]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-phiopt.c
This patch implements the unification of the *bitmap interfaces as discussed.
[thirdparty/gcc.git] / gcc / tree-ssa-phiopt.c
CommitLineData
4ee9c684 1/* Optimization of PHI nodes by converting them into straightline code.
963aee26 2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
91cf53d5 3 Free Software Foundation, Inc.
4ee9c684 4
5This file is part of GCC.
20e5647c 6
4ee9c684 7GCC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by the
8c4c00c1 9Free Software Foundation; either version 3, or (at your option) any
4ee9c684 10later version.
20e5647c 11
4ee9c684 12GCC is distributed in the hope that it will be useful, but WITHOUT
13ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
20e5647c 16
4ee9c684 17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
4ee9c684 20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
4ee9c684 25#include "ggc.h"
26#include "tree.h"
0beac6fc 27#include "flags.h"
4ee9c684 28#include "tm_p.h"
29#include "basic-block.h"
4ee9c684 30#include "tree-flow.h"
31#include "tree-pass.h"
4ee9c684 32#include "langhooks.h"
e6d0e152 33#include "pointer-set.h"
34#include "domwalk.h"
ec611e12 35#include "cfgloop.h"
36#include "tree-data-ref.h"
239e9670 37#include "gimple-pretty-print.h"
38#include "insn-config.h"
39#include "expr.h"
40#include "optabs.h"
41
42#ifndef HAVE_conditional_move
43#define HAVE_conditional_move (0)
44#endif
4ee9c684 45
75a70cf9 46static unsigned int tree_ssa_phiopt (void);
239e9670 47static unsigned int tree_ssa_phiopt_worker (bool, bool);
a4844041 48static bool conditional_replacement (basic_block, basic_block,
75a70cf9 49 edge, edge, gimple, tree, tree);
fb9912ea 50static int value_replacement (basic_block, basic_block,
51 edge, edge, gimple, tree, tree);
a4844041 52static bool minmax_replacement (basic_block, basic_block,
75a70cf9 53 edge, edge, gimple, tree, tree);
a4844041 54static bool abs_replacement (basic_block, basic_block,
75a70cf9 55 edge, edge, gimple, tree, tree);
e6d0e152 56static bool cond_store_replacement (basic_block, basic_block, edge, edge,
57 struct pointer_set_t *);
91cf53d5 58static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
e6d0e152 59static struct pointer_set_t * get_non_trapping (void);
75a70cf9 60static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
239e9670 61static void hoist_adjacent_loads (basic_block, basic_block,
62 basic_block, basic_block);
63static bool gate_hoist_loads (void);
902929aa 64
caac37c2 65/* This pass tries to replaces an if-then-else block with an
66 assignment. We have four kinds of transformations. Some of these
67 transformations are also performed by the ifcvt RTL optimizer.
68
69 Conditional Replacement
70 -----------------------
71
30c5ffd2 72 This transformation, implemented in conditional_replacement,
caac37c2 73 replaces
4ee9c684 74
75 bb0:
76 if (cond) goto bb2; else goto bb1;
77 bb1:
78 bb2:
caac37c2 79 x = PHI <0 (bb1), 1 (bb0), ...>;
4ee9c684 80
caac37c2 81 with
20e5647c 82
2ab0a163 83 bb0:
caac37c2 84 x' = cond;
85 goto bb2;
2ab0a163 86 bb2:
caac37c2 87 x = PHI <x' (bb0), ...>;
4ee9c684 88
caac37c2 89 We remove bb1 as it becomes unreachable. This occurs often due to
90 gimplification of conditionals.
20e5647c 91
caac37c2 92 Value Replacement
93 -----------------
94
95 This transformation, implemented in value_replacement, replaces
0beac6fc 96
97 bb0:
caac37c2 98 if (a != b) goto bb2; else goto bb1;
0beac6fc 99 bb1:
100 bb2:
caac37c2 101 x = PHI <a (bb1), b (bb0), ...>;
0beac6fc 102
caac37c2 103 with
0beac6fc 104
105 bb0:
0beac6fc 106 bb2:
caac37c2 107 x = PHI <b (bb0), ...>;
108
109 This opportunity can sometimes occur as a result of other
110 optimizations.
0beac6fc 111
caac37c2 112 ABS Replacement
113 ---------------
70512b93 114
caac37c2 115 This transformation, implemented in abs_replacement, replaces
70512b93 116
117 bb0:
caac37c2 118 if (a >= 0) goto bb2; else goto bb1;
70512b93 119 bb1:
caac37c2 120 x = -a;
70512b93 121 bb2:
caac37c2 122 x = PHI <x (bb1), a (bb0), ...>;
70512b93 123
caac37c2 124 with
70512b93 125
126 bb0:
caac37c2 127 x' = ABS_EXPR< a >;
70512b93 128 bb2:
caac37c2 129 x = PHI <x' (bb0), ...>;
130
131 MIN/MAX Replacement
132 -------------------
70512b93 133
caac37c2 134 This transformation, minmax_replacement replaces
194899bf 135
136 bb0:
caac37c2 137 if (a <= b) goto bb2; else goto bb1;
194899bf 138 bb1:
194899bf 139 bb2:
caac37c2 140 x = PHI <b (bb1), a (bb0), ...>;
194899bf 141
caac37c2 142 with
194899bf 143
caac37c2 144 bb0:
145 x' = MIN_EXPR (a, b)
146 bb2:
147 x = PHI <x' (bb0), ...>;
194899bf 148
239e9670 149 A similar transformation is done for MAX_EXPR.
150
151
152 This pass also performs a fifth transformation of a slightly different
153 flavor.
154
155 Adjacent Load Hoisting
156 ----------------------
157
158 This transformation replaces
159
160 bb0:
161 if (...) goto bb2; else goto bb1;
162 bb1:
163 x1 = (<expr>).field1;
164 goto bb3;
165 bb2:
166 x2 = (<expr>).field2;
167 bb3:
168 # x = PHI <x1, x2>;
169
170 with
171
172 bb0:
173 x1 = (<expr>).field1;
174 x2 = (<expr>).field2;
175 if (...) goto bb2; else goto bb1;
176 bb1:
177 goto bb3;
178 bb2:
179 bb3:
180 # x = PHI <x1, x2>;
181
182 The purpose of this transformation is to enable generation of conditional
183 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
184 the loads is speculative, the transformation is restricted to very
185 specific cases to avoid introducing a page fault. We are looking for
186 the common idiom:
187
188 if (...)
189 x = y->left;
190 else
191 x = y->right;
192
193 where left and right are typically adjacent pointers in a tree structure. */
70512b93 194
2a1990e9 195static unsigned int
4ee9c684 196tree_ssa_phiopt (void)
e6d0e152 197{
239e9670 198 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
e6d0e152 199}
200
201/* This pass tries to transform conditional stores into unconditional
202 ones, enabling further simplifications with the simpler then and else
203 blocks. In particular it replaces this:
204
205 bb0:
206 if (cond) goto bb2; else goto bb1;
207 bb1:
91cf53d5 208 *p = RHS;
e6d0e152 209 bb2:
210
211 with
212
213 bb0:
214 if (cond) goto bb1; else goto bb2;
215 bb1:
216 condtmp' = *p;
217 bb2:
218 condtmp = PHI <RHS, condtmp'>
91cf53d5 219 *p = condtmp;
e6d0e152 220
221 This transformation can only be done under several constraints,
91cf53d5 222 documented below. It also replaces:
223
224 bb0:
225 if (cond) goto bb2; else goto bb1;
226 bb1:
227 *p = RHS1;
228 goto bb3;
229 bb2:
230 *p = RHS2;
231 bb3:
232
233 with
234
235 bb0:
236 if (cond) goto bb3; else goto bb1;
237 bb1:
238 bb3:
239 condtmp = PHI <RHS1, RHS2>
240 *p = condtmp; */
e6d0e152 241
242static unsigned int
243tree_ssa_cs_elim (void)
244{
239e9670 245 return tree_ssa_phiopt_worker (true, false);
e6d0e152 246}
247
c3597b05 248/* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
249
250static gimple
251single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
252{
253 gimple_stmt_iterator i;
254 gimple phi = NULL;
255 if (gimple_seq_singleton_p (seq))
256 return gsi_stmt (gsi_start (seq));
257 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
258 {
259 gimple p = gsi_stmt (i);
260 /* If the PHI arguments are equal then we can skip this PHI. */
261 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
262 gimple_phi_arg_def (p, e1->dest_idx)))
263 continue;
264
265 /* If we already have a PHI that has the two edge arguments are
266 different, then return it is not a singleton for these PHIs. */
267 if (phi)
268 return NULL;
269
270 phi = p;
271 }
272 return phi;
273}
274
e6d0e152 275/* The core routine of conditional store replacement and normal
276 phi optimizations. Both share much of the infrastructure in how
277 to match applicable basic block patterns. DO_STORE_ELIM is true
239e9670 278 when we want to do conditional store replacement, false otherwise.
