]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-math-opts.c
Daily bump.
[thirdparty/gcc.git] / gcc / tree-ssa-math-opts.c
CommitLineData
abacb398 1/* Global, SSA-based optimizations using mathematical identities.
8e8f6434 2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
48e1416a 3
abacb398 4This file is part of GCC.
48e1416a 5
abacb398 6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8c4c00c1 8Free Software Foundation; either version 3, or (at your option) any
abacb398 9later version.
48e1416a 10
abacb398 11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
48e1416a 15
abacb398 16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
abacb398 19
20/* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
ac70caad 37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
24794e79 45 by the same divisor. This is probably because modern processors
ac70caad 46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
abacb398 86
87#include "config.h"
88#include "system.h"
89#include "coretypes.h"
9ef16211 90#include "backend.h"
7c29e30e 91#include "target.h"
92#include "rtl.h"
9ef16211 93#include "tree.h"
94#include "gimple.h"
7c29e30e 95#include "predict.h"
96#include "alloc-pool.h"
97#include "tree-pass.h"
9ef16211 98#include "ssa.h"
7c29e30e 99#include "optabs-tree.h"
100#include "gimple-pretty-print.h"
b20a8bb4 101#include "alias.h"
b20a8bb4 102#include "fold-const.h"
bc61cadb 103#include "gimple-fold.h"
dcf1a1ec 104#include "gimple-iterator.h"
470d5bb5 105#include "gimplify.h"
e795d6e1 106#include "gimplify-me.h"
9ed99284 107#include "stor-layout.h"
073c1fd5 108#include "tree-cfg.h"
073c1fd5 109#include "tree-dfa.h"
69ee5dbb 110#include "tree-ssa.h"
f7715905 111#include "builtins.h"
c3206272 112#include "params.h"
4cfd27a5 113#include "internal-fn.h"
fa0793ad 114#include "case-cfn-macros.h"
67f7b566 115#include "optabs-libfuncs.h"
116#include "tree-eh.h"
117#include "targhooks.h"
ed306e55 118#include "domwalk.h"
ac70caad 119
120/* This structure represents one basic block that either computes a
121 division, or is a common dominator for basic block that compute a
122 division. */
123struct occurrence {
124 /* The basic block represented by this structure. */
125 basic_block bb;
126
127 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
128 inserted in BB. */
129 tree recip_def;
130
472f3f23 131 /* If non-NULL, the SSA_NAME holding the definition for a squared
132 reciprocal inserted in BB. */
133 tree square_recip_def;
134
75a70cf9 135 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
ac70caad 136 was inserted in BB. */
42acab1c 137 gimple *recip_def_stmt;
ac70caad 138
139 /* Pointer to a list of "struct occurrence"s for blocks dominated
140 by BB. */
141 struct occurrence *children;
142
143 /* Pointer to the next "struct occurrence"s in the list of blocks
144 sharing a common dominator. */
145 struct occurrence *next;
146
147 /* The number of divisions that are in BB before compute_merit. The
148 number of divisions that are in BB or post-dominate it after
149 compute_merit. */
150 int num_divisions;
151
152 /* True if the basic block has a division, false if it is a common
153 dominator for basic blocks that do. If it is false and trapping
154 math is active, BB is not a candidate for inserting a reciprocal. */
155 bool bb_has_division;
156};
157
30c4e60d 158static struct
159{
160 /* Number of 1.0/X ops inserted. */
161 int rdivs_inserted;
162
163 /* Number of 1.0/FUNC ops inserted. */
164 int rfuncs_inserted;
165} reciprocal_stats;
166
167static struct
168{
169 /* Number of cexpi calls inserted. */
170 int inserted;
171} sincos_stats;
172
30c4e60d 173static struct
174{
175 /* Number of widening multiplication ops inserted. */
176 int widen_mults_inserted;
177
178 /* Number of integer multiply-and-accumulate ops inserted. */
179 int maccs_inserted;
180
181 /* Number of fp fused multiply-add ops inserted. */
182 int fmas_inserted;
67f7b566 183
184 /* Number of divmod calls inserted. */
185 int divmod_calls_inserted;
30c4e60d 186} widen_mul_stats;
ac70caad 187
188/* The instance of "struct occurrence" representing the highest
189 interesting block in the dominator tree. */
190static struct occurrence *occ_head;
191
192/* Allocation pool for getting instances of "struct occurrence". */
e16712b1 193static object_allocator<occurrence> *occ_pool;
ac70caad 194
195
196
197/* Allocate and return a new struct occurrence for basic block BB, and
198 whose children list is headed by CHILDREN. */
199static struct occurrence *
200occ_new (basic_block bb, struct occurrence *children)
abacb398 201{
ac70caad 202 struct occurrence *occ;
203
d8e7268c 204 bb->aux = occ = occ_pool->allocate ();
ac70caad 205 memset (occ, 0, sizeof (struct occurrence));
206
207 occ->bb = bb;
208 occ->children = children;
209 return occ;
abacb398 210}
211
ac70caad 212
213/* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
214 list of "struct occurrence"s, one per basic block, having IDOM as
215 their common dominator.
216
217 We try to insert NEW_OCC as deep as possible in the tree, and we also
218 insert any other block that is a common dominator for BB and one
219 block already in the tree. */
220
221static void
222insert_bb (struct occurrence *new_occ, basic_block idom,
223 struct occurrence **p_head)
9e583fac 224{
ac70caad 225 struct occurrence *occ, **p_occ;
9e583fac 226
ac70caad 227 for (p_occ = p_head; (occ = *p_occ) != NULL; )
228 {
229 basic_block bb = new_occ->bb, occ_bb = occ->bb;
230 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
231 if (dom == bb)
232 {
233 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
234 from its list. */
235 *p_occ = occ->next;
236 occ->next = new_occ->children;
237 new_occ->children = occ;
238
239 /* Try the next block (it may as well be dominated by BB). */
240 }
241
242 else if (dom == occ_bb)
243 {
244 /* OCC_BB dominates BB. Tail recurse to look deeper. */
245 insert_bb (new_occ, dom, &occ->children);
246 return;
247 }
248
249 else if (dom != idom)
250 {
251 gcc_assert (!dom->aux);
252
253 /* There is a dominator between IDOM and BB, add it and make
254 two children out of NEW_OCC and OCC. First, remove OCC from
255 its list. */
256 *p_occ = occ->next;
257 new_occ->next = occ;
258 occ->next = NULL;
259
260 /* None of the previous blocks has DOM as a dominator: if we tail
261 recursed, we would reexamine them uselessly. Just switch BB with
262 DOM, and go on looking for blocks dominated by DOM. */
263 new_occ = occ_new (dom, new_occ);
264 }
265
266 else
267 {
268 /* Nothing special, go on with the next element. */
269 p_occ = &occ->next;
270 }
271 }
272
273 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
274 new_occ->next = *p_head;
275 *p_head = new_occ;
276}
277
472f3f23 278/* Register that we found a division in BB.
279 IMPORTANCE is a measure of how much weighting to give
280 that division. Use IMPORTANCE = 2 to register a single
281 division. If the division is going to be found multiple
282 times use 1 (as it is with squares). */
ac70caad 283
284static inline void
472f3f23 285register_division_in (basic_block bb, int importance)
ac70caad 286{
287 struct occurrence *occ;
288
289 occ = (struct occurrence *) bb->aux;
290 if (!occ)
291 {
292 occ = occ_new (bb, NULL);
34154e27 293 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
ac70caad 294 }
295
296 occ->bb_has_division = true;
472f3f23 297 occ->num_divisions += importance;
ac70caad 298}
299
300
301/* Compute the number of divisions that postdominate each block in OCC and
302 its children. */
abacb398 303
abacb398 304static void
ac70caad 305compute_merit (struct occurrence *occ)
abacb398 306{
ac70caad 307 struct occurrence *occ_child;
308 basic_block dom = occ->bb;
abacb398 309
ac70caad 310 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
abacb398 311 {
ac70caad 312 basic_block bb;
313 if (occ_child->children)
314 compute_merit (occ_child);
315
316 if (flag_exceptions)
317 bb = single_noncomplex_succ (dom);
318 else
319 bb = dom;
320
321 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
322 occ->num_divisions += occ_child->num_divisions;
323 }
324}
325
326
327/* Return whether USE_STMT is a floating-point division by DEF. */
328static inline bool
42acab1c 329is_division_by (gimple *use_stmt, tree def)
ac70caad 330{
75a70cf9 331 return is_gimple_assign (use_stmt)
332 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
333 && gimple_assign_rhs2 (use_stmt) == def
119368d7 334 /* Do not recognize x / x as valid division, as we are getting
335 confused later by replacing all immediate uses x in such
336 a stmt. */
75a70cf9 337 && gimple_assign_rhs1 (use_stmt) != def;
ac70caad 338}
339
472f3f23 340/* Return whether USE_STMT is DEF * DEF. */
341static inline bool
342is_square_of (gimple *use_stmt, tree def)
343{
344 if (gimple_code (use_stmt) == GIMPLE_ASSIGN
345 && gimple_assign_rhs_code (use_stmt) == MULT_EXPR)
346 {
347 tree op0 = gimple_assign_rhs1 (use_stmt);
348 tree op1 = gimple_assign_rhs2 (use_stmt);
349
350 return op0 == op1 && op0 == def;
351 }
352 return 0;
353}
354
355/* Return whether USE_STMT is a floating-point division by
356 DEF * DEF. */
357static inline bool
358is_division_by_square (gimple *use_stmt, tree def)
359{
360 if (gimple_code (use_stmt) == GIMPLE_ASSIGN
361 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
362 && gimple_assign_rhs1 (use_stmt) != gimple_assign_rhs2 (use_stmt))
363 {
364 tree denominator = gimple_assign_rhs2 (use_stmt);
365 if (TREE_CODE (denominator) == SSA_NAME)
366 {
367 return is_square_of (SSA_NAME_DEF_STMT (denominator), def);
368 }
369 }
370 return 0;
371}
372
ac70caad 373/* Walk the subset of the dominator tree rooted at OCC, setting the
374 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
375 the given basic block. The field may be left NULL, of course,
376 if it is not possible or profitable to do the optimization.
377
378 DEF_BSI is an iterator pointing at the statement defining DEF.
379 If RECIP_DEF is set, a dominator already has a computation that can
472f3f23 380 be used.
381
382 If should_insert_square_recip is set, then this also inserts
383 the square of the reciprocal immediately after the definition
384 of the reciprocal. */
ac70caad 385
386static void
75a70cf9 387insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
472f3f23 388 tree def, tree recip_def, tree square_recip_def,
389 int should_insert_square_recip, int threshold)
ac70caad 390{
75a70cf9 391 tree type;
472f3f23 392 gassign *new_stmt, *new_square_stmt;
75a70cf9 393 gimple_stmt_iterator gsi;
ac70caad 394 struct occurrence *occ_child;
395
396 if (!recip_def
397 && (occ->bb_has_division || !flag_trapping_math)
472f3f23 398 /* Divide by two as all divisions are counted twice in
399 the costing loop. */
400 && occ->num_divisions / 2 >= threshold)
ac70caad 401 {
402 /* Make a variable with the replacement and substitute it. */
403 type = TREE_TYPE (def);
072f7ab1 404 recip_def = create_tmp_reg (type, "reciptmp");
e9cf809e 405 new_stmt = gimple_build_assign (recip_def, RDIV_EXPR,
406 build_one_cst (type), def);
48e1416a 407
472f3f23 408 if (should_insert_square_recip)
409 {
410 square_recip_def = create_tmp_reg (type, "powmult_reciptmp");
411 new_square_stmt = gimple_build_assign (square_recip_def, MULT_EXPR,
412 recip_def, recip_def);
413 }
414
ac70caad 415 if (occ->bb_has_division)
472f3f23 416 {
417 /* Case 1: insert before an existing division. */
418 gsi = gsi_after_labels (occ->bb);
419 while (!gsi_end_p (gsi)
420 && (!is_division_by (gsi_stmt (gsi), def))
421 && (!is_division_by_square (gsi_stmt (gsi), def)))
75a70cf9 422 gsi_next (&gsi);
ac70caad 423
472f3f23 424 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
425 }
75a70cf9 426 else if (def_gsi && occ->bb == def_gsi->bb)
472f3f23 427 {
428 /* Case 2: insert right after the definition. Note that this will
ac70caad 429 never happen if the definition statement can throw, because in
430 that case the sole successor of the statement's basic block will
431 dominate all the uses as well. */
472f3f23 432 gsi = *def_gsi;
433 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
434 }
ac70caad 435 else
472f3f23 436 {
437 /* Case 3: insert in a basic block not containing defs/uses. */
438 gsi = gsi_after_labels (occ->bb);
439 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
440 }
441
442 /* Regardless of which case the reciprocal as inserted in,
443 we insert the square immediately after the reciprocal. */
444 if (should_insert_square_recip)
445 gsi_insert_before (&gsi, new_square_stmt, GSI_SAME_STMT);
ac70caad 446
30c4e60d 447 reciprocal_stats.rdivs_inserted++;
448
ac70caad 449 occ->recip_def_stmt = new_stmt;
abacb398 450 }
451
ac70caad 452 occ->recip_def = recip_def;
472f3f23 453 occ->square_recip_def = square_recip_def;
ac70caad 454 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
472f3f23 455 insert_reciprocals (def_gsi, occ_child, def, recip_def,
456 square_recip_def, should_insert_square_recip,
457 threshold);
458}
459
460/* Replace occurrences of expr / (x * x) with expr * ((1 / x) * (1 / x)).
461 Take as argument the use for (x * x). */
462static inline void
463replace_reciprocal_squares (use_operand_p use_p)
464{
465 gimple *use_stmt = USE_STMT (use_p);
466 basic_block bb = gimple_bb (use_stmt);
467 struct occurrence *occ = (struct occurrence *) bb->aux;
468
469 if (optimize_bb_for_speed_p (bb) && occ->square_recip_def
470 && occ->recip_def)
471 {
472 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
473 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
474 gimple_assign_set_rhs2 (use_stmt, occ->square_recip_def);
475 SET_USE (use_p, occ->square_recip_def);
476 fold_stmt_inplace (&gsi);
477 update_stmt (use_stmt);
478 }
ac70caad 479}
480
481
482/* Replace the division at USE_P with a multiplication by the reciprocal, if
483 possible. */
484
485static inline void
486replace_reciprocal (use_operand_p use_p)
487{
42acab1c 488 gimple *use_stmt = USE_STMT (use_p);
75a70cf9 489 basic_block bb = gimple_bb (use_stmt);
ac70caad 490 struct occurrence *occ = (struct occurrence *) bb->aux;
491
0bfd8d5c 492 if (optimize_bb_for_speed_p (bb)
493 && occ->recip_def && use_stmt != occ->recip_def_stmt)
ac70caad 494 {
50aacf4c 495 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
75a70cf9 496 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
ac70caad 497 SET_USE (use_p, occ->recip_def);
50aacf4c 498 fold_stmt_inplace (&gsi);
ac70caad 499 update_stmt (use_stmt);
500 }
501}
502
503
504/* Free OCC and return one more "struct occurrence" to be freed. */
505
506static struct occurrence *
507free_bb (struct occurrence *occ)
508{
509 struct occurrence *child, *next;
510
511 /* First get the two pointers hanging off OCC. */
512 next = occ->next;
513 child = occ->children;
514 occ->bb->aux = NULL;
d8e7268c 515 occ_pool->remove (occ);
ac70caad 516
517 /* Now ensure that we don't recurse unless it is necessary. */
518 if (!child)
519 return next;
9e583fac 520 else
ac70caad 521 {
522 while (next)
523 next = free_bb (next);
524
525 return child;
526 }
527}
528
529
530/* Look for floating-point divisions among DEF's uses, and try to
531 replace them by multiplications with the reciprocal. Add
532 as many statements computing the reciprocal as needed.
533
534 DEF must be a GIMPLE register of a floating-point type. */
535
536static void
75a70cf9 537execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
ac70caad 538{
472f3f23 539 use_operand_p use_p, square_use_p;
540 imm_use_iterator use_iter, square_use_iter;
541 tree square_def;
ac70caad 542 struct occurrence *occ;
472f3f23 543 int count = 0;
544 int threshold;
545 int square_recip_count = 0;
546 int sqrt_recip_count = 0;
abacb398 547
56c4f422 548 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && TREE_CODE (def) == SSA_NAME);
472f3f23 549 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
550
41e37ac9 551 /* If DEF is a square (x * x), count the number of divisions by x.
