]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-phiopt.c
Zero-initialize pass_manager
[thirdparty/gcc.git] / gcc / tree-ssa-phiopt.c
CommitLineData
4ee9c684 1/* Optimization of PHI nodes by converting them into straightline code.
711789cc 2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4ee9c684 3
4This file is part of GCC.
20e5647c 5
4ee9c684 6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8c4c00c1 8Free Software Foundation; either version 3, or (at your option) any
4ee9c684 9later version.
20e5647c 10
4ee9c684 11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
20e5647c 15
4ee9c684 16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
4ee9c684 19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
d9dd21a8 23#include "hash-table.h"
4ee9c684 24#include "tm.h"
4ee9c684 25#include "ggc.h"
26#include "tree.h"
0beac6fc 27#include "flags.h"
4ee9c684 28#include "tm_p.h"
29#include "basic-block.h"
4ee9c684 30#include "tree-flow.h"
31#include "tree-pass.h"
4ee9c684 32#include "langhooks.h"
e6d0e152 33#include "pointer-set.h"
34#include "domwalk.h"
ec611e12 35#include "cfgloop.h"
36#include "tree-data-ref.h"
239e9670 37#include "gimple-pretty-print.h"
38#include "insn-config.h"
39#include "expr.h"
40#include "optabs.h"
f6568ea4 41#include "tree-scalar-evolution.h"
239e9670 42
43#ifndef HAVE_conditional_move
44#define HAVE_conditional_move (0)
45#endif
4ee9c684 46
75a70cf9 47static unsigned int tree_ssa_phiopt (void);
239e9670 48static unsigned int tree_ssa_phiopt_worker (bool, bool);
a4844041 49static bool conditional_replacement (basic_block, basic_block,
75a70cf9 50 edge, edge, gimple, tree, tree);
fb9912ea 51static int value_replacement (basic_block, basic_block,
52 edge, edge, gimple, tree, tree);
a4844041 53static bool minmax_replacement (basic_block, basic_block,
75a70cf9 54 edge, edge, gimple, tree, tree);
a4844041 55static bool abs_replacement (basic_block, basic_block,
75a70cf9 56 edge, edge, gimple, tree, tree);
e6d0e152 57static bool cond_store_replacement (basic_block, basic_block, edge, edge,
58 struct pointer_set_t *);
91cf53d5 59static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
e6d0e152 60static struct pointer_set_t * get_non_trapping (void);
75a70cf9 61static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
239e9670 62static void hoist_adjacent_loads (basic_block, basic_block,
63 basic_block, basic_block);
64static bool gate_hoist_loads (void);
902929aa 65
caac37c2 66/* This pass tries to replaces an if-then-else block with an
67 assignment. We have four kinds of transformations. Some of these
68 transformations are also performed by the ifcvt RTL optimizer.
69
70 Conditional Replacement
71 -----------------------
72
30c5ffd2 73 This transformation, implemented in conditional_replacement,
caac37c2 74 replaces
4ee9c684 75
76 bb0:
77 if (cond) goto bb2; else goto bb1;
78 bb1:
79 bb2:
caac37c2 80 x = PHI <0 (bb1), 1 (bb0), ...>;
4ee9c684 81
caac37c2 82 with
20e5647c 83
2ab0a163 84 bb0:
caac37c2 85 x' = cond;
86 goto bb2;
2ab0a163 87 bb2:
caac37c2 88 x = PHI <x' (bb0), ...>;
4ee9c684 89
caac37c2 90 We remove bb1 as it becomes unreachable. This occurs often due to
91 gimplification of conditionals.
20e5647c 92
caac37c2 93 Value Replacement
94 -----------------
95
96 This transformation, implemented in value_replacement, replaces
0beac6fc 97
98 bb0:
caac37c2 99 if (a != b) goto bb2; else goto bb1;
0beac6fc 100 bb1:
101 bb2:
caac37c2 102 x = PHI <a (bb1), b (bb0), ...>;
0beac6fc 103
caac37c2 104 with
0beac6fc 105
106 bb0:
0beac6fc 107 bb2:
caac37c2 108 x = PHI <b (bb0), ...>;
109
110 This opportunity can sometimes occur as a result of other
111 optimizations.
0beac6fc 112
caac37c2 113 ABS Replacement
114 ---------------
70512b93 115
caac37c2 116 This transformation, implemented in abs_replacement, replaces
70512b93 117
118 bb0:
caac37c2 119 if (a >= 0) goto bb2; else goto bb1;
70512b93 120 bb1:
caac37c2 121 x = -a;
70512b93 122 bb2:
caac37c2 123 x = PHI <x (bb1), a (bb0), ...>;
70512b93 124
caac37c2 125 with
70512b93 126
127 bb0:
caac37c2 128 x' = ABS_EXPR< a >;
70512b93 129 bb2:
caac37c2 130 x = PHI <x' (bb0), ...>;
131
132 MIN/MAX Replacement
133 -------------------
70512b93 134
caac37c2 135 This transformation, minmax_replacement replaces
194899bf 136
137 bb0:
caac37c2 138 if (a <= b) goto bb2; else goto bb1;
194899bf 139 bb1:
194899bf 140 bb2:
caac37c2 141 x = PHI <b (bb1), a (bb0), ...>;
194899bf 142
caac37c2 143 with
194899bf 144
caac37c2 145 bb0:
146 x' = MIN_EXPR (a, b)
147 bb2:
148 x = PHI <x' (bb0), ...>;
194899bf 149
239e9670 150 A similar transformation is done for MAX_EXPR.
151
152
153 This pass also performs a fifth transformation of a slightly different
154 flavor.
155
156 Adjacent Load Hoisting
157 ----------------------
158
159 This transformation replaces
160
161 bb0:
162 if (...) goto bb2; else goto bb1;
163 bb1:
164 x1 = (<expr>).field1;
165 goto bb3;
166 bb2:
167 x2 = (<expr>).field2;
168 bb3:
169 # x = PHI <x1, x2>;
170
171 with
172
173 bb0:
174 x1 = (<expr>).field1;
175 x2 = (<expr>).field2;
176 if (...) goto bb2; else goto bb1;
177 bb1:
178 goto bb3;
179 bb2:
180 bb3:
181 # x = PHI <x1, x2>;
182
183 The purpose of this transformation is to enable generation of conditional
184 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
185 the loads is speculative, the transformation is restricted to very
186 specific cases to avoid introducing a page fault. We are looking for
187 the common idiom:
188
189 if (...)
190 x = y->left;
191 else
192 x = y->right;
193
194 where left and right are typically adjacent pointers in a tree structure. */
70512b93 195
2a1990e9 196static unsigned int
4ee9c684 197tree_ssa_phiopt (void)
e6d0e152 198{
239e9670 199 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
e6d0e152 200}
201
202/* This pass tries to transform conditional stores into unconditional
203 ones, enabling further simplifications with the simpler then and else
204 blocks. In particular it replaces this:
205
206 bb0:
207 if (cond) goto bb2; else goto bb1;
208 bb1:
91cf53d5 209 *p = RHS;
e6d0e152 210 bb2:
211
212 with
213
214 bb0:
215 if (cond) goto bb1; else goto bb2;
216 bb1:
217 condtmp' = *p;
218 bb2:
219 condtmp = PHI <RHS, condtmp'>
91cf53d5 220 *p = condtmp;
e6d0e152 221
222 This transformation can only be done under several constraints,
91cf53d5 223 documented below. It also replaces:
224
225 bb0:
226 if (cond) goto bb2; else goto bb1;
227 bb1:
228 *p = RHS1;
229 goto bb3;
230 bb2:
231 *p = RHS2;
232 bb3:
233
234 with
235
236 bb0:
237 if (cond) goto bb3; else goto bb1;
238 bb1:
239 bb3:
240 condtmp = PHI <RHS1, RHS2>
241 *p = condtmp; */
e6d0e152 242
243static unsigned int
244tree_ssa_cs_elim (void)
245{
f6568ea4 246 unsigned todo;
247 /* ??? We are not interested in loop related info, but the following
248 will create it, ICEing as we didn't init loops with pre-headers.
249 An interfacing issue of find_data_references_in_bb. */
250 loop_optimizer_init (LOOPS_NORMAL);
251 scev_initialize ();
252 todo = tree_ssa_phiopt_worker (true, false);
253 scev_finalize ();
254 loop_optimizer_finalize ();
255 return todo;
e6d0e152 256}
257
c3597b05 258/* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
259
260static gimple
261single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
262{
263 gimple_stmt_iterator i;
264 gimple phi = NULL;
265 if (gimple_seq_singleton_p (seq))
266 return gsi_stmt (gsi_start (seq));
267 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
268 {
269 gimple p = gsi_stmt (i);
270 /* If the PHI arguments are equal then we can skip this PHI. */
271 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
272 gimple_phi_arg_def (p, e1->dest_idx)))
273 continue;
274
275 /* If we already have a PHI that has the two edge arguments are
276 different, then return it is not a singleton for these PHIs. */
277 if (phi)
278 return NULL;
279
280 phi = p;
281 }
282 return phi;
283}
284
e6d0e152 285/* The core routine of conditional store replacement and normal
286 phi optimizations. Both share much of the infrastructure in how
287 to match applicable basic block patterns. DO_STORE_ELIM is true
239e9670 288 when we want to do conditional store replacement, false otherwise.
