]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-math-opts.c
decl.c, [...]: Remove redundant enum from machine_mode.
[thirdparty/gcc.git] / gcc / tree-ssa-math-opts.c
CommitLineData
6c2a63a3 1/* Global, SSA-based optimizations using mathematical identities.
23a5b65a 2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
b8698a0f 3
6c2a63a3 4This file is part of GCC.
b8698a0f 5
6c2a63a3
PB
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
9dcd6f09 8Free Software Foundation; either version 3, or (at your option) any
6c2a63a3 9later version.
b8698a0f 10
6c2a63a3
PB
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
b8698a0f 15
6c2a63a3 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
6c2a63a3
PB
19
20/* Currently, the only mini-pass in this file tries to CSE reciprocal
21 operations. These are common in sequences such as this one:
22
23 modulus = sqrt(x*x + y*y + z*z);
24 x = x / modulus;
25 y = y / modulus;
26 z = z / modulus;
27
28 that can be optimized to
29
30 modulus = sqrt(x*x + y*y + z*z);
31 rmodulus = 1.0 / modulus;
32 x = x * rmodulus;
33 y = y * rmodulus;
34 z = z * rmodulus;
35
36 We do this for loop invariant divisors, and with this pass whenever
bc23502b
PB
37 we notice that a division has the same divisor multiple times.
38
39 Of course, like in PRE, we don't insert a division if a dominator
40 already has one. However, this cannot be done as an extension of
41 PRE for several reasons.
42
43 First of all, with some experiments it was found out that the
44 transformation is not always useful if there are only two divisions
45 hy the same divisor. This is probably because modern processors
46 can pipeline the divisions; on older, in-order processors it should
47 still be effective to optimize two divisions by the same number.
48 We make this a param, and it shall be called N in the remainder of
49 this comment.
50
51 Second, if trapping math is active, we have less freedom on where
52 to insert divisions: we can only do so in basic blocks that already
53 contain one. (If divisions don't trap, instead, we can insert
54 divisions elsewhere, which will be in blocks that are common dominators
55 of those that have the division).
56
57 We really don't want to compute the reciprocal unless a division will
58 be found. To do this, we won't insert the division in a basic block
59 that has less than N divisions *post-dominating* it.
60
61 The algorithm constructs a subset of the dominator tree, holding the
62 blocks containing the divisions and the common dominators to them,
63 and walk it twice. The first walk is in post-order, and it annotates
64 each block with the number of divisions that post-dominate it: this
65 gives information on where divisions can be inserted profitably.
66 The second walk is in pre-order, and it inserts divisions as explained
67 above, and replaces divisions by multiplications.
68
69 In the best case, the cost of the pass is O(n_statements). In the
70 worst-case, the cost is due to creating the dominator tree subset,
71 with a cost of O(n_basic_blocks ^ 2); however this can only happen
72 for n_statements / n_basic_blocks statements. So, the amortized cost
73 of creating the dominator tree subset is O(n_basic_blocks) and the
74 worst-case cost of the pass is O(n_statements * n_basic_blocks).
75
76 More practically, the cost will be small because there are few
77 divisions, and they tend to be in the same basic block, so insert_bb
78 is called very few times.
79
80 If we did this using domwalk.c, an efficient implementation would have
81 to work on all the variables in a single pass, because we could not
82 work on just a subset of the dominator tree, as we do now, and the
83 cost would also be something like O(n_statements * n_basic_blocks).
84 The data structures would be more complex in order to work on all the
85 variables in a single pass. */
6c2a63a3
PB
86
87#include "config.h"
88#include "system.h"
89#include "coretypes.h"
90#include "tm.h"
91#include "flags.h"
92#include "tree.h"
60393bbc
AM
93#include "predict.h"
94#include "vec.h"
95#include "hashtab.h"
96#include "hash-set.h"
97#include "machmode.h"
98#include "hard-reg-set.h"
99#include "input.h"
100#include "function.h"
101#include "dominance.h"
102#include "cfg.h"
2fb9a547
AM
103#include "basic-block.h"
104#include "tree-ssa-alias.h"
105#include "internal-fn.h"
106#include "gimple-fold.h"
107#include "gimple-expr.h"
108#include "is-a.h"
18f429e2 109#include "gimple.h"
5be5c238 110#include "gimple-iterator.h"
73984f84 111#include "gimplify.h"
18f429e2 112#include "gimplify-me.h"
d8a2d370 113#include "stor-layout.h"
442b4905
AM
114#include "gimple-ssa.h"
115#include "tree-cfg.h"
116#include "tree-phinodes.h"
117#include "ssa-iterators.h"
d8a2d370 118#include "stringpool.h"
442b4905 119#include "tree-ssanames.h"
d8a2d370 120#include "expr.h"
442b4905 121#include "tree-dfa.h"
7a300452 122#include "tree-ssa.h"
6c2a63a3 123#include "tree-pass.h"
bc23502b 124#include "alloc-pool.h"
bc23502b 125#include "target.h"
cf835838 126#include "gimple-pretty-print.h"
9b2b7279 127#include "builtins.h"
40013784
SB
128
129/* FIXME: RTL headers have to be included here for optabs. */
130#include "rtl.h" /* Because optabs.h wants enum rtx_code. */
131#include "expr.h" /* Because optabs.h wants sepops. */
03bd2f1a 132#include "optabs.h"
bc23502b
PB
133
134/* This structure represents one basic block that either computes a
135 division, or is a common dominator for basic block that compute a
136 division. */
137struct occurrence {
138 /* The basic block represented by this structure. */
139 basic_block bb;
140
141 /* If non-NULL, the SSA_NAME holding the definition for a reciprocal
142 inserted in BB. */
143 tree recip_def;
144
726a989a 145 /* If non-NULL, the GIMPLE_ASSIGN for a reciprocal computation that
bc23502b 146 was inserted in BB. */
726a989a 147 gimple recip_def_stmt;
bc23502b
PB
148
149 /* Pointer to a list of "struct occurrence"s for blocks dominated
150 by BB. */
151 struct occurrence *children;
152
153 /* Pointer to the next "struct occurrence"s in the list of blocks
154 sharing a common dominator. */
155 struct occurrence *next;
156
157 /* The number of divisions that are in BB before compute_merit. The
158 number of divisions that are in BB or post-dominate it after
159 compute_merit. */
160 int num_divisions;
161
162 /* True if the basic block has a division, false if it is a common
163 dominator for basic blocks that do. If it is false and trapping
164 math is active, BB is not a candidate for inserting a reciprocal. */
165 bool bb_has_division;
166};
167
4da3b811
NF
168static struct
169{
170 /* Number of 1.0/X ops inserted. */
171 int rdivs_inserted;
172
173 /* Number of 1.0/FUNC ops inserted. */
174 int rfuncs_inserted;
175} reciprocal_stats;
176
177static struct
178{
179 /* Number of cexpi calls inserted. */
180 int inserted;
181} sincos_stats;
182
183static struct
184{
73984f84 185 /* Number of hand-written 16-bit nop / bswaps found. */
1df855ce
CL
186 int found_16bit;
187
73984f84 188 /* Number of hand-written 32-bit nop / bswaps found. */
4da3b811
NF
189 int found_32bit;
190
73984f84 191 /* Number of hand-written 64-bit nop / bswaps found. */
4da3b811 192 int found_64bit;
73984f84 193} nop_stats, bswap_stats;
4da3b811
NF
194
195static struct
196{
197 /* Number of widening multiplication ops inserted. */
198 int widen_mults_inserted;
199
200 /* Number of integer multiply-and-accumulate ops inserted. */
201 int maccs_inserted;
202
203 /* Number of fp fused multiply-add ops inserted. */
204 int fmas_inserted;
205} widen_mul_stats;
bc23502b
PB
206
207/* The instance of "struct occurrence" representing the highest
208 interesting block in the dominator tree. */
209static struct occurrence *occ_head;
210
211/* Allocation pool for getting instances of "struct occurrence". */
212static alloc_pool occ_pool;
213
214
215
216/* Allocate and return a new struct occurrence for basic block BB, and
217 whose children list is headed by CHILDREN. */
218static struct occurrence *
219occ_new (basic_block bb, struct occurrence *children)
6c2a63a3 220{
bc23502b
PB
221 struct occurrence *occ;
222
c22940cd 223 bb->aux = occ = (struct occurrence *) pool_alloc (occ_pool);
bc23502b
PB
224 memset (occ, 0, sizeof (struct occurrence));
225
226 occ->bb = bb;
227 occ->children = children;
228 return occ;
6c2a63a3
PB
229}
230
bc23502b
PB
231
232/* Insert NEW_OCC into our subset of the dominator tree. P_HEAD points to a
233 list of "struct occurrence"s, one per basic block, having IDOM as
234 their common dominator.
235
236 We try to insert NEW_OCC as deep as possible in the tree, and we also
237 insert any other block that is a common dominator for BB and one
238 block already in the tree. */
239
240static void
241insert_bb (struct occurrence *new_occ, basic_block idom,
242 struct occurrence **p_head)
2ef571e2 243{
bc23502b 244 struct occurrence *occ, **p_occ;
2ef571e2 245
bc23502b
PB
246 for (p_occ = p_head; (occ = *p_occ) != NULL; )
247 {
248 basic_block bb = new_occ->bb, occ_bb = occ->bb;
249 basic_block dom = nearest_common_dominator (CDI_DOMINATORS, occ_bb, bb);
250 if (dom == bb)
251 {
252 /* BB dominates OCC_BB. OCC becomes NEW_OCC's child: remove OCC
253 from its list. */
254 *p_occ = occ->next;
255 occ->next = new_occ->children;
256 new_occ->children = occ;
257
258 /* Try the next block (it may as well be dominated by BB). */
259 }
260
261 else if (dom == occ_bb)
262 {
263 /* OCC_BB dominates BB. Tail recurse to look deeper. */
264 insert_bb (new_occ, dom, &occ->children);
265 return;
266 }
267
268 else if (dom != idom)
269 {
270 gcc_assert (!dom->aux);
271
272 /* There is a dominator between IDOM and BB, add it and make
273 two children out of NEW_OCC and OCC. First, remove OCC from
274 its list. */
275 *p_occ = occ->next;
276 new_occ->next = occ;
277 occ->next = NULL;
278
279 /* None of the previous blocks has DOM as a dominator: if we tail
280 recursed, we would reexamine them uselessly. Just switch BB with
281 DOM, and go on looking for blocks dominated by DOM. */
282 new_occ = occ_new (dom, new_occ);
283 }
284
285 else
286 {
287 /* Nothing special, go on with the next element. */
288 p_occ = &occ->next;
289 }
290 }
291
292 /* No place was found as a child of IDOM. Make BB a sibling of IDOM. */
293 new_occ->next = *p_head;
294 *p_head = new_occ;
295}
296
297/* Register that we found a division in BB. */
298
299static inline void
300register_division_in (basic_block bb)
301{
302 struct occurrence *occ;
303
304 occ = (struct occurrence *) bb->aux;
305 if (!occ)
306 {
307 occ = occ_new (bb, NULL);
fefa31b5 308 insert_bb (occ, ENTRY_BLOCK_PTR_FOR_FN (cfun), &occ_head);
bc23502b
PB
309 }
310
311 occ->bb_has_division = true;
312 occ->num_divisions++;
313}
314
315
316/* Compute the number of divisions that postdominate each block in OCC and
317 its children. */
6c2a63a3 318
6c2a63a3 319static void
bc23502b 320compute_merit (struct occurrence *occ)
6c2a63a3 321{
bc23502b
PB
322 struct occurrence *occ_child;
323 basic_block dom = occ->bb;
6c2a63a3 324
bc23502b 325 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
6c2a63a3 326 {
bc23502b
PB
327 basic_block bb;
328 if (occ_child->children)
329 compute_merit (occ_child);
330
331 if (flag_exceptions)
332 bb = single_noncomplex_succ (dom);
333 else
334 bb = dom;
335
336 if (dominated_by_p (CDI_POST_DOMINATORS, bb, occ_child->bb))
337 occ->num_divisions += occ_child->num_divisions;
338 }
339}
340
341
342/* Return whether USE_STMT is a floating-point division by DEF. */
343static inline bool
726a989a 344is_division_by (gimple use_stmt, tree def)
bc23502b 345{
726a989a
RB
346 return is_gimple_assign (use_stmt)
347 && gimple_assign_rhs_code (use_stmt) == RDIV_EXPR
348 && gimple_assign_rhs2 (use_stmt) == def
8a5b57cd
RG
349 /* Do not recognize x / x as valid division, as we are getting
350 confused later by replacing all immediate uses x in such
351 a stmt. */
726a989a 352 && gimple_assign_rhs1 (use_stmt) != def;
bc23502b
PB
353}
354
355/* Walk the subset of the dominator tree rooted at OCC, setting the
356 RECIP_DEF field to a definition of 1.0 / DEF that can be used in
357 the given basic block. The field may be left NULL, of course,
358 if it is not possible or profitable to do the optimization.
359
360 DEF_BSI is an iterator pointing at the statement defining DEF.
361 If RECIP_DEF is set, a dominator already has a computation that can
362 be used. */
363
364static void
726a989a 365insert_reciprocals (gimple_stmt_iterator *def_gsi, struct occurrence *occ,
bc23502b
PB
366 tree def, tree recip_def, int threshold)
367{
726a989a
RB
368 tree type;
369 gimple new_stmt;
370 gimple_stmt_iterator gsi;
bc23502b
PB
371 struct occurrence *occ_child;
372
373 if (!recip_def
374 && (occ->bb_has_division || !flag_trapping_math)
375 && occ->num_divisions >= threshold)
376 {
377 /* Make a variable with the replacement and substitute it. */
378 type = TREE_TYPE (def);
7cc434a3 379 recip_def = create_tmp_reg (type, "reciptmp");
726a989a
RB
380 new_stmt = gimple_build_assign_with_ops (RDIV_EXPR, recip_def,
381 build_one_cst (type), def);
b8698a0f 382
bc23502b
PB
383 if (occ->bb_has_division)
384 {
385 /* Case 1: insert before an existing division. */
726a989a
RB
386 gsi = gsi_after_labels (occ->bb);
387 while (!gsi_end_p (gsi) && !is_division_by (gsi_stmt (gsi), def))
388 gsi_next (&gsi);
bc23502b 389
726a989a 390 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
bc23502b 391 }
726a989a 392 else if (def_gsi && occ->bb == def_gsi->bb)
ac264fef 393 {
bc23502b
PB
394 /* Case 2: insert right after the definition. Note that this will
395 never happen if the definition statement can throw, because in
396 that case the sole successor of the statement's basic block will
397 dominate all the uses as well. */
726a989a 398 gsi_insert_after (def_gsi, new_stmt, GSI_NEW_STMT);
ac264fef 399 }
bc23502b
PB
400 else
401 {
402 /* Case 3: insert in a basic block not containing defs/uses. */
726a989a
RB
403 gsi = gsi_after_labels (occ->bb);
404 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
bc23502b
PB
405 }
406
4da3b811
NF
407 reciprocal_stats.rdivs_inserted++;
408
bc23502b 409 occ->recip_def_stmt = new_stmt;
6c2a63a3
PB
410 }
411
bc23502b
PB
412 occ->recip_def = recip_def;
413 for (occ_child = occ->children; occ_child; occ_child = occ_child->next)
726a989a 414 insert_reciprocals (def_gsi, occ_child, def, recip_def, threshold);
bc23502b
PB
415}
416
417
418/* Replace the division at USE_P with a multiplication by the reciprocal, if
419 possible. */
420
421static inline void
422replace_reciprocal (use_operand_p use_p)
423{
726a989a
RB
424 gimple use_stmt = USE_STMT (use_p);
425 basic_block bb = gimple_bb (use_stmt);
bc23502b
PB
426 struct occurrence *occ = (struct occurrence *) bb->aux;
427
efd8f750
JH
428 if (optimize_bb_for_speed_p (bb)
429 && occ->recip_def && use_stmt != occ->recip_def_stmt)
bc23502b 430 {
59401b92 431 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
726a989a 432 gimple_assign_set_rhs_code (use_stmt, MULT_EXPR);
bc23502b 433 SET_USE (use_p, occ->recip_def);
59401b92 434 fold_stmt_inplace (&gsi);
bc23502b
PB
435 update_stmt (use_stmt);
436 }
437}
438
439
440/* Free OCC and return one more "struct occurrence" to be freed. */
441
442static struct occurrence *
443free_bb (struct occurrence *occ)
444{
445 struct occurrence *child, *next;
446
447 /* First get the two pointers hanging off OCC. */
448 next = occ->next;
449 child = occ->children;
450 occ->bb->aux = NULL;
451 pool_free (occ_pool, occ);
452
453 /* Now ensure that we don't recurse unless it is necessary. */
454 if (!child)
455 return next;
2ef571e2 456 else
bc23502b
PB
457 {
458 while (next)
459 next = free_bb (next);
460
461 return child;
462 }
463}
464
465
466/* Look for floating-point divisions among DEF's uses, and try to
467 replace them by multiplications with the reciprocal. Add
468 as many statements computing the reciprocal as needed.