552 If there are more divisions by x than by (DEF * DEF), prefer to optimize
553 the reciprocal of x instead of DEF. This improves cases like:
554 def = x * x
555 t0 = a / def
556 t1 = b / def
557 t2 = c / x
558 Reciprocal optimization of x results in 1 division rather than 2 or 3. */
559 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
560
561 if (is_gimple_assign (def_stmt)
562 && gimple_assign_rhs_code (def_stmt) == MULT_EXPR
563 && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
564 && gimple_assign_rhs1 (def_stmt) == gimple_assign_rhs2 (def_stmt))
472f3f23 565 {
41e37ac9 566 tree op0 = gimple_assign_rhs1 (def_stmt);
472f3f23 567
41e37ac9 568 FOR_EACH_IMM_USE_FAST (use_p, use_iter, op0)
472f3f23 569 {
41e37ac9 570 gimple *use_stmt = USE_STMT (use_p);
571 if (is_division_by (use_stmt, op0))
572 sqrt_recip_count++;
472f3f23 573 }
574 }
ac70caad 575
576 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
abacb398 577 {
42acab1c 578 gimple *use_stmt = USE_STMT (use_p);
ac70caad 579 if (is_division_by (use_stmt, def))
abacb398 580 {
472f3f23 581 register_division_in (gimple_bb (use_stmt), 2);
ac70caad 582 count++;
abacb398 583 }
472f3f23 584
585 if (is_square_of (use_stmt, def))
586 {
587 square_def = gimple_assign_lhs (use_stmt);
588 FOR_EACH_IMM_USE_FAST (square_use_p, square_use_iter, square_def)
589 {
590 gimple *square_use_stmt = USE_STMT (square_use_p);
591 if (is_division_by (square_use_stmt, square_def))
592 {
41e37ac9 593 /* This is executed twice for each division by a square. */
472f3f23 594 register_division_in (gimple_bb (square_use_stmt), 1);
41e37ac9 595 square_recip_count++;
472f3f23 596 }
597 }
598 }
abacb398 599 }
48e1416a 600
41e37ac9 601 /* Square reciprocals were counted twice above. */
472f3f23 602 square_recip_count /= 2;
603
41e37ac9 604 /* If it is more profitable to optimize 1 / x, don't optimize 1 / (x * x). */
472f3f23 605 if (sqrt_recip_count > square_recip_count)
472f3f23 606 return;
607
ac70caad 608 /* Do the expensive part only if we can hope to optimize something. */
41e37ac9 609 if (count + square_recip_count >= threshold && count >= 1)
ac70caad 610 {
42acab1c 611 gimple *use_stmt;
ac70caad 612 for (occ = occ_head; occ; occ = occ->next)
613 {
614 compute_merit (occ);
472f3f23 615 insert_reciprocals (def_gsi, occ, def, NULL, NULL,
616 square_recip_count, threshold);
ac70caad 617 }
618
09aca5bc 619 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
ac70caad 620 {
ac70caad 621 if (is_division_by (use_stmt, def))
09aca5bc 622 {
623 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
624 replace_reciprocal (use_p);
625 }
41e37ac9 626 else if (square_recip_count > 0 && is_square_of (use_stmt, def))
472f3f23 627 {
628 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
629 {
630 /* Find all uses of the square that are divisions and
631 * replace them by multiplications with the inverse. */
632 imm_use_iterator square_iterator;
633 gimple *powmult_use_stmt = USE_STMT (use_p);
634 tree powmult_def_name = gimple_assign_lhs (powmult_use_stmt);
635
636 FOR_EACH_IMM_USE_STMT (powmult_use_stmt,
637 square_iterator, powmult_def_name)
638 FOR_EACH_IMM_USE_ON_STMT (square_use_p, square_iterator)
639 {
640 gimple *powmult_use_stmt = USE_STMT (square_use_p);
641 if (is_division_by (powmult_use_stmt, powmult_def_name))
642 replace_reciprocal_squares (square_use_p);
643 }
644 }
645 }
ac70caad 646 }
647 }
648
649 for (occ = occ_head; occ; )
650 occ = free_bb (occ);
651
652 occ_head = NULL;
abacb398 653}
654
4cfd27a5 655/* Return an internal function that implements the reciprocal of CALL,
656 or IFN_LAST if there is no such function that the target supports. */
657
658internal_fn
659internal_fn_reciprocal (gcall *call)
660{
661 internal_fn ifn;
662
663 switch (gimple_call_combined_fn (call))
664 {
665 CASE_CFN_SQRT:
8c32188e 666 CASE_CFN_SQRT_FN:
4cfd27a5 667 ifn = IFN_RSQRT;
668 break;
669
670 default:
671 return IFN_LAST;
672 }
673
674 tree_pair types = direct_internal_fn_types (ifn, call);
675 if (!direct_internal_fn_supported_p (ifn, types, OPTIMIZE_FOR_SPEED))
676 return IFN_LAST;
677
678 return ifn;
679}
680
ac70caad 681/* Go through all the floating-point SSA_NAMEs, and call
682 execute_cse_reciprocals_1 on each of them. */
65b0537f 683namespace {
684
685const pass_data pass_data_cse_reciprocals =
686{
687 GIMPLE_PASS, /* type */
688 "recip", /* name */
689 OPTGROUP_NONE, /* optinfo_flags */
8ed378fe 690 TV_TREE_RECIP, /* tv_id */
65b0537f 691 PROP_ssa, /* properties_required */
692 0, /* properties_provided */
693 0, /* properties_destroyed */
694 0, /* todo_flags_start */
8b88439e 695 TODO_update_ssa, /* todo_flags_finish */
65b0537f 696};
697
698class pass_cse_reciprocals : public gimple_opt_pass
699{
700public:
701 pass_cse_reciprocals (gcc::context *ctxt)
702 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
703 {}
704
705 /* opt_pass methods: */
706 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
707 virtual unsigned int execute (function *);
708
709}; // class pass_cse_reciprocals
710
711unsigned int
712pass_cse_reciprocals::execute (function *fun)
abacb398 713{
714 basic_block bb;
51b60a11 715 tree arg;
685b24f5 716
1dc6c44d 717 occ_pool = new object_allocator<occurrence> ("dominators for recip");
685b24f5 718
30c4e60d 719 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
c136ae61 720 calculate_dominance_info (CDI_DOMINATORS);
721 calculate_dominance_info (CDI_POST_DOMINATORS);
ac70caad 722
382ecba7 723 if (flag_checking)
724 FOR_EACH_BB_FN (bb, fun)
725 gcc_assert (!bb->aux);
ac70caad 726
65b0537f 727 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
c6dfe037 728 if (FLOAT_TYPE_P (TREE_TYPE (arg))
ac70caad 729 && is_gimple_reg (arg))
c6dfe037 730 {
65b0537f 731 tree name = ssa_default_def (fun, arg);
c6dfe037 732 if (name)
733 execute_cse_reciprocals_1 (NULL, name);
734 }
51b60a11 735
65b0537f 736 FOR_EACH_BB_FN (bb, fun)
abacb398 737 {
75a70cf9 738 tree def;
abacb398 739
1a91d914 740 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
741 gsi_next (&gsi))
abacb398 742 {
1a91d914 743 gphi *phi = gsi.phi ();
abacb398 744 def = PHI_RESULT (phi);
7c782c9b 745 if (! virtual_operand_p (def)
746 && FLOAT_TYPE_P (TREE_TYPE (def)))
ac70caad 747 execute_cse_reciprocals_1 (NULL, def);
abacb398 748 }
749
1a91d914 750 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
751 gsi_next (&gsi))
abacb398 752 {
42acab1c 753 gimple *stmt = gsi_stmt (gsi);
a0315874 754
75a70cf9 755 if (gimple_has_lhs (stmt)
abacb398 756 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
757 && FLOAT_TYPE_P (TREE_TYPE (def))
51b60a11 758 && TREE_CODE (def) == SSA_NAME)
75a70cf9 759 execute_cse_reciprocals_1 (&gsi, def);
abacb398 760 }
e174638f 761
0bfd8d5c 762 if (optimize_bb_for_size_p (bb))
763 continue;
764
e174638f 765 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
1a91d914 766 for (gimple_stmt_iterator gsi = gsi_after_labels (bb); !gsi_end_p (gsi);
767 gsi_next (&gsi))
e174638f 768 {
42acab1c 769 gimple *stmt = gsi_stmt (gsi);
e174638f 770
75a70cf9 771 if (is_gimple_assign (stmt)
772 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
e174638f 773 {
75a70cf9 774 tree arg1 = gimple_assign_rhs2 (stmt);
42acab1c 775 gimple *stmt1;
2cd360b6 776
777 if (TREE_CODE (arg1) != SSA_NAME)
778 continue;
779
780 stmt1 = SSA_NAME_DEF_STMT (arg1);
e174638f 781
75a70cf9 782 if (is_gimple_call (stmt1)
4cfd27a5 783 && gimple_call_lhs (stmt1))
e174638f 784 {
851c1b0c 785 bool fail;
774b1cdd 786 imm_use_iterator ui;
787 use_operand_p use_p;
4cfd27a5 788 tree fndecl = NULL_TREE;
e174638f 789
4cfd27a5 790 gcall *call = as_a <gcall *> (stmt1);
791 internal_fn ifn = internal_fn_reciprocal (call);
792 if (ifn == IFN_LAST)
793 {
794 fndecl = gimple_call_fndecl (call);
795 if (!fndecl
796 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD)
797 continue;
798 fndecl = targetm.builtin_reciprocal (fndecl);
799 if (!fndecl)
800 continue;
801 }
e174638f 802
774b1cdd 803 /* Check that all uses of the SSA name are divisions,
804 otherwise replacing the defining statement will do
805 the wrong thing. */
806 fail = false;
807 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
808 {
42acab1c 809 gimple *stmt2 = USE_STMT (use_p);
774b1cdd 810 if (is_gimple_debug (stmt2))
811 continue;
812 if (!is_gimple_assign (stmt2)
813 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
814 || gimple_assign_rhs1 (stmt2) == arg1
815 || gimple_assign_rhs2 (stmt2) != arg1)
816 {
817 fail = true;
818 break;
819 }
820 }
821 if (fail)
822 continue;
823
4cfd27a5 824 gimple_replace_ssa_lhs (call, arg1);
825 if (gimple_call_internal_p (call) != (ifn != IFN_LAST))
851c1b0c 826 {
827 auto_vec<tree, 4> args;
828 for (unsigned int i = 0;
4cfd27a5 829 i < gimple_call_num_args (call); i++)
830 args.safe_push (gimple_call_arg (call, i));
831 gcall *stmt2;
832 if (ifn == IFN_LAST)
833 stmt2 = gimple_build_call_vec (fndecl, args);
834 else
835 stmt2 = gimple_build_call_internal_vec (ifn, args);
851c1b0c 836 gimple_call_set_lhs (stmt2, arg1);
4cfd27a5 837 if (gimple_vdef (call))
851c1b0c 838 {
4cfd27a5 839 gimple_set_vdef (stmt2, gimple_vdef (call));
851c1b0c 840 SSA_NAME_DEF_STMT (gimple_vdef (stmt2)) = stmt2;
841 }
989f02dc 842 gimple_call_set_nothrow (stmt2,
843 gimple_call_nothrow_p (call));
4cfd27a5 844 gimple_set_vuse (stmt2, gimple_vuse (call));
845 gimple_stmt_iterator gsi2 = gsi_for_stmt (call);
851c1b0c 846 gsi_replace (&gsi2, stmt2, true);
847 }
848 else
849 {
4cfd27a5 850 if (ifn == IFN_LAST)
851 gimple_call_set_fndecl (call, fndecl);
852 else
853 gimple_call_set_internal_fn (call, ifn);
854 update_stmt (call);
851c1b0c 855 }
30c4e60d 856 reciprocal_stats.rfuncs_inserted++;
e174638f 857
774b1cdd 858 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
859 {
50aacf4c 860 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
774b1cdd 861 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
50aacf4c 862 fold_stmt_inplace (&gsi);
774b1cdd 863 update_stmt (stmt);
864 }
e174638f 865 }
866 }
867 }
abacb398 868 }
685b24f5 869
65b0537f 870 statistics_counter_event (fun, "reciprocal divs inserted",
30c4e60d 871 reciprocal_stats.rdivs_inserted);
65b0537f 872 statistics_counter_event (fun, "reciprocal functions inserted",
30c4e60d 873 reciprocal_stats.rfuncs_inserted);
874
c136ae61 875 free_dominance_info (CDI_DOMINATORS);
876 free_dominance_info (CDI_POST_DOMINATORS);
d8e7268c 877 delete occ_pool;
2a1990e9 878 return 0;
abacb398 879}
880
cbe8bda8 881} // anon namespace
882
883gimple_opt_pass *
884make_pass_cse_reciprocals (gcc::context *ctxt)
885{
886 return new pass_cse_reciprocals (ctxt);
887}
888
0d424440 889/* Records an occurrence at statement USE_STMT in the vector of trees
a0315874 890 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
0d424440 891 is not yet initialized. Returns true if the occurrence was pushed on
a0315874 892 the vector. Adjusts *TOP_BB to be the basic block dominating all
893 statements in the vector. */
894
895static bool
42acab1c 896maybe_record_sincos (vec<gimple *> *stmts,
897 basic_block *top_bb, gimple *use_stmt)
a0315874 898{
75a70cf9 899 basic_block use_bb = gimple_bb (use_stmt);
a0315874 900 if (*top_bb
901 && (*top_bb == use_bb
902 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
f1f41a6c 903 stmts->safe_push (use_stmt);
a0315874 904 else if (!*top_bb
905 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
906 {
f1f41a6c 907 stmts->safe_push (use_stmt);
a0315874 908 *top_bb = use_bb;
909 }
910 else
911 return false;
912
913 return true;
914}
915
916/* Look for sin, cos and cexpi calls with the same argument NAME and
917 create a single call to cexpi CSEing the result in this case.