289 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
290 of diamond control flow patterns, false otherwise. */
e6d0e152 291static unsigned int
239e9670 292tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
4ee9c684 293{
294 basic_block bb;
194899bf 295 basic_block *bb_order;
296 unsigned n, i;
1e4b21e3 297 bool cfgchanged = false;
e6d0e152 298 struct pointer_set_t *nontrap = 0;
299
300 if (do_store_elim)
03d37e4e 301 /* Calculate the set of non-trapping memory accesses. */
302 nontrap = get_non_trapping ();
194899bf 303
304 /* Search every basic block for COND_EXPR we may be able to optimize.
305
306 We walk the blocks in order that guarantees that a block with
307 a single predecessor is processed before the predecessor.
308 This ensures that we collapse inner ifs before visiting the
309 outer ones, and also that we do not try to visit a removed
310 block. */
311 bb_order = blocks_in_phiopt_order ();
4d2e5d52 312 n = n_basic_blocks - NUM_FIXED_BLOCKS;
4ee9c684 313
48e1416a 314 for (i = 0; i < n; i++)
4ee9c684 315 {
75a70cf9 316 gimple cond_stmt, phi;
33784d89 317 basic_block bb1, bb2;
318 edge e1, e2;
194899bf 319 tree arg0, arg1;
320
321 bb = bb_order[i];
20e5647c 322
75a70cf9 323 cond_stmt = last_stmt (bb);
324 /* Check to see if the last statement is a GIMPLE_COND. */
325 if (!cond_stmt
326 || gimple_code (cond_stmt) != GIMPLE_COND)
33784d89 327 continue;
20e5647c 328
33784d89 329 e1 = EDGE_SUCC (bb, 0);
330 bb1 = e1->dest;
331 e2 = EDGE_SUCC (bb, 1);
332 bb2 = e2->dest;
20e5647c 333
33784d89 334 /* We cannot do the optimization on abnormal edges. */
335 if ((e1->flags & EDGE_ABNORMAL) != 0
336 || (e2->flags & EDGE_ABNORMAL) != 0)
337 continue;
20e5647c 338
33784d89 339 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
ea091dfd 340 if (EDGE_COUNT (bb1->succs) == 0
33784d89 341 || bb2 == NULL
ea091dfd 342 || EDGE_COUNT (bb2->succs) == 0)
33784d89 343 continue;
20e5647c 344
33784d89 345 /* Find the bb which is the fall through to the other. */
346 if (EDGE_SUCC (bb1, 0)->dest == bb2)
347 ;
348 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
349 {
350 basic_block bb_tmp = bb1;
351 edge e_tmp = e1;
352 bb1 = bb2;
353 bb2 = bb_tmp;
354 e1 = e2;
355 e2 = e_tmp;
356 }
91cf53d5 357 else if (do_store_elim
358 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
359 {
360 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
361
362 if (!single_succ_p (bb1)
363 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
364 || !single_succ_p (bb2)
365 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
366 || EDGE_COUNT (bb3->preds) != 2)
367 continue;
368 if (cond_if_else_store_replacement (bb1, bb2, bb3))
369 cfgchanged = true;
370 continue;
371 }
239e9670 372 else if (do_hoist_loads
373 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
374 {
375 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
376
377 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
378 && single_succ_p (bb1)
379 && single_succ_p (bb2)
380 && single_pred_p (bb1)
381 && single_pred_p (bb2)
382 && EDGE_COUNT (bb->succs) == 2
383 && EDGE_COUNT (bb3->preds) == 2
384 /* If one edge or the other is dominant, a conditional move
385 is likely to perform worse than the well-predicted branch. */
386 && !predictable_edge_p (EDGE_SUCC (bb, 0))
387 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
388 hoist_adjacent_loads (bb, bb1, bb2, bb3);
389 continue;
390 }
33784d89 391 else
91cf53d5 392 continue;
20e5647c 393
33784d89 394 e1 = EDGE_SUCC (bb1, 0);
20e5647c 395
33784d89 396 /* Make sure that bb1 is just a fall through. */
db5ba14c 397 if (!single_succ_p (bb1)
33784d89 398 || (e1->flags & EDGE_FALLTHRU) == 0)
399 continue;
20e5647c 400
3472707f 401 /* Also make sure that bb1 only have one predecessor and that it
402 is bb. */
ea091dfd 403 if (!single_pred_p (bb1)
404 || single_pred (bb1) != bb)
33784d89 405 continue;
20e5647c 406
e6d0e152 407 if (do_store_elim)
408 {
409 /* bb1 is the middle block, bb2 the join block, bb the split block,
410 e1 the fallthrough edge from bb1 to bb2. We can't do the
411 optimization if the join block has more than two predecessors. */
412 if (EDGE_COUNT (bb2->preds) > 2)
413 continue;
414 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
415 cfgchanged = true;
416 }
417 else
418 {
75a70cf9 419 gimple_seq phis = phi_nodes (bb2);
2109076a 420 gimple_stmt_iterator gsi;
fb9912ea 421 bool candorest = true;
c3597b05 422
fb9912ea 423 /* Value replacement can work with more than one PHI
424 so try that first. */
425 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
426 {
427 phi = gsi_stmt (gsi);
428 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
429 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
430 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
431 {
432 candorest = false;
433 cfgchanged = true;
434 break;
435 }
436 }
e6d0e152 437
fb9912ea 438 if (!candorest)
439 continue;
c3597b05 440
441 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
2109076a 442 if (!phi)
e6d0e152 443 continue;
444
75a70cf9 445 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
446 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
e6d0e152 447
448 /* Something is wrong if we cannot find the arguments in the PHI
449 node. */
450 gcc_assert (arg0 != NULL && arg1 != NULL);
451
452 /* Do the replacement of conditional if it can be done. */
453 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
454 cfgchanged = true;
e6d0e152 455 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
456 cfgchanged = true;
457 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
458 cfgchanged = true;
459 }
194899bf 460 }
461
462 free (bb_order);
48e1416a 463
e6d0e152 464 if (do_store_elim)
465 pointer_set_destroy (nontrap);
466 /* If the CFG has changed, we should cleanup the CFG. */
467 if (cfgchanged && do_store_elim)
468 {
469 /* In cond-store replacement we have added some loads on edges
470 and new VOPS (as we moved the store, and created a load). */
75a70cf9 471 gsi_commit_edge_inserts ();
e6d0e152 472 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
473 }
474 else if (cfgchanged)
475 return TODO_cleanup_cfg;
476 return 0;
194899bf 477}
478
479/* Returns the list of basic blocks in the function in an order that guarantees
480 that if a block X has just a single predecessor Y, then Y is after X in the
481 ordering. */
482
8530c7be 483basic_block *
194899bf 484blocks_in_phiopt_order (void)
485{
486 basic_block x, y;
945865c5 487 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
48e1416a 488 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
4d2e5d52 489 unsigned np, i;
48e1416a 490 sbitmap visited = sbitmap_alloc (last_basic_block);
194899bf 491
08b7917c 492#define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
493#define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
194899bf 494
53c5d9d4 495 bitmap_clear (visited);
194899bf 496
497 MARK_VISITED (ENTRY_BLOCK_PTR);
498 FOR_EACH_BB (x)
499 {
500 if (VISITED_P (x))
501 continue;
502
503 /* Walk the predecessors of x as long as they have precisely one
504 predecessor and add them to the list, so that they get stored
505 after x. */
506 for (y = x, np = 1;
507 single_pred_p (y) && !VISITED_P (single_pred (y));
508 y = single_pred (y))
509 np++;
510 for (y = x, i = n - np;
511 single_pred_p (y) && !VISITED_P (single_pred (y));
512 y = single_pred (y), i++)
513 {
514 order[i] = y;
515 MARK_VISITED (y);
2ab0a163 516 }
194899bf 517 order[i] = y;
518 MARK_VISITED (y);
519
520 gcc_assert (i == n - 1);
521 n -= np;
4ee9c684 522 }
194899bf 523
524 sbitmap_free (visited);
525 gcc_assert (n == 0);
526 return order;
527
528#undef MARK_VISITED
529#undef VISITED_P
4ee9c684 530}
531
fccee353 532/* Replace PHI node element whose edge is E in block BB with variable NEW.
33784d89 533 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
902929aa 534 is known to have two edges, one of which must reach BB). */
535
536static void
a4844041 537replace_phi_edge_with_variable (basic_block cond_block,
75a70cf9 538 edge e, gimple phi, tree new_tree)
902929aa 539{
75a70cf9 540 basic_block bb = gimple_bb (phi);
0e1a77e1 541 basic_block block_to_remove;
75a70cf9 542 gimple_stmt_iterator gsi;
33784d89 543
20e5647c 544 /* Change the PHI argument to new. */
f0d6e81c 545 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
0e1a77e1 546
0e1a77e1 547 /* Remove the empty basic block. */
cd665a06 548 if (EDGE_SUCC (cond_block, 0)->dest == bb)
902929aa 549 {
cd665a06 550 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
551 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
81c5be57 552 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
553 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
0e1a77e1 554
cd665a06 555 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
902929aa 556 }
557 else
558 {
cd665a06 559 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
560 EDGE_SUCC (cond_block, 1)->flags
902929aa 561 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
81c5be57 562 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
563 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
0e1a77e1 564
cd665a06 565 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
902929aa 566 }
0e1a77e1 567 delete_basic_block (block_to_remove);
20e5647c 568
902929aa 569 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
75a70cf9 570 gsi = gsi_last_bb (cond_block);
571 gsi_remove (&gsi, true);
20e5647c 572
902929aa 573 if (dump_file && (dump_flags & TDF_DETAILS))
574 fprintf (dump_file,
575 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
576 cond_block->index,
577 bb->index);
578}
579
580/* The function conditional_replacement does the main work of doing the
581 conditional replacement. Return true if the replacement is done.