469
470 DEF must be a GIMPLE register of a floating-point type. */
471
472static void
726a989a 473execute_cse_reciprocals_1 (gimple_stmt_iterator *def_gsi, tree def)
bc23502b
PB
474{
475 use_operand_p use_p;
476 imm_use_iterator use_iter;
477 struct occurrence *occ;
478 int count = 0, threshold;
6c2a63a3 479
bc23502b
PB
480 gcc_assert (FLOAT_TYPE_P (TREE_TYPE (def)) && is_gimple_reg (def));
481
482 FOR_EACH_IMM_USE_FAST (use_p, use_iter, def)
6c2a63a3 483 {
726a989a 484 gimple use_stmt = USE_STMT (use_p);
bc23502b 485 if (is_division_by (use_stmt, def))
6c2a63a3 486 {
726a989a 487 register_division_in (gimple_bb (use_stmt));
bc23502b 488 count++;
6c2a63a3
PB
489 }
490 }
b8698a0f 491
bc23502b
PB
492 /* Do the expensive part only if we can hope to optimize something. */
493 threshold = targetm.min_divisions_for_recip_mul (TYPE_MODE (TREE_TYPE (def)));
494 if (count >= threshold)
495 {
726a989a 496 gimple use_stmt;
bc23502b
PB
497 for (occ = occ_head; occ; occ = occ->next)
498 {
499 compute_merit (occ);
726a989a 500 insert_reciprocals (def_gsi, occ, def, NULL, threshold);
bc23502b
PB
501 }
502
6c00f606 503 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, def)
bc23502b 504 {
bc23502b 505 if (is_division_by (use_stmt, def))
6c00f606
AM
506 {
507 FOR_EACH_IMM_USE_ON_STMT (use_p, use_iter)
508 replace_reciprocal (use_p);
509 }
bc23502b
PB
510 }
511 }
512
513 for (occ = occ_head; occ; )
514 occ = free_bb (occ);
515
516 occ_head = NULL;
6c2a63a3
PB
517}
518
bc23502b
PB
519/* Go through all the floating-point SSA_NAMEs, and call
520 execute_cse_reciprocals_1 on each of them. */
be55bfe6
TS
521namespace {
522
523const pass_data pass_data_cse_reciprocals =
524{
525 GIMPLE_PASS, /* type */
526 "recip", /* name */
527 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
528 TV_NONE, /* tv_id */
529 PROP_ssa, /* properties_required */
530 0, /* properties_provided */
531 0, /* properties_destroyed */
532 0, /* todo_flags_start */
3bea341f 533 TODO_update_ssa, /* todo_flags_finish */
be55bfe6
TS
534};
535
536class pass_cse_reciprocals : public gimple_opt_pass
537{
538public:
539 pass_cse_reciprocals (gcc::context *ctxt)
540 : gimple_opt_pass (pass_data_cse_reciprocals, ctxt)
541 {}
542
543 /* opt_pass methods: */
544 virtual bool gate (function *) { return optimize && flag_reciprocal_math; }
545 virtual unsigned int execute (function *);
546
547}; // class pass_cse_reciprocals
548
549unsigned int
550pass_cse_reciprocals::execute (function *fun)
6c2a63a3
PB
551{
552 basic_block bb;
a8f82ec4 553 tree arg;
ac264fef 554
bc23502b
PB
555 occ_pool = create_alloc_pool ("dominators for recip",
556 sizeof (struct occurrence),
be55bfe6 557 n_basic_blocks_for_fn (fun) / 3 + 1);
ac264fef 558
4da3b811 559 memset (&reciprocal_stats, 0, sizeof (reciprocal_stats));
d898f3ce
PB
560 calculate_dominance_info (CDI_DOMINATORS);
561 calculate_dominance_info (CDI_POST_DOMINATORS);
bc23502b
PB
562
563#ifdef ENABLE_CHECKING
be55bfe6 564 FOR_EACH_BB_FN (bb, fun)
bc23502b
PB
565 gcc_assert (!bb->aux);
566#endif
567
be55bfe6 568 for (arg = DECL_ARGUMENTS (fun->decl); arg; arg = DECL_CHAIN (arg))
32244553 569 if (FLOAT_TYPE_P (TREE_TYPE (arg))
bc23502b 570 && is_gimple_reg (arg))
32244553 571 {
be55bfe6 572 tree name = ssa_default_def (fun, arg);
32244553
RG
573 if (name)
574 execute_cse_reciprocals_1 (NULL, name);
575 }
a8f82ec4 576
be55bfe6 577 FOR_EACH_BB_FN (bb, fun)
6c2a63a3 578 {
726a989a
RB
579 gimple_stmt_iterator gsi;
580 gimple phi;
581 tree def;
6c2a63a3 582
726a989a 583 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6c2a63a3 584 {
726a989a 585 phi = gsi_stmt (gsi);
6c2a63a3 586 def = PHI_RESULT (phi);
ea057359
RG
587 if (! virtual_operand_p (def)
588 && FLOAT_TYPE_P (TREE_TYPE (def)))
bc23502b 589 execute_cse_reciprocals_1 (NULL, def);
6c2a63a3
PB
590 }
591
726a989a 592 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6c2a63a3 593 {
726a989a 594 gimple stmt = gsi_stmt (gsi);
2f397a93 595
726a989a 596 if (gimple_has_lhs (stmt)
6c2a63a3
PB
597 && (def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF)) != NULL
598 && FLOAT_TYPE_P (TREE_TYPE (def))
a8f82ec4 599 && TREE_CODE (def) == SSA_NAME)
726a989a 600 execute_cse_reciprocals_1 (&gsi, def);
6c2a63a3 601 }
6b889d89 602
efd8f750
JH
603 if (optimize_bb_for_size_p (bb))
604 continue;
605
6b889d89 606 /* Scan for a/func(b) and convert it to reciprocal a*rfunc(b). */
726a989a 607 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6b889d89 608 {
726a989a 609 gimple stmt = gsi_stmt (gsi);
6b889d89
UB
610 tree fndecl;
611
726a989a
RB
612 if (is_gimple_assign (stmt)
613 && gimple_assign_rhs_code (stmt) == RDIV_EXPR)
6b889d89 614 {
726a989a
RB
615 tree arg1 = gimple_assign_rhs2 (stmt);
616 gimple stmt1;
ac10986f
UB
617
618 if (TREE_CODE (arg1) != SSA_NAME)
619 continue;
620
621 stmt1 = SSA_NAME_DEF_STMT (arg1);
6b889d89 622
726a989a
RB
623 if (is_gimple_call (stmt1)
624 && gimple_call_lhs (stmt1)
625 && (fndecl = gimple_call_fndecl (stmt1))
6b889d89
UB
626 && (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
627 || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD))
628 {
629 enum built_in_function code;
79af7c1f
MM
630 bool md_code, fail;
631 imm_use_iterator ui;
632 use_operand_p use_p;
6b889d89
UB
633
634 code = DECL_FUNCTION_CODE (fndecl);
ac10986f
UB
635 md_code = DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD;
636
637 fndecl = targetm.builtin_reciprocal (code, md_code, false);
6b889d89
UB
638 if (!fndecl)
639 continue;
640
79af7c1f
MM
641 /* Check that all uses of the SSA name are divisions,
642 otherwise replacing the defining statement will do
643 the wrong thing. */
644 fail = false;
645 FOR_EACH_IMM_USE_FAST (use_p, ui, arg1)
646 {
647 gimple stmt2 = USE_STMT (use_p);
648 if (is_gimple_debug (stmt2))
649 continue;
650 if (!is_gimple_assign (stmt2)
651 || gimple_assign_rhs_code (stmt2) != RDIV_EXPR
652 || gimple_assign_rhs1 (stmt2) == arg1
653 || gimple_assign_rhs2 (stmt2) != arg1)
654 {
655 fail = true;
656 break;
657 }
658 }
659 if (fail)
660 continue;
661
ff2a63a7 662 gimple_replace_ssa_lhs (stmt1, arg1);
7c9577be 663 gimple_call_set_fndecl (stmt1, fndecl);
6b889d89 664 update_stmt (stmt1);
4da3b811 665 reciprocal_stats.rfuncs_inserted++;
6b889d89 666
79af7c1f
MM
667 FOR_EACH_IMM_USE_STMT (stmt, ui, arg1)
668 {
59401b92 669 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
79af7c1f 670 gimple_assign_set_rhs_code (stmt, MULT_EXPR);
59401b92 671 fold_stmt_inplace (&gsi);
79af7c1f
MM
672 update_stmt (stmt);
673 }
6b889d89
UB
674 }
675 }
676 }
6c2a63a3 677 }
ac264fef 678
be55bfe6 679 statistics_counter_event (fun, "reciprocal divs inserted",
4da3b811 680 reciprocal_stats.rdivs_inserted);
be55bfe6 681 statistics_counter_event (fun, "reciprocal functions inserted",
4da3b811
NF
682 reciprocal_stats.rfuncs_inserted);
683
d898f3ce
PB
684 free_dominance_info (CDI_DOMINATORS);
685 free_dominance_info (CDI_POST_DOMINATORS);
bc23502b 686 free_alloc_pool (occ_pool);
c2924966 687 return 0;
6c2a63a3
PB
688}
689
27a4cd48
DM
690} // anon namespace
691
692gimple_opt_pass *
693make_pass_cse_reciprocals (gcc::context *ctxt)
694{
695 return new pass_cse_reciprocals (ctxt);
696}
697
88512ba0 698/* Records an occurrence at statement USE_STMT in the vector of trees
2f397a93 699 STMTS if it is dominated by *TOP_BB or dominates it or this basic block
88512ba0 700 is not yet initialized. Returns true if the occurrence was pushed on
2f397a93
RG
701 the vector. Adjusts *TOP_BB to be the basic block dominating all
702 statements in the vector. */
703
704static bool
9771b263 705maybe_record_sincos (vec<gimple> *stmts,
726a989a 706 basic_block *top_bb, gimple use_stmt)
2f397a93 707{
726a989a 708 basic_block use_bb = gimple_bb (use_stmt);
2f397a93
RG
709 if (*top_bb
710 && (*top_bb == use_bb
711 || dominated_by_p (CDI_DOMINATORS, use_bb, *top_bb)))
9771b263 712 stmts->safe_push (use_stmt);
2f397a93
RG
713 else if (!*top_bb
714 || dominated_by_p (CDI_DOMINATORS, *top_bb, use_bb))
715 {
9771b263 716 stmts->safe_push (use_stmt);
2f397a93
RG
717 *top_bb = use_bb;
718 }
719 else
720 return false;
721
722 return true;
723}
724
725/* Look for sin, cos and cexpi calls with the same argument NAME and
726 create a single call to cexpi CSEing the result in this case.
727 We first walk over all immediate uses of the argument collecting
728 statements that we can CSE in a vector and in a second pass replace
729 the statement rhs with a REALPART or IMAGPART expression on the
730 result of the cexpi call we insert before the use statement that
731 dominates all other candidates. */
732
90bc1cb8 733static bool
2f397a93
RG
734execute_cse_sincos_1 (tree name)
735{
726a989a 736 gimple_stmt_iterator gsi;
2f397a93 737 imm_use_iterator use_iter;
726a989a
RB
738 tree fndecl, res, type;
739 gimple def_stmt, use_stmt, stmt;
2f397a93 740 int seen_cos = 0, seen_sin = 0, seen_cexpi = 0;
6e1aa848 741 vec<gimple> stmts = vNULL;
2f397a93
RG
742 basic_block top_bb = NULL;
743 int i;
90bc1cb8 744 bool cfg_changed = false;
2f397a93
RG
745
746 type = TREE_TYPE (name);
747 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, name)
748 {
726a989a
RB
749 if (gimple_code (use_stmt) != GIMPLE_CALL
750 || !gimple_call_lhs (use_stmt)
751 || !(fndecl = gimple_call_fndecl (use_stmt))
2f397a93
RG
752 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
753 continue;
754
755 switch (DECL_FUNCTION_CODE (fndecl))
756 {
757 CASE_FLT_FN (BUILT_IN_COS):
758 seen_cos |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
759 break;
760
761 CASE_FLT_FN (BUILT_IN_SIN):
762 seen_sin |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
763 break;
764
765 CASE_FLT_FN (BUILT_IN_CEXPI):
766 seen_cexpi |= maybe_record_sincos (&stmts, &top_bb, use_stmt) ? 1 : 0;
767 break;
768
769 default:;
770 }
771 }
772
773 if (seen_cos + seen_sin + seen_cexpi <= 1)
774 {
9771b263 775 stmts.release ();
90bc1cb8 776 return false;
2f397a93
RG
777 }
778
779 /* Simply insert cexpi at the beginning of top_bb but not earlier than
780 the name def statement. */
781 fndecl = mathfn_built_in (type, BUILT_IN_CEXPI);
782 if (!fndecl)
90bc1cb8 783 return false;
726a989a 784 stmt = gimple_build_call (fndecl, 1, name);
83d5977e 785 res = make_temp_ssa_name (TREE_TYPE (TREE_TYPE (fndecl)), stmt, "sincostmp");
726a989a
RB
786 gimple_call_set_lhs (stmt, res);
787
2f397a93 788 def_stmt = SSA_NAME_DEF_STMT (name);
59805c3b 789 if (!SSA_NAME_IS_DEFAULT_DEF (name)
726a989a
RB
790 && gimple_code (def_stmt) != GIMPLE_PHI
791 && gimple_bb (def_stmt) == top_bb)
2f397a93 792 {
726a989a
RB
793 gsi = gsi_for_stmt (def_stmt);
794 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
2f397a93
RG
795 }
796 else
797 {
726a989a
RB
798 gsi = gsi_after_labels (top_bb);
799 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
2f397a93 800 }
4da3b811 801 sincos_stats.inserted++;
2f397a93
RG
802
803 /* And adjust the recorded old call sites. */
9771b263 804 for (i = 0; stmts.iterate (i, &use_stmt); ++i)
2f397a93 805 {
726a989a
RB
806 tree rhs = NULL;
807 fndecl = gimple_call_fndecl (use_stmt);
808
2f397a93
RG
809 switch (DECL_FUNCTION_CODE (fndecl))
810 {
811 CASE_FLT_FN (BUILT_IN_COS):
726a989a 812 rhs = fold_build1 (REALPART_EXPR, type, res);
2f397a93
RG
813 break;
814
815 CASE_FLT_FN (BUILT_IN_SIN):
726a989a 816 rhs = fold_build1 (IMAGPART_EXPR, type, res);
2f397a93
RG
817 break;
818
819 CASE_FLT_FN (BUILT_IN_CEXPI):
726a989a 820 rhs = res;
2f397a93
RG
821 break;
822
823 default:;
824 gcc_unreachable ();
825 }
826
726a989a
RB
827 /* Replace call with a copy. */
828 stmt = gimple_build_assign (gimple_call_lhs (use_stmt), rhs);
829
830 gsi = gsi_for_stmt (use_stmt);
90bc1cb8
RG
831 gsi_replace (&gsi, stmt, true);
832 if (gimple_purge_dead_eh_edges (gimple_bb (stmt)))
833 cfg_changed = true;
2f397a93
RG
834 }
835
9771b263 836 stmts.release ();
90bc1cb8
RG
837
838 return cfg_changed;
2f397a93
RG
839}
840
78be79d5
BS
841/* To evaluate powi(x,n), the floating point value x raised to the
842 constant integer exponent n, we use a hybrid algorithm that
843 combines the "window method" with look-up tables. For an
844 introduction to exponentiation algorithms and "addition chains",
845 see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
846 "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
847 3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
848 Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998. */
849
850/* Provide a default value for POWI_MAX_MULTS, the maximum number of
851 multiplications to inline before calling the system library's pow
852 function. powi(x,n) requires at worst 2*bits(n)-2 multiplications,
853 so this default never requires calling pow, powf or powl. */
854
855#ifndef POWI_MAX_MULTS
856#define POWI_MAX_MULTS (2*HOST_BITS_PER_WIDE_INT-2)
857#endif
858
859/* The size of the "optimal power tree" lookup table. All
860 exponents less than this value are simply looked up in the
861 powi_table below. This threshold is also used to size the
862 cache of pseudo registers that hold intermediate results. */
863#define POWI_TABLE_SIZE 256
864
865/* The size, in bits of the window, used in the "window method"
866 exponentiation algorithm. This is equivalent to a radix of
867 (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method". */
868#define POWI_WINDOW_SIZE 3
869
870/* The following table is an efficient representation of an
871 "optimal power tree". For each value, i, the corresponding
872 value, j, in the table states than an optimal evaluation
873 sequence for calculating pow(x,i) can be found by evaluating
874 pow(x,j)*pow(x,i-j). An optimal power tree for the first
875 100 integers is given in Knuth's "Seminumerical algorithms". */
876
877static const unsigned char powi_table[POWI_TABLE_SIZE] =
878 {
879 0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
880 4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
881 8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
882 12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
883 16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
884 20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
885 24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
886 28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
887 32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
888 36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
889 40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
890 44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
891 48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
892 52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
893 56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
894 60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
895 64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
896 68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
897 72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
898 76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
899 80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
900 84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
901 88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
902 92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
903 96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
904 100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
905 104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
906 108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
907 112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
908 116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
909 120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
910 124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
911 };
912
913
914/* Return the number of multiplications required to calculate
915 powi(x,n) where n is less than POWI_TABLE_SIZE. This is a
916 subroutine of powi_cost. CACHE is an array indicating
917 which exponents have already been calculated. */
918
919static int
920powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
921{
922 /* If we've already calculated this exponent, then this evaluation
923 doesn't require any additional multiplications. */
924 if (cache[n])
925 return 0;
926
927 cache[n] = true;
928 return powi_lookup_cost (n - powi_table[n], cache)
929 + powi_lookup_cost (powi_table[n], cache) + 1;
930}
931
932/* Return the number of multiplications required to calculate
933 powi(x,n) for an arbitrary x, given the exponent N. This
934 function needs to be kept in sync with powi_as_mults below. */
935
936static int
937powi_cost (HOST_WIDE_INT n)
938{
939 bool cache[POWI_TABLE_SIZE];
940 unsigned HOST_WIDE_INT digit;
941 unsigned HOST_WIDE_INT val;
942 int result;
943
944 if (n == 0)
945 return 0;
946
947 /* Ignore the reciprocal when calculating the cost. */
948 val = (n < 0) ? -n : n;
949
950 /* Initialize the exponent cache. */
951 memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
952 cache[1] = true;
953
954 result = 0;
955
956 while (val >= POWI_TABLE_SIZE)
957 {
958 if (val & 1)
959 {
960 digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
961 result += powi_lookup_cost (digit, cache)
962 + POWI_WINDOW_SIZE + 1;
963 val >>= POWI_WINDOW_SIZE;
964 }
965 else
966 {
967 val >>= 1;
968 result++;
969 }
970 }
971
972 return result + powi_lookup_cost (val, cache);
973}
974
975/* Recursive subroutine of powi_as_mults. This function takes the
976 array, CACHE, of already calculated exponents and an exponent N and
977 returns a tree that corresponds to CACHE[1]**N, with type TYPE. */
978
979static tree
980powi_as_mults_1 (gimple_stmt_iterator *gsi, location_t loc, tree type,
83d5977e 981 HOST_WIDE_INT n, tree *cache)
78be79d5
BS
982{
983 tree op0, op1, ssa_target;
984 unsigned HOST_WIDE_INT digit;
985 gimple mult_stmt;
986
987 if (n < POWI_TABLE_SIZE && cache[n])
988 return cache[n];
989
83d5977e 990 ssa_target = make_temp_ssa_name (type, NULL, "powmult");
78be79d5
BS
991
992 if (n < POWI_TABLE_SIZE)
993 {
994 cache[n] = ssa_target;
83d5977e
RG
995 op0 = powi_as_mults_1 (gsi, loc, type, n - powi_table[n], cache);
996 op1 = powi_as_mults_1 (gsi, loc, type, powi_table[n], cache);
78be79d5
BS
997 }
998 else if (n & 1)
999 {
1000 digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
83d5977e
RG
1001 op0 = powi_as_mults_1 (gsi, loc, type, n - digit, cache);
1002 op1 = powi_as_mults_1 (gsi, loc, type, digit, cache);
78be79d5
BS
1003 }
1004 else
1005 {
83d5977e 1006 op0 = powi_as_mults_1 (gsi, loc, type, n >> 1, cache);
78be79d5
BS
1007 op1 = op0;
1008 }
1009
1010 mult_stmt = gimple_build_assign_with_ops (MULT_EXPR, ssa_target, op0, op1);
ba869341 1011 gimple_set_location (mult_stmt, loc);
78be79d5
BS
1012 gsi_insert_before (gsi, mult_stmt, GSI_SAME_STMT);
1013
1014 return ssa_target;
1015}
1016
1017/* Convert ARG0**N to a tree of multiplications of ARG0 with itself.
