]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-math-opts.c
Use combined_fn in tree-ssa-reassoc.c
[thirdparty/gcc.git] / gcc / tree-ssa-math-opts.c
CommitLineData
abacb398 1/* Global, SSA-based optimizations using mathematical identities.
d353bf18 2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
48e1416a 3
abacb398 4This file is part of GCC.
48e1416a 5
abacb398 6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8c4c00c1 8Free Software Foundation; either version 3, or (at your option) any
abacb398 9later version.
48e1416a 10
abacb398 11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
48e1416a 15
abacb398 16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
abacb398 19
20/* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
ac70caad 37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
abacb398 86
87#include "config.h"
88#include "system.h"
89#include "coretypes.h"
9ef16211 90#include "backend.h"
7c29e30e 91#include "target.h"
92#include "rtl.h"
9ef16211 93#include "tree.h"
94#include "gimple.h"
7c29e30e 95#include "predict.h"
96#include "alloc-pool.h"
97#include "tree-pass.h"
9ef16211 98#include "ssa.h"
7c29e30e 99#include "optabs-tree.h"
100#include "gimple-pretty-print.h"
b20a8bb4 101#include "alias.h"
b20a8bb4 102#include "fold-const.h"
bc61cadb 103#include "gimple-fold.h"
dcf1a1ec 104#include "gimple-iterator.h"
470d5bb5 105#include "gimplify.h"
e795d6e1 106#include "gimplify-me.h"
9ed99284 107#include "stor-layout.h"
073c1fd5 108#include "tree-cfg.h"
073c1fd5 109#include "tree-dfa.h"
69ee5dbb 110#include "tree-ssa.h"
f7715905 111#include "builtins.h"
c3206272 112#include "params.h"
ac70caad 113
114/* This structure represents one basic block that either computes a
115 division, or is a common dominator for basic block that compute a
116 division. */
117struct occurrence {
118 /* The basic block represented by this structure. */
119 basic_block bb;
120
121 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
122 inserted in BB. */
123 tree recip_def;
124
75a70cf9 125 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
ac70caad 126 was inserted in BB. */
42acab1c 127 gimple *recip_def_stmt;
ac70caad 128
129 /* Pointer to a list of "struct occurrence"s for blocks dominated
130 by BB. */
131 struct occurrence *children;
132
133 /* Pointer to the next "struct occurrence"s in the list of blocks
134 sharing a common dominator. */
135 struct occurrence *next;
136
137 /* The number of divisions that are in BB before compute_merit. The
138 number of divisions that are in BB or post-dominate it after
139 compute_merit. */
140 int num_divisions;
141
142 /* True if the basic block has a division, false if it is a common
143 dominator for basic blocks that do. If it is false and trapping
144 math is active, BB is not a candidate for inserting a reciprocal. */
145 bool bb_has_division;
146};
147
30c4e60d 148static struct
149{
150 /* Number of 1.0/X ops inserted. */
151 int rdivs_inserted;
152
153 /* Number of 1.0/FUNC ops inserted. */
154 int rfuncs_inserted;
155} reciprocal_stats;
156
157static struct
158{
159 /* Number of cexpi calls inserted. */
160 int inserted;
161} sincos_stats;
162
163static struct
164{
470d5bb5 165 /* Number of hand-written 16-bit nop / bswaps found. */
f811051b 166 int found_16bit;
167
470d5bb5 168 /* Number of hand-written 32-bit nop / bswaps found. */
30c4e60d 169 int found_32bit;
170
470d5bb5 171 /* Number of hand-written 64-bit nop / bswaps found. */
30c4e60d 172 int found_64bit;
470d5bb5 173} nop_stats, bswap_stats;
30c4e60d 174
175static struct
176{
177 /* Number of widening multiplication ops inserted. */
178 int widen_mults_inserted;
179
180 /* Number of integer multiply-and-accumulate ops inserted. */
181 int maccs_inserted;
182
183 /* Number of fp fused multiply-add ops inserted. */
184 int fmas_inserted;
185} widen_mul_stats;
ac70caad 186
187/* The instance of "struct occurrence" representing the highest
188 interesting block in the dominator tree. */
189static struct occurrence *occ_head;
190
191/* Allocation pool for getting instances of "struct occurrence". */
e16712b1 192static object_allocator<occurrence> *occ_pool;
ac70caad 193
194
195
196/* Allocate and return a new struct occurrence for basic block BB, and
197 whose children list is headed by CHILDREN. */
198static struct occurrence *
199occ_new (basic_block bb, struct occurrence *children)
abacb398 200{
ac70caad 201 struct occurrence *occ;
202
d8e7268c 203 bb->aux = occ = occ_pool->allocate ();
ac70caad 204 memset (occ, 0, sizeof (struct occurrence));
205
206 occ->bb = bb;
207 occ->children = children;
208 return occ;
abacb398 209}
210
ac70caad 211
212/* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
213 list of "struct occurrence"s, one per basic block, having IDOM as
214 their common dominator.
215
216 We try to insert NEW_OCC as deep as possible in the tree, and we also
217 insert any other block that is a common dominator for BB and one
218 block already in the tree. */
219
220static void
221insert_bb (struct occurrence *new_occ, basic_block idom,
222 struct occurrence **p_head)
9e583fac 223{
ac70caad 224 struct occurrence *occ, **p_occ;
9e583fac 225
ac70caad 226 for (p_occ = p_head; (occ = *p_occ) != NULL; )
227 {
228 basic_block bb = new_occ->bb, occ_bb = occ->bb;
229 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
230 if (dom == bb)
231 {
232 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
233 from its list. */
234 *p_occ = occ->next;
235 occ->next = new_occ->children;
236 new_occ->children = occ;
237
238 /* Try the next block (it may as well be dominated by BB). */
239 }
240
241 else if (dom == occ_bb)
242 {
243 /* OCC_BB dominates BB. Tail recurse to look deeper. */
244 insert_bb (new_occ, dom, &occ->children);
245 return;
246 }
247
248 else if (dom != idom)
249 {
250 gcc_assert (!dom->aux);
251
252 /* There is a dominator between IDOM and BB, add it and make
253 two children out of NEW_OCC and OCC. First, remove OCC from
254 its list. */
255 *p_occ = occ->next;
256 new_occ->next = occ;
257 occ->next = NULL;
258
259 /* None of the previous blocks has DOM as a dominator: if we tail
260 recursed, we would reexamine them uselessly. Just switch BB with
261 DOM, and go on looking for blocks dominated by DOM. */
262 new_occ = occ_new (dom, new_occ);
263 }
264
265 else
266 {
267 /* Nothing special, go on with the next element. */
268 p_occ = &occ->next;
269 }
270 }
271
272 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
273 new_occ->next = *p_head;
274 *p_head = new_occ;
275}
276
277/* Register that we found a division in BB. */
278
279static inline void
280register_division_in (basic_block bb)
281{
282 struct occurrence *occ;
283
284 occ = (struct occurrence *) bb->aux;
285 if (!occ)
286 {
287 occ = occ_new (bb, NULL);
34154e27 288 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
ac70caad 289 }
290
291 occ->bb_has_division = true;
292 occ->num_divisions++;
293}
294
295
296/* Compute the number of divisions that postdominate each block in OCC and
297 its children. */
abacb398 298
abacb398 299static void
ac70caad 300compute_merit (struct occurrence *occ)
abacb398 301{
ac70caad 302 struct occurrence *occ_child;
303 basic_block dom = occ->bb;
abacb398 304
ac70caad 305 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
abacb398 306 {
ac70caad 307 basic_block bb;
308 if (occ_child->children)
309 compute_merit (occ_child);
310
311 if (flag_exceptions)
312 bb = single_noncomplex_succ (dom);
313 else
314 bb = dom;
315
316 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
317 occ->num_divisions += occ_child->num_divisions;
318 }
319}
320
321
322/* Return whether USE_STMT is a floating-point division by DEF. */
323static inline bool
42acab1c 324is_division_by (gimple *use_stmt, tree def)
ac70caad 325{
75a70cf9 326 return is_gimple_assign (use_stmt)
327 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
328 && gimple_assign_rhs2 (use_stmt) == def
119368d7 329 /* Do not recognize x / x as valid division, as we are getting
330 confused later by replacing all immediate uses x in such
331 a stmt. */
75a70cf9 332 && gimple_assign_rhs1 (use_stmt) != def;
ac70caad 333}
334
335/* Walk the subset of the dominator tree rooted at OCC, setting the
336 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
337 the given basic block. The field may be left NULL, of course,
338 if it is not possible or profitable to do the optimization.
339
340 DEF_BSI is an iterator pointing at the statement defining DEF.
341 If RECIP_DEF is set, a dominator already has a computation that can
342 be used. */
343
344static void
75a70cf9 345insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
ac70caad 346 tree def, tree recip_def, int threshold)
347{
75a70cf9 348 tree type;
1a91d914 349 gassign *new_stmt;
75a70cf9 350 gimple_stmt_iterator gsi;
ac70caad 351 struct occurrence *occ_child;
352
353 if (!recip_def
354 && (occ->bb_has_division || !flag_trapping_math)
355 && occ->num_divisions >= threshold)
356 {
357 /* Make a variable with the replacement and substitute it. */
358 type = TREE_TYPE (def);
072f7ab1 359 recip_def = create_tmp_reg (type, "reciptmp");
e9cf809e 360 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
361 build_one_cst (type), def);
48e1416a 362
ac70caad 363 if (occ->bb_has_division)
364 {
365 /* Case 1: insert before an existing division. */
75a70cf9 366 gsi = gsi_after_labels (occ->bb);
367 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
368 gsi_next (&gsi);
ac70caad 369
75a70cf9 370 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
ac70caad 371 }
75a70cf9 372 else if (def_gsi && occ->bb == def_gsi->bb)
685b24f5 373 {
ac70caad 374 /* Case 2: insert right after the definition. Note that this will
375 never happen if the definition statement can throw, because in
376 that case the sole successor of the statement's basic block will
377 dominate all the uses as well. */
75a70cf9 378 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
685b24f5 379 }
ac70caad 380 else
381 {
382 /* Case 3: insert in a basic block not containing defs/uses. */
75a70cf9 383 gsi = gsi_after_labels (occ->bb);
384 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
ac70caad 385 }
386
30c4e60d 387 reciprocal_stats.rdivs_inserted++;
388
ac70caad 389 occ->recip_def_stmt = new_stmt;
abacb398 390 }
391
ac70caad 392 occ->recip_def = recip_def;
393 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
75a70cf9 394 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
ac70caad 395}
396
397
398/* Replace the division at USE_P with a multiplication by the reciprocal, if
399 possible. */
400
401static inline void
402replace_reciprocal (use_operand_p use_p)
403{
42acab1c 404 gimple *use_stmt = USE_STMT (use_p);
75a70cf9 405 basic_block bb = gimple_bb (use_stmt);
ac70caad 406 struct occurrence *occ = (struct occurrence *) bb->aux;
407
0bfd8d5c 408 if (optimize_bb_for_speed_p (bb)
409 && occ->recip_def && use_stmt != occ->recip_def_stmt)
ac70caad 410 {
50aacf4c 411 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
75a70cf9 412 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
ac70caad 413 SET_USE (use_p, occ->recip_def);
50aacf4c 414 fold_stmt_inplace (&gsi);
ac70caad 415 update_stmt (use_stmt);
416 }
417}
418
419
420/* Free OCC and return one more "struct occurrence" to be freed. */
421
422static struct occurrence *
423free_bb (struct occurrence *occ)
424{
425 struct occurrence *child, *next;
426
427 /* First get the two pointers hanging off OCC. */
428 next = occ->next;
429 child = occ->children;
430 occ->bb->aux = NULL;
d8e7268c 431 occ_pool->remove (occ);
ac70caad 432
433 /* Now ensure that we don't recurse unless it is necessary. */
434 if (!child)
435 return next;
9e583fac 436 else
ac70caad 437 {
438 while (next)
439 next = free_bb (next);
440
441 return child;
442 }
443}
444
445
446/* Look for floating-point divisions among DEF's uses, and try to
447 replace them by multiplications with the reciprocal. Add
448 as many statements computing the reciprocal as needed.