918 We first walk over all immediate uses of the argument collecting
919 statements that we can CSE in a vector and in a second pass replace
920 the statement rhs with a REALPART or IMAGPART expression on the
921 result of the cexpi call we insert before the use statement that
922 dominates all other candidates. */
923
4c80086d 924static bool
a0315874 925execute_cse_sincos_1 (tree name)
926{
75a70cf9 927 gimple_stmt_iterator gsi;
a0315874 928 imm_use_iterator use_iter;
75a70cf9 929 tree fndecl, res, type;
42acab1c 930 gimple *def_stmt, *use_stmt, *stmt;
a0315874 931 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
42acab1c 932 auto_vec<gimple *> stmts;
a0315874 933 basic_block top_bb = NULL;
934 int i;
4c80086d 935 bool cfg_changed = false;
a0315874 936
937 type = TREE_TYPE (name);
938 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
939 {
75a70cf9 940 if (gimple_code (use_stmt) != GIMPLE_CALL
fa0793ad 941 || !gimple_call_lhs (use_stmt))
a0315874 942 continue;
943
fa0793ad 944 switch (gimple_call_combined_fn (use_stmt))
a0315874 945 {
fa0793ad 946 CASE_CFN_COS:
a0315874 947 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
948 break;
949
fa0793ad 950 CASE_CFN_SIN:
a0315874 951 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
952 break;
953
fa0793ad 954 CASE_CFN_CEXPI:
a0315874 955 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
956 break;
957
958 default:;
959 }
960 }
961
962 if (seen_cos + seen_sin + seen_cexpi <= 1)
6702d09a 963 return false;
a0315874 964
965 /* Simply insert cexpi at the beginning of top_bb but not earlier than
966 the name def statement. */
967 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
968 if (!fndecl)
4c80086d 969 return false;
75a70cf9 970 stmt = gimple_build_call (fndecl, 1, name);
03d37e4e 971 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
75a70cf9 972 gimple_call_set_lhs (stmt, res);
973
a0315874 974 def_stmt = SSA_NAME_DEF_STMT (name);
8090c12d 975 if (!SSA_NAME_IS_DEFAULT_DEF (name)
75a70cf9 976 && gimple_code (def_stmt) != GIMPLE_PHI
977 && gimple_bb (def_stmt) == top_bb)
a0315874 978 {
75a70cf9 979 gsi = gsi_for_stmt (def_stmt);
980 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
a0315874 981 }
982 else
983 {
75a70cf9 984 gsi = gsi_after_labels (top_bb);
985 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
a0315874 986 }
30c4e60d 987 sincos_stats.inserted++;
a0315874 988
989 /* And adjust the recorded old call sites. */
f1f41a6c 990 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
a0315874 991 {
75a70cf9 992 tree rhs = NULL;
75a70cf9 993
fa0793ad 994 switch (gimple_call_combined_fn (use_stmt))
a0315874 995 {
fa0793ad 996 CASE_CFN_COS:
75a70cf9 997 rhs = fold_build1 (REALPART_EXPR, type, res);
a0315874 998 break;
999
fa0793ad 1000 CASE_CFN_SIN:
75a70cf9 1001 rhs = fold_build1 (IMAGPART_EXPR, type, res);
a0315874 1002 break;
1003
fa0793ad 1004 CASE_CFN_CEXPI:
75a70cf9 1005 rhs = res;
a0315874 1006 break;
1007
1008 default:;
1009 gcc_unreachable ();
1010 }
1011
75a70cf9 1012 /* Replace call with a copy. */
1013 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
1014
1015 gsi = gsi_for_stmt (use_stmt);
4c80086d 1016 gsi_replace (&gsi, stmt, true);
1017 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
1018 cfg_changed = true;
a0315874 1019 }
1020
4c80086d 1021 return cfg_changed;
a0315874 1022}
1023
e9a6c4bc 1024/* To evaluate powi(x,n), the floating point value x raised to the
1025 constant integer exponent n, we use a hybrid algorithm that
1026 combines the "window method" with look-up tables. For an
1027 introduction to exponentiation algorithms and "addition chains",
1028 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
1029 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
1030 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
1031 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
1032
1033/* Provide a default value for POWI_MAX_MULTS, the maximum number of
1034 multiplications to inline before calling the system library's pow
1035 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
1036 so this default never requires calling pow, powf or powl. */
1037
1038#ifndef POWI_MAX_MULTS
1039#define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
1040#endif
1041
1042/* The size of the "optimal power tree" lookup table. All
1043 exponents less than this value are simply looked up in the
1044 powi_table below. This threshold is also used to size the
1045 cache of pseudo registers that hold intermediate results. */
1046#define POWI_TABLE_SIZE 256
1047
1048/* The size, in bits of the window, used in the "window method"
1049 exponentiation algorithm. This is equivalent to a radix of
1050 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
1051#define POWI_WINDOW_SIZE 3
1052
1053/* The following table is an efficient representation of an
1054 "optimal power tree". For each value, i, the corresponding
1055 value, j, in the table states than an optimal evaluation
1056 sequence for calculating pow(x,i) can be found by evaluating
1057 pow(x,j)*pow(x,i-j). An optimal power tree for the first
1058 100 integers is given in Knuth's "Seminumerical algorithms". */
1059
1060static const unsigned char powi_table[POWI_TABLE_SIZE] =
1061 {
1062 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
1063 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
1064 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
1065 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
1066 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
1067 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
1068 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
1069 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
1070 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
1071 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
1072 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
1073 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
1074 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
1075 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
1076 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
1077 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
1078 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
1079 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
1080 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
1081 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
1082 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
1083 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
1084 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
1085 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
1086 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
1087 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
1088 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
1089 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
1090 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
1091 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
1092 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
1093 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
1094 };
1095
1096
1097/* Return the number of multiplications required to calculate
1098 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
1099 subroutine of powi_cost. CACHE is an array indicating
1100 which exponents have already been calculated. */
1101
1102static int
1103powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
1104{
1105 /* If we've already calculated this exponent, then this evaluation
1106 doesn't require any additional multiplications. */
1107 if (cache[n])
1108 return 0;
1109
1110 cache[n] = true;
1111 return powi_lookup_cost (n - powi_table[n], cache)
1112 + powi_lookup_cost (powi_table[n], cache) + 1;
1113}
1114
1115/* Return the number of multiplications required to calculate
1116 powi(x,n) for an arbitrary x, given the exponent N. This
1117 function needs to be kept in sync with powi_as_mults below. */
1118
1119static int
1120powi_cost (HOST_WIDE_INT n)
1121{
1122 bool cache[POWI_TABLE_SIZE];
1123 unsigned HOST_WIDE_INT digit;
1124 unsigned HOST_WIDE_INT val;
1125 int result;
1126
1127 if (n == 0)
1128 return 0;
1129
1130 /* Ignore the reciprocal when calculating the cost. */
1131 val = (n < 0) ? -n : n;
1132
1133 /* Initialize the exponent cache. */
1134 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
1135 cache[1] = true;
1136
1137 result = 0;
1138
1139 while (val >= POWI_TABLE_SIZE)
1140 {
1141 if (val & 1)
1142 {
1143 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
1144 result += powi_lookup_cost (digit, cache)
1145 + POWI_WINDOW_SIZE + 1;
1146 val >>= POWI_WINDOW_SIZE;
1147 }
1148 else
1149 {
1150 val >>= 1;
1151 result++;
1152 }
1153 }
1154
1155 return result + powi_lookup_cost (val, cache);
1156}
1157
1158/* Recursive subroutine of powi_as_mults. This function takes the
1159 array, CACHE, of already calculated exponents and an exponent N and
1160 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
1161
1162static tree
1163powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
03d37e4e 1164 HOST_WIDE_INT n, tree *cache)
e9a6c4bc 1165{
1166 tree op0, op1, ssa_target;
1167 unsigned HOST_WIDE_INT digit;
1a91d914 1168 gassign *mult_stmt;
e9a6c4bc 1169
1170 if (n < POWI_TABLE_SIZE && cache[n])
1171 return cache[n];
1172
03d37e4e 1173 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
e9a6c4bc 1174
1175 if (n < POWI_TABLE_SIZE)
1176 {
1177 cache[n] = ssa_target;
03d37e4e 1178 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
1179 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
e9a6c4bc 1180 }
1181 else if (n & 1)
1182 {
1183 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
03d37e4e 1184 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1185 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
e9a6c4bc 1186 }
1187 else
1188 {
03d37e4e 1189 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
e9a6c4bc 1190 op1 = op0;
1191 }
1192
e9cf809e 1193 mult_stmt = gimple_build_assign (ssa_target, MULT_EXPR, op0, op1);
ae43b05e 1194 gimple_set_location (mult_stmt, loc);
e9a6c4bc 1195 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1196
1197 return ssa_target;
1198}
1199
1200/* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1201 This function needs to be kept in sync with powi_cost above. */
1202
1203static tree
1204powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1205 tree arg0, HOST_WIDE_INT n)
1206{
03d37e4e 1207 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
1a91d914 1208 gassign *div_stmt;
03d37e4e 1209 tree target;
e9a6c4bc 1210
1211 if (n == 0)
1212 return build_real (type, dconst1);
1213
1214 memset (cache, 0, sizeof (cache));
1215 cache[1] = arg0;
1216
03d37e4e 1217 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
e9a6c4bc 1218 if (n >= 0)
1219 return result;
1220
1221 /* If the original exponent was negative, reciprocate the result. */
03d37e4e 1222 target = make_temp_ssa_name (type, NULL, "powmult");
e9cf809e 1223 div_stmt = gimple_build_assign (target, RDIV_EXPR,
1224 build_real (type, dconst1), result);
ae43b05e 1225 gimple_set_location (div_stmt, loc);
e9a6c4bc 1226 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1227
1228 return target;
1229}
1230
1231/* ARG0 and N are the two arguments to a powi builtin in GSI with
1232 location info LOC. If the arguments are appropriate, create an
1233 equivalent sequence of statements prior to GSI using an optimal
1234 number of multiplications, and return an expession holding the
1235 result. */
1236
1237static tree
1238gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1239 tree arg0, HOST_WIDE_INT n)
1240{
1241 /* Avoid largest negative number. */
1242 if (n != -n
1243 && ((n >= -1 && n <= 2)
1244 || (optimize_function_for_speed_p (cfun)
1245 && powi_cost (n) <= POWI_MAX_MULTS)))
1246 return powi_as_mults (gsi, loc, arg0, n);
1247
1248 return NULL_TREE;
1249}
1250
ae43b05e 1251/* Build a gimple call statement that calls FN with argument ARG.
03d37e4e 1252 Set the lhs of the call statement to a fresh SSA name. Insert the
ae43b05e 1253 statement prior to GSI's current position, and return the fresh
1254 SSA name. */
1255
1256static tree
ca12eb68 1257build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
03d37e4e 1258 tree fn, tree arg)
ae43b05e 1259{
1a91d914 1260 gcall *call_stmt;
ae43b05e 1261 tree ssa_target;
1262
ae43b05e 1263 call_stmt = gimple_build_call (fn, 1, arg);
03d37e4e 1264 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
ae43b05e 1265 gimple_set_lhs (call_stmt, ssa_target);
1266 gimple_set_location (call_stmt, loc);
1267 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1268
1269 return ssa_target;
1270}
1271
ca12eb68 1272/* Build a gimple binary operation with the given CODE and arguments
1273 ARG0, ARG1, assigning the result to a new SSA name for variable
1274 TARGET. Insert the statement prior to GSI's current position, and
1275 return the fresh SSA name.*/
1276
1277static tree
1278build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
03d37e4e 1279 const char *name, enum tree_code code,
1280 tree arg0, tree arg1)
ca12eb68 1281{
03d37e4e 1282 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
e9cf809e 1283 gassign *stmt = gimple_build_assign (result, code, arg0, arg1);
ca12eb68 1284 gimple_set_location (stmt, loc);
1285 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1286 return result;
1287}
1288
a5c384c1 1289/* Build a gimple reference operation with the given CODE and argument
03d37e4e 1290 ARG, assigning the result to a new SSA name of TYPE with NAME.
a5c384c1 1291 Insert the statement prior to GSI's current position, and return
1292 the fresh SSA name. */
1293
1294static inline tree
1295build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
03d37e4e 1296 const char *name, enum tree_code code, tree arg0)
a5c384c1 1297{
03d37e4e 1298 tree result = make_temp_ssa_name (type, NULL, name);
42acab1c 1299 gimple *stmt = gimple_build_assign (result, build1 (code, type, arg0));
a5c384c1 1300 gimple_set_location (stmt, loc);
1301 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1302 return result;
1303}
1304
03d37e4e 1305/* Build a gimple assignment to cast VAL to TYPE. Insert the statement
aff5fb4d 1306 prior to GSI's current position, and return the fresh SSA name. */
1307
1308static tree
1309build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
03d37e4e 1310 tree type, tree val)
aff5fb4d 1311{
f9e245b2 1312 tree result = make_ssa_name (type);
e9cf809e 1313 gassign *stmt = gimple_build_assign (result, NOP_EXPR, val);
03d37e4e 1314 gimple_set_location (stmt, loc);
1315 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1316 return result;
aff5fb4d 1317}
1318
c3206272 1319struct pow_synth_sqrt_info
1320{
1321 bool *factors;
1322 unsigned int deepest;
1323 unsigned int num_mults;
1324};
1325
1326/* Return true iff the real value C can be represented as a
1327 sum of powers of 0.5 up to N. That is:
1328 C == SUM<i from 1..N> (a[i]*(0.5**i)) where a[i] is either 0 or 1.
1329 Record in INFO the various parameters of the synthesis algorithm such
1330 as the factors a[i], the maximum 0.5 power and the number of
1331 multiplications that will be required. */
1332
1333bool
1334representable_as_half_series_p (REAL_VALUE_TYPE c, unsigned n,
1335 struct pow_synth_sqrt_info *info)
1336{
1337 REAL_VALUE_TYPE factor = dconsthalf;
1338 REAL_VALUE_TYPE remainder = c;
1339
1340 info->deepest = 0;
1341 info->num_mults = 0;
1342 memset (info->factors, 0, n * sizeof (bool));
1343
1344 for (unsigned i = 0; i < n; i++)
1345 {
1346 REAL_VALUE_TYPE res;
1347
1348 /* If something inexact happened bail out now. */
f2ad9e38 1349 if (real_arithmetic (&res, MINUS_EXPR, &remainder, &factor))
c3206272 1350 return false;
1351
1352 /* We have hit zero. The number is representable as a sum
1353 of powers of 0.5. */
20cb53c9 1354 if (real_equal (&res, &dconst0))
c3206272 1355 {
1356 info->factors[i] = true;
1357 info->deepest = i + 1;
1358 return true;
1359 }
1360 else if (!REAL_VALUE_NEGATIVE (res))
1361 {
1362 remainder = res;
1363 info->factors[i] = true;
1364 info->num_mults++;
1365 }
1366 else
1367 info->factors[i] = false;
1368
f2ad9e38 1369 real_arithmetic (&factor, MULT_EXPR, &factor, &dconsthalf);
c3206272 1370 }
1371 return false;
1372}
1373
1374/* Return the tree corresponding to FN being applied
1375 to ARG N times at GSI and LOC.
1376 Look up previous results from CACHE if need be.
1377 cache[0] should contain just plain ARG i.e. FN applied to ARG 0 times. */
1378
1379static tree
1380get_fn_chain (tree arg, unsigned int n, gimple_stmt_iterator *gsi,
1381 tree fn, location_t loc, tree *cache)
1382{
1383 tree res = cache[n];
1384 if (!res)
1385 {
1386 tree prev = get_fn_chain (arg, n - 1, gsi, fn, loc, cache);
1387 res = build_and_insert_call (gsi, loc, fn, prev);
1388 cache[n] = res;
1389 }
1390
1391 return res;
1392}
1393
1394/* Print to STREAM the repeated application of function FNAME to ARG
1395 N times. So, for FNAME = "foo", ARG = "x", N = 2 it would print:
1396 "foo (foo (x))". */
1397
1398static void
1399print_nested_fn (FILE* stream, const char *fname, const char* arg,
1400 unsigned int n)
1401{
1402 if (n == 0)
1403 fprintf (stream, "%s", arg);
1404 else
1405 {
1406 fprintf (stream, "%s (", fname);
1407 print_nested_fn (stream, fname, arg, n - 1);
1408 fprintf (stream, ")");
1409 }
1410}
1411
1412/* Print to STREAM the fractional sequence of sqrt chains
1413 applied to ARG, described by INFO. Used for the dump file. */
1414
1415static void
1416dump_fractional_sqrt_sequence (FILE *stream, const char *arg,
1417 struct pow_synth_sqrt_info *info)
1418{
1419 for (unsigned int i = 0; i < info->deepest; i++)
1420 {
1421 bool is_set = info->factors[i];
1422 if (is_set)
1423 {
1424 print_nested_fn (stream, "sqrt", arg, i + 1);
1425 if (i != info->deepest - 1)
1426 fprintf (stream, " * ");
1427 }
1428 }
1429}
1430
1431/* Print to STREAM a representation of raising ARG to an integer
1432 power N. Used for the dump file. */
1433
1434static void
1435dump_integer_part (FILE *stream, const char* arg, HOST_WIDE_INT n)
1436{
1437 if (n > 1)
1438 fprintf (stream, "powi (%s, " HOST_WIDE_INT_PRINT_DEC ")", arg, n);
1439 else if (n == 1)
1440 fprintf (stream, "%s", arg);
1441}
1442
1443/* Attempt to synthesize a POW[F] (ARG0, ARG1) call using chains of
1444 square roots. Place at GSI and LOC. Limit the maximum depth
1445 of the sqrt chains to MAX_DEPTH. Return the tree holding the
1446 result of the expanded sequence or NULL_TREE if the expansion failed.
1447
1448 This routine assumes that ARG1 is a real number with a fractional part
1449 (the integer exponent case will have been handled earlier in
1450 gimple_expand_builtin_pow).
1451
1452 For ARG1 > 0.0:
1453 * For ARG1 composed of a whole part WHOLE_PART and a fractional part
1454 FRAC_PART i.e. WHOLE_PART == floor (ARG1) and
1455 FRAC_PART == ARG1 - WHOLE_PART:
1456 Produce POWI (ARG0, WHOLE_PART) * POW (ARG0, FRAC_PART) where
1457 POW (ARG0, FRAC_PART) is expanded as a product of square root chains
1458 if it can be expressed as such, that is if FRAC_PART satisfies:
1459 FRAC_PART == <SUM from i = 1 until MAX_DEPTH> (a[i] * (0.5**i))
1460 where integer a[i] is either 0 or 1.
1461
1462 Example:
1463 POW (x, 3.625) == POWI (x, 3) * POW (x, 0.625)
1464 --> POWI (x, 3) * SQRT (x) * SQRT (SQRT (SQRT (x)))
1465
1466 For ARG1 < 0.0 there are two approaches:
1467 * (A) Expand to 1.0 / POW (ARG0, -ARG1) where POW (ARG0, -ARG1)
1468 is calculated as above.
1469
1470 Example:
1471 POW (x, -5.625) == 1.0 / POW (x, 5.625)
1472 --> 1.0 / (POWI (x, 5) * SQRT (x) * SQRT (SQRT (SQRT (x))))
1473
1474 * (B) : WHOLE_PART := - ceil (abs (ARG1))
1475 FRAC_PART := ARG1 - WHOLE_PART
1476 and expand to POW (x, FRAC_PART) / POWI (x, WHOLE_PART).
