]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-phiopt.c
2017-10-10 Thomas Koenig <tkoenig@gcc.gnu.org>
[thirdparty/gcc.git] / gcc / tree-ssa-phiopt.c
CommitLineData
4ee9c684 1/* Optimization of PHI nodes by converting them into straightline code.
aad93da1 2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
4ee9c684 3
4This file is part of GCC.
20e5647c 5
4ee9c684 6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8c4c00c1 8Free Software Foundation; either version 3, or (at your option) any
4ee9c684 9later version.
20e5647c 10
4ee9c684 11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
20e5647c 15
4ee9c684 16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
4ee9c684 19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
9ef16211 23#include "backend.h"
7c29e30e 24#include "insn-codes.h"
25#include "rtl.h"
4ee9c684 26#include "tree.h"
9ef16211 27#include "gimple.h"
7c29e30e 28#include "cfghooks.h"
29#include "tree-pass.h"
9ef16211 30#include "ssa.h"
7c29e30e 31#include "optabs-tree.h"
32#include "insn-config.h"
33#include "gimple-pretty-print.h"
b20a8bb4 34#include "fold-const.h"
9ed99284 35#include "stor-layout.h"
94ea8568 36#include "cfganal.h"
a8783bee 37#include "gimplify.h"
dcf1a1ec 38#include "gimple-iterator.h"
e795d6e1 39#include "gimplify-me.h"
073c1fd5 40#include "tree-cfg.h"
073c1fd5 41#include "tree-dfa.h"
e6d0e152 42#include "domwalk.h"
ec611e12 43#include "cfgloop.h"
44#include "tree-data-ref.h"
f6568ea4 45#include "tree-scalar-evolution.h"
b6814ca0 46#include "tree-inline.h"
0d8001a7 47#include "params.h"
239e9670 48
239e9670 49static unsigned int tree_ssa_phiopt_worker (bool, bool);
a4844041 50static bool conditional_replacement (basic_block, basic_block,
1a91d914 51 edge, edge, gphi *, tree, tree);
8100256d 52static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree,
53 gimple *);
fb9912ea 54static int value_replacement (basic_block, basic_block,
42acab1c 55 edge, edge, gimple *, tree, tree);
a4844041 56static bool minmax_replacement (basic_block, basic_block,
42acab1c 57 edge, edge, gimple *, tree, tree);
a4844041 58static bool abs_replacement (basic_block, basic_block,
42acab1c 59 edge, edge, gimple *, tree, tree);
e6d0e152 60static bool cond_store_replacement (basic_block, basic_block, edge, edge,
431205b7 61 hash_set<tree> *);
91cf53d5 62static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
431205b7 63static hash_set<tree> * get_non_trapping ();
42acab1c 64static void replace_phi_edge_with_variable (basic_block, edge, gimple *, tree);
239e9670 65static void hoist_adjacent_loads (basic_block, basic_block,
66 basic_block, basic_block);
67static bool gate_hoist_loads (void);
902929aa 68
e6d0e152 69/* This pass tries to transform conditional stores into unconditional
70 ones, enabling further simplifications with the simpler then and else
71 blocks. In particular it replaces this:
72
73 bb0:
74 if (cond) goto bb2; else goto bb1;
75 bb1:
91cf53d5 76 *p = RHS;
e6d0e152 77 bb2:
78
79 with
80
81 bb0:
82 if (cond) goto bb1; else goto bb2;
83 bb1:
84 condtmp' = *p;
85 bb2:
86 condtmp = PHI <RHS, condtmp'>
91cf53d5 87 *p = condtmp;
e6d0e152 88
89 This transformation can only be done under several constraints,
91cf53d5 90 documented below. It also replaces:
91
92 bb0:
93 if (cond) goto bb2; else goto bb1;
94 bb1:
95 *p = RHS1;
96 goto bb3;
97 bb2:
98 *p = RHS2;
99 bb3:
100
101 with
102
103 bb0:
104 if (cond) goto bb3; else goto bb1;
105 bb1:
106 bb3:
107 condtmp = PHI <RHS1, RHS2>
108 *p = condtmp; */
e6d0e152 109
110static unsigned int
111tree_ssa_cs_elim (void)
112{
f6568ea4 113 unsigned todo;
114 /* ??? We are not interested in loop related info, but the following
115 will create it, ICEing as we didn't init loops with pre-headers.
116 An interfacing issue of find_data_references_in_bb. */
117 loop_optimizer_init (LOOPS_NORMAL);
118 scev_initialize ();
119 todo = tree_ssa_phiopt_worker (true, false);
120 scev_finalize ();
121 loop_optimizer_finalize ();
122 return todo;
e6d0e152 123}
124
c3597b05 125/* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
126
1a91d914 127static gphi *
c3597b05 128single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
129{
130 gimple_stmt_iterator i;
1a91d914 131 gphi *phi = NULL;
c3597b05 132 if (gimple_seq_singleton_p (seq))
1a91d914 133 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
c3597b05 134 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
135 {
1a91d914 136 gphi *p = as_a <gphi *> (gsi_stmt (i));
c3597b05 137 /* If the PHI arguments are equal then we can skip this PHI. */
138 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
139 gimple_phi_arg_def (p, e1->dest_idx)))
140 continue;
141
142 /* If we already have a PHI that has the two edge arguments are
143 different, then return it is not a singleton for these PHIs. */
144 if (phi)
145 return NULL;
146
147 phi = p;
148 }
149 return phi;
150}
151
e6d0e152 152/* The core routine of conditional store replacement and normal
153 phi optimizations. Both share much of the infrastructure in how
154 to match applicable basic block patterns. DO_STORE_ELIM is true
239e9670 155 when we want to do conditional store replacement, false otherwise.
f32420fb 156 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
239e9670 157 of diamond control flow patterns, false otherwise. */
e6d0e152 158static unsigned int
239e9670 159tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
4ee9c684 160{
161 basic_block bb;
194899bf 162 basic_block *bb_order;
163 unsigned n, i;
1e4b21e3 164 bool cfgchanged = false;
431205b7 165 hash_set<tree> *nontrap = 0;
e6d0e152 166
167 if (do_store_elim)
03d37e4e 168 /* Calculate the set of non-trapping memory accesses. */
169 nontrap = get_non_trapping ();
194899bf 170
171 /* Search every basic block for COND_EXPR we may be able to optimize.
172
173 We walk the blocks in order that guarantees that a block with
174 a single predecessor is processed before the predecessor.
175 This ensures that we collapse inner ifs before visiting the
176 outer ones, and also that we do not try to visit a removed
177 block. */
ba4d2b2f 178 bb_order = single_pred_before_succ_order ();
a28770e1 179 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
4ee9c684 180
48e1416a 181 for (i = 0; i < n; i++)
4ee9c684 182 {
42acab1c 183 gimple *cond_stmt;
1a91d914 184 gphi *phi;
33784d89 185 basic_block bb1, bb2;
186 edge e1, e2;
194899bf 187 tree arg0, arg1;
188
189 bb = bb_order[i];
20e5647c 190
75a70cf9 191 cond_stmt = last_stmt (bb);
192 /* Check to see if the last statement is a GIMPLE_COND. */
193 if (!cond_stmt
194 || gimple_code (cond_stmt) != GIMPLE_COND)
33784d89 195 continue;
20e5647c 196
33784d89 197 e1 = EDGE_SUCC (bb, 0);
198 bb1 = e1->dest;
199 e2 = EDGE_SUCC (bb, 1);
200 bb2 = e2->dest;
20e5647c 201
33784d89 202 /* We cannot do the optimization on abnormal edges. */
203 if ((e1->flags & EDGE_ABNORMAL) != 0
204 || (e2->flags & EDGE_ABNORMAL) != 0)
205 continue;
20e5647c 206
33784d89 207 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
ea091dfd 208 if (EDGE_COUNT (bb1->succs) == 0
33784d89 209 || bb2 == NULL
ea091dfd 210 || EDGE_COUNT (bb2->succs) == 0)
33784d89 211 continue;
20e5647c 212
33784d89 213 /* Find the bb which is the fall through to the other. */
214 if (EDGE_SUCC (bb1, 0)->dest == bb2)
215 ;
216 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
217 {
a4f59596 218 std::swap (bb1, bb2);
219 std::swap (e1, e2);
33784d89 220 }
91cf53d5 221 else if (do_store_elim
222 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
223 {
224 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
225
226 if (!single_succ_p (bb1)
227 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
228 || !single_succ_p (bb2)
229 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
230 || EDGE_COUNT (bb3->preds) != 2)
231 continue;
232 if (cond_if_else_store_replacement (bb1, bb2, bb3))
233 cfgchanged = true;
234 continue;
235 }
239e9670 236 else if (do_hoist_loads
8100256d 237 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
239e9670 238 {
239 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
240
241 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
242 && single_succ_p (bb1)
243 && single_succ_p (bb2)
244 && single_pred_p (bb1)
245 && single_pred_p (bb2)
246 && EDGE_COUNT (bb->succs) == 2
247 && EDGE_COUNT (bb3->preds) == 2
248 /* If one edge or the other is dominant, a conditional move
249 is likely to perform worse than the well-predicted branch. */
250 && !predictable_edge_p (EDGE_SUCC (bb, 0))
251 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
252 hoist_adjacent_loads (bb, bb1, bb2, bb3);
253 continue;
254 }
33784d89 255 else
f32420fb 256 continue;
20e5647c 257
33784d89 258 e1 = EDGE_SUCC (bb1, 0);
20e5647c 259
33784d89 260 /* Make sure that bb1 is just a fall through. */
db5ba14c 261 if (!single_succ_p (bb1)
33784d89 262 || (e1->flags & EDGE_FALLTHRU) == 0)
263 continue;
20e5647c 264
3472707f 265 /* Also make sure that bb1 only have one predecessor and that it
266 is bb. */
ea091dfd 267 if (!single_pred_p (bb1)
268 || single_pred (bb1) != bb)
33784d89 269 continue;
20e5647c 270
e6d0e152 271 if (do_store_elim)
272 {
273 /* bb1 is the middle block, bb2 the join block, bb the split block,
274 e1 the fallthrough edge from bb1 to bb2. We can't do the
275 optimization if the join block has more than two predecessors. */
276 if (EDGE_COUNT (bb2->preds) > 2)
277 continue;
278 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
279 cfgchanged = true;
280 }
281 else
282 {
75a70cf9 283 gimple_seq phis = phi_nodes (bb2);
2109076a 284 gimple_stmt_iterator gsi;
fb9912ea 285 bool candorest = true;
c3597b05 286
fb9912ea 287 /* Value replacement can work with more than one PHI
288 so try that first. */
289 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
290 {
1a91d914 291 phi = as_a <gphi *> (gsi_stmt (gsi));
fb9912ea 292 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
293 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
294 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
295 {
296 candorest = false;
297 cfgchanged = true;
298 break;
299 }
300 }
e6d0e152 301
fb9912ea 302 if (!candorest)
303 continue;
f32420fb 304
c3597b05 305 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
2109076a 306 if (!phi)
e6d0e152 307 continue;
308
75a70cf9 309 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
310 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
e6d0e152 311
312 /* Something is wrong if we cannot find the arguments in the PHI
313 node. */
5dccd071 314 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
e6d0e152 315
5dccd071 316 gphi *newphi = factor_out_conditional_conversion (e1, e2, phi,
8100256d 317 arg0, arg1,
318 cond_stmt);
5dccd071 319 if (newphi != NULL)
29a78fec 320 {
5dccd071 321 phi = newphi;
29a78fec 322 /* factor_out_conditional_conversion may create a new PHI in
323 BB2 and eliminate an existing PHI in BB2. Recompute values
324 that may be affected by that change. */
29a78fec 325 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
326 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
5dccd071 327 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
29a78fec 328 }
329
e6d0e152 330 /* Do the replacement of conditional if it can be done. */
331 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
332 cfgchanged = true;
e6d0e152 333 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
334 cfgchanged = true;
335 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
336 cfgchanged = true;
337 }
194899bf 338 }
339
340 free (bb_order);
48e1416a 341
e6d0e152 342 if (do_store_elim)
431205b7 343 delete nontrap;
e6d0e152 344 /* If the CFG has changed, we should cleanup the CFG. */
345 if (cfgchanged && do_store_elim)
346 {
347 /* In cond-store replacement we have added some loads on edges
348 and new VOPS (as we moved the store, and created a load). */
75a70cf9 349 gsi_commit_edge_inserts ();
e6d0e152 350 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
351 }
352 else if (cfgchanged)
353 return TODO_cleanup_cfg;
354 return 0;
194899bf 355}
356
fccee353 357/* Replace PHI node element whose edge is E in block BB with variable NEW.