1018 This function needs to be kept in sync with powi_cost above. */
1019
1020static tree
1021powi_as_mults (gimple_stmt_iterator *gsi, location_t loc,
1022 tree arg0, HOST_WIDE_INT n)
1023{
83d5977e 1024 tree cache[POWI_TABLE_SIZE], result, type = TREE_TYPE (arg0);
78be79d5 1025 gimple div_stmt;
83d5977e 1026 tree target;
78be79d5
BS
1027
1028 if (n == 0)
1029 return build_real (type, dconst1);
1030
1031 memset (cache, 0, sizeof (cache));
1032 cache[1] = arg0;
1033
83d5977e 1034 result = powi_as_mults_1 (gsi, loc, type, (n < 0) ? -n : n, cache);
78be79d5
BS
1035 if (n >= 0)
1036 return result;
1037
1038 /* If the original exponent was negative, reciprocate the result. */
83d5977e 1039 target = make_temp_ssa_name (type, NULL, "powmult");
78be79d5
BS
1040 div_stmt = gimple_build_assign_with_ops (RDIV_EXPR, target,
1041 build_real (type, dconst1),
1042 result);
ba869341 1043 gimple_set_location (div_stmt, loc);
78be79d5
BS
1044 gsi_insert_before (gsi, div_stmt, GSI_SAME_STMT);
1045
1046 return target;
1047}
1048
1049/* ARG0 and N are the two arguments to a powi builtin in GSI with
1050 location info LOC. If the arguments are appropriate, create an
1051 equivalent sequence of statements prior to GSI using an optimal
1052 number of multiplications, and return an expession holding the
1053 result. */
1054
1055static tree
1056gimple_expand_builtin_powi (gimple_stmt_iterator *gsi, location_t loc,
1057 tree arg0, HOST_WIDE_INT n)
1058{
1059 /* Avoid largest negative number. */
1060 if (n != -n
1061 && ((n >= -1 && n <= 2)
1062 || (optimize_function_for_speed_p (cfun)
1063 && powi_cost (n) <= POWI_MAX_MULTS)))
1064 return powi_as_mults (gsi, loc, arg0, n);
1065
1066 return NULL_TREE;
1067}
1068
ba869341 1069/* Build a gimple call statement that calls FN with argument ARG.
83d5977e 1070 Set the lhs of the call statement to a fresh SSA name. Insert the
ba869341
BS
1071 statement prior to GSI's current position, and return the fresh
1072 SSA name. */
1073
1074static tree
6e96f98a 1075build_and_insert_call (gimple_stmt_iterator *gsi, location_t loc,
83d5977e 1076 tree fn, tree arg)
ba869341
BS
1077{
1078 gimple call_stmt;
1079 tree ssa_target;
1080
ba869341 1081 call_stmt = gimple_build_call (fn, 1, arg);
83d5977e 1082 ssa_target = make_temp_ssa_name (TREE_TYPE (arg), NULL, "powroot");
ba869341
BS
1083 gimple_set_lhs (call_stmt, ssa_target);
1084 gimple_set_location (call_stmt, loc);
1085 gsi_insert_before (gsi, call_stmt, GSI_SAME_STMT);
1086
1087 return ssa_target;
1088}
1089
6e96f98a
BS
1090/* Build a gimple binary operation with the given CODE and arguments
1091 ARG0, ARG1, assigning the result to a new SSA name for variable
1092 TARGET. Insert the statement prior to GSI's current position, and
1093 return the fresh SSA name.*/
1094
1095static tree
1096build_and_insert_binop (gimple_stmt_iterator *gsi, location_t loc,
83d5977e
RG
1097 const char *name, enum tree_code code,
1098 tree arg0, tree arg1)
6e96f98a 1099{
83d5977e 1100 tree result = make_temp_ssa_name (TREE_TYPE (arg0), NULL, name);
6e96f98a
BS
1101 gimple stmt = gimple_build_assign_with_ops (code, result, arg0, arg1);
1102 gimple_set_location (stmt, loc);
1103 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1104 return result;
1105}
1106
d7e2a1c1 1107/* Build a gimple reference operation with the given CODE and argument
83d5977e 1108 ARG, assigning the result to a new SSA name of TYPE with NAME.
d7e2a1c1
BS
1109 Insert the statement prior to GSI's current position, and return
1110 the fresh SSA name. */
1111
1112static inline tree
1113build_and_insert_ref (gimple_stmt_iterator *gsi, location_t loc, tree type,
83d5977e 1114 const char *name, enum tree_code code, tree arg0)
d7e2a1c1 1115{
83d5977e 1116 tree result = make_temp_ssa_name (type, NULL, name);
d7e2a1c1
BS
1117 gimple stmt = gimple_build_assign (result, build1 (code, type, arg0));
1118 gimple_set_location (stmt, loc);
1119 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1120 return result;
1121}
1122
83d5977e 1123/* Build a gimple assignment to cast VAL to TYPE. Insert the statement
5dfe80ba
AS
1124 prior to GSI's current position, and return the fresh SSA name. */
1125
1126static tree
1127build_and_insert_cast (gimple_stmt_iterator *gsi, location_t loc,
83d5977e 1128 tree type, tree val)
5dfe80ba 1129{
83d5977e
RG
1130 tree result = make_ssa_name (type, NULL);
1131 gimple stmt = gimple_build_assign_with_ops (NOP_EXPR, result, val, NULL_TREE);
1132 gimple_set_location (stmt, loc);
1133 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1134 return result;
5dfe80ba
AS
1135}
1136
d24ad7d6
BS
1137/* ARG0 and ARG1 are the two arguments to a pow builtin call in GSI
1138 with location info LOC. If possible, create an equivalent and
1139 less expensive sequence of statements prior to GSI, and return an
1140 expession holding the result. */
1141
1142static tree
1143gimple_expand_builtin_pow (gimple_stmt_iterator *gsi, location_t loc,
1144 tree arg0, tree arg1)
1145{
ba869341 1146 REAL_VALUE_TYPE c, cint, dconst1_4, dconst3_4, dconst1_3, dconst1_6;
6e96f98a 1147 REAL_VALUE_TYPE c2, dconst3;
d24ad7d6 1148 HOST_WIDE_INT n;
6e96f98a 1149 tree type, sqrtfn, cbrtfn, sqrt_arg0, sqrt_sqrt, result, cbrt_x, powi_cbrt_x;
ef4bddc2 1150 machine_mode mode;
0bfbca58 1151 bool hw_sqrt_exists, c_is_int, c2_is_int;
d24ad7d6
BS
1152
1153 /* If the exponent isn't a constant, there's nothing of interest
1154 to be done. */
1155 if (TREE_CODE (arg1) != REAL_CST)
1156 return NULL_TREE;
1157
ba869341
BS
1158 /* If the exponent is equivalent to an integer, expand to an optimal
1159 multiplication sequence when profitable. */
d24ad7d6
BS
1160 c = TREE_REAL_CST (arg1);
1161 n = real_to_integer (&c);
807e902e 1162 real_from_integer (&cint, VOIDmode, n, SIGNED);
0bfbca58 1163 c_is_int = real_identical (&c, &cint);
d24ad7d6 1164
0bfbca58 1165 if (c_is_int
d24ad7d6
BS
1166 && ((n >= -1 && n <= 2)
1167 || (flag_unsafe_math_optimizations
72798784 1168 && optimize_bb_for_speed_p (gsi_bb (*gsi))
d24ad7d6
BS
1169 && powi_cost (n) <= POWI_MAX_MULTS)))
1170 return gimple_expand_builtin_powi (gsi, loc, arg0, n);
1171
ba869341
BS
1172 /* Attempt various optimizations using sqrt and cbrt. */
1173 type = TREE_TYPE (arg0);
1174 mode = TYPE_MODE (type);
1175 sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
1176
1177 /* Optimize pow(x,0.5) = sqrt(x). This replacement is always safe
1178 unless signed zeros must be maintained. pow(-0,0.5) = +0, while
1179 sqrt(-0) = -0. */
1180 if (sqrtfn
1181 && REAL_VALUES_EQUAL (c, dconsthalf)
1182 && !HONOR_SIGNED_ZEROS (mode))
83d5977e 1183 return build_and_insert_call (gsi, loc, sqrtfn, arg0);
ba869341
BS
1184
1185 /* Optimize pow(x,0.25) = sqrt(sqrt(x)). Assume on most machines that
1186 a builtin sqrt instruction is smaller than a call to pow with 0.25,
1187 so do this optimization even if -Os. Don't do this optimization
1188 if we don't have a hardware sqrt insn. */
1189 dconst1_4 = dconst1;
1190 SET_REAL_EXP (&dconst1_4, REAL_EXP (&dconst1_4) - 2);
d7e2a1c1 1191 hw_sqrt_exists = optab_handler (sqrt_optab, mode) != CODE_FOR_nothing;
ba869341
BS
1192
1193 if (flag_unsafe_math_optimizations
1194 && sqrtfn
1195 && REAL_VALUES_EQUAL (c, dconst1_4)
1196 && hw_sqrt_exists)
1197 {
1198 /* sqrt(x) */
83d5977e 1199 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
ba869341
BS
1200
1201 /* sqrt(sqrt(x)) */
83d5977e 1202 return build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
ba869341
BS
1203 }
1204
1205 /* Optimize pow(x,0.75) = sqrt(x) * sqrt(sqrt(x)) unless we are
1206 optimizing for space. Don't do this optimization if we don't have
1207 a hardware sqrt insn. */
807e902e 1208 real_from_integer (&dconst3_4, VOIDmode, 3, SIGNED);
ba869341
BS
1209 SET_REAL_EXP (&dconst3_4, REAL_EXP (&dconst3_4) - 2);
1210
1211 if (flag_unsafe_math_optimizations
1212 && sqrtfn
1213 && optimize_function_for_speed_p (cfun)
1214 && REAL_VALUES_EQUAL (c, dconst3_4)
1215 && hw_sqrt_exists)
1216 {
1217 /* sqrt(x) */
83d5977e 1218 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
ba869341
BS
1219
1220 /* sqrt(sqrt(x)) */
83d5977e 1221 sqrt_sqrt = build_and_insert_call (gsi, loc, sqrtfn, sqrt_arg0);
ba869341
BS
1222
1223 /* sqrt(x) * sqrt(sqrt(x)) */
83d5977e 1224 return build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
6e96f98a 1225 sqrt_arg0, sqrt_sqrt);
ba869341
BS
1226 }
1227
1228 /* Optimize pow(x,1./3.) = cbrt(x). This requires unsafe math
1229 optimizations since 1./3. is not exactly representable. If x
1230 is negative and finite, the correct value of pow(x,1./3.) is
1231 a NaN with the "invalid" exception raised, because the value
1232 of 1./3. actually has an even denominator. The correct value
1233 of cbrt(x) is a negative real value. */
1234 cbrtfn = mathfn_built_in (type, BUILT_IN_CBRT);
1235 dconst1_3 = real_value_truncate (mode, dconst_third ());
1236
1237 if (flag_unsafe_math_optimizations
1238 && cbrtfn
06bc3ec7 1239 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
ba869341 1240 && REAL_VALUES_EQUAL (c, dconst1_3))
83d5977e 1241 return build_and_insert_call (gsi, loc, cbrtfn, arg0);
ba869341
BS
1242
1243 /* Optimize pow(x,1./6.) = cbrt(sqrt(x)). Don't do this optimization
1244 if we don't have a hardware sqrt insn. */
1245 dconst1_6 = dconst1_3;
1246 SET_REAL_EXP (&dconst1_6, REAL_EXP (&dconst1_6) - 1);
1247
1248 if (flag_unsafe_math_optimizations
1249 && sqrtfn
1250 && cbrtfn
06bc3ec7 1251 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
ba869341
BS
1252 && optimize_function_for_speed_p (cfun)
1253 && hw_sqrt_exists
1254 && REAL_VALUES_EQUAL (c, dconst1_6))
1255 {
1256 /* sqrt(x) */
83d5977e 1257 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
ba869341
BS
1258
1259 /* cbrt(sqrt(x)) */
83d5977e 1260 return build_and_insert_call (gsi, loc, cbrtfn, sqrt_arg0);
6e96f98a
BS
1261 }
1262
0bfbca58
JJ
1263 /* Optimize pow(x,c), where n = 2c for some nonzero integer n
1264 and c not an integer, into
6e96f98a
BS
1265
1266 sqrt(x) * powi(x, n/2), n > 0;
1267 1.0 / (sqrt(x) * powi(x, abs(n/2))), n < 0.
1268
1269 Do not calculate the powi factor when n/2 = 0. */
1270 real_arithmetic (&c2, MULT_EXPR, &c, &dconst2);
1271 n = real_to_integer (&c2);
807e902e 1272 real_from_integer (&cint, VOIDmode, n, SIGNED);
0bfbca58 1273 c2_is_int = real_identical (&c2, &cint);
6e96f98a
BS
1274
1275 if (flag_unsafe_math_optimizations
1276 && sqrtfn
0bfbca58
JJ
1277 && c2_is_int
1278 && !c_is_int
1279 && optimize_function_for_speed_p (cfun))
6e96f98a
BS
1280 {
1281 tree powi_x_ndiv2 = NULL_TREE;
1282
1283 /* Attempt to fold powi(arg0, abs(n/2)) into multiplies. If not
1284 possible or profitable, give up. Skip the degenerate case when
1285 n is 1 or -1, where the result is always 1. */
4c9cf7af 1286 if (absu_hwi (n) != 1)
6e96f98a 1287 {
9f813990
PC
1288 powi_x_ndiv2 = gimple_expand_builtin_powi (gsi, loc, arg0,
1289 abs_hwi (n / 2));
6e96f98a
BS
1290 if (!powi_x_ndiv2)
1291 return NULL_TREE;
1292 }
1293
1294 /* Calculate sqrt(x). When n is not 1 or -1, multiply it by the
1295 result of the optimal multiply sequence just calculated. */
83d5977e 1296 sqrt_arg0 = build_and_insert_call (gsi, loc, sqrtfn, arg0);
6e96f98a 1297
4c9cf7af 1298 if (absu_hwi (n) == 1)
6e96f98a
BS
1299 result = sqrt_arg0;
1300 else
83d5977e 1301 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
6e96f98a
BS
1302 sqrt_arg0, powi_x_ndiv2);
1303
1304 /* If n is negative, reciprocate the result. */
1305 if (n < 0)
83d5977e 1306 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
6e96f98a
BS
1307 build_real (type, dconst1), result);
1308 return result;
1309 }
1310
1311 /* Optimize pow(x,c), where 3c = n for some nonzero integer n, into
1312
1313 powi(x, n/3) * powi(cbrt(x), n%3), n > 0;
1314 1.0 / (powi(x, abs(n)/3) * powi(cbrt(x), abs(n)%3)), n < 0.