279 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
280 of diamond control flow patterns, false otherwise. */
e6d0e152 281static unsigned int
239e9670 282tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
4ee9c684 283{
284 basic_block bb;
194899bf 285 basic_block *bb_order;
286 unsigned n, i;
1e4b21e3 287 bool cfgchanged = false;
e6d0e152 288 struct pointer_set_t *nontrap = 0;
289
290 if (do_store_elim)
03d37e4e 291 /* Calculate the set of non-trapping memory accesses. */
292 nontrap = get_non_trapping ();
194899bf 293
294 /* Search every basic block for COND_EXPR we may be able to optimize.
295
296 We walk the blocks in order that guarantees that a block with
297 a single predecessor is processed before the predecessor.
298 This ensures that we collapse inner ifs before visiting the
299 outer ones, and also that we do not try to visit a removed
300 block. */
301 bb_order = blocks_in_phiopt_order ();
4d2e5d52 302 n = n_basic_blocks - NUM_FIXED_BLOCKS;
4ee9c684 303
48e1416a 304 for (i = 0; i < n; i++)
4ee9c684 305 {
75a70cf9 306 gimple cond_stmt, phi;
33784d89 307 basic_block bb1, bb2;
308 edge e1, e2;
194899bf 309 tree arg0, arg1;
310
311 bb = bb_order[i];
20e5647c 312
75a70cf9 313 cond_stmt = last_stmt (bb);
314 /* Check to see if the last statement is a GIMPLE_COND. */
315 if (!cond_stmt
316 || gimple_code (cond_stmt) != GIMPLE_COND)
33784d89 317 continue;
20e5647c 318
33784d89 319 e1 = EDGE_SUCC (bb, 0);
320 bb1 = e1->dest;
321 e2 = EDGE_SUCC (bb, 1);
322 bb2 = e2->dest;
20e5647c 323
33784d89 324 /* We cannot do the optimization on abnormal edges. */
325 if ((e1->flags & EDGE_ABNORMAL) != 0
326 || (e2->flags & EDGE_ABNORMAL) != 0)
327 continue;
20e5647c 328
33784d89 329 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
ea091dfd 330 if (EDGE_COUNT (bb1->succs) == 0
33784d89 331 || bb2 == NULL
ea091dfd 332 || EDGE_COUNT (bb2->succs) == 0)
33784d89 333 continue;
20e5647c 334
33784d89 335 /* Find the bb which is the fall through to the other. */
336 if (EDGE_SUCC (bb1, 0)->dest == bb2)
337 ;
338 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
339 {
340 basic_block bb_tmp = bb1;
341 edge e_tmp = e1;
342 bb1 = bb2;
343 bb2 = bb_tmp;
344 e1 = e2;
345 e2 = e_tmp;
346 }
91cf53d5 347 else if (do_store_elim
348 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
349 {
350 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
351
352 if (!single_succ_p (bb1)
353 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
354 || !single_succ_p (bb2)
355 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
356 || EDGE_COUNT (bb3->preds) != 2)
357 continue;
358 if (cond_if_else_store_replacement (bb1, bb2, bb3))
359 cfgchanged = true;
360 continue;
361 }
239e9670 362 else if (do_hoist_loads
363 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
364 {
365 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
366
367 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
368 && single_succ_p (bb1)
369 && single_succ_p (bb2)
370 && single_pred_p (bb1)
371 && single_pred_p (bb2)
372 && EDGE_COUNT (bb->succs) == 2
373 && EDGE_COUNT (bb3->preds) == 2
374 /* If one edge or the other is dominant, a conditional move
375 is likely to perform worse than the well-predicted branch. */
376 && !predictable_edge_p (EDGE_SUCC (bb, 0))
377 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
378 hoist_adjacent_loads (bb, bb1, bb2, bb3);
379 continue;
380 }
33784d89 381 else
91cf53d5 382 continue;
20e5647c 383
33784d89 384 e1 = EDGE_SUCC (bb1, 0);
20e5647c 385
33784d89 386 /* Make sure that bb1 is just a fall through. */
db5ba14c 387 if (!single_succ_p (bb1)
33784d89 388 || (e1->flags & EDGE_FALLTHRU) == 0)
389 continue;
20e5647c 390
3472707f 391 /* Also make sure that bb1 only have one predecessor and that it
392 is bb. */
ea091dfd 393 if (!single_pred_p (bb1)
394 || single_pred (bb1) != bb)
33784d89 395 continue;
20e5647c 396
e6d0e152 397 if (do_store_elim)
398 {
399 /* bb1 is the middle block, bb2 the join block, bb the split block,
400 e1 the fallthrough edge from bb1 to bb2. We can't do the
401 optimization if the join block has more than two predecessors. */
402 if (EDGE_COUNT (bb2->preds) > 2)
403 continue;
404 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
405 cfgchanged = true;
406 }
407 else
408 {
75a70cf9 409 gimple_seq phis = phi_nodes (bb2);
2109076a 410 gimple_stmt_iterator gsi;
fb9912ea 411 bool candorest = true;
c3597b05 412
fb9912ea 413 /* Value replacement can work with more than one PHI
414 so try that first. */
415 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
416 {
417 phi = gsi_stmt (gsi);
418 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
419 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
420 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
421 {
422 candorest = false;
423 cfgchanged = true;
424 break;
425 }
426 }
e6d0e152 427
fb9912ea 428 if (!candorest)
429 continue;
c3597b05 430
431 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
2109076a 432 if (!phi)
e6d0e152 433 continue;
434
75a70cf9 435 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
436 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
e6d0e152 437
438 /* Something is wrong if we cannot find the arguments in the PHI
439 node. */
440 gcc_assert (arg0 != NULL && arg1 != NULL);
441
442 /* Do the replacement of conditional if it can be done. */
443 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
444 cfgchanged = true;
e6d0e152 445 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
446 cfgchanged = true;
447 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
448 cfgchanged = true;
449 }
194899bf 450 }
451
452 free (bb_order);
48e1416a 453
e6d0e152 454 if (do_store_elim)
455 pointer_set_destroy (nontrap);
456 /* If the CFG has changed, we should cleanup the CFG. */
457 if (cfgchanged && do_store_elim)
458 {
459 /* In cond-store replacement we have added some loads on edges
460 and new VOPS (as we moved the store, and created a load). */
75a70cf9 461 gsi_commit_edge_inserts ();
e6d0e152 462 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
463 }
464 else if (cfgchanged)
465 return TODO_cleanup_cfg;
466 return 0;
194899bf 467}
468
469/* Returns the list of basic blocks in the function in an order that guarantees
470 that if a block X has just a single predecessor Y, then Y is after X in the
471 ordering. */
472
8530c7be 473basic_block *
194899bf 474blocks_in_phiopt_order (void)
475{
476 basic_block x, y;
945865c5 477 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
48e1416a 478 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
4d2e5d52 479 unsigned np, i;
48e1416a 480 sbitmap visited = sbitmap_alloc (last_basic_block);
194899bf 481
48e1416a 482#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
483#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
194899bf 484
53c5d9d4 485 bitmap_clear (visited);
194899bf 486
487 MARK_VISITED (ENTRY_BLOCK_PTR);
488 FOR_EACH_BB (x)
489 {
490 if (VISITED_P (x))
491 continue;
492
493 /* Walk the predecessors of x as long as they have precisely one
494 predecessor and add them to the list, so that they get stored
495 after x. */
496 for (y = x, np = 1;
497 single_pred_p (y) && !VISITED_P (single_pred (y));
498 y = single_pred (y))
499 np++;
500 for (y = x, i = n - np;
501 single_pred_p (y) && !VISITED_P (single_pred (y));
502 y = single_pred (y), i++)
503 {
504 order[i] = y;
505 MARK_VISITED (y);
2ab0a163 506 }
194899bf 507 order[i] = y;
508 MARK_VISITED (y);
509
510 gcc_assert (i == n - 1);
511 n -= np;
4ee9c684 512 }
194899bf 513
514 sbitmap_free (visited);
515 gcc_assert (n == 0);
516 return order;
517
518#undef MARK_VISITED
519#undef VISITED_P
4ee9c684 520}
521
fccee353 522/* Replace PHI node element whose edge is E in block BB with variable NEW.