33784d89 358 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
902929aa 359 is known to have two edges, one of which must reach BB). */
360
361static void
a4844041 362replace_phi_edge_with_variable (basic_block cond_block,
42acab1c 363 edge e, gimple *phi, tree new_tree)
902929aa 364{
75a70cf9 365 basic_block bb = gimple_bb (phi);
0e1a77e1 366 basic_block block_to_remove;
75a70cf9 367 gimple_stmt_iterator gsi;
33784d89 368
20e5647c 369 /* Change the PHI argument to new. */
f0d6e81c 370 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
0e1a77e1 371
0e1a77e1 372 /* Remove the empty basic block. */
cd665a06 373 if (EDGE_SUCC (cond_block, 0)->dest == bb)
902929aa 374 {
cd665a06 375 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
376 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
720cfc43 377 EDGE_SUCC (cond_block, 0)->probability = profile_probability::always ();
81c5be57 378 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
0e1a77e1 379
cd665a06 380 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
902929aa 381 }
382 else
383 {
cd665a06 384 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
385 EDGE_SUCC (cond_block, 1)->flags
902929aa 386 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
720cfc43 387 EDGE_SUCC (cond_block, 1)->probability = profile_probability::always ();
81c5be57 388 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
0e1a77e1 389
cd665a06 390 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
902929aa 391 }
0e1a77e1 392 delete_basic_block (block_to_remove);
20e5647c 393
902929aa 394 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
75a70cf9 395 gsi = gsi_last_bb (cond_block);
396 gsi_remove (&gsi, true);
20e5647c 397
902929aa 398 if (dump_file && (dump_flags & TDF_DETAILS))
399 fprintf (dump_file,
400 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
401 cond_block->index,
402 bb->index);
403}
404
29a78fec 405/* PR66726: Factor conversion out of COND_EXPR. If the arguments of the PHI
406 stmt are CONVERT_STMT, factor out the conversion and perform the conversion
8100256d 407 to the result of PHI stmt. COND_STMT is the controlling predicate.
408 Return the newly-created PHI, if any. */
29a78fec 409
5dccd071 410static gphi *
29a78fec 411factor_out_conditional_conversion (edge e0, edge e1, gphi *phi,
8100256d 412 tree arg0, tree arg1, gimple *cond_stmt)
29a78fec 413{
42acab1c 414 gimple *arg0_def_stmt = NULL, *arg1_def_stmt = NULL, *new_stmt;
29a78fec 415 tree new_arg0 = NULL_TREE, new_arg1 = NULL_TREE;
416 tree temp, result;
417 gphi *newphi;
418 gimple_stmt_iterator gsi, gsi_for_def;
419 source_location locus = gimple_location (phi);
420 enum tree_code convert_code;
421
422 /* Handle only PHI statements with two arguments. TODO: If all
423 other arguments to PHI are INTEGER_CST or if their defining
424 statement have the same unary operation, we can handle more
425 than two arguments too. */
426 if (gimple_phi_num_args (phi) != 2)
5dccd071 427 return NULL;
29a78fec 428
429 /* First canonicalize to simplify tests. */
430 if (TREE_CODE (arg0) != SSA_NAME)
431 {
432 std::swap (arg0, arg1);
433 std::swap (e0, e1);
434 }
435
436 if (TREE_CODE (arg0) != SSA_NAME
437 || (TREE_CODE (arg1) != SSA_NAME
438 && TREE_CODE (arg1) != INTEGER_CST))
5dccd071 439 return NULL;
29a78fec 440
441 /* Check if arg0 is an SSA_NAME and the stmt which defines arg0 is
442 a conversion. */
443 arg0_def_stmt = SSA_NAME_DEF_STMT (arg0);
552821b4 444 if (!gimple_assign_cast_p (arg0_def_stmt))
5dccd071 445 return NULL;
29a78fec 446
447 /* Use the RHS as new_arg0. */
448 convert_code = gimple_assign_rhs_code (arg0_def_stmt);
449 new_arg0 = gimple_assign_rhs1 (arg0_def_stmt);
450 if (convert_code == VIEW_CONVERT_EXPR)
552821b4 451 {
452 new_arg0 = TREE_OPERAND (new_arg0, 0);
453 if (!is_gimple_reg_type (TREE_TYPE (new_arg0)))
454 return NULL;
455 }
29a78fec 456
457 if (TREE_CODE (arg1) == SSA_NAME)
458 {
459 /* Check if arg1 is an SSA_NAME and the stmt which defines arg1
460 is a conversion. */
461 arg1_def_stmt = SSA_NAME_DEF_STMT (arg1);
462 if (!is_gimple_assign (arg1_def_stmt)
463 || gimple_assign_rhs_code (arg1_def_stmt) != convert_code)
5dccd071 464 return NULL;
29a78fec 465
466 /* Use the RHS as new_arg1. */
467 new_arg1 = gimple_assign_rhs1 (arg1_def_stmt);
468 if (convert_code == VIEW_CONVERT_EXPR)
469 new_arg1 = TREE_OPERAND (new_arg1, 0);
470 }
471 else
472 {
473 /* If arg1 is an INTEGER_CST, fold it to new type. */
474 if (INTEGRAL_TYPE_P (TREE_TYPE (new_arg0))
475 && int_fits_type_p (arg1, TREE_TYPE (new_arg0)))
476 {
477 if (gimple_assign_cast_p (arg0_def_stmt))
8100256d 478 {
479 /* For the INTEGER_CST case, we are just moving the
480 conversion from one place to another, which can often
481 hurt as the conversion moves further away from the
482 statement that computes the value. So, perform this
483 only if new_arg0 is an operand of COND_STMT, or
484 if arg0_def_stmt is the only non-debug stmt in
485 its basic block, because then it is possible this
486 could enable further optimizations (minmax replacement
487 etc.). See PR71016. */
488 if (new_arg0 != gimple_cond_lhs (cond_stmt)
489 && new_arg0 != gimple_cond_rhs (cond_stmt)
490 && gimple_bb (arg0_def_stmt) == e0->src)
491 {
492 gsi = gsi_for_stmt (arg0_def_stmt);
493 gsi_prev_nondebug (&gsi);
494 if (!gsi_end_p (gsi))
495 return NULL;
496 gsi = gsi_for_stmt (arg0_def_stmt);
497 gsi_next_nondebug (&gsi);
498 if (!gsi_end_p (gsi))
499 return NULL;
500 }
501 new_arg1 = fold_convert (TREE_TYPE (new_arg0), arg1);
502 }
29a78fec 503 else
5dccd071 504 return NULL;
29a78fec 505 }
506 else
5dccd071 507 return NULL;
29a78fec 508 }
509
510 /* If arg0/arg1 have > 1 use, then this transformation actually increases
511 the number of expressions evaluated at runtime. */
512 if (!has_single_use (arg0)
513 || (arg1_def_stmt && !has_single_use (arg1)))
5dccd071 514 return NULL;
29a78fec 515
516 /* If types of new_arg0 and new_arg1 are different bailout. */
517 if (!types_compatible_p (TREE_TYPE (new_arg0), TREE_TYPE (new_arg1)))
5dccd071 518 return NULL;
29a78fec 519
520 /* Create a new PHI stmt. */
521 result = PHI_RESULT (phi);
522 temp = make_ssa_name (TREE_TYPE (new_arg0), NULL);
523 newphi = create_phi_node (temp, gimple_bb (phi));
524
525 if (dump_file && (dump_flags & TDF_DETAILS))
526 {
527 fprintf (dump_file, "PHI ");
1ffa4346 528 print_generic_expr (dump_file, gimple_phi_result (phi));
29a78fec 529 fprintf (dump_file,
530 " changed to factor conversion out from COND_EXPR.\n");
531 fprintf (dump_file, "New stmt with CAST that defines ");
1ffa4346 532 print_generic_expr (dump_file, result);
29a78fec 533 fprintf (dump_file, ".\n");
534 }
535
536 /* Remove the old cast(s) that has single use. */
537 gsi_for_def = gsi_for_stmt (arg0_def_stmt);
538 gsi_remove (&gsi_for_def, true);
3f6d43bf 539 release_defs (arg0_def_stmt);
540
29a78fec 541 if (arg1_def_stmt)
542 {
543 gsi_for_def = gsi_for_stmt (arg1_def_stmt);
544 gsi_remove (&gsi_for_def, true);
3f6d43bf 545 release_defs (arg1_def_stmt);
29a78fec 546 }
547
548 add_phi_arg (newphi, new_arg0, e0, locus);
549 add_phi_arg (newphi, new_arg1, e1, locus);
550
551 /* Create the conversion stmt and insert it. */
552 if (convert_code == VIEW_CONVERT_EXPR)
553 temp = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (result), temp);
8100256d 554 new_stmt = gimple_build_assign (result, convert_code, temp);
29a78fec 555 gsi = gsi_after_labels (gimple_bb (phi));
556 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
557
3f6d43bf 558 /* Remove the original PHI stmt. */
29a78fec 559 gsi = gsi_for_stmt (phi);
560 gsi_remove (&gsi, true);
5dccd071 561 return newphi;
29a78fec 562}
563
902929aa 564/* The function conditional_replacement does the main work of doing the
565 conditional replacement. Return true if the replacement is done.
566 Otherwise return false.
567 BB is the basic block where the replacement is going to be done on. ARG0
dac49aa5 568 is argument 0 from PHI. Likewise for ARG1. */
902929aa 569
570static bool
33784d89 571conditional_replacement (basic_block cond_bb, basic_block middle_bb,
1a91d914 572 edge e0, edge e1, gphi *phi,
33784d89 573 tree arg0, tree arg1)
902929aa 574{
575 tree result;
42acab1c 576 gimple *stmt;
1a91d914 577 gassign *new_stmt;
75a70cf9 578 tree cond;
579 gimple_stmt_iterator gsi;
902929aa 580 edge true_edge, false_edge;
75a70cf9 581 tree new_var, new_var2;
678919fd 582 bool neg;
902929aa 583
435e1a75 584 /* FIXME: Gimplification of complex type is too hard for now. */
47b88316 585 /* We aren't prepared to handle vectors either (and it is a question
586 if it would be worthwhile anyway). */
587 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
588 || POINTER_TYPE_P (TREE_TYPE (arg0)))
589 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
590 || POINTER_TYPE_P (TREE_TYPE (arg1))))
435e1a75 591 return false;
592
678919fd 593 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
594 convert it to the conditional. */
902929aa 595 if ((integer_zerop (arg0) && integer_onep (arg1))
596 || (integer_zerop (arg1) && integer_onep (arg0)))
678919fd 597 neg = false;
598 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
599 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
600 neg = true;
902929aa 601 else
602 return false;
20e5647c 603
33784d89 604 if (!empty_block_p (middle_bb))
902929aa 605 return false;
20e5647c 606
75a70cf9 607 /* At this point we know we have a GIMPLE_COND with two successors.
2ab0a163 608 One successor is BB, the other successor is an empty block which
609 falls through into BB.