582 Otherwise return false.
583 BB is the basic block where the replacement is going to be done on. ARG0
dac49aa5 584 is argument 0 from PHI. Likewise for ARG1. */
902929aa 585
586static bool
33784d89 587conditional_replacement (basic_block cond_bb, basic_block middle_bb,
75a70cf9 588 edge e0, edge e1, gimple phi,
33784d89 589 tree arg0, tree arg1)
902929aa 590{
591 tree result;
75a70cf9 592 gimple stmt, new_stmt;
593 tree cond;
594 gimple_stmt_iterator gsi;
902929aa 595 edge true_edge, false_edge;
75a70cf9 596 tree new_var, new_var2;
678919fd 597 bool neg;
902929aa 598
435e1a75 599 /* FIXME: Gimplification of complex type is too hard for now. */
47b88316 600 /* We aren't prepared to handle vectors either (and it is a question
601 if it would be worthwhile anyway). */
602 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
603 || POINTER_TYPE_P (TREE_TYPE (arg0)))
604 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
605 || POINTER_TYPE_P (TREE_TYPE (arg1))))
435e1a75 606 return false;
607
678919fd 608 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
609 convert it to the conditional. */
902929aa 610 if ((integer_zerop (arg0) && integer_onep (arg1))
611 || (integer_zerop (arg1) && integer_onep (arg0)))
678919fd 612 neg = false;
613 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
614 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
615 neg = true;
902929aa 616 else
617 return false;
20e5647c 618
33784d89 619 if (!empty_block_p (middle_bb))
902929aa 620 return false;
20e5647c 621
75a70cf9 622 /* At this point we know we have a GIMPLE_COND with two successors.
2ab0a163 623 One successor is BB, the other successor is an empty block which
624 falls through into BB.
20e5647c 625
2ab0a163 626 There is a single PHI node at the join point (BB) and its arguments
678919fd 627 are constants (0, 1) or (0, -1).
20e5647c 628
2ab0a163 629 So, given the condition COND, and the two PHI arguments, we can
20e5647c 630 rewrite this PHI into non-branching code:
631
2ab0a163 632 dest = (COND) or dest = COND'
20e5647c 633
2ab0a163 634 We use the condition as-is if the argument associated with the
635 true edge has the value one or the argument associated with the
636 false edge as the value zero. Note that those conditions are not
75a70cf9 637 the same since only one of the outgoing edges from the GIMPLE_COND
2ab0a163 638 will directly reach BB and thus be associated with an argument. */
ae5a4794 639
75a70cf9 640 stmt = last_stmt (cond_bb);
641 result = PHI_RESULT (phi);
b2a02a0e 642
75a70cf9 643 /* To handle special cases like floating point comparison, it is easier and
644 less error-prone to build a tree and gimplify it on the fly though it is
645 less efficient. */
6f9714b3 646 cond = fold_build2_loc (gimple_location (stmt),
647 gimple_cond_code (stmt), boolean_type_node,
648 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
4ee9c684 649
75a70cf9 650 /* We need to know which is the true edge and which is the false
651 edge so that we know when to invert the condition below. */
652 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
653 if ((e0 == true_edge && integer_zerop (arg0))
678919fd 654 || (e0 == false_edge && !integer_zerop (arg0))
75a70cf9 655 || (e1 == true_edge && integer_zerop (arg1))
678919fd 656 || (e1 == false_edge && !integer_zerop (arg1)))
6f9714b3 657 cond = fold_build1_loc (gimple_location (stmt),
678919fd 658 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
659
660 if (neg)
661 {
662 cond = fold_convert_loc (gimple_location (stmt),
663 TREE_TYPE (result), cond);
664 cond = fold_build1_loc (gimple_location (stmt),
665 NEGATE_EXPR, TREE_TYPE (cond), cond);
666 }
75a70cf9 667
668 /* Insert our new statements at the end of conditional block before the
669 COND_STMT. */
670 gsi = gsi_for_stmt (stmt);
671 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
672 GSI_SAME_STMT);
673
674 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
675 {
efbcb6de 676 source_location locus_0, locus_1;
677
03d37e4e 678 new_var2 = make_ssa_name (TREE_TYPE (result), NULL);
75a70cf9 679 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
680 new_var, NULL);
75a70cf9 681 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
682 new_var = new_var2;
efbcb6de 683
684 /* Set the locus to the first argument, unless is doesn't have one. */
685 locus_0 = gimple_phi_arg_location (phi, 0);
686 locus_1 = gimple_phi_arg_location (phi, 1);
687 if (locus_0 == UNKNOWN_LOCATION)
688 locus_0 = locus_1;
689 gimple_set_location (new_stmt, locus_0);
4ee9c684 690 }
20e5647c 691
75a70cf9 692 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
902929aa 693
4ee9c684 694 /* Note that we optimized this PHI. */
695 return true;
696}
697
17b9476e 698/* Update *ARG which is defined in STMT so that it contains the
699 computed value if that seems profitable. Return true if the
700 statement is made dead by that rewriting. */
701
702static bool
703jump_function_from_stmt (tree *arg, gimple stmt)
704{
705 enum tree_code code = gimple_assign_rhs_code (stmt);
706 if (code == ADDR_EXPR)
707 {
708 /* For arg = &p->i transform it to p, if possible. */
709 tree rhs1 = gimple_assign_rhs1 (stmt);
710 HOST_WIDE_INT offset;
711 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
712 &offset);
713 if (tem
714 && TREE_CODE (tem) == MEM_REF
cf8f0e63 715 && (mem_ref_offset (tem) + double_int::from_shwi (offset)).is_zero ())
17b9476e 716 {
717 *arg = TREE_OPERAND (tem, 0);
718 return true;
719 }
720 }
721 /* TODO: Much like IPA-CP jump-functions we want to handle constant
722 additions symbolically here, and we'd need to update the comparison
723 code that compares the arg + cst tuples in our caller. For now the
724 code above exactly handles the VEC_BASE pattern from vec.h. */
725 return false;
726}
727
0beac6fc 728/* The function value_replacement does the main work of doing the value
fb9912ea 729 replacement. Return non-zero if the replacement is done. Otherwise return
730 0. If we remove the middle basic block, return 2.
0beac6fc 731 BB is the basic block where the replacement is going to be done on. ARG0
dac49aa5 732 is argument 0 from the PHI. Likewise for ARG1. */
0beac6fc 733
fb9912ea 734static int
33784d89 735value_replacement (basic_block cond_bb, basic_block middle_bb,
75a70cf9 736 edge e0, edge e1, gimple phi,
33784d89 737 tree arg0, tree arg1)
0beac6fc 738{
17b9476e 739 gimple_stmt_iterator gsi;
75a70cf9 740 gimple cond;
0beac6fc 741 edge true_edge, false_edge;
75a70cf9 742 enum tree_code code;
fb9912ea 743 bool emtpy_or_with_defined_p = true;
0beac6fc 744
745 /* If the type says honor signed zeros we cannot do this
dac49aa5 746 optimization. */
0beac6fc 747 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
fb9912ea 748 return 0;
0beac6fc 749
fb9912ea 750 /* If there is a statement in MIDDLE_BB that defines one of the PHI
751 arguments, then adjust arg0 or arg1. */
17b9476e 752 gsi = gsi_after_labels (middle_bb);
fb9912ea 753 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
754 gsi_next_nondebug (&gsi);
755 while (!gsi_end_p (gsi))
17b9476e 756 {
fb9912ea 757 gimple stmt = gsi_stmt (gsi);
758 tree lhs;
759 gsi_next_nondebug (&gsi);
760 if (!is_gimple_assign (stmt))
17b9476e 761 {
fb9912ea 762 emtpy_or_with_defined_p = false;
763 continue;
17b9476e 764 }
fb9912ea 765 /* Now try to adjust arg0 or arg1 according to the computation
766 in the statement. */
767 lhs = gimple_assign_lhs (stmt);
768 if (!(lhs == arg0
769 && jump_function_from_stmt (&arg0, stmt))
770 || (lhs == arg1
771 && jump_function_from_stmt (&arg1, stmt)))
772 emtpy_or_with_defined_p = false;
17b9476e 773 }
0beac6fc 774
75a70cf9 775 cond = last_stmt (cond_bb);
776 code = gimple_cond_code (cond);
0beac6fc 777
778 /* This transformation is only valid for equality comparisons. */
75a70cf9 779 if (code != NE_EXPR && code != EQ_EXPR)
fb9912ea 780 return 0;
0beac6fc 781
782 /* We need to know which is the true edge and which is the false
783 edge so that we know if have abs or negative abs. */
33784d89 784 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
0beac6fc 785
786 /* At this point we know we have a COND_EXPR with two successors.