33784d89 523 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
902929aa 524 is known to have two edges, one of which must reach BB). */
525
526static void
a4844041 527replace_phi_edge_with_variable (basic_block cond_block,
75a70cf9 528 edge e, gimple phi, tree new_tree)
902929aa 529{
75a70cf9 530 basic_block bb = gimple_bb (phi);
0e1a77e1 531 basic_block block_to_remove;
75a70cf9 532 gimple_stmt_iterator gsi;
33784d89 533
20e5647c 534 /* Change the PHI argument to new. */
f0d6e81c 535 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
0e1a77e1 536
0e1a77e1 537 /* Remove the empty basic block. */
cd665a06 538 if (EDGE_SUCC (cond_block, 0)->dest == bb)
902929aa 539 {
cd665a06 540 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
541 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
81c5be57 542 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
543 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
0e1a77e1 544
cd665a06 545 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
902929aa 546 }
547 else
548 {
cd665a06 549 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
550 EDGE_SUCC (cond_block, 1)->flags
902929aa 551 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
81c5be57 552 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
553 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
0e1a77e1 554
cd665a06 555 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
902929aa 556 }
0e1a77e1 557 delete_basic_block (block_to_remove);
20e5647c 558
902929aa 559 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
75a70cf9 560 gsi = gsi_last_bb (cond_block);
561 gsi_remove (&gsi, true);
20e5647c 562
902929aa 563 if (dump_file && (dump_flags & TDF_DETAILS))
564 fprintf (dump_file,
565 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
566 cond_block->index,
567 bb->index);
568}
569
570/* The function conditional_replacement does the main work of doing the
571 conditional replacement. Return true if the replacement is done.
572 Otherwise return false.
573 BB is the basic block where the replacement is going to be done on. ARG0
dac49aa5 574 is argument 0 from PHI. Likewise for ARG1. */
902929aa 575
576static bool
33784d89 577conditional_replacement (basic_block cond_bb, basic_block middle_bb,
75a70cf9 578 edge e0, edge e1, gimple phi,
33784d89 579 tree arg0, tree arg1)
902929aa 580{
581 tree result;
75a70cf9 582 gimple stmt, new_stmt;
583 tree cond;
584 gimple_stmt_iterator gsi;
902929aa 585 edge true_edge, false_edge;
75a70cf9 586 tree new_var, new_var2;
678919fd 587 bool neg;
902929aa 588
435e1a75 589 /* FIXME: Gimplification of complex type is too hard for now. */
47b88316 590 /* We aren't prepared to handle vectors either (and it is a question
591 if it would be worthwhile anyway). */
592 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
593 || POINTER_TYPE_P (TREE_TYPE (arg0)))
594 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
595 || POINTER_TYPE_P (TREE_TYPE (arg1))))
435e1a75 596 return false;
597
678919fd 598 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
599 convert it to the conditional. */
902929aa 600 if ((integer_zerop (arg0) && integer_onep (arg1))
601 || (integer_zerop (arg1) && integer_onep (arg0)))
678919fd 602 neg = false;
603 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
604 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
605 neg = true;
902929aa 606 else
607 return false;
20e5647c 608
33784d89 609 if (!empty_block_p (middle_bb))
902929aa 610 return false;
20e5647c 611
75a70cf9 612 /* At this point we know we have a GIMPLE_COND with two successors.
2ab0a163 613 One successor is BB, the other successor is an empty block which
614 falls through into BB.
20e5647c 615
2ab0a163 616 There is a single PHI node at the join point (BB) and its arguments
678919fd 617 are constants (0, 1) or (0, -1).
20e5647c 618
2ab0a163 619 So, given the condition COND, and the two PHI arguments, we can
20e5647c 620 rewrite this PHI into non-branching code:
621
2ab0a163 622 dest = (COND) or dest = COND'
20e5647c 623
2ab0a163 624 We use the condition as-is if the argument associated with the
625 true edge has the value one or the argument associated with the
626 false edge as the value zero. Note that those conditions are not
75a70cf9 627 the same since only one of the outgoing edges from the GIMPLE_COND
2ab0a163 628 will directly reach BB and thus be associated with an argument. */
ae5a4794 629
75a70cf9 630 stmt = last_stmt (cond_bb);
631 result = PHI_RESULT (phi);
b2a02a0e 632
75a70cf9 633 /* To handle special cases like floating point comparison, it is easier and
634 less error-prone to build a tree and gimplify it on the fly though it is
635 less efficient. */
6f9714b3 636 cond = fold_build2_loc (gimple_location (stmt),
637 gimple_cond_code (stmt), boolean_type_node,
638 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
4ee9c684 639
75a70cf9 640 /* We need to know which is the true edge and which is the false
641 edge so that we know when to invert the condition below. */
642 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
643 if ((e0 == true_edge && integer_zerop (arg0))
678919fd 644 || (e0 == false_edge && !integer_zerop (arg0))
75a70cf9 645 || (e1 == true_edge && integer_zerop (arg1))
678919fd 646 || (e1 == false_edge && !integer_zerop (arg1)))
6f9714b3 647 cond = fold_build1_loc (gimple_location (stmt),
678919fd 648 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
649
650 if (neg)
651 {
652 cond = fold_convert_loc (gimple_location (stmt),
653 TREE_TYPE (result), cond);
654 cond = fold_build1_loc (gimple_location (stmt),
655 NEGATE_EXPR, TREE_TYPE (cond), cond);
656 }
75a70cf9 657
658 /* Insert our new statements at the end of conditional block before the
659 COND_STMT. */
660 gsi = gsi_for_stmt (stmt);
661 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
662 GSI_SAME_STMT);
663
664 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
665 {
efbcb6de 666 source_location locus_0, locus_1;
667
03d37e4e 668 new_var2 = make_ssa_name (TREE_TYPE (result), NULL);
75a70cf9 669 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
670 new_var, NULL);
75a70cf9 671 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
672 new_var = new_var2;
efbcb6de 673
674 /* Set the locus to the first argument, unless is doesn't have one. */
675 locus_0 = gimple_phi_arg_location (phi, 0);
676 locus_1 = gimple_phi_arg_location (phi, 1);
677 if (locus_0 == UNKNOWN_LOCATION)
678 locus_0 = locus_1;
679 gimple_set_location (new_stmt, locus_0);
4ee9c684 680 }
20e5647c 681
75a70cf9 682 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
902929aa 683
4ee9c684 684 /* Note that we optimized this PHI. */
685 return true;
686}
687
17b9476e 688/* Update *ARG which is defined in STMT so that it contains the
689 computed value if that seems profitable. Return true if the
690 statement is made dead by that rewriting. */
691
692static bool
693jump_function_from_stmt (tree *arg, gimple stmt)
694{
695 enum tree_code code = gimple_assign_rhs_code (stmt);
696 if (code == ADDR_EXPR)
697 {
698 /* For arg = &p->i transform it to p, if possible. */
699 tree rhs1 = gimple_assign_rhs1 (stmt);
700 HOST_WIDE_INT offset;
701 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
702 &offset);
703 if (tem
704 && TREE_CODE (tem) == MEM_REF
cf8f0e63 705 && (mem_ref_offset (tem) + double_int::from_shwi (offset)).is_zero ())
17b9476e 706 {
707 *arg = TREE_OPERAND (tem, 0);
708 return true;
709 }
710 }
711 /* TODO: Much like IPA-CP jump-functions we want to handle constant
712 additions symbolically here, and we'd need to update the comparison
713 code that compares the arg + cst tuples in our caller. For now the
714 code above exactly handles the VEC_BASE pattern from vec.h. */
715 return false;
716}
717
0beac6fc 718/* The function value_replacement does the main work of doing the value
fb9912ea 719 replacement. Return non-zero if the replacement is done. Otherwise return
720 0. If we remove the middle basic block, return 2.