1477 Example:
1478 POW (x, -5.875) == POW (x, 0.125) / POWI (X, 6)
1479 --> SQRT (SQRT (SQRT (x))) / (POWI (x, 6))
1480
1481 For ARG1 < 0.0 we choose between (A) and (B) depending on
1482 how many multiplications we'd have to do.
1483 So, for the example in (B): POW (x, -5.875), if we were to
1484 follow algorithm (A) we would produce:
1485 1.0 / POWI (X, 5) * SQRT (X) * SQRT (SQRT (X)) * SQRT (SQRT (SQRT (X)))
1486 which contains more multiplications than approach (B).
1487
1488 Hopefully, this approach will eliminate potentially expensive POW library
1489 calls when unsafe floating point math is enabled and allow the compiler to
1490 further optimise the multiplies, square roots and divides produced by this
1491 function. */
1492
1493static tree
1494expand_pow_as_sqrts (gimple_stmt_iterator *gsi, location_t loc,
1495 tree arg0, tree arg1, HOST_WIDE_INT max_depth)
1496{
1497 tree type = TREE_TYPE (arg0);
1498 machine_mode mode = TYPE_MODE (type);
1499 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1500 bool one_over = true;
1501
1502 if (!sqrtfn)
1503 return NULL_TREE;
1504
1505 if (TREE_CODE (arg1) != REAL_CST)
1506 return NULL_TREE;
1507
1508 REAL_VALUE_TYPE exp_init = TREE_REAL_CST (arg1);
1509
1510 gcc_assert (max_depth > 0);
1511 tree *cache = XALLOCAVEC (tree, max_depth + 1);
1512
1513 struct pow_synth_sqrt_info synth_info;
1514 synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1515 synth_info.deepest = 0;
1516 synth_info.num_mults = 0;
1517
1518 bool neg_exp = REAL_VALUE_NEGATIVE (exp_init);
1519 REAL_VALUE_TYPE exp = real_value_abs (&exp_init);
1520
1521 /* The whole and fractional parts of exp. */
1522 REAL_VALUE_TYPE whole_part;
1523 REAL_VALUE_TYPE frac_part;
1524
1525 real_floor (&whole_part, mode, &exp);
f2ad9e38 1526 real_arithmetic (&frac_part, MINUS_EXPR, &exp, &whole_part);
c3206272 1527
1528
1529 REAL_VALUE_TYPE ceil_whole = dconst0;
1530 REAL_VALUE_TYPE ceil_fract = dconst0;
1531
1532 if (neg_exp)
1533 {
1534 real_ceil (&ceil_whole, mode, &exp);
f2ad9e38 1535 real_arithmetic (&ceil_fract, MINUS_EXPR, &ceil_whole, &exp);
c3206272 1536 }
1537
1538 if (!representable_as_half_series_p (frac_part, max_depth, &synth_info))
1539 return NULL_TREE;
1540
1541 /* Check whether it's more profitable to not use 1.0 / ... */
1542 if (neg_exp)
1543 {
1544 struct pow_synth_sqrt_info alt_synth_info;
1545 alt_synth_info.factors = XALLOCAVEC (bool, max_depth + 1);
1546 alt_synth_info.deepest = 0;
1547 alt_synth_info.num_mults = 0;
1548
1549 if (representable_as_half_series_p (ceil_fract, max_depth,
1550 &alt_synth_info)
1551 && alt_synth_info.deepest <= synth_info.deepest
1552 && alt_synth_info.num_mults < synth_info.num_mults)
1553 {
1554 whole_part = ceil_whole;
1555 frac_part = ceil_fract;
1556 synth_info.deepest = alt_synth_info.deepest;
1557 synth_info.num_mults = alt_synth_info.num_mults;
1558 memcpy (synth_info.factors, alt_synth_info.factors,
1559 (max_depth + 1) * sizeof (bool));
1560 one_over = false;
1561 }
1562 }
1563
1564 HOST_WIDE_INT n = real_to_integer (&whole_part);
1565 REAL_VALUE_TYPE cint;
1566 real_from_integer (&cint, VOIDmode, n, SIGNED);
1567
1568 if (!real_identical (&whole_part, &cint))
1569 return NULL_TREE;
1570
1571 if (powi_cost (n) + synth_info.num_mults > POWI_MAX_MULTS)
1572 return NULL_TREE;
1573
1574 memset (cache, 0, (max_depth + 1) * sizeof (tree));
1575
1576 tree integer_res = n == 0 ? build_real (type, dconst1) : arg0;
1577
1578 /* Calculate the integer part of the exponent. */
1579 if (n > 1)
1580 {
1581 integer_res = gimple_expand_builtin_powi (gsi, loc, arg0, n);
1582 if (!integer_res)
1583 return NULL_TREE;
1584 }
1585
1586 if (dump_file)
1587 {
1588 char string[64];
1589
1590 real_to_decimal (string, &exp_init, sizeof (string), 0, 1);
1591 fprintf (dump_file, "synthesizing pow (x, %s) as:\n", string);
1592
1593 if (neg_exp)
1594 {
1595 if (one_over)
1596 {
1597 fprintf (dump_file, "1.0 / (");
1598 dump_integer_part (dump_file, "x", n);
1599 if (n > 0)
1600 fprintf (dump_file, " * ");
1601 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1602 fprintf (dump_file, ")");
1603 }
1604 else
1605 {
1606 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1607 fprintf (dump_file, " / (");
1608 dump_integer_part (dump_file, "x", n);
1609 fprintf (dump_file, ")");
1610 }
1611 }
1612 else
1613 {
1614 dump_fractional_sqrt_sequence (dump_file, "x", &synth_info);
1615 if (n > 0)
1616 fprintf (dump_file, " * ");
1617 dump_integer_part (dump_file, "x", n);
1618 }
1619
1620 fprintf (dump_file, "\ndeepest sqrt chain: %d\n", synth_info.deepest);
1621 }
1622
1623
1624 tree fract_res = NULL_TREE;
1625 cache[0] = arg0;
1626
1627 /* Calculate the fractional part of the exponent. */
1628 for (unsigned i = 0; i < synth_info.deepest; i++)
1629 {
1630 if (synth_info.factors[i])
1631 {
1632 tree sqrt_chain = get_fn_chain (arg0, i + 1, gsi, sqrtfn, loc, cache);
1633
1634 if (!fract_res)
1635 fract_res = sqrt_chain;
1636
1637 else
1638 fract_res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1639 fract_res, sqrt_chain);
1640 }
1641 }
1642
1643 tree res = NULL_TREE;
1644
1645 if (neg_exp)
1646 {
1647 if (one_over)
1648 {
1649 if (n > 0)
1650 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1651 fract_res, integer_res);
1652 else
1653 res = fract_res;
1654
1655 res = build_and_insert_binop (gsi, loc, "powrootrecip", RDIV_EXPR,
1656 build_real (type, dconst1), res);
1657 }
1658 else
1659 {
1660 res = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
1661 fract_res, integer_res);
1662 }
1663 }
1664 else
1665 res = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
1666 fract_res, integer_res);
1667 return res;
1668}
1669
e78306af 1670/* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1671 with location info LOC. If possible, create an equivalent and
1672 less expensive sequence of statements prior to GSI, and return an
1673 expession holding the result. */
1674
1675static tree
1676gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1677 tree arg0, tree arg1)
1678{
c3206272 1679 REAL_VALUE_TYPE c, cint, dconst1_3, dconst1_4, dconst1_6;
ca12eb68 1680 REAL_VALUE_TYPE c2, dconst3;
e78306af 1681 HOST_WIDE_INT n;
c3206272 1682 tree type, sqrtfn, cbrtfn, sqrt_arg0, result, cbrt_x, powi_cbrt_x;
3754d046 1683 machine_mode mode;
c3206272 1684 bool speed_p = optimize_bb_for_speed_p (gsi_bb (*gsi));
0190fe95 1685 bool hw_sqrt_exists, c_is_int, c2_is_int;
e78306af 1686
c3206272 1687 dconst1_4 = dconst1;
1688 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
1689
e78306af 1690 /* If the exponent isn't a constant, there's nothing of interest
1691 to be done. */
1692 if (TREE_CODE (arg1) != REAL_CST)
1693 return NULL_TREE;
1694
9f27d92a 1695 /* Don't perform the operation if flag_signaling_nans is on
1696 and the operand is a signaling NaN. */
1697 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
2a659064 1698 && ((TREE_CODE (arg0) == REAL_CST
1699 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0)))
9f27d92a 1700 || REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))))
1701 return NULL_TREE;
1702
ae43b05e 1703 /* If the exponent is equivalent to an integer, expand to an optimal
1704 multiplication sequence when profitable. */
e78306af 1705 c = TREE_REAL_CST (arg1);
1706 n = real_to_integer (&c);
e913b5cd 1707 real_from_integer (&cint, VOIDmode, n, SIGNED);
0190fe95 1708 c_is_int = real_identical (&c, &cint);
e78306af 1709
0190fe95 1710 if (c_is_int
e78306af 1711 && ((n >= -1 && n <= 2)
1712 || (flag_unsafe_math_optimizations
c3206272 1713 && speed_p
e78306af 1714 && powi_cost (n) <= POWI_MAX_MULTS)))
1715 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1716
ae43b05e 1717 /* Attempt various optimizations using sqrt and cbrt. */
1718 type = TREE_TYPE (arg0);
1719 mode = TYPE_MODE (type);
1720 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1721
1722 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1723 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1724 sqrt(-0) = -0. */
1725 if (sqrtfn
20cb53c9 1726 && real_equal (&c, &dconsthalf)
ae43b05e 1727 && !HONOR_SIGNED_ZEROS (mode))
03d37e4e 1728 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
ae43b05e 1729
a5c384c1 1730 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
ae43b05e 1731
ae43b05e 1732 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1733 optimizations since 1./3. is not exactly representable. If x
1734 is negative and finite, the correct value of pow(x,1./3.) is
1735 a NaN with the "invalid" exception raised, because the value
1736 of 1./3. actually has an even denominator. The correct value
1737 of cbrt(x) is a negative real value. */
1738 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1739 dconst1_3 = real_value_truncate (mode, dconst_third ());
1740
1741 if (flag_unsafe_math_optimizations
1742 && cbrtfn
ee230333 1743 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
20cb53c9 1744 && real_equal (&c, &dconst1_3))
03d37e4e 1745 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
ae43b05e 1746
1747 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1748 if we don't have a hardware sqrt insn. */
1749 dconst1_6 = dconst1_3;
1750 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1751
1752 if (flag_unsafe_math_optimizations
1753 && sqrtfn
1754 && cbrtfn
ee230333 1755 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
c3206272 1756 && speed_p
ae43b05e 1757 && hw_sqrt_exists
20cb53c9 1758 && real_equal (&c, &dconst1_6))
ae43b05e 1759 {
1760 /* sqrt(x) */
03d37e4e 1761 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
ae43b05e 1762
1763 /* cbrt(sqrt(x)) */
03d37e4e 1764 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
ca12eb68 1765 }
1766
ca12eb68 1767
c3206272 1768 /* Attempt to expand the POW as a product of square root chains.
1769 Expand the 0.25 case even when otpimising for size. */
ca12eb68 1770 if (flag_unsafe_math_optimizations
1771 && sqrtfn
c3206272 1772 && hw_sqrt_exists
20cb53c9 1773 && (speed_p || real_equal (&c, &dconst1_4))
c3206272 1774 && !HONOR_SIGNED_ZEROS (mode))
ca12eb68 1775 {
c3206272 1776 unsigned int max_depth = speed_p
1777 ? PARAM_VALUE (PARAM_MAX_POW_SQRT_DEPTH)
1778 : 2;
ca12eb68 1779
c3206272 1780 tree expand_with_sqrts
1781 = expand_pow_as_sqrts (gsi, loc, arg0, arg1, max_depth);
ca12eb68 1782
c3206272 1783 if (expand_with_sqrts)
1784 return expand_with_sqrts;
ca12eb68 1785 }
1786
c3206272 1787 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1788 n = real_to_integer (&c2);
1789 real_from_integer (&cint, VOIDmode, n, SIGNED);
1790 c2_is_int = real_identical (&c2, &cint);
1791
ca12eb68 1792 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1793
1794 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1795 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1796
1797 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1798 different from pow(x, 1./3.) due to rounding and behavior with
1799 negative x, we need to constrain this transformation to unsafe
1800 math and positive x or finite math. */
e913b5cd 1801 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
ca12eb68 1802 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1803 real_round (&c2, mode, &c2);
1804 n = real_to_integer (&c2);
e913b5cd 1805 real_from_integer (&cint, VOIDmode, n, SIGNED);
ca12eb68 1806 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1807 real_convert (&c2, mode, &c2);
1808
1809 if (flag_unsafe_math_optimizations
1810 && cbrtfn
ee230333 1811 && (!HONOR_NANS (mode) || tree_expr_nonnegative_p (arg0))
ca12eb68 1812 && real_identical (&c2, &c)
0190fe95 1813 && !c2_is_int
ca12eb68 1814 && optimize_function_for_speed_p (cfun)
1815 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1816 {
1817 tree powi_x_ndiv3 = NULL_TREE;
1818
1819 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1820 possible or profitable, give up. Skip the degenerate case when
1821 abs(n) < 3, where the result is always 1. */
b1757d46 1822 if (absu_hwi (n) >= 3)
ca12eb68 1823 {
1824 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
5ebd604f 1825 abs_hwi (n / 3));
ca12eb68 1826 if (!powi_x_ndiv3)
1827 return NULL_TREE;
1828 }
1829
1830 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1831 as that creates an unnecessary variable. Instead, just produce
1832 either cbrt(x) or cbrt(x) * cbrt(x). */
03d37e4e 1833 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
ca12eb68 1834
b1757d46 1835 if (absu_hwi (n) % 3 == 1)
ca12eb68 1836 powi_cbrt_x = cbrt_x;
1837 else
03d37e4e 1838 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
ca12eb68 1839 cbrt_x, cbrt_x);
1840
1841 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
b1757d46 1842 if (absu_hwi (n) < 3)
ca12eb68 1843 result = powi_cbrt_x;
1844 else
03d37e4e 1845 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
ca12eb68 1846 powi_x_ndiv3, powi_cbrt_x);
1847
1848 /* If n is negative, reciprocate the result. */
1849 if (n < 0)
03d37e4e 1850 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
ca12eb68 1851 build_real (type, dconst1), result);
1852
1853 return result;
ae43b05e 1854 }
1855
ca12eb68 1856 /* No optimizations succeeded. */
e78306af 1857 return NULL_TREE;
1858}
1859