1315
1316 Do not calculate the first factor when n/3 = 0. As cbrt(x) is
1317 different from pow(x, 1./3.) due to rounding and behavior with
1318 negative x, we need to constrain this transformation to unsafe
1319 math and positive x or finite math. */
807e902e 1320 real_from_integer (&dconst3, VOIDmode, 3, SIGNED);
6e96f98a
BS
1321 real_arithmetic (&c2, MULT_EXPR, &c, &dconst3);
1322 real_round (&c2, mode, &c2);
1323 n = real_to_integer (&c2);
807e902e 1324 real_from_integer (&cint, VOIDmode, n, SIGNED);
6e96f98a
BS
1325 real_arithmetic (&c2, RDIV_EXPR, &cint, &dconst3);
1326 real_convert (&c2, mode, &c2);
1327
1328 if (flag_unsafe_math_optimizations
1329 && cbrtfn
06bc3ec7 1330 && (gimple_val_nonnegative_real_p (arg0) || !HONOR_NANS (mode))
6e96f98a 1331 && real_identical (&c2, &c)
0bfbca58 1332 && !c2_is_int
6e96f98a
BS
1333 && optimize_function_for_speed_p (cfun)
1334 && powi_cost (n / 3) <= POWI_MAX_MULTS)
1335 {
1336 tree powi_x_ndiv3 = NULL_TREE;
1337
1338 /* Attempt to fold powi(arg0, abs(n/3)) into multiplies. If not
1339 possible or profitable, give up. Skip the degenerate case when
1340 abs(n) < 3, where the result is always 1. */
4c9cf7af 1341 if (absu_hwi (n) >= 3)
6e96f98a
BS
1342 {
1343 powi_x_ndiv3 = gimple_expand_builtin_powi (gsi, loc, arg0,
9f813990 1344 abs_hwi (n / 3));
6e96f98a
BS
1345 if (!powi_x_ndiv3)
1346 return NULL_TREE;
1347 }
1348
1349 /* Calculate powi(cbrt(x), n%3). Don't use gimple_expand_builtin_powi
1350 as that creates an unnecessary variable. Instead, just produce
1351 either cbrt(x) or cbrt(x) * cbrt(x). */
83d5977e 1352 cbrt_x = build_and_insert_call (gsi, loc, cbrtfn, arg0);
6e96f98a 1353
4c9cf7af 1354 if (absu_hwi (n) % 3 == 1)
6e96f98a
BS
1355 powi_cbrt_x = cbrt_x;
1356 else
83d5977e 1357 powi_cbrt_x = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
6e96f98a
BS
1358 cbrt_x, cbrt_x);
1359
1360 /* Multiply the two subexpressions, unless powi(x,abs(n)/3) = 1. */
4c9cf7af 1361 if (absu_hwi (n) < 3)
6e96f98a
BS
1362 result = powi_cbrt_x;
1363 else
83d5977e 1364 result = build_and_insert_binop (gsi, loc, "powroot", MULT_EXPR,
6e96f98a
BS
1365 powi_x_ndiv3, powi_cbrt_x);
1366
1367 /* If n is negative, reciprocate the result. */
1368 if (n < 0)
83d5977e 1369 result = build_and_insert_binop (gsi, loc, "powroot", RDIV_EXPR,
6e96f98a
BS
1370 build_real (type, dconst1), result);
1371
1372 return result;
ba869341
BS
1373 }
1374
6e96f98a 1375 /* No optimizations succeeded. */
d24ad7d6
BS
1376 return NULL_TREE;
1377}
1378
d7e2a1c1
BS
1379/* ARG is the argument to a cabs builtin call in GSI with location info
1380 LOC. Create a sequence of statements prior to GSI that calculates
1381 sqrt(R*R + I*I), where R and I are the real and imaginary components
1382 of ARG, respectively. Return an expression holding the result. */
1383
1384static tree
1385gimple_expand_builtin_cabs (gimple_stmt_iterator *gsi, location_t loc, tree arg)
1386{
83d5977e 1387 tree real_part, imag_part, addend1, addend2, sum, result;
d7e2a1c1
BS
1388 tree type = TREE_TYPE (TREE_TYPE (arg));
1389 tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
ef4bddc2 1390 machine_mode mode = TYPE_MODE (type);
d7e2a1c1
BS
1391
1392 if (!flag_unsafe_math_optimizations
1393 || !optimize_bb_for_speed_p (gimple_bb (gsi_stmt (*gsi)))
1394 || !sqrtfn
1395 || optab_handler (sqrt_optab, mode) == CODE_FOR_nothing)
1396 return NULL_TREE;
1397
83d5977e 1398 real_part = build_and_insert_ref (gsi, loc, type, "cabs",
d7e2a1c1 1399 REALPART_EXPR, arg);
83d5977e 1400 addend1 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
d7e2a1c1 1401 real_part, real_part);
83d5977e 1402 imag_part = build_and_insert_ref (gsi, loc, type, "cabs",
d7e2a1c1 1403 IMAGPART_EXPR, arg);
83d5977e 1404 addend2 = build_and_insert_binop (gsi, loc, "cabs", MULT_EXPR,
d7e2a1c1 1405 imag_part, imag_part);
83d5977e
RG
1406 sum = build_and_insert_binop (gsi, loc, "cabs", PLUS_EXPR, addend1, addend2);
1407 result = build_and_insert_call (gsi, loc, sqrtfn, sum);
d7e2a1c1
BS
1408
1409 return result;
1410}
1411
2f397a93 1412/* Go through all calls to sin, cos and cexpi and call execute_cse_sincos_1
78be79d5
BS
1413 on the SSA_NAME argument of each of them. Also expand powi(x,n) into
1414 an optimal number of multiplies, when n is a constant. */
2f397a93 1415
be55bfe6
TS
1416namespace {
1417
1418const pass_data pass_data_cse_sincos =
1419{
1420 GIMPLE_PASS, /* type */
1421 "sincos", /* name */
1422 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
1423 TV_NONE, /* tv_id */
1424 PROP_ssa, /* properties_required */
1425 0, /* properties_provided */
1426 0, /* properties_destroyed */
1427 0, /* todo_flags_start */
3bea341f 1428 TODO_update_ssa, /* todo_flags_finish */
be55bfe6
TS
1429};
1430
1431class pass_cse_sincos : public gimple_opt_pass
1432{
1433public:
1434 pass_cse_sincos (gcc::context *ctxt)
1435 : gimple_opt_pass (pass_data_cse_sincos, ctxt)
1436 {}
1437
1438 /* opt_pass methods: */
1439 virtual bool gate (function *)
1440 {
1441 /* We no longer require either sincos or cexp, since powi expansion
1442 piggybacks on this pass. */
1443 return optimize;
1444 }
1445
1446 virtual unsigned int execute (function *);
1447
1448}; // class pass_cse_sincos
1449
1450unsigned int
1451pass_cse_sincos::execute (function *fun)
2f397a93
RG
1452{
1453 basic_block bb;
90bc1cb8 1454 bool cfg_changed = false;
2f397a93
RG
1455
1456 calculate_dominance_info (CDI_DOMINATORS);
4da3b811 1457 memset (&sincos_stats, 0, sizeof (sincos_stats));
2f397a93 1458
be55bfe6 1459 FOR_EACH_BB_FN (bb, fun)
2f397a93 1460 {
726a989a 1461 gimple_stmt_iterator gsi;
3b9ee1cc 1462 bool cleanup_eh = false;
2f397a93 1463
726a989a 1464 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2f397a93 1465 {
726a989a 1466 gimple stmt = gsi_stmt (gsi);
2f397a93
RG
1467 tree fndecl;
1468
3b9ee1cc
JJ
1469 /* Only the last stmt in a bb could throw, no need to call
1470 gimple_purge_dead_eh_edges if we change something in the middle
1471 of a basic block. */
1472 cleanup_eh = false;
1473
726a989a
RB
1474 if (is_gimple_call (stmt)
1475 && gimple_call_lhs (stmt)
1476 && (fndecl = gimple_call_fndecl (stmt))
2f397a93
RG
1477 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1478 {
78be79d5
BS
1479 tree arg, arg0, arg1, result;
1480 HOST_WIDE_INT n;
1481 location_t loc;
2f397a93
RG
1482
1483 switch (DECL_FUNCTION_CODE (fndecl))
1484 {
1485 CASE_FLT_FN (BUILT_IN_COS):
1486 CASE_FLT_FN (BUILT_IN_SIN):
1487 CASE_FLT_FN (BUILT_IN_CEXPI):
fa65a9cf 1488 /* Make sure we have either sincos or cexp. */
d33d9e47
AI
1489 if (!targetm.libc_has_function (function_c99_math_complex)
1490 && !targetm.libc_has_function (function_sincos))
fa65a9cf
BS
1491 break;
1492
726a989a 1493 arg = gimple_call_arg (stmt, 0);
2f397a93 1494 if (TREE_CODE (arg) == SSA_NAME)
90bc1cb8 1495 cfg_changed |= execute_cse_sincos_1 (arg);
2f397a93
RG
1496 break;
1497
d24ad7d6
BS
1498 CASE_FLT_FN (BUILT_IN_POW):
1499 arg0 = gimple_call_arg (stmt, 0);
1500 arg1 = gimple_call_arg (stmt, 1);
1501
1502 loc = gimple_location (stmt);
1503 result = gimple_expand_builtin_pow (&gsi, loc, arg0, arg1);
1504
1505 if (result)
1506 {
1507 tree lhs = gimple_get_lhs (stmt);
1508 gimple new_stmt = gimple_build_assign (lhs, result);
1509 gimple_set_location (new_stmt, loc);
1510 unlink_stmt_vdef (stmt);
1511 gsi_replace (&gsi, new_stmt, true);
3b9ee1cc 1512 cleanup_eh = true;
3d3f2249
RG
1513 if (gimple_vdef (stmt))
1514 release_ssa_name (gimple_vdef (stmt));
d24ad7d6
BS
1515 }
1516 break;
1517
78be79d5
BS
1518 CASE_FLT_FN (BUILT_IN_POWI):
1519 arg0 = gimple_call_arg (stmt, 0);
1520 arg1 = gimple_call_arg (stmt, 1);
78be79d5 1521 loc = gimple_location (stmt);
0fa6e0ef 1522
e3530904 1523 if (real_minus_onep (arg0))
0fa6e0ef
TB
1524 {
1525 tree t0, t1, cond, one, minus_one;
1526 gimple stmt;
1527
1528 t0 = TREE_TYPE (arg0);
1529 t1 = TREE_TYPE (arg1);
1530 one = build_real (t0, dconst1);
1531 minus_one = build_real (t0, dconstm1);
1532
1533 cond = make_temp_ssa_name (t1, NULL, "powi_cond");
1534 stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, cond,
1535 arg1,
1536 build_int_cst (t1,
1537 1));
1538 gimple_set_location (stmt, loc);
1539 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1540
1541 result = make_temp_ssa_name (t0, NULL, "powi");
1542 stmt = gimple_build_assign_with_ops (COND_EXPR, result,
1543 cond,
1544 minus_one, one);
1545 gimple_set_location (stmt, loc);
1546 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1547 }
1548 else
1549 {
9541ffee 1550 if (!tree_fits_shwi_p (arg1))
daf4e940
TB
1551 break;
1552
eb1ce453 1553 n = tree_to_shwi (arg1);
0fa6e0ef
TB
1554 result = gimple_expand_builtin_powi (&gsi, loc, arg0, n);
1555 }
78be79d5
BS
1556
1557 if (result)
1558 {
1559 tree lhs = gimple_get_lhs (stmt);
1560 gimple new_stmt = gimple_build_assign (lhs, result);
1561 gimple_set_location (new_stmt, loc);
d7e2a1c1
BS
1562 unlink_stmt_vdef (stmt);
1563 gsi_replace (&gsi, new_stmt, true);
3b9ee1cc 1564 cleanup_eh = true;
3d3f2249
RG
1565 if (gimple_vdef (stmt))
1566 release_ssa_name (gimple_vdef (stmt));
d7e2a1c1
BS
1567 }
1568 break;
1569
1570 CASE_FLT_FN (BUILT_IN_CABS):
1571 arg0 = gimple_call_arg (stmt, 0);
1572 loc = gimple_location (stmt);
1573 result = gimple_expand_builtin_cabs (&gsi, loc, arg0);
1574
1575 if (result)
1576 {
1577 tree lhs = gimple_get_lhs (stmt);
1578 gimple new_stmt = gimple_build_assign (lhs, result);
1579 gimple_set_location (new_stmt, loc);
78be79d5
BS
1580 unlink_stmt_vdef (stmt);
1581 gsi_replace (&gsi, new_stmt, true);
3b9ee1cc 1582 cleanup_eh = true;
3d3f2249
RG
1583 if (gimple_vdef (stmt))
1584 release_ssa_name (gimple_vdef (stmt));
78be79d5
BS
1585 }
1586 break;
1587
2f397a93
RG
1588 default:;
1589 }
1590 }
1591 }
3b9ee1cc
JJ
1592 if (cleanup_eh)
1593 cfg_changed |= gimple_purge_dead_eh_edges (bb);
2f397a93
RG
1594 }
1595
be55bfe6 1596 statistics_counter_event (fun, "sincos statements inserted",
4da3b811
NF
1597 sincos_stats.inserted);
1598
2f397a93 1599 free_dominance_info (CDI_DOMINATORS);
90bc1cb8 1600 return cfg_changed ? TODO_cleanup_cfg : 0;
2f397a93
RG
1601}
1602
27a4cd48
DM
1603} // anon namespace
1604
1605gimple_opt_pass *
1606make_pass_cse_sincos (gcc::context *ctxt)
1607{
1608 return new pass_cse_sincos (ctxt);
1609}
1610
03bd2f1a
AK
1611/* A symbolic number is used to detect byte permutation and selection
1612 patterns. Therefore the field N contains an artificial number
e3ef4162 1613 consisting of octet sized markers:
03bd2f1a 1614
e3ef4162 1615 0 - target byte has the value 0
aa29ea0c 1616 FF - target byte has an unknown value (eg. due to sign extension)
e3ef4162 1617 1..size - marker value is the target byte index minus one.
73984f84
TP
1618
1619 To detect permutations on memory sources (arrays and structures), a symbolic
1620 number is also associated a base address (the array or structure the load is
1621 made from), an offset from the base address and a range which gives the
1622 difference between the highest and lowest accessed memory location to make
1623 such a symbolic number. The range is thus different from size which reflects
1624 the size of the type of current expression. Note that for non memory source,
1625 range holds the same value as size.