0beac6fc 721 BB is the basic block where the replacement is going to be done on. ARG0
dac49aa5 722 is argument 0 from the PHI. Likewise for ARG1. */
0beac6fc 723
fb9912ea 724static int
33784d89 725value_replacement (basic_block cond_bb, basic_block middle_bb,
75a70cf9 726 edge e0, edge e1, gimple phi,
33784d89 727 tree arg0, tree arg1)
0beac6fc 728{
17b9476e 729 gimple_stmt_iterator gsi;
75a70cf9 730 gimple cond;
0beac6fc 731 edge true_edge, false_edge;
75a70cf9 732 enum tree_code code;
fb9912ea 733 bool emtpy_or_with_defined_p = true;
0beac6fc 734
735 /* If the type says honor signed zeros we cannot do this
dac49aa5 736 optimization. */
0beac6fc 737 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
fb9912ea 738 return 0;
0beac6fc 739
fb9912ea 740 /* If there is a statement in MIDDLE_BB that defines one of the PHI
741 arguments, then adjust arg0 or arg1. */
17b9476e 742 gsi = gsi_after_labels (middle_bb);
fb9912ea 743 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
744 gsi_next_nondebug (&gsi);
745 while (!gsi_end_p (gsi))
17b9476e 746 {
fb9912ea 747 gimple stmt = gsi_stmt (gsi);
748 tree lhs;
749 gsi_next_nondebug (&gsi);
750 if (!is_gimple_assign (stmt))
17b9476e 751 {
fb9912ea 752 emtpy_or_with_defined_p = false;
753 continue;
17b9476e 754 }
fb9912ea 755 /* Now try to adjust arg0 or arg1 according to the computation
756 in the statement. */
757 lhs = gimple_assign_lhs (stmt);
758 if (!(lhs == arg0
759 && jump_function_from_stmt (&arg0, stmt))
760 || (lhs == arg1
761 && jump_function_from_stmt (&arg1, stmt)))
762 emtpy_or_with_defined_p = false;
17b9476e 763 }
0beac6fc 764
75a70cf9 765 cond = last_stmt (cond_bb);
766 code = gimple_cond_code (cond);
0beac6fc 767
768 /* This transformation is only valid for equality comparisons. */
75a70cf9 769 if (code != NE_EXPR && code != EQ_EXPR)
fb9912ea 770 return 0;
0beac6fc 771
772 /* We need to know which is the true edge and which is the false
773 edge so that we know if have abs or negative abs. */
33784d89 774 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
0beac6fc 775
776 /* At this point we know we have a COND_EXPR with two successors.
777 One successor is BB, the other successor is an empty block which
778 falls through into BB.
779
780 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
781
782 There is a single PHI node at the join point (BB) with two arguments.
783
784 We now need to verify that the two arguments in the PHI node match
785 the two arguments to the equality comparison. */
20e5647c 786
75a70cf9 787 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
788 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
789 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
790 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
0beac6fc 791 {
792 edge e;
793 tree arg;
794
50737d20 795 /* For NE_EXPR, we want to build an assignment result = arg where
796 arg is the PHI argument associated with the true edge. For
797 EQ_EXPR we want the PHI argument associated with the false edge. */
75a70cf9 798 e = (code == NE_EXPR ? true_edge : false_edge);
50737d20 799
800 /* Unfortunately, E may not reach BB (it may instead have gone to
801 OTHER_BLOCK). If that is the case, then we want the single outgoing
802 edge from OTHER_BLOCK which reaches BB and represents the desired
803 path from COND_BLOCK. */
33784d89 804 if (e->dest == middle_bb)
ea091dfd 805 e = single_succ_edge (e->dest);
50737d20 806
807 /* Now we know the incoming edge to BB that has the argument for the
808 RHS of our new assignment statement. */
33784d89 809 if (e0 == e)
0beac6fc 810 arg = arg0;
811 else
812 arg = arg1;
813
fb9912ea 814 /* If the middle basic block was empty or is defining the
c3597b05 815 PHI arguments and this is a single phi where the args are different
816 for the edges e0 and e1 then we can remove the middle basic block. */
fb9912ea 817 if (emtpy_or_with_defined_p
c3597b05 818 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
819 e0, e1))
fb9912ea 820 {
821 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
822 /* Note that we optimized this PHI. */
823 return 2;
824 }
825 else
826 {
827 /* Replace the PHI arguments with arg. */
828 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
829 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
830 if (dump_file && (dump_flags & TDF_DETAILS))
831 {
832 fprintf (dump_file, "PHI ");
833 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
c3597b05 834 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
835 cond_bb->index);
fb9912ea 836 print_generic_expr (dump_file, arg, 0);
837 fprintf (dump_file, ".\n");
838 }
839 return 1;
840 }
0beac6fc 841
0beac6fc 842 }
fb9912ea 843 return 0;
0beac6fc 844}
845
194899bf 846/* The function minmax_replacement does the main work of doing the minmax
847 replacement. Return true if the replacement is done. Otherwise return
848 false.
849 BB is the basic block where the replacement is going to be done on. ARG0
850 is argument 0 from the PHI. Likewise for ARG1. */
851
852static bool
853minmax_replacement (basic_block cond_bb, basic_block middle_bb,
75a70cf9 854 edge e0, edge e1, gimple phi,
194899bf 855 tree arg0, tree arg1)
856{
857 tree result, type;
75a70cf9 858 gimple cond, new_stmt;
194899bf 859 edge true_edge, false_edge;
860 enum tree_code cmp, minmax, ass_code;
861 tree smaller, larger, arg_true, arg_false;
75a70cf9 862 gimple_stmt_iterator gsi, gsi_from;
194899bf 863
864 type = TREE_TYPE (PHI_RESULT (phi));
865
866 /* The optimization may be unsafe due to NaNs. */
867 if (HONOR_NANS (TYPE_MODE (type)))
868 return false;
869
75a70cf9 870 cond = last_stmt (cond_bb);
871 cmp = gimple_cond_code (cond);
194899bf 872
873 /* This transformation is only valid for order comparisons. Record which
874 operand is smaller/larger if the result of the comparison is true. */
875 if (cmp == LT_EXPR || cmp == LE_EXPR)
876 {
75a70cf9 877 smaller = gimple_cond_lhs (cond);
878 larger = gimple_cond_rhs (cond);
194899bf 879 }
880 else if (cmp == GT_EXPR || cmp == GE_EXPR)
881 {
75a70cf9 882 smaller = gimple_cond_rhs (cond);
883 larger = gimple_cond_lhs (cond);
194899bf 884 }
885 else
886 return false;
887
888 /* We need to know which is the true edge and which is the false
889 edge so that we know if have abs or negative abs. */
890 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
891
892 /* Forward the edges over the middle basic block. */
893 if (true_edge->dest == middle_bb)
894 true_edge = EDGE_SUCC (true_edge->dest, 0);
895 if (false_edge->dest == middle_bb)
896 false_edge = EDGE_SUCC (false_edge->dest, 0);
897
898 if (true_edge == e0)
899 {
900 gcc_assert (false_edge == e1);
901 arg_true = arg0;
902 arg_false = arg1;
903 }
904 else
905 {
906 gcc_assert (false_edge == e0);
907 gcc_assert (true_edge == e1);
908 arg_true = arg1;
909 arg_false = arg0;
910 }
911
912 if (empty_block_p (middle_bb))
913 {
914 if (operand_equal_for_phi_arg_p (arg_true, smaller)
915 && operand_equal_for_phi_arg_p (arg_false, larger))
916 {
917 /* Case
48e1416a 918
194899bf 919 if (smaller < larger)
920 rslt = smaller;
921 else
922 rslt = larger; */
923 minmax = MIN_EXPR;
924 }
925 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
926 && operand_equal_for_phi_arg_p (arg_true, larger))
927 minmax = MAX_EXPR;
928 else
929 return false;
930 }
931 else
932 {
933 /* Recognize the following case, assuming d <= u:
934
935 if (a <= u)
936 b = MAX (a, d);
937 x = PHI <b, u>
938
939 This is equivalent to
940
941 b = MAX (a, d);
942 x = MIN (b, u); */
943
75a70cf9 944 gimple assign = last_and_only_stmt (middle_bb);
945 tree lhs, op0, op1, bound;
194899bf 946
947 if (!assign
75a70cf9 948 || gimple_code (assign) != GIMPLE_ASSIGN)
194899bf 949 return false;
950
75a70cf9 951 lhs = gimple_assign_lhs (assign);
952 ass_code = gimple_assign_rhs_code (assign);
194899bf 953 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
954 return false;
75a70cf9 955 op0 = gimple_assign_rhs1 (assign);
956 op1 = gimple_assign_rhs2 (assign);
194899bf 957
958 if (true_edge->src == middle_bb)
959 {
960 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
961 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
962 return false;
963
964 if (operand_equal_for_phi_arg_p (arg_false, larger))
965 {
966 /* Case
967
968 if (smaller < larger)
969 {
970 r' = MAX_EXPR (smaller, bound)
971 }
972 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
973 if (ass_code != MAX_EXPR)
974 return false;
975
976 minmax = MIN_EXPR;
977 if (operand_equal_for_phi_arg_p (op0, smaller))
978 bound = op1;
979 else if (operand_equal_for_phi_arg_p (op1, smaller))
980 bound = op0;
981 else
982 return false;
983
984 /* We need BOUND <= LARGER. */
49d00087 985 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
986 bound, larger)))
194899bf 987 return false;
988 }
989 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
990 {
991 /* Case
992
993 if (smaller < larger)
994 {
995 r' = MIN_EXPR (larger, bound)
996 }
997 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
998 if (ass_code != MIN_EXPR)
999 return false;
1000
1001 minmax = MAX_EXPR;
1002 if (operand_equal_for_phi_arg_p (op0, larger))
1003 bound = op1;
1004 else if (operand_equal_for_phi_arg_p (op1, larger))
1005 bound = op0;
1006 else
1007 return false;
1008
1009 /* We need BOUND >= SMALLER. */
49d00087 1010 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1011 bound, smaller)))
194899bf 1012 return false;
1013 }
1014 else
1015 return false;
1016 }
1017 else
1018 {
1019 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1020 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1021 return false;
1022
1023 if (operand_equal_for_phi_arg_p (arg_true, larger))
1024 {
1025 /* Case
1026
1027 if (smaller > larger)
1028 {
1029 r' = MIN_EXPR (smaller, bound)
1030 }
1031 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1032 if (ass_code != MIN_EXPR)
1033 return false;
1034
1035 minmax = MAX_EXPR;
1036 if (operand_equal_for_phi_arg_p (op0, smaller))
1037 bound = op1;
1038 else if (operand_equal_for_phi_arg_p (op1, smaller))
1039 bound = op0;
1040 else
1041 return false;
1042
1043 /* We need BOUND >= LARGER. */
49d00087 1044 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1045 bound, larger)))
194899bf 1046 return false;
1047 }
1048 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1049 {
1050 /* Case
1051
1052 if (smaller > larger)
1053 {
1054 r' = MAX_EXPR (larger, bound)
1055 }
1056 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1057 if (ass_code != MAX_EXPR)
1058 return false;
1059
1060 minmax = MIN_EXPR;
1061 if (operand_equal_for_phi_arg_p (op0, larger))
1062 bound = op1;
1063 else if (operand_equal_for_phi_arg_p (op1, larger))
1064 bound = op0;
1065 else
1066 return false;
1067
1068 /* We need BOUND <= SMALLER. */
49d00087 1069 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1070 bound, smaller)))
194899bf 1071 return false;
1072 }
1073 else
1074 return false;
1075 }
1076
1077 /* Move the statement from the middle block. */
75a70cf9 1078 gsi = gsi_last_bb (cond_bb);
445a6ba5 1079 gsi_from = gsi_last_nondebug_bb (middle_bb);
75a70cf9 1080 gsi_move_before (&gsi_from, &gsi);
194899bf 1081 }
1082
1083 /* Emit the statement to compute min/max. */
1084 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
75a70cf9 1085 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
1086 gsi = gsi_last_bb (cond_bb);
1087 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
194899bf 1088
a4844041 1089 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
194899bf 1090 return true;
1091}
1092
70512b93 1093/* The function absolute_replacement does the main work of doing the absolute
1094 replacement. Return true if the replacement is done. Otherwise return
1095 false.