20e5647c 610
2ab0a163 611 There is a single PHI node at the join point (BB) and its arguments
678919fd 612 are constants (0, 1) or (0, -1).
20e5647c 613
2ab0a163 614 So, given the condition COND, and the two PHI arguments, we can
20e5647c 615 rewrite this PHI into non-branching code:
616
2ab0a163 617 dest = (COND) or dest = COND'
20e5647c 618
2ab0a163 619 We use the condition as-is if the argument associated with the
620 true edge has the value one or the argument associated with the
621 false edge as the value zero. Note that those conditions are not
75a70cf9 622 the same since only one of the outgoing edges from the GIMPLE_COND
2ab0a163 623 will directly reach BB and thus be associated with an argument. */
ae5a4794 624
75a70cf9 625 stmt = last_stmt (cond_bb);
626 result = PHI_RESULT (phi);
b2a02a0e 627
75a70cf9 628 /* To handle special cases like floating point comparison, it is easier and
629 less error-prone to build a tree and gimplify it on the fly though it is
630 less efficient. */
6f9714b3 631 cond = fold_build2_loc (gimple_location (stmt),
632 gimple_cond_code (stmt), boolean_type_node,
633 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
4ee9c684 634
75a70cf9 635 /* We need to know which is the true edge and which is the false
636 edge so that we know when to invert the condition below. */
637 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
638 if ((e0 == true_edge && integer_zerop (arg0))
678919fd 639 || (e0 == false_edge && !integer_zerop (arg0))
75a70cf9 640 || (e1 == true_edge && integer_zerop (arg1))
678919fd 641 || (e1 == false_edge && !integer_zerop (arg1)))
6f9714b3 642 cond = fold_build1_loc (gimple_location (stmt),
678919fd 643 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
644
645 if (neg)
646 {
647 cond = fold_convert_loc (gimple_location (stmt),
648 TREE_TYPE (result), cond);
649 cond = fold_build1_loc (gimple_location (stmt),
650 NEGATE_EXPR, TREE_TYPE (cond), cond);
651 }
75a70cf9 652
653 /* Insert our new statements at the end of conditional block before the
654 COND_STMT. */
655 gsi = gsi_for_stmt (stmt);
656 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
657 GSI_SAME_STMT);
658
659 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
660 {
efbcb6de 661 source_location locus_0, locus_1;
662
f9e245b2 663 new_var2 = make_ssa_name (TREE_TYPE (result));
e9cf809e 664 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
75a70cf9 665 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
666 new_var = new_var2;
efbcb6de 667
668 /* Set the locus to the first argument, unless is doesn't have one. */
669 locus_0 = gimple_phi_arg_location (phi, 0);
670 locus_1 = gimple_phi_arg_location (phi, 1);
671 if (locus_0 == UNKNOWN_LOCATION)
672 locus_0 = locus_1;
673 gimple_set_location (new_stmt, locus_0);
4ee9c684 674 }
20e5647c 675
75a70cf9 676 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
8c1ab18f 677 reset_flow_sensitive_info_in_bb (cond_bb);
902929aa 678
4ee9c684 679 /* Note that we optimized this PHI. */
680 return true;
681}
682
17b9476e 683/* Update *ARG which is defined in STMT so that it contains the
684 computed value if that seems profitable. Return true if the
685 statement is made dead by that rewriting. */
686
687static bool
42acab1c 688jump_function_from_stmt (tree *arg, gimple *stmt)
17b9476e 689{
690 enum tree_code code = gimple_assign_rhs_code (stmt);
691 if (code == ADDR_EXPR)
692 {
693 /* For arg = &p->i transform it to p, if possible. */
694 tree rhs1 = gimple_assign_rhs1 (stmt);
695 HOST_WIDE_INT offset;
696 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
697 &offset);
698 if (tem
699 && TREE_CODE (tem) == MEM_REF
796b6678 700 && (mem_ref_offset (tem) + offset) == 0)
17b9476e 701 {
702 *arg = TREE_OPERAND (tem, 0);
703 return true;
704 }
705 }
706 /* TODO: Much like IPA-CP jump-functions we want to handle constant
707 additions symbolically here, and we'd need to update the comparison
708 code that compares the arg + cst tuples in our caller. For now the
709 code above exactly handles the VEC_BASE pattern from vec.h. */
710 return false;
711}
712
f32420fb 713/* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
714 of the form SSA_NAME NE 0.
715
716 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
717 the two input values of the EQ_EXPR match arg0 and arg1.
718
719 If so update *code and return TRUE. Otherwise return FALSE. */
720
721static bool
722rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
723 enum tree_code *code, const_tree rhs)
724{
725 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
726 statement. */
727 if (TREE_CODE (rhs) == SSA_NAME)
728 {
42acab1c 729 gimple *def1 = SSA_NAME_DEF_STMT (rhs);
f32420fb 730
731 /* Verify the defining statement has an EQ_EXPR on the RHS. */
732 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
733 {
734 /* Finally verify the source operands of the EQ_EXPR are equal
735 to arg0 and arg1. */
736 tree op0 = gimple_assign_rhs1 (def1);
737 tree op1 = gimple_assign_rhs2 (def1);
738 if ((operand_equal_for_phi_arg_p (arg0, op0)
739 && operand_equal_for_phi_arg_p (arg1, op1))
740 || (operand_equal_for_phi_arg_p (arg0, op1)
741 && operand_equal_for_phi_arg_p (arg1, op0)))
742 {
743 /* We will perform the optimization. */
744 *code = gimple_assign_rhs_code (def1);
745 return true;
746 }
747 }
748 }
749 return false;
750}
751
752/* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
753
754 Also return TRUE if arg0/arg1 are equal to the source arguments of a
755 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
756
757 Return FALSE otherwise. */
758
759static bool
760operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
42acab1c 761 enum tree_code *code, gimple *cond)
f32420fb 762{
42acab1c 763 gimple *def;
f32420fb 764 tree lhs = gimple_cond_lhs (cond);
765 tree rhs = gimple_cond_rhs (cond);
766
767 if ((operand_equal_for_phi_arg_p (arg0, lhs)
768 && operand_equal_for_phi_arg_p (arg1, rhs))
769 || (operand_equal_for_phi_arg_p (arg1, lhs)
770 && operand_equal_for_phi_arg_p (arg0, rhs)))
771 return true;
772
773 /* Now handle more complex case where we have an EQ comparison
774 which feeds a BIT_AND_EXPR which feeds COND.
775
776 First verify that COND is of the form SSA_NAME NE 0. */
777 if (*code != NE_EXPR || !integer_zerop (rhs)
778 || TREE_CODE (lhs) != SSA_NAME)
779 return false;
780
781 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
782 def = SSA_NAME_DEF_STMT (lhs);
783 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
784 return false;
785
786 /* Now verify arg0/arg1 correspond to the source arguments of an
787 EQ comparison feeding the BIT_AND_EXPR. */
788
789 tree tmp = gimple_assign_rhs1 (def);
790 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
791 return true;
792
793 tmp = gimple_assign_rhs2 (def);
794 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
795 return true;
796
797 return false;
798}
799
b6814ca0 800/* Returns true if ARG is a neutral element for operation CODE
801 on the RIGHT side. */
802
803static bool
804neutral_element_p (tree_code code, tree arg, bool right)
805{
806 switch (code)
807 {
808 case PLUS_EXPR:
809 case BIT_IOR_EXPR:
810 case BIT_XOR_EXPR:
811 return integer_zerop (arg);
812
813 case LROTATE_EXPR:
814 case RROTATE_EXPR:
815 case LSHIFT_EXPR:
816 case RSHIFT_EXPR:
817 case MINUS_EXPR:
818 case POINTER_PLUS_EXPR:
819 return right && integer_zerop (arg);
820
821 case MULT_EXPR:
822 return integer_onep (arg);
823
824 case TRUNC_DIV_EXPR:
825 case CEIL_DIV_EXPR:
826 case FLOOR_DIV_EXPR:
827 case ROUND_DIV_EXPR:
828 case EXACT_DIV_EXPR:
829 return right && integer_onep (arg);
830
831 case BIT_AND_EXPR:
832 return integer_all_onesp (arg);
833
834 default:
835 return false;
836 }
837}
838
839/* Returns true if ARG is an absorbing element for operation CODE. */
840
841static bool
2177bb9a 842absorbing_element_p (tree_code code, tree arg, bool right, tree rval)
b6814ca0 843{
844 switch (code)
845 {
846 case BIT_IOR_EXPR:
847 return integer_all_onesp (arg);
848
849 case MULT_EXPR:
850 case BIT_AND_EXPR:
851 return integer_zerop (arg);
852
0644c120 853 case LSHIFT_EXPR:
854 case RSHIFT_EXPR:
855 case LROTATE_EXPR:
856 case RROTATE_EXPR:
2177bb9a 857 return !right && integer_zerop (arg);
858
0644c120 859 case TRUNC_DIV_EXPR:
860 case CEIL_DIV_EXPR:
861 case FLOOR_DIV_EXPR:
862 case ROUND_DIV_EXPR:
863 case EXACT_DIV_EXPR:
864 case TRUNC_MOD_EXPR:
865 case CEIL_MOD_EXPR:
866 case FLOOR_MOD_EXPR:
867 case ROUND_MOD_EXPR:
2177bb9a 868 return (!right
869 && integer_zerop (arg)
870 && tree_single_nonzero_warnv_p (rval, NULL));
0644c120 871
b6814ca0 872 default:
873 return false;
874 }
875}
876
0beac6fc 877/* The function value_replacement does the main work of doing the value
fb9912ea 878 replacement. Return non-zero if the replacement is done. Otherwise return
879 0. If we remove the middle basic block, return 2.
0beac6fc 880 BB is the basic block where the replacement is going to be done on. ARG0
dac49aa5 881 is argument 0 from the PHI. Likewise for ARG1. */
0beac6fc 882
fb9912ea 883static int
33784d89 884value_replacement (basic_block cond_bb, basic_block middle_bb,
42acab1c 885 edge e0, edge e1, gimple *phi,
33784d89 886 tree arg0, tree arg1)
0beac6fc 887{
17b9476e 888 gimple_stmt_iterator gsi;
42acab1c 889 gimple *cond;
0beac6fc 890 edge true_edge, false_edge;
75a70cf9 891 enum tree_code code;
fb9912ea 892 bool emtpy_or_with_defined_p = true;
0beac6fc 893
894 /* If the type says honor signed zeros we cannot do this
dac49aa5 895 optimization. */
fe994837 896 if (HONOR_SIGNED_ZEROS (arg1))
fb9912ea 897 return 0;
0beac6fc 898
fb9912ea 899 /* If there is a statement in MIDDLE_BB that defines one of the PHI
900 arguments, then adjust arg0 or arg1. */
b6814ca0 901 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
fb9912ea 902 while (!gsi_end_p (gsi))
17b9476e 903 {
42acab1c 904 gimple *stmt = gsi_stmt (gsi);
fb9912ea 905 tree lhs;
906 gsi_next_nondebug (&gsi);
907 if (!is_gimple_assign (stmt))
17b9476e 908 {
fb9912ea 909 emtpy_or_with_defined_p = false;
910 continue;
17b9476e 911 }
fb9912ea 912 /* Now try to adjust arg0 or arg1 according to the computation
913 in the statement. */
914 lhs = gimple_assign_lhs (stmt);
915 if (!(lhs == arg0
916 && jump_function_from_stmt (&arg0, stmt))
917 || (lhs == arg1
918 && jump_function_from_stmt (&arg1, stmt)))
919 emtpy_or_with_defined_p = false;
17b9476e 920 }
0beac6fc 921
75a70cf9 922 cond = last_stmt (cond_bb);
923 code = gimple_cond_code (cond);
0beac6fc 924
925 /* This transformation is only valid for equality comparisons. */
75a70cf9 926 if (code != NE_EXPR && code != EQ_EXPR)
fb9912ea 927 return 0;
0beac6fc 928
929 /* We need to know which is the true edge and which is the false
930 edge so that we know if have abs or negative abs. */
33784d89 931 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
0beac6fc 932
933 /* At this point we know we have a COND_EXPR with two successors.