1626
1627 For instance, for an array char a[], (short) a[0] | (short) a[3] would have
1628 a size of 2 but a range of 4 while (short) a[0] | ((short) a[0] << 1) would
1629 still have a size of 2 but this time a range of 1. */
03bd2f1a
AK
1630
1631struct symbolic_number {
a9243bfc 1632 uint64_t n;
698ff107 1633 tree type;
73984f84
TP
1634 tree base_addr;
1635 tree offset;
1636 HOST_WIDE_INT bytepos;
1637 tree alias_set;
1638 tree vuse;
1639 unsigned HOST_WIDE_INT range;
03bd2f1a
AK
1640};
1641
e3ef4162 1642#define BITS_PER_MARKER 8
aa29ea0c
TP
1643#define MARKER_MASK ((1 << BITS_PER_MARKER) - 1)
1644#define MARKER_BYTE_UNKNOWN MARKER_MASK
1645#define HEAD_MARKER(n, size) \
1646 ((n) & ((uint64_t) MARKER_MASK << (((size) - 1) * BITS_PER_MARKER)))
e3ef4162 1647
73984f84
TP
1648/* The number which the find_bswap_or_nop_1 result should match in
1649 order to have a nop. The number is masked according to the size of
1650 the symbolic number before using it. */
a9243bfc
RB
1651#define CMPNOP (sizeof (int64_t) < 8 ? 0 : \
1652 (uint64_t)0x08070605 << 32 | 0x04030201)
73984f84
TP
1653
1654/* The number which the find_bswap_or_nop_1 result should match in
1655 order to have a byte swap. The number is masked according to the
1656 size of the symbolic number before using it. */
a9243bfc
RB
1657#define CMPXCHG (sizeof (int64_t) < 8 ? 0 : \
1658 (uint64_t)0x01020304 << 32 | 0x05060708)
73984f84 1659
03bd2f1a
AK
1660/* Perform a SHIFT or ROTATE operation by COUNT bits on symbolic
1661 number N. Return false if the requested operation is not permitted
1662 on a symbolic number. */
1663
1664static inline bool
1665do_shift_rotate (enum tree_code code,
1666 struct symbolic_number *n,
1667 int count)
1668{
aa29ea0c
TP
1669 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
1670 unsigned head_marker;
698ff107 1671
e3ef4162 1672 if (count % BITS_PER_UNIT != 0)
03bd2f1a 1673 return false;
e3ef4162 1674 count = (count / BITS_PER_UNIT) * BITS_PER_MARKER;
03bd2f1a
AK
1675
1676 /* Zero out the extra bits of N in order to avoid them being shifted
1677 into the significant bits. */
e3ef4162
TP
1678 if (size < 64 / BITS_PER_MARKER)
1679 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
03bd2f1a
AK
1680
1681 switch (code)
1682 {
1683 case LSHIFT_EXPR:
1684 n->n <<= count;
1685 break;
1686 case RSHIFT_EXPR:
aa29ea0c 1687 head_marker = HEAD_MARKER (n->n, size);
03bd2f1a 1688 n->n >>= count;
aa29ea0c
TP
1689 /* Arithmetic shift of signed type: result is dependent on the value. */
1690 if (!TYPE_UNSIGNED (n->type) && head_marker)
1691 for (i = 0; i < count / BITS_PER_MARKER; i++)
1692 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
1693 << ((size - 1 - i) * BITS_PER_MARKER);
03bd2f1a
AK
1694 break;
1695 case LROTATE_EXPR:
e3ef4162 1696 n->n = (n->n << count) | (n->n >> ((size * BITS_PER_MARKER) - count));
03bd2f1a
AK
1697 break;
1698 case RROTATE_EXPR:
e3ef4162 1699 n->n = (n->n >> count) | (n->n << ((size * BITS_PER_MARKER) - count));
03bd2f1a
AK
1700 break;
1701 default:
1702 return false;
1703 }
5da49a9d 1704 /* Zero unused bits for size. */
e3ef4162
TP
1705 if (size < 64 / BITS_PER_MARKER)
1706 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
03bd2f1a
AK
1707 return true;
1708}
1709
1710/* Perform sanity checking for the symbolic number N and the gimple
1711 statement STMT. */
1712
1713static inline bool
1714verify_symbolic_number_p (struct symbolic_number *n, gimple stmt)
1715{
1716 tree lhs_type;
1717
1718 lhs_type = gimple_expr_type (stmt);
1719
1720 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
1721 return false;
1722
698ff107 1723 if (TYPE_PRECISION (lhs_type) != TYPE_PRECISION (n->type))
03bd2f1a
AK
1724 return false;
1725
1726 return true;
1727}
1728
3cc272c1
TP
1729/* Initialize the symbolic number N for the bswap pass from the base element
1730 SRC manipulated by the bitwise OR expression. */
1731
1732static bool
1733init_symbolic_number (struct symbolic_number *n, tree src)
1734{
698ff107
TP
1735 int size;
1736
3cc272c1
TP
1737 n->base_addr = n->offset = n->alias_set = n->vuse = NULL_TREE;
1738
1739 /* Set up the symbolic number N by setting each byte to a value between 1 and
1740 the byte size of rhs1. The highest order byte is set to n->size and the
1741 lowest order byte to 1. */
698ff107
TP
1742 n->type = TREE_TYPE (src);
1743 size = TYPE_PRECISION (n->type);
1744 if (size % BITS_PER_UNIT != 0)
3cc272c1 1745 return false;
698ff107 1746 size /= BITS_PER_UNIT;
e3ef4162 1747 if (size > 64 / BITS_PER_MARKER)
ca6cbdca 1748 return false;
698ff107 1749 n->range = size;
3cc272c1
TP
1750 n->n = CMPNOP;
1751
e3ef4162
TP
1752 if (size < 64 / BITS_PER_MARKER)
1753 n->n &= ((uint64_t) 1 << (size * BITS_PER_MARKER)) - 1;
3cc272c1
TP
1754
1755 return true;
1756}
1757
73984f84
TP
1758/* Check if STMT might be a byte swap or a nop from a memory source and returns
1759 the answer. If so, REF is that memory source and the base of the memory area
1760 accessed and the offset of the access from that base are recorded in N. */
1761
1762bool
1763find_bswap_or_nop_load (gimple stmt, tree ref, struct symbolic_number *n)
1764{
1765 /* Leaf node is an array or component ref. Memorize its base and
1766 offset from base to compare to other such leaf node. */
1767 HOST_WIDE_INT bitsize, bitpos;
ef4bddc2 1768 machine_mode mode;
73984f84 1769 int unsignedp, volatilep;
3cc272c1 1770 tree offset, base_addr;
73984f84
TP
1771
1772 if (!gimple_assign_load_p (stmt) || gimple_has_volatile_ops (stmt))
1773 return false;
1774
3cc272c1
TP
1775 base_addr = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
1776 &unsignedp, &volatilep, false);
73984f84 1777
3cc272c1 1778 if (TREE_CODE (base_addr) == MEM_REF)
73984f84
TP
1779 {
1780 offset_int bit_offset = 0;
3cc272c1 1781 tree off = TREE_OPERAND (base_addr, 1);
73984f84
TP
1782
1783 if (!integer_zerop (off))
1784 {
3cc272c1 1785 offset_int boff, coff = mem_ref_offset (base_addr);
73984f84
TP
1786 boff = wi::lshift (coff, LOG2_BITS_PER_UNIT);
1787 bit_offset += boff;
1788 }
1789
3cc272c1 1790 base_addr = TREE_OPERAND (base_addr, 0);
73984f84
TP
1791
1792 /* Avoid returning a negative bitpos as this may wreak havoc later. */
1793 if (wi::neg_p (bit_offset))
1794 {
1795 offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
1796 offset_int tem = bit_offset.and_not (mask);
1797 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
1798 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
1799 bit_offset -= tem;
1800 tem = wi::arshift (tem, LOG2_BITS_PER_UNIT);
3cc272c1
TP
1801 if (offset)
1802 offset = size_binop (PLUS_EXPR, offset,
73984f84
TP
1803 wide_int_to_tree (sizetype, tem));
1804 else
3cc272c1 1805 offset = wide_int_to_tree (sizetype, tem);
73984f84
TP
1806 }
1807
1808 bitpos += bit_offset.to_shwi ();
1809 }
1810
1811 if (bitpos % BITS_PER_UNIT)
1812 return false;
1813 if (bitsize % BITS_PER_UNIT)
1814 return false;
1815
2cfa504a
TP
1816 if (!init_symbolic_number (n, ref))
1817 return false;
3cc272c1
TP
1818 n->base_addr = base_addr;
1819 n->offset = offset;
73984f84
TP
1820 n->bytepos = bitpos / BITS_PER_UNIT;
1821 n->alias_set = reference_alias_ptr_type (ref);
1822 n->vuse = gimple_vuse (stmt);
1823 return true;
1824}
1825
1826/* find_bswap_or_nop_1 invokes itself recursively with N and tries to perform
1827 the operation given by the rhs of STMT on the result. If the operation
a31d2741
TP
1828 could successfully be executed the function returns a gimple stmt whose
1829 rhs's first tree is the expression of the source operand and NULL
1830 otherwise. */
03bd2f1a 1831
a31d2741 1832static gimple
73984f84 1833find_bswap_or_nop_1 (gimple stmt, struct symbolic_number *n, int limit)
03bd2f1a
AK
1834{
1835 enum tree_code code;
1836 tree rhs1, rhs2 = NULL;
a31d2741 1837 gimple rhs1_stmt, rhs2_stmt, source_stmt1;
03bd2f1a
AK
1838 enum gimple_rhs_class rhs_class;
1839
1840 if (!limit || !is_gimple_assign (stmt))
a31d2741 1841 return NULL;
03bd2f1a
AK
1842
1843 rhs1 = gimple_assign_rhs1 (stmt);
1844
73984f84 1845 if (find_bswap_or_nop_load (stmt, rhs1, n))
a31d2741 1846 return stmt;
73984f84 1847
03bd2f1a 1848 if (TREE_CODE (rhs1) != SSA_NAME)
a31d2741 1849 return NULL;
03bd2f1a
AK
1850
1851 code = gimple_assign_rhs_code (stmt);
1852 rhs_class = gimple_assign_rhs_class (stmt);
1853 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
1854
1855 if (rhs_class == GIMPLE_BINARY_RHS)
1856 rhs2 = gimple_assign_rhs2 (stmt);
1857
1858 /* Handle unary rhs and binary rhs with integer constants as second
1859 operand. */
1860
1861 if (rhs_class == GIMPLE_UNARY_RHS
1862 || (rhs_class == GIMPLE_BINARY_RHS
1863 && TREE_CODE (rhs2) == INTEGER_CST))
1864 {
1865 if (code != BIT_AND_EXPR
1866 && code != LSHIFT_EXPR
1867 && code != RSHIFT_EXPR
1868 && code != LROTATE_EXPR
1869 && code != RROTATE_EXPR
1870 && code != NOP_EXPR
1871 && code != CONVERT_EXPR)
a31d2741 1872 return NULL;
03bd2f1a 1873
a31d2741 1874 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, n, limit - 1);
03bd2f1a 1875
73984f84
TP
1876 /* If find_bswap_or_nop_1 returned NULL, STMT is a leaf node and
1877 we have to initialize the symbolic number. */
a31d2741 1878 if (!source_stmt1)
03bd2f1a 1879 {
3cc272c1
TP
1880 if (gimple_assign_load_p (stmt)
1881 || !init_symbolic_number (n, rhs1))
a31d2741
TP
1882 return NULL;
1883 source_stmt1 = stmt;
03bd2f1a
AK
1884 }
1885
1886 switch (code)
1887 {
1888 case BIT_AND_EXPR:
1889 {
698ff107 1890 int i, size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
e3ef4162
TP
1891 uint64_t val = int_cst_value (rhs2), mask = 0;
1892 uint64_t tmp = (1 << BITS_PER_UNIT) - 1;
03bd2f1a
AK
1893
1894 /* Only constants masking full bytes are allowed. */
e3ef4162
TP
1895 for (i = 0; i < size; i++, tmp <<= BITS_PER_UNIT)
1896 if ((val & tmp) != 0 && (val & tmp) != tmp)
a31d2741 1897 return NULL;
e3ef4162 1898 else if (val & tmp)
aa29ea0c 1899 mask |= (uint64_t) MARKER_MASK << (i * BITS_PER_MARKER);
03bd2f1a 1900
e3ef4162 1901 n->n &= mask;
03bd2f1a
AK
1902 }
1903 break;
1904 case LSHIFT_EXPR:
1905 case RSHIFT_EXPR:
1906 case LROTATE_EXPR:
1907 case RROTATE_EXPR:
1908 if (!do_shift_rotate (code, n, (int)TREE_INT_CST_LOW (rhs2)))
a31d2741 1909 return NULL;
03bd2f1a
AK
1910 break;
1911 CASE_CONVERT:
1912 {
aa29ea0c 1913 int i, type_size, old_type_size;
698ff107 1914 tree type;
03bd2f1a 1915
698ff107
TP
1916 type = gimple_expr_type (stmt);
1917 type_size = TYPE_PRECISION (type);
03bd2f1a 1918 if (type_size % BITS_PER_UNIT != 0)
a31d2741 1919 return NULL;
e3ef4162
TP
1920 type_size /= BITS_PER_UNIT;
1921 if (type_size > 64 / BITS_PER_MARKER)
a31d2741 1922 return NULL;
03bd2f1a 1923
698ff107 1924 /* Sign extension: result is dependent on the value. */
e3ef4162 1925 old_type_size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
aa29ea0c
TP
1926 if (!TYPE_UNSIGNED (n->type) && type_size > old_type_size
1927 && HEAD_MARKER (n->n, old_type_size))
1928 for (i = 0; i < type_size - old_type_size; i++)
8ae9ab2b 1929 n->n |= (uint64_t) MARKER_BYTE_UNKNOWN
e4d2f1db 1930 << ((type_size - 1 - i) * BITS_PER_MARKER);
698ff107 1931
e3ef4162 1932 if (type_size < 64 / BITS_PER_MARKER)
03bd2f1a
AK
1933 {
1934 /* If STMT casts to a smaller type mask out the bits not
1935 belonging to the target type. */
e3ef4162 1936 n->n &= ((uint64_t) 1 << (type_size * BITS_PER_MARKER)) - 1;
03bd2f1a 1937 }
698ff107 1938 n->type = type;
73984f84 1939 if (!n->base_addr)
e3ef4162 1940 n->range = type_size;
03bd2f1a
AK
1941 }
1942 break;
1943 default:
a31d2741 1944 return NULL;
03bd2f1a 1945 };
a31d2741 1946 return verify_symbolic_number_p (n, stmt) ? source_stmt1 : NULL;
03bd2f1a
AK
1947 }
1948
1949 /* Handle binary rhs. */
1950
1951 if (rhs_class == GIMPLE_BINARY_RHS)
1952 {
698ff107 1953 int i, size;
03bd2f1a 1954 struct symbolic_number n1, n2;
a9243bfc 1955 uint64_t mask;
a31d2741 1956 gimple source_stmt2;
03bd2f1a
AK
1957
1958 if (code != BIT_IOR_EXPR)
a31d2741 1959 return NULL;
03bd2f1a
AK
1960
1961 if (TREE_CODE (rhs2) != SSA_NAME)
a31d2741 1962 return NULL;
03bd2f1a
AK
1963
1964 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
1965
1966 switch (code)
1967 {
1968 case BIT_IOR_EXPR:
a31d2741 1969 source_stmt1 = find_bswap_or_nop_1 (rhs1_stmt, &n1, limit - 1);
03bd2f1a 1970
a31d2741
TP
1971 if (!source_stmt1)
1972 return NULL;
03bd2f1a 1973
a31d2741 1974 source_stmt2 = find_bswap_or_nop_1 (rhs2_stmt, &n2, limit - 1);
73984f84 1975
a31d2741
TP
1976 if (!source_stmt2)
1977 return NULL;
3cc272c1 1978
698ff107 1979 if (TYPE_PRECISION (n1.type) != TYPE_PRECISION (n2.type))
a31d2741 1980 return NULL;
03bd2f1a 1981
73984f84
TP
1982 if (!n1.vuse != !n2.vuse ||
1983 (n1.vuse && !operand_equal_p (n1.vuse, n2.vuse, 0)))
a31d2741 1984 return NULL;
03bd2f1a 1985
a31d2741
TP
1986 if (gimple_assign_rhs1 (source_stmt1)
1987 != gimple_assign_rhs1 (source_stmt2))
73984f84 1988 {
aa29ea0c 1989 int64_t inc;
73984f84
TP
1990 HOST_WIDE_INT off_sub;
1991 struct symbolic_number *n_ptr;
1992
1993 if (!n1.base_addr || !n2.base_addr
1994 || !operand_equal_p (n1.base_addr, n2.base_addr, 0))
a31d2741 1995 return NULL;
73984f84
TP
1996 if (!n1.offset != !n2.offset ||
1997 (n1.offset && !operand_equal_p (n1.offset, n2.offset, 0)))
a31d2741 1998 return NULL;
73984f84
TP
1999
2000 /* We swap n1 with n2 to have n1 < n2. */
2001 if (n2.bytepos < n1.bytepos)
2002 {
2003 struct symbolic_number tmpn;
2004
2005 tmpn = n2;
2006 n2 = n1;
2007 n1 = tmpn;
a31d2741 2008 source_stmt1 = source_stmt2;
73984f84
TP
2009 }
2010
2011 off_sub = n2.bytepos - n1.bytepos;
2012
e3ef4162
TP
2013 /* Check that the range of memory covered can be represented by
2014 a symbolic number. */
2015 if (off_sub + n2.range > 64 / BITS_PER_MARKER)
a31d2741 2016 return NULL;
73984f84
TP
2017 n->range = n2.range + off_sub;
2018
2019 /* Reinterpret byte marks in symbolic number holding the value of
58126368 2020 bigger weight according to target endianness. */
73984f84 2021 inc = BYTES_BIG_ENDIAN ? off_sub + n2.range - n1.range : off_sub;
e3ef4162 2022 size = TYPE_PRECISION (n1.type) / BITS_PER_UNIT;
73984f84
TP
2023 if (BYTES_BIG_ENDIAN)
2024 n_ptr = &n1;
2025 else
2026 n_ptr = &n2;
aa29ea0c 2027 for (i = 0; i < size; i++, inc <<= BITS_PER_MARKER)
73984f84 2028 {
aa29ea0c
TP
2029 unsigned marker =
2030 (n_ptr->n >> (i * BITS_PER_MARKER)) & MARKER_MASK;
2031 if (marker && marker != MARKER_BYTE_UNKNOWN)
73984f84
TP
2032 n_ptr->n += inc;
2033 }
2034 }
2035 else
2036 n->range = n1.range;
2037
2038 if (!n1.alias_set
2039 || alias_ptr_types_compatible_p (n1.alias_set, n2.alias_set))
2040 n->alias_set = n1.alias_set;
2041 else
2042 n->alias_set = ptr_type_node;
2043 n->vuse = n1.vuse;
2044 n->base_addr = n1.base_addr;
2045 n->offset = n1.offset;
2046 n->bytepos = n1.bytepos;
698ff107
TP
2047 n->type = n1.type;
2048 size = TYPE_PRECISION (n->type) / BITS_PER_UNIT;
aa29ea0c
TP
2049 for (i = 0, mask = MARKER_MASK; i < size;
2050 i++, mask <<= BITS_PER_MARKER)
882a5fbe 2051 {
a9243bfc 2052 uint64_t masked1, masked2;
882a5fbe
TP
2053
2054 masked1 = n1.n & mask;
2055 masked2 = n2.n & mask;
2056 if (masked1 && masked2 && masked1 != masked2)
a31d2741 2057 return NULL;
882a5fbe 2058 }
03bd2f1a
AK
2059 n->n = n1.n | n2.n;
2060
2061 if (!verify_symbolic_number_p (n, stmt))
a31d2741 2062 return NULL;
03bd2f1a
AK
2063
2064 break;
2065 default:
a31d2741 2066 return NULL;
03bd2f1a 2067 }
a31d2741 2068 return source_stmt1;
03bd2f1a 2069 }
a31d2741 2070 return NULL;
03bd2f1a
AK
2071}
2072
73984f84
TP
2073/* Check if STMT completes a bswap implementation or a read in a given
2074 endianness consisting of ORs, SHIFTs and ANDs and sets *BSWAP
2075 accordingly. It also sets N to represent the kind of operations