1096 bb is the basic block where the replacement is going to be done on. arg0
f7f07c95 1097 is argument 0 from the phi. Likewise for arg1. */
33784d89 1098
70512b93 1099static bool
33784d89 1100abs_replacement (basic_block cond_bb, basic_block middle_bb,
a4844041 1101 edge e0 ATTRIBUTE_UNUSED, edge e1,
75a70cf9 1102 gimple phi, tree arg0, tree arg1)
70512b93 1103{
1104 tree result;
75a70cf9 1105 gimple new_stmt, cond;
1106 gimple_stmt_iterator gsi;
70512b93 1107 edge true_edge, false_edge;
75a70cf9 1108 gimple assign;
70512b93 1109 edge e;
194899bf 1110 tree rhs, lhs;
70512b93 1111 bool negate;
1112 enum tree_code cond_code;
1113
1114 /* If the type says honor signed zeros we cannot do this
dac49aa5 1115 optimization. */
70512b93 1116 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
1117 return false;
1118
70512b93 1119 /* OTHER_BLOCK must have only one executable statement which must have the
1120 form arg0 = -arg1 or arg1 = -arg0. */
70512b93 1121
194899bf 1122 assign = last_and_only_stmt (middle_bb);
70512b93 1123 /* If we did not find the proper negation assignment, then we can not
1124 optimize. */
1125 if (assign == NULL)
1126 return false;
48e1416a 1127
194899bf 1128 /* If we got here, then we have found the only executable statement
1129 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1130 arg1 = -arg0, then we can not optimize. */
75a70cf9 1131 if (gimple_code (assign) != GIMPLE_ASSIGN)
194899bf 1132 return false;
1133
75a70cf9 1134 lhs = gimple_assign_lhs (assign);
194899bf 1135
75a70cf9 1136 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
194899bf 1137 return false;
1138
75a70cf9 1139 rhs = gimple_assign_rhs1 (assign);
48e1416a 1140
194899bf 1141 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1142 if (!(lhs == arg0 && rhs == arg1)
1143 && !(lhs == arg1 && rhs == arg0))
1144 return false;
70512b93 1145
75a70cf9 1146 cond = last_stmt (cond_bb);
70512b93 1147 result = PHI_RESULT (phi);
1148
1149 /* Only relationals comparing arg[01] against zero are interesting. */
75a70cf9 1150 cond_code = gimple_cond_code (cond);
70512b93 1151 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1152 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1153 return false;
1154
dac49aa5 1155 /* Make sure the conditional is arg[01] OP y. */
75a70cf9 1156 if (gimple_cond_lhs (cond) != rhs)
70512b93 1157 return false;
1158
75a70cf9 1159 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1160 ? real_zerop (gimple_cond_rhs (cond))
1161 : integer_zerop (gimple_cond_rhs (cond)))
70512b93 1162 ;
1163 else
1164 return false;
1165
1166 /* We need to know which is the true edge and which is the false
1167 edge so that we know if have abs or negative abs. */
33784d89 1168 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
70512b93 1169
1170 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1171 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1172 the false edge goes to OTHER_BLOCK. */
1173 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1174 e = true_edge;
1175 else
1176 e = false_edge;
20e5647c 1177
33784d89 1178 if (e->dest == middle_bb)
70512b93 1179 negate = true;
1180 else
1181 negate = false;
20e5647c 1182
33784d89 1183 result = duplicate_ssa_name (result, NULL);
20e5647c 1184
70512b93 1185 if (negate)
03d37e4e 1186 lhs = make_ssa_name (TREE_TYPE (result), NULL);
70512b93 1187 else
1188 lhs = result;
1189
dac49aa5 1190 /* Build the modify expression with abs expression. */
75a70cf9 1191 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
70512b93 1192
75a70cf9 1193 gsi = gsi_last_bb (cond_bb);
1194 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
70512b93 1195
1196 if (negate)
1197 {
75a70cf9 1198 /* Get the right GSI. We want to insert after the recently
70512b93 1199 added ABS_EXPR statement (which we know is the first statement
1200 in the block. */
75a70cf9 1201 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
70512b93 1202
75a70cf9 1203 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
70512b93 1204 }
20e5647c 1205
a4844041 1206 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
70512b93 1207
1208 /* Note that we optimized this PHI. */
1209 return true;
1210}
1211
e6d0e152 1212/* Auxiliary functions to determine the set of memory accesses which
1213 can't trap because they are preceded by accesses to the same memory
182cf5a9 1214 portion. We do that for MEM_REFs, so we only need to track
e6d0e152 1215 the SSA_NAME of the pointer indirectly referenced. The algorithm
1216 simply is a walk over all instructions in dominator order. When
182cf5a9 1217 we see an MEM_REF we determine if we've already seen a same
e6d0e152 1218 ref anywhere up to the root of the dominator tree. If we do the
af4f74fa 1219 current access can't trap. If we don't see any dominating access
e6d0e152 1220 the current access might trap, but might also make later accesses
af4f74fa 1221 non-trapping, so we remember it. We need to be careful with loads
1222 or stores, for instance a load might not trap, while a store would,
1223 so if we see a dominating read access this doesn't mean that a later
1224 write access would not trap. Hence we also need to differentiate the
1225 type of access(es) seen.
1226
1227 ??? We currently are very conservative and assume that a load might
1228 trap even if a store doesn't (write-only memory). This probably is
1229 overly conservative. */
e6d0e152 1230
182cf5a9 1231/* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
e6d0e152 1232 through it was seen, which would constitute a no-trap region for
1233 same accesses. */
1234struct name_to_bb
1235{
963aee26 1236 unsigned int ssa_name_ver;
1237 bool store;
1238 HOST_WIDE_INT offset, size;
e6d0e152 1239 basic_block bb;
1240};
1241
1242/* The hash table for remembering what we've seen. */
1243static htab_t seen_ssa_names;
1244
182cf5a9 1245/* The set of MEM_REFs which can't trap. */
e6d0e152 1246static struct pointer_set_t *nontrap_set;
1247
963aee26 1248/* The hash function. */
e6d0e152 1249static hashval_t
1250name_to_bb_hash (const void *p)
1251{
963aee26 1252 const struct name_to_bb *n = (const struct name_to_bb *) p;
1253 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1254 ^ (n->offset << 6) ^ (n->size << 3);
e6d0e152 1255}
1256
963aee26 1257/* The equality function of *P1 and *P2. */
e6d0e152 1258static int
1259name_to_bb_eq (const void *p1, const void *p2)
1260{
af4f74fa 1261 const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1262 const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
e6d0e152 1263
963aee26 1264 return n1->ssa_name_ver == n2->ssa_name_ver
1265 && n1->store == n2->store
1266 && n1->offset == n2->offset
1267 && n1->size == n2->size;
e6d0e152 1268}
1269
f0b5f617 1270/* We see the expression EXP in basic block BB. If it's an interesting
182cf5a9 1271 expression (an MEM_REF through an SSA_NAME) possibly insert the
af4f74fa 1272 expression into the set NONTRAP or the hash table of seen expressions.