934 One successor is BB, the other successor is an empty block which
935 falls through into BB.
936
937 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
938
939 There is a single PHI node at the join point (BB) with two arguments.
940
941 We now need to verify that the two arguments in the PHI node match
942 the two arguments to the equality comparison. */
20e5647c 943
f32420fb 944 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
0beac6fc 945 {
946 edge e;
947 tree arg;
948
50737d20 949 /* For NE_EXPR, we want to build an assignment result = arg where
950 arg is the PHI argument associated with the true edge. For
951 EQ_EXPR we want the PHI argument associated with the false edge. */
75a70cf9 952 e = (code == NE_EXPR ? true_edge : false_edge);
50737d20 953
954 /* Unfortunately, E may not reach BB (it may instead have gone to
955 OTHER_BLOCK). If that is the case, then we want the single outgoing
956 edge from OTHER_BLOCK which reaches BB and represents the desired
957 path from COND_BLOCK. */
33784d89 958 if (e->dest == middle_bb)
ea091dfd 959 e = single_succ_edge (e->dest);
50737d20 960
961 /* Now we know the incoming edge to BB that has the argument for the
962 RHS of our new assignment statement. */
33784d89 963 if (e0 == e)
0beac6fc 964 arg = arg0;
965 else
966 arg = arg1;
967
fb9912ea 968 /* If the middle basic block was empty or is defining the
c3597b05 969 PHI arguments and this is a single phi where the args are different
970 for the edges e0 and e1 then we can remove the middle basic block. */
fb9912ea 971 if (emtpy_or_with_defined_p
c3597b05 972 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
ce75c7c2 973 e0, e1) == phi)
fb9912ea 974 {
975 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
976 /* Note that we optimized this PHI. */
977 return 2;
978 }
979 else
980 {
981 /* Replace the PHI arguments with arg. */
982 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
983 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
984 if (dump_file && (dump_flags & TDF_DETAILS))
985 {
986 fprintf (dump_file, "PHI ");
1ffa4346 987 print_generic_expr (dump_file, gimple_phi_result (phi));
c3597b05 988 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
989 cond_bb->index);
1ffa4346 990 print_generic_expr (dump_file, arg);
fb9912ea 991 fprintf (dump_file, ".\n");
992 }
993 return 1;
994 }
0beac6fc 995
0beac6fc 996 }
b6814ca0 997
998 /* Now optimize (x != 0) ? x + y : y to just y.
999 The following condition is too restrictive, there can easily be another
1000 stmt in middle_bb, for instance a CONVERT_EXPR for the second argument. */
42acab1c 1001 gimple *assign = last_and_only_stmt (middle_bb);
b6814ca0 1002 if (!assign || gimple_code (assign) != GIMPLE_ASSIGN
1003 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
1004 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
1005 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
1006 return 0;
1007
6c96fe34 1008 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
1009 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
1010 return 0;
1011
43fbec4a 1012 /* Only transform if it removes the condition. */
1013 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
1014 return 0;
1015
b6814ca0 1016 /* Size-wise, this is always profitable. */
1017 if (optimize_bb_for_speed_p (cond_bb)
1018 /* The special case is useless if it has a low probability. */
1019 && profile_status_for_fn (cfun) != PROFILE_ABSENT
720cfc43 1020 && EDGE_PRED (middle_bb, 0)->probability < profile_probability::even ()
b6814ca0 1021 /* If assign is cheap, there is no point avoiding it. */
1022 && estimate_num_insns (assign, &eni_time_weights)
1023 >= 3 * estimate_num_insns (cond, &eni_time_weights))
1024 return 0;
1025
1026 tree lhs = gimple_assign_lhs (assign);
1027 tree rhs1 = gimple_assign_rhs1 (assign);
1028 tree rhs2 = gimple_assign_rhs2 (assign);
1029 enum tree_code code_def = gimple_assign_rhs_code (assign);
1030 tree cond_lhs = gimple_cond_lhs (cond);
1031 tree cond_rhs = gimple_cond_rhs (cond);
1032
1033 if (((code == NE_EXPR && e1 == false_edge)
1034 || (code == EQ_EXPR && e1 == true_edge))
1035 && arg0 == lhs
1036 && ((arg1 == rhs1
1037 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1038 && neutral_element_p (code_def, cond_rhs, true))
1039 || (arg1 == rhs2
1040 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1041 && neutral_element_p (code_def, cond_rhs, false))
1042 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
0644c120 1043 && ((operand_equal_for_phi_arg_p (rhs2, cond_lhs)
2177bb9a 1044 && absorbing_element_p (code_def, cond_rhs, true, rhs2))
0644c120 1045 || (operand_equal_for_phi_arg_p (rhs1, cond_lhs)
2177bb9a 1046 && absorbing_element_p (code_def,
1047 cond_rhs, false, rhs2))))))
b6814ca0 1048 {
1049 gsi = gsi_for_stmt (cond);
18c06fb8 1050 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
1051 {
1052 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
1053 def-stmt in:
1054 if (n_5 != 0)
1055 goto <bb 3>;
1056 else
1057 goto <bb 4>;
1058
1059 <bb 3>:
1060 # RANGE [0, 4294967294]
1061 u_6 = n_5 + 4294967295;
1062
1063 <bb 4>:
1064 # u_3 = PHI <u_6(3), 4294967295(2)> */
1065 SSA_NAME_RANGE_INFO (lhs) = NULL;
18c06fb8 1066 /* If available, we can use VR of phi result at least. */
1067 tree phires = gimple_phi_result (phi);
1068 struct range_info_def *phires_range_info
1069 = SSA_NAME_RANGE_INFO (phires);
1070 if (phires_range_info)
1071 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
1072 phires_range_info);
1073 }
b6814ca0 1074 gimple_stmt_iterator gsi_from = gsi_for_stmt (assign);
1075 gsi_move_before (&gsi_from, &gsi);
1076 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
1077 return 2;
1078 }
1079
fb9912ea 1080 return 0;
0beac6fc 1081}
1082
194899bf 1083/* The function minmax_replacement does the main work of doing the minmax
1084 replacement. Return true if the replacement is done. Otherwise return
1085 false.
1086 BB is the basic block where the replacement is going to be done on. ARG0
1087 is argument 0 from the PHI. Likewise for ARG1. */
1088
1089static bool
1090minmax_replacement (basic_block cond_bb, basic_block middle_bb,
42acab1c 1091 edge e0, edge e1, gimple *phi,
194899bf 1092 tree arg0, tree arg1)
1093{
1094 tree result, type;
1a91d914 1095 gcond *cond;
1096 gassign *new_stmt;
194899bf 1097 edge true_edge, false_edge;
1098 enum tree_code cmp, minmax, ass_code;
74201dc2 1099 tree smaller, alt_smaller, larger, alt_larger, arg_true, arg_false;
75a70cf9 1100 gimple_stmt_iterator gsi, gsi_from;
194899bf 1101
1102 type = TREE_TYPE (PHI_RESULT (phi));
1103
1104 /* The optimization may be unsafe due to NaNs. */
b0ab3ca0 1105 if (HONOR_NANS (type) || HONOR_SIGNED_ZEROS (type))
194899bf 1106 return false;
1107
1a91d914 1108 cond = as_a <gcond *> (last_stmt (cond_bb));
75a70cf9 1109 cmp = gimple_cond_code (cond);
194899bf 1110
1111 /* This transformation is only valid for order comparisons. Record which
1112 operand is smaller/larger if the result of the comparison is true. */
74201dc2 1113 alt_smaller = NULL_TREE;
1114 alt_larger = NULL_TREE;
194899bf 1115 if (cmp == LT_EXPR || cmp == LE_EXPR)
1116 {
75a70cf9 1117 smaller = gimple_cond_lhs (cond);
1118 larger = gimple_cond_rhs (cond);
74201dc2 1119 /* If we have smaller < CST it is equivalent to smaller <= CST-1.
1120 Likewise smaller <= CST is equivalent to smaller < CST+1. */
1121 if (TREE_CODE (larger) == INTEGER_CST)
1122 {
1123 if (cmp == LT_EXPR)
1124 {
1125 bool overflow;
1126 wide_int alt = wi::sub (larger, 1, TYPE_SIGN (TREE_TYPE (larger)),
1127 &overflow);
1128 if (! overflow)
1129 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1130 }
1131 else
1132 {
1133 bool overflow;
1134 wide_int alt = wi::add (larger, 1, TYPE_SIGN (TREE_TYPE (larger)),
1135 &overflow);
1136 if (! overflow)
1137 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1138 }
1139 }
194899bf 1140 }
1141 else if (cmp == GT_EXPR || cmp == GE_EXPR)
1142 {
75a70cf9 1143 smaller = gimple_cond_rhs (cond);
1144 larger = gimple_cond_lhs (cond);
74201dc2 1145 /* If we have larger > CST it is equivalent to larger >= CST+1.