787 One successor is BB, the other successor is an empty block which
788 falls through into BB.
789
790 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
791
792 There is a single PHI node at the join point (BB) with two arguments.
793
794 We now need to verify that the two arguments in the PHI node match
795 the two arguments to the equality comparison. */
20e5647c 796
75a70cf9 797 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
798 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
799 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
800 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
0beac6fc 801 {
802 edge e;
803 tree arg;
804
50737d20 805 /* For NE_EXPR, we want to build an assignment result = arg where
806 arg is the PHI argument associated with the true edge. For
807 EQ_EXPR we want the PHI argument associated with the false edge. */
75a70cf9 808 e = (code == NE_EXPR ? true_edge : false_edge);
50737d20 809
810 /* Unfortunately, E may not reach BB (it may instead have gone to
811 OTHER_BLOCK). If that is the case, then we want the single outgoing
812 edge from OTHER_BLOCK which reaches BB and represents the desired
813 path from COND_BLOCK. */
33784d89 814 if (e->dest == middle_bb)
ea091dfd 815 e = single_succ_edge (e->dest);
50737d20 816
817 /* Now we know the incoming edge to BB that has the argument for the
818 RHS of our new assignment statement. */
33784d89 819 if (e0 == e)
0beac6fc 820 arg = arg0;
821 else
822 arg = arg1;
823
fb9912ea 824 /* If the middle basic block was empty or is defining the
c3597b05 825 PHI arguments and this is a single phi where the args are different
826 for the edges e0 and e1 then we can remove the middle basic block. */
fb9912ea 827 if (emtpy_or_with_defined_p
c3597b05 828 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
829 e0, e1))
fb9912ea 830 {
831 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
832 /* Note that we optimized this PHI. */
833 return 2;
834 }
835 else
836 {
837 /* Replace the PHI arguments with arg. */
838 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
839 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
840 if (dump_file && (dump_flags & TDF_DETAILS))
841 {
842 fprintf (dump_file, "PHI ");
843 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
c3597b05 844 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
845 cond_bb->index);
fb9912ea 846 print_generic_expr (dump_file, arg, 0);
847 fprintf (dump_file, ".\n");
848 }
849 return 1;
850 }
0beac6fc 851
0beac6fc 852 }
fb9912ea 853 return 0;
0beac6fc 854}
855
194899bf 856/* The function minmax_replacement does the main work of doing the minmax
857 replacement. Return true if the replacement is done. Otherwise return
858 false.
859 BB is the basic block where the replacement is going to be done on. ARG0
860 is argument 0 from the PHI. Likewise for ARG1. */
861
862static bool
863minmax_replacement (basic_block cond_bb, basic_block middle_bb,
75a70cf9 864 edge e0, edge e1, gimple phi,
194899bf 865 tree arg0, tree arg1)
866{
867 tree result, type;
75a70cf9 868 gimple cond, new_stmt;
194899bf 869 edge true_edge, false_edge;
870 enum tree_code cmp, minmax, ass_code;
871 tree smaller, larger, arg_true, arg_false;
75a70cf9 872 gimple_stmt_iterator gsi, gsi_from;
194899bf 873
874 type = TREE_TYPE (PHI_RESULT (phi));
875
876 /* The optimization may be unsafe due to NaNs. */
877 if (HONOR_NANS (TYPE_MODE (type)))
878 return false;
879
75a70cf9 880 cond = last_stmt (cond_bb);
881 cmp = gimple_cond_code (cond);
194899bf 882
883 /* This transformation is only valid for order comparisons. Record which
884 operand is smaller/larger if the result of the comparison is true. */
885 if (cmp == LT_EXPR || cmp == LE_EXPR)
886 {
75a70cf9 887 smaller = gimple_cond_lhs (cond);
888 larger = gimple_cond_rhs (cond);
194899bf 889 }
890 else if (cmp == GT_EXPR || cmp == GE_EXPR)
891 {
75a70cf9 892 smaller = gimple_cond_rhs (cond);
893 larger = gimple_cond_lhs (cond);
194899bf 894 }
895 else
896 return false;
897
898 /* We need to know which is the true edge and which is the false
899 edge so that we know if have abs or negative abs. */
900 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
901
902 /* Forward the edges over the middle basic block. */
903 if (true_edge->dest == middle_bb)
904 true_edge = EDGE_SUCC (true_edge->dest, 0);
905 if (false_edge->dest == middle_bb)
906 false_edge = EDGE_SUCC (false_edge->dest, 0);
907
908 if (true_edge == e0)
909 {
910 gcc_assert (false_edge == e1);
911 arg_true = arg0;
912 arg_false = arg1;
913 }
914 else
915 {
916 gcc_assert (false_edge == e0);
917 gcc_assert (true_edge == e1);
918 arg_true = arg1;
919 arg_false = arg0;
920 }
921
922 if (empty_block_p (middle_bb))
923 {
924 if (operand_equal_for_phi_arg_p (arg_true, smaller)
925 && operand_equal_for_phi_arg_p (arg_false, larger))
926 {
927 /* Case
48e1416a 928
194899bf 929 if (smaller < larger)
930 rslt = smaller;
931 else
932 rslt = larger; */
933 minmax = MIN_EXPR;
934 }
935 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
936 && operand_equal_for_phi_arg_p (arg_true, larger))
937 minmax = MAX_EXPR;
938 else
939 return false;
940 }
941 else
942 {
943 /* Recognize the following case, assuming d <= u:
944
945 if (a <= u)
946 b = MAX (a, d);
947 x = PHI <b, u>
948
949 This is equivalent to
950
951 b = MAX (a, d);
952 x = MIN (b, u); */
953
75a70cf9 954 gimple assign = last_and_only_stmt (middle_bb);
955 tree lhs, op0, op1, bound;
194899bf 956
957 if (!assign
75a70cf9 958 || gimple_code (assign) != GIMPLE_ASSIGN)
194899bf 959 return false;
960
75a70cf9 961 lhs = gimple_assign_lhs (assign);
962 ass_code = gimple_assign_rhs_code (assign);
194899bf 963 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
964 return false;
75a70cf9 965 op0 = gimple_assign_rhs1 (assign);
966 op1 = gimple_assign_rhs2 (assign);
194899bf 967
968 if (true_edge->src == middle_bb)
969 {
970 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
971 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
972 return false;
973
974 if (operand_equal_for_phi_arg_p (arg_false, larger))
975 {
976 /* Case
977
978 if (smaller < larger)
979 {
980 r' = MAX_EXPR (smaller, bound)
981 }
982 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
983 if (ass_code != MAX_EXPR)
984 return false;
985
986 minmax = MIN_EXPR;
987 if (operand_equal_for_phi_arg_p (op0, smaller))
988 bound = op1;
989 else if (operand_equal_for_phi_arg_p (op1, smaller))
990 bound = op0;
991 else
992 return false;
993
994 /* We need BOUND <= LARGER. */
49d00087 995 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
996 bound, larger)))
194899bf 997 return false;
998 }
999 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
1000 {
1001 /* Case
1002
1003 if (smaller < larger)
1004 {
1005 r' = MIN_EXPR (larger, bound)
1006 }
1007 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1008 if (ass_code != MIN_EXPR)
1009 return false;
1010
1011 minmax = MAX_EXPR;
1012 if (operand_equal_for_phi_arg_p (op0, larger))
1013 bound = op1;
1014 else if (operand_equal_for_phi_arg_p (op1, larger))
1015 bound = op0;
1016 else
1017 return false;
1018
1019 /* We need BOUND >= SMALLER. */
49d00087 1020 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1021 bound, smaller)))
194899bf 1022 return false;
1023 }
1024 else
1025 return false;
1026 }
1027 else
1028 {
1029 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1030 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1031 return false;
1032
1033 if (operand_equal_for_phi_arg_p (arg_true, larger))
1034 {
1035 /* Case
1036
1037 if (smaller > larger)
1038 {
1039 r' = MIN_EXPR (smaller, bound)
1040 }
1041 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1042 if (ass_code != MIN_EXPR)
1043 return false;
1044
1045 minmax = MAX_EXPR;
1046 if (operand_equal_for_phi_arg_p (op0, smaller))
1047 bound = op1;
1048 else if (operand_equal_for_phi_arg_p (op1, smaller))
1049 bound = op0;
1050 else
1051 return false;
1052
1053 /* We need BOUND >= LARGER. */
49d00087 1054 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1055 bound, larger)))
194899bf 1056 return false;
1057 }
1058 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1059 {
1060 /* Case
1061
1062 if (smaller > larger)
1063 {
1064 r' = MAX_EXPR (larger, bound)
1065 }
1066 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1067 if (ass_code != MAX_EXPR)
1068 return false;
1069
1070 minmax = MIN_EXPR;
1071 if (operand_equal_for_phi_arg_p (op0, larger))
1072 bound = op1;
1073 else if (operand_equal_for_phi_arg_p (op1, larger))
1074 bound = op0;
1075 else
1076 return false;
1077
1078 /* We need BOUND <= SMALLER. */
49d00087 1079 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1080 bound, smaller)))
194899bf 1081 return false;
1082 }
1083 else
1084 return false;
1085 }
1086
1087 /* Move the statement from the middle block. */
75a70cf9 1088 gsi = gsi_last_bb (cond_bb);
445a6ba5 1089 gsi_from = gsi_last_nondebug_bb (middle_bb);
75a70cf9 1090 gsi_move_before (&gsi_from, &gsi);
194899bf 1091 }
1092
1093 /* Emit the statement to compute min/max. */
1094 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
75a70cf9 1095 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
1096 gsi = gsi_last_bb (cond_bb);
1097 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
194899bf 1098
a4844041 1099 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
194899bf 1100 return true;
1101}
1102
70512b93 1103/* The function absolute_replacement does the main work of doing the absolute
1104 replacement. Return true if the replacement is done. Otherwise return
1105 false.