a5c384c1 1860/* ARG is the argument to a cabs builtin call in GSI with location info
1861 LOC. Create a sequence of statements prior to GSI that calculates
1862 sqrt(R*R + I*I), where R and I are the real and imaginary components
1863 of ARG, respectively. Return an expression holding the result. */
1864
1865static tree
1866gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1867{
03d37e4e 1868 tree real_part, imag_part, addend1, addend2, sum, result;
a5c384c1 1869 tree type = TREE_TYPE (TREE_TYPE (arg));
1870 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
3754d046 1871 machine_mode mode = TYPE_MODE (type);
a5c384c1 1872
1873 if (!flag_unsafe_math_optimizations
1874 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1875 || !sqrtfn
1876 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1877 return NULL_TREE;
1878
03d37e4e 1879 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
a5c384c1 1880 REALPART_EXPR, arg);
03d37e4e 1881 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
a5c384c1 1882 real_part, real_part);
03d37e4e 1883 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
a5c384c1 1884 IMAGPART_EXPR, arg);
03d37e4e 1885 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
a5c384c1 1886 imag_part, imag_part);
03d37e4e 1887 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1888 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
a5c384c1 1889
1890 return result;
1891}
1892
a0315874 1893/* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
e9a6c4bc 1894 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1895 an optimal number of multiplies, when n is a constant. */
a0315874 1896
65b0537f 1897namespace {
1898
1899const pass_data pass_data_cse_sincos =
1900{
1901 GIMPLE_PASS, /* type */
1902 "sincos", /* name */
1903 OPTGROUP_NONE, /* optinfo_flags */
8ed378fe 1904 TV_TREE_SINCOS, /* tv_id */
65b0537f 1905 PROP_ssa, /* properties_required */
a153e7b3 1906 PROP_gimple_opt_math, /* properties_provided */
65b0537f 1907 0, /* properties_destroyed */
1908 0, /* todo_flags_start */
8b88439e 1909 TODO_update_ssa, /* todo_flags_finish */
65b0537f 1910};
1911
1912class pass_cse_sincos : public gimple_opt_pass
1913{
1914public:
1915 pass_cse_sincos (gcc::context *ctxt)
1916 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1917 {}
1918
1919 /* opt_pass methods: */
1920 virtual bool gate (function *)
1921 {
1922 /* We no longer require either sincos or cexp, since powi expansion
1923 piggybacks on this pass. */
1924 return optimize;
1925 }
1926
1927 virtual unsigned int execute (function *);
1928
1929}; // class pass_cse_sincos
1930
1931unsigned int
1932pass_cse_sincos::execute (function *fun)
a0315874 1933{
1934 basic_block bb;
4c80086d 1935 bool cfg_changed = false;
a0315874 1936
1937 calculate_dominance_info (CDI_DOMINATORS);
30c4e60d 1938 memset (&sincos_stats, 0, sizeof (sincos_stats));
a0315874 1939
65b0537f 1940 FOR_EACH_BB_FN (bb, fun)
a0315874 1941 {
75a70cf9 1942 gimple_stmt_iterator gsi;
2a155cf0 1943 bool cleanup_eh = false;
a0315874 1944
75a70cf9 1945 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
a0315874 1946 {
42acab1c 1947 gimple *stmt = gsi_stmt (gsi);
a0315874 1948
2a155cf0 1949 /* Only the last stmt in a bb could throw, no need to call
1950 gimple_purge_dead_eh_edges if we change something in the middle
1951 of a basic block. */
1952 cleanup_eh = false;
1953
fa0793ad 1954 if (is_gimple_call (stmt)
5e8b972c 1955 && gimple_call_lhs (stmt))
a0315874 1956 {
e9a6c4bc 1957 tree arg, arg0, arg1, result;
1958 HOST_WIDE_INT n;
1959 location_t loc;
a0315874 1960
fa0793ad 1961 switch (gimple_call_combined_fn (stmt))
a0315874 1962 {
fa0793ad 1963 CASE_CFN_COS:
1964 CASE_CFN_SIN:
1965 CASE_CFN_CEXPI:
d312d7df 1966 /* Make sure we have either sincos or cexp. */
30f690e0 1967 if (!targetm.libc_has_function (function_c99_math_complex)
1968 && !targetm.libc_has_function (function_sincos))
d312d7df 1969 break;
1970
75a70cf9 1971 arg = gimple_call_arg (stmt, 0);
a0315874 1972 if (TREE_CODE (arg) == SSA_NAME)
4c80086d 1973 cfg_changed |= execute_cse_sincos_1 (arg);
a0315874 1974 break;
1975
fa0793ad 1976 CASE_CFN_POW:
e78306af 1977 arg0 = gimple_call_arg (stmt, 0);
1978 arg1 = gimple_call_arg (stmt, 1);
1979
1980 loc = gimple_location (stmt);
1981 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1982
1983 if (result)
1984 {
1985 tree lhs = gimple_get_lhs (stmt);
1a91d914 1986 gassign *new_stmt = gimple_build_assign (lhs, result);
e78306af 1987 gimple_set_location (new_stmt, loc);
1988 unlink_stmt_vdef (stmt);
1989 gsi_replace (&gsi, new_stmt, true);
2a155cf0 1990 cleanup_eh = true;
bc8a8451 1991 if (gimple_vdef (stmt))
1992 release_ssa_name (gimple_vdef (stmt));
e78306af 1993 }
1994 break;
1995
fa0793ad 1996 CASE_CFN_POWI:
e9a6c4bc 1997 arg0 = gimple_call_arg (stmt, 0);
1998 arg1 = gimple_call_arg (stmt, 1);
e9a6c4bc 1999 loc = gimple_location (stmt);
377db285 2000
6dfe7d53 2001 if (real_minus_onep (arg0))
377db285 2002 {
2003 tree t0, t1, cond, one, minus_one;
1a91d914 2004 gassign *stmt;
377db285 2005
2006 t0 = TREE_TYPE (arg0);
2007 t1 = TREE_TYPE (arg1);
2008 one = build_real (t0, dconst1);
2009 minus_one = build_real (t0, dconstm1);
2010
2011 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
e9cf809e 2012 stmt = gimple_build_assign (cond, BIT_AND_EXPR,
2013 arg1, build_int_cst (t1, 1));
377db285 2014 gimple_set_location (stmt, loc);
2015 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
2016
2017 result = make_temp_ssa_name (t0, NULL, "powi");
e9cf809e 2018 stmt = gimple_build_assign (result, COND_EXPR, cond,
2019 minus_one, one);
377db285 2020 gimple_set_location (stmt, loc);
2021 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
2022 }
2023 else
2024 {
e913b5cd 2025 if (!tree_fits_shwi_p (arg1))
d48be958 2026 break;
2027
e913b5cd 2028 n = tree_to_shwi (arg1);
377db285 2029 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
2030 }
e9a6c4bc 2031
2032 if (result)
2033 {
2034 tree lhs = gimple_get_lhs (stmt);
1a91d914 2035 gassign *new_stmt = gimple_build_assign (lhs, result);
e9a6c4bc 2036 gimple_set_location (new_stmt, loc);
a5c384c1 2037 unlink_stmt_vdef (stmt);
2038 gsi_replace (&gsi, new_stmt, true);
2a155cf0 2039 cleanup_eh = true;
bc8a8451 2040 if (gimple_vdef (stmt))
2041 release_ssa_name (gimple_vdef (stmt));
a5c384c1 2042 }
2043 break;
2044
fa0793ad 2045 CASE_CFN_CABS:
a5c384c1 2046 arg0 = gimple_call_arg (stmt, 0);
2047 loc = gimple_location (stmt);
2048 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
2049
2050 if (result)
2051 {
2052 tree lhs = gimple_get_lhs (stmt);
1a91d914 2053 gassign *new_stmt = gimple_build_assign (lhs, result);
a5c384c1 2054 gimple_set_location (new_stmt, loc);
e9a6c4bc 2055 unlink_stmt_vdef (stmt);
2056 gsi_replace (&gsi, new_stmt, true);
2a155cf0 2057 cleanup_eh = true;
bc8a8451 2058 if (gimple_vdef (stmt))
2059 release_ssa_name (gimple_vdef (stmt));
e9a6c4bc 2060 }
2061 break;
2062
a0315874 2063 default:;
2064 }
2065 }
2066 }
2a155cf0 2067 if (cleanup_eh)
2068 cfg_changed |= gimple_purge_dead_eh_edges (bb);
a0315874 2069 }
2070
65b0537f 2071 statistics_counter_event (fun, "sincos statements inserted",
30c4e60d 2072 sincos_stats.inserted);
2073
4c80086d 2074 return cfg_changed ? TODO_cleanup_cfg : 0;
a0315874 2075}
2076
cbe8bda8 2077} // anon namespace
2078
2079gimple_opt_pass *
2080make_pass_cse_sincos (gcc::context *ctxt)
2081{
2082 return new pass_cse_sincos (ctxt);
2083}
2084
71dbd910 2085/* Return true if stmt is a type conversion operation that can be stripped
2086 when used in a widening multiply operation. */
2087static bool
42acab1c 2088widening_mult_conversion_strippable_p (tree result_type, gimple *stmt)
71dbd910 2089{
2090 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2091
2092 if (TREE_CODE (result_type) == INTEGER_TYPE)
2093 {
2094 tree op_type;
2095 tree inner_op_type;
2096
2097 if (!CONVERT_EXPR_CODE_P (rhs_code))
2098 return false;
2099
2100 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2101
2102 /* If the type of OP has the same precision as the result, then
2103 we can strip this conversion. The multiply operation will be
2104 selected to create the correct extension as a by-product. */
2105 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2106 return true;
2107
2108 /* We can also strip a conversion if it preserves the signed-ness of
2109 the operation and doesn't narrow the range. */
2110 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2111
8f9d1531 2112 /* If the inner-most type is unsigned, then we can strip any
2113 intermediate widening operation. If it's signed, then the
2114 intermediate widening operation must also be signed. */
2115 if ((TYPE_UNSIGNED (inner_op_type)
2116 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
71dbd910 2117 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2118 return true;
2119
2120 return false;
2121 }
2122
2123 return rhs_code == FIXED_CONVERT_EXPR;
2124}
2125
0989f516 2126/* Return true if RHS is a suitable operand for a widening multiplication,
2127 assuming a target type of TYPE.
7e4c867e 2128 There are two cases:
2129
aff5fb4d 2130 - RHS makes some value at least twice as wide. Store that value
2131 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
7e4c867e 2132
2133 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2134 but leave *TYPE_OUT untouched. */
00f4f705 2135
2136static bool
0989f516 2137is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2138 tree *new_rhs_out)
7e4c867e 2139{
42acab1c 2140 gimple *stmt;
0989f516 2141 tree type1, rhs1;
7e4c867e 2142
2143 if (TREE_CODE (rhs) == SSA_NAME)
2144 {
7e4c867e 2145 stmt = SSA_NAME_DEF_STMT (rhs);
0989f516 2146 if (is_gimple_assign (stmt))
2147 {
71dbd910 2148 if (! widening_mult_conversion_strippable_p (type, stmt))
0989f516 2149 rhs1 = rhs;
2150 else
ffebd9c5 2151 {
2152 rhs1 = gimple_assign_rhs1 (stmt);
2153
2154 if (TREE_CODE (rhs1) == INTEGER_CST)
2155 {
2156 *new_rhs_out = rhs1;
2157 *type_out = NULL;
2158 return true;
2159 }
2160 }
0989f516 2161 }
2162 else
2163 rhs1 = rhs;
7e4c867e 2164
7e4c867e 2165 type1 = TREE_TYPE (rhs1);
0989f516 2166
7e4c867e 2167 if (TREE_CODE (type1) != TREE_CODE (type)
aff5fb4d 2168 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
7e4c867e 2169 return false;
2170
2171 *new_rhs_out = rhs1;
2172 *type_out = type1;
2173 return true;
2174 }
2175
2176 if (TREE_CODE (rhs) == INTEGER_CST)
2177 {
2178 *new_rhs_out = rhs;
2179 *type_out = NULL;
2180 return true;
2181 }
2182
2183 return false;
2184}
2185
0989f516 2186/* Return true if STMT performs a widening multiplication, assuming the
2187 output type is TYPE. If so, store the unwidened types of the operands
2188 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2189 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2190 and *TYPE2_OUT would give the operands of the multiplication. */
7e4c867e 2191
2192static bool
42acab1c 2193is_widening_mult_p (gimple *stmt,
7e4c867e 2194 tree *type1_out, tree *rhs1_out,
2195 tree *type2_out, tree *rhs2_out)
00f4f705 2196{
4333b41f 2197 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2198
f2ef7276 2199 if (TREE_CODE (type) == INTEGER_TYPE)
2200 {
2201 if (TYPE_OVERFLOW_TRAPS (type))
2202 return false;
2203 }
2204 else if (TREE_CODE (type) != FIXED_POINT_TYPE)
7e4c867e 2205 return false;
00f4f705 2206
0989f516 2207 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2208 rhs1_out))
00f4f705 2209 return false;
2210
0989f516 2211 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2212 rhs2_out))
7e4c867e 2213 return false;
00f4f705 2214
7e4c867e 2215 if (*type1_out == NULL)
00f4f705 2216 {
7e4c867e 2217 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
00f4f705 2218 return false;
7e4c867e 2219 *type1_out = *type2_out;
00f4f705 2220 }
00f4f705 2221
7e4c867e 2222 if (*type2_out == NULL)
00f4f705 2223 {
7e4c867e 2224 if (!int_fits_type_p (*rhs2_out, *type1_out))
00f4f705 2225 return false;
7e4c867e 2226 *type2_out = *type1_out;
00f4f705 2227 }
00f4f705 2228
287c271c 2229 /* Ensure that the larger of the two operands comes first. */
2230 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2231 {
dfcf26a5 2232 std::swap (*type1_out, *type2_out);
2233 std::swap (*rhs1_out, *rhs2_out);
287c271c 2234 }
aff5fb4d 2235
7e4c867e 2236 return true;
2237}
00f4f705 2238
eb728046 2239/* Check to see if the CALL statement is an invocation of copysign
2240 with 1. being the first argument. */
2241static bool
2242is_copysign_call_with_1 (gimple *call)
2243{
2244 gcall *c = dyn_cast <gcall *> (call);
2245 if (! c)
2246 return false;
2247
2248 enum combined_fn code = gimple_call_combined_fn (c);
2249
2250 if (code == CFN_LAST)
2251 return false;
2252
2253 if (builtin_fn_p (code))
2254 {
2255 switch (as_builtin_fn (code))
2256 {
2257 CASE_FLT_FN (BUILT_IN_COPYSIGN):
2258 CASE_FLT_FN_FLOATN_NX (BUILT_IN_COPYSIGN):
2259 return real_onep (gimple_call_arg (c, 0));
2260 default:
2261 return false;
2262 }
2263 }
2264
2265 if (internal_fn_p (code))
2266 {
2267 switch (as_internal_fn (code))
2268 {
2269 case IFN_COPYSIGN:
2270 return real_onep (gimple_call_arg (c, 0));
2271 default:
2272 return false;
2273 }
2274 }
2275
2276 return false;
2277}
2278
2279/* Try to expand the pattern x * copysign (1, y) into xorsign (x, y).
