi_for_stmt (use_stmt);
2539 use_code = gimple_assign_rhs_code (use_stmt);
2540 negate_p = true;
2541 }
2542
2543 if (gimple_assign_rhs1 (use_stmt) == result)
b9be572e 2544 {
2545 addop = gimple_assign_rhs2 (use_stmt);
2546 /* a * b - c -> a * b + (-c) */
2547 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2548 addop = force_gimple_operand_gsi (&gsi,
2549 build1 (NEGATE_EXPR,
2550 type, addop),
2551 true, NULL_TREE, true,
2552 GSI_SAME_STMT);
2553 }
2554 else
2555 {
2556 addop = gimple_assign_rhs1 (use_stmt);
2557 /* a - b * c -> (-b) * c + a */
2558 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
44579526 2559 negate_p = !negate_p;
b9be572e 2560 }
2561
44579526 2562 if (negate_p)
2563 mulop1 = force_gimple_operand_gsi (&gsi,
2564 build1 (NEGATE_EXPR,
2565 type, mulop1),
2566 true, NULL_TREE, true,
2567 GSI_SAME_STMT);
2568
b9be572e 2569 fma_stmt = gimple_build_assign_with_ops3 (FMA_EXPR,
2570 gimple_assign_lhs (use_stmt),
15dbdc8f 2571 mulop1, op2,
b9be572e 2572 addop);
2573 gsi_replace (&gsi, fma_stmt, true);
30c4e60d 2574 widen_mul_stats.fmas_inserted++;
b9be572e 2575 }
2576
2577 return true;
2578}
2579
62be004c 2580/* Find integer multiplications where the operands are extended from
2581 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
2582 where appropriate. */
2583
2584static unsigned int
2585execute_optimize_widening_mul (void)
2586{
62be004c 2587 basic_block bb;
15dbdc8f 2588 bool cfg_changed = false;
62be004c 2589
30c4e60d 2590 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
2591
62be004c 2592 FOR_EACH_BB (bb)
2593 {
2594 gimple_stmt_iterator gsi;
2595
b9be572e 2596 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
62be004c 2597 {
2598 gimple stmt = gsi_stmt (gsi);
00f4f705 2599 enum tree_code code;
62be004c 2600
b9be572e 2601 if (is_gimple_assign (stmt))
2602 {
2603 code = gimple_assign_rhs_code (stmt);
2604 switch (code)
2605 {
2606 case MULT_EXPR:
aff5fb4d 2607 if (!convert_mult_to_widen (stmt, &gsi)
15dbdc8f 2608 && convert_mult_to_fma (stmt,
2609 gimple_assign_rhs1 (stmt),
2610 gimple_assign_rhs2 (stmt)))
b9be572e 2611 {
2612 gsi_remove (&gsi, true);
2613 release_defs (stmt);
2614 continue;
2615 }
2616 break;
2617
2618 case PLUS_EXPR:
2619 case MINUS_EXPR:
2620 convert_plusminus_to_widen (&gsi, stmt, code);
2621 break;
62be004c 2622
b9be572e 2623 default:;
2624 }
2625 }
d4af184a 2626 else if (is_gimple_call (stmt)
2627 && gimple_call_lhs (stmt))
15dbdc8f 2628 {
2629 tree fndecl = gimple_call_fndecl (stmt);
2630 if (fndecl
2631 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
2632 {
2633 switch (DECL_FUNCTION_CODE (fndecl))
2634 {
2635 case BUILT_IN_POWF:
2636 case BUILT_IN_POW:
2637 case BUILT_IN_POWL:
2638 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
2639 && REAL_VALUES_EQUAL
2640 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
2641 dconst2)
2642 && convert_mult_to_fma (stmt,
2643 gimple_call_arg (stmt, 0),
2644 gimple_call_arg (stmt, 0)))
2645 {
6716f635 2646 unlink_stmt_vdef (stmt);
15dbdc8f 2647 gsi_remove (&gsi, true);
2648 release_defs (stmt);
2649 if (gimple_purge_dead_eh_edges (bb))
2650 cfg_changed = true;
2651 continue;
2652 }
2653 break;
2654
2655 default:;
2656 }
2657 }
2658 }
b9be572e 2659 gsi_next (&gsi);
62be004c 2660 }
2661 }
00f4f705 2662
30c4e60d 2663 statistics_counter_event (cfun, "widening multiplications inserted",
2664 widen_mul_stats.widen_mults_inserted);
2665 statistics_counter_event (cfun, "widening maccs inserted",
2666 widen_mul_stats.maccs_inserted);
2667 statistics_counter_event (cfun, "fused multiply-adds inserted",
2668 widen_mul_stats.fmas_inserted);
2669
15dbdc8f 2670 return cfg_changed ? TODO_cleanup_cfg : 0;
62be004c 2671}
2672
2673static bool
2674gate_optimize_widening_mul (void)
2675{
2676 return flag_expensive_optimizations && optimize;
2677}
2678
2679struct gimple_opt_pass pass_optimize_widening_mul =
2680{
2681 {
2682 GIMPLE_PASS,
2683 "widening_mul", /* name */
2684 gate_optimize_widening_mul, /* gate */
2685 execute_optimize_widening_mul, /* execute */
2686 NULL, /* sub */
2687 NULL, /* next */
2688 0, /* static_pass_number */
2689 TV_NONE, /* tv_id */
2690 PROP_ssa, /* properties_required */
2691 0, /* properties_provided */
2692 0, /* properties_destroyed */
2693 0, /* todo_flags_start */
b9be572e 2694 TODO_verify_ssa
2695 | TODO_verify_stmts
b9be572e 2696 | TODO_update_ssa /* todo_flags_finish */
62be004c 2697 }
2698};