1106 bb is the basic block where the replacement is going to be done on. arg0
f7f07c95 1107 is argument 0 from the phi. Likewise for arg1. */
33784d89 1108
70512b93 1109static bool
33784d89 1110abs_replacement (basic_block cond_bb, basic_block middle_bb,
a4844041 1111 edge e0 ATTRIBUTE_UNUSED, edge e1,
75a70cf9 1112 gimple phi, tree arg0, tree arg1)
70512b93 1113{
1114 tree result;
75a70cf9 1115 gimple new_stmt, cond;
1116 gimple_stmt_iterator gsi;
70512b93 1117 edge true_edge, false_edge;
75a70cf9 1118 gimple assign;
70512b93 1119 edge e;
194899bf 1120 tree rhs, lhs;
70512b93 1121 bool negate;
1122 enum tree_code cond_code;
1123
1124 /* If the type says honor signed zeros we cannot do this
dac49aa5 1125 optimization. */
70512b93 1126 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
1127 return false;
1128
70512b93 1129 /* OTHER_BLOCK must have only one executable statement which must have the
1130 form arg0 = -arg1 or arg1 = -arg0. */
70512b93 1131
194899bf 1132 assign = last_and_only_stmt (middle_bb);
70512b93 1133 /* If we did not find the proper negation assignment, then we can not
1134 optimize. */
1135 if (assign == NULL)
1136 return false;
48e1416a 1137
194899bf 1138 /* If we got here, then we have found the only executable statement
1139 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1140 arg1 = -arg0, then we can not optimize. */
75a70cf9 1141 if (gimple_code (assign) != GIMPLE_ASSIGN)
194899bf 1142 return false;
1143
75a70cf9 1144 lhs = gimple_assign_lhs (assign);
194899bf 1145
75a70cf9 1146 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
194899bf 1147 return false;
1148
75a70cf9 1149 rhs = gimple_assign_rhs1 (assign);
48e1416a 1150
194899bf 1151 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1152 if (!(lhs == arg0 && rhs == arg1)
1153 && !(lhs == arg1 && rhs == arg0))
1154 return false;
70512b93 1155
75a70cf9 1156 cond = last_stmt (cond_bb);
70512b93 1157 result = PHI_RESULT (phi);
1158
1159 /* Only relationals comparing arg[01] against zero are interesting. */
75a70cf9 1160 cond_code = gimple_cond_code (cond);
70512b93 1161 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1162 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1163 return false;
1164
dac49aa5 1165 /* Make sure the conditional is arg[01] OP y. */
75a70cf9 1166 if (gimple_cond_lhs (cond) != rhs)
70512b93 1167 return false;
1168
75a70cf9 1169 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1170 ? real_zerop (gimple_cond_rhs (cond))
1171 : integer_zerop (gimple_cond_rhs (cond)))
70512b93 1172 ;
1173 else
1174 return false;
1175
1176 /* We need to know which is the true edge and which is the false
1177 edge so that we know if have abs or negative abs. */
33784d89 1178 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
70512b93 1179
1180 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1181 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1182 the false edge goes to OTHER_BLOCK. */
1183 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1184 e = true_edge;
1185 else
1186 e = false_edge;
20e5647c 1187
33784d89 1188 if (e->dest == middle_bb)
70512b93 1189 negate = true;
1190 else
1191 negate = false;
20e5647c 1192
33784d89 1193 result = duplicate_ssa_name (result, NULL);
20e5647c 1194
70512b93 1195 if (negate)
03d37e4e 1196 lhs = make_ssa_name (TREE_TYPE (result), NULL);
70512b93 1197 else
1198 lhs = result;
1199
dac49aa5 1200 /* Build the modify expression with abs expression. */
75a70cf9 1201 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
70512b93 1202
75a70cf9 1203 gsi = gsi_last_bb (cond_bb);
1204 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
70512b93 1205
1206 if (negate)
1207 {
75a70cf9 1208 /* Get the right GSI. We want to insert after the recently
70512b93 1209 added ABS_EXPR statement (which we know is the first statement
1210 in the block. */
75a70cf9 1211 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
70512b93 1212
75a70cf9 1213 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
70512b93 1214 }
20e5647c 1215
a4844041 1216 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
70512b93 1217
1218 /* Note that we optimized this PHI. */
1219 return true;
1220}
1221
e6d0e152 1222/* Auxiliary functions to determine the set of memory accesses which
1223 can't trap because they are preceded by accesses to the same memory
182cf5a9 1224 portion. We do that for MEM_REFs, so we only need to track
e6d0e152 1225 the SSA_NAME of the pointer indirectly referenced. The algorithm
1226 simply is a walk over all instructions in dominator order. When
182cf5a9 1227 we see an MEM_REF we determine if we've already seen a same
e6d0e152 1228 ref anywhere up to the root of the dominator tree. If we do the
af4f74fa 1229 current access can't trap. If we don't see any dominating access
e6d0e152 1230 the current access might trap, but might also make later accesses
af4f74fa 1231 non-trapping, so we remember it. We need to be careful with loads
1232 or stores, for instance a load might not trap, while a store would,
1233 so if we see a dominating read access this doesn't mean that a later
1234 write access would not trap. Hence we also need to differentiate the
1235 type of access(es) seen.
1236
1237 ??? We currently are very conservative and assume that a load might
1238 trap even if a store doesn't (write-only memory). This probably is
1239 overly conservative. */
e6d0e152 1240
182cf5a9 1241/* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
e6d0e152 1242 through it was seen, which would constitute a no-trap region for
1243 same accesses. */
1244struct name_to_bb
1245{
963aee26 1246 unsigned int ssa_name_ver;
42540642 1247 unsigned int phase;
963aee26 1248 bool store;
1249 HOST_WIDE_INT offset, size;
e6d0e152 1250 basic_block bb;
1251};
1252
d9dd21a8 1253/* Hashtable helpers. */
1254
1255struct ssa_names_hasher : typed_free_remove <name_to_bb>
1256{
1257 typedef name_to_bb value_type;
1258 typedef name_to_bb compare_type;
1259 static inline hashval_t hash (const value_type *);
1260 static inline bool equal (const value_type *, const compare_type *);
1261};
e6d0e152 1262
42540642 1263/* Used for quick clearing of the hash-table when we see calls.
1264 Hash entries with phase < nt_call_phase are invalid. */
1265static unsigned int nt_call_phase;
1266
182cf5a9 1267/* The set of MEM_REFs which can't trap. */
e6d0e152 1268static struct pointer_set_t *nontrap_set;
1269
963aee26 1270/* The hash function. */
d9dd21a8 1271
1272inline hashval_t
1273ssa_names_hasher::hash (const value_type *n)
e6d0e152 1274{
963aee26 1275 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1276 ^ (n->offset << 6) ^ (n->size << 3);
e6d0e152 1277}
1278
963aee26 1279/* The equality function of *P1 and *P2. */
e6d0e152 1280
d9dd21a8 1281inline bool
1282ssa_names_hasher::equal (const value_type *n1, const compare_type *n2)
1283{
963aee26 1284 return n1->ssa_name_ver == n2->ssa_name_ver
1285 && n1->store == n2->store
1286 && n1->offset == n2->offset
1287 && n1->size == n2->size;
e6d0e152 1288}
1289
d9dd21a8 1290/* The hash table for remembering what we've seen. */
1291static hash_table <ssa_names_hasher> seen_ssa_names;
1292
f0b5f617 1293/* We see the expression EXP in basic block BB. If it's an interesting
182cf5a9 1294 expression (an MEM_REF through an SSA_NAME) possibly insert the
af4f74fa 1295 expression into the set NONTRAP or the hash table of seen expressions.