449
450 DEF must be a GIMPLE register of a floating-point type. */
451
452static void
75a70cf9 453execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
ac70caad 454{
455 use_operand_p use_p;
456 imm_use_iterator use_iter;
457 struct occurrence *occ;
458 int count = 0, threshold;
abacb398 459
ac70caad 460 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
461
462 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
abacb398 463 {
42acab1c 464 gimple *use_stmt = USE_STMT (use_p);
ac70caad 465 if (is_division_by (use_stmt, def))
abacb398 466 {
75a70cf9 467 register_division_in (gimple_bb (use_stmt));
ac70caad 468 count++;
abacb398 469 }
470 }
48e1416a 471
ac70caad 472 /* Do the expensive part only if we can hope to optimize something. */
473 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
474 if (count >= threshold)
475 {
42acab1c 476 gimple *use_stmt;
ac70caad 477 for (occ = occ_head; occ; occ = occ->next)
478 {
479 compute_merit (occ);
75a70cf9 480 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
ac70caad 481 }
482
09aca5bc 483 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
ac70caad 484 {
ac70caad 485 if (is_division_by (use_stmt, def))
09aca5bc 486 {
487 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
488 replace_reciprocal (use_p);
489 }
ac70caad 490 }
491 }
492
493 for (occ = occ_head; occ; )
494 occ = free_bb (occ);
495
496 occ_head = NULL;
abacb398 497}
498
ac70caad 499/* Go through all the floating-point SSA_NAMEs, and call
500 execute_cse_reciprocals_1 on each of them. */
65b0537f 501namespace {
502
503const pass_data pass_data_cse_reciprocals =
504{
505 GIMPLE_PASS, /* type */
506 "recip", /* name */
507 OPTGROUP_NONE, /* optinfo_flags */
65b0537f 508 TV_NONE, /* tv_id */
509 PROP_ssa, /* properties_required */
510 0, /* properties_provided */
511 0, /* properties_destroyed */
512 0, /* todo_flags_start */
8b88439e 513 TODO_update_ssa, /* todo_flags_finish */
65b0537f 514};
515
516class pass_cse_reciprocals : public gimple_opt_pass
517{
518public:
519 pass_cse_reciprocals (gcc::context *ctxt)
520 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
521 {}
522
523 /* opt_pass methods: */
524 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
525 virtual unsigned int execute (function *);
526
527}; // class pass_cse_reciprocals
528
529unsigned int
530pass_cse_reciprocals::execute (function *fun)
abacb398 531{
532 basic_block bb;
51b60a11 533 tree arg;
685b24f5 534
1dc6c44d 535 occ_pool = new object_allocator<occurrence> ("dominators for recip");
685b24f5 536
30c4e60d 537 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
c136ae61 538 calculate_dominance_info (CDI_DOMINATORS);
539 calculate_dominance_info (CDI_POST_DOMINATORS);
ac70caad 540
382ecba7 541 if (flag_checking)
542 FOR_EACH_BB_FN (bb, fun)
543 gcc_assert (!bb->aux);
ac70caad 544
65b0537f 545 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
c6dfe037 546 if (FLOAT_TYPE_P (TREE_TYPE (arg))
ac70caad 547 && is_gimple_reg (arg))
c6dfe037 548 {
65b0537f 549 tree name = ssa_default_def (fun, arg);
c6dfe037 550 if (name)
551 execute_cse_reciprocals_1 (NULL, name);
552 }
51b60a11 553
65b0537f 554 FOR_EACH_BB_FN (bb, fun)
abacb398 555 {
75a70cf9 556 tree def;
abacb398 557
1a91d914 558 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
559 gsi_next (&gsi))
abacb398 560 {
1a91d914 561 gphi *phi = gsi.phi ();
abacb398 562 def = PHI_RESULT (phi);
7c782c9b 563 if (! virtual_operand_p (def)
564 && FLOAT_TYPE_P (TREE_TYPE (def)))
ac70caad 565 execute_cse_reciprocals_1 (NULL, def);
abacb398 566 }
567
1a91d914 568 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
569 gsi_next (&gsi))
abacb398 570 {
42acab1c 571 gimple *stmt = gsi_stmt (gsi);
a0315874 572
75a70cf9 573 if (gimple_has_lhs (stmt)
abacb398 574 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
575 && FLOAT_TYPE_P (TREE_TYPE (def))
51b60a11 576 && TREE_CODE (def) == SSA_NAME)
75a70cf9 577 execute_cse_reciprocals_1 (&gsi, def);
abacb398 578 }
e174638f 579
0bfd8d5c 580 if (optimize_bb_for_size_p (bb))
581 continue;
582
e174638f 583 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
1a91d914 584 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
585 gsi_next (&gsi))
e174638f 586 {
42acab1c 587 gimple *stmt = gsi_stmt (gsi);
e174638f 588 tree fndecl;
589
75a70cf9 590 if (is_gimple_assign (stmt)
591 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
e174638f 592 {
75a70cf9 593 tree arg1 = gimple_assign_rhs2 (stmt);
42acab1c 594 gimple *stmt1;
2cd360b6 595
596 if (TREE_CODE (arg1) != SSA_NAME)
597 continue;
598
599 stmt1 = SSA_NAME_DEF_STMT (arg1);
e174638f 600
75a70cf9 601 if (is_gimple_call (stmt1)
602 && gimple_call_lhs (stmt1)
603 && (fndecl = gimple_call_fndecl (stmt1))
e174638f 604 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
605 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
606 {
607 enum built_in_function code;
774b1cdd 608 bool md_code, fail;
609 imm_use_iterator ui;
610 use_operand_p use_p;
e174638f 611
612 code = DECL_FUNCTION_CODE (fndecl);
2cd360b6 613 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
614
615 fndecl = targetm.builtin_reciprocal (code, md_code, false);
e174638f 616 if (!fndecl)
617 continue;
618
774b1cdd 619 /* Check that all uses of the SSA name are divisions,
620 otherwise replacing the defining statement will do
621 the wrong thing. */
622 fail = false;
623 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
624 {
42acab1c 625 gimple *stmt2 = USE_STMT (use_p);
774b1cdd 626 if (is_gimple_debug (stmt2))
627 continue;
628 if (!is_gimple_assign (stmt2)
629 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
630 || gimple_assign_rhs1 (stmt2) == arg1
631 || gimple_assign_rhs2 (stmt2) != arg1)
632 {
633 fail = true;
634 break;
635 }
636 }
637 if (fail)
638 continue;
639
9a4a3348 640 gimple_replace_ssa_lhs (stmt1, arg1);
0acacf9e 641 gimple_call_set_fndecl (stmt1, fndecl);
e174638f 642 update_stmt (stmt1);
30c4e60d 643 reciprocal_stats.rfuncs_inserted++;
e174638f 644
774b1cdd 645 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
646 {
50aacf4c 647 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
774b1cdd 648 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
50aacf4c 649 fold_stmt_inplace (&gsi);
774b1cdd 650 update_stmt (stmt);
651 }
e174638f 652 }
653 }
654 }
abacb398 655 }
685b24f5 656
65b0537f 657 statistics_counter_event (fun, "reciprocal divs inserted",
30c4e60d 658 reciprocal_stats.rdivs_inserted);
65b0537f 659 statistics_counter_event (fun, "reciprocal functions inserted",
30c4e60d 660 reciprocal_stats.rfuncs_inserted);
661
c136ae61 662 free_dominance_info (CDI_DOMINATORS);
663 free_dominance_info (CDI_POST_DOMINATORS);
d8e7268c 664 delete occ_pool;
2a1990e9 665 return 0;
abacb398 666}
667
cbe8bda8 668} // anon namespace
669
670gimple_opt_pass *
671make_pass_cse_reciprocals (gcc::context *ctxt)
672{
673 return new pass_cse_reciprocals (ctxt);
674}
675
0d424440 676/* Records an occurrence at statement USE_STMT in the vector of trees
a0315874 677 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
0d424440 678 is not yet initialized. Returns true if the occurrence was pushed on
a0315874 679 the vector. Adjusts *TOP_BB to be the basic block dominating all
680 statements in the vector. */
681
682static bool
42acab1c 683maybe_record_sincos (vec<gimple *> *stmts,
684 basic_block *top_bb, gimple *use_stmt)
a0315874 685{
75a70cf9 686 basic_block use_bb = gimple_bb (use_stmt);
a0315874 687 if (*top_bb
688 && (*top_bb == use_bb
689 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
f1f41a6c 690 stmts->safe_push (use_stmt);
a0315874 691 else if (!*top_bb
692 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
693 {
f1f41a6c 694 stmts->safe_push (use_stmt);
a0315874 695 *top_bb = use_bb;
696 }
697 else
698 return false;
699
700 return true;
701}
702
703/* Look for sin, cos and cexpi calls with the same argument NAME and
704 create a single call to cexpi CSEing the result in this case.
705 We first walk over all immediate uses of the argument collecting
706 statements that we can CSE in a vector and in a second pass replace
707 the statement rhs with a REALPART or IMAGPART expression on the
708 result of the cexpi call we insert before the use statement that
709 dominates all other candidates. */
710
4c80086d 711static bool
a0315874 712execute_cse_sincos_1 (tree name)
713{
75a70cf9 714 gimple_stmt_iterator gsi;
a0315874 715 imm_use_iterator use_iter;
75a70cf9 716 tree fndecl, res, type;
42acab1c 717 gimple *def_stmt, *use_stmt, *stmt;
a0315874 718 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
42acab1c 719 auto_vec<gimple *> stmts;
a0315874 720 basic_block top_bb = NULL;
721 int i;
4c80086d 722 bool cfg_changed = false;
a0315874 723
724 type = TREE_TYPE (name);
725 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
726 {
75a70cf9 727 if (gimple_code (use_stmt) != GIMPLE_CALL
728 || !gimple_call_lhs (use_stmt)
729 || !(fndecl = gimple_call_fndecl (use_stmt))
a0315874 730 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
731 continue;
732
733 switch (DECL_FUNCTION_CODE (fndecl))
734 {
735 CASE_FLT_FN (BUILT_IN_COS):
736 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
737 break;
738
739 CASE_FLT_FN (BUILT_IN_SIN):
740 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
741 break;
742
743 CASE_FLT_FN (BUILT_IN_CEXPI):
744 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
745 break;
746
747 default:;
748 }
749 }
750
751 if (seen_cos + seen_sin + seen_cexpi <= 1)
6702d09a 752 return false;
a0315874 753
754 /* Simply insert cexpi at the beginning of top_bb but not earlier than
755 the name def statement. */
756 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
757 if (!fndecl)
4c80086d 758 return false;
75a70cf9 759 stmt = gimple_build_call (fndecl, 1, name);
03d37e4e 760 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
75a70cf9 761 gimple_call_set_lhs (stmt, res);
762
a0315874 763 def_stmt = SSA_NAME_DEF_STMT (name);
8090c12d 764 if (!SSA_NAME_IS_DEFAULT_DEF (name)
75a70cf9 765 && gimple_code (def_stmt) != GIMPLE_PHI
766 && gimple_bb (def_stmt) == top_bb)
a0315874 767 {
75a70cf9 768 gsi = gsi_for_stmt (def_stmt);
769 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
a0315874 770 }
771 else
772 {
75a70cf9 773 gsi = gsi_after_labels (top_bb);
774 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
a0315874 775 }
30c4e60d 776 sincos_stats.inserted++;
a0315874 777
778 /* And adjust the recorded old call sites. */
f1f41a6c 779 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
a0315874 780 {
75a70cf9 781 tree rhs = NULL;
782 fndecl = gimple_call_fndecl (use_stmt);
783
a0315874 784 switch (DECL_FUNCTION_CODE (fndecl))
785 {
786 CASE_FLT_FN (BUILT_IN_COS):
75a70cf9 787 rhs = fold_build1 (REALPART_EXPR, type, res);
a0315874 788 break;
789
790 CASE_FLT_FN (BUILT_IN_SIN):
75a70cf9 791 rhs = fold_build1 (IMAGPART_EXPR, type, res);
a0315874 792 break;
793
794 CASE_FLT_FN (BUILT_IN_CEXPI):
75a70cf9 795 rhs = res;
a0315874 796 break;
797
798 default:;
799 gcc_unreachable ();
800 }
801
75a70cf9 802 /* Replace call with a copy. */
803 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
804
805 gsi = gsi_for_stmt (use_stmt);
4c80086d 806 gsi_replace (&gsi, stmt, true);
807 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
808 cfg_changed = true;
a0315874 809 }
810
4c80086d 811 return cfg_changed;
a0315874 812}
813
e9a6c4bc 814/* To evaluate powi(x,n), the floating point value x raised to the
815 constant integer exponent n, we use a hybrid algorithm that
816 combines the "window method" with look-up tables. For an
817 introduction to exponentiation algorithms and "addition chains",
818 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
819 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
820 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
821 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
822
823/* Provide a default value for POWI_MAX_MULTS, the maximum number of
824 multiplications to inline before calling the system library's pow
825 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
826 so this default never requires calling pow, powf or powl. */
827
828#ifndef POWI_MAX_MULTS
829#define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
830#endif
831
832/* The size of the "optimal power tree" lookup table. All
833 exponents less than this value are simply looked up in the
834 powi_table below. This threshold is also used to size the
835 cache of pseudo registers that hold intermediate results. */
836#define POWI_TABLE_SIZE 256
837
838/* The size, in bits of the window, used in the "window method"
839 exponentiation algorithm. This is equivalent to a radix of
840 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
841#define POWI_WINDOW_SIZE 3
842
843/* The following table is an efficient representation of an
844 "optimal power tree". For each value, i, the corresponding
845 value, j, in the table states than an optimal evaluation
846 sequence for calculating pow(x,i) can be found by evaluating
847 pow(x,j)*pow(x,i-j). An optimal power tree for the first
848 100 integers is given in Knuth's "Seminumerical algorithms". */
849
850static const unsigned char powi_table[POWI_TABLE_SIZE] =
851 {
852 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
853 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
854 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
855 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
856 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
857 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
858 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
859 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
860 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
861 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
862 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
863 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
864 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
865 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
866 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
867 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
868 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
869 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
870 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
871 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
872 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
873 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
874 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
875 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
876 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
877 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
878 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
879 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
880 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
881 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
882 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
883 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
884 };
885
886
887/* Return the number of multiplications required to calculate
888 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
889 subroutine of powi_cost. CACHE is an array indicating
890 which exponents have already been calculated. */
891
892static int
893powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
894{
895 /* If we've already calculated this exponent, then this evaluation
896 doesn't require any additional multiplications. */
897 if (cache[n])
898 return 0;
899
900 cache[n] = true;
901 return powi_lookup_cost (n - powi_table[n], cache)
902 + powi_lookup_cost (powi_table[n], cache) + 1;
903}
904
905/* Return the number of multiplications required to calculate
906 powi(x,n) for an arbitrary x, given the exponent N. This
907 function needs to be kept in sync with powi_as_mults below. */
908
909static int
910powi_cost (HOST_WIDE_INT n)
911{
912 bool cache[POWI_TABLE_SIZE];
913 unsigned HOST_WIDE_INT digit;
914 unsigned HOST_WIDE_INT val;
915 int result;
916
917 if (n == 0)
918 return 0;
919
920 /* Ignore the reciprocal when calculating the cost. */
921 val = (n < 0) ? -n : n;
922
923 /* Initialize the exponent cache. */
924 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
925 cache[1] = true;
926
927 result = 0;
928
929 while (val >= POWI_TABLE_SIZE)
930 {
931 if (val & 1)
932 {
933 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
934 result += powi_lookup_cost (digit, cache)
935 + POWI_WINDOW_SIZE + 1;
936 val >>= POWI_WINDOW_SIZE;
937 }
938 else
939 {
940 val >>= 1;
941 result++;
942 }
943 }
944
945 return result + powi_lookup_cost (val, cache);
946}
947
948/* Recursive subroutine of powi_as_mults. This function takes the
949 array, CACHE, of already calculated exponents and an exponent N and
950 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
951
952static tree
953powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
03d37e4e 954 HOST_WIDE_INT n, tree *cache)
e9a6c4bc 955{
956 tree op0, op1, ssa_target;
957 unsigned HOST_WIDE_INT digit;
1a91d914 958 gassign *mult_stmt;
e9a6c4bc 959
960 if (n < POWI_TABLE_SIZE && cache[n])
961 return cache[n];
962
03d37e4e 963 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
e9a6c4bc 964
965 if (n < POWI_TABLE_SIZE)
966 {
967 cache[n] = ssa_target;
03d37e4e 968 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
969 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
e9a6c4bc 970 }
971 else if (n & 1)
972 {
973 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
03d37e4e 974 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
975 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
e9a6c4bc 976 }
977 else
978 {
03d37e4e 979 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
e9a6c4bc 980 op1 = op0;
981 }
982
e9cf809e 983 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
ae43b05e 984 gimple_set_location (mult_stmt, loc);
e9a6c4bc 985 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
986
987 return ssa_target;
988}
989
990/* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
991 This function needs to be kept in sync with powi_cost above. */
992
993static tree
994powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
995 tree arg0, HOST_WIDE_INT n)
996{
03d37e4e 997 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1a91d914 998 gassign *div_stmt;
03d37e4e 999 tree target;
e9a6c4bc 1000
1001 if (n == 0)
1002 return build_real (type, dconst1);
1003
1004 memset (cache, 0, sizeof (cache));
1005 cache[1] = arg0;
1006
03d37e4e 1007 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
e9a6c4bc 1008 if (n >= 0)
1009 return result;
1010
1011 /* If the original exponent was negative, reciprocate the result. */
03d37e4e 1012 target = make_temp_ssa_name (type, NULL, "powmult");
e9cf809e 1013 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1014 build_real (type, dconst1), result);
ae43b05e 1015 gimple_set_location (div_stmt, loc);
e9a6c4bc 1016 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1017
1018 return target;
1019}
1020
1021/* ARG0 and N are the two arguments to a powi builtin in GSI with
1022 location info LOC. If the arguments are appropriate, create an
1023 equivalent sequence of statements prior to GSI using an optimal
1024 number of multiplications, and return an expession holding the
1025 result. */
1026
1027static tree
1028gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1029 tree arg0, HOST_WIDE_INT n)
1030{
1031 /* Avoid largest negative number. */
1032 if (n != -n
1033 && ((n >= -1 && n <= 2)
1034 || (optimize_function_for_speed_p (cfun)
1035 && powi_cost (n) <= POWI_MAX_MULTS)))
1036 return powi_as_mults (gsi, loc, arg0, n);
1037
1038 return NULL_TREE;
1039}
1040
ae43b05e 1041/* Build a gimple call statement that calls FN with argument ARG.