2076 performed: size of the resulting expression and whether it works on
2077 a memory source, and if so alias-set and vuse. At last, the
a31d2741
TP
2078 function returns a stmt whose rhs's first tree is the source
2079 expression. */
03bd2f1a 2080
a31d2741 2081static gimple
73984f84 2082find_bswap_or_nop (gimple stmt, struct symbolic_number *n, bool *bswap)
03bd2f1a 2083{
73984f84
TP
2084/* The number which the find_bswap_or_nop_1 result should match in order
2085 to have a full byte swap. The number is shifted to the right
2086 according to the size of the symbolic number before using it. */
a9243bfc
RB
2087 uint64_t cmpxchg = CMPXCHG;
2088 uint64_t cmpnop = CMPNOP;
73984f84 2089
a31d2741 2090 gimple source_stmt;
5da49a9d 2091 int limit;
03bd2f1a 2092
fef015a8 2093 /* The last parameter determines the depth search limit. It usually
73984f84
TP
2094 correlates directly to the number n of bytes to be touched. We
2095 increase that number by log2(n) + 1 here in order to also
2096 cover signed -> unsigned conversions of the src operand as can be seen
5da49a9d
KT
2097 in libgcc, and for initial shift/and operation of the src operand. */
2098 limit = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (gimple_expr_type (stmt)));
2099 limit += 1 + (int) ceil_log2 ((unsigned HOST_WIDE_INT) limit);
a31d2741 2100 source_stmt = find_bswap_or_nop_1 (stmt, n, limit);
03bd2f1a 2101
a31d2741
TP
2102 if (!source_stmt)
2103 return NULL;
03bd2f1a 2104
73984f84
TP
2105 /* Find real size of result (highest non zero byte). */
2106 if (n->base_addr)
03bd2f1a 2107 {
73984f84 2108 int rsize;
a9243bfc 2109 uint64_t tmpn;
03bd2f1a 2110
e3ef4162 2111 for (tmpn = n->n, rsize = 0; tmpn; tmpn >>= BITS_PER_MARKER, rsize++);
73984f84 2112 n->range = rsize;
03bd2f1a
AK
2113 }
2114
73984f84 2115 /* Zero out the extra bits of N and CMP*. */
e3ef4162 2116 if (n->range < (int) sizeof (int64_t))
73984f84 2117 {
a9243bfc 2118 uint64_t mask;
73984f84 2119
e3ef4162
TP
2120 mask = ((uint64_t) 1 << (n->range * BITS_PER_MARKER)) - 1;
2121 cmpxchg >>= (64 / BITS_PER_MARKER - n->range) * BITS_PER_MARKER;
73984f84
TP
2122 cmpnop &= mask;
2123 }
2124
2125 /* A complete byte swap should make the symbolic number to start with
2126 the largest digit in the highest order byte. Unchanged symbolic
58126368 2127 number indicates a read with same endianness as target architecture. */
73984f84
TP
2128 if (n->n == cmpnop)
2129 *bswap = false;
2130 else if (n->n == cmpxchg)
2131 *bswap = true;
2132 else
a31d2741 2133 return NULL;
73984f84
TP
2134
2135 /* Useless bit manipulation performed by code. */
2136 if (!n->base_addr && n->n == cmpnop)
a31d2741 2137 return NULL;
03bd2f1a 2138
73984f84 2139 n->range *= BITS_PER_UNIT;
a31d2741 2140 return source_stmt;
03bd2f1a
AK
2141}
2142
be55bfe6
TS
2143namespace {
2144
2145const pass_data pass_data_optimize_bswap =
2146{
2147 GIMPLE_PASS, /* type */
2148 "bswap", /* name */
2149 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
2150 TV_NONE, /* tv_id */
2151 PROP_ssa, /* properties_required */
2152 0, /* properties_provided */
2153 0, /* properties_destroyed */
2154 0, /* todo_flags_start */
2155 0, /* todo_flags_finish */
2156};
2157
2158class pass_optimize_bswap : public gimple_opt_pass
2159{
2160public:
2161 pass_optimize_bswap (gcc::context *ctxt)
2162 : gimple_opt_pass (pass_data_optimize_bswap, ctxt)
2163 {}
2164
2165 /* opt_pass methods: */
2166 virtual bool gate (function *)
2167 {
2168 return flag_expensive_optimizations && optimize;
2169 }
2170
2171 virtual unsigned int execute (function *);
2172
2173}; // class pass_optimize_bswap
2174
a31d2741
TP
2175/* Perform the bswap optimization: replace the statement CUR_STMT at
2176 GSI with a load of type, VUSE and set-alias as described by N if a
2177 memory source is involved (N->base_addr is non null), followed by
2178 the builtin bswap invocation in FNDECL if BSWAP is true. SRC_STMT
2179 gives where should the replacement be made. It also gives the
2180 source on which CUR_STMT is operating via its rhs's first tree nad
2181 N->range gives the size of the expression involved for maintaining
2182 some statistics. */
73984f84
TP
2183
2184static bool
a31d2741
TP
2185bswap_replace (gimple cur_stmt, gimple_stmt_iterator gsi, gimple src_stmt,
2186 tree fndecl, tree bswap_type, tree load_type,
2187 struct symbolic_number *n, bool bswap)
73984f84 2188{
a31d2741 2189 tree src, tmp, tgt;
73984f84
TP
2190 gimple call;
2191
a31d2741
TP
2192 src = gimple_assign_rhs1 (src_stmt);
2193 tgt = gimple_assign_lhs (cur_stmt);
73984f84
TP
2194
2195 /* Need to load the value from memory first. */
2196 if (n->base_addr)
2197 {
a31d2741 2198 gimple_stmt_iterator gsi_ins = gsi_for_stmt (src_stmt);
73984f84
TP
2199 tree addr_expr, addr_tmp, val_expr, val_tmp;
2200 tree load_offset_ptr, aligned_load_type;
2201 gimple addr_stmt, load_stmt;
2202 unsigned align;
2203
2204 align = get_object_alignment (src);
3fd269db
RB
2205 if (bswap
2206 && align < GET_MODE_ALIGNMENT (TYPE_MODE (load_type))
2207 && SLOW_UNALIGNED_ACCESS (TYPE_MODE (load_type), align))
73984f84
TP
2208 return false;
2209
a31d2741
TP
2210 gsi_move_before (&gsi, &gsi_ins);
2211 gsi = gsi_for_stmt (cur_stmt);
2212
73984f84
TP
2213 /* Compute address to load from and cast according to the size
2214 of the load. */
2215 addr_expr = build_fold_addr_expr (unshare_expr (src));
2216 if (is_gimple_min_invariant (addr_expr))
2217 addr_tmp = addr_expr;
2218 else
2219 {
2220 addr_tmp = make_temp_ssa_name (TREE_TYPE (addr_expr), NULL,
2221 "load_src");
2222 addr_stmt = gimple_build_assign (addr_tmp, addr_expr);
a31d2741 2223 gsi_insert_before (&gsi, addr_stmt, GSI_SAME_STMT);
73984f84
TP
2224 }
2225
2226 /* Perform the load. */
2227 aligned_load_type = load_type;
2228 if (align < TYPE_ALIGN (load_type))
2229 aligned_load_type = build_aligned_type (load_type, align);
2230 load_offset_ptr = build_int_cst (n->alias_set, 0);
2231 val_expr = fold_build2 (MEM_REF, aligned_load_type, addr_tmp,
2232 load_offset_ptr);
2233
2234 if (!bswap)
2235 {
2236 if (n->range == 16)
2237 nop_stats.found_16bit++;
2238 else if (n->range == 32)
2239 nop_stats.found_32bit++;
2240 else
2241 {
2242 gcc_assert (n->range == 64);
2243 nop_stats.found_64bit++;
2244 }
2245
2246 /* Convert the result of load if necessary. */
2247 if (!useless_type_conversion_p (TREE_TYPE (tgt), load_type))
2248 {
2249 val_tmp = make_temp_ssa_name (aligned_load_type, NULL,
2250 "load_dst");
2251 load_stmt = gimple_build_assign (val_tmp, val_expr);
2252 gimple_set_vuse (load_stmt, n->vuse);
a31d2741
TP
2253 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
2254 gimple_assign_set_rhs_with_ops_1 (&gsi, NOP_EXPR, val_tmp,
73984f84
TP
2255 NULL_TREE, NULL_TREE);
2256 }
2257 else
a31d2741
TP
2258 {
2259 gimple_assign_set_rhs_with_ops_1 (&gsi, MEM_REF, val_expr,
2260 NULL_TREE, NULL_TREE);
2261 gimple_set_vuse (cur_stmt, n->vuse);
2262 }
2263 update_stmt (cur_stmt);
73984f84
TP
2264
2265 if (dump_file)
2266 {
2267 fprintf (dump_file,
58126368 2268 "%d bit load in target endianness found at: ",
73984f84 2269 (int)n->range);
a31d2741 2270 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
73984f84
TP
2271 }
2272 return true;
2273 }
2274 else
2275 {
2276 val_tmp = make_temp_ssa_name (aligned_load_type, NULL, "load_dst");
2277 load_stmt = gimple_build_assign (val_tmp, val_expr);
2278 gimple_set_vuse (load_stmt, n->vuse);
a31d2741 2279 gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
73984f84
TP
2280 }
2281 src = val_tmp;
2282 }
2283
2284 if (n->range == 16)
2285 bswap_stats.found_16bit++;
2286 else if (n->range == 32)
2287 bswap_stats.found_32bit++;
2288 else
2289 {
2290 gcc_assert (n->range == 64);
2291 bswap_stats.found_64bit++;
2292 }
2293
2294 tmp = src;
2295
2296 /* Convert the src expression if necessary. */
2297 if (!useless_type_conversion_p (TREE_TYPE (tmp), bswap_type))
2298 {
2299 gimple convert_stmt;
2300 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapsrc");
2301 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tmp, src, NULL);
a31d2741 2302 gsi_insert_before (&gsi, convert_stmt, GSI_SAME_STMT);
73984f84
TP
2303 }
2304
2305 call = gimple_build_call (fndecl, 1, tmp);
2306
2307 tmp = tgt;
2308
2309 /* Convert the result if necessary. */
2310 if (!useless_type_conversion_p (TREE_TYPE (tgt), bswap_type))
2311 {
2312 gimple convert_stmt;
2313 tmp = make_temp_ssa_name (bswap_type, NULL, "bswapdst");
2314 convert_stmt = gimple_build_assign_with_ops (NOP_EXPR, tgt, tmp, NULL);
a31d2741 2315 gsi_insert_after (&gsi, convert_stmt, GSI_SAME_STMT);
73984f84
TP
2316 }
2317
2318 gimple_call_set_lhs (call, tmp);
2319
2320 if (dump_file)
2321 {
2322 fprintf (dump_file, "%d bit bswap implementation found at: ",
2323 (int)n->range);
a31d2741 2324 print_gimple_stmt (dump_file, cur_stmt, 0, 0);
73984f84
TP
2325 }
2326
a31d2741
TP
2327 gsi_insert_after (&gsi, call, GSI_SAME_STMT);
2328 gsi_remove (&gsi, true);
73984f84
TP
2329 return true;
2330}
2331
2332/* Find manual byte swap implementations as well as load in a given
2333 endianness. Byte swaps are turned into a bswap builtin invokation
2334 while endian loads are converted to bswap builtin invokation or
58126368 2335 simple load according to the target endianness. */
73984f84 2336
be55bfe6
TS
2337unsigned int
2338pass_optimize_bswap::execute (function *fun)
03bd2f1a
AK
2339{
2340 basic_block bb;
1df855ce 2341 bool bswap16_p, bswap32_p, bswap64_p;
03bd2f1a 2342 bool changed = false;
1df855ce 2343 tree bswap16_type = NULL_TREE, bswap32_type = NULL_TREE, bswap64_type = NULL_TREE;
03bd2f1a
AK
2344
2345 if (BITS_PER_UNIT != 8)
2346 return 0;
2347
1df855ce
CL
2348 bswap16_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP16)
2349 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing);
e79983f4 2350 bswap32_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP32)
947131ba 2351 && optab_handler (bswap_optab, SImode) != CODE_FOR_nothing);
e79983f4 2352 bswap64_p = (builtin_decl_explicit_p (BUILT_IN_BSWAP64)
947131ba 2353 && (optab_handler (bswap_optab, DImode) != CODE_FOR_nothing
ba1ee228 2354 || (bswap32_p && word_mode == SImode)));
03bd2f1a 2355
fb6234e0
AK
2356 /* Determine the argument type of the builtins. The code later on
2357 assumes that the return and argument type are the same. */
1df855ce
CL
2358 if (bswap16_p)
2359 {
2360 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2361 bswap16_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2362 }
2363
fb6234e0
AK
2364 if (bswap32_p)
2365 {
e79983f4 2366 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
fb6234e0
AK
2367 bswap32_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2368 }
2369
2370 if (bswap64_p)
2371 {
e79983f4 2372 tree fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
fb6234e0
AK
2373 bswap64_type = TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)));
2374 }
2375
73984f84 2376 memset (&nop_stats, 0, sizeof (nop_stats));
4da3b811
NF
2377 memset (&bswap_stats, 0, sizeof (bswap_stats));
2378
be55bfe6 2379 FOR_EACH_BB_FN (bb, fun)
03bd2f1a
AK
2380 {
2381 gimple_stmt_iterator gsi;
2382
72a32729
KT
2383 /* We do a reverse scan for bswap patterns to make sure we get the
2384 widest match. As bswap pattern matching doesn't handle
2385 previously inserted smaller bswap replacements as sub-
2386 patterns, the wider variant wouldn't be detected. */
2387 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
03bd2f1a 2388 {
a31d2741
TP
2389 gimple src_stmt, cur_stmt = gsi_stmt (gsi);
2390 tree fndecl = NULL_TREE, bswap_type = NULL_TREE, load_type;
73984f84
TP
2391 struct symbolic_number n;
2392 bool bswap;
03bd2f1a 2393
a31d2741
TP
2394 if (!is_gimple_assign (cur_stmt)
2395 || gimple_assign_rhs_code (cur_stmt) != BIT_IOR_EXPR)
03bd2f1a
AK
2396 continue;
2397
a31d2741 2398 src_stmt = find_bswap_or_nop (cur_stmt, &n, &bswap);
73984f84 2399
a31d2741 2400 if (!src_stmt)
73984f84 2401 continue;
03bd2f1a 2402
73984f84 2403 switch (n.range)
03bd2f1a 2404 {
1df855ce 2405 case 16:
73984f84 2406 load_type = uint16_type_node;
1df855ce
CL
2407 if (bswap16_p)
2408 {
2409 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP16);
2410 bswap_type = bswap16_type;
2411 }
2412 break;
03bd2f1a 2413 case 32:
73984f84 2414 load_type = uint32_type_node;
03bd2f1a 2415 if (bswap32_p)
fb6234e0 2416 {
e79983f4 2417 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP32);
fb6234e0
AK
2418 bswap_type = bswap32_type;
2419 }
03bd2f1a
AK
2420 break;
2421 case 64:
73984f84 2422 load_type = uint64_type_node;
03bd2f1a 2423 if (bswap64_p)
fb6234e0 2424 {
e79983f4 2425 fndecl = builtin_decl_explicit (BUILT_IN_BSWAP64);
fb6234e0
AK
2426 bswap_type = bswap64_type;
2427 }
03bd2f1a
AK
2428 break;
2429 default:
2430 continue;
2431 }
2432
73984f84 2433 if (bswap && !fndecl)
03bd2f1a
AK
2434 continue;
2435
a31d2741
TP
2436 if (bswap_replace (cur_stmt, gsi, src_stmt, fndecl, bswap_type,
2437 load_type, &n, bswap))
73984f84 2438 changed = true;
03bd2f1a
AK
2439 }
2440 }
2441
73984f84
TP
2442 statistics_counter_event (fun, "16-bit nop implementations found",
2443 nop_stats.found_16bit);
2444 statistics_counter_event (fun, "32-bit nop implementations found",
2445 nop_stats.found_32bit);
2446 statistics_counter_event (fun, "64-bit nop implementations found",
2447 nop_stats.found_64bit);
be55bfe6 2448 statistics_counter_event (fun, "16-bit bswap implementations found",
1df855ce 2449 bswap_stats.found_16bit);
be55bfe6 2450 statistics_counter_event (fun, "32-bit bswap implementations found",
4da3b811 2451 bswap_stats.found_32bit);
be55bfe6 2452 statistics_counter_event (fun, "64-bit bswap implementations found",
4da3b811
NF
2453 bswap_stats.found_64bit);
2454
3bea341f 2455 return (changed ? TODO_update_ssa : 0);
03bd2f1a
AK
2456}
2457
27a4cd48
DM
2458} // anon namespace
2459
2460gimple_opt_pass *
2461make_pass_optimize_bswap (gcc::context *ctxt)
2462{
2463 return new pass_optimize_bswap (ctxt);
2464}
2465
7ab6a828
RE
2466/* Return true if stmt is a type conversion operation that can be stripped
2467 when used in a widening multiply operation. */
2468static bool
2469widening_mult_conversion_strippable_p (tree result_type, gimple stmt)
2470{
2471 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
2472
2473 if (TREE_CODE (result_type) == INTEGER_TYPE)
2474 {
2475 tree op_type;
2476 tree inner_op_type;
2477
2478 if (!CONVERT_EXPR_CODE_P (rhs_code))
2479 return false;
2480
2481 op_type = TREE_TYPE (gimple_assign_lhs (stmt));
2482
2483 /* If the type of OP has the same precision as the result, then
2484 we can strip this conversion. The multiply operation will be
2485 selected to create the correct extension as a by-product. */
2486 if (TYPE_PRECISION (result_type) == TYPE_PRECISION (op_type))
2487 return true;
2488
2489 /* We can also strip a conversion if it preserves the signed-ness of
2490 the operation and doesn't narrow the range. */
2491 inner_op_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
2492
e919e5bf
RE
2493 /* If the inner-most type is unsigned, then we can strip any
2494 intermediate widening operation. If it's signed, then the
2495 intermediate widening operation must also be signed. */
2496 if ((TYPE_UNSIGNED (inner_op_type)
2497 || TYPE_UNSIGNED (op_type) == TYPE_UNSIGNED (inner_op_type))
7ab6a828
RE
2498 && TYPE_PRECISION (op_type) > TYPE_PRECISION (inner_op_type))
2499 return true;
2500
2501 return false;
2502 }
2503
2504 return rhs_code == FIXED_CONVERT_EXPR;
2505}
2506
26a855d7
AS
2507/* Return true if RHS is a suitable operand for a widening multiplication,
2508 assuming a target type of TYPE.