1296 STORE is true if this expression is on the LHS, otherwise it's on
1297 the RHS. */
e6d0e152 1298static void
af4f74fa 1299add_or_mark_expr (basic_block bb, tree exp,
1300 struct pointer_set_t *nontrap, bool store)
e6d0e152 1301{
963aee26 1302 HOST_WIDE_INT size;
1303
182cf5a9 1304 if (TREE_CODE (exp) == MEM_REF
963aee26 1305 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1306 && host_integerp (TREE_OPERAND (exp, 1), 0)
1307 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
e6d0e152 1308 {
1309 tree name = TREE_OPERAND (exp, 0);
1310 struct name_to_bb map;
d9dd21a8 1311 name_to_bb **slot;
af4f74fa 1312 struct name_to_bb *n2bb;
e6d0e152 1313 basic_block found_bb = 0;
1314
182cf5a9 1315 /* Try to find the last seen MEM_REF through the same
e6d0e152 1316 SSA_NAME, which can trap. */
963aee26 1317 map.ssa_name_ver = SSA_NAME_VERSION (name);
42540642 1318 map.phase = 0;
e6d0e152 1319 map.bb = 0;
af4f74fa 1320 map.store = store;
963aee26 1321 map.offset = tree_low_cst (TREE_OPERAND (exp, 1), 0);
1322 map.size = size;
1323
d9dd21a8 1324 slot = seen_ssa_names.find_slot (&map, INSERT);
1325 n2bb = *slot;
42540642 1326 if (n2bb && n2bb->phase >= nt_call_phase)
af4f74fa 1327 found_bb = n2bb->bb;
e6d0e152 1328
182cf5a9 1329 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
e6d0e152 1330 (it's in a basic block on the path from us to the dominator root)
1331 then we can't trap. */
42540642 1332 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
e6d0e152 1333 {
1334 pointer_set_insert (nontrap, exp);
1335 }
1336 else
1337 {
1338 /* EXP might trap, so insert it into the hash table. */
af4f74fa 1339 if (n2bb)
e6d0e152 1340 {
42540642 1341 n2bb->phase = nt_call_phase;
af4f74fa 1342 n2bb->bb = bb;
e6d0e152 1343 }
1344 else
1345 {
af4f74fa 1346 n2bb = XNEW (struct name_to_bb);
963aee26 1347 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
42540642 1348 n2bb->phase = nt_call_phase;
af4f74fa 1349 n2bb->bb = bb;
1350 n2bb->store = store;
963aee26 1351 n2bb->offset = map.offset;
1352 n2bb->size = size;
af4f74fa 1353 *slot = n2bb;
e6d0e152 1354 }
1355 }
1356 }
1357}
1358
42540642 1359/* Return true when CALL is a call stmt that definitely doesn't
1360 free any memory or makes it unavailable otherwise. */
e8d4d8a9 1361bool
42540642 1362nonfreeing_call_p (gimple call)
1363{
1364 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
1365 && gimple_call_flags (call) & ECF_LEAF)
1366 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
1367 {
1368 /* Just in case these become ECF_LEAF in the future. */
1369 case BUILT_IN_FREE:
1370 case BUILT_IN_TM_FREE:
1371 case BUILT_IN_REALLOC:
1372 case BUILT_IN_STACK_RESTORE:
1373 return false;
1374 default:
1375 return true;
1376 }
1377
1378 return false;
1379}
1380
e6d0e152 1381/* Called by walk_dominator_tree, when entering the block BB. */
1382static void
1383nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1384{
42540642 1385 edge e;
1386 edge_iterator ei;
75a70cf9 1387 gimple_stmt_iterator gsi;
42540642 1388
1389 /* If we haven't seen all our predecessors, clear the hash-table. */
1390 FOR_EACH_EDGE (e, ei, bb->preds)
1391 if ((((size_t)e->src->aux) & 2) == 0)
1392 {
1393 nt_call_phase++;
1394 break;
1395 }
1396
1397 /* Mark this BB as being on the path to dominator root and as visited. */
1398 bb->aux = (void*)(1 | 2);
e6d0e152 1399
1400 /* And walk the statements in order. */
75a70cf9 1401 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
e6d0e152 1402 {
75a70cf9 1403 gimple stmt = gsi_stmt (gsi);
e6d0e152 1404
42540642 1405 if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
1406 nt_call_phase++;
1407 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
e6d0e152 1408 {
75a70cf9 1409 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1410 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
e6d0e152 1411 }
1412 }
1413}
1414
1415/* Called by walk_dominator_tree, when basic block BB is exited. */
1416static void
1417nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1418{
1419 /* This BB isn't on the path to dominator root anymore. */
42540642 1420 bb->aux = (void*)2;
e6d0e152 1421}
1422
1423/* This is the entry point of gathering non trapping memory accesses.
1424 It will do a dominator walk over the whole function, and it will
1425 make use of the bb->aux pointers. It returns a set of trees
182cf5a9 1426 (the MEM_REFs itself) which can't trap. */
e6d0e152 1427static struct pointer_set_t *
1428get_non_trapping (void)
1429{
1430 struct pointer_set_t *nontrap;
1431 struct dom_walk_data walk_data;
1432
42540642 1433 nt_call_phase = 0;
e6d0e152 1434 nontrap = pointer_set_create ();
d9dd21a8 1435 seen_ssa_names.create (128);
e6d0e152 1436 /* We're going to do a dominator walk, so ensure that we have
1437 dominance information. */
1438 calculate_dominance_info (CDI_DOMINATORS);
1439
1440 /* Setup callbacks for the generic dominator tree walker. */
1441 nontrap_set = nontrap;
e6d0e152 1442 walk_data.dom_direction = CDI_DOMINATORS;
1443 walk_data.initialize_block_local_data = NULL;
6bf320fb 1444 walk_data.before_dom_children = nt_init_block;
1445 walk_data.after_dom_children = nt_fini_block;
e6d0e152 1446 walk_data.global_data = NULL;
1447 walk_data.block_local_data_size = 0;
e6d0e152 1448
1449 init_walk_dominator_tree (&walk_data);
1450 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1451 fini_walk_dominator_tree (&walk_data);
d9dd21a8 1452 seen_ssa_names.dispose ();
e6d0e152 1453
42540642 1454 clear_aux_for_blocks ();
e6d0e152 1455 return nontrap;
1456}
1457
1458/* Do the main work of conditional store replacement. We already know
1459 that the recognized pattern looks like so:
1460
1461 split:
1462 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1463 MIDDLE_BB:
1464 something
1465 fallthrough (edge E0)
1466 JOIN_BB:
1467 some more
1468
1469 We check that MIDDLE_BB contains only one store, that that store
1470 doesn't trap (not via NOTRAP, but via checking if an access to the same
1471 memory location dominates us) and that the store has a "simple" RHS. */
1472
1473static bool
1474cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1475 edge e0, edge e1, struct pointer_set_t *nontrap)
1476{
75a70cf9 1477 gimple assign = last_and_only_stmt (middle_bb);
03d37e4e 1478 tree lhs, rhs, name, name2;
75a70cf9 1479 gimple newphi, new_stmt;
1480 gimple_stmt_iterator gsi;
efbcb6de 1481 source_location locus;
e6d0e152 1482
1483 /* Check if middle_bb contains of only one store. */
1484 if (!assign
6cc085b6 1485 || !gimple_assign_single_p (assign)
1486 || gimple_has_volatile_ops (assign))
e6d0e152 1487 return false;
1488
efbcb6de 1489 locus = gimple_location (assign);
75a70cf9 1490 lhs = gimple_assign_lhs (assign);
1491 rhs = gimple_assign_rhs1 (assign);
182cf5a9 1492 if (TREE_CODE (lhs) != MEM_REF
91cf53d5 1493 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
3211fa0a 1494 || !is_gimple_reg_type (TREE_TYPE (lhs)))
e6d0e152 1495 return false;
91cf53d5 1496
e6d0e152 1497 /* Prove that we can move the store down. We could also check
1498 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1499 whose value is not available readily, which we want to avoid. */
1500 if (!pointer_set_contains (nontrap, lhs))
1501 return false;
1502
1503 /* Now we've checked the constraints, so do the transformation:
1504 1) Remove the single store. */
75a70cf9 1505 gsi = gsi_for_stmt (assign);
3211fa0a 1506 unlink_stmt_vdef (assign);
75a70cf9 1507 gsi_remove (&gsi, true);
91cf53d5 1508 release_defs (assign);
e6d0e152 1509
03d37e4e 1510 /* 2) Insert a load from the memory of the store to the temporary
e6d0e152 1511 on the edge which did not contain the store. */
1512 lhs = unshare_expr (lhs);
03d37e4e 1513 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1514 new_stmt = gimple_build_assign (name, lhs);
efbcb6de 1515 gimple_set_location (new_stmt, locus);
75a70cf9 1516 gsi_insert_on_edge (e1, new_stmt);
e6d0e152 1517
03d37e4e 1518 /* 3) Create a PHI node at the join block, with one argument
e6d0e152 1519 holding the old RHS, and the other holding the temporary
1520 where we stored the old memory contents. */
03d37e4e 1521 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1522 newphi = create_phi_node (name2, join_bb);
60d535d2 1523 add_phi_arg (newphi, rhs, e0, locus);
1524 add_phi_arg (newphi, name, e1, locus);
e6d0e152 1525
1526 lhs = unshare_expr (lhs);
75a70cf9 1527 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
e6d0e152 1528
03d37e4e 1529 /* 4) Insert that PHI node. */
75a70cf9 1530 gsi = gsi_after_labels (join_bb);
1531 if (gsi_end_p (gsi))
e6d0e152 1532 {
75a70cf9 1533 gsi = gsi_last_bb (join_bb);
1534 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
e6d0e152 1535 }
1536 else
75a70cf9 1537 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
e6d0e152 1538
1539 return true;
1540}
4ee9c684 1541
ec611e12 1542/* Do the main work of conditional store replacement. */
91cf53d5 1543
1544static bool
ec611e12 1545cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1546 basic_block join_bb, gimple then_assign,
1547 gimple else_assign)
91cf53d5 1548{
03d37e4e 1549 tree lhs_base, lhs, then_rhs, else_rhs, name;
91cf53d5 1550 source_location then_locus, else_locus;
1551 gimple_stmt_iterator gsi;
1552 gimple newphi, new_stmt;
1553
91cf53d5 1554 if (then_assign == NULL
1555 || !gimple_assign_single_p (then_assign)
3c25489e 1556 || gimple_clobber_p (then_assign)
6cc085b6 1557 || gimple_has_volatile_ops (then_assign)
91cf53d5 1558 || else_assign == NULL
3c25489e 1559 || !gimple_assign_single_p (else_assign)
6cc085b6 1560 || gimple_clobber_p (else_assign)
1561 || gimple_has_volatile_ops (else_assign))
91cf53d5 1562 return false;
1563
1564 lhs = gimple_assign_lhs (then_assign);
1565 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1566 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1567 return false;
1568
1569 lhs_base = get_base_address (lhs);
1570 if (lhs_base == NULL_TREE
1571 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1572 return false;
1573
1574 then_rhs = gimple_assign_rhs1 (then_assign);
1575 else_rhs = gimple_assign_rhs1 (else_assign);
1576 then_locus = gimple_location (then_assign);
1577 else_locus = gimple_location (else_assign);
1578
1579 /* Now we've checked the constraints, so do the transformation:
1580 1) Remove the stores. */
1581 gsi = gsi_for_stmt (then_assign);
1582 unlink_stmt_vdef (then_assign);
1583 gsi_remove (&gsi, true);
1584 release_defs (then_assign);
1585
1586 gsi = gsi_for_stmt (else_assign);
1587 unlink_stmt_vdef (else_assign);
1588 gsi_remove (&gsi, true);
1589 release_defs (else_assign);
1590
03d37e4e 1591 /* 2) Create a PHI node at the join block, with one argument
91cf53d5 1592 holding the old RHS, and the other holding the temporary
1593 where we stored the old memory contents. */
03d37e4e 1594 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1595 newphi = create_phi_node (name, join_bb);
60d535d2 1596 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1597 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
91cf53d5 1598
1599 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1600
03d37e4e 1601 /* 3) Insert that PHI node. */
91cf53d5 1602 gsi = gsi_after_labels (join_bb);
1603 if (gsi_end_p (gsi))
1604 {
1605 gsi = gsi_last_bb (join_bb);
1606 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1607 }
1608 else
1609 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1610
1611 return true;
1612}
1613
ec611e12 1614/* Conditional store replacement. We already know
1615 that the recognized pattern looks like so:
1616
1617 split:
1618 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1619 THEN_BB:
1620 ...