03d37e4e 1042 Set the lhs of the call statement to a fresh SSA name. Insert the
ae43b05e 1043 statement prior to GSI's current position, and return the fresh
1044 SSA name. */
1045
1046static tree
ca12eb68 1047build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
03d37e4e 1048 tree fn, tree arg)
ae43b05e 1049{
1a91d914 1050 gcall *call_stmt;
ae43b05e 1051 tree ssa_target;
1052
ae43b05e 1053 call_stmt = gimple_build_call (fn, 1, arg);
03d37e4e 1054 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
ae43b05e 1055 gimple_set_lhs (call_stmt, ssa_target);
1056 gimple_set_location (call_stmt, loc);
1057 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1058
1059 return ssa_target;
1060}
1061
ca12eb68 1062/* Build a gimple binary operation with the given CODE and arguments
1063 ARG0, ARG1, assigning the result to a new SSA name for variable
1064 TARGET. Insert the statement prior to GSI's current position, and
1065 return the fresh SSA name.*/
1066
1067static tree
1068build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
03d37e4e 1069 const char *name, enum tree_code code,
1070 tree arg0, tree arg1)
ca12eb68 1071{
03d37e4e 1072 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
e9cf809e 1073 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
ca12eb68 1074 gimple_set_location (stmt, loc);
1075 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1076 return result;
1077}
1078
a5c384c1 1079/* Build a gimple reference operation with the given CODE and argument
03d37e4e 1080 ARG, assigning the result to a new SSA name of TYPE with NAME.
a5c384c1 1081 Insert the statement prior to GSI's current position, and return
1082 the fresh SSA name. */
1083
1084static inline tree
1085build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
03d37e4e 1086 const char *name, enum tree_code code, tree arg0)
a5c384c1 1087{
03d37e4e 1088 tree result = make_temp_ssa_name (type, NULL, name);
42acab1c 1089 gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0));
a5c384c1 1090 gimple_set_location (stmt, loc);
1091 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1092 return result;
1093}
1094
03d37e4e 1095/* Build a gimple assignment to cast VAL to TYPE. Insert the statement
aff5fb4d 1096 prior to GSI's current position, and return the fresh SSA name. */
1097
1098static tree
1099build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
03d37e4e 1100 tree type, tree val)
aff5fb4d 1101{
f9e245b2 1102 tree result = make_ssa_name (type);
e9cf809e 1103 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
03d37e4e 1104 gimple_set_location (stmt, loc);
1105 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1106 return result;
aff5fb4d 1107}
1108
c3206272 1109struct pow_synth_sqrt_info
1110{
1111 bool *factors;
1112 unsigned int deepest;
1113 unsigned int num_mults;
1114};
1115
1116/* Return true iff the real value C can be represented as a
1117 sum of powers of 0.5 up to N. That is:
1118 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1119 Record in INFO the various parameters of the synthesis algorithm such
1120 as the factors a[i], the maximum 0.5 power and the number of
1121 multiplications that will be required. */
1122
1123bool
1124representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1125 struct pow_synth_sqrt_info *info)
1126{
1127 REAL_VALUE_TYPE factor = dconsthalf;
1128 REAL_VALUE_TYPE remainder = c;
1129
1130 info->deepest = 0;
1131 info->num_mults = 0;
1132 memset (info->factors, 0, n * sizeof (bool));
1133
1134 for (unsigned i = 0; i < n; i++)
1135 {
1136 REAL_VALUE_TYPE res;
1137
1138 /* If something inexact happened bail out now. */
f2ad9e38 1139 if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor))
c3206272 1140 return false;
1141
1142 /* We have hit zero. The number is representable as a sum
1143 of powers of 0.5. */
20cb53c9 1144 if (real_equal (&res, &dconst0))
c3206272 1145 {
1146 info->factors[i] = true;
1147 info->deepest = i + 1;
1148 return true;
1149 }
1150 else if (!REAL_VALUE_NEGATIVE (res))
1151 {
1152 remainder = res;
1153 info->factors[i] = true;
1154 info->num_mults++;
1155 }
1156 else
1157 info->factors[i] = false;
1158
f2ad9e38 1159 real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf);
c3206272 1160 }
1161 return false;
1162}
1163
1164/* Return the tree corresponding to FN being applied
1165 to ARG N times at GSI and LOC.
1166 Look up previous results from CACHE if need be.
1167 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1168
1169static tree
1170get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1171 tree fn, location_t loc, tree *cache)
1172{
1173 tree res = cache[n];
1174 if (!res)
1175 {
1176 tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
1177 res = build_and_insert_call (gsi, loc, fn, prev);
1178 cache[n] = res;
1179 }
1180
1181 return res;
1182}
1183
1184/* Print to STREAM the repeated application of function FNAME to ARG
1185 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1186 "foo (foo (x))". */
1187
1188static void
1189print_nested_fn (FILE* stream, const char *fname, const char* arg,
1190 unsigned int n)
1191{
1192 if (n == 0)
1193 fprintf (stream, "%s", arg);
1194 else
1195 {
1196 fprintf (stream, "%s (", fname);
1197 print_nested_fn (stream, fname, arg, n - 1);
1198 fprintf (stream, ")");
1199 }
1200}
1201
1202/* Print to STREAM the fractional sequence of sqrt chains
1203 applied to ARG, described by INFO. Used for the dump file. */
1204
1205static void
1206dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1207 struct pow_synth_sqrt_info *info)
1208{
1209 for (unsigned int i = 0; i < info->deepest; i++)
1210 {
1211 bool is_set = info->factors[i];
1212 if (is_set)
1213 {
1214 print_nested_fn (stream, "sqrt", arg, i + 1);
1215 if (i != info->deepest - 1)
1216 fprintf (stream, " * ");
1217 }
1218 }
1219}
1220
1221/* Print to STREAM a representation of raising ARG to an integer
1222 power N. Used for the dump file. */
1223
1224static void
1225dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1226{
1227 if (n > 1)
1228 fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1229 else if (n == 1)
1230 fprintf (stream, "%s", arg);
1231}
1232
1233/* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1234 square roots. Place at GSI and LOC. Limit the maximum depth
1235 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1236 result of the expanded sequence or NULL_TREE if the expansion failed.
1237
1238 This routine assumes that ARG1 is a real number with a fractional part
1239 (the integer exponent case will have been handled earlier in
1240 gimple_expand_builtin_pow).
1241
1242 For ARG1 > 0.0:
1243 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1244 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1245 FRAC_PART == ARG1 - WHOLE_PART:
1246 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1247 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1248 if it can be expressed as such, that is if FRAC_PART satisfies:
1249 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1250 where integer a[i] is either 0 or 1.
1251
1252 Example:
1253 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1254 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1255
1256 For ARG1 < 0.0 there are two approaches:
1257 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1258 is calculated as above.
1259
1260 Example:
1261 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1262 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1263
1264 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1265 FRAC_PART := ARG1 - WHOLE_PART
1266 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1267 Example:
1268 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1269 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1270
1271 For ARG1 < 0.0 we choose between (A) and (B) depending on
1272 how many multiplications we'd have to do.
1273 So, for the example in (B): POW (x, -5.875), if we were to
1274 follow algorithm (A) we would produce:
1275 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1276 which contains more multiplications than approach (B).
1277
1278 Hopefully, this approach will eliminate potentially expensive POW library
1279 calls when unsafe floating point math is enabled and allow the compiler to
1280 further optimise the multiplies, square roots and divides produced by this
1281 function. */
1282
1283static tree
1284expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1285 tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1286{
1287 tree type = TREE_TYPE (arg0);
1288 machine_mode mode = TYPE_MODE (type);
1289 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1290 bool one_over = true;
1291
1292 if (!sqrtfn)
1293 return NULL_TREE;
1294
1295 if (TREE_CODE (arg1) != REAL_CST)
1296 return NULL_TREE;
1297
1298 REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1299
1300 gcc_assert (max_depth > 0);
1301 tree *cache = XALLOCAVEC (tree, max_depth + 1);
1302
1303 struct pow_synth_sqrt_info synth_info;
1304 synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1305 synth_info.deepest = 0;
1306 synth_info.num_mults = 0;
1307
1308 bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1309 REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1310
1311 /* The whole and fractional parts of exp. */
1312 REAL_VALUE_TYPE whole_part;
1313 REAL_VALUE_TYPE frac_part;
1314
1315 real_floor (&whole_part, mode, &exp);
f2ad9e38 1316 real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part);
c3206272 1317
1318
1319 REAL_VALUE_TYPE ceil_whole = dconst0;
1320 REAL_VALUE_TYPE ceil_fract = dconst0;
1321
1322 if (neg_exp)
1323 {
1324 real_ceil (&ceil_whole, mode, &exp);
f2ad9e38 1325 real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp);
c3206272 1326 }
1327
1328 if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
1329 return NULL_TREE;
1330
1331 /* Check whether it's more profitable to not use 1.0 / ... */
1332 if (neg_exp)
1333 {
1334 struct pow_synth_sqrt_info alt_synth_info;
1335 alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1336 alt_synth_info.deepest = 0;
1337 alt_synth_info.num_mults = 0;
1338
1339 if (representable_as_half_series_p (ceil_fract, max_depth,
1340 &alt_synth_info)
1341 && alt_synth_info.deepest <= synth_info.deepest
1342 && alt_synth_info.num_mults < synth_info.num_mults)
1343 {
1344 whole_part = ceil_whole;
1345 frac_part = ceil_fract;
1346 synth_info.deepest = alt_synth_info.deepest;
1347 synth_info.num_mults = alt_synth_info.num_mults;
1348 memcpy (synth_info.factors, alt_synth_info.factors,
1349 (max_depth + 1) * sizeof (bool));
1350 one_over = false;
1351 }
1352 }
1353
1354 HOST_WIDE_INT n = real_to_integer (&whole_part);
1355 REAL_VALUE_TYPE cint;
1356 real_from_integer (&cint, VOIDmode, n, SIGNED);
1357
1358 if (!real_identical (&whole_part, &cint))
1359 return NULL_TREE;
1360
1361 if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1362 return NULL_TREE;
1363
1364 memset (cache, 0, (max_depth + 1) * sizeof (tree));
1365
1366 tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1367
1368 /* Calculate the integer part of the exponent. */
1369 if (n > 1)
1370 {
1371 integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1372 if (!integer_res)
1373 return NULL_TREE;
1374 }
1375
1376 if (dump_file)
1377 {
1378 char string[64];
1379
1380 real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1381 fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
1382
1383 if (neg_exp)
1384 {
1385 if (one_over)
1386 {
1387 fprintf (dump_file, "1.0 / (");
1388 dump_integer_part (dump_file, "x", n);
1389 if (n > 0)
1390 fprintf (dump_file, " * ");
1391 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1392 fprintf (dump_file, ")");
1393 }
1394 else
1395 {
1396 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1397 fprintf (dump_file, " / (");
1398 dump_integer_part (dump_file, "x", n);
1399 fprintf (dump_file, ")");
1400 }
1401 }
1402 else
1403 {
1404 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1405 if (n > 0)
1406 fprintf (dump_file, " * ");
1407 dump_integer_part (dump_file, "x", n);
1408 }
1409
1410 fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1411 }
1412
1413
1414 tree fract_res = NULL_TREE;
1415 cache[0] = arg0;
1416
1417 /* Calculate the fractional part of the exponent. */
1418 for (unsigned i = 0; i < synth_info.deepest; i++)
1419 {
1420 if (synth_info.factors[i])
1421 {
1422 tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
1423
1424 if (!fract_res)
1425 fract_res = sqrt_chain;
1426
1427 else
1428 fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1429 fract_res, sqrt_chain);
1430 }
1431 }
1432
1433 tree res = NULL_TREE;
1434
1435 if (neg_exp)
1436 {
1437 if (one_over)
1438 {
1439 if (n > 0)
1440 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1441 fract_res, integer_res);
1442 else
1443 res = fract_res;
1444
1445 res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
1446 build_real (type, dconst1), res);
1447 }
1448 else
1449 {
1450 res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1451 fract_res, integer_res);
1452 }
1453 }
1454 else
1455 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1456 fract_res, integer_res);
1457 return res;
1458}
1459
e78306af 1460/* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1461 with location info LOC. If possible, create an equivalent and
1462 less expensive sequence of statements prior to GSI, and return an
1463 expession holding the result. */
1464
1465static tree
1466gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1467 tree arg0, tree arg1)
1468{
c3206272 1469 REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
ca12eb68 1470 REAL_VALUE_TYPE c2, dconst3;
e78306af 1471 HOST_WIDE_INT n;
c3206272 1472 tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
3754d046 1473 machine_mode mode;
c3206272 1474 bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
0190fe95 1475 bool hw_sqrt_exists, c_is_int, c2_is_int;
e78306af 1476
c3206272 1477 dconst1_4 = dconst1;
1478 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1479
e78306af 1480 /* If the exponent isn't a constant, there's nothing of interest
1481 to be done. */
1482 if (TREE_CODE (arg1) != REAL_CST)
1483 return NULL_TREE;
1484
ae43b05e 1485 /* If the exponent is equivalent to an integer, expand to an optimal
1486 multiplication sequence when profitable. */
e78306af 1487 c = TREE_REAL_CST (arg1);
1488 n = real_to_integer (&c);
e913b5cd 1489 real_from_integer (&cint, VOIDmode, n, SIGNED);
0190fe95 1490 c_is_int = real_identical (&c, &cint);
e78306af 1491
0190fe95 1492 if (c_is_int
e78306af 1493 && ((n >= -1 && n <= 2)
1494 || (flag_unsafe_math_optimizations
c3206272 1495 && speed_p
e78306af 1496 && powi_cost (n) <= POWI_MAX_MULTS)))
1497 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1498
ae43b05e 1499 /* Attempt various optimizations using sqrt and cbrt. */
1500 type = TREE_TYPE (arg0);
1501 mode = TYPE_MODE (type);
1502 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1503
1504 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1505 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1506 sqrt(-0) = -0. */
1507 if (sqrtfn
20cb53c9 1508 && real_equal (&c, &dconsthalf)
ae43b05e 1509 && !HONOR_SIGNED_ZEROS (mode))
03d37e4e 1510 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
ae43b05e 1511
a5c384c1 1512 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
ae43b05e 1513
ae43b05e 1514 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1515 optimizations since 1./3. is not exactly representable. If x
1516 is negative and finite, the correct value of pow(x,1./3.) is
1517 a NaN with the "invalid" exception raised, because the value
1518 of 1./3. actually has an even denominator. The correct value
1519 of cbrt(x) is a negative real value. */
1520 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1521 dconst1_3 = real_value_truncate (mode, dconst_third ());
1522
1523 if (flag_unsafe_math_optimizations
1524 && cbrtfn
ee230333 1525 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
20cb53c9 1526 && real_equal (&c, &dconst1_3))
03d37e4e 1527 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
ae43b05e 1528
1529 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1530 if we don't have a hardware sqrt insn. */
1531 dconst1_6 = dconst1_3;
1532 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1533
1534 if (flag_unsafe_math_optimizations
1535 && sqrtfn
1536 && cbrtfn
ee230333 1537 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
c3206272 1538 && speed_p
ae43b05e 1539 && hw_sqrt_exists
20cb53c9 1540 && real_equal (&c, &dconst1_6))
ae43b05e 1541 {
1542 /* sqrt(x) */
03d37e4e 1543 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
ae43b05e 1544
1545 /* cbrt(sqrt(x)) */
03d37e4e 1546 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
ca12eb68 1547 }
1548
ca12eb68 1549
c3206272 1550 /* Attempt to expand the POW as a product of square root chains.