1273 STORE is true if this expression is on the LHS, otherwise it's on
1274 the RHS. */
e6d0e152 1275static void
af4f74fa 1276add_or_mark_expr (basic_block bb, tree exp,
1277 struct pointer_set_t *nontrap, bool store)
e6d0e152 1278{
963aee26 1279 HOST_WIDE_INT size;
1280
182cf5a9 1281 if (TREE_CODE (exp) == MEM_REF
963aee26 1282 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1283 && host_integerp (TREE_OPERAND (exp, 1), 0)
1284 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
e6d0e152 1285 {
1286 tree name = TREE_OPERAND (exp, 0);
1287 struct name_to_bb map;
1288 void **slot;
af4f74fa 1289 struct name_to_bb *n2bb;
e6d0e152 1290 basic_block found_bb = 0;
1291
182cf5a9 1292 /* Try to find the last seen MEM_REF through the same
e6d0e152 1293 SSA_NAME, which can trap. */
963aee26 1294 map.ssa_name_ver = SSA_NAME_VERSION (name);
e6d0e152 1295 map.bb = 0;
af4f74fa 1296 map.store = store;
963aee26 1297 map.offset = tree_low_cst (TREE_OPERAND (exp, 1), 0);
1298 map.size = size;
1299
e6d0e152 1300 slot = htab_find_slot (seen_ssa_names, &map, INSERT);
af4f74fa 1301 n2bb = (struct name_to_bb *) *slot;
1302 if (n2bb)
1303 found_bb = n2bb->bb;
e6d0e152 1304
182cf5a9 1305 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
e6d0e152 1306 (it's in a basic block on the path from us to the dominator root)
1307 then we can't trap. */
1308 if (found_bb && found_bb->aux == (void *)1)
1309 {
1310 pointer_set_insert (nontrap, exp);
1311 }
1312 else
1313 {
1314 /* EXP might trap, so insert it into the hash table. */
af4f74fa 1315 if (n2bb)
e6d0e152 1316 {
af4f74fa 1317 n2bb->bb = bb;
e6d0e152 1318 }
1319 else
1320 {
af4f74fa 1321 n2bb = XNEW (struct name_to_bb);
963aee26 1322 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
af4f74fa 1323 n2bb->bb = bb;
1324 n2bb->store = store;
963aee26 1325 n2bb->offset = map.offset;
1326 n2bb->size = size;
af4f74fa 1327 *slot = n2bb;
e6d0e152 1328 }
1329 }
1330 }
1331}
1332
1333/* Called by walk_dominator_tree, when entering the block BB. */
1334static void
1335nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1336{
75a70cf9 1337 gimple_stmt_iterator gsi;
e6d0e152 1338 /* Mark this BB as being on the path to dominator root. */
1339 bb->aux = (void*)1;
1340
1341 /* And walk the statements in order. */
75a70cf9 1342 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
e6d0e152 1343 {
75a70cf9 1344 gimple stmt = gsi_stmt (gsi);
e6d0e152 1345
963aee26 1346 if (gimple_assign_single_p (stmt))
e6d0e152 1347 {
75a70cf9 1348 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1349 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
e6d0e152 1350 }
1351 }
1352}
1353
1354/* Called by walk_dominator_tree, when basic block BB is exited. */
1355static void
1356nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1357{
1358 /* This BB isn't on the path to dominator root anymore. */
1359 bb->aux = NULL;
1360}
1361
1362/* This is the entry point of gathering non trapping memory accesses.
1363 It will do a dominator walk over the whole function, and it will
1364 make use of the bb->aux pointers. It returns a set of trees
182cf5a9 1365 (the MEM_REFs itself) which can't trap. */
e6d0e152 1366static struct pointer_set_t *
1367get_non_trapping (void)
1368{
1369 struct pointer_set_t *nontrap;
1370 struct dom_walk_data walk_data;
1371
1372 nontrap = pointer_set_create ();
1373 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1374 free);
1375 /* We're going to do a dominator walk, so ensure that we have
1376 dominance information. */
1377 calculate_dominance_info (CDI_DOMINATORS);
1378
1379 /* Setup callbacks for the generic dominator tree walker. */
1380 nontrap_set = nontrap;
e6d0e152 1381 walk_data.dom_direction = CDI_DOMINATORS;
1382 walk_data.initialize_block_local_data = NULL;
6bf320fb 1383 walk_data.before_dom_children = nt_init_block;
1384 walk_data.after_dom_children = nt_fini_block;
e6d0e152 1385 walk_data.global_data = NULL;
1386 walk_data.block_local_data_size = 0;
e6d0e152 1387
1388 init_walk_dominator_tree (&walk_data);
1389 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1390 fini_walk_dominator_tree (&walk_data);
1391 htab_delete (seen_ssa_names);
1392
1393 return nontrap;
1394}
1395
1396/* Do the main work of conditional store replacement. We already know
1397 that the recognized pattern looks like so:
1398
1399 split:
1400 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1401 MIDDLE_BB:
1402 something
1403 fallthrough (edge E0)
1404 JOIN_BB:
1405 some more
1406
1407 We check that MIDDLE_BB contains only one store, that that store
1408 doesn't trap (not via NOTRAP, but via checking if an access to the same
1409 memory location dominates us) and that the store has a "simple" RHS. */
1410
1411static bool
1412cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1413 edge e0, edge e1, struct pointer_set_t *nontrap)
1414{
75a70cf9 1415 gimple assign = last_and_only_stmt (middle_bb);
03d37e4e 1416 tree lhs, rhs, name, name2;
75a70cf9 1417 gimple newphi, new_stmt;
1418 gimple_stmt_iterator gsi;
efbcb6de 1419 source_location locus;
e6d0e152 1420
1421 /* Check if middle_bb contains of only one store. */
1422 if (!assign
91cf53d5 1423 || !gimple_assign_single_p (assign))
e6d0e152 1424 return false;
1425
efbcb6de 1426 locus = gimple_location (assign);
75a70cf9 1427 lhs = gimple_assign_lhs (assign);
1428 rhs = gimple_assign_rhs1 (assign);
182cf5a9 1429 if (TREE_CODE (lhs) != MEM_REF
91cf53d5 1430 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
3211fa0a 1431 || !is_gimple_reg_type (TREE_TYPE (lhs)))
e6d0e152 1432 return false;
91cf53d5 1433
e6d0e152 1434 /* Prove that we can move the store down. We could also check
1435 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1436 whose value is not available readily, which we want to avoid. */
1437 if (!pointer_set_contains (nontrap, lhs))
1438 return false;
1439
1440 /* Now we've checked the constraints, so do the transformation:
1441 1) Remove the single store. */
75a70cf9 1442 gsi = gsi_for_stmt (assign);
3211fa0a 1443 unlink_stmt_vdef (assign);
75a70cf9 1444 gsi_remove (&gsi, true);
91cf53d5 1445 release_defs (assign);
e6d0e152 1446
03d37e4e 1447 /* 2) Insert a load from the memory of the store to the temporary
e6d0e152 1448 on the edge which did not contain the store. */
1449 lhs = unshare_expr (lhs);
03d37e4e 1450 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1451 new_stmt = gimple_build_assign (name, lhs);
efbcb6de 1452 gimple_set_location (new_stmt, locus);
75a70cf9 1453 gsi_insert_on_edge (e1, new_stmt);
e6d0e152 1454
03d37e4e 1455 /* 3) Create a PHI node at the join block, with one argument
e6d0e152 1456 holding the old RHS, and the other holding the temporary
1457 where we stored the old memory contents. */
03d37e4e 1458 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1459 newphi = create_phi_node (name2, join_bb);
60d535d2 1460 add_phi_arg (newphi, rhs, e0, locus);
1461 add_phi_arg (newphi, name, e1, locus);
e6d0e152 1462
1463 lhs = unshare_expr (lhs);
75a70cf9 1464 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
e6d0e152 1465
03d37e4e 1466 /* 4) Insert that PHI node. */
75a70cf9 1467 gsi = gsi_after_labels (join_bb);
1468 if (gsi_end_p (gsi))
e6d0e152 1469 {
75a70cf9 1470 gsi = gsi_last_bb (join_bb);
1471 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
e6d0e152 1472 }
1473 else
75a70cf9 1474 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
e6d0e152 1475
1476 return true;
1477}
4ee9c684 1478
ec611e12 1479/* Do the main work of conditional store replacement. */
91cf53d5 1480
1481static bool
ec611e12 1482cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1483 basic_block join_bb, gimple then_assign,
1484 gimple else_assign)
91cf53d5 1485{
03d37e4e 1486 tree lhs_base, lhs, then_rhs, else_rhs, name;
91cf53d5 1487 source_location then_locus, else_locus;
1488 gimple_stmt_iterator gsi;
1489 gimple newphi, new_stmt;
1490
91cf53d5 1491 if (then_assign == NULL
1492 || !gimple_assign_single_p (then_assign)
3c25489e 1493 || gimple_clobber_p (then_assign)
91cf53d5 1494 || else_assign == NULL
3c25489e 1495 || !gimple_assign_single_p (else_assign)
1496 || gimple_clobber_p (else_assign))
91cf53d5 1497 return false;
1498
1499 lhs = gimple_assign_lhs (then_assign);
1500 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1501 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1502 return false;
1503
1504 lhs_base = get_base_address (lhs);
1505 if (lhs_base == NULL_TREE
1506 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1507 return false;
1508
1509 then_rhs = gimple_assign_rhs1 (then_assign);