1621 X = Y;
1622 ...
1623 goto JOIN_BB;
1624 ELSE_BB:
1625 ...
1626 X = Z;
1627 ...
1628 fallthrough (edge E0)
1629 JOIN_BB:
1630 some more
1631
1632 We check that it is safe to sink the store to JOIN_BB by verifying that
1633 there are no read-after-write or write-after-write dependencies in
1634 THEN_BB and ELSE_BB. */
1635
1636static bool
1637cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1638 basic_block join_bb)
1639{
1640 gimple then_assign = last_and_only_stmt (then_bb);
1641 gimple else_assign = last_and_only_stmt (else_bb);
f1f41a6c 1642 vec<data_reference_p> then_datarefs, else_datarefs;
1643 vec<ddr_p> then_ddrs, else_ddrs;
ec611e12 1644 gimple then_store, else_store;
1645 bool found, ok = false, res;
1646 struct data_dependence_relation *ddr;
1647 data_reference_p then_dr, else_dr;
1648 int i, j;
1649 tree then_lhs, else_lhs;
f1f41a6c 1650 vec<gimple> then_stores, else_stores;
ec611e12 1651 basic_block blocks[3];
1652
1653 if (MAX_STORES_TO_SINK == 0)
1654 return false;
1655
1656 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1657 if (then_assign && else_assign)
1658 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1659 then_assign, else_assign);
1660
1661 /* Find data references. */
f1f41a6c 1662 then_datarefs.create (1);
1663 else_datarefs.create (1);
ec611e12 1664 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1665 == chrec_dont_know)
f1f41a6c 1666 || !then_datarefs.length ()
ec611e12 1667 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1668 == chrec_dont_know)
f1f41a6c 1669 || !else_datarefs.length ())
ec611e12 1670 {
1671 free_data_refs (then_datarefs);
1672 free_data_refs (else_datarefs);
1673 return false;
1674 }
1675
1676 /* Find pairs of stores with equal LHS. */
f1f41a6c 1677 then_stores.create (1);
1678 else_stores.create (1);
1679 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
ec611e12 1680 {
1681 if (DR_IS_READ (then_dr))
1682 continue;
1683
1684 then_store = DR_STMT (then_dr);
728dcc71 1685 then_lhs = gimple_get_lhs (then_store);
ec611e12 1686 found = false;
1687
f1f41a6c 1688 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
ec611e12 1689 {
1690 if (DR_IS_READ (else_dr))
1691 continue;
1692
1693 else_store = DR_STMT (else_dr);
728dcc71 1694 else_lhs = gimple_get_lhs (else_store);
ec611e12 1695
1696 if (operand_equal_p (then_lhs, else_lhs, 0))
1697 {
1698 found = true;
1699 break;
1700 }
1701 }
1702
1703 if (!found)
1704 continue;
1705
f1f41a6c 1706 then_stores.safe_push (then_store);
1707 else_stores.safe_push (else_store);
ec611e12 1708 }
1709
1710 /* No pairs of stores found. */
f1f41a6c 1711 if (!then_stores.length ()
1712 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
ec611e12 1713 {
1714 free_data_refs (then_datarefs);
1715 free_data_refs (else_datarefs);
f1f41a6c 1716 then_stores.release ();
1717 else_stores.release ();
ec611e12 1718 return false;
1719 }
1720
1721 /* Compute and check data dependencies in both basic blocks. */
f1f41a6c 1722 then_ddrs.create (1);
1723 else_ddrs.create (1);
1724 if (!compute_all_dependences (then_datarefs, &then_ddrs,
1e094109 1725 vNULL, false)
f1f41a6c 1726 || !compute_all_dependences (else_datarefs, &else_ddrs,
1e094109 1727 vNULL, false))
8b3fb720 1728 {
1729 free_dependence_relations (then_ddrs);
1730 free_dependence_relations (else_ddrs);
1731 free_data_refs (then_datarefs);
1732 free_data_refs (else_datarefs);
f1f41a6c 1733 then_stores.release ();
1734 else_stores.release ();
8b3fb720 1735 return false;
1736 }
ec611e12 1737 blocks[0] = then_bb;
1738 blocks[1] = else_bb;
1739 blocks[2] = join_bb;
1740 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1741
1742 /* Check that there are no read-after-write or write-after-write dependencies
1743 in THEN_BB. */
f1f41a6c 1744 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
ec611e12 1745 {
1746 struct data_reference *dra = DDR_A (ddr);
1747 struct data_reference *drb = DDR_B (ddr);
1748
1749 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1750 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1751 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1752 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1753 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1754 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1755 {
1756 free_dependence_relations (then_ddrs);
1757 free_dependence_relations (else_ddrs);
2473bfb7 1758 free_data_refs (then_datarefs);
1759 free_data_refs (else_datarefs);
f1f41a6c 1760 then_stores.release ();
1761 else_stores.release ();
ec611e12 1762 return false;
1763 }
1764 }
1765
1766 /* Check that there are no read-after-write or write-after-write dependencies
1767 in ELSE_BB. */
f1f41a6c 1768 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
ec611e12 1769 {
1770 struct data_reference *dra = DDR_A (ddr);
1771 struct data_reference *drb = DDR_B (ddr);
1772
1773 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1774 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1775 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1776 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1777 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1778 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1779 {
1780 free_dependence_relations (then_ddrs);
1781 free_dependence_relations (else_ddrs);
2473bfb7 1782 free_data_refs (then_datarefs);
1783 free_data_refs (else_datarefs);
f1f41a6c 1784 then_stores.release ();
1785 else_stores.release ();
ec611e12 1786 return false;
1787 }
1788 }
1789
1790 /* Sink stores with same LHS. */
f1f41a6c 1791 FOR_EACH_VEC_ELT (then_stores, i, then_store)
ec611e12 1792 {
f1f41a6c 1793 else_store = else_stores[i];
ec611e12 1794 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1795 then_store, else_store);
1796 ok = ok || res;
1797 }
1798
1799 free_dependence_relations (then_ddrs);
1800 free_dependence_relations (else_ddrs);
2473bfb7 1801 free_data_refs (then_datarefs);
1802 free_data_refs (else_datarefs);
f1f41a6c 1803 then_stores.release ();
1804 else_stores.release ();
ec611e12 1805
1806 return ok;
1807}
1808
239e9670 1809/* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1810
1811static bool
1812local_mem_dependence (gimple stmt, basic_block bb)
1813{
1814 tree vuse = gimple_vuse (stmt);
1815 gimple def;
1816
1817 if (!vuse)
1818 return false;
1819
1820 def = SSA_NAME_DEF_STMT (vuse);
1821 return (def && gimple_bb (def) == bb);
1822}
1823
1824/* Given a "diamond" control-flow pattern where BB0 tests a condition,
1825 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1826 and BB3 rejoins control flow following BB1 and BB2, look for
1827 opportunities to hoist loads as follows. If BB3 contains a PHI of
1828 two loads, one each occurring in BB1 and BB2, and the loads are
1829 provably of adjacent fields in the same structure, then move both
1830 loads into BB0. Of course this can only be done if there are no
1831 dependencies preventing such motion.