2280 This only happens when the the xorsign optab is defined, if the
2281 pattern is not a xorsign pattern or if expansion fails FALSE is
2282 returned, otherwise TRUE is returned. */
2283static bool
2284convert_expand_mult_copysign (gimple *stmt, gimple_stmt_iterator *gsi)
2285{
2286 tree treeop0, treeop1, lhs, type;
2287 location_t loc = gimple_location (stmt);
2288 lhs = gimple_assign_lhs (stmt);
2289 treeop0 = gimple_assign_rhs1 (stmt);
2290 treeop1 = gimple_assign_rhs2 (stmt);
2291 type = TREE_TYPE (lhs);
2292 machine_mode mode = TYPE_MODE (type);
2293
3aa2a10c 2294 if (HONOR_SNANS (type))
eb728046 2295 return false;
2296
2297 if (TREE_CODE (treeop0) == SSA_NAME && TREE_CODE (treeop1) == SSA_NAME)
2298 {
2299 gimple *call0 = SSA_NAME_DEF_STMT (treeop0);
3aa2a10c 2300 if (!has_single_use (treeop0) || !is_copysign_call_with_1 (call0))
eb728046 2301 {
2302 call0 = SSA_NAME_DEF_STMT (treeop1);
3aa2a10c 2303 if (!has_single_use (treeop1) || !is_copysign_call_with_1 (call0))
eb728046 2304 return false;
2305
2306 treeop1 = treeop0;
2307 }
eb728046 2308 if (optab_handler (xorsign_optab, mode) == CODE_FOR_nothing)
2309 return false;
2310
2311 gcall *c = as_a<gcall*> (call0);
2312 treeop0 = gimple_call_arg (c, 1);
2313
2314 gcall *call_stmt
2315 = gimple_build_call_internal (IFN_XORSIGN, 2, treeop1, treeop0);
2316 gimple_set_lhs (call_stmt, lhs);
2317 gimple_set_location (call_stmt, loc);
2318 gsi_replace (gsi, call_stmt, true);
2319 return true;
2320 }
2321
2322 return false;
2323}
2324
7e4c867e 2325/* Process a single gimple statement STMT, which has a MULT_EXPR as
2326 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2327 value is true iff we converted the statement. */
2328
2329static bool
42acab1c 2330convert_mult_to_widen (gimple *stmt, gimple_stmt_iterator *gsi)
7e4c867e 2331{
03d37e4e 2332 tree lhs, rhs1, rhs2, type, type1, type2;
7e4c867e 2333 enum insn_code handler;
d2a1b453 2334 scalar_int_mode to_mode, from_mode, actual_mode;
5a574e8b 2335 optab op;
aff5fb4d 2336 int actual_precision;
2337 location_t loc = gimple_location (stmt);
3f2ab719 2338 bool from_unsigned1, from_unsigned2;
7e4c867e 2339
2340 lhs = gimple_assign_lhs (stmt);
2341 type = TREE_TYPE (lhs);
2342 if (TREE_CODE (type) != INTEGER_TYPE)
00f4f705 2343 return false;
2344
4333b41f 2345 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
00f4f705 2346 return false;
2347
03b7a719 2348 to_mode = SCALAR_INT_TYPE_MODE (type);
2349 from_mode = SCALAR_INT_TYPE_MODE (type1);
f90f6ff1 2350 if (to_mode == from_mode)
2351 return false;
2352
3f2ab719 2353 from_unsigned1 = TYPE_UNSIGNED (type1);
2354 from_unsigned2 = TYPE_UNSIGNED (type2);
5a574e8b 2355
3f2ab719 2356 if (from_unsigned1 && from_unsigned2)
5a574e8b 2357 op = umul_widen_optab;
3f2ab719 2358 else if (!from_unsigned1 && !from_unsigned2)
5a574e8b 2359 op = smul_widen_optab;
00f4f705 2360 else
5a574e8b 2361 op = usmul_widen_optab;
2362
aff5fb4d 2363 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
d2a1b453 2364 &actual_mode);
7e4c867e 2365
2366 if (handler == CODE_FOR_nothing)
3f2ab719 2367 {
2368 if (op != smul_widen_optab)
2369 {
22ffd684 2370 /* We can use a signed multiply with unsigned types as long as
2371 there is a wider mode to use, or it is the smaller of the two
2372 types that is unsigned. Note that type1 >= type2, always. */
2373 if ((TYPE_UNSIGNED (type1)
2374 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2375 || (TYPE_UNSIGNED (type2)
2376 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2377 {
28ebc73c 2378 if (!GET_MODE_WIDER_MODE (from_mode).exists (&from_mode)
2379 || GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
22ffd684 2380 return false;
2381 }
3f2ab719 2382
2383 op = smul_widen_optab;
2384 handler = find_widening_optab_handler_and_mode (op, to_mode,
d2a1b453 2385 from_mode,
3f2ab719 2386 &actual_mode);
2387
2388 if (handler == CODE_FOR_nothing)
2389 return false;
2390
2391 from_unsigned1 = from_unsigned2 = false;
2392 }
2393 else
2394 return false;
2395 }
7e4c867e 2396
aff5fb4d 2397 /* Ensure that the inputs to the handler are in the correct precison
2398 for the opcode. This will be the full mode size. */
2399 actual_precision = GET_MODE_PRECISION (actual_mode);
b36be69d 2400 if (2 * actual_precision > TYPE_PRECISION (type))
2401 return false;
3f2ab719 2402 if (actual_precision != TYPE_PRECISION (type1)
2403 || from_unsigned1 != TYPE_UNSIGNED (type1))
03d37e4e 2404 rhs1 = build_and_insert_cast (gsi, loc,
2405 build_nonstandard_integer_type
2406 (actual_precision, from_unsigned1), rhs1);
3f2ab719 2407 if (actual_precision != TYPE_PRECISION (type2)
2408 || from_unsigned2 != TYPE_UNSIGNED (type2))
03d37e4e 2409 rhs2 = build_and_insert_cast (gsi, loc,
2410 build_nonstandard_integer_type
2411 (actual_precision, from_unsigned2), rhs2);
aff5fb4d 2412
ffebd9c5 2413 /* Handle constants. */
2414 if (TREE_CODE (rhs1) == INTEGER_CST)
2415 rhs1 = fold_convert (type1, rhs1);
2416 if (TREE_CODE (rhs2) == INTEGER_CST)
2417 rhs2 = fold_convert (type2, rhs2);
2418
aff5fb4d 2419 gimple_assign_set_rhs1 (stmt, rhs1);
2420 gimple_assign_set_rhs2 (stmt, rhs2);
00f4f705 2421 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2422 update_stmt (stmt);
30c4e60d 2423 widen_mul_stats.widen_mults_inserted++;
00f4f705 2424 return true;
2425}
2426
2427/* Process a single gimple statement STMT, which is found at the
2428 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2429 rhs (given by CODE), and try to convert it into a
2430 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2431 is true iff we converted the statement. */
2432
2433static bool
42acab1c 2434convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple *stmt,
00f4f705 2435 enum tree_code code)
2436{
42acab1c 2437 gimple *rhs1_stmt = NULL, *rhs2_stmt = NULL;
2438 gimple *conv1_stmt = NULL, *conv2_stmt = NULL, *conv_stmt;
03d37e4e 2439 tree type, type1, type2, optype;
00f4f705 2440 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2441 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2442 optab this_optab;
2443 enum tree_code wmult_code;
aff5fb4d 2444 enum insn_code handler;
d2a1b453 2445 scalar_mode to_mode, from_mode, actual_mode;
aff5fb4d 2446 location_t loc = gimple_location (stmt);
2447 int actual_precision;
3f2ab719 2448 bool from_unsigned1, from_unsigned2;
00f4f705 2449
2450 lhs = gimple_assign_lhs (stmt);
2451 type = TREE_TYPE (lhs);
7e4c867e 2452 if (TREE_CODE (type) != INTEGER_TYPE
2453 && TREE_CODE (type) != FIXED_POINT_TYPE)
00f4f705 2454 return false;
2455
2456 if (code == MINUS_EXPR)
2457 wmult_code = WIDEN_MULT_MINUS_EXPR;
2458 else
2459 wmult_code = WIDEN_MULT_PLUS_EXPR;
2460
00f4f705 2461 rhs1 = gimple_assign_rhs1 (stmt);
2462 rhs2 = gimple_assign_rhs2 (stmt);
2463
2464 if (TREE_CODE (rhs1) == SSA_NAME)
2465 {
2466 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2467 if (is_gimple_assign (rhs1_stmt))
2468 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2469 }
00f4f705 2470
2471 if (TREE_CODE (rhs2) == SSA_NAME)
2472 {
2473 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2474 if (is_gimple_assign (rhs2_stmt))
2475 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2476 }
00f4f705 2477
07ea3e5c 2478 /* Allow for one conversion statement between the multiply
2479 and addition/subtraction statement. If there are more than
2480 one conversions then we assume they would invalidate this
2481 transformation. If that's not the case then they should have
2482 been folded before now. */
2483 if (CONVERT_EXPR_CODE_P (rhs1_code))
2484 {
2485 conv1_stmt = rhs1_stmt;
2486 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2487 if (TREE_CODE (rhs1) == SSA_NAME)
2488 {
2489 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2490 if (is_gimple_assign (rhs1_stmt))
2491 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2492 }
2493 else
2494 return false;
2495 }
2496 if (CONVERT_EXPR_CODE_P (rhs2_code))
2497 {
2498 conv2_stmt = rhs2_stmt;
2499 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2500 if (TREE_CODE (rhs2) == SSA_NAME)
2501 {
2502 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2503 if (is_gimple_assign (rhs2_stmt))
2504 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2505 }
2506 else
2507 return false;
2508 }
2509
aff5fb4d 2510 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2511 is_widening_mult_p, but we still need the rhs returns.
2512
2513 It might also appear that it would be sufficient to use the existing
2514 operands of the widening multiply, but that would limit the choice of
e0df5be0 2515 multiply-and-accumulate instructions.
2516
2517 If the widened-multiplication result has more than one uses, it is
2518 probably wiser not to do the conversion. */
aff5fb4d 2519 if (code == PLUS_EXPR
2520 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
00f4f705 2521 {
e0df5be0 2522 if (!has_single_use (rhs1)
2523 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2524 &type2, &mult_rhs2))
00f4f705 2525 return false;
7e4c867e 2526 add_rhs = rhs2;
07ea3e5c 2527 conv_stmt = conv1_stmt;
00f4f705 2528 }
aff5fb4d 2529 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
00f4f705 2530 {
e0df5be0 2531 if (!has_single_use (rhs2)
2532 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2533 &type2, &mult_rhs2))
00f4f705 2534 return false;
7e4c867e 2535 add_rhs = rhs1;
07ea3e5c 2536 conv_stmt = conv2_stmt;
00f4f705 2537 }
00f4f705 2538 else
2539 return false;
2540
3d2b0034 2541 to_mode = SCALAR_TYPE_MODE (type);
2542 from_mode = SCALAR_TYPE_MODE (type1);
f90f6ff1 2543 if (to_mode == from_mode)
2544 return false;
2545
3f2ab719 2546 from_unsigned1 = TYPE_UNSIGNED (type1);
2547 from_unsigned2 = TYPE_UNSIGNED (type2);
4ccf368d 2548 optype = type1;
aff5fb4d 2549
3f2ab719 2550 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2551 if (from_unsigned1 != from_unsigned2)
2552 {
4ccf368d 2553 if (!INTEGRAL_TYPE_P (type))
2554 return false;
22ffd684 2555 /* We can use a signed multiply with unsigned types as long as
2556 there is a wider mode to use, or it is the smaller of the two
2557 types that is unsigned. Note that type1 >= type2, always. */
2558 if ((from_unsigned1
2559 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2560 || (from_unsigned2
2561 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
3f2ab719 2562 {
28ebc73c 2563 if (!GET_MODE_WIDER_MODE (from_mode).exists (&from_mode)
2564 || GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
22ffd684 2565 return false;
3f2ab719 2566 }
22ffd684 2567
2568 from_unsigned1 = from_unsigned2 = false;
4ccf368d 2569 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2570 false);
3f2ab719 2571 }
815a0224 2572
07ea3e5c 2573 /* If there was a conversion between the multiply and addition
2574 then we need to make sure it fits a multiply-and-accumulate.
2575 The should be a single mode change which does not change the
2576 value. */
2577 if (conv_stmt)
2578 {
3f2ab719 2579 /* We use the original, unmodified data types for this. */
07ea3e5c 2580 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2581 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2582 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2583 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2584
2585 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2586 {
2587 /* Conversion is a truncate. */
2588 if (TYPE_PRECISION (to_type) < data_size)
2589 return false;
2590 }
2591 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2592 {
2593 /* Conversion is an extend. Check it's the right sort. */
2594 if (TYPE_UNSIGNED (from_type) != is_unsigned
2595 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2596 return false;
2597 }
2598 /* else convert is a no-op for our purposes. */
2599 }
2600
815a0224 2601 /* Verify that the machine can perform a widening multiply
2602 accumulate in this mode/signedness combination, otherwise
2603 this transformation is likely to pessimize code. */
3f2ab719 2604 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
aff5fb4d 2605 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
d2a1b453 2606 from_mode, &actual_mode);
aff5fb4d 2607
2608 if (handler == CODE_FOR_nothing)
815a0224 2609 return false;
2610
aff5fb4d 2611 /* Ensure that the inputs to the handler are in the correct precison
2612 for the opcode. This will be the full mode size. */
2613 actual_precision = GET_MODE_PRECISION (actual_mode);
3f2ab719 2614 if (actual_precision != TYPE_PRECISION (type1)
2615 || from_unsigned1 != TYPE_UNSIGNED (type1))
03d37e4e 2616 mult_rhs1 = build_and_insert_cast (gsi, loc,
2617 build_nonstandard_integer_type
2618 (actual_precision, from_unsigned1),
2619 mult_rhs1);
3f2ab719 2620 if (actual_precision != TYPE_PRECISION (type2)
2621 || from_unsigned2 != TYPE_UNSIGNED (type2))
03d37e4e 2622 mult_rhs2 = build_and_insert_cast (gsi, loc,
2623 build_nonstandard_integer_type
2624 (actual_precision, from_unsigned2),
2625 mult_rhs2);
00f4f705 2626
12421545 2627 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
03d37e4e 2628 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
12421545 2629
ffebd9c5 2630 /* Handle constants. */
2631 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
d5a3bb10 2632 mult_rhs1 = fold_convert (type1, mult_rhs1);
ffebd9c5 2633 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
d5a3bb10 2634 mult_rhs2 = fold_convert (type2, mult_rhs2);
ffebd9c5 2635
806413d2 2636 gimple_assign_set_rhs_with_ops (gsi, wmult_code, mult_rhs1, mult_rhs2,
2637 add_rhs);
00f4f705 2638 update_stmt (gsi_stmt (*gsi));
30c4e60d 2639 widen_mul_stats.maccs_inserted++;
00f4f705 2640 return true;
2641}
2642
ed306e55 2643/* Given a result MUL_RESULT which is a result of a multiplication of OP1 and
2644 OP2 and which we know is used in statements that can be, together with the
2645 multiplication, converted to FMAs, perform the transformation. */
2646
2647static void
2648convert_mult_to_fma_1 (tree mul_result, tree op1, tree op2)
2649{
2650 tree type = TREE_TYPE (mul_result);
2651 gimple *use_stmt;
2652 imm_use_iterator imm_iter;
2653 gassign *fma_stmt;
2654
2655 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
2656 {
2657 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2658 enum tree_code use_code;
2659 tree addop, mulop1 = op1, result = mul_result;
2660 bool negate_p = false;
2661
2662 if (is_gimple_debug (use_stmt))
2663 continue;
2664
2665 use_code = gimple_assign_rhs_code (use_stmt);
2666 if (use_code == NEGATE_EXPR)
2667 {
2668 result = gimple_assign_lhs (use_stmt);
2669 use_operand_p use_p;
2670 gimple *neguse_stmt;
2671 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
2672 gsi_remove (&gsi, true);
2673 release_defs (use_stmt);
2674
2675 use_stmt = neguse_stmt;
2676 gsi = gsi_for_stmt (use_stmt);
2677 use_code = gimple_assign_rhs_code (use_stmt);
2678 negate_p = true;
2679 }
2680
2681 if (gimple_assign_rhs1 (use_stmt) == result)
2682 {
2683 addop = gimple_assign_rhs2 (use_stmt);
2684 /* a * b - c -> a * b + (-c) */
2685 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2686 addop = force_gimple_operand_gsi (&gsi,
2687 build1 (NEGATE_EXPR,
2688 type, addop),
2689 true, NULL_TREE, true,
2690 GSI_SAME_STMT);
2691 }
2692 else
2693 {
2694 addop = gimple_assign_rhs1 (use_stmt);
2695 /* a - b * c -> (-b) * c + a */
2696 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2697 negate_p = !negate_p;
2698 }
2699
2700 if (negate_p)
2701 mulop1 = force_gimple_operand_gsi (&gsi,
2702 build1 (NEGATE_EXPR,
2703 type, mulop1),
2704 true, NULL_TREE, true,
2705 GSI_SAME_STMT);
2706
2707 fma_stmt = gimple_build_assign (gimple_assign_lhs (use_stmt),
2708 FMA_EXPR, mulop1, op2, addop);
2709
2710 if (dump_file && (dump_flags & TDF_DETAILS))
2711 {
2712 fprintf (dump_file, "Generated FMA ");
2713 print_gimple_stmt (dump_file, fma_stmt, 0, 0);
2714 fprintf (dump_file, "\n");
2715 }
2716
2717 gsi_replace (&gsi, fma_stmt, true);
2718 widen_mul_stats.fmas_inserted++;
2719 }
2720}
2721
2722/* Data necessary to perform the actual transformation from a multiplication
2723 and an addition to an FMA after decision is taken it should be done and to
2724 then delete the multiplication statement from the function IL. */
2725
2726struct fma_transformation_info
2727{
2728 gimple *mul_stmt;
2729 tree mul_result;
2730 tree op1;
2731 tree op2;
2732};
2733
2734/* Structure containing the current state of FMA deferring, i.e. whether we are
2735 deferring, whether to continue deferring, and all data necessary to come
2736 back and perform all deferred transformations. */
2737
2738class fma_deferring_state
2739{
2740public:
2741 /* Class constructor. Pass true as PERFORM_DEFERRING in order to actually
2742 do any deferring. */
2743
2744 fma_deferring_state (bool perform_deferring)
2745 : m_candidates (), m_mul_result_set (), m_initial_phi (NULL),
2746 m_last_result (NULL_TREE), m_deferring_p (perform_deferring) {}
2747
2748 /* List of FMA candidates for which we the transformation has been determined
2749 possible but we at this point in BB analysis we do not consider them
2750 beneficial. */
2751 auto_vec<fma_transformation_info, 8> m_candidates;
2752
2753 /* Set of results of multiplication that are part of an already deferred FMA
2754 candidates. */
2755 hash_set<tree> m_mul_result_set;
2756
2757 /* The PHI that supposedly feeds back result of a FMA to another over loop
2758 boundary. */
2759 gphi *m_initial_phi;
2760
2761 /* Result of the last produced FMA candidate or NULL if there has not been
2762 one. */
2763 tree m_last_result;
2764
2765 /* If true, deferring might still be profitable. If false, transform all
2766 candidates and no longer defer. */
2767 bool m_deferring_p;
2768};
2769
2770/* Transform all deferred FMA candidates and mark STATE as no longer
2771 deferring. */
2772
2773static void
2774cancel_fma_deferring (fma_deferring_state *state)
2775{
2776 if (!state->m_deferring_p)
2777 return;
2778
2779 for (unsigned i = 0; i < state->m_candidates.length (); i++)
2780 {
2781 if (dump_file && (dump_flags & TDF_DETAILS))
2782 fprintf (dump_file, "Generating deferred FMA\n");
2783
2784 const fma_transformation_info &fti = state->m_candidates[i];
2785 convert_mult_to_fma_1 (fti.mul_result, fti.op1, fti.op2);
2786
2787 gimple_stmt_iterator gsi = gsi_for_stmt (fti.mul_stmt);
2788 gsi_remove (&gsi, true);
2789 release_defs (fti.mul_stmt);
2790 }
2791 state->m_deferring_p = false;
2792}
2793
2794/* If OP is an SSA name defined by a PHI node, return the PHI statement.