1551 Expand the 0.25 case even when otpimising for size. */
ca12eb68 1552 if (flag_unsafe_math_optimizations
1553 && sqrtfn
c3206272 1554 && hw_sqrt_exists
20cb53c9 1555 && (speed_p || real_equal (&c, &dconst1_4))
c3206272 1556 && !HONOR_SIGNED_ZEROS (mode))
ca12eb68 1557 {
c3206272 1558 unsigned int max_depth = speed_p
1559 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH)
1560 : 2;
ca12eb68 1561
c3206272 1562 tree expand_with_sqrts
1563 = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
ca12eb68 1564
c3206272 1565 if (expand_with_sqrts)
1566 return expand_with_sqrts;
ca12eb68 1567 }
1568
c3206272 1569 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1570 n = real_to_integer (&c2);
1571 real_from_integer (&cint, VOIDmode, n, SIGNED);
1572 c2_is_int = real_identical (&c2, &cint);
1573
ca12eb68 1574 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1575
1576 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1577 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1578
1579 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1580 different from pow(x, 1./3.) due to rounding and behavior with
1581 negative x, we need to constrain this transformation to unsafe
1582 math and positive x or finite math. */
e913b5cd 1583 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
ca12eb68 1584 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1585 real_round (&c2, mode, &c2);
1586 n = real_to_integer (&c2);
e913b5cd 1587 real_from_integer (&cint, VOIDmode, n, SIGNED);
ca12eb68 1588 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1589 real_convert (&c2, mode, &c2);
1590
1591 if (flag_unsafe_math_optimizations
1592 && cbrtfn
ee230333 1593 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
ca12eb68 1594 && real_identical (&c2, &c)
0190fe95 1595 && !c2_is_int
ca12eb68 1596 && optimize_function_for_speed_p (cfun)
1597 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1598 {
1599 tree powi_x_ndiv3 = NULL_TREE;
1600
1601 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1602 possible or profitable, give up. Skip the degenerate case when
1603 abs(n) < 3, where the result is always 1. */
b1757d46 1604 if (absu_hwi (n) >= 3)
ca12eb68 1605 {
1606 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
5ebd604f 1607 abs_hwi (n / 3));
ca12eb68 1608 if (!powi_x_ndiv3)
1609 return NULL_TREE;
1610 }
1611
1612 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1613 as that creates an unnecessary variable. Instead, just produce
1614 either cbrt(x) or cbrt(x) * cbrt(x). */
03d37e4e 1615 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
ca12eb68 1616
b1757d46 1617 if (absu_hwi (n) % 3 == 1)
ca12eb68 1618 powi_cbrt_x = cbrt_x;
1619 else
03d37e4e 1620 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
ca12eb68 1621 cbrt_x, cbrt_x);
1622
1623 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
b1757d46 1624 if (absu_hwi (n) < 3)
ca12eb68 1625 result = powi_cbrt_x;
1626 else
03d37e4e 1627 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
ca12eb68 1628 powi_x_ndiv3, powi_cbrt_x);
1629
1630 /* If n is negative, reciprocate the result. */
1631 if (n < 0)
03d37e4e 1632 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
ca12eb68 1633 build_real (type, dconst1), result);
1634
1635 return result;
ae43b05e 1636 }
1637
ca12eb68 1638 /* No optimizations succeeded. */
e78306af 1639 return NULL_TREE;
1640}
1641
a5c384c1 1642/* ARG is the argument to a cabs builtin call in GSI with location info
1643 LOC. Create a sequence of statements prior to GSI that calculates
1644 sqrt(R*R + I*I), where R and I are the real and imaginary components
1645 of ARG, respectively. Return an expression holding the result. */
1646
1647static tree
1648gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1649{
03d37e4e 1650 tree real_part, imag_part, addend1, addend2, sum, result;
a5c384c1 1651 tree type = TREE_TYPE (TREE_TYPE (arg));
1652 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
3754d046 1653 machine_mode mode = TYPE_MODE (type);
a5c384c1 1654
1655 if (!flag_unsafe_math_optimizations
1656 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1657 || !sqrtfn
1658 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1659 return NULL_TREE;
1660
03d37e4e 1661 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
a5c384c1 1662 REALPART_EXPR, arg);
03d37e4e 1663 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
a5c384c1 1664 real_part, real_part);
03d37e4e 1665 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
a5c384c1 1666 IMAGPART_EXPR, arg);
03d37e4e 1667 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
a5c384c1 1668 imag_part, imag_part);
03d37e4e 1669 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1670 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
a5c384c1 1671
1672 return result;
1673}
1674
a0315874 1675/* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
e9a6c4bc 1676 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1677 an optimal number of multiplies, when n is a constant. */
a0315874 1678
65b0537f 1679namespace {
1680
1681const pass_data pass_data_cse_sincos =
1682{
1683 GIMPLE_PASS, /* type */
1684 "sincos", /* name */
1685 OPTGROUP_NONE, /* optinfo_flags */
65b0537f 1686 TV_NONE, /* tv_id */
1687 PROP_ssa, /* properties_required */
a153e7b3 1688 PROP_gimple_opt_math, /* properties_provided */
65b0537f 1689 0, /* properties_destroyed */
1690 0, /* todo_flags_start */
8b88439e 1691 TODO_update_ssa, /* todo_flags_finish */
65b0537f 1692};
1693
1694class pass_cse_sincos : public gimple_opt_pass
1695{
1696public:
1697 pass_cse_sincos (gcc::context *ctxt)
1698 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1699 {}
1700
1701 /* opt_pass methods: */
1702 virtual bool gate (function *)
1703 {
1704 /* We no longer require either sincos or cexp, since powi expansion
1705 piggybacks on this pass. */
1706 return optimize;
1707 }
1708
1709 virtual unsigned int execute (function *);
1710
1711}; // class pass_cse_sincos
1712
1713unsigned int
1714pass_cse_sincos::execute (function *fun)
a0315874 1715{
1716 basic_block bb;
4c80086d 1717 bool cfg_changed = false;
a0315874 1718
1719 calculate_dominance_info (CDI_DOMINATORS);
30c4e60d 1720 memset (&sincos_stats, 0, sizeof (sincos_stats));
a0315874 1721
65b0537f 1722 FOR_EACH_BB_FN (bb, fun)
a0315874 1723 {
75a70cf9 1724 gimple_stmt_iterator gsi;
2a155cf0 1725 bool cleanup_eh = false;
a0315874 1726
75a70cf9 1727 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
a0315874 1728 {
42acab1c 1729 gimple *stmt = gsi_stmt (gsi);
a0315874 1730 tree fndecl;
1731
2a155cf0 1732 /* Only the last stmt in a bb could throw, no need to call
1733 gimple_purge_dead_eh_edges if we change something in the middle
1734 of a basic block. */
1735 cleanup_eh = false;
1736
5e8b972c 1737 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
1738 && gimple_call_lhs (stmt))
a0315874 1739 {
e9a6c4bc 1740 tree arg, arg0, arg1, result;
1741 HOST_WIDE_INT n;
1742 location_t loc;
a0315874 1743
5e8b972c 1744 fndecl = gimple_call_fndecl (stmt);
a0315874 1745 switch (DECL_FUNCTION_CODE (fndecl))
1746 {
1747 CASE_FLT_FN (BUILT_IN_COS):
1748 CASE_FLT_FN (BUILT_IN_SIN):
1749 CASE_FLT_FN (BUILT_IN_CEXPI):
d312d7df 1750 /* Make sure we have either sincos or cexp. */
30f690e0 1751 if (!targetm.libc_has_function (function_c99_math_complex)
1752 && !targetm.libc_has_function (function_sincos))
d312d7df 1753 break;
1754
75a70cf9 1755 arg = gimple_call_arg (stmt, 0);
a0315874 1756 if (TREE_CODE (arg) == SSA_NAME)
4c80086d 1757 cfg_changed |= execute_cse_sincos_1 (arg);
a0315874 1758 break;
1759
e78306af 1760 CASE_FLT_FN (BUILT_IN_POW):
1761 arg0 = gimple_call_arg (stmt, 0);
1762 arg1 = gimple_call_arg (stmt, 1);
1763
1764 loc = gimple_location (stmt);
1765 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1766
1767 if (result)
1768 {
1769 tree lhs = gimple_get_lhs (stmt);
1a91d914 1770 gassign *new_stmt = gimple_build_assign (lhs, result);
e78306af 1771 gimple_set_location (new_stmt, loc);
1772 unlink_stmt_vdef (stmt);
1773 gsi_replace (&gsi, new_stmt, true);
2a155cf0 1774 cleanup_eh = true;
bc8a8451 1775 if (gimple_vdef (stmt))
1776 release_ssa_name (gimple_vdef (stmt));
e78306af 1777 }
1778 break;
1779
e9a6c4bc 1780 CASE_FLT_FN (BUILT_IN_POWI):
1781 arg0 = gimple_call_arg (stmt, 0);
1782 arg1 = gimple_call_arg (stmt, 1);
e9a6c4bc 1783 loc = gimple_location (stmt);
377db285 1784
6dfe7d53 1785 if (real_minus_onep (arg0))
377db285 1786 {
1787 tree t0, t1, cond, one, minus_one;
1a91d914 1788 gassign *stmt;
377db285 1789
1790 t0 = TREE_TYPE (arg0);
1791 t1 = TREE_TYPE (arg1);
1792 one = build_real (t0, dconst1);
1793 minus_one = build_real (t0, dconstm1);
1794
1795 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
e9cf809e 1796 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
1797 arg1, build_int_cst (t1, 1));
377db285 1798 gimple_set_location (stmt, loc);
1799 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1800
1801 result = make_temp_ssa_name (t0, NULL, "powi");
e9cf809e 1802 stmt = gimple_build_assign (result, COND_EXPR, cond,
1803 minus_one, one);
377db285 1804 gimple_set_location (stmt, loc);
1805 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1806 }
1807 else
1808 {
e913b5cd 1809 if (!tree_fits_shwi_p (arg1))
d48be958 1810 break;
1811
e913b5cd 1812 n = tree_to_shwi (arg1);
377db285 1813 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1814 }
e9a6c4bc 1815
1816 if (result)
1817 {
1818 tree lhs = gimple_get_lhs (stmt);
1a91d914 1819 gassign *new_stmt = gimple_build_assign (lhs, result);
e9a6c4bc 1820 gimple_set_location (new_stmt, loc);
a5c384c1 1821 unlink_stmt_vdef (stmt);
1822 gsi_replace (&gsi, new_stmt, true);
2a155cf0 1823 cleanup_eh = true;
bc8a8451 1824 if (gimple_vdef (stmt))
1825 release_ssa_name (gimple_vdef (stmt));
a5c384c1 1826 }
1827 break;
1828
1829 CASE_FLT_FN (BUILT_IN_CABS):
1830 arg0 = gimple_call_arg (stmt, 0);
1831 loc = gimple_location (stmt);
1832 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1833
1834 if (result)
1835 {
1836 tree lhs = gimple_get_lhs (stmt);
1a91d914 1837 gassign *new_stmt = gimple_build_assign (lhs, result);
a5c384c1 1838 gimple_set_location (new_stmt, loc);
e9a6c4bc 1839 unlink_stmt_vdef (stmt);
1840 gsi_replace (&gsi, new_stmt, true);
2a155cf0 1841 cleanup_eh = true;
bc8a8451 1842 if (gimple_vdef (stmt))
1843 release_ssa_name (gimple_vdef (stmt));
e9a6c4bc 1844 }
1845 break;
1846
a0315874 1847 default:;
1848 }
1849 }
1850 }
2a155cf0 1851 if (cleanup_eh)
1852 cfg_changed |= gimple_purge_dead_eh_edges (bb);
a0315874 1853 }
1854
65b0537f 1855 statistics_counter_event (fun, "sincos statements inserted",
30c4e60d 1856 sincos_stats.inserted);
1857
4c80086d 1858 return cfg_changed ? TODO_cleanup_cfg : 0;
a0315874 1859}
1860
cbe8bda8 1861} // anon namespace
1862
1863gimple_opt_pass *
1864make_pass_cse_sincos (gcc::context *ctxt)
1865{
1866 return new pass_cse_sincos (ctxt);
1867}
1868
84cc784c 1869/* A symbolic number is used to detect byte permutation and selection
1870 patterns. Therefore the field N contains an artificial number
cc76206c 1871 consisting of octet sized markers:
84cc784c 1872
cc76206c 1873 0 - target byte has the value 0
14cbfffb 1874 FF - target byte has an unknown value (eg. due to sign extension)
cc76206c 1875 1..size - marker value is the target byte index minus one.
470d5bb5 1876
1877 To detect permutations on memory sources (arrays and structures), a symbolic
1878 number is also associated a base address (the array or structure the load is
1879 made from), an offset from the base address and a range which gives the
1880 difference between the highest and lowest accessed memory location to make
1881 such a symbolic number. The range is thus different from size which reflects
1882 the size of the type of current expression. Note that for non memory source,
1883 range holds the same value as size.