1146 Likewise larger >= CST is equivalent to larger > CST-1. */
1147 if (TREE_CODE (smaller) == INTEGER_CST)
1148 {
1149 if (cmp == GT_EXPR)
1150 {
1151 bool overflow;
1152 wide_int alt = wi::add (smaller, 1, TYPE_SIGN (TREE_TYPE (smaller)),
1153 &overflow);
1154 if (! overflow)
1155 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1156 }
1157 else
1158 {
1159 bool overflow;
1160 wide_int alt = wi::sub (smaller, 1, TYPE_SIGN (TREE_TYPE (smaller)),
1161 &overflow);
1162 if (! overflow)
1163 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1164 }
1165 }
194899bf 1166 }
1167 else
1168 return false;
1169
1170 /* We need to know which is the true edge and which is the false
1171 edge so that we know if have abs or negative abs. */
1172 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1173
1174 /* Forward the edges over the middle basic block. */
1175 if (true_edge->dest == middle_bb)
1176 true_edge = EDGE_SUCC (true_edge->dest, 0);
1177 if (false_edge->dest == middle_bb)
1178 false_edge = EDGE_SUCC (false_edge->dest, 0);
1179
1180 if (true_edge == e0)
1181 {
1182 gcc_assert (false_edge == e1);
1183 arg_true = arg0;
1184 arg_false = arg1;
1185 }
1186 else
1187 {
1188 gcc_assert (false_edge == e0);
1189 gcc_assert (true_edge == e1);
1190 arg_true = arg1;
1191 arg_false = arg0;
1192 }
1193
1194 if (empty_block_p (middle_bb))
1195 {
74201dc2 1196 if ((operand_equal_for_phi_arg_p (arg_true, smaller)
1197 || (alt_smaller
1198 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1199 && (operand_equal_for_phi_arg_p (arg_false, larger)
1200 || (alt_larger
1201 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
194899bf 1202 {
1203 /* Case
48e1416a 1204
194899bf 1205 if (smaller < larger)
1206 rslt = smaller;
1207 else
1208 rslt = larger; */
1209 minmax = MIN_EXPR;
1210 }
74201dc2 1211 else if ((operand_equal_for_phi_arg_p (arg_false, smaller)
1212 || (alt_smaller
1213 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1214 && (operand_equal_for_phi_arg_p (arg_true, larger)
1215 || (alt_larger
1216 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
194899bf 1217 minmax = MAX_EXPR;
1218 else
1219 return false;
1220 }
1221 else
1222 {
1223 /* Recognize the following case, assuming d <= u:
1224
1225 if (a <= u)
1226 b = MAX (a, d);
1227 x = PHI <b, u>
1228
1229 This is equivalent to
1230
1231 b = MAX (a, d);
1232 x = MIN (b, u); */
1233
42acab1c 1234 gimple *assign = last_and_only_stmt (middle_bb);
75a70cf9 1235 tree lhs, op0, op1, bound;
194899bf 1236
1237 if (!assign
75a70cf9 1238 || gimple_code (assign) != GIMPLE_ASSIGN)
194899bf 1239 return false;
1240
75a70cf9 1241 lhs = gimple_assign_lhs (assign);
1242 ass_code = gimple_assign_rhs_code (assign);
194899bf 1243 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1244 return false;
75a70cf9 1245 op0 = gimple_assign_rhs1 (assign);
1246 op1 = gimple_assign_rhs2 (assign);
194899bf 1247
1248 if (true_edge->src == middle_bb)
1249 {
1250 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1251 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1252 return false;
1253
74201dc2 1254 if (operand_equal_for_phi_arg_p (arg_false, larger)
1255 || (alt_larger
1256 && operand_equal_for_phi_arg_p (arg_false, alt_larger)))
194899bf 1257 {
1258 /* Case
1259
1260 if (smaller < larger)
1261 {
1262 r' = MAX_EXPR (smaller, bound)
1263 }
1264 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1265 if (ass_code != MAX_EXPR)
1266 return false;
1267
1268 minmax = MIN_EXPR;
74201dc2 1269 if (operand_equal_for_phi_arg_p (op0, smaller)
1270 || (alt_smaller
1271 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
194899bf 1272 bound = op1;
74201dc2 1273 else if (operand_equal_for_phi_arg_p (op1, smaller)
1274 || (alt_smaller
1275 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
194899bf 1276 bound = op0;
1277 else
1278 return false;
1279
1280 /* We need BOUND <= LARGER. */
49d00087 1281 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1282 bound, larger)))
194899bf 1283 return false;
1284 }
74201dc2 1285 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1286 || (alt_smaller
1287 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
194899bf 1288 {
1289 /* Case
1290
1291 if (smaller < larger)
1292 {
1293 r' = MIN_EXPR (larger, bound)
1294 }
1295 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1296 if (ass_code != MIN_EXPR)
1297 return false;
1298
1299 minmax = MAX_EXPR;
74201dc2 1300 if (operand_equal_for_phi_arg_p (op0, larger)
1301 || (alt_larger
1302 && operand_equal_for_phi_arg_p (op0, alt_larger)))
194899bf 1303 bound = op1;
74201dc2 1304 else if (operand_equal_for_phi_arg_p (op1, larger)
1305 || (alt_larger
1306 && operand_equal_for_phi_arg_p (op1, alt_larger)))
194899bf 1307 bound = op0;
1308 else
1309 return false;
1310
1311 /* We need BOUND >= SMALLER. */
49d00087 1312 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1313 bound, smaller)))
194899bf 1314 return false;
1315 }
1316 else
1317 return false;
1318 }
1319 else
1320 {
1321 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1322 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1323 return false;
1324
74201dc2 1325 if (operand_equal_for_phi_arg_p (arg_true, larger)
1326 || (alt_larger
1327 && operand_equal_for_phi_arg_p (arg_true, alt_larger)))
194899bf 1328 {
1329 /* Case
1330
1331 if (smaller > larger)
1332 {
1333 r' = MIN_EXPR (smaller, bound)
1334 }
1335 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1336 if (ass_code != MIN_EXPR)
1337 return false;
1338
1339 minmax = MAX_EXPR;
74201dc2 1340 if (operand_equal_for_phi_arg_p (op0, smaller)
1341 || (alt_smaller
1342 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
194899bf 1343 bound = op1;
74201dc2 1344 else if (operand_equal_for_phi_arg_p (op1, smaller)
1345 || (alt_smaller
1346 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
194899bf 1347 bound = op0;
1348 else
1349 return false;
1350
1351 /* We need BOUND >= LARGER. */
49d00087 1352 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1353 bound, larger)))
194899bf 1354 return false;
1355 }
74201dc2 1356 else if (operand_equal_for_phi_arg_p (arg_true, smaller)
1357 || (alt_smaller
1358 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
194899bf 1359 {
1360 /* Case
1361
1362 if (smaller > larger)
1363 {
1364 r' = MAX_EXPR (larger, bound)
1365 }
1366 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1367 if (ass_code != MAX_EXPR)
1368 return false;
1369
1370 minmax = MIN_EXPR;
1371 if (operand_equal_for_phi_arg_p (op0, larger))
1372 bound = op1;
1373 else if (operand_equal_for_phi_arg_p (op1, larger))
1374 bound = op0;
1375 else
1376 return false;
1377
1378 /* We need BOUND <= SMALLER. */
49d00087 1379 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1380 bound, smaller)))
194899bf 1381 return false;
1382 }
1383 else
1384 return false;
1385 }
1386
1387 /* Move the statement from the middle block. */
75a70cf9 1388 gsi = gsi_last_bb (cond_bb);
445a6ba5 1389 gsi_from = gsi_last_nondebug_bb (middle_bb);
75a70cf9 1390 gsi_move_before (&gsi_from, &gsi);
194899bf 1391 }
1392
9b604bc1 1393 /* Create an SSA var to hold the min/max result. If we're the only
1394 things setting the target PHI, then we can clone the PHI
1395 variable. Otherwise we must create a new one. */
1396 result = PHI_RESULT (phi);
1397 if (EDGE_COUNT (gimple_bb (phi)->preds) == 2)
1398 result = duplicate_ssa_name (result, NULL);
1399 else
1400 result = make_ssa_name (TREE_TYPE (result));
1401
194899bf 1402 /* Emit the statement to compute min/max. */
e9cf809e 1403 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
75a70cf9 1404 gsi = gsi_last_bb (cond_bb);
1405 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
194899bf 1406
a4844041 1407 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
8c1ab18f 1408 reset_flow_sensitive_info_in_bb (cond_bb);
1409
194899bf 1410 return true;
1411}
1412
70512b93 1413/* The function absolute_replacement does the main work of doing the absolute
1414 replacement. Return true if the replacement is done. Otherwise return
1415 false.
1416 bb is the basic block where the replacement is going to be done on. arg0
f7f07c95 1417 is argument 0 from the phi. Likewise for arg1. */
33784d89 1418
70512b93 1419static bool
33784d89 1420abs_replacement (basic_block cond_bb, basic_block middle_bb,
a4844041 1421 edge e0 ATTRIBUTE_UNUSED, edge e1,
42acab1c 1422 gimple *phi, tree arg0, tree arg1)
70512b93 1423{
1424 tree result;
1a91d914 1425 gassign *new_stmt;
42acab1c 1426 gimple *cond;
75a70cf9 1427 gimple_stmt_iterator gsi;
70512b93 1428 edge true_edge, false_edge;
42acab1c 1429 gimple *assign;
70512b93 1430 edge e;
194899bf 1431 tree rhs, lhs;
70512b93 1432 bool negate;
1433 enum tree_code cond_code;
1434
1435 /* If the type says honor signed zeros we cannot do this
dac49aa5 1436 optimization. */
fe994837 1437 if (HONOR_SIGNED_ZEROS (arg1))
70512b93 1438 return false;
1439
70512b93 1440 /* OTHER_BLOCK must have only one executable statement which must have the
1441 form arg0 = -arg1 or arg1 = -arg0. */
70512b93 1442
194899bf 1443 assign = last_and_only_stmt (middle_bb);
70512b93 1444 /* If we did not find the proper negation assignment, then we can not
1445 optimize. */
1446 if (assign == NULL)
1447 return false;
48e1416a 1448
194899bf 1449 /* If we got here, then we have found the only executable statement
1450 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1451 arg1 = -arg0, then we can not optimize. */
75a70cf9 1452 if (gimple_code (assign) != GIMPLE_ASSIGN)
194899bf 1453 return false;
1454
75a70cf9 1455 lhs = gimple_assign_lhs (assign);
194899bf 1456
75a70cf9 1457 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
194899bf 1458 return false;
1459
75a70cf9 1460 rhs = gimple_assign_rhs1 (assign);
48e1416a 1461
194899bf 1462 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1463 if (!(lhs == arg0 && rhs == arg1)
1464 && !(lhs == arg1 && rhs == arg0))
1465 return false;
70512b93 1466
75a70cf9 1467 cond = last_stmt (cond_bb);
70512b93 1468 result = PHI_RESULT (phi);
1469
1470 /* Only relationals comparing arg[01] against zero are interesting. */
75a70cf9 1471 cond_code = gimple_cond_code (cond);
70512b93 1472 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1473 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1474 return false;
1475
dac49aa5 1476 /* Make sure the conditional is arg[01] OP y. */
75a70cf9 1477 if (gimple_cond_lhs (cond) != rhs)
70512b93 1478 return false;
1479
75a70cf9 1480 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1481 ? real_zerop (gimple_cond_rhs (cond))
1482 : integer_zerop (gimple_cond_rhs (cond)))
70512b93 1483 ;
1484 else
1485 return false;
1486
1487 /* We need to know which is the true edge and which is the false
1488 edge so that we know if have abs or negative abs. */
33784d89 1489 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
70512b93 1490
1491 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1492 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1493 the false edge goes to OTHER_BLOCK. */
1494 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1495 e = true_edge;
1496 else
1497 e = false_edge;
20e5647c 1498
33784d89 1499 if (e->dest == middle_bb)
70512b93 1500 negate = true;
1501 else
1502 negate = false;
20e5647c 1503
57b2dea1 1504 /* If the code negates only iff positive then make sure to not
1505 introduce undefined behavior when negating or computing the absolute.
1506 ??? We could use range info if present to check for arg1 == INT_MIN. */
1507 if (negate
1508 && (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1))
1509 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
1510 return false;
1511
33784d89 1512 result = duplicate_ssa_name (result, NULL);
20e5647c 1513
70512b93 1514 if (negate)
f9e245b2 1515 lhs = make_ssa_name (TREE_TYPE (result));
70512b93 1516 else
1517 lhs = result;
1518
dac49aa5 1519 /* Build the modify expression with abs expression. */
e9cf809e 1520 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
70512b93 1521
75a70cf9 1522 gsi = gsi_last_bb (cond_bb);
1523 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
70512b93 1524
1525 if (negate)
1526 {
75a70cf9 1527 /* Get the right GSI. We want to insert after the recently
70512b93 1528 added ABS_EXPR statement (which we know is the first statement
1529 in the block. */
e9cf809e 1530 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
70512b93 1531
75a70cf9 1532 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
70512b93 1533 }
20e5647c 1534
a4844041 1535 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
8c1ab18f 1536 reset_flow_sensitive_info_in_bb (cond_bb);
70512b93 1537
1538 /* Note that we optimized this PHI. */
1539 return true;
1540}
1541
e6d0e152 1542/* Auxiliary functions to determine the set of memory accesses which
1543 can't trap because they are preceded by accesses to the same memory
182cf5a9 1544 portion. We do that for MEM_REFs, so we only need to track
e6d0e152 1545 the SSA_NAME of the pointer indirectly referenced. The algorithm
1546 simply is a walk over all instructions in dominator order. When
182cf5a9 1547 we see an MEM_REF we determine if we've already seen a same
e6d0e152 1548 ref anywhere up to the root of the dominator tree. If we do the
af4f74fa 1549 current access can't trap. If we don't see any dominating access
e6d0e152 1550 the current access might trap, but might also make later accesses
af4f74fa 1551 non-trapping, so we remember it. We need to be careful with loads
1552 or stores, for instance a load might not trap, while a store would,
1553 so if we see a dominating read access this doesn't mean that a later
1554 write access would not trap. Hence we also need to differentiate the
1555 type of access(es) seen.