2795 Otherwise return NULL. */
2796
2797static gphi *
2798result_of_phi (tree op)
2799{
2800 if (TREE_CODE (op) != SSA_NAME)
2801 return NULL;
2802
2803 return dyn_cast <gphi *> (SSA_NAME_DEF_STMT (op));
2804}
2805
2806/* After processing statements of a BB and recording STATE, return true if the
2807 initial phi is fed by the last FMA candidate result ore one such result from
2808 previously processed BBs marked in LAST_RESULT_SET. */
2809
2810static bool
2811last_fma_candidate_feeds_initial_phi (fma_deferring_state *state,
2812 hash_set<tree> *last_result_set)
2813{
2814 ssa_op_iter iter;
2815 use_operand_p use;
2816 FOR_EACH_PHI_ARG (use, state->m_initial_phi, iter, SSA_OP_USE)
2817 {
2818 tree t = USE_FROM_PTR (use);
2819 if (t == state->m_last_result
2820 || last_result_set->contains (t))
2821 return true;
2822 }
2823
2824 return false;
2825}
2826
15dbdc8f 2827/* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2828 with uses in additions and subtractions to form fused multiply-add
ed306e55 2829 operations. Returns true if successful and MUL_STMT should be removed.
2830
2831 If STATE indicates that we are deferring FMA transformation, that means
2832 that we do not produce FMAs for basic blocks which look like:
2833
2834 <bb 6>
2835 # accumulator_111 = PHI <0.0(5), accumulator_66(6)>
2836 _65 = _14 * _16;
2837 accumulator_66 = _65 + accumulator_111;
2838
2839 or its unrolled version, i.e. with several FMA candidates that feed result
2840 of one into the addend of another. Instead, we add them to a list in STATE
2841 and if we later discover an FMA candidate that is not part of such a chain,
2842 we go back and perform all deferred past candidates. */
b9be572e 2843
2844static bool
ed306e55 2845convert_mult_to_fma (gimple *mul_stmt, tree op1, tree op2,
2846 fma_deferring_state *state)
b9be572e 2847{
15dbdc8f 2848 tree mul_result = gimple_get_lhs (mul_stmt);
b9be572e 2849 tree type = TREE_TYPE (mul_result);
42acab1c 2850 gimple *use_stmt, *neguse_stmt;
b9be572e 2851 use_operand_p use_p;
2852 imm_use_iterator imm_iter;
2853
2854 if (FLOAT_TYPE_P (type)
2855 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2856 return false;
2857
2858 /* We don't want to do bitfield reduction ops. */
2859 if (INTEGRAL_TYPE_P (type)
f2ef7276 2860 && (!type_has_mode_precision_p (type) || TYPE_OVERFLOW_TRAPS (type)))
b9be572e 2861 return false;
2862
2863 /* If the target doesn't support it, don't generate it. We assume that
2864 if fma isn't available then fms, fnma or fnms are not either. */
2865 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2866 return false;
2867
5ed3d3b8 2868 /* If the multiplication has zero uses, it is kept around probably because
2869 of -fnon-call-exceptions. Don't optimize it away in that case,
2870 it is DCE job. */
2871 if (has_zero_uses (mul_result))
2872 return false;
2873
ed306e55 2874 bool check_defer
2875 = (state->m_deferring_p
2876 && (tree_to_shwi (TYPE_SIZE (type))
2877 <= PARAM_VALUE (PARAM_AVOID_FMA_MAX_BITS)));
2878 bool defer = check_defer;
b9be572e 2879 /* Make sure that the multiplication statement becomes dead after
2880 the transformation, thus that all uses are transformed to FMAs.
2881 This means we assume that an FMA operation has the same cost
2882 as an addition. */
2883 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2884 {
2885 enum tree_code use_code;
44579526 2886 tree result = mul_result;
2887 bool negate_p = false;
b9be572e 2888
2889 use_stmt = USE_STMT (use_p);
2890
17a2c727 2891 if (is_gimple_debug (use_stmt))
2892 continue;
2893
b9be572e 2894 /* For now restrict this operations to single basic blocks. In theory
2895 we would want to support sinking the multiplication in
2896 m = a*b;
2897 if ()
2898 ma = m + c;
2899 else
2900 d = m;
2901 to form a fma in the then block and sink the multiplication to the
2902 else block. */
2903 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2904 return false;
2905
44579526 2906 if (!is_gimple_assign (use_stmt))
b9be572e 2907 return false;
2908
44579526 2909 use_code = gimple_assign_rhs_code (use_stmt);
2910
2911 /* A negate on the multiplication leads to FNMA. */
2912 if (use_code == NEGATE_EXPR)
2913 {
805ad414 2914 ssa_op_iter iter;
5715c09b 2915 use_operand_p usep;
805ad414 2916
44579526 2917 result = gimple_assign_lhs (use_stmt);
2918
2919 /* Make sure the negate statement becomes dead with this
2920 single transformation. */
2921 if (!single_imm_use (gimple_assign_lhs (use_stmt),
2922 &use_p, &neguse_stmt))
2923 return false;
2924
805ad414 2925 /* Make sure the multiplication isn't also used on that stmt. */
5715c09b 2926 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
2927 if (USE_FROM_PTR (usep) == mul_result)
805ad414 2928 return false;
2929
44579526 2930 /* Re-validate. */
2931 use_stmt = neguse_stmt;
2932 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2933 return false;
2934 if (!is_gimple_assign (use_stmt))
2935 return false;
2936
2937 use_code = gimple_assign_rhs_code (use_stmt);
2938 negate_p = true;
2939 }
b9be572e 2940
44579526 2941 switch (use_code)
2942 {
2943 case MINUS_EXPR:
8a9d0572 2944 if (gimple_assign_rhs2 (use_stmt) == result)
2945 negate_p = !negate_p;
2946 break;
44579526 2947 case PLUS_EXPR:
44579526 2948 break;
44579526 2949 default:
2950 /* FMA can only be formed from PLUS and MINUS. */
2951 return false;
2952 }
b9be572e 2953
b095bd6a 2954 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
2955 by a MULT_EXPR that we'll visit later, we might be able to
2956 get a more profitable match with fnma.
2957 OTOH, if we don't, a negate / fma pair has likely lower latency
2958 that a mult / subtract pair. */
2959 if (use_code == MINUS_EXPR && !negate_p
2960 && gimple_assign_rhs1 (use_stmt) == result
2961 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
2962 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
2963 {
2964 tree rhs2 = gimple_assign_rhs2 (use_stmt);
b095bd6a 2965
058e9571 2966 if (TREE_CODE (rhs2) == SSA_NAME)
2967 {
42acab1c 2968 gimple *stmt2 = SSA_NAME_DEF_STMT (rhs2);
058e9571 2969 if (has_single_use (rhs2)
2970 && is_gimple_assign (stmt2)
2971 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
2972 return false;
2973 }
b095bd6a 2974 }
2975
ed306e55 2976 tree use_rhs1 = gimple_assign_rhs1 (use_stmt);
2977 tree use_rhs2 = gimple_assign_rhs2 (use_stmt);
44579526 2978 /* We can't handle a * b + a * b. */
ed306e55 2979 if (use_rhs1 == use_rhs2)
2980 return false;
2981 /* If deferring, make sure we are not looking at an instruction that
2982 wouldn't have existed if we were not. */
2983 if (state->m_deferring_p
2984 && (state->m_mul_result_set.contains (use_rhs1)
2985 || state->m_mul_result_set.contains (use_rhs2)))
44579526 2986 return false;
8a9d0572 2987
ed306e55 2988 if (check_defer)
44579526 2989 {
ed306e55 2990 tree use_lhs = gimple_assign_lhs (use_stmt);
2991 if (state->m_last_result)
2992 {
2993 if (use_rhs2 == state->m_last_result
2994 || use_rhs1 == state->m_last_result)
2995 defer = true;
2996 else
2997 defer = false;
2998 }
2999 else
3000 {
3001 gcc_checking_assert (!state->m_initial_phi);
3002 gphi *phi;
3003 if (use_rhs1 == result)
3004 phi = result_of_phi (use_rhs2);
3005 else
3006 {
3007 gcc_assert (use_rhs2 == result);
3008 phi = result_of_phi (use_rhs1);
3009 }
44579526 3010
ed306e55 3011 if (phi)
3012 {
3013 state->m_initial_phi = phi;
3014 defer = true;
3015 }
3016 else
3017 defer = false;
3018 }
44579526 3019
ed306e55 3020 state->m_last_result = use_lhs;
3021 check_defer = false;
b9be572e 3022 }
3023 else
ed306e55 3024 defer = false;
3025
3026 /* While it is possible to validate whether or not the exact form that
3027 we've recognized is available in the backend, the assumption is that
3028 if the deferring logic above did not trigger, the transformation is
3029 never a loss. For instance, suppose the target only has the plain FMA
3030 pattern available. Consider a*b-c -> fma(a,b,-c): we've exchanged
3031 MUL+SUB for FMA+NEG, which is still two operations. Consider
3032 -(a*b)-c -> fma(-a,b,-c): we still have 3 operations, but in the FMA
3033 form the two NEGs are independent and could be run in parallel. */
3034 }
3035
3036 if (defer)
3037 {
3038 fma_transformation_info fti;
3039 fti.mul_stmt = mul_stmt;
3040 fti.mul_result = mul_result;
3041 fti.op1 = op1;
3042 fti.op2 = op2;
3043 state->m_candidates.safe_push (fti);
3044 state->m_mul_result_set.add (mul_result);
3045
3046 if (dump_file && (dump_flags & TDF_DETAILS))
b9be572e 3047 {
ed306e55 3048 fprintf (dump_file, "Deferred generating FMA for multiplication ");
3049 print_gimple_stmt (dump_file, mul_stmt, 0, 0);
3050 fprintf (dump_file, "\n");
b9be572e 3051 }
3052
ed306e55 3053 return false;
3054 }
3055 else
3056 {
3057 if (state->m_deferring_p)
3058 cancel_fma_deferring (state);
3059 convert_mult_to_fma_1 (mul_result, op1, op2);
3060 return true;
b9be572e 3061 }
b9be572e 3062}
3063
e11a63e8 3064
3065/* Helper function of match_uaddsub_overflow. Return 1
3066 if USE_STMT is unsigned overflow check ovf != 0 for
3067 STMT, -1 if USE_STMT is unsigned overflow check ovf == 0
3068 and 0 otherwise. */
3069
3070static int
3071uaddsub_overflow_check_p (gimple *stmt, gimple *use_stmt)
3072{
3073 enum tree_code ccode = ERROR_MARK;
3074 tree crhs1 = NULL_TREE, crhs2 = NULL_TREE;
3075 if (gimple_code (use_stmt) == GIMPLE_COND)
3076 {
3077 ccode = gimple_cond_code (use_stmt);
3078 crhs1 = gimple_cond_lhs (use_stmt);
3079 crhs2 = gimple_cond_rhs (use_stmt);
3080 }
3081 else if (is_gimple_assign (use_stmt))
3082 {
3083 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
3084 {
3085 ccode = gimple_assign_rhs_code (use_stmt);
3086 crhs1 = gimple_assign_rhs1 (use_stmt);
3087 crhs2 = gimple_assign_rhs2 (use_stmt);
3088 }
3089 else if (gimple_assign_rhs_code (use_stmt) == COND_EXPR)
3090 {
3091 tree cond = gimple_assign_rhs1 (use_stmt);
3092 if (COMPARISON_CLASS_P (cond))
3093 {
3094 ccode = TREE_CODE (cond);
3095 crhs1 = TREE_OPERAND (cond, 0);
3096 crhs2 = TREE_OPERAND (cond, 1);
3097 }
3098 else
3099 return 0;
3100 }
3101 else
3102 return 0;
3103 }
3104 else
3105 return 0;
3106
3107 if (TREE_CODE_CLASS (ccode) != tcc_comparison)
3108 return 0;
3109
3110 enum tree_code code = gimple_assign_rhs_code (stmt);
3111 tree lhs = gimple_assign_lhs (stmt);
3112 tree rhs1 = gimple_assign_rhs1 (stmt);
3113 tree rhs2 = gimple_assign_rhs2 (stmt);
3114
3115 switch (ccode)
3116 {
3117 case GT_EXPR:
3118 case LE_EXPR:
3119 /* r = a - b; r > a or r <= a
3120 r = a + b; a > r or a <= r or b > r or b <= r. */
3121 if ((code == MINUS_EXPR && crhs1 == lhs && crhs2 == rhs1)
3122 || (code == PLUS_EXPR && (crhs1 == rhs1 || crhs1 == rhs2)
3123 && crhs2 == lhs))
3124 return ccode == GT_EXPR ? 1 : -1;
3125 break;
3126 case LT_EXPR:
3127 case GE_EXPR:
3128 /* r = a - b; a < r or a >= r
3129 r = a + b; r < a or r >= a or r < b or r >= b. */
3130 if ((code == MINUS_EXPR && crhs1 == rhs1 && crhs2 == lhs)
3131 || (code == PLUS_EXPR && crhs1 == lhs
3132 && (crhs2 == rhs1 || crhs2 == rhs2)))
3133 return ccode == LT_EXPR ? 1 : -1;
3134 break;
3135 default:
3136 break;
3137 }
3138 return 0;
3139}
3140
3141/* Recognize for unsigned x
3142 x = y - z;
3143 if (x > y)
3144 where there are other uses of x and replace it with
3145 _7 = SUB_OVERFLOW (y, z);
3146 x = REALPART_EXPR <_7>;
3147 _8 = IMAGPART_EXPR <_7>;
3148 if (_8)
3149 and similarly for addition. */
3150
3151static bool
3152match_uaddsub_overflow (gimple_stmt_iterator *gsi, gimple *stmt,
3153 enum tree_code code)
3154{
3155 tree lhs = gimple_assign_lhs (stmt);
3156 tree type = TREE_TYPE (lhs);
3157 use_operand_p use_p;
3158 imm_use_iterator iter;
3159 bool use_seen = false;
3160 bool ovf_use_seen = false;
3161 gimple *use_stmt;
3162
3163 gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR);
3164 if (!INTEGRAL_TYPE_P (type)
3165 || !TYPE_UNSIGNED (type)
3166 || has_zero_uses (lhs)
3167 || has_single_use (lhs)
3168 || optab_handler (code == PLUS_EXPR ? uaddv4_optab : usubv4_optab,
3169 TYPE_MODE (type)) == CODE_FOR_nothing)
3170 return false;
3171
3172 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
3173 {
3174 use_stmt = USE_STMT (use_p);
3175 if (is_gimple_debug (use_stmt))
3176 continue;
3177
3178 if (uaddsub_overflow_check_p (stmt, use_stmt))
3179 ovf_use_seen = true;
3180 else
3181 use_seen = true;
3182 if (ovf_use_seen && use_seen)
3183 break;
3184 }
3185
3186 if (!ovf_use_seen || !use_seen)
3187 return false;
3188
3189 tree ctype = build_complex_type (type);
3190 tree rhs1 = gimple_assign_rhs1 (stmt);
3191 tree rhs2 = gimple_assign_rhs2 (stmt);
3192 gcall *g = gimple_build_call_internal (code == PLUS_EXPR
3193 ? IFN_ADD_OVERFLOW : IFN_SUB_OVERFLOW,
3194 2, rhs1, rhs2);
3195 tree ctmp = make_ssa_name (ctype);
3196 gimple_call_set_lhs (g, ctmp);
3197 gsi_insert_before (gsi, g, GSI_SAME_STMT);
3198 gassign *g2 = gimple_build_assign (lhs, REALPART_EXPR,
3199 build1 (REALPART_EXPR, type, ctmp));
3200 gsi_replace (gsi, g2, true);
3201 tree ovf = make_ssa_name (type);
3202 g2 = gimple_build_assign (ovf, IMAGPART_EXPR,
3203 build1 (IMAGPART_EXPR, type, ctmp));
3204 gsi_insert_after (gsi, g2, GSI_NEW_STMT);
3205
3206 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3207 {
3208 if (is_gimple_debug (use_stmt))
3209 continue;
3210
3211 int ovf_use = uaddsub_overflow_check_p (stmt, use_stmt);
3212 if (ovf_use == 0)
3213 continue;
3214 if (gimple_code (use_stmt) == GIMPLE_COND)
3215 {
3216 gcond *cond_stmt = as_a <gcond *> (use_stmt);
3217 gimple_cond_set_lhs (cond_stmt, ovf);
3218 gimple_cond_set_rhs (cond_stmt, build_int_cst (type, 0));
3219 gimple_cond_set_code (cond_stmt, ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3220 }
3221 else
3222 {
3223 gcc_checking_assert (is_gimple_assign (use_stmt));
3224 if (gimple_assign_rhs_class (use_stmt) == GIMPLE_BINARY_RHS)
3225 {
3226 gimple_assign_set_rhs1 (use_stmt, ovf);
3227 gimple_assign_set_rhs2 (use_stmt, build_int_cst (type, 0));
3228 gimple_assign_set_rhs_code (use_stmt,
3229 ovf_use == 1 ? NE_EXPR : EQ_EXPR);
3230 }
3231 else
3232 {
3233 gcc_checking_assert (gimple_assign_rhs_code (use_stmt)
3234 == COND_EXPR);
3235 tree cond = build2 (ovf_use == 1 ? NE_EXPR : EQ_EXPR,
3236 boolean_type_node, ovf,
3237 build_int_cst (type, 0));
3238 gimple_assign_set_rhs1 (use_stmt, cond);
3239 }
3240 }
3241 update_stmt (use_stmt);
3242 }
3243 return true;
3244}
3245
67f7b566 3246/* Return true if target has support for divmod. */
3247
3248static bool
3249target_supports_divmod_p (optab divmod_optab, optab div_optab, machine_mode mode)
3250{
3251 /* If target supports hardware divmod insn, use it for divmod. */
3252 if (optab_handler (divmod_optab, mode) != CODE_FOR_nothing)
3253 return true;
3254
3255 /* Check if libfunc for divmod is available. */
3256 rtx libfunc = optab_libfunc (divmod_optab, mode);
3257 if (libfunc != NULL_RTX)
3258 {
3259 /* If optab_handler exists for div_optab, perhaps in a wider mode,
3260 we don't want to use the libfunc even if it exists for given mode. */
19a4dce4 3261 machine_mode div_mode;
3262 FOR_EACH_MODE_FROM (div_mode, mode)
67f7b566 3263 if (optab_handler (div_optab, div_mode) != CODE_FOR_nothing)
3264 return false;
3265
3266 return targetm.expand_divmod_libfunc != NULL;
3267 }
3268
3269 return false;
3270}
3271
3272/* Check if stmt is candidate for divmod transform. */
3273
3274static bool
3275divmod_candidate_p (gassign *stmt)
3276{
3277 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
582adad1 3278 machine_mode mode = TYPE_MODE (type);
67f7b566 3279 optab divmod_optab, div_optab;
3280
3281 if (TYPE_UNSIGNED (type))
3282 {
3283 divmod_optab = udivmod_optab;
3284 div_optab = udiv_optab;
3285 }
3286 else
3287 {
3288 divmod_optab = sdivmod_optab;
3289 div_optab = sdiv_optab;
3290 }
3291
3292 tree op1 = gimple_assign_rhs1 (stmt);
3293 tree op2 = gimple_assign_rhs2 (stmt);
3294
3295 /* Disable the transform if either is a constant, since division-by-constant
3296 may have specialized expansion. */
3297 if (CONSTANT_CLASS_P (op1) || CONSTANT_CLASS_P (op2))
3298 return false;
3299
3300 /* Exclude the case where TYPE_OVERFLOW_TRAPS (type) as that should
3301 expand using the [su]divv optabs. */
3302 if (TYPE_OVERFLOW_TRAPS (type))
3303 return false;
3304
3305 if (!target_supports_divmod_p (divmod_optab, div_optab, mode))
3306 return false;
3307
3308 return true;
3309}
3310
3311/* This function looks for:
3312 t1 = a TRUNC_DIV_EXPR b;
3313 t2 = a TRUNC_MOD_EXPR b;
3314 and transforms it to the following sequence:
3315 complex_tmp = DIVMOD (a, b);
3316 t1 = REALPART_EXPR(a);
3317 t2 = IMAGPART_EXPR(b);