1884
1885 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1886 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1887 still have a size of 2 but this time a range of 1. */
84cc784c 1888
1889struct symbolic_number {
3a4303e7 1890 uint64_t n;
7101c0cf 1891 tree type;
470d5bb5 1892 tree base_addr;
1893 tree offset;
1894 HOST_WIDE_INT bytepos;
1895 tree alias_set;
1896 tree vuse;
1897 unsigned HOST_WIDE_INT range;
84cc784c 1898};
1899
cc76206c 1900#define BITS_PER_MARKER 8
14cbfffb 1901#define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1902#define MARKER_BYTE_UNKNOWN MARKER_MASK
1903#define HEAD_MARKER(n, size) \
1904 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
cc76206c 1905
470d5bb5 1906/* The number which the find_bswap_or_nop_1 result should match in
1907 order to have a nop. The number is masked according to the size of
1908 the symbolic number before using it. */
3a4303e7 1909#define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1910 (uint64_t)0x08070605 << 32 | 0x04030201)
470d5bb5 1911
1912/* The number which the find_bswap_or_nop_1 result should match in
1913 order to have a byte swap. The number is masked according to the
1914 size of the symbolic number before using it. */
3a4303e7 1915#define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1916 (uint64_t)0x01020304 << 32 | 0x05060708)
470d5bb5 1917
84cc784c 1918/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1919 number N. Return false if the requested operation is not permitted
1920 on a symbolic number. */
1921
1922static inline bool
1923do_shift_rotate (enum tree_code code,
1924 struct symbolic_number *n,
1925 int count)
1926{
14cbfffb 1927 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1928 unsigned head_marker;
7101c0cf 1929
cc76206c 1930 if (count % BITS_PER_UNIT != 0)
84cc784c 1931 return false;
cc76206c 1932 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
84cc784c 1933
1934 /* Zero out the extra bits of N in order to avoid them being shifted
1935 into the significant bits. */
cc76206c 1936 if (size < 64 / BITS_PER_MARKER)
1937 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
84cc784c 1938
1939 switch (code)
1940 {
1941 case LSHIFT_EXPR:
1942 n->n <<= count;
1943 break;
1944 case RSHIFT_EXPR:
14cbfffb 1945 head_marker = HEAD_MARKER (n->n, size);
84cc784c 1946 n->n >>= count;
14cbfffb 1947 /* Arithmetic shift of signed type: result is dependent on the value. */
1948 if (!TYPE_UNSIGNED (n->type) && head_marker)
1949 for (i = 0; i < count / BITS_PER_MARKER; i++)
1950 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1951 << ((size - 1 - i) * BITS_PER_MARKER);
84cc784c 1952 break;
1953 case LROTATE_EXPR:
cc76206c 1954 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
84cc784c 1955 break;
1956 case RROTATE_EXPR:
cc76206c 1957 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
84cc784c 1958 break;
1959 default:
1960 return false;
1961 }
0f09ed00 1962 /* Zero unused bits for size. */
cc76206c 1963 if (size < 64 / BITS_PER_MARKER)
1964 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
84cc784c 1965 return true;
1966}
1967
1968/* Perform sanity checking for the symbolic number N and the gimple
1969 statement STMT. */
1970
1971static inline bool
42acab1c 1972verify_symbolic_number_p (struct symbolic_number *n, gimple *stmt)
84cc784c 1973{
1974 tree lhs_type;
1975
1976 lhs_type = gimple_expr_type (stmt);
1977
1978 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1979 return false;
1980
7101c0cf 1981 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
84cc784c 1982 return false;
1983
1984 return true;
1985}
1986
ee054e83 1987/* Initialize the symbolic number N for the bswap pass from the base element
1988 SRC manipulated by the bitwise OR expression. */
1989
1990static bool
1991init_symbolic_number (struct symbolic_number *n, tree src)
1992{
7101c0cf 1993 int size;
1994
ee054e83 1995 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1996
1997 /* Set up the symbolic number N by setting each byte to a value between 1 and
1998 the byte size of rhs1. The highest order byte is set to n->size and the
1999 lowest order byte to 1. */
7101c0cf 2000 n->type = TREE_TYPE (src);
2001 size = TYPE_PRECISION (n->type);
2002 if (size % BITS_PER_UNIT != 0)
ee054e83 2003 return false;
7101c0cf 2004 size /= BITS_PER_UNIT;
cc76206c 2005 if (size > 64 / BITS_PER_MARKER)
c0dd3a90 2006 return false;
7101c0cf 2007 n->range = size;
ee054e83 2008 n->n = CMPNOP;
2009
cc76206c 2010 if (size < 64 / BITS_PER_MARKER)
2011 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
ee054e83 2012
2013 return true;
2014}
2015
470d5bb5 2016/* Check if STMT might be a byte swap or a nop from a memory source and returns
2017 the answer. If so, REF is that memory source and the base of the memory area
2018 accessed and the offset of the access from that base are recorded in N. */
2019
2020bool
42acab1c 2021find_bswap_or_nop_load (gimple *stmt, tree ref, struct symbolic_number *n)
470d5bb5 2022{
2023 /* Leaf node is an array or component ref. Memorize its base and
2024 offset from base to compare to other such leaf node. */
2025 HOST_WIDE_INT bitsize, bitpos;
3754d046 2026 machine_mode mode;
292237f3 2027 int unsignedp, reversep, volatilep;
ee054e83 2028 tree offset, base_addr;
470d5bb5 2029
1e6c1ce6 2030 /* Not prepared to handle PDP endian. */
2031 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2032 return false;
2033
470d5bb5 2034 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
2035 return false;
2036
ee054e83 2037 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
292237f3 2038 &unsignedp, &reversep, &volatilep, false);
470d5bb5 2039
ee054e83 2040 if (TREE_CODE (base_addr) == MEM_REF)
470d5bb5 2041 {
2042 offset_int bit_offset = 0;
ee054e83 2043 tree off = TREE_OPERAND (base_addr, 1);
470d5bb5 2044
2045 if (!integer_zerop (off))
2046 {
ee054e83 2047 offset_int boff, coff = mem_ref_offset (base_addr);
470d5bb5 2048 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
2049 bit_offset += boff;
2050 }
2051
ee054e83 2052 base_addr = TREE_OPERAND (base_addr, 0);
470d5bb5 2053
2054 /* Avoid returning a negative bitpos as this may wreak havoc later. */
2055 if (wi::neg_p (bit_offset))
2056 {
2057 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
2058 offset_int tem = bit_offset.and_not (mask);
2059 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
2060 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
2061 bit_offset -= tem;
2062 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
ee054e83 2063 if (offset)
2064 offset = size_binop (PLUS_EXPR, offset,
470d5bb5 2065 wide_int_to_tree (sizetype, tem));
2066 else
ee054e83 2067 offset = wide_int_to_tree (sizetype, tem);
470d5bb5 2068 }
2069
2070 bitpos += bit_offset.to_shwi ();
2071 }
2072
2073 if (bitpos % BITS_PER_UNIT)
2074 return false;
2075 if (bitsize % BITS_PER_UNIT)
2076 return false;
292237f3 2077 if (reversep)
2078 return false;
470d5bb5 2079
935abe57 2080 if (!init_symbolic_number (n, ref))
2081 return false;
ee054e83 2082 n->base_addr = base_addr;
2083 n->offset = offset;
470d5bb5 2084 n->bytepos = bitpos / BITS_PER_UNIT;
2085 n->alias_set = reference_alias_ptr_type (ref);
2086 n->vuse = gimple_vuse (stmt);
2087 return true;
2088}
2089
f7a40894 2090/* Compute the symbolic number N representing the result of a bitwise OR on 2
2091 symbolic number N1 and N2 whose source statements are respectively
2092 SOURCE_STMT1 and SOURCE_STMT2. */
2093
42acab1c 2094static gimple *
2095perform_symbolic_merge (gimple *source_stmt1, struct symbolic_number *n1,
2096 gimple *source_stmt2, struct symbolic_number *n2,
f7a40894 2097 struct symbolic_number *n)
2098{
2099 int i, size;
2100 uint64_t mask;
42acab1c 2101 gimple *source_stmt;
f7a40894 2102 struct symbolic_number *n_start;
2103
2104 /* Sources are different, cancel bswap if they are not memory location with
2105 the same base (array, structure, ...). */
2106 if (gimple_assign_rhs1 (source_stmt1) != gimple_assign_rhs1 (source_stmt2))
2107 {
ddc9c989 2108 uint64_t inc;
f7a40894 2109 HOST_WIDE_INT start_sub, end_sub, end1, end2, end;
2110 struct symbolic_number *toinc_n_ptr, *n_end;
2111
2112 if (!n1->base_addr || !n2->base_addr
2113 || !operand_equal_p (n1->base_addr, n2->base_addr, 0))
2114 return NULL;
2115
1e6c1ce6 2116 if (!n1->offset != !n2->offset
2117 || (n1->offset && !operand_equal_p (n1->offset, n2->offset, 0)))
f7a40894 2118 return NULL;
2119
2120 if (n1->bytepos < n2->bytepos)
2121 {
2122 n_start = n1;
2123 start_sub = n2->bytepos - n1->bytepos;
2124 source_stmt = source_stmt1;
2125 }
2126 else
2127 {
2128 n_start = n2;
2129 start_sub = n1->bytepos - n2->bytepos;
2130 source_stmt = source_stmt2;
2131 }
2132
2133 /* Find the highest address at which a load is performed and
2134 compute related info. */
2135 end1 = n1->bytepos + (n1->range - 1);
2136 end2 = n2->bytepos + (n2->range - 1);
2137 if (end1 < end2)
2138 {
2139 end = end2;
2140 end_sub = end2 - end1;
2141 }
2142 else
2143 {
2144 end = end1;
2145 end_sub = end1 - end2;
2146 }
2147 n_end = (end2 > end1) ? n2 : n1;
2148
2149 /* Find symbolic number whose lsb is the most significant. */
2150 if (BYTES_BIG_ENDIAN)
2151 toinc_n_ptr = (n_end == n1) ? n2 : n1;
2152 else
2153 toinc_n_ptr = (n_start == n1) ? n2 : n1;
2154
2155 n->range = end - n_start->bytepos + 1;
2156
2157 /* Check that the range of memory covered can be represented by
2158 a symbolic number. */
2159 if (n->range > 64 / BITS_PER_MARKER)
2160 return NULL;
2161
2162 /* Reinterpret byte marks in symbolic number holding the value of
2163 bigger weight according to target endianness. */
2164 inc = BYTES_BIG_ENDIAN ? end_sub : start_sub;
2165 size = TYPE_PRECISION (n1->type) / BITS_PER_UNIT;
2166 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
2167 {
1e6c1ce6 2168 unsigned marker
2169 = (toinc_n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
f7a40894 2170 if (marker && marker != MARKER_BYTE_UNKNOWN)
2171 toinc_n_ptr->n += inc;
2172 }
2173 }
2174 else
2175 {
2176 n->range = n1->range;
2177 n_start = n1;
2178 source_stmt = source_stmt1;
2179 }
2180
2181 if (!n1->alias_set
2182 || alias_ptr_types_compatible_p (n1->alias_set, n2->alias_set))
2183 n->alias_set = n1->alias_set;
2184 else
2185 n->alias_set = ptr_type_node;
2186 n->vuse = n_start->vuse;
2187 n->base_addr = n_start->base_addr;
2188 n->offset = n_start->offset;
2189 n->bytepos = n_start->bytepos;
2190 n->type = n_start->type;
2191 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
2192
2193 for (i = 0, mask = MARKER_MASK; i < size; i++, mask <<= BITS_PER_MARKER)
2194 {
2195 uint64_t masked1, masked2;
2196
2197 masked1 = n1->n & mask;
2198 masked2 = n2->n & mask;
2199 if (masked1 && masked2 && masked1 != masked2)
2200 return NULL;
2201 }
2202 n->n = n1->n | n2->n;
2203
2204 return source_stmt;
2205}
2206
470d5bb5 2207/* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
2208 the operation given by the rhs of STMT on the result. If the operation
29314253 2209 could successfully be executed the function returns a gimple stmt whose
2210 rhs's first tree is the expression of the source operand and NULL
2211 otherwise. */
84cc784c 2212
42acab1c 2213static gimple *
2214find_bswap_or_nop_1 (gimple *stmt, struct symbolic_number *n, int limit)
84cc784c 2215{
2216 enum tree_code code;
2217 tree rhs1, rhs2 = NULL;
42acab1c 2218 gimple *rhs1_stmt, *rhs2_stmt, *source_stmt1;
84cc784c 2219 enum gimple_rhs_class rhs_class;
2220
2221 if (!limit || !is_gimple_assign (stmt))
29314253 2222 return NULL;
84cc784c 2223
2224 rhs1 = gimple_assign_rhs1 (stmt);
2225
470d5bb5 2226 if (find_bswap_or_nop_load (stmt, rhs1, n))
29314253 2227 return stmt;
470d5bb5 2228
84cc784c 2229 if (TREE_CODE (rhs1) != SSA_NAME)
29314253 2230 return NULL;
84cc784c 2231
2232 code = gimple_assign_rhs_code (stmt);
2233 rhs_class = gimple_assign_rhs_class (stmt);
2234 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2235
2236 if (rhs_class == GIMPLE_BINARY_RHS)
2237 rhs2 = gimple_assign_rhs2 (stmt);
2238
2239 /* Handle unary rhs and binary rhs with integer constants as second
2240 operand. */
2241
2242 if (rhs_class == GIMPLE_UNARY_RHS
2243 || (rhs_class == GIMPLE_BINARY_RHS
2244 && TREE_CODE (rhs2) == INTEGER_CST))
2245 {
2246 if (code != BIT_AND_EXPR
2247 && code != LSHIFT_EXPR
2248 && code != RSHIFT_EXPR
2249 && code != LROTATE_EXPR
2250 && code != RROTATE_EXPR
d09ef31a 2251 && !CONVERT_EXPR_CODE_P (code))
29314253 2252 return NULL;
84cc784c 2253
29314253 2254 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
84cc784c 2255
470d5bb5 2256 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
2257 we have to initialize the symbolic number. */
29314253 2258 if (!source_stmt1)
84cc784c 2259 {
ee054e83 2260 if (gimple_assign_load_p (stmt)
2261 || !init_symbolic_number (n, rhs1))
29314253 2262 return NULL;
2263 source_stmt1 = stmt;
84cc784c 2264 }
2265
2266 switch (code)
2267 {
2268 case BIT_AND_EXPR:
2269 {
7101c0cf 2270 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
cc76206c 2271 uint64_t val = int_cst_value (rhs2), mask = 0;
2272 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
84cc784c 2273
2274 /* Only constants masking full bytes are allowed. */
cc76206c 2275 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
2276 if ((val & tmp) != 0 && (val & tmp) != tmp)
29314253 2277 return NULL;
cc76206c 2278 else if (val & tmp)
14cbfffb 2279 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
84cc784c 2280
cc76206c 2281 n->n &= mask;
84cc784c 2282 }
2283 break;
2284 case LSHIFT_EXPR:
2285 case RSHIFT_EXPR:
2286 case LROTATE_EXPR:
2287 case RROTATE_EXPR:
1e6c1ce6 2288 if (!do_shift_rotate (code, n, (int) TREE_INT_CST_LOW (rhs2)))
29314253 2289 return NULL;
84cc784c 2290 break;
2291 CASE_CONVERT:
2292 {
14cbfffb 2293 int i, type_size, old_type_size;
7101c0cf 2294 tree type;
84cc784c 2295
7101c0cf 2296 type = gimple_expr_type (stmt);
2297 type_size = TYPE_PRECISION (type);
84cc784c 2298 if (type_size % BITS_PER_UNIT != 0)
29314253 2299 return NULL;
cc76206c 2300 type_size /= BITS_PER_UNIT;
2301 if (type_size > 64 / BITS_PER_MARKER)
29314253 2302 return NULL;
84cc784c 2303
7101c0cf 2304 /* Sign extension: result is dependent on the value. */
cc76206c 2305 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
14cbfffb 2306 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
2307 && HEAD_MARKER (n->n, old_type_size))
2308 for (i = 0; i < type_size - old_type_size; i++)
a7e676a4 2309 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
409678bf 2310 << ((type_size - 1 - i) * BITS_PER_MARKER);
7101c0cf 2311
cc76206c 2312 if (type_size < 64 / BITS_PER_MARKER)
84cc784c 2313 {
2314 /* If STMT casts to a smaller type mask out the bits not
2315 belonging to the target type. */
cc76206c 2316 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
84cc784c 2317 }
7101c0cf 2318 n->type = type;
470d5bb5 2319 if (!n->base_addr)
cc76206c 2320 n->range = type_size;
84cc784c 2321 }
2322 break;
2323 default:
29314253 2324 return NULL;
84cc784c 2325 };
29314253 2326 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
84cc784c 2327 }
2328
2329 /* Handle binary rhs. */
2330
2331 if (rhs_class == GIMPLE_BINARY_RHS)
2332 {
2333 struct symbolic_number n1, n2;
42acab1c 2334 gimple *source_stmt, *source_stmt2;
84cc784c 2335
2336 if (code != BIT_IOR_EXPR)
29314253 2337 return NULL;
84cc784c 2338
2339 if (TREE_CODE (rhs2) != SSA_NAME)
29314253 2340 return NULL;
84cc784c 2341
2342 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2343
2344 switch (code)
2345 {
2346 case BIT_IOR_EXPR:
29314253 2347 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
84cc784c 2348
29314253 2349 if (!source_stmt1)
2350 return NULL;
84cc784c 2351
29314253 2352 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
470d5bb5 2353
29314253 2354 if (!source_stmt2)
2355 return NULL;
ee054e83 2356
7101c0cf 2357 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
29314253 2358 return NULL;
84cc784c 2359
1e6c1ce6 2360 if (!n1.vuse != !n2.vuse
2361 || (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
29314253 2362 return NULL;
84cc784c 2363
1e6c1ce6 2364 source_stmt
2365 = perform_symbolic_merge (source_stmt1, &n1, source_stmt2, &n2, n);
470d5bb5 2366
f7a40894 2367 if (!source_stmt)
2368 return NULL;
84cc784c 2369
2370 if (!verify_symbolic_number_p (n, stmt))
29314253 2371 return NULL;
84cc784c 2372
2373 break;
2374 default:
29314253 2375 return NULL;
84cc784c 2376 }
f7a40894 2377 return source_stmt;
84cc784c 2378 }
29314253 2379 return NULL;
84cc784c 2380}
2381
470d5bb5 2382/* Check if STMT completes a bswap implementation or a read in a given
2383 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2384 accordingly. It also sets N to represent the kind of operations
2385 performed: size of the resulting expression and whether it works on
2386 a memory source, and if so alias-set and vuse. At last, the
29314253 2387 function returns a stmt whose rhs's first tree is the source
2388 expression. */
84cc784c 2389
42acab1c 2390static gimple *
2391find_bswap_or_nop (gimple *stmt, struct symbolic_number *n, bool *bswap)
84cc784c 2392{
470d5bb5 2393/* The number which the find_bswap_or_nop_1 result should match in order
2394 to have a full byte swap. The number is shifted to the right
2395 according to the size of the symbolic number before using it. */
3a4303e7 2396 uint64_t cmpxchg = CMPXCHG;
2397 uint64_t cmpnop = CMPNOP;
470d5bb5 2398
42acab1c 2399 gimple *source_stmt;
0f09ed00 2400 int limit;
84cc784c 2401
9bc1852a 2402 /* The last parameter determines the depth search limit. It usually
470d5bb5 2403 correlates directly to the number n of bytes to be touched. We
2404 increase that number by log2(n) + 1 here in order to also
2405 cover signed -> unsigned conversions of the src operand as can be seen
0f09ed00 2406 in libgcc, and for initial shift/and operation of the src operand. */
f9ae6f95 2407 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
0f09ed00 2408 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
1e6c1ce6 2409 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
84cc784c 2410
29314253 2411 if (!source_stmt)
2412 return NULL;
84cc784c 2413
1e6c1ce6 2414 /* Find real size of result (highest non-zero byte). */
470d5bb5 2415 if (n->base_addr)
84cc784c 2416 {
470d5bb5 2417 int rsize;
3a4303e7 2418 uint64_t tmpn;
84cc784c 2419
cc76206c 2420 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
470d5bb5 2421 n->range = rsize;
84cc784c 2422 }
2423
470d5bb5 2424 /* Zero out the extra bits of N and CMP*. */
cc76206c 2425 if (n->range < (int) sizeof (int64_t))
470d5bb5 2426 {
3a4303e7 2427 uint64_t mask;
470d5bb5 2428
cc76206c 2429 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2430 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
470d5bb5 2431 cmpnop &= mask;
2432 }
2433
2434 /* A complete byte swap should make the symbolic number to start with
2435 the largest digit in the highest order byte. Unchanged symbolic
89d0fbd4 2436 number indicates a read with same endianness as target architecture. */
470d5bb5 2437 if (n->n == cmpnop)
2438 *bswap = false;
2439 else if (n->n == cmpxchg)
2440 *bswap = true;
2441 else
29314253 2442 return NULL;
470d5bb5 2443
2444 /* Useless bit manipulation performed by code. */
2445 if (!n->base_addr && n->n == cmpnop)
29314253 2446 return NULL;
84cc784c 2447
470d5bb5 2448 n->range *= BITS_PER_UNIT;
29314253 2449 return source_stmt;
84cc784c 2450}
2451
65b0537f 2452namespace {
2453
2454const pass_data pass_data_optimize_bswap =
2455{
2456 GIMPLE_PASS, /* type */
2457 "bswap", /* name */
2458 OPTGROUP_NONE, /* optinfo_flags */
65b0537f 2459 TV_NONE, /* tv_id */
2460 PROP_ssa, /* properties_required */
2461 0, /* properties_provided */
2462 0, /* properties_destroyed */
2463 0, /* todo_flags_start */
2464 0, /* todo_flags_finish */
2465};
2466
2467class pass_optimize_bswap : public gimple_opt_pass
2468{
2469public:
2470 pass_optimize_bswap (gcc::context *ctxt)
2471 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2472 {}
2473
2474 /* opt_pass methods: */
2475 virtual bool gate (function *)
2476 {
2477 return flag_expensive_optimizations && optimize;
2478 }
2479
2480 virtual unsigned int execute (function *);
2481
2482}; // class pass_optimize_bswap
2483
4b2d4ce4 2484/* Perform the bswap optimization: replace the expression computed in the rhs
2485 of CUR_STMT by an equivalent bswap, load or load + bswap expression.