1556
1557 ??? We currently are very conservative and assume that a load might
1558 trap even if a store doesn't (write-only memory). This probably is
1559 overly conservative. */
e6d0e152 1560
182cf5a9 1561/* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
e6d0e152 1562 through it was seen, which would constitute a no-trap region for
1563 same accesses. */
1564struct name_to_bb
1565{
963aee26 1566 unsigned int ssa_name_ver;
42540642 1567 unsigned int phase;
963aee26 1568 bool store;
1569 HOST_WIDE_INT offset, size;
e6d0e152 1570 basic_block bb;
1571};
1572
d9dd21a8 1573/* Hashtable helpers. */
1574
298e7f9a 1575struct ssa_names_hasher : free_ptr_hash <name_to_bb>
d9dd21a8 1576{
9969c043 1577 static inline hashval_t hash (const name_to_bb *);
1578 static inline bool equal (const name_to_bb *, const name_to_bb *);
d9dd21a8 1579};
e6d0e152 1580
42540642 1581/* Used for quick clearing of the hash-table when we see calls.
1582 Hash entries with phase < nt_call_phase are invalid. */
1583static unsigned int nt_call_phase;
1584
963aee26 1585/* The hash function. */
d9dd21a8 1586
1587inline hashval_t
9969c043 1588ssa_names_hasher::hash (const name_to_bb *n)
e6d0e152 1589{
963aee26 1590 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1591 ^ (n->offset << 6) ^ (n->size << 3);
e6d0e152 1592}
1593
963aee26 1594/* The equality function of *P1 and *P2. */
e6d0e152 1595
d9dd21a8 1596inline bool
9969c043 1597ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
d9dd21a8 1598{
963aee26 1599 return n1->ssa_name_ver == n2->ssa_name_ver
1600 && n1->store == n2->store
1601 && n1->offset == n2->offset
1602 && n1->size == n2->size;
e6d0e152 1603}
1604
c1f445d2 1605class nontrapping_dom_walker : public dom_walker
1606{
1607public:
431205b7 1608 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
c1f445d2 1609 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
1610
96752458 1611 virtual edge before_dom_children (basic_block);
c1f445d2 1612 virtual void after_dom_children (basic_block);
1613
1614private:
1615
1616 /* We see the expression EXP in basic block BB. If it's an interesting
1617 expression (an MEM_REF through an SSA_NAME) possibly insert the
1618 expression into the set NONTRAP or the hash table of seen expressions.
1619 STORE is true if this expression is on the LHS, otherwise it's on
1620 the RHS. */
1621 void add_or_mark_expr (basic_block, tree, bool);
1622
431205b7 1623 hash_set<tree> *m_nontrapping;
c1f445d2 1624
1625 /* The hash table for remembering what we've seen. */
1626 hash_table<ssa_names_hasher> m_seen_ssa_names;
1627};
1628
1629/* Called by walk_dominator_tree, when entering the block BB. */
96752458 1630edge
c1f445d2 1631nontrapping_dom_walker::before_dom_children (basic_block bb)
1632{
1633 edge e;
1634 edge_iterator ei;
1635 gimple_stmt_iterator gsi;
1636
1637 /* If we haven't seen all our predecessors, clear the hash-table. */
1638 FOR_EACH_EDGE (e, ei, bb->preds)
1639 if ((((size_t)e->src->aux) & 2) == 0)
1640 {
1641 nt_call_phase++;
1642 break;
1643 }
1644
1645 /* Mark this BB as being on the path to dominator root and as visited. */
1646 bb->aux = (void*)(1 | 2);
1647
1648 /* And walk the statements in order. */
1649 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1650 {
42acab1c 1651 gimple *stmt = gsi_stmt (gsi);
c1f445d2 1652
05a63389 1653 if ((gimple_code (stmt) == GIMPLE_ASM && gimple_vdef (stmt))
1654 || (is_gimple_call (stmt)
1655 && (!nonfreeing_call_p (stmt) || !nonbarrier_call_p (stmt))))
c1f445d2 1656 nt_call_phase++;
1657 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1658 {
1659 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
1660 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
1661 }
1662 }
96752458 1663 return NULL;
c1f445d2 1664}
1665
1666/* Called by walk_dominator_tree, when basic block BB is exited. */
1667void
1668nontrapping_dom_walker::after_dom_children (basic_block bb)
1669{
1670 /* This BB isn't on the path to dominator root anymore. */
1671 bb->aux = (void*)2;
1672}
d9dd21a8 1673
f0b5f617 1674/* We see the expression EXP in basic block BB. If it's an interesting
182cf5a9 1675 expression (an MEM_REF through an SSA_NAME) possibly insert the
af4f74fa 1676 expression into the set NONTRAP or the hash table of seen expressions.
1677 STORE is true if this expression is on the LHS, otherwise it's on
1678 the RHS. */
c1f445d2 1679void
1680nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
e6d0e152 1681{
963aee26 1682 HOST_WIDE_INT size;
1683
182cf5a9 1684 if (TREE_CODE (exp) == MEM_REF
963aee26 1685 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
e913b5cd 1686 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
963aee26 1687 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
e6d0e152 1688 {
1689 tree name = TREE_OPERAND (exp, 0);
1690 struct name_to_bb map;
d9dd21a8 1691 name_to_bb **slot;
af4f74fa 1692 struct name_to_bb *n2bb;
e6d0e152 1693 basic_block found_bb = 0;
1694
182cf5a9 1695 /* Try to find the last seen MEM_REF through the same
e6d0e152 1696 SSA_NAME, which can trap. */
963aee26 1697 map.ssa_name_ver = SSA_NAME_VERSION (name);
42540642 1698 map.phase = 0;
e6d0e152 1699 map.bb = 0;
af4f74fa 1700 map.store = store;
e913b5cd 1701 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
963aee26 1702 map.size = size;
1703
c1f445d2 1704 slot = m_seen_ssa_names.find_slot (&map, INSERT);
d9dd21a8 1705 n2bb = *slot;
42540642 1706 if (n2bb && n2bb->phase >= nt_call_phase)
af4f74fa 1707 found_bb = n2bb->bb;
e6d0e152 1708
182cf5a9 1709 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
e6d0e152 1710 (it's in a basic block on the path from us to the dominator root)
1711 then we can't trap. */
42540642 1712 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
e6d0e152 1713 {
431205b7 1714 m_nontrapping->add (exp);
e6d0e152 1715 }
1716 else
1717 {
1718 /* EXP might trap, so insert it into the hash table. */
af4f74fa 1719 if (n2bb)
e6d0e152 1720 {
42540642 1721 n2bb->phase = nt_call_phase;
af4f74fa 1722 n2bb->bb = bb;
e6d0e152 1723 }
1724 else
1725 {
af4f74fa 1726 n2bb = XNEW (struct name_to_bb);
963aee26 1727 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
42540642 1728 n2bb->phase = nt_call_phase;
af4f74fa 1729 n2bb->bb = bb;
1730 n2bb->store = store;
963aee26 1731 n2bb->offset = map.offset;
1732 n2bb->size = size;
af4f74fa 1733 *slot = n2bb;
e6d0e152 1734 }
1735 }
1736 }
1737}
1738
e6d0e152 1739/* This is the entry point of gathering non trapping memory accesses.
1740 It will do a dominator walk over the whole function, and it will
1741 make use of the bb->aux pointers. It returns a set of trees
182cf5a9 1742 (the MEM_REFs itself) which can't trap. */
431205b7 1743static hash_set<tree> *
e6d0e152 1744get_non_trapping (void)
1745{
42540642 1746 nt_call_phase = 0;
431205b7 1747 hash_set<tree> *nontrap = new hash_set<tree>;
e6d0e152 1748 /* We're going to do a dominator walk, so ensure that we have
1749 dominance information. */
1750 calculate_dominance_info (CDI_DOMINATORS);
1751
54c91640 1752 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1753 .walk (cfun->cfg->x_entry_block_ptr);
1754
42540642 1755 clear_aux_for_blocks ();
e6d0e152 1756 return nontrap;
1757}
1758
1759/* Do the main work of conditional store replacement. We already know
1760 that the recognized pattern looks like so:
1761
1762 split:
1763 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1764 MIDDLE_BB:
1765 something
1766 fallthrough (edge E0)
1767 JOIN_BB:
1768 some more
1769
1770 We check that MIDDLE_BB contains only one store, that that store
1771 doesn't trap (not via NOTRAP, but via checking if an access to the same
1772 memory location dominates us) and that the store has a "simple" RHS. */
1773
1774static bool
1775cond_store_replacement (basic_block middle_bb, basic_block join_bb,
431205b7 1776 edge e0, edge e1, hash_set<tree> *nontrap)
e6d0e152 1777{
42acab1c 1778 gimple *assign = last_and_only_stmt (middle_bb);
03d37e4e 1779 tree lhs, rhs, name, name2;
1a91d914 1780 gphi *newphi;
1781 gassign *new_stmt;
75a70cf9 1782 gimple_stmt_iterator gsi;
efbcb6de 1783 source_location locus;
e6d0e152 1784
1785 /* Check if middle_bb contains of only one store. */
1786 if (!assign
6cc085b6 1787 || !gimple_assign_single_p (assign)
1788 || gimple_has_volatile_ops (assign))
e6d0e152 1789 return false;
1790
efbcb6de 1791 locus = gimple_location (assign);
75a70cf9 1792 lhs = gimple_assign_lhs (assign);
1793 rhs = gimple_assign_rhs1 (assign);
182cf5a9 1794 if (TREE_CODE (lhs) != MEM_REF
91cf53d5 1795 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
3211fa0a 1796 || !is_gimple_reg_type (TREE_TYPE (lhs)))
e6d0e152 1797 return false;
91cf53d5 1798
e6d0e152 1799 /* Prove that we can move the store down. We could also check
1800 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1801 whose value is not available readily, which we want to avoid. */
431205b7 1802 if (!nontrap->contains (lhs))
e6d0e152 1803 return false;
1804
1805 /* Now we've checked the constraints, so do the transformation:
1806 1) Remove the single store. */
75a70cf9 1807 gsi = gsi_for_stmt (assign);
3211fa0a 1808 unlink_stmt_vdef (assign);
75a70cf9 1809 gsi_remove (&gsi, true);
91cf53d5 1810 release_defs (assign);
e6d0e152 1811
03d37e4e 1812 /* 2) Insert a load from the memory of the store to the temporary
e6d0e152 1813 on the edge which did not contain the store. */
1814 lhs = unshare_expr (lhs);
03d37e4e 1815 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1816 new_stmt = gimple_build_assign (name, lhs);
efbcb6de 1817 gimple_set_location (new_stmt, locus);
75a70cf9 1818 gsi_insert_on_edge (e1, new_stmt);
e6d0e152 1819
03d37e4e 1820 /* 3) Create a PHI node at the join block, with one argument
e6d0e152 1821 holding the old RHS, and the other holding the temporary
1822 where we stored the old memory contents. */
03d37e4e 1823 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1824 newphi = create_phi_node (name2, join_bb);
60d535d2 1825 add_phi_arg (newphi, rhs, e0, locus);
1826 add_phi_arg (newphi, name, e1, locus);
e6d0e152 1827
1828 lhs = unshare_expr (lhs);
75a70cf9 1829 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
e6d0e152 1830
03d37e4e 1831 /* 4) Insert that PHI node. */
75a70cf9 1832 gsi = gsi_after_labels (join_bb);
1833 if (gsi_end_p (gsi))
e6d0e152 1834 {
75a70cf9 1835 gsi = gsi_last_bb (join_bb);
1836 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
e6d0e152 1837 }
1838 else
75a70cf9 1839 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
e6d0e152 1840
1841 return true;
1842}
4ee9c684 1843
ec611e12 1844/* Do the main work of conditional store replacement. */
91cf53d5 1845
1846static bool
ec611e12 1847cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
42acab1c 1848 basic_block join_bb, gimple *then_assign,
1849 gimple *else_assign)
91cf53d5 1850{
03d37e4e 1851 tree lhs_base, lhs, then_rhs, else_rhs, name;
91cf53d5 1852 source_location then_locus, else_locus;
1853 gimple_stmt_iterator gsi;
1a91d914 1854 gphi *newphi;
1855 gassign *new_stmt;
91cf53d5 1856
91cf53d5 1857 if (then_assign == NULL
1858 || !gimple_assign_single_p (then_assign)
3c25489e 1859 || gimple_clobber_p (then_assign)
6cc085b6 1860 || gimple_has_volatile_ops (then_assign)
91cf53d5 1861 || else_assign == NULL
3c25489e 1862 || !gimple_assign_single_p (else_assign)
6cc085b6 1863 || gimple_clobber_p (else_assign)
1864 || gimple_has_volatile_ops (else_assign))
91cf53d5 1865 return false;
1866
1867 lhs = gimple_assign_lhs (then_assign);
1868 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1869 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1870 return false;
1871
1872 lhs_base = get_base_address (lhs);
1873 if (lhs_base == NULL_TREE
1874 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1875 return false;
1876
1877 then_rhs = gimple_assign_rhs1 (then_assign);
1878 else_rhs = gimple_assign_rhs1 (else_assign);
1879 then_locus = gimple_location (then_assign);
1880 else_locus = gimple_location (else_assign);
1881
1882 /* Now we've checked the constraints, so do the transformation:
1883 1) Remove the stores. */
1884 gsi = gsi_for_stmt (then_assign);
1885 unlink_stmt_vdef (then_assign);
1886 gsi_remove (&gsi, true);
1887 release_defs (then_assign);
1888
1889 gsi = gsi_for_stmt (else_assign);
1890 unlink_stmt_vdef (else_assign);
1891 gsi_remove (&gsi, true);
1892 release_defs (else_assign);
1893
03d37e4e 1894 /* 2) Create a PHI node at the join block, with one argument
91cf53d5 1895 holding the old RHS, and the other holding the temporary
1896 where we stored the old memory contents. */
03d37e4e 1897 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1898 newphi = create_phi_node (name, join_bb);
60d535d2 1899 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1900 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
91cf53d5 1901
1902 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1903
03d37e4e 1904 /* 3) Insert that PHI node. */
91cf53d5 1905 gsi = gsi_after_labels (join_bb);
1906 if (gsi_end_p (gsi))
1907 {
1908 gsi = gsi_last_bb (join_bb);
1909 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1910 }
1911 else
1912 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1913
1914 return true;
1915}
1916
ec611e12 1917/* Conditional store replacement. We already know
1918 that the recognized pattern looks like so:
1919
1920 split:
1921 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1922 THEN_BB:
1923 ...