1510 else_rhs = gimple_assign_rhs1 (else_assign);
1511 then_locus = gimple_location (then_assign);
1512 else_locus = gimple_location (else_assign);
1513
1514 /* Now we've checked the constraints, so do the transformation:
1515 1) Remove the stores. */
1516 gsi = gsi_for_stmt (then_assign);
1517 unlink_stmt_vdef (then_assign);
1518 gsi_remove (&gsi, true);
1519 release_defs (then_assign);
1520
1521 gsi = gsi_for_stmt (else_assign);
1522 unlink_stmt_vdef (else_assign);
1523 gsi_remove (&gsi, true);
1524 release_defs (else_assign);
1525
03d37e4e 1526 /* 2) Create a PHI node at the join block, with one argument
91cf53d5 1527 holding the old RHS, and the other holding the temporary
1528 where we stored the old memory contents. */
03d37e4e 1529 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1530 newphi = create_phi_node (name, join_bb);
60d535d2 1531 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1532 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
91cf53d5 1533
1534 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1535
03d37e4e 1536 /* 3) Insert that PHI node. */
91cf53d5 1537 gsi = gsi_after_labels (join_bb);
1538 if (gsi_end_p (gsi))
1539 {
1540 gsi = gsi_last_bb (join_bb);
1541 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1542 }
1543 else
1544 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1545
1546 return true;
1547}
1548
ec611e12 1549/* Conditional store replacement. We already know
1550 that the recognized pattern looks like so:
1551
1552 split:
1553 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1554 THEN_BB:
1555 ...
1556 X = Y;
1557 ...
1558 goto JOIN_BB;
1559 ELSE_BB:
1560 ...
1561 X = Z;
1562 ...
1563 fallthrough (edge E0)
1564 JOIN_BB:
1565 some more
1566
1567 We check that it is safe to sink the store to JOIN_BB by verifying that
1568 there are no read-after-write or write-after-write dependencies in
1569 THEN_BB and ELSE_BB. */
1570
1571static bool
1572cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1573 basic_block join_bb)
1574{
1575 gimple then_assign = last_and_only_stmt (then_bb);
1576 gimple else_assign = last_and_only_stmt (else_bb);
1577 VEC (data_reference_p, heap) *then_datarefs, *else_datarefs;
1578 VEC (ddr_p, heap) *then_ddrs, *else_ddrs;
1579 gimple then_store, else_store;
1580 bool found, ok = false, res;
1581 struct data_dependence_relation *ddr;
1582 data_reference_p then_dr, else_dr;
1583 int i, j;
1584 tree then_lhs, else_lhs;
1585 VEC (gimple, heap) *then_stores, *else_stores;
1586 basic_block blocks[3];
1587
1588 if (MAX_STORES_TO_SINK == 0)
1589 return false;
1590
1591 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1592 if (then_assign && else_assign)
1593 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1594 then_assign, else_assign);
1595
1596 /* Find data references. */
1597 then_datarefs = VEC_alloc (data_reference_p, heap, 1);
1598 else_datarefs = VEC_alloc (data_reference_p, heap, 1);
1599 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1600 == chrec_dont_know)
1601 || !VEC_length (data_reference_p, then_datarefs)
1602 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1603 == chrec_dont_know)
1604 || !VEC_length (data_reference_p, else_datarefs))
1605 {
1606 free_data_refs (then_datarefs);
1607 free_data_refs (else_datarefs);
1608 return false;
1609 }
1610
1611 /* Find pairs of stores with equal LHS. */
1612 then_stores = VEC_alloc (gimple, heap, 1);
1613 else_stores = VEC_alloc (gimple, heap, 1);
1614 FOR_EACH_VEC_ELT (data_reference_p, then_datarefs, i, then_dr)
1615 {
1616 if (DR_IS_READ (then_dr))
1617 continue;
1618
1619 then_store = DR_STMT (then_dr);
728dcc71 1620 then_lhs = gimple_get_lhs (then_store);
ec611e12 1621 found = false;
1622
1623 FOR_EACH_VEC_ELT (data_reference_p, else_datarefs, j, else_dr)
1624 {
1625 if (DR_IS_READ (else_dr))
1626 continue;
1627
1628 else_store = DR_STMT (else_dr);
728dcc71 1629 else_lhs = gimple_get_lhs (else_store);
ec611e12 1630
1631 if (operand_equal_p (then_lhs, else_lhs, 0))
1632 {
1633 found = true;
1634 break;
1635 }
1636 }
1637
1638 if (!found)
1639 continue;
1640
1641 VEC_safe_push (gimple, heap, then_stores, then_store);
1642 VEC_safe_push (gimple, heap, else_stores, else_store);
1643 }
1644
1645 /* No pairs of stores found. */
1646 if (!VEC_length (gimple, then_stores)
1647 || VEC_length (gimple, then_stores) > (unsigned) MAX_STORES_TO_SINK)
1648 {
1649 free_data_refs (then_datarefs);
1650 free_data_refs (else_datarefs);
1651 VEC_free (gimple, heap, then_stores);
1652 VEC_free (gimple, heap, else_stores);
1653 return false;
1654 }
1655
1656 /* Compute and check data dependencies in both basic blocks. */
1657 then_ddrs = VEC_alloc (ddr_p, heap, 1);
1658 else_ddrs = VEC_alloc (ddr_p, heap, 1);
8b3fb720 1659 if (!compute_all_dependences (then_datarefs, &then_ddrs, NULL, false)
1660 || !compute_all_dependences (else_datarefs, &else_ddrs, NULL, false))
1661 {
1662 free_dependence_relations (then_ddrs);
1663 free_dependence_relations (else_ddrs);
1664 free_data_refs (then_datarefs);
1665 free_data_refs (else_datarefs);
1666 VEC_free (gimple, heap, then_stores);
1667 VEC_free (gimple, heap, else_stores);
1668 return false;
1669 }
ec611e12 1670 blocks[0] = then_bb;
1671 blocks[1] = else_bb;
1672 blocks[2] = join_bb;
1673 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1674
1675 /* Check that there are no read-after-write or write-after-write dependencies
1676 in THEN_BB. */
1677 FOR_EACH_VEC_ELT (ddr_p, then_ddrs, i, ddr)
1678 {
1679 struct data_reference *dra = DDR_A (ddr);
1680 struct data_reference *drb = DDR_B (ddr);
1681
1682 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1683 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1684 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1685 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1686 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1687 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1688 {
1689 free_dependence_relations (then_ddrs);
1690 free_dependence_relations (else_ddrs);
2473bfb7 1691 free_data_refs (then_datarefs);
1692 free_data_refs (else_datarefs);
ec611e12 1693 VEC_free (gimple, heap, then_stores);
1694 VEC_free (gimple, heap, else_stores);
1695 return false;
1696 }
1697 }
1698
1699 /* Check that there are no read-after-write or write-after-write dependencies
1700 in ELSE_BB. */
1701 FOR_EACH_VEC_ELT (ddr_p, else_ddrs, i, ddr)
1702 {
1703 struct data_reference *dra = DDR_A (ddr);
1704 struct data_reference *drb = DDR_B (ddr);
1705
1706 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1707 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1708 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1709 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1710 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1711 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1712 {
1713 free_dependence_relations (then_ddrs);
1714 free_dependence_relations (else_ddrs);
2473bfb7 1715 free_data_refs (then_datarefs);
1716 free_data_refs (else_datarefs);
ec611e12 1717 VEC_free (gimple, heap, then_stores);
1718 VEC_free (gimple, heap, else_stores);
1719 return false;
1720 }
1721 }
1722
1723 /* Sink stores with same LHS. */
1724 FOR_EACH_VEC_ELT (gimple, then_stores, i, then_store)
1725 {
1726 else_store = VEC_index (gimple, else_stores, i);
1727 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1728 then_store, else_store);
1729 ok = ok || res;
1730 }
1731
1732 free_dependence_relations (then_ddrs);
1733 free_dependence_relations (else_ddrs);
2473bfb7 1734 free_data_refs (then_datarefs);
1735 free_data_refs (else_datarefs);
ec611e12 1736 VEC_free (gimple, heap, then_stores);
1737 VEC_free (gimple, heap, else_stores);
1738
1739 return ok;
1740}
1741
239e9670 1742/* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1743
1744static bool
1745local_mem_dependence (gimple stmt, basic_block bb)
1746{
1747 tree vuse = gimple_vuse (stmt);
1748 gimple def;
1749
1750 if (!vuse)
1751 return false;
1752
1753 def = SSA_NAME_DEF_STMT (vuse);
1754 return (def && gimple_bb (def) == bb);
1755}
1756
1757/* Given a "diamond" control-flow pattern where BB0 tests a condition,
1758 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1759 and BB3 rejoins control flow following BB1 and BB2, look for
1760 opportunities to hoist loads as follows. If BB3 contains a PHI of
1761 two loads, one each occurring in BB1 and BB2, and the loads are
1762 provably of adjacent fields in the same structure, then move both
1763 loads into BB0. Of course this can only be done if there are no
1764 dependencies preventing such motion.