2486 Which of these alternatives replace the rhs is given by N->base_addr (non
2487 null if a load is needed) and BSWAP. The type, VUSE and set-alias of the
2488 load to perform are also given in N while the builtin bswap invoke is given
2489 in FNDEL. Finally, if a load is involved, SRC_STMT refers to one of the
2490 load statements involved to construct the rhs in CUR_STMT and N->range gives
2491 the size of the rhs expression for maintaining some statistics.
2492
2493 Note that if the replacement involve a load, CUR_STMT is moved just after
2494 SRC_STMT to do the load with the same VUSE which can lead to CUR_STMT
2495 changing of basic block. */
470d5bb5 2496
2497static bool
42acab1c 2498bswap_replace (gimple *cur_stmt, gimple *src_stmt, tree fndecl,
2499 tree bswap_type, tree load_type, struct symbolic_number *n,
2500 bool bswap)
470d5bb5 2501{
4b2d4ce4 2502 gimple_stmt_iterator gsi;
29314253 2503 tree src, tmp, tgt;
42acab1c 2504 gimple *bswap_stmt;
470d5bb5 2505
4b2d4ce4 2506 gsi = gsi_for_stmt (cur_stmt);
29314253 2507 src = gimple_assign_rhs1 (src_stmt);
2508 tgt = gimple_assign_lhs (cur_stmt);
470d5bb5 2509
2510 /* Need to load the value from memory first. */
2511 if (n->base_addr)
2512 {
29314253 2513 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
470d5bb5 2514 tree addr_expr, addr_tmp, val_expr, val_tmp;
2515 tree load_offset_ptr, aligned_load_type;
42acab1c 2516 gimple *addr_stmt, *load_stmt;
470d5bb5 2517 unsigned align;
1e6c1ce6 2518 HOST_WIDE_INT load_offset = 0;
470d5bb5 2519
2520 align = get_object_alignment (src);
1e6c1ce6 2521 /* If the new access is smaller than the original one, we need
2522 to perform big endian adjustment. */
2523 if (BYTES_BIG_ENDIAN)
2524 {
2525 HOST_WIDE_INT bitsize, bitpos;
2526 machine_mode mode;
292237f3 2527 int unsignedp, reversep, volatilep;
1e6c1ce6 2528 tree offset;
2529
2530 get_inner_reference (src, &bitsize, &bitpos, &offset, &mode,
292237f3 2531 &unsignedp, &reversep, &volatilep, false);
1e6c1ce6 2532 if (n->range < (unsigned HOST_WIDE_INT) bitsize)
2533 {
2534 load_offset = (bitsize - n->range) / BITS_PER_UNIT;
2535 unsigned HOST_WIDE_INT l
2536 = (load_offset * BITS_PER_UNIT) & (align - 1);
2537 if (l)
2538 align = l & -l;
2539 }
2540 }
2541
25f52856 2542 if (bswap
2543 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2544 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
470d5bb5 2545 return false;
2546
4b2d4ce4 2547 /* Move cur_stmt just before one of the load of the original
2548 to ensure it has the same VUSE. See PR61517 for what could
2549 go wrong. */
29314253 2550 gsi_move_before (&gsi, &gsi_ins);
2551 gsi = gsi_for_stmt (cur_stmt);
2552
1e6c1ce6 2553 /* Compute address to load from and cast according to the size
2554 of the load. */
470d5bb5 2555 addr_expr = build_fold_addr_expr (unshare_expr (src));
1e6c1ce6 2556 if (is_gimple_mem_ref_addr (addr_expr))
470d5bb5 2557 addr_tmp = addr_expr;
2558 else
2559 {
2560 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2561 "load_src");
2562 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
29314253 2563 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
470d5bb5 2564 }
2565
2566 /* Perform the load. */
2567 aligned_load_type = load_type;
2568 if (align < TYPE_ALIGN (load_type))
2569 aligned_load_type = build_aligned_type (load_type, align);
1e6c1ce6 2570 load_offset_ptr = build_int_cst (n->alias_set, load_offset);
470d5bb5 2571 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2572 load_offset_ptr);
2573
2574 if (!bswap)
2575 {
2576 if (n->range == 16)
2577 nop_stats.found_16bit++;
2578 else if (n->range == 32)
2579 nop_stats.found_32bit++;
2580 else
2581 {
2582 gcc_assert (n->range == 64);
2583 nop_stats.found_64bit++;
2584 }
2585
2586 /* Convert the result of load if necessary. */
2587 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2588 {
2589 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2590 "load_dst");
2591 load_stmt = gimple_build_assign (val_tmp, val_expr);
2592 gimple_set_vuse (load_stmt, n->vuse);
29314253 2593 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
806413d2 2594 gimple_assign_set_rhs_with_ops (&gsi, NOP_EXPR, val_tmp);
470d5bb5 2595 }
2596 else
29314253 2597 {
806413d2 2598 gimple_assign_set_rhs_with_ops (&gsi, MEM_REF, val_expr);
29314253 2599 gimple_set_vuse (cur_stmt, n->vuse);
2600 }
2601 update_stmt (cur_stmt);
470d5bb5 2602
2603 if (dump_file)
2604 {
2605 fprintf (dump_file,
89d0fbd4 2606 "%d bit load in target endianness found at: ",
1e6c1ce6 2607 (int) n->range);
29314253 2608 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
470d5bb5 2609 }
2610 return true;
2611 }
2612 else
2613 {
2614 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2615 load_stmt = gimple_build_assign (val_tmp, val_expr);
2616 gimple_set_vuse (load_stmt, n->vuse);
29314253 2617 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
470d5bb5 2618 }
2619 src = val_tmp;
2620 }
2621
2622 if (n->range == 16)
2623 bswap_stats.found_16bit++;
2624 else if (n->range == 32)
2625 bswap_stats.found_32bit++;
2626 else
2627 {
2628 gcc_assert (n->range == 64);
2629 bswap_stats.found_64bit++;
2630 }
2631
2632 tmp = src;
2633
904c73a0 2634 /* Convert the src expression if necessary. */
2635 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2636 {
42acab1c 2637 gimple *convert_stmt;
904c73a0 2638
2639 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2640 convert_stmt = gimple_build_assign (tmp, NOP_EXPR, src);
2641 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
2642 }
2643
4b2d4ce4 2644 /* Canonical form for 16 bit bswap is a rotate expression. Only 16bit values
2645 are considered as rotation of 2N bit values by N bits is generally not
904c73a0 2646 equivalent to a bswap. Consider for instance 0x01020304 r>> 16 which
2647 gives 0x03040102 while a bswap for that value is 0x04030201. */
0b6c968a 2648 if (bswap && n->range == 16)
470d5bb5 2649 {
0b6c968a 2650 tree count = build_int_cst (NULL, BITS_PER_UNIT);
904c73a0 2651 src = fold_build2 (LROTATE_EXPR, bswap_type, tmp, count);
0b6c968a 2652 bswap_stmt = gimple_build_assign (NULL, src);
470d5bb5 2653 }
0b6c968a 2654 else
904c73a0 2655 bswap_stmt = gimple_build_call (fndecl, 1, tmp);
470d5bb5 2656
2657 tmp = tgt;
2658
2659 /* Convert the result if necessary. */
2660 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2661 {
42acab1c 2662 gimple *convert_stmt;
904c73a0 2663
470d5bb5 2664 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
e9cf809e 2665 convert_stmt = gimple_build_assign (tgt, NOP_EXPR, tmp);
29314253 2666 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
470d5bb5 2667 }
2668
0b6c968a 2669 gimple_set_lhs (bswap_stmt, tmp);
470d5bb5 2670
2671 if (dump_file)
2672 {
2673 fprintf (dump_file, "%d bit bswap implementation found at: ",
1e6c1ce6 2674 (int) n->range);
29314253 2675 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
470d5bb5 2676 }
2677
0b6c968a 2678 gsi_insert_after (&gsi, bswap_stmt, GSI_SAME_STMT);
29314253 2679 gsi_remove (&gsi, true);
470d5bb5 2680 return true;
2681}
2682
2683/* Find manual byte swap implementations as well as load in a given
2684 endianness. Byte swaps are turned into a bswap builtin invokation
2685 while endian loads are converted to bswap builtin invokation or
89d0fbd4 2686 simple load according to the target endianness. */
470d5bb5 2687
65b0537f 2688unsigned int
2689pass_optimize_bswap::execute (function *fun)
84cc784c 2690{
2691 basic_block bb;
bbb9b536 2692 bool bswap32_p, bswap64_p;
84cc784c 2693 bool changed = false;
bbb9b536 2694 tree bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
84cc784c 2695
2696 if (BITS_PER_UNIT != 8)
2697 return 0;
2698
b9a16870 2699 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
d6bf3b14 2700 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
b9a16870 2701 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
d6bf3b14 2702 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
3328b1fb 2703 || (bswap32_p && word_mode == SImode)));
84cc784c 2704
0af25806 2705 /* Determine the argument type of the builtins. The code later on
2706 assumes that the return and argument type are the same. */
2707 if (bswap32_p)
2708 {
b9a16870 2709 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
0af25806 2710 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2711 }
2712
2713 if (bswap64_p)
2714 {
b9a16870 2715 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
0af25806 2716 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2717 }
2718
470d5bb5 2719 memset (&nop_stats, 0, sizeof (nop_stats));
30c4e60d 2720 memset (&bswap_stats, 0, sizeof (bswap_stats));
2721
65b0537f 2722 FOR_EACH_BB_FN (bb, fun)
84cc784c 2723 {
2724 gimple_stmt_iterator gsi;
2725
0ec31268 2726 /* We do a reverse scan for bswap patterns to make sure we get the
4b2d4ce4 2727 widest match. As bswap pattern matching doesn't handle previously
2728 inserted smaller bswap replacements as sub-patterns, the wider
2729 variant wouldn't be detected. */
2730 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi);)
84cc784c 2731 {
42acab1c 2732 gimple *src_stmt, *cur_stmt = gsi_stmt (gsi);
29314253 2733 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
0b6c968a 2734 enum tree_code code;
470d5bb5 2735 struct symbolic_number n;
2736 bool bswap;
84cc784c 2737
4b2d4ce4 2738 /* This gsi_prev (&gsi) is not part of the for loop because cur_stmt
2739 might be moved to a different basic block by bswap_replace and gsi
2740 must not points to it if that's the case. Moving the gsi_prev
2741 there make sure that gsi points to the statement previous to
2742 cur_stmt while still making sure that all statements are
2743 considered in this basic block. */
2744 gsi_prev (&gsi);
2745
0b6c968a 2746 if (!is_gimple_assign (cur_stmt))
84cc784c 2747 continue;
2748
0b6c968a 2749 code = gimple_assign_rhs_code (cur_stmt);
2750 switch (code)
2751 {
2752 case LROTATE_EXPR:
2753 case RROTATE_EXPR:
2754 if (!tree_fits_uhwi_p (gimple_assign_rhs2 (cur_stmt))
2755 || tree_to_uhwi (gimple_assign_rhs2 (cur_stmt))
2756 % BITS_PER_UNIT)
2757 continue;
2758 /* Fall through. */
2759 case BIT_IOR_EXPR:
2760 break;
2761 default:
2762 continue;
2763 }
2764
29314253 2765 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
470d5bb5 2766
29314253 2767 if (!src_stmt)
470d5bb5 2768 continue;
84cc784c 2769
470d5bb5 2770 switch (n.range)
84cc784c 2771 {
f811051b 2772 case 16:
4b2d4ce4 2773 /* Already in canonical form, nothing to do. */
2774 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
2775 continue;
904c73a0 2776 load_type = bswap_type = uint16_type_node;
f811051b 2777 break;
84cc784c 2778 case 32:
470d5bb5 2779 load_type = uint32_type_node;
84cc784c 2780 if (bswap32_p)
0af25806 2781 {
b9a16870 2782 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
0af25806 2783 bswap_type = bswap32_type;
2784 }
84cc784c 2785 break;
2786 case 64:
470d5bb5 2787 load_type = uint64_type_node;
84cc784c 2788 if (bswap64_p)
0af25806 2789 {
b9a16870 2790 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
0af25806 2791 bswap_type = bswap64_type;
2792 }
84cc784c 2793 break;
2794 default:
2795 continue;
2796 }
2797
bbb9b536 2798 if (bswap && !fndecl && n.range != 16)
84cc784c 2799 continue;
2800
4b2d4ce4 2801 if (bswap_replace (cur_stmt, src_stmt, fndecl, bswap_type, load_type,
2802 &n, bswap))
470d5bb5 2803 changed = true;
84cc784c 2804 }
2805 }
2806
470d5bb5 2807 statistics_counter_event (fun, "16-bit nop implementations found",
2808 nop_stats.found_16bit);
2809 statistics_counter_event (fun, "32-bit nop implementations found",
2810 nop_stats.found_32bit);
2811 statistics_counter_event (fun, "64-bit nop implementations found",
2812 nop_stats.found_64bit);
65b0537f 2813 statistics_counter_event (fun, "16-bit bswap implementations found",
f811051b 2814 bswap_stats.found_16bit);
65b0537f 2815 statistics_counter_event (fun, "32-bit bswap implementations found",
30c4e60d 2816 bswap_stats.found_32bit);
65b0537f 2817 statistics_counter_event (fun, "64-bit bswap implementations found",
30c4e60d 2818 bswap_stats.found_64bit);
2819
8b88439e 2820 return (changed ? TODO_update_ssa : 0);
84cc784c 2821}
2822
cbe8bda8 2823} // anon namespace
2824
2825gimple_opt_pass *
2826make_pass_optimize_bswap (gcc::context *ctxt)
2827{
2828 return new pass_optimize_bswap (ctxt);
2829}
2830
71dbd910 2831/* Return true if stmt is a type conversion operation that can be stripped
2832 when used in a widening multiply operation. */
2833static bool
42acab1c 2834widening_mult_conversion_strippable_p (tree result_type, gimple *stmt)
71dbd910 2835{
2836 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2837
2838 if (TREE_CODE (result_type) == INTEGER_TYPE)
2839 {
2840 tree op_type;
2841 tree inner_op_type;
2842
2843 if (!CONVERT_EXPR_CODE_P (rhs_code))
2844 return false;
2845
2846 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2847
2848 /* If the type of OP has the same precision as the result, then
2849 we can strip this conversion. The multiply operation will be
2850 selected to create the correct extension as a by-product. */
2851 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2852 return true;
2853
2854 /* We can also strip a conversion if it preserves the signed-ness of
2855 the operation and doesn't narrow the range. */
2856 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2857
8f9d1531 2858 /* If the inner-most type is unsigned, then we can strip any
2859 intermediate widening operation. If it's signed, then the
2860 intermediate widening operation must also be signed. */
2861 if ((TYPE_UNSIGNED (inner_op_type)
2862 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
71dbd910 2863 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2864 return true;
2865
2866 return false;
2867 }
2868
2869 return rhs_code == FIXED_CONVERT_EXPR;
2870}
2871
0989f516 2872/* Return true if RHS is a suitable operand for a widening multiplication,
2873 assuming a target type of TYPE.