1924 X = Y;
1925 ...
1926 goto JOIN_BB;
1927 ELSE_BB:
1928 ...
1929 X = Z;
1930 ...
1931 fallthrough (edge E0)
1932 JOIN_BB:
1933 some more
1934
1935 We check that it is safe to sink the store to JOIN_BB by verifying that
1936 there are no read-after-write or write-after-write dependencies in
1937 THEN_BB and ELSE_BB. */
1938
1939static bool
1940cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1941 basic_block join_bb)
1942{
42acab1c 1943 gimple *then_assign = last_and_only_stmt (then_bb);
1944 gimple *else_assign = last_and_only_stmt (else_bb);
f1f41a6c 1945 vec<data_reference_p> then_datarefs, else_datarefs;
1946 vec<ddr_p> then_ddrs, else_ddrs;
42acab1c 1947 gimple *then_store, *else_store;
ec611e12 1948 bool found, ok = false, res;
1949 struct data_dependence_relation *ddr;
1950 data_reference_p then_dr, else_dr;
1951 int i, j;
1952 tree then_lhs, else_lhs;
ec611e12 1953 basic_block blocks[3];
1954
1955 if (MAX_STORES_TO_SINK == 0)
1956 return false;
1957
1958 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1959 if (then_assign && else_assign)
1960 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1961 then_assign, else_assign);
1962
1963 /* Find data references. */
f1f41a6c 1964 then_datarefs.create (1);
1965 else_datarefs.create (1);
ec611e12 1966 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1967 == chrec_dont_know)
f1f41a6c 1968 || !then_datarefs.length ()
ec611e12 1969 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
c71d3c24 1970 == chrec_dont_know)
f1f41a6c 1971 || !else_datarefs.length ())
ec611e12 1972 {
1973 free_data_refs (then_datarefs);
1974 free_data_refs (else_datarefs);
1975 return false;
1976 }
1977
1978 /* Find pairs of stores with equal LHS. */
42acab1c 1979 auto_vec<gimple *, 1> then_stores, else_stores;
f1f41a6c 1980 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
ec611e12 1981 {
1982 if (DR_IS_READ (then_dr))
1983 continue;
1984
1985 then_store = DR_STMT (then_dr);
728dcc71 1986 then_lhs = gimple_get_lhs (then_store);
c71d3c24 1987 if (then_lhs == NULL_TREE)
1988 continue;
ec611e12 1989 found = false;
1990
f1f41a6c 1991 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
ec611e12 1992 {
1993 if (DR_IS_READ (else_dr))
1994 continue;
1995
1996 else_store = DR_STMT (else_dr);
728dcc71 1997 else_lhs = gimple_get_lhs (else_store);
c71d3c24 1998 if (else_lhs == NULL_TREE)
1999 continue;
ec611e12 2000
2001 if (operand_equal_p (then_lhs, else_lhs, 0))
2002 {
2003 found = true;
2004 break;
2005 }
2006 }
2007
2008 if (!found)
2009 continue;
2010
f1f41a6c 2011 then_stores.safe_push (then_store);
2012 else_stores.safe_push (else_store);
ec611e12 2013 }
2014
2015 /* No pairs of stores found. */
f1f41a6c 2016 if (!then_stores.length ()
2017 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
ec611e12 2018 {
2019 free_data_refs (then_datarefs);
2020 free_data_refs (else_datarefs);
ec611e12 2021 return false;
2022 }
2023
2024 /* Compute and check data dependencies in both basic blocks. */
f1f41a6c 2025 then_ddrs.create (1);
2026 else_ddrs.create (1);
2027 if (!compute_all_dependences (then_datarefs, &then_ddrs,
1e094109 2028 vNULL, false)
f1f41a6c 2029 || !compute_all_dependences (else_datarefs, &else_ddrs,
1e094109 2030 vNULL, false))
8b3fb720 2031 {
2032 free_dependence_relations (then_ddrs);
2033 free_dependence_relations (else_ddrs);
2034 free_data_refs (then_datarefs);
2035 free_data_refs (else_datarefs);
8b3fb720 2036 return false;
2037 }
ec611e12 2038 blocks[0] = then_bb;
2039 blocks[1] = else_bb;
2040 blocks[2] = join_bb;
2041 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
2042
2043 /* Check that there are no read-after-write or write-after-write dependencies
2044 in THEN_BB. */
f1f41a6c 2045 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
ec611e12 2046 {
2047 struct data_reference *dra = DDR_A (ddr);
2048 struct data_reference *drb = DDR_B (ddr);
2049
2050 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2051 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2052 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2053 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2054 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2055 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2056 {
2057 free_dependence_relations (then_ddrs);
2058 free_dependence_relations (else_ddrs);
2473bfb7 2059 free_data_refs (then_datarefs);
2060 free_data_refs (else_datarefs);
ec611e12 2061 return false;
2062 }
2063 }
2064
2065 /* Check that there are no read-after-write or write-after-write dependencies
2066 in ELSE_BB. */
f1f41a6c 2067 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
ec611e12 2068 {
2069 struct data_reference *dra = DDR_A (ddr);
2070 struct data_reference *drb = DDR_B (ddr);
2071
2072 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2073 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2074 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2075 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2076 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2077 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2078 {
2079 free_dependence_relations (then_ddrs);
2080 free_dependence_relations (else_ddrs);
2473bfb7 2081 free_data_refs (then_datarefs);
2082 free_data_refs (else_datarefs);
ec611e12 2083 return false;
2084 }
2085 }
2086
2087 /* Sink stores with same LHS. */
f1f41a6c 2088 FOR_EACH_VEC_ELT (then_stores, i, then_store)
ec611e12 2089 {
f1f41a6c 2090 else_store = else_stores[i];
ec611e12 2091 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2092 then_store, else_store);
2093 ok = ok || res;
2094 }
2095
2096 free_dependence_relations (then_ddrs);
2097 free_dependence_relations (else_ddrs);
2473bfb7 2098 free_data_refs (then_datarefs);
2099 free_data_refs (else_datarefs);
ec611e12 2100
2101 return ok;
2102}
2103
239e9670 2104/* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
2105
2106static bool
42acab1c 2107local_mem_dependence (gimple *stmt, basic_block bb)
239e9670 2108{
2109 tree vuse = gimple_vuse (stmt);
42acab1c 2110 gimple *def;
239e9670 2111
2112 if (!vuse)
2113 return false;
2114
2115 def = SSA_NAME_DEF_STMT (vuse);
2116 return (def && gimple_bb (def) == bb);
2117}
2118
2119/* Given a "diamond" control-flow pattern where BB0 tests a condition,
2120 BB1 and BB2 are "then" and "else" blocks dependent on this test,
f32420fb 2121 and BB3 rejoins control flow following BB1 and BB2, look for
239e9670 2122 opportunities to hoist loads as follows. If BB3 contains a PHI of
2123 two loads, one each occurring in BB1 and BB2, and the loads are
2124 provably of adjacent fields in the same structure, then move both
2125 loads into BB0. Of course this can only be done if there are no
2126 dependencies preventing such motion.
2127
2128 One of the hoisted loads will always be speculative, so the
2129 transformation is currently conservative:
2130
2131 - The fields must be strictly adjacent.
2132 - The two fields must occupy a single memory block that is
2133 guaranteed to not cross a page boundary.
2134
2135 The last is difficult to prove, as such memory blocks should be
2136 aligned on the minimum of the stack alignment boundary and the
2137 alignment guaranteed by heap allocation interfaces. Thus we rely
2138 on a parameter for the alignment value.