3318 For conditions enabling the transform see divmod_candidate_p().
3319
3320 The pass has three parts:
3321 1) Find top_stmt which is trunc_div or trunc_mod stmt and dominates all
3322 other trunc_div_expr and trunc_mod_expr stmts.
3323 2) Add top_stmt and all trunc_div and trunc_mod stmts dominated by top_stmt
3324 to stmts vector.
3325 3) Insert DIVMOD call just before top_stmt and update entries in
3326 stmts vector to use return value of DIMOVD (REALEXPR_PART for div,
3327 IMAGPART_EXPR for mod). */
3328
3329static bool
3330convert_to_divmod (gassign *stmt)
3331{
3332 if (stmt_can_throw_internal (stmt)
3333 || !divmod_candidate_p (stmt))
3334 return false;
3335
3336 tree op1 = gimple_assign_rhs1 (stmt);
3337 tree op2 = gimple_assign_rhs2 (stmt);
3338
3339 imm_use_iterator use_iter;
3340 gimple *use_stmt;
3341 auto_vec<gimple *> stmts;
3342
3343 gimple *top_stmt = stmt;
3344 basic_block top_bb = gimple_bb (stmt);
3345
3346 /* Part 1: Try to set top_stmt to "topmost" stmt that dominates
3347 at-least stmt and possibly other trunc_div/trunc_mod stmts
3348 having same operands as stmt. */
3349
3350 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, op1)
3351 {
3352 if (is_gimple_assign (use_stmt)
3353 && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR
3354 || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR)
3355 && operand_equal_p (op1, gimple_assign_rhs1 (use_stmt), 0)
3356 && operand_equal_p (op2, gimple_assign_rhs2 (use_stmt), 0))
3357 {
3358 if (stmt_can_throw_internal (use_stmt))
3359 continue;
3360
3361 basic_block bb = gimple_bb (use_stmt);
3362
3363 if (bb == top_bb)
3364 {
3365 if (gimple_uid (use_stmt) < gimple_uid (top_stmt))
3366 top_stmt = use_stmt;
3367 }
3368 else if (dominated_by_p (CDI_DOMINATORS, top_bb, bb))
3369 {
3370 top_bb = bb;
3371 top_stmt = use_stmt;
3372 }
3373 }
3374 }
3375
3376 tree top_op1 = gimple_assign_rhs1 (top_stmt);
3377 tree top_op2 = gimple_assign_rhs2 (top_stmt);
3378
3379 stmts.safe_push (top_stmt);
3380 bool div_seen = (gimple_assign_rhs_code (top_stmt) == TRUNC_DIV_EXPR);
3381
3382 /* Part 2: Add all trunc_div/trunc_mod statements domianted by top_bb
3383 to stmts vector. The 2nd loop will always add stmt to stmts vector, since
3384 gimple_bb (top_stmt) dominates gimple_bb (stmt), so the
3385 2nd loop ends up adding at-least single trunc_mod_expr stmt. */
3386
3387 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, top_op1)
3388 {
3389 if (is_gimple_assign (use_stmt)
3390 && (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR
3391 || gimple_assign_rhs_code (use_stmt) == TRUNC_MOD_EXPR)
3392 && operand_equal_p (top_op1, gimple_assign_rhs1 (use_stmt), 0)
3393 && operand_equal_p (top_op2, gimple_assign_rhs2 (use_stmt), 0))
3394 {
3395 if (use_stmt == top_stmt
3396 || stmt_can_throw_internal (use_stmt)
3397 || !dominated_by_p (CDI_DOMINATORS, gimple_bb (use_stmt), top_bb))
3398 continue;
3399
3400 stmts.safe_push (use_stmt);
3401 if (gimple_assign_rhs_code (use_stmt) == TRUNC_DIV_EXPR)
3402 div_seen = true;
3403 }
3404 }
3405
3406 if (!div_seen)
3407 return false;
3408
3409 /* Part 3: Create libcall to internal fn DIVMOD:
3410 divmod_tmp = DIVMOD (op1, op2). */
3411
3412 gcall *call_stmt = gimple_build_call_internal (IFN_DIVMOD, 2, op1, op2);
3413 tree res = make_temp_ssa_name (build_complex_type (TREE_TYPE (op1)),
3414 call_stmt, "divmod_tmp");
3415 gimple_call_set_lhs (call_stmt, res);
989f02dc 3416 /* We rejected throwing statements above. */
3417 gimple_call_set_nothrow (call_stmt, true);
67f7b566 3418
3419 /* Insert the call before top_stmt. */
3420 gimple_stmt_iterator top_stmt_gsi = gsi_for_stmt (top_stmt);
3421 gsi_insert_before (&top_stmt_gsi, call_stmt, GSI_SAME_STMT);
3422
3423 widen_mul_stats.divmod_calls_inserted++;
3424
3425 /* Update all statements in stmts vector:
3426 lhs = op1 TRUNC_DIV_EXPR op2 -> lhs = REALPART_EXPR<divmod_tmp>
3427 lhs = op1 TRUNC_MOD_EXPR op2 -> lhs = IMAGPART_EXPR<divmod_tmp>. */
3428
3429 for (unsigned i = 0; stmts.iterate (i, &use_stmt); ++i)
3430 {
3431 tree new_rhs;
3432
3433 switch (gimple_assign_rhs_code (use_stmt))
3434 {
3435 case TRUNC_DIV_EXPR:
3436 new_rhs = fold_build1 (REALPART_EXPR, TREE_TYPE (op1), res);
3437 break;
3438
3439 case TRUNC_MOD_EXPR:
3440 new_rhs = fold_build1 (IMAGPART_EXPR, TREE_TYPE (op1), res);
3441 break;
3442
3443 default:
3444 gcc_unreachable ();
3445 }
3446
3447 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
3448 gimple_assign_set_rhs_from_tree (&gsi, new_rhs);
3449 update_stmt (use_stmt);
3450 }
3451
3452 return true;
3453}
e11a63e8 3454
62be004c 3455/* Find integer multiplications where the operands are extended from
3456 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3457 where appropriate. */
3458
65b0537f 3459namespace {
3460
3461const pass_data pass_data_optimize_widening_mul =
3462{
3463 GIMPLE_PASS, /* type */
3464 "widening_mul", /* name */
3465 OPTGROUP_NONE, /* optinfo_flags */
8ed378fe 3466 TV_TREE_WIDEN_MUL, /* tv_id */
65b0537f 3467 PROP_ssa, /* properties_required */
3468 0, /* properties_provided */
3469 0, /* properties_destroyed */
3470 0, /* todo_flags_start */
8b88439e 3471 TODO_update_ssa, /* todo_flags_finish */
65b0537f 3472};
3473
3474class pass_optimize_widening_mul : public gimple_opt_pass
3475{
3476public:
3477 pass_optimize_widening_mul (gcc::context *ctxt)
3478 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3479 {}
3480
3481 /* opt_pass methods: */
3482 virtual bool gate (function *)
3483 {
3484 return flag_expensive_optimizations && optimize;
3485 }
3486
3487 virtual unsigned int execute (function *);
3488
3489}; // class pass_optimize_widening_mul
3490
ed306e55 3491/* Walker class to perform the transformation in reverse dominance order. */
3492
3493class math_opts_dom_walker : public dom_walker
62be004c 3494{
ed306e55 3495public:
3496 /* Constructor, CFG_CHANGED is a pointer to a boolean flag that will be set
3497 if walking modidifes the CFG. */
62be004c 3498
ed306e55 3499 math_opts_dom_walker (bool *cfg_changed_p)
3500 : dom_walker (CDI_DOMINATORS), m_last_result_set (),
3501 m_cfg_changed_p (cfg_changed_p) {}
30c4e60d 3502
ed306e55 3503 /* The actual actions performed in the walk. */
3504
3505 virtual void after_dom_children (basic_block);
3506
3507 /* Set of results of chains of multiply and add statement combinations that
3508 were not transformed into FMAs because of active deferring. */
3509 hash_set<tree> m_last_result_set;
3510
3511 /* Pointer to a flag of the user that needs to be set if CFG has been
3512 modified. */
3513 bool *m_cfg_changed_p;
3514};
3515
3516void
3517math_opts_dom_walker::after_dom_children (basic_block bb)
3518{
3519 gimple_stmt_iterator gsi;
3520
3521 fma_deferring_state fma_state (PARAM_VALUE (PARAM_AVOID_FMA_MAX_BITS) > 0);
3522
3523 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
62be004c 3524 {
ed306e55 3525 gimple *stmt = gsi_stmt (gsi);
3526 enum tree_code code;
62be004c 3527
ed306e55 3528 if (is_gimple_assign (stmt))
3529 {
3530 code = gimple_assign_rhs_code (stmt);
3531 switch (code)
3532 {
3533 case MULT_EXPR:
3534 if (!convert_mult_to_widen (stmt, &gsi)
3535 && !convert_expand_mult_copysign (stmt, &gsi)
3536 && convert_mult_to_fma (stmt,
3537 gimple_assign_rhs1 (stmt),
3538 gimple_assign_rhs2 (stmt),
3539 &fma_state))
3540 {
3541 gsi_remove (&gsi, true);
3542 release_defs (stmt);
3543 continue;
3544 }
3545 break;
3546
3547 case PLUS_EXPR:
3548 case MINUS_EXPR:
3549 if (!convert_plusminus_to_widen (&gsi, stmt, code))
3550 match_uaddsub_overflow (&gsi, stmt, code);
3551 break;
62be004c 3552
ed306e55 3553 case TRUNC_MOD_EXPR:
3554 convert_to_divmod (as_a<gassign *> (stmt));
3555 break;
3556
3557 default:;
3558 }
3559 }
3560 else if (is_gimple_call (stmt))
3561 {
3562 tree fndecl = gimple_call_fndecl (stmt);
3563 if (fndecl && gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
b9be572e 3564 {
ed306e55 3565 switch (DECL_FUNCTION_CODE (fndecl))
b9be572e 3566 {
ed306e55 3567 case BUILT_IN_POWF:
3568 case BUILT_IN_POW:
3569 case BUILT_IN_POWL:
3570 if (gimple_call_lhs (stmt)
3571 && TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3572 && real_equal
3573 (&TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3574 &dconst2)
15dbdc8f 3575 && convert_mult_to_fma (stmt,
ed306e55 3576 gimple_call_arg (stmt, 0),
3577 gimple_call_arg (stmt, 0),
3578 &fma_state))
b9be572e 3579 {
ed306e55 3580 unlink_stmt_vdef (stmt);
3581 if (gsi_remove (&gsi, true)
3582 && gimple_purge_dead_eh_edges (bb))
3583 *m_cfg_changed_p = true;
b9be572e 3584 release_defs (stmt);
3585 continue;
3586 }
3587 break;
3588
b9be572e 3589 default:;
3590 }
3591 }
ed306e55 3592 else
3593 cancel_fma_deferring (&fma_state);
62be004c 3594 }
ed306e55 3595 gsi_next (&gsi);
62be004c 3596 }
ed306e55 3597 if (fma_state.m_deferring_p
3598 && fma_state.m_initial_phi)
3599 {
3600 gcc_checking_assert (fma_state.m_last_result);
3601 if (!last_fma_candidate_feeds_initial_phi (&fma_state,
3602 &m_last_result_set))
3603 cancel_fma_deferring (&fma_state);
3604 else
3605 m_last_result_set.add (fma_state.m_last_result);
3606 }
3607}
3608
3609
3610unsigned int
3611pass_optimize_widening_mul::execute (function *fun)
3612{
3613 bool cfg_changed = false;
3614
3615 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3616 calculate_dominance_info (CDI_DOMINATORS);
3617 renumber_gimple_stmt_uids ();
3618
3619 math_opts_dom_walker (&cfg_changed).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
00f4f705 3620
65b0537f 3621 statistics_counter_event (fun, "widening multiplications inserted",
30c4e60d 3622 widen_mul_stats.widen_mults_inserted);
65b0537f 3623 statistics_counter_event (fun, "widening maccs inserted",
30c4e60d 3624 widen_mul_stats.maccs_inserted);
65b0537f 3625 statistics_counter_event (fun, "fused multiply-adds inserted",
30c4e60d 3626 widen_mul_stats.fmas_inserted);
67f7b566 3627 statistics_counter_event (fun, "divmod calls inserted",
3628 widen_mul_stats.divmod_calls_inserted);
30c4e60d 3629
15dbdc8f 3630 return cfg_changed ? TODO_cleanup_cfg : 0;
62be004c 3631}
3632
cbe8bda8 3633} // anon namespace
3634
3635gimple_opt_pass *
3636make_pass_optimize_widening_mul (gcc::context *ctxt)
3637{
3638 return new pass_optimize_widening_mul (ctxt);
3639}