7e4c867e 2874 There are two cases:
2875
aff5fb4d 2876 - RHS makes some value at least twice as wide. Store that value
2877 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
7e4c867e 2878
2879 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2880 but leave *TYPE_OUT untouched. */
00f4f705 2881
2882static bool
0989f516 2883is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2884 tree *new_rhs_out)
7e4c867e 2885{
42acab1c 2886 gimple *stmt;
0989f516 2887 tree type1, rhs1;
7e4c867e 2888
2889 if (TREE_CODE (rhs) == SSA_NAME)
2890 {
7e4c867e 2891 stmt = SSA_NAME_DEF_STMT (rhs);
0989f516 2892 if (is_gimple_assign (stmt))
2893 {
71dbd910 2894 if (! widening_mult_conversion_strippable_p (type, stmt))
0989f516 2895 rhs1 = rhs;
2896 else
ffebd9c5 2897 {
2898 rhs1 = gimple_assign_rhs1 (stmt);
2899
2900 if (TREE_CODE (rhs1) == INTEGER_CST)
2901 {
2902 *new_rhs_out = rhs1;
2903 *type_out = NULL;
2904 return true;
2905 }
2906 }
0989f516 2907 }
2908 else
2909 rhs1 = rhs;
7e4c867e 2910
7e4c867e 2911 type1 = TREE_TYPE (rhs1);
0989f516 2912
7e4c867e 2913 if (TREE_CODE (type1) != TREE_CODE (type)
aff5fb4d 2914 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
7e4c867e 2915 return false;
2916
2917 *new_rhs_out = rhs1;
2918 *type_out = type1;
2919 return true;
2920 }
2921
2922 if (TREE_CODE (rhs) == INTEGER_CST)
2923 {
2924 *new_rhs_out = rhs;
2925 *type_out = NULL;
2926 return true;
2927 }
2928
2929 return false;
2930}
2931
0989f516 2932/* Return true if STMT performs a widening multiplication, assuming the
2933 output type is TYPE. If so, store the unwidened types of the operands
2934 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2935 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2936 and *TYPE2_OUT would give the operands of the multiplication. */
7e4c867e 2937
2938static bool
42acab1c 2939is_widening_mult_p (gimple *stmt,
7e4c867e 2940 tree *type1_out, tree *rhs1_out,
2941 tree *type2_out, tree *rhs2_out)
00f4f705 2942{
4333b41f 2943 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2944
7e4c867e 2945 if (TREE_CODE (type) != INTEGER_TYPE
2946 && TREE_CODE (type) != FIXED_POINT_TYPE)
2947 return false;
00f4f705 2948
0989f516 2949 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2950 rhs1_out))
00f4f705 2951 return false;
2952
0989f516 2953 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2954 rhs2_out))
7e4c867e 2955 return false;
00f4f705 2956
7e4c867e 2957 if (*type1_out == NULL)
00f4f705 2958 {
7e4c867e 2959 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
00f4f705 2960 return false;
7e4c867e 2961 *type1_out = *type2_out;
00f4f705 2962 }
00f4f705 2963
7e4c867e 2964 if (*type2_out == NULL)
00f4f705 2965 {
7e4c867e 2966 if (!int_fits_type_p (*rhs2_out, *type1_out))
00f4f705 2967 return false;
7e4c867e 2968 *type2_out = *type1_out;
00f4f705 2969 }
00f4f705 2970
287c271c 2971 /* Ensure that the larger of the two operands comes first. */
2972 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2973 {
dfcf26a5 2974 std::swap (*type1_out, *type2_out);
2975 std::swap (*rhs1_out, *rhs2_out);
287c271c 2976 }
aff5fb4d 2977
7e4c867e 2978 return true;
2979}
00f4f705 2980
7e4c867e 2981/* Process a single gimple statement STMT, which has a MULT_EXPR as
2982 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2983 value is true iff we converted the statement. */
2984
2985static bool
42acab1c 2986convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi)
7e4c867e 2987{
03d37e4e 2988 tree lhs, rhs1, rhs2, type, type1, type2;
7e4c867e 2989 enum insn_code handler;
3754d046 2990 machine_mode to_mode, from_mode, actual_mode;
5a574e8b 2991 optab op;
aff5fb4d 2992 int actual_precision;
2993 location_t loc = gimple_location (stmt);
3f2ab719 2994 bool from_unsigned1, from_unsigned2;
7e4c867e 2995
2996 lhs = gimple_assign_lhs (stmt);
2997 type = TREE_TYPE (lhs);
2998 if (TREE_CODE (type) != INTEGER_TYPE)
00f4f705 2999 return false;
3000
4333b41f 3001 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
00f4f705 3002 return false;
3003
5a574e8b 3004 to_mode = TYPE_MODE (type);
3005 from_mode = TYPE_MODE (type1);
3f2ab719 3006 from_unsigned1 = TYPE_UNSIGNED (type1);
3007 from_unsigned2 = TYPE_UNSIGNED (type2);
5a574e8b 3008
3f2ab719 3009 if (from_unsigned1 && from_unsigned2)
5a574e8b 3010 op = umul_widen_optab;
3f2ab719 3011 else if (!from_unsigned1 && !from_unsigned2)
5a574e8b 3012 op = smul_widen_optab;
00f4f705 3013 else
5a574e8b 3014 op = usmul_widen_optab;
3015
aff5fb4d 3016 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
3017 0, &actual_mode);
7e4c867e 3018
3019 if (handler == CODE_FOR_nothing)
3f2ab719 3020 {
3021 if (op != smul_widen_optab)
3022 {
22ffd684 3023 /* We can use a signed multiply with unsigned types as long as
3024 there is a wider mode to use, or it is the smaller of the two
3025 types that is unsigned. Note that type1 >= type2, always. */
3026 if ((TYPE_UNSIGNED (type1)
3027 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3028 || (TYPE_UNSIGNED (type2)
3029 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3030 {
3031 from_mode = GET_MODE_WIDER_MODE (from_mode);
3032 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
3033 return false;
3034 }
3f2ab719 3035
3036 op = smul_widen_optab;
3037 handler = find_widening_optab_handler_and_mode (op, to_mode,
3038 from_mode, 0,
3039 &actual_mode);
3040
3041 if (handler == CODE_FOR_nothing)
3042 return false;
3043
3044 from_unsigned1 = from_unsigned2 = false;
3045 }
3046 else
3047 return false;
3048 }
7e4c867e 3049
aff5fb4d 3050 /* Ensure that the inputs to the handler are in the correct precison
3051 for the opcode. This will be the full mode size. */
3052 actual_precision = GET_MODE_PRECISION (actual_mode);
b36be69d 3053 if (2 * actual_precision > TYPE_PRECISION (type))
3054 return false;
3f2ab719 3055 if (actual_precision != TYPE_PRECISION (type1)
3056 || from_unsigned1 != TYPE_UNSIGNED (type1))
03d37e4e 3057 rhs1 = build_and_insert_cast (gsi, loc,
3058 build_nonstandard_integer_type
3059 (actual_precision, from_unsigned1), rhs1);
3f2ab719 3060 if (actual_precision != TYPE_PRECISION (type2)
3061 || from_unsigned2 != TYPE_UNSIGNED (type2))
03d37e4e 3062 rhs2 = build_and_insert_cast (gsi, loc,
3063 build_nonstandard_integer_type
3064 (actual_precision, from_unsigned2), rhs2);
aff5fb4d 3065
ffebd9c5 3066 /* Handle constants. */
3067 if (TREE_CODE (rhs1) == INTEGER_CST)
3068 rhs1 = fold_convert (type1, rhs1);
3069 if (TREE_CODE (rhs2) == INTEGER_CST)
3070 rhs2 = fold_convert (type2, rhs2);
3071
aff5fb4d 3072 gimple_assign_set_rhs1 (stmt, rhs1);
3073 gimple_assign_set_rhs2 (stmt, rhs2);
00f4f705 3074 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
3075 update_stmt (stmt);
30c4e60d 3076 widen_mul_stats.widen_mults_inserted++;
00f4f705 3077 return true;
3078}
3079
3080/* Process a single gimple statement STMT, which is found at the
3081 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
3082 rhs (given by CODE), and try to convert it into a
3083 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
3084 is true iff we converted the statement. */
3085
3086static bool
42acab1c 3087convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt,
00f4f705 3088 enum tree_code code)
3089{
42acab1c 3090 gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL;
3091 gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt;
03d37e4e 3092 tree type, type1, type2, optype;
00f4f705 3093 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
3094 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
3095 optab this_optab;
3096 enum tree_code wmult_code;
aff5fb4d 3097 enum insn_code handler;
3754d046 3098 machine_mode to_mode, from_mode, actual_mode;
aff5fb4d 3099 location_t loc = gimple_location (stmt);
3100 int actual_precision;
3f2ab719 3101 bool from_unsigned1, from_unsigned2;
00f4f705 3102
3103 lhs = gimple_assign_lhs (stmt);
3104 type = TREE_TYPE (lhs);
7e4c867e 3105 if (TREE_CODE (type) != INTEGER_TYPE
3106 && TREE_CODE (type) != FIXED_POINT_TYPE)
00f4f705 3107 return false;
3108
3109 if (code == MINUS_EXPR)
3110 wmult_code = WIDEN_MULT_MINUS_EXPR;
3111 else
3112 wmult_code = WIDEN_MULT_PLUS_EXPR;
3113
00f4f705 3114 rhs1 = gimple_assign_rhs1 (stmt);
3115 rhs2 = gimple_assign_rhs2 (stmt);
3116
3117 if (TREE_CODE (rhs1) == SSA_NAME)
3118 {
3119 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3120 if (is_gimple_assign (rhs1_stmt))
3121 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3122 }
00f4f705 3123
3124 if (TREE_CODE (rhs2) == SSA_NAME)
3125 {
3126 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3127 if (is_gimple_assign (rhs2_stmt))
3128 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3129 }
00f4f705 3130
07ea3e5c 3131 /* Allow for one conversion statement between the multiply
3132 and addition/subtraction statement. If there are more than
3133 one conversions then we assume they would invalidate this
3134 transformation. If that's not the case then they should have
3135 been folded before now. */
3136 if (CONVERT_EXPR_CODE_P (rhs1_code))
3137 {
3138 conv1_stmt = rhs1_stmt;
3139 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
3140 if (TREE_CODE (rhs1) == SSA_NAME)
3141 {
3142 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
3143 if (is_gimple_assign (rhs1_stmt))
3144 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
3145 }
3146 else
3147 return false;
3148 }
3149 if (CONVERT_EXPR_CODE_P (rhs2_code))
3150 {
3151 conv2_stmt = rhs2_stmt;
3152 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
3153 if (TREE_CODE (rhs2) == SSA_NAME)
3154 {
3155 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
3156 if (is_gimple_assign (rhs2_stmt))
3157 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
3158 }
3159 else
3160 return false;
3161 }
3162
aff5fb4d 3163 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
3164 is_widening_mult_p, but we still need the rhs returns.
3165
3166 It might also appear that it would be sufficient to use the existing
3167 operands of the widening multiply, but that would limit the choice of
e0df5be0 3168 multiply-and-accumulate instructions.
3169
3170 If the widened-multiplication result has more than one uses, it is
3171 probably wiser not to do the conversion. */
aff5fb4d 3172 if (code == PLUS_EXPR
3173 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
00f4f705 3174 {
e0df5be0 3175 if (!has_single_use (rhs1)
3176 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
3177 &type2, &mult_rhs2))
00f4f705 3178 return false;
7e4c867e 3179 add_rhs = rhs2;
07ea3e5c 3180 conv_stmt = conv1_stmt;
00f4f705 3181 }
aff5fb4d 3182 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
00f4f705 3183 {
e0df5be0 3184 if (!has_single_use (rhs2)
3185 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
3186 &type2, &mult_rhs2))
00f4f705 3187 return false;
7e4c867e 3188 add_rhs = rhs1;
07ea3e5c 3189 conv_stmt = conv2_stmt;
00f4f705 3190 }
00f4f705 3191 else
3192 return false;
3193
aff5fb4d 3194 to_mode = TYPE_MODE (type);
3195 from_mode = TYPE_MODE (type1);
3f2ab719 3196 from_unsigned1 = TYPE_UNSIGNED (type1);
3197 from_unsigned2 = TYPE_UNSIGNED (type2);
4ccf368d 3198 optype = type1;
aff5fb4d 3199
3f2ab719 3200 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
3201 if (from_unsigned1 != from_unsigned2)
3202 {
4ccf368d 3203 if (!INTEGRAL_TYPE_P (type))
3204 return false;
22ffd684 3205 /* We can use a signed multiply with unsigned types as long as
3206 there is a wider mode to use, or it is the smaller of the two
3207 types that is unsigned. Note that type1 >= type2, always. */
3208 if ((from_unsigned1
3209 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
3210 || (from_unsigned2
3211 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3f2ab719 3212 {
22ffd684 3213 from_mode = GET_MODE_WIDER_MODE (from_mode);
3214 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
3215 return false;
3f2ab719 3216 }
22ffd684 3217
3218 from_unsigned1 = from_unsigned2 = false;
4ccf368d 3219 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
3220 false);
3f2ab719 3221 }
815a0224 3222
07ea3e5c 3223 /* If there was a conversion between the multiply and addition
3224 then we need to make sure it fits a multiply-and-accumulate.