2139
2140 Provided a good value is used for the last case, the first
2141 restriction could possibly be relaxed. */
2142
2143static void
2144hoist_adjacent_loads (basic_block bb0, basic_block bb1,
2145 basic_block bb2, basic_block bb3)
2146{
2147 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
2148 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1a91d914 2149 gphi_iterator gsi;
239e9670 2150
2151 /* Walk the phis in bb3 looking for an opportunity. We are looking
2152 for phis of two SSA names, one each of which is defined in bb1 and
2153 bb2. */
2154 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2155 {
1a91d914 2156 gphi *phi_stmt = gsi.phi ();
42acab1c 2157 gimple *def1, *def2;
dfcf26a5 2158 tree arg1, arg2, ref1, ref2, field1, field2;
239e9670 2159 tree tree_offset1, tree_offset2, tree_size2, next;
2160 int offset1, offset2, size2;
2161 unsigned align1;
2162 gimple_stmt_iterator gsi2;
2163 basic_block bb_for_def1, bb_for_def2;
2164
7c782c9b 2165 if (gimple_phi_num_args (phi_stmt) != 2
2166 || virtual_operand_p (gimple_phi_result (phi_stmt)))
239e9670 2167 continue;
2168
2169 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2170 arg2 = gimple_phi_arg_def (phi_stmt, 1);
f32420fb 2171
239e9670 2172 if (TREE_CODE (arg1) != SSA_NAME
2173 || TREE_CODE (arg2) != SSA_NAME
2174 || SSA_NAME_IS_DEFAULT_DEF (arg1)
7c782c9b 2175 || SSA_NAME_IS_DEFAULT_DEF (arg2))
239e9670 2176 continue;
2177
2178 def1 = SSA_NAME_DEF_STMT (arg1);
2179 def2 = SSA_NAME_DEF_STMT (arg2);
2180
2181 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2182 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2183 continue;
2184
2185 /* Check the mode of the arguments to be sure a conditional move
2186 can be generated for it. */
935611bc 2187 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2188 == CODE_FOR_nothing)
239e9670 2189 continue;
2190
2191 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2192 if (!gimple_assign_single_p (def1)
6cc085b6 2193 || !gimple_assign_single_p (def2)
2194 || gimple_has_volatile_ops (def1)
2195 || gimple_has_volatile_ops (def2))
239e9670 2196 continue;
2197
2198 ref1 = gimple_assign_rhs1 (def1);
2199 ref2 = gimple_assign_rhs1 (def2);
2200
2201 if (TREE_CODE (ref1) != COMPONENT_REF
2202 || TREE_CODE (ref2) != COMPONENT_REF)
2203 continue;
2204
2205 /* The zeroth operand of the two component references must be
2206 identical. It is not sufficient to compare get_base_address of
2207 the two references, because this could allow for different
2208 elements of the same array in the two trees. It is not safe to
2209 assume that the existence of one array element implies the
2210 existence of a different one. */
2211 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2212 continue;
2213
2214 field1 = TREE_OPERAND (ref1, 1);
2215 field2 = TREE_OPERAND (ref2, 1);
2216
2217 /* Check for field adjacency, and ensure field1 comes first. */
2218 for (next = DECL_CHAIN (field1);
2219 next && TREE_CODE (next) != FIELD_DECL;
2220 next = DECL_CHAIN (next))
2221 ;
2222
2223 if (next != field2)
2224 {
2225 for (next = DECL_CHAIN (field2);
2226 next && TREE_CODE (next) != FIELD_DECL;
2227 next = DECL_CHAIN (next))
2228 ;
2229
2230 if (next != field1)
2231 continue;
2232
dfcf26a5 2233 std::swap (field1, field2);
2234 std::swap (def1, def2);
239e9670 2235 }
2236
7c74ee50 2237 bb_for_def1 = gimple_bb (def1);
2238 bb_for_def2 = gimple_bb (def2);
2239
239e9670 2240 /* Check for proper alignment of the first field. */
2241 tree_offset1 = bit_position (field1);
2242 tree_offset2 = bit_position (field2);
2243 tree_size2 = DECL_SIZE (field2);
2244
e913b5cd 2245 if (!tree_fits_uhwi_p (tree_offset1)
2246 || !tree_fits_uhwi_p (tree_offset2)
2247 || !tree_fits_uhwi_p (tree_size2))
239e9670 2248 continue;
2249
e913b5cd 2250 offset1 = tree_to_uhwi (tree_offset1);
2251 offset2 = tree_to_uhwi (tree_offset2);
2252 size2 = tree_to_uhwi (tree_size2);
239e9670 2253 align1 = DECL_ALIGN (field1) % param_align_bits;
2254
2255 if (offset1 % BITS_PER_UNIT != 0)
2256 continue;
2257
2258 /* For profitability, the two field references should fit within
2259 a single cache line. */
2260 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2261 continue;
2262
2263 /* The two expressions cannot be dependent upon vdefs defined
2264 in bb1/bb2. */
2265 if (local_mem_dependence (def1, bb_for_def1)
2266 || local_mem_dependence (def2, bb_for_def2))
2267 continue;
2268
2269 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2270 bb0. We hoist the first one first so that a cache miss is handled
2271 efficiently regardless of hardware cache-fill policy. */
2272 gsi2 = gsi_for_stmt (def1);
2273 gsi_move_to_bb_end (&gsi2, bb0);
2274 gsi2 = gsi_for_stmt (def2);
2275 gsi_move_to_bb_end (&gsi2, bb0);
2276
2277 if (dump_file && (dump_flags & TDF_DETAILS))
2278 {
2279 fprintf (dump_file,
2280 "\nHoisting adjacent loads from %d and %d into %d: \n",
2281 bb_for_def1->index, bb_for_def2->index, bb0->index);
2282 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2283 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2284 }
2285 }
2286}
2287
2288/* Determine whether we should attempt to hoist adjacent loads out of
2289 diamond patterns in pass_phiopt. Always hoist loads if
2290 -fhoist-adjacent-loads is specified and the target machine has
6f0ddab1 2291 both a conditional move instruction and a defined cache line size. */
239e9670 2292
2293static bool
2294gate_hoist_loads (void)
2295{
6f0ddab1 2296 return (flag_hoist_adjacent_loads == 1
2297 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2298 && HAVE_conditional_move);
239e9670 2299}
2300
65b0537f 2301/* This pass tries to replaces an if-then-else block with an
2302 assignment. We have four kinds of transformations. Some of these
2303 transformations are also performed by the ifcvt RTL optimizer.
2304
2305 Conditional Replacement
2306 -----------------------
2307
2308 This transformation, implemented in conditional_replacement,
2309 replaces
2310
2311 bb0:
2312 if (cond) goto bb2; else goto bb1;
2313 bb1:
2314 bb2:
2315 x = PHI <0 (bb1), 1 (bb0), ...>;
2316
2317 with
2318
2319 bb0:
2320 x' = cond;
2321 goto bb2;
2322 bb2:
2323 x = PHI <x' (bb0), ...>;
2324
2325 We remove bb1 as it becomes unreachable. This occurs often due to
2326 gimplification of conditionals.
2327
2328 Value Replacement
2329 -----------------
2330
2331 This transformation, implemented in value_replacement, replaces
2332
2333 bb0:
2334 if (a != b) goto bb2; else goto bb1;
2335 bb1:
2336 bb2:
2337 x = PHI <a (bb1), b (bb0), ...>;
2338
2339 with
2340
2341 bb0:
2342 bb2:
2343 x = PHI <b (bb0), ...>;
2344
2345 This opportunity can sometimes occur as a result of other
2346 optimizations.
2347
2348
2349 Another case caught by value replacement looks like this:
2350
2351 bb0:
2352 t1 = a == CONST;
2353 t2 = b > c;
2354 t3 = t1 & t2;
2355 if (t3 != 0) goto bb1; else goto bb2;
2356 bb1:
2357 bb2:
2358 x = PHI (CONST, a)
2359
2360 Gets replaced with:
2361 bb0:
2362 bb2:
2363 t1 = a == CONST;
2364 t2 = b > c;
2365 t3 = t1 & t2;
2366 x = a;
2367
2368 ABS Replacement
2369 ---------------
2370
2371 This transformation, implemented in abs_replacement, replaces
2372
2373 bb0:
2374 if (a >= 0) goto bb2; else goto bb1;
2375 bb1:
2376 x = -a;
2377 bb2:
2378 x = PHI <x (bb1), a (bb0), ...>;
2379
2380 with
2381
2382 bb0:
2383 x' = ABS_EXPR< a >;
2384 bb2:
2385 x = PHI <x' (bb0), ...>;
2386
2387 MIN/MAX Replacement
2388 -------------------
2389
2390 This transformation, minmax_replacement replaces
2391
2392 bb0:
2393 if (a <= b) goto bb2; else goto bb1;
2394 bb1:
2395 bb2:
2396 x = PHI <b (bb1), a (bb0), ...>;
2397
2398 with
2399
2400 bb0:
2401 x' = MIN_EXPR (a, b)
2402 bb2:
2403 x = PHI <x' (bb0), ...>;
2404
2405 A similar transformation is done for MAX_EXPR.
2406
2407
2408 This pass also performs a fifth transformation of a slightly different
2409 flavor.
2410
29a78fec 2411 Factor conversion in COND_EXPR
2412 ------------------------------
2413
2414 This transformation factors the conversion out of COND_EXPR with
2415 factor_out_conditional_conversion.
2416
2417 For example:
2418 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2419 <bb 3>:
2420 tmp = (int) a;
2421 <bb 4>:
2422 tmp = PHI <tmp, CST>
2423
2424 Into:
2425 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2426 <bb 3>:
2427 <bb 4>:
2428 a = PHI <a, CST>
2429 tmp = (int) a;
2430
65b0537f 2431 Adjacent Load Hoisting
2432 ----------------------
2433
2434 This transformation replaces
2435
2436 bb0:
2437 if (...) goto bb2; else goto bb1;
2438 bb1:
2439 x1 = (<expr>).field1;
2440 goto bb3;
2441 bb2:
2442 x2 = (<expr>).field2;
2443 bb3:
2444 # x = PHI <x1, x2>;
2445
2446 with
2447
2448 bb0:
2449 x1 = (<expr>).field1;
2450 x2 = (<expr>).field2;
2451 if (...) goto bb2; else goto bb1;
2452 bb1:
2453 goto bb3;
2454 bb2:
2455 bb3:
2456 # x = PHI <x1, x2>;
2457
2458 The purpose of this transformation is to enable generation of conditional
2459 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2460 the loads is speculative, the transformation is restricted to very
2461 specific cases to avoid introducing a page fault. We are looking for
2462 the common idiom:
2463
2464 if (...)
2465 x = y->left;
2466 else
2467 x = y->right;
2468
2469 where left and right are typically adjacent pointers in a tree structure. */
20e5647c 2470
cbe8bda8 2471namespace {
2472
2473const pass_data pass_data_phiopt =
4ee9c684 2474{
cbe8bda8 2475 GIMPLE_PASS, /* type */
2476 "phiopt", /* name */
2477 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 2478 TV_TREE_PHIOPT, /* tv_id */
2479 ( PROP_cfg | PROP_ssa ), /* properties_required */
2480 0, /* properties_provided */
2481 0, /* properties_destroyed */
2482 0, /* todo_flags_start */
8b88439e 2483 0, /* todo_flags_finish */
4ee9c684 2484};
e6d0e152 2485
cbe8bda8 2486class pass_phiopt : public gimple_opt_pass
2487{
2488public:
9af5ce0c 2489 pass_phiopt (gcc::context *ctxt)
2490 : gimple_opt_pass (pass_data_phiopt, ctxt)
cbe8bda8 2491 {}
2492
2493 /* opt_pass methods: */
ae84f584 2494 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
3dac50cc 2495 virtual bool gate (function *) { return flag_ssa_phiopt; }
65b0537f 2496 virtual unsigned int execute (function *)
2497 {
2498 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
2499 }
cbe8bda8 2500
2501}; // class pass_phiopt
2502
2503} // anon namespace
2504
2505gimple_opt_pass *
2506make_pass_phiopt (gcc::context *ctxt)
2507{
2508 return new pass_phiopt (ctxt);
2509}
2510
cbe8bda8 2511namespace {
2512
2513const pass_data pass_data_cselim =
e6d0e152 2514{
cbe8bda8 2515 GIMPLE_PASS, /* type */
2516 "cselim", /* name */
2517 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 2518 TV_TREE_PHIOPT, /* tv_id */
2519 ( PROP_cfg | PROP_ssa ), /* properties_required */
2520 0, /* properties_provided */
2521 0, /* properties_destroyed */
2522 0, /* todo_flags_start */
8b88439e 2523 0, /* todo_flags_finish */
e6d0e152 2524};
cbe8bda8 2525
2526class pass_cselim : public gimple_opt_pass
2527{
2528public:
9af5ce0c 2529 pass_cselim (gcc::context *ctxt)
2530 : gimple_opt_pass (pass_data_cselim, ctxt)
cbe8bda8 2531 {}
2532
2533 /* opt_pass methods: */
31315c24 2534 virtual bool gate (function *) { return flag_tree_cselim; }
65b0537f 2535 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
cbe8bda8 2536
2537}; // class pass_cselim
2538
2539} // anon namespace
2540
2541gimple_opt_pass *
2542make_pass_cselim (gcc::context *ctxt)
2543{
2544 return new pass_cselim (ctxt);
2545}