1a39adae
RS
2509 There are two cases:
2510
5dfe80ba
AS
2511 - RHS makes some value at least twice as wide. Store that value
2512 in *NEW_RHS_OUT if so, and store its type in *TYPE_OUT.
1a39adae
RS
2513
2514 - RHS is an integer constant. Store that value in *NEW_RHS_OUT if so,
2515 but leave *TYPE_OUT untouched. */
0354c0c7
BS
2516
2517static bool
26a855d7
AS
2518is_widening_mult_rhs_p (tree type, tree rhs, tree *type_out,
2519 tree *new_rhs_out)
1a39adae
RS
2520{
2521 gimple stmt;
26a855d7 2522 tree type1, rhs1;
1a39adae
RS
2523
2524 if (TREE_CODE (rhs) == SSA_NAME)
2525 {
1a39adae 2526 stmt = SSA_NAME_DEF_STMT (rhs);
26a855d7
AS
2527 if (is_gimple_assign (stmt))
2528 {
7ab6a828 2529 if (! widening_mult_conversion_strippable_p (type, stmt))
26a855d7
AS
2530 rhs1 = rhs;
2531 else
a6f969f4
AS
2532 {
2533 rhs1 = gimple_assign_rhs1 (stmt);
2534
2535 if (TREE_CODE (rhs1) == INTEGER_CST)
2536 {
2537 *new_rhs_out = rhs1;
2538 *type_out = NULL;
2539 return true;
2540 }
2541 }
26a855d7
AS
2542 }
2543 else
2544 rhs1 = rhs;
1a39adae 2545
1a39adae 2546 type1 = TREE_TYPE (rhs1);
26a855d7 2547
1a39adae 2548 if (TREE_CODE (type1) != TREE_CODE (type)
5dfe80ba 2549 || TYPE_PRECISION (type1) * 2 > TYPE_PRECISION (type))
1a39adae
RS
2550 return false;
2551
2552 *new_rhs_out = rhs1;
2553 *type_out = type1;
2554 return true;
2555 }
2556
2557 if (TREE_CODE (rhs) == INTEGER_CST)
2558 {
2559 *new_rhs_out = rhs;
2560 *type_out = NULL;
2561 return true;
2562 }
2563
2564 return false;
2565}
2566
26a855d7
AS
2567/* Return true if STMT performs a widening multiplication, assuming the
2568 output type is TYPE. If so, store the unwidened types of the operands
2569 in *TYPE1_OUT and *TYPE2_OUT respectively. Also fill *RHS1_OUT and
2570 *RHS2_OUT such that converting those operands to types *TYPE1_OUT
2571 and *TYPE2_OUT would give the operands of the multiplication. */
1a39adae
RS
2572
2573static bool
3d71881d 2574is_widening_mult_p (gimple stmt,
1a39adae
RS
2575 tree *type1_out, tree *rhs1_out,
2576 tree *type2_out, tree *rhs2_out)
0354c0c7 2577{
3d71881d
AS
2578 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2579
1a39adae
RS
2580 if (TREE_CODE (type) != INTEGER_TYPE
2581 && TREE_CODE (type) != FIXED_POINT_TYPE)
2582 return false;
0354c0c7 2583
26a855d7
AS
2584 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs1 (stmt), type1_out,
2585 rhs1_out))
0354c0c7
BS
2586 return false;
2587
26a855d7
AS
2588 if (!is_widening_mult_rhs_p (type, gimple_assign_rhs2 (stmt), type2_out,
2589 rhs2_out))
1a39adae 2590 return false;
0354c0c7 2591
1a39adae 2592 if (*type1_out == NULL)
0354c0c7 2593 {
1a39adae 2594 if (*type2_out == NULL || !int_fits_type_p (*rhs1_out, *type2_out))
0354c0c7 2595 return false;
1a39adae 2596 *type1_out = *type2_out;
0354c0c7 2597 }
0354c0c7 2598
1a39adae 2599 if (*type2_out == NULL)
0354c0c7 2600 {
1a39adae 2601 if (!int_fits_type_p (*rhs2_out, *type1_out))
0354c0c7 2602 return false;
1a39adae 2603 *type2_out = *type1_out;
0354c0c7 2604 }
0354c0c7 2605
ff63d754
AS
2606 /* Ensure that the larger of the two operands comes first. */
2607 if (TYPE_PRECISION (*type1_out) < TYPE_PRECISION (*type2_out))
2608 {
2609 tree tmp;
2610 tmp = *type1_out;
2611 *type1_out = *type2_out;
2612 *type2_out = tmp;
2613 tmp = *rhs1_out;
2614 *rhs1_out = *rhs2_out;
2615 *rhs2_out = tmp;
2616 }
5dfe80ba 2617
1a39adae
RS
2618 return true;
2619}
0354c0c7 2620
1a39adae
RS
2621/* Process a single gimple statement STMT, which has a MULT_EXPR as
2622 its rhs, and try to convert it into a WIDEN_MULT_EXPR. The return
2623 value is true iff we converted the statement. */
2624
2625static bool
5dfe80ba 2626convert_mult_to_widen (gimple stmt, gimple_stmt_iterator *gsi)
1a39adae 2627{
83d5977e 2628 tree lhs, rhs1, rhs2, type, type1, type2;
1a39adae 2629 enum insn_code handler;
ef4bddc2 2630 machine_mode to_mode, from_mode, actual_mode;
a484f6ba 2631 optab op;
5dfe80ba
AS
2632 int actual_precision;
2633 location_t loc = gimple_location (stmt);
db719f50 2634 bool from_unsigned1, from_unsigned2;
1a39adae
RS
2635
2636 lhs = gimple_assign_lhs (stmt);
2637 type = TREE_TYPE (lhs);
2638 if (TREE_CODE (type) != INTEGER_TYPE)
0354c0c7
BS
2639 return false;
2640
3d71881d 2641 if (!is_widening_mult_p (stmt, &type1, &rhs1, &type2, &rhs2))
0354c0c7
BS
2642 return false;
2643
a484f6ba
AS
2644 to_mode = TYPE_MODE (type);
2645 from_mode = TYPE_MODE (type1);
db719f50
AS
2646 from_unsigned1 = TYPE_UNSIGNED (type1);
2647 from_unsigned2 = TYPE_UNSIGNED (type2);
a484f6ba 2648
db719f50 2649 if (from_unsigned1 && from_unsigned2)
a484f6ba 2650 op = umul_widen_optab;
db719f50 2651 else if (!from_unsigned1 && !from_unsigned2)
a484f6ba 2652 op = smul_widen_optab;
0354c0c7 2653 else
a484f6ba
AS
2654 op = usmul_widen_optab;
2655
5dfe80ba
AS
2656 handler = find_widening_optab_handler_and_mode (op, to_mode, from_mode,
2657 0, &actual_mode);
1a39adae
RS
2658
2659 if (handler == CODE_FOR_nothing)
db719f50
AS
2660 {
2661 if (op != smul_widen_optab)
2662 {
6a228c2c
AS
2663 /* We can use a signed multiply with unsigned types as long as
2664 there is a wider mode to use, or it is the smaller of the two
2665 types that is unsigned. Note that type1 >= type2, always. */
2666 if ((TYPE_UNSIGNED (type1)
2667 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2668 || (TYPE_UNSIGNED (type2)
2669 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
2670 {
2671 from_mode = GET_MODE_WIDER_MODE (from_mode);
2672 if (GET_MODE_SIZE (to_mode) <= GET_MODE_SIZE (from_mode))
2673 return false;
2674 }
db719f50
AS
2675
2676 op = smul_widen_optab;
2677 handler = find_widening_optab_handler_and_mode (op, to_mode,
2678 from_mode, 0,
2679 &actual_mode);
2680
2681 if (handler == CODE_FOR_nothing)
2682 return false;
2683
2684 from_unsigned1 = from_unsigned2 = false;
2685 }
2686 else
2687 return false;
2688 }
1a39adae 2689
5dfe80ba
AS
2690 /* Ensure that the inputs to the handler are in the correct precison
2691 for the opcode. This will be the full mode size. */
2692 actual_precision = GET_MODE_PRECISION (actual_mode);
f409d239
RG
2693 if (2 * actual_precision > TYPE_PRECISION (type))
2694 return false;
db719f50
AS
2695 if (actual_precision != TYPE_PRECISION (type1)
2696 || from_unsigned1 != TYPE_UNSIGNED (type1))
83d5977e
RG
2697 rhs1 = build_and_insert_cast (gsi, loc,
2698 build_nonstandard_integer_type
2699 (actual_precision, from_unsigned1), rhs1);
db719f50
AS
2700 if (actual_precision != TYPE_PRECISION (type2)
2701 || from_unsigned2 != TYPE_UNSIGNED (type2))
83d5977e
RG
2702 rhs2 = build_and_insert_cast (gsi, loc,
2703 build_nonstandard_integer_type
2704 (actual_precision, from_unsigned2), rhs2);
5dfe80ba 2705
a6f969f4
AS
2706 /* Handle constants. */
2707 if (TREE_CODE (rhs1) == INTEGER_CST)
2708 rhs1 = fold_convert (type1, rhs1);
2709 if (TREE_CODE (rhs2) == INTEGER_CST)
2710 rhs2 = fold_convert (type2, rhs2);
2711
5dfe80ba
AS
2712 gimple_assign_set_rhs1 (stmt, rhs1);
2713 gimple_assign_set_rhs2 (stmt, rhs2);
0354c0c7
BS
2714 gimple_assign_set_rhs_code (stmt, WIDEN_MULT_EXPR);
2715 update_stmt (stmt);
4da3b811 2716 widen_mul_stats.widen_mults_inserted++;
0354c0c7
BS
2717 return true;
2718}
2719
2720/* Process a single gimple statement STMT, which is found at the
2721 iterator GSI and has a either a PLUS_EXPR or a MINUS_EXPR as its
2722 rhs (given by CODE), and try to convert it into a
2723 WIDEN_MULT_PLUS_EXPR or a WIDEN_MULT_MINUS_EXPR. The return value
2724 is true iff we converted the statement. */
2725
2726static bool
2727convert_plusminus_to_widen (gimple_stmt_iterator *gsi, gimple stmt,
2728 enum tree_code code)
2729{
2730 gimple rhs1_stmt = NULL, rhs2_stmt = NULL;
cefb4d4f 2731 gimple conv1_stmt = NULL, conv2_stmt = NULL, conv_stmt;
83d5977e 2732 tree type, type1, type2, optype;
0354c0c7
BS
2733 tree lhs, rhs1, rhs2, mult_rhs1, mult_rhs2, add_rhs;
2734 enum tree_code rhs1_code = ERROR_MARK, rhs2_code = ERROR_MARK;
2735 optab this_optab;
2736 enum tree_code wmult_code;
5dfe80ba 2737 enum insn_code handler;
ef4bddc2 2738 machine_mode to_mode, from_mode, actual_mode;
5dfe80ba
AS
2739 location_t loc = gimple_location (stmt);
2740 int actual_precision;
db719f50 2741 bool from_unsigned1, from_unsigned2;
0354c0c7
BS
2742
2743 lhs = gimple_assign_lhs (stmt);
2744 type = TREE_TYPE (lhs);
1a39adae
RS
2745 if (TREE_CODE (type) != INTEGER_TYPE
2746 && TREE_CODE (type) != FIXED_POINT_TYPE)
0354c0c7
BS
2747 return false;
2748
2749 if (code == MINUS_EXPR)
2750 wmult_code = WIDEN_MULT_MINUS_EXPR;
2751 else
2752 wmult_code = WIDEN_MULT_PLUS_EXPR;
2753
0354c0c7
BS
2754 rhs1 = gimple_assign_rhs1 (stmt);
2755 rhs2 = gimple_assign_rhs2 (stmt);
2756
2757 if (TREE_CODE (rhs1) == SSA_NAME)
2758 {
2759 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2760 if (is_gimple_assign (rhs1_stmt))
2761 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2762 }
0354c0c7
BS
2763
2764 if (TREE_CODE (rhs2) == SSA_NAME)
2765 {
2766 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2767 if (is_gimple_assign (rhs2_stmt))
2768 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2769 }
0354c0c7 2770
cefb4d4f
AS
2771 /* Allow for one conversion statement between the multiply
2772 and addition/subtraction statement. If there are more than
2773 one conversions then we assume they would invalidate this
2774 transformation. If that's not the case then they should have
2775 been folded before now. */
2776 if (CONVERT_EXPR_CODE_P (rhs1_code))
2777 {
2778 conv1_stmt = rhs1_stmt;
2779 rhs1 = gimple_assign_rhs1 (rhs1_stmt);
2780 if (TREE_CODE (rhs1) == SSA_NAME)
2781 {
2782 rhs1_stmt = SSA_NAME_DEF_STMT (rhs1);
2783 if (is_gimple_assign (rhs1_stmt))
2784 rhs1_code = gimple_assign_rhs_code (rhs1_stmt);
2785 }
2786 else
2787 return false;
2788 }
2789 if (CONVERT_EXPR_CODE_P (rhs2_code))
2790 {
2791 conv2_stmt = rhs2_stmt;
2792 rhs2 = gimple_assign_rhs1 (rhs2_stmt);
2793 if (TREE_CODE (rhs2) == SSA_NAME)
2794 {
2795 rhs2_stmt = SSA_NAME_DEF_STMT (rhs2);
2796 if (is_gimple_assign (rhs2_stmt))
2797 rhs2_code = gimple_assign_rhs_code (rhs2_stmt);
2798 }
2799 else
2800 return false;
2801 }
2802
5dfe80ba
AS
2803 /* If code is WIDEN_MULT_EXPR then it would seem unnecessary to call
2804 is_widening_mult_p, but we still need the rhs returns.
2805
2806 It might also appear that it would be sufficient to use the existing
2807 operands of the widening multiply, but that would limit the choice of
42917d01
YZ
2808 multiply-and-accumulate instructions.
2809
2810 If the widened-multiplication result has more than one uses, it is
2811 probably wiser not to do the conversion. */
5dfe80ba
AS
2812 if (code == PLUS_EXPR
2813 && (rhs1_code == MULT_EXPR || rhs1_code == WIDEN_MULT_EXPR))
0354c0c7 2814 {
42917d01
YZ
2815 if (!has_single_use (rhs1)
2816 || !is_widening_mult_p (rhs1_stmt, &type1, &mult_rhs1,
2817 &type2, &mult_rhs2))
0354c0c7 2818 return false;
1a39adae 2819 add_rhs = rhs2;
cefb4d4f 2820 conv_stmt = conv1_stmt;
0354c0c7 2821 }
5dfe80ba 2822 else if (rhs2_code == MULT_EXPR || rhs2_code == WIDEN_MULT_EXPR)
0354c0c7 2823 {
42917d01
YZ
2824 if (!has_single_use (rhs2)
2825 || !is_widening_mult_p (rhs2_stmt, &type1, &mult_rhs1,
2826 &type2, &mult_rhs2))
0354c0c7 2827 return false;
1a39adae 2828 add_rhs = rhs1;
cefb4d4f 2829 conv_stmt = conv2_stmt;
0354c0c7 2830 }
0354c0c7
BS
2831 else
2832 return false;
2833
5dfe80ba
AS
2834 to_mode = TYPE_MODE (type);
2835 from_mode = TYPE_MODE (type1);
db719f50
AS
2836 from_unsigned1 = TYPE_UNSIGNED (type1);
2837 from_unsigned2 = TYPE_UNSIGNED (type2);
3752b2ab 2838 optype = type1;
5dfe80ba 2839
db719f50
AS
2840 /* There's no such thing as a mixed sign madd yet, so use a wider mode. */
2841 if (from_unsigned1 != from_unsigned2)
2842 {
3752b2ab
RS
2843 if (!INTEGRAL_TYPE_P (type))
2844 return false;
6a228c2c
AS
2845 /* We can use a signed multiply with unsigned types as long as
2846 there is a wider mode to use, or it is the smaller of the two
2847 types that is unsigned. Note that type1 >= type2, always. */
2848 if ((from_unsigned1
2849 && TYPE_PRECISION (type1) == GET_MODE_PRECISION (from_mode))
2850 || (from_unsigned2
2851 && TYPE_PRECISION (type2) == GET_MODE_PRECISION (from_mode)))
db719f50 2852 {
6a228c2c
AS
2853 from_mode = GET_MODE_WIDER_MODE (from_mode);
2854 if (GET_MODE_SIZE (from_mode) >= GET_MODE_SIZE (to_mode))
2855 return false;
db719f50 2856 }
6a228c2c
AS
2857
2858 from_unsigned1 = from_unsigned2 = false;
3752b2ab
RS
2859 optype = build_nonstandard_integer_type (GET_MODE_PRECISION (from_mode),
2860 false);
db719f50 2861 }
9eab7f91 2862
cefb4d4f
AS
2863 /* If there was a conversion between the multiply and addition
2864 then we need to make sure it fits a multiply-and-accumulate.