3225 The should be a single mode change which does not change the
3226 value. */
3227 if (conv_stmt)
3228 {
3f2ab719 3229 /* We use the original, unmodified data types for this. */
07ea3e5c 3230 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
3231 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
3232 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
3233 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
3234
3235 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
3236 {
3237 /* Conversion is a truncate. */
3238 if (TYPE_PRECISION (to_type) < data_size)
3239 return false;
3240 }
3241 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
3242 {
3243 /* Conversion is an extend. Check it's the right sort. */
3244 if (TYPE_UNSIGNED (from_type) != is_unsigned
3245 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
3246 return false;
3247 }
3248 /* else convert is a no-op for our purposes. */
3249 }
3250
815a0224 3251 /* Verify that the machine can perform a widening multiply
3252 accumulate in this mode/signedness combination, otherwise
3253 this transformation is likely to pessimize code. */
3f2ab719 3254 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
aff5fb4d 3255 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
3256 from_mode, 0, &actual_mode);
3257
3258 if (handler == CODE_FOR_nothing)
815a0224 3259 return false;
3260
aff5fb4d 3261 /* Ensure that the inputs to the handler are in the correct precison
3262 for the opcode. This will be the full mode size. */
3263 actual_precision = GET_MODE_PRECISION (actual_mode);
3f2ab719 3264 if (actual_precision != TYPE_PRECISION (type1)
3265 || from_unsigned1 != TYPE_UNSIGNED (type1))
03d37e4e 3266 mult_rhs1 = build_and_insert_cast (gsi, loc,
3267 build_nonstandard_integer_type
3268 (actual_precision, from_unsigned1),
3269 mult_rhs1);
3f2ab719 3270 if (actual_precision != TYPE_PRECISION (type2)
3271 || from_unsigned2 != TYPE_UNSIGNED (type2))
03d37e4e 3272 mult_rhs2 = build_and_insert_cast (gsi, loc,
3273 build_nonstandard_integer_type
3274 (actual_precision, from_unsigned2),
3275 mult_rhs2);
00f4f705 3276
12421545 3277 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
03d37e4e 3278 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
12421545 3279
ffebd9c5 3280 /* Handle constants. */
3281 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
d5a3bb10 3282 mult_rhs1 = fold_convert (type1, mult_rhs1);
ffebd9c5 3283 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
d5a3bb10 3284 mult_rhs2 = fold_convert (type2, mult_rhs2);
ffebd9c5 3285
806413d2 3286 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
3287 add_rhs);
00f4f705 3288 update_stmt (gsi_stmt (*gsi));
30c4e60d 3289 widen_mul_stats.maccs_inserted++;
00f4f705 3290 return true;
3291}
3292
15dbdc8f 3293/* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
3294 with uses in additions and subtractions to form fused multiply-add
3295 operations. Returns true if successful and MUL_STMT should be removed. */
b9be572e 3296
3297static bool
42acab1c 3298convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2)
b9be572e 3299{
15dbdc8f 3300 tree mul_result = gimple_get_lhs (mul_stmt);
b9be572e 3301 tree type = TREE_TYPE (mul_result);
42acab1c 3302 gimple *use_stmt, *neguse_stmt;
1a91d914 3303 gassign *fma_stmt;
b9be572e 3304 use_operand_p use_p;
3305 imm_use_iterator imm_iter;
3306
3307 if (FLOAT_TYPE_P (type)
3308 && flag_fp_contract_mode == FP_CONTRACT_OFF)
3309 return false;
3310
3311 /* We don't want to do bitfield reduction ops. */
3312 if (INTEGRAL_TYPE_P (type)
3313 && (TYPE_PRECISION (type)
3314 != GET_MODE_PRECISION (TYPE_MODE (type))))
3315 return false;
3316
3317 /* If the target doesn't support it, don't generate it. We assume that
3318 if fma isn't available then fms, fnma or fnms are not either. */
3319 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
3320 return false;
3321
5ed3d3b8 3322 /* If the multiplication has zero uses, it is kept around probably because
3323 of -fnon-call-exceptions. Don't optimize it away in that case,
3324 it is DCE job. */
3325 if (has_zero_uses (mul_result))
3326 return false;
3327
b9be572e 3328 /* Make sure that the multiplication statement becomes dead after
3329 the transformation, thus that all uses are transformed to FMAs.
3330 This means we assume that an FMA operation has the same cost
3331 as an addition. */
3332 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
3333 {
3334 enum tree_code use_code;
44579526 3335 tree result = mul_result;
3336 bool negate_p = false;
b9be572e 3337
3338 use_stmt = USE_STMT (use_p);
3339
17a2c727 3340 if (is_gimple_debug (use_stmt))
3341 continue;
3342
b9be572e 3343 /* For now restrict this operations to single basic blocks. In theory
3344 we would want to support sinking the multiplication in
3345 m = a*b;
3346 if ()
3347 ma = m + c;
3348 else
3349 d = m;
3350 to form a fma in the then block and sink the multiplication to the
3351 else block. */
3352 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3353 return false;
3354
44579526 3355 if (!is_gimple_assign (use_stmt))
b9be572e 3356 return false;
3357
44579526 3358 use_code = gimple_assign_rhs_code (use_stmt);
3359
3360 /* A negate on the multiplication leads to FNMA. */
3361 if (use_code == NEGATE_EXPR)
3362 {
805ad414 3363 ssa_op_iter iter;
5715c09b 3364 use_operand_p usep;
805ad414 3365
44579526 3366 result = gimple_assign_lhs (use_stmt);
3367
3368 /* Make sure the negate statement becomes dead with this
3369 single transformation. */
3370 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3371 &use_p, &neguse_stmt))
3372 return false;
3373
805ad414 3374 /* Make sure the multiplication isn't also used on that stmt. */
5715c09b 3375 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3376 if (USE_FROM_PTR (usep) == mul_result)
805ad414 3377 return false;
3378
44579526 3379 /* Re-validate. */
3380 use_stmt = neguse_stmt;
3381 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3382 return false;
3383 if (!is_gimple_assign (use_stmt))
3384 return false;
3385
3386 use_code = gimple_assign_rhs_code (use_stmt);
3387 negate_p = true;
3388 }
b9be572e 3389
44579526 3390 switch (use_code)
3391 {
3392 case MINUS_EXPR:
8a9d0572 3393 if (gimple_assign_rhs2 (use_stmt) == result)
3394 negate_p = !negate_p;
3395 break;
44579526 3396 case PLUS_EXPR:
44579526 3397 break;
44579526 3398 default:
3399 /* FMA can only be formed from PLUS and MINUS. */
3400 return false;
3401 }
b9be572e 3402
b095bd6a 3403 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3404 by a MULT_EXPR that we'll visit later, we might be able to
3405 get a more profitable match with fnma.
3406 OTOH, if we don't, a negate / fma pair has likely lower latency
3407 that a mult / subtract pair. */
3408 if (use_code == MINUS_EXPR && !negate_p
3409 && gimple_assign_rhs1 (use_stmt) == result
3410 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3411 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3412 {
3413 tree rhs2 = gimple_assign_rhs2 (use_stmt);
b095bd6a 3414
058e9571 3415 if (TREE_CODE (rhs2) == SSA_NAME)
3416 {
42acab1c 3417 gimple *stmt2 = SSA_NAME_DEF_STMT (rhs2);
058e9571 3418 if (has_single_use (rhs2)
3419 && is_gimple_assign (stmt2)
3420 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3421 return false;
3422 }
b095bd6a 3423 }
3424
44579526 3425 /* We can't handle a * b + a * b. */
3426 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3427 return false;
8a9d0572 3428
3429 /* While it is possible to validate whether or not the exact form
3430 that we've recognized is available in the backend, the assumption
3431 is that the transformation is never a loss. For instance, suppose
3432 the target only has the plain FMA pattern available. Consider
3433 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3434 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3435 still have 3 operations, but in the FMA form the two NEGs are
9d75589a 3436 independent and could be run in parallel. */
b9be572e 3437 }
3438
3439 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3440 {
b9be572e 3441 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
17a2c727 3442 enum tree_code use_code;
15dbdc8f 3443 tree addop, mulop1 = op1, result = mul_result;
44579526 3444 bool negate_p = false;
b9be572e 3445
17a2c727 3446 if (is_gimple_debug (use_stmt))
3447 continue;
3448
3449 use_code = gimple_assign_rhs_code (use_stmt);
44579526 3450 if (use_code == NEGATE_EXPR)
3451 {
3452 result = gimple_assign_lhs (use_stmt);
3453 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3454 gsi_remove (&gsi, true);
3455 release_defs (use_stmt);
3456
3457 use_stmt = neguse_stmt;
3458 gsi = gsi_for_stmt (use_stmt);
3459 use_code = gimple_assign_rhs_code (use_stmt);
3460 negate_p = true;
3461 }
3462
3463 if (gimple_assign_rhs1 (use_stmt) == result)
b9be572e 3464 {
3465 addop = gimple_assign_rhs2 (use_stmt);
3466 /* a * b - c -> a * b + (-c) */
3467 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3468 addop = force_gimple_operand_gsi (&gsi,
3469 build1 (NEGATE_EXPR,
3470 type, addop),
3471 true, NULL_TREE, true,
3472 GSI_SAME_STMT);
3473 }
3474 else
3475 {
3476 addop = gimple_assign_rhs1 (use_stmt);
3477 /* a - b * c -> (-b) * c + a */
3478 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
44579526 3479 negate_p = !negate_p;
b9be572e 3480 }
3481
44579526 3482 if (negate_p)
3483 mulop1 = force_gimple_operand_gsi (&gsi,
3484 build1 (NEGATE_EXPR,
3485 type, mulop1),
3486 true, NULL_TREE, true,
3487 GSI_SAME_STMT);
3488
e9cf809e 3489 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
3490 FMA_EXPR, mulop1, op2, addop);
b9be572e 3491 gsi_replace (&gsi, fma_stmt, true);
30c4e60d 3492 widen_mul_stats.fmas_inserted++;
b9be572e 3493 }
3494
3495 return true;
3496}
3497
62be004c 3498/* Find integer multiplications where the operands are extended from
3499 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3500 where appropriate. */
3501
65b0537f 3502namespace {
3503
3504const pass_data pass_data_optimize_widening_mul =
3505{
3506 GIMPLE_PASS, /* type */
3507 "widening_mul", /* name */
3508 OPTGROUP_NONE, /* optinfo_flags */
65b0537f 3509 TV_NONE, /* tv_id */
3510 PROP_ssa, /* properties_required */
3511 0, /* properties_provided */
3512 0, /* properties_destroyed */
3513 0, /* todo_flags_start */
8b88439e 3514 TODO_update_ssa, /* todo_flags_finish */
65b0537f 3515};
3516
3517class pass_optimize_widening_mul : public gimple_opt_pass
3518{
3519public:
3520 pass_optimize_widening_mul (gcc::context *ctxt)
3521 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3522 {}
3523
3524 /* opt_pass methods: */
3525 virtual bool gate (function *)
3526 {
3527 return flag_expensive_optimizations && optimize;
3528 }
3529
3530 virtual unsigned int execute (function *);
3531
3532}; // class pass_optimize_widening_mul
3533
3534unsigned int
3535pass_optimize_widening_mul::execute (function *fun)
62be004c 3536{
62be004c 3537 basic_block bb;
15dbdc8f 3538 bool cfg_changed = false;
62be004c 3539
30c4e60d 3540 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3541
65b0537f 3542 FOR_EACH_BB_FN (bb, fun)
62be004c 3543 {
3544 gimple_stmt_iterator gsi;
3545
b9be572e 3546 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
62be004c 3547 {
42acab1c 3548 gimple *stmt = gsi_stmt (gsi);
00f4f705 3549 enum tree_code code;
62be004c 3550
b9be572e 3551 if (is_gimple_assign (stmt))
3552 {
3553 code = gimple_assign_rhs_code (stmt);
3554 switch (code)
3555 {
3556 case MULT_EXPR:
aff5fb4d 3557 if (!convert_mult_to_widen (stmt, &gsi)
15dbdc8f 3558 && convert_mult_to_fma (stmt,
3559 gimple_assign_rhs1 (stmt),
3560 gimple_assign_rhs2 (stmt)))
b9be572e 3561 {
3562 gsi_remove (&gsi, true);
3563 release_defs (stmt);
3564 continue;
3565 }
3566 break;
3567
3568 case PLUS_EXPR:
3569 case MINUS_EXPR:
3570 convert_plusminus_to_widen (&gsi, stmt, code);
3571 break;
62be004c 3572
b9be572e 3573 default:;
3574 }
3575 }
d4af184a 3576 else if (is_gimple_call (stmt)
3577 && gimple_call_lhs (stmt))
15dbdc8f 3578 {
3579 tree fndecl = gimple_call_fndecl (stmt);
3580 if (fndecl
3581 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3582 {
3583 switch (DECL_FUNCTION_CODE (fndecl))
3584 {
3585 case BUILT_IN_POWF:
3586 case BUILT_IN_POW:
3587 case BUILT_IN_POWL:
3588 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
20cb53c9 3589 && real_equal
3590 (&TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3591 &dconst2)
15dbdc8f 3592 && convert_mult_to_fma (stmt,
3593 gimple_call_arg (stmt, 0),
3594 gimple_call_arg (stmt, 0)))
3595 {
6716f635 3596 unlink_stmt_vdef (stmt);
13ff78a4 3597 if (gsi_remove (&gsi, true)
3598 && gimple_purge_dead_eh_edges (bb))
15dbdc8f 3599 cfg_changed = true;
13ff78a4 3600 release_defs (stmt);
15dbdc8f 3601 continue;
3602 }
3603 break;
3604
3605 default:;
3606 }
3607 }
3608 }
b9be572e 3609 gsi_next (&gsi);
62be004c 3610 }
3611 }
00f4f705 3612
65b0537f 3613 statistics_counter_event (fun, "widening multiplications inserted",
30c4e60d 3614 widen_mul_stats.widen_mults_inserted);
65b0537f 3615 statistics_counter_event (fun, "widening maccs inserted",
30c4e60d 3616 widen_mul_stats.maccs_inserted);
65b0537f 3617 statistics_counter_event (fun, "fused multiply-adds inserted",
30c4e60d 3618 widen_mul_stats.fmas_inserted);
3619
15dbdc8f 3620 return cfg_changed ? TODO_cleanup_cfg : 0;
62be004c 3621}
3622
cbe8bda8 3623} // anon namespace
3624
3625gimple_opt_pass *
3626make_pass_optimize_widening_mul (gcc::context *ctxt)
3627{
3628 return new pass_optimize_widening_mul (ctxt);
3629}