1832
1833 One of the hoisted loads will always be speculative, so the
1834 transformation is currently conservative:
1835
1836 - The fields must be strictly adjacent.
1837 - The two fields must occupy a single memory block that is
1838 guaranteed to not cross a page boundary.
1839
1840 The last is difficult to prove, as such memory blocks should be
1841 aligned on the minimum of the stack alignment boundary and the
1842 alignment guaranteed by heap allocation interfaces. Thus we rely
1843 on a parameter for the alignment value.
1844
1845 Provided a good value is used for the last case, the first
1846 restriction could possibly be relaxed. */
1847
1848static void
1849hoist_adjacent_loads (basic_block bb0, basic_block bb1,
1850 basic_block bb2, basic_block bb3)
1851{
1852 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
1853 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1854 gimple_stmt_iterator gsi;
1855
1856 /* Walk the phis in bb3 looking for an opportunity. We are looking
1857 for phis of two SSA names, one each of which is defined in bb1 and
1858 bb2. */
1859 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
1860 {
1861 gimple phi_stmt = gsi_stmt (gsi);
1862 gimple def1, def2, defswap;
1863 tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
1864 tree tree_offset1, tree_offset2, tree_size2, next;
1865 int offset1, offset2, size2;
1866 unsigned align1;
1867 gimple_stmt_iterator gsi2;
1868 basic_block bb_for_def1, bb_for_def2;
1869
7c782c9b 1870 if (gimple_phi_num_args (phi_stmt) != 2
1871 || virtual_operand_p (gimple_phi_result (phi_stmt)))
239e9670 1872 continue;
1873
1874 arg1 = gimple_phi_arg_def (phi_stmt, 0);
1875 arg2 = gimple_phi_arg_def (phi_stmt, 1);
1876
1877 if (TREE_CODE (arg1) != SSA_NAME
1878 || TREE_CODE (arg2) != SSA_NAME
1879 || SSA_NAME_IS_DEFAULT_DEF (arg1)
7c782c9b 1880 || SSA_NAME_IS_DEFAULT_DEF (arg2))
239e9670 1881 continue;
1882
1883 def1 = SSA_NAME_DEF_STMT (arg1);
1884 def2 = SSA_NAME_DEF_STMT (arg2);
1885
1886 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
1887 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
1888 continue;
1889
1890 /* Check the mode of the arguments to be sure a conditional move
1891 can be generated for it. */
935611bc 1892 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
1893 == CODE_FOR_nothing)
239e9670 1894 continue;
1895
1896 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
1897 if (!gimple_assign_single_p (def1)
6cc085b6 1898 || !gimple_assign_single_p (def2)
1899 || gimple_has_volatile_ops (def1)
1900 || gimple_has_volatile_ops (def2))
239e9670 1901 continue;
1902
1903 ref1 = gimple_assign_rhs1 (def1);
1904 ref2 = gimple_assign_rhs1 (def2);
1905
1906 if (TREE_CODE (ref1) != COMPONENT_REF
1907 || TREE_CODE (ref2) != COMPONENT_REF)
1908 continue;
1909
1910 /* The zeroth operand of the two component references must be
1911 identical. It is not sufficient to compare get_base_address of
1912 the two references, because this could allow for different
1913 elements of the same array in the two trees. It is not safe to
1914 assume that the existence of one array element implies the
1915 existence of a different one. */
1916 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
1917 continue;
1918
1919 field1 = TREE_OPERAND (ref1, 1);
1920 field2 = TREE_OPERAND (ref2, 1);
1921
1922 /* Check for field adjacency, and ensure field1 comes first. */
1923 for (next = DECL_CHAIN (field1);
1924 next && TREE_CODE (next) != FIELD_DECL;
1925 next = DECL_CHAIN (next))
1926 ;
1927
1928 if (next != field2)
1929 {
1930 for (next = DECL_CHAIN (field2);
1931 next && TREE_CODE (next) != FIELD_DECL;
1932 next = DECL_CHAIN (next))
1933 ;
1934
1935 if (next != field1)
1936 continue;
1937
1938 fieldswap = field1;
1939 field1 = field2;
1940 field2 = fieldswap;
1941 defswap = def1;
1942 def1 = def2;
1943 def2 = defswap;
239e9670 1944 }
1945
7c74ee50 1946 bb_for_def1 = gimple_bb (def1);
1947 bb_for_def2 = gimple_bb (def2);
1948
239e9670 1949 /* Check for proper alignment of the first field. */
1950 tree_offset1 = bit_position (field1);
1951 tree_offset2 = bit_position (field2);
1952 tree_size2 = DECL_SIZE (field2);
1953
1954 if (!host_integerp (tree_offset1, 1)
1955 || !host_integerp (tree_offset2, 1)
1956 || !host_integerp (tree_size2, 1))
1957 continue;
1958
1959 offset1 = TREE_INT_CST_LOW (tree_offset1);
1960 offset2 = TREE_INT_CST_LOW (tree_offset2);
1961 size2 = TREE_INT_CST_LOW (tree_size2);
1962 align1 = DECL_ALIGN (field1) % param_align_bits;
1963
1964 if (offset1 % BITS_PER_UNIT != 0)
1965 continue;
1966
1967 /* For profitability, the two field references should fit within
1968 a single cache line. */
1969 if (align1 + offset2 - offset1 + size2 > param_align_bits)
1970 continue;
1971
1972 /* The two expressions cannot be dependent upon vdefs defined
1973 in bb1/bb2. */
1974 if (local_mem_dependence (def1, bb_for_def1)
1975 || local_mem_dependence (def2, bb_for_def2))
1976 continue;
1977
1978 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
1979 bb0. We hoist the first one first so that a cache miss is handled
1980 efficiently regardless of hardware cache-fill policy. */
1981 gsi2 = gsi_for_stmt (def1);
1982 gsi_move_to_bb_end (&gsi2, bb0);
1983 gsi2 = gsi_for_stmt (def2);
1984 gsi_move_to_bb_end (&gsi2, bb0);
1985
1986 if (dump_file && (dump_flags & TDF_DETAILS))
1987 {
1988 fprintf (dump_file,
1989 "\nHoisting adjacent loads from %d and %d into %d: \n",
1990 bb_for_def1->index, bb_for_def2->index, bb0->index);
1991 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
1992 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
1993 }
1994 }
1995}
1996
1997/* Determine whether we should attempt to hoist adjacent loads out of
1998 diamond patterns in pass_phiopt. Always hoist loads if
1999 -fhoist-adjacent-loads is specified and the target machine has
6f0ddab1 2000 both a conditional move instruction and a defined cache line size. */
239e9670 2001
2002static bool
2003gate_hoist_loads (void)
2004{
6f0ddab1 2005 return (flag_hoist_adjacent_loads == 1
2006 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2007 && HAVE_conditional_move);
239e9670 2008}
2009
4ee9c684 2010/* Always do these optimizations if we have SSA
20e5647c 2011 trees to work on. */
4ee9c684 2012static bool
2013gate_phiopt (void)
2014{
2015 return 1;
2016}
20e5647c 2017
20099e35 2018struct gimple_opt_pass pass_phiopt =
4ee9c684 2019{
20099e35 2020 {
2021 GIMPLE_PASS,
4ee9c684 2022 "phiopt", /* name */
c7875731 2023 OPTGROUP_NONE, /* optinfo_flags */
4ee9c684 2024 gate_phiopt, /* gate */
2025 tree_ssa_phiopt, /* execute */
2026 NULL, /* sub */
2027 NULL, /* next */
2028 0, /* static_pass_number */
2029 TV_TREE_PHIOPT, /* tv_id */
2f8eb909 2030 PROP_cfg | PROP_ssa, /* properties_required */
4ee9c684 2031 0, /* properties_provided */
2032 0, /* properties_destroyed */
2033 0, /* todo_flags_start */
ef3baff5 2034 TODO_verify_ssa
88dbf20f 2035 | TODO_verify_flow
20099e35 2036 | TODO_verify_stmts /* todo_flags_finish */
2037 }
4ee9c684 2038};
e6d0e152 2039
2040static bool
2041gate_cselim (void)
2042{
2043 return flag_tree_cselim;
2044}
2045
20099e35 2046struct gimple_opt_pass pass_cselim =
e6d0e152 2047{
20099e35 2048 {
2049 GIMPLE_PASS,
e6d0e152 2050 "cselim", /* name */
c7875731 2051 OPTGROUP_NONE, /* optinfo_flags */
e6d0e152 2052 gate_cselim, /* gate */
2053 tree_ssa_cs_elim, /* execute */
2054 NULL, /* sub */
2055 NULL, /* next */
2056 0, /* static_pass_number */
2057 TV_TREE_PHIOPT, /* tv_id */
2f8eb909 2058 PROP_cfg | PROP_ssa, /* properties_required */
e6d0e152 2059 0, /* properties_provided */
2060 0, /* properties_destroyed */
2061 0, /* todo_flags_start */
ef3baff5 2062 TODO_verify_ssa
e6d0e152 2063 | TODO_verify_flow
20099e35 2064 | TODO_verify_stmts /* todo_flags_finish */
2065 }
e6d0e152 2066};