2865 The should be a single mode change which does not change the
2866 value. */
2867 if (conv_stmt)
2868 {
db719f50 2869 /* We use the original, unmodified data types for this. */
cefb4d4f
AS
2870 tree from_type = TREE_TYPE (gimple_assign_rhs1 (conv_stmt));
2871 tree to_type = TREE_TYPE (gimple_assign_lhs (conv_stmt));
2872 int data_size = TYPE_PRECISION (type1) + TYPE_PRECISION (type2);
2873 bool is_unsigned = TYPE_UNSIGNED (type1) && TYPE_UNSIGNED (type2);
2874
2875 if (TYPE_PRECISION (from_type) > TYPE_PRECISION (to_type))
2876 {
2877 /* Conversion is a truncate. */
2878 if (TYPE_PRECISION (to_type) < data_size)
2879 return false;
2880 }
2881 else if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type))
2882 {
2883 /* Conversion is an extend. Check it's the right sort. */
2884 if (TYPE_UNSIGNED (from_type) != is_unsigned
2885 && !(is_unsigned && TYPE_PRECISION (from_type) > data_size))
2886 return false;
2887 }
2888 /* else convert is a no-op for our purposes. */
2889 }
2890
9eab7f91
RS
2891 /* Verify that the machine can perform a widening multiply
2892 accumulate in this mode/signedness combination, otherwise
2893 this transformation is likely to pessimize code. */
db719f50 2894 this_optab = optab_for_tree_code (wmult_code, optype, optab_default);
5dfe80ba
AS
2895 handler = find_widening_optab_handler_and_mode (this_optab, to_mode,
2896 from_mode, 0, &actual_mode);
2897
2898 if (handler == CODE_FOR_nothing)
9eab7f91
RS
2899 return false;
2900
5dfe80ba
AS
2901 /* Ensure that the inputs to the handler are in the correct precison
2902 for the opcode. This will be the full mode size. */
2903 actual_precision = GET_MODE_PRECISION (actual_mode);
db719f50
AS
2904 if (actual_precision != TYPE_PRECISION (type1)
2905 || from_unsigned1 != TYPE_UNSIGNED (type1))
83d5977e
RG
2906 mult_rhs1 = build_and_insert_cast (gsi, loc,
2907 build_nonstandard_integer_type
2908 (actual_precision, from_unsigned1),
2909 mult_rhs1);
db719f50
AS
2910 if (actual_precision != TYPE_PRECISION (type2)
2911 || from_unsigned2 != TYPE_UNSIGNED (type2))
83d5977e
RG
2912 mult_rhs2 = build_and_insert_cast (gsi, loc,
2913 build_nonstandard_integer_type
2914 (actual_precision, from_unsigned2),
2915 mult_rhs2);
0354c0c7 2916
75161d2c 2917 if (!useless_type_conversion_p (type, TREE_TYPE (add_rhs)))
83d5977e 2918 add_rhs = build_and_insert_cast (gsi, loc, type, add_rhs);
75161d2c 2919
a6f969f4
AS
2920 /* Handle constants. */
2921 if (TREE_CODE (mult_rhs1) == INTEGER_CST)
c3c5a1cc 2922 mult_rhs1 = fold_convert (type1, mult_rhs1);
a6f969f4 2923 if (TREE_CODE (mult_rhs2) == INTEGER_CST)
c3c5a1cc 2924 mult_rhs2 = fold_convert (type2, mult_rhs2);
a6f969f4 2925
5dfe80ba 2926 gimple_assign_set_rhs_with_ops_1 (gsi, wmult_code, mult_rhs1, mult_rhs2,
0354c0c7
BS
2927 add_rhs);
2928 update_stmt (gsi_stmt (*gsi));
4da3b811 2929 widen_mul_stats.maccs_inserted++;
0354c0c7
BS
2930 return true;
2931}
2932
4dbed5f6
RG
2933/* Combine the multiplication at MUL_STMT with operands MULOP1 and MULOP2
2934 with uses in additions and subtractions to form fused multiply-add
2935 operations. Returns true if successful and MUL_STMT should be removed. */
16949072
RG
2936
2937static bool
4dbed5f6 2938convert_mult_to_fma (gimple mul_stmt, tree op1, tree op2)
16949072 2939{
4dbed5f6 2940 tree mul_result = gimple_get_lhs (mul_stmt);
16949072 2941 tree type = TREE_TYPE (mul_result);
a5f09e73 2942 gimple use_stmt, neguse_stmt, fma_stmt;
16949072
RG
2943 use_operand_p use_p;
2944 imm_use_iterator imm_iter;
2945
2946 if (FLOAT_TYPE_P (type)
2947 && flag_fp_contract_mode == FP_CONTRACT_OFF)
2948 return false;
2949
2950 /* We don't want to do bitfield reduction ops. */
2951 if (INTEGRAL_TYPE_P (type)
2952 && (TYPE_PRECISION (type)
2953 != GET_MODE_PRECISION (TYPE_MODE (type))))
2954 return false;
2955
2956 /* If the target doesn't support it, don't generate it. We assume that
2957 if fma isn't available then fms, fnma or fnms are not either. */
2958 if (optab_handler (fma_optab, TYPE_MODE (type)) == CODE_FOR_nothing)
2959 return false;
2960
0fb808ea
JJ
2961 /* If the multiplication has zero uses, it is kept around probably because
2962 of -fnon-call-exceptions. Don't optimize it away in that case,
2963 it is DCE job. */
2964 if (has_zero_uses (mul_result))
2965 return false;
2966
16949072
RG
2967 /* Make sure that the multiplication statement becomes dead after
2968 the transformation, thus that all uses are transformed to FMAs.
2969 This means we assume that an FMA operation has the same cost
2970 as an addition. */
2971 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, mul_result)
2972 {
2973 enum tree_code use_code;
a5f09e73
RH
2974 tree result = mul_result;
2975 bool negate_p = false;
16949072
RG
2976
2977 use_stmt = USE_STMT (use_p);
2978
76b14c29
RG
2979 if (is_gimple_debug (use_stmt))
2980 continue;
2981
16949072
RG
2982 /* For now restrict this operations to single basic blocks. In theory
2983 we would want to support sinking the multiplication in
2984 m = a*b;
2985 if ()
2986 ma = m + c;
2987 else
2988 d = m;
2989 to form a fma in the then block and sink the multiplication to the
2990 else block. */
2991 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
2992 return false;
2993
a5f09e73 2994 if (!is_gimple_assign (use_stmt))
16949072
RG
2995 return false;
2996
a5f09e73
RH
2997 use_code = gimple_assign_rhs_code (use_stmt);
2998
2999 /* A negate on the multiplication leads to FNMA. */
3000 if (use_code == NEGATE_EXPR)
3001 {
a758fd67 3002 ssa_op_iter iter;
dae957ae 3003 use_operand_p usep;
a758fd67 3004
a5f09e73
RH
3005 result = gimple_assign_lhs (use_stmt);
3006
3007 /* Make sure the negate statement becomes dead with this
3008 single transformation. */
3009 if (!single_imm_use (gimple_assign_lhs (use_stmt),
3010 &use_p, &neguse_stmt))
3011 return false;
3012
a758fd67 3013 /* Make sure the multiplication isn't also used on that stmt. */
dae957ae
RG
3014 FOR_EACH_PHI_OR_STMT_USE (usep, neguse_stmt, iter, SSA_OP_USE)
3015 if (USE_FROM_PTR (usep) == mul_result)
a758fd67
RG
3016 return false;
3017
a5f09e73
RH
3018 /* Re-validate. */
3019 use_stmt = neguse_stmt;
3020 if (gimple_bb (use_stmt) != gimple_bb (mul_stmt))
3021 return false;
3022 if (!is_gimple_assign (use_stmt))
3023 return false;
3024
3025 use_code = gimple_assign_rhs_code (use_stmt);
3026 negate_p = true;
3027 }
16949072 3028
a5f09e73
RH
3029 switch (use_code)
3030 {
3031 case MINUS_EXPR:
a1d8aa4b
RH
3032 if (gimple_assign_rhs2 (use_stmt) == result)
3033 negate_p = !negate_p;
3034 break;
a5f09e73 3035 case PLUS_EXPR:
a5f09e73 3036 break;
a5f09e73
RH
3037 default:
3038 /* FMA can only be formed from PLUS and MINUS. */
3039 return false;
3040 }
16949072 3041
ee8a9b7b
JR
3042 /* If the subtrahend (gimple_assign_rhs2 (use_stmt)) is computed
3043 by a MULT_EXPR that we'll visit later, we might be able to
3044 get a more profitable match with fnma.
3045 OTOH, if we don't, a negate / fma pair has likely lower latency
3046 that a mult / subtract pair. */
3047 if (use_code == MINUS_EXPR && !negate_p
3048 && gimple_assign_rhs1 (use_stmt) == result
3049 && optab_handler (fms_optab, TYPE_MODE (type)) == CODE_FOR_nothing
3050 && optab_handler (fnma_optab, TYPE_MODE (type)) != CODE_FOR_nothing)
3051 {
3052 tree rhs2 = gimple_assign_rhs2 (use_stmt);
ee8a9b7b 3053
95c03b36
JR
3054 if (TREE_CODE (rhs2) == SSA_NAME)
3055 {
3056 gimple stmt2 = SSA_NAME_DEF_STMT (rhs2);
3057 if (has_single_use (rhs2)
3058 && is_gimple_assign (stmt2)
3059 && gimple_assign_rhs_code (stmt2) == MULT_EXPR)
3060 return false;
3061 }
ee8a9b7b
JR
3062 }
3063
a5f09e73
RH
3064 /* We can't handle a * b + a * b. */
3065 if (gimple_assign_rhs1 (use_stmt) == gimple_assign_rhs2 (use_stmt))
3066 return false;
a1d8aa4b
RH
3067
3068 /* While it is possible to validate whether or not the exact form
3069 that we've recognized is available in the backend, the assumption
3070 is that the transformation is never a loss. For instance, suppose
3071 the target only has the plain FMA pattern available. Consider
3072 a*b-c -> fma(a,b,-c): we've exchanged MUL+SUB for FMA+NEG, which
3073 is still two operations. Consider -(a*b)-c -> fma(-a,b,-c): we
3074 still have 3 operations, but in the FMA form the two NEGs are
073a8998 3075 independent and could be run in parallel. */
16949072
RG
3076 }
3077
3078 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, mul_result)
3079 {
16949072 3080 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
76b14c29 3081 enum tree_code use_code;
4dbed5f6 3082 tree addop, mulop1 = op1, result = mul_result;
a5f09e73 3083 bool negate_p = false;
16949072 3084
76b14c29
RG
3085 if (is_gimple_debug (use_stmt))
3086 continue;
3087
3088 use_code = gimple_assign_rhs_code (use_stmt);
a5f09e73
RH
3089 if (use_code == NEGATE_EXPR)
3090 {
3091 result = gimple_assign_lhs (use_stmt);
3092 single_imm_use (gimple_assign_lhs (use_stmt), &use_p, &neguse_stmt);
3093 gsi_remove (&gsi, true);
3094 release_defs (use_stmt);
3095
3096 use_stmt = neguse_stmt;
3097 gsi = gsi_for_stmt (use_stmt);
3098 use_code = gimple_assign_rhs_code (use_stmt);
3099 negate_p = true;
3100 }
3101
3102 if (gimple_assign_rhs1 (use_stmt) == result)
16949072
RG
3103 {
3104 addop = gimple_assign_rhs2 (use_stmt);
3105 /* a * b - c -> a * b + (-c) */
3106 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3107 addop = force_gimple_operand_gsi (&gsi,
3108 build1 (NEGATE_EXPR,
3109 type, addop),
3110 true, NULL_TREE, true,
3111 GSI_SAME_STMT);
3112 }
3113 else
3114 {
3115 addop = gimple_assign_rhs1 (use_stmt);
3116 /* a - b * c -> (-b) * c + a */
3117 if (gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
a5f09e73 3118 negate_p = !negate_p;
16949072
RG
3119 }
3120
a5f09e73
RH
3121 if (negate_p)
3122 mulop1 = force_gimple_operand_gsi (&gsi,
3123 build1 (NEGATE_EXPR,
3124 type, mulop1),
3125 true, NULL_TREE, true,
3126 GSI_SAME_STMT);
3127
73804b12
RG
3128 fma_stmt = gimple_build_assign_with_ops (FMA_EXPR,
3129 gimple_assign_lhs (use_stmt),
3130 mulop1, op2,
3131 addop);
16949072 3132 gsi_replace (&gsi, fma_stmt, true);
4da3b811 3133 widen_mul_stats.fmas_inserted++;
16949072
RG
3134 }
3135
3136 return true;
3137}
3138
5b58b39b
BS
3139/* Find integer multiplications where the operands are extended from
3140 smaller types, and replace the MULT_EXPR with a WIDEN_MULT_EXPR
3141 where appropriate. */
3142
be55bfe6
TS
3143namespace {
3144
3145const pass_data pass_data_optimize_widening_mul =
3146{
3147 GIMPLE_PASS, /* type */
3148 "widening_mul", /* name */
3149 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
3150 TV_NONE, /* tv_id */
3151 PROP_ssa, /* properties_required */
3152 0, /* properties_provided */
3153 0, /* properties_destroyed */
3154 0, /* todo_flags_start */
3bea341f 3155 TODO_update_ssa, /* todo_flags_finish */
be55bfe6
TS
3156};
3157
3158class pass_optimize_widening_mul : public gimple_opt_pass
3159{
3160public:
3161 pass_optimize_widening_mul (gcc::context *ctxt)
3162 : gimple_opt_pass (pass_data_optimize_widening_mul, ctxt)
3163 {}
3164
3165 /* opt_pass methods: */
3166 virtual bool gate (function *)
3167 {
3168 return flag_expensive_optimizations && optimize;
3169 }
3170
3171 virtual unsigned int execute (function *);
3172
3173}; // class pass_optimize_widening_mul
3174
3175unsigned int
3176pass_optimize_widening_mul::execute (function *fun)
5b58b39b 3177{
5b58b39b 3178 basic_block bb;
4dbed5f6 3179 bool cfg_changed = false;
5b58b39b 3180
4da3b811
NF
3181 memset (&widen_mul_stats, 0, sizeof (widen_mul_stats));
3182
be55bfe6 3183 FOR_EACH_BB_FN (bb, fun)
5b58b39b
BS
3184 {
3185 gimple_stmt_iterator gsi;
3186
16949072 3187 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
5b58b39b
BS
3188 {
3189 gimple stmt = gsi_stmt (gsi);
0354c0c7 3190 enum tree_code code;
5b58b39b 3191
16949072
RG
3192 if (is_gimple_assign (stmt))
3193 {
3194 code = gimple_assign_rhs_code (stmt);
3195 switch (code)
3196 {
3197 case MULT_EXPR:
5dfe80ba 3198 if (!convert_mult_to_widen (stmt, &gsi)
4dbed5f6
RG
3199 && convert_mult_to_fma (stmt,
3200 gimple_assign_rhs1 (stmt),
3201 gimple_assign_rhs2 (stmt)))
16949072
RG
3202 {
3203 gsi_remove (&gsi, true);
3204 release_defs (stmt);
3205 continue;
3206 }
3207 break;
3208
3209 case PLUS_EXPR:
3210 case MINUS_EXPR:
3211 convert_plusminus_to_widen (&gsi, stmt, code);
3212 break;
5b58b39b 3213
16949072
RG
3214 default:;
3215 }
3216 }
85a47bed
RG
3217 else if (is_gimple_call (stmt)
3218 && gimple_call_lhs (stmt))
4dbed5f6
RG
3219 {
3220 tree fndecl = gimple_call_fndecl (stmt);
3221 if (fndecl
3222 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3223 {
3224 switch (DECL_FUNCTION_CODE (fndecl))
3225 {
3226 case BUILT_IN_POWF:
3227 case BUILT_IN_POW:
3228 case BUILT_IN_POWL:
3229 if (TREE_CODE (gimple_call_arg (stmt, 1)) == REAL_CST
3230 && REAL_VALUES_EQUAL
3231 (TREE_REAL_CST (gimple_call_arg (stmt, 1)),
3232 dconst2)
3233 && convert_mult_to_fma (stmt,
3234 gimple_call_arg (stmt, 0),
3235 gimple_call_arg (stmt, 0)))
3236 {
0b238a9b 3237 unlink_stmt_vdef (stmt);
b5b3ec3e
RG
3238 if (gsi_remove (&gsi, true)
3239 && gimple_purge_dead_eh_edges (bb))
4dbed5f6 3240 cfg_changed = true;
b5b3ec3e 3241 release_defs (stmt);
4dbed5f6
RG
3242 continue;
3243 }
3244 break;
3245
3246 default:;
3247 }
3248 }
3249 }
16949072 3250 gsi_next (&gsi);
5b58b39b
BS
3251 }
3252 }
0354c0c7 3253
be55bfe6 3254 statistics_counter_event (fun, "widening multiplications inserted",
4da3b811 3255 widen_mul_stats.widen_mults_inserted);
be55bfe6 3256 statistics_counter_event (fun, "widening maccs inserted",
4da3b811 3257 widen_mul_stats.maccs_inserted);
be55bfe6 3258 statistics_counter_event (fun, "fused multiply-adds inserted",
4da3b811
NF
3259 widen_mul_stats.fmas_inserted);
3260
4dbed5f6 3261 return cfg_changed ? TODO_cleanup_cfg : 0;
5b58b39b
BS
3262}
3263
27a4cd48
DM
3264} // anon namespace
3265
3266gimple_opt_pass *
3267make_pass_optimize_widening_mul (gcc::context *ctxt)
3268{
3269 return new pass_optimize_widening_mul (ctxt);
3270}