1765
1766 One of the hoisted loads will always be speculative, so the
1767 transformation is currently conservative:
1768
1769 - The fields must be strictly adjacent.
1770 - The two fields must occupy a single memory block that is
1771 guaranteed to not cross a page boundary.
1772
1773 The last is difficult to prove, as such memory blocks should be
1774 aligned on the minimum of the stack alignment boundary and the
1775 alignment guaranteed by heap allocation interfaces. Thus we rely
1776 on a parameter for the alignment value.
1777
1778 Provided a good value is used for the last case, the first
1779 restriction could possibly be relaxed. */
1780
1781static void
1782hoist_adjacent_loads (basic_block bb0, basic_block bb1,
1783 basic_block bb2, basic_block bb3)
1784{
1785 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
1786 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1787 gimple_stmt_iterator gsi;
1788
1789 /* Walk the phis in bb3 looking for an opportunity. We are looking
1790 for phis of two SSA names, one each of which is defined in bb1 and
1791 bb2. */
1792 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
1793 {
1794 gimple phi_stmt = gsi_stmt (gsi);
1795 gimple def1, def2, defswap;
1796 tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
1797 tree tree_offset1, tree_offset2, tree_size2, next;
1798 int offset1, offset2, size2;
1799 unsigned align1;
1800 gimple_stmt_iterator gsi2;
1801 basic_block bb_for_def1, bb_for_def2;
1802
7c782c9b 1803 if (gimple_phi_num_args (phi_stmt) != 2
1804 || virtual_operand_p (gimple_phi_result (phi_stmt)))
239e9670 1805 continue;
1806
1807 arg1 = gimple_phi_arg_def (phi_stmt, 0);
1808 arg2 = gimple_phi_arg_def (phi_stmt, 1);
1809
1810 if (TREE_CODE (arg1) != SSA_NAME
1811 || TREE_CODE (arg2) != SSA_NAME
1812 || SSA_NAME_IS_DEFAULT_DEF (arg1)
7c782c9b 1813 || SSA_NAME_IS_DEFAULT_DEF (arg2))
239e9670 1814 continue;
1815
1816 def1 = SSA_NAME_DEF_STMT (arg1);
1817 def2 = SSA_NAME_DEF_STMT (arg2);
1818
1819 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
1820 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
1821 continue;
1822
1823 /* Check the mode of the arguments to be sure a conditional move
1824 can be generated for it. */
935611bc 1825 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
1826 == CODE_FOR_nothing)
239e9670 1827 continue;
1828
1829 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
1830 if (!gimple_assign_single_p (def1)
1831 || !gimple_assign_single_p (def2))
1832 continue;
1833
1834 ref1 = gimple_assign_rhs1 (def1);
1835 ref2 = gimple_assign_rhs1 (def2);
1836
1837 if (TREE_CODE (ref1) != COMPONENT_REF
1838 || TREE_CODE (ref2) != COMPONENT_REF)
1839 continue;
1840
1841 /* The zeroth operand of the two component references must be
1842 identical. It is not sufficient to compare get_base_address of
1843 the two references, because this could allow for different
1844 elements of the same array in the two trees. It is not safe to
1845 assume that the existence of one array element implies the
1846 existence of a different one. */
1847 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
1848 continue;
1849
1850 field1 = TREE_OPERAND (ref1, 1);
1851 field2 = TREE_OPERAND (ref2, 1);
1852
1853 /* Check for field adjacency, and ensure field1 comes first. */
1854 for (next = DECL_CHAIN (field1);
1855 next && TREE_CODE (next) != FIELD_DECL;
1856 next = DECL_CHAIN (next))
1857 ;
1858
1859 if (next != field2)
1860 {
1861 for (next = DECL_CHAIN (field2);
1862 next && TREE_CODE (next) != FIELD_DECL;
1863 next = DECL_CHAIN (next))
1864 ;
1865
1866 if (next != field1)
1867 continue;
1868
1869 fieldswap = field1;
1870 field1 = field2;
1871 field2 = fieldswap;
1872 defswap = def1;
1873 def1 = def2;
1874 def2 = defswap;
239e9670 1875 }
1876
7c74ee50 1877 bb_for_def1 = gimple_bb (def1);
1878 bb_for_def2 = gimple_bb (def2);
1879
239e9670 1880 /* Check for proper alignment of the first field. */
1881 tree_offset1 = bit_position (field1);
1882 tree_offset2 = bit_position (field2);
1883 tree_size2 = DECL_SIZE (field2);
1884
1885 if (!host_integerp (tree_offset1, 1)
1886 || !host_integerp (tree_offset2, 1)
1887 || !host_integerp (tree_size2, 1))
1888 continue;
1889
1890 offset1 = TREE_INT_CST_LOW (tree_offset1);
1891 offset2 = TREE_INT_CST_LOW (tree_offset2);
1892 size2 = TREE_INT_CST_LOW (tree_size2);
1893 align1 = DECL_ALIGN (field1) % param_align_bits;
1894
1895 if (offset1 % BITS_PER_UNIT != 0)
1896 continue;
1897
1898 /* For profitability, the two field references should fit within
1899 a single cache line. */
1900 if (align1 + offset2 - offset1 + size2 > param_align_bits)
1901 continue;
1902
1903 /* The two expressions cannot be dependent upon vdefs defined
1904 in bb1/bb2. */
1905 if (local_mem_dependence (def1, bb_for_def1)
1906 || local_mem_dependence (def2, bb_for_def2))
1907 continue;
1908
1909 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
1910 bb0. We hoist the first one first so that a cache miss is handled
1911 efficiently regardless of hardware cache-fill policy. */
1912 gsi2 = gsi_for_stmt (def1);
1913 gsi_move_to_bb_end (&gsi2, bb0);
1914 gsi2 = gsi_for_stmt (def2);
1915 gsi_move_to_bb_end (&gsi2, bb0);
1916
1917 if (dump_file && (dump_flags & TDF_DETAILS))
1918 {
1919 fprintf (dump_file,
1920 "\nHoisting adjacent loads from %d and %d into %d: \n",
1921 bb_for_def1->index, bb_for_def2->index, bb0->index);
1922 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
1923 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
1924 }
1925 }
1926}
1927
1928/* Determine whether we should attempt to hoist adjacent loads out of
1929 diamond patterns in pass_phiopt. Always hoist loads if
1930 -fhoist-adjacent-loads is specified and the target machine has
6f0ddab1 1931 both a conditional move instruction and a defined cache line size. */
239e9670 1932
1933static bool
1934gate_hoist_loads (void)
1935{
6f0ddab1 1936 return (flag_hoist_adjacent_loads == 1
1937 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
1938 && HAVE_conditional_move);
239e9670 1939}
1940
4ee9c684 1941/* Always do these optimizations if we have SSA
20e5647c 1942 trees to work on. */
4ee9c684 1943static bool
1944gate_phiopt (void)
1945{
1946 return 1;
1947}
20e5647c 1948
20099e35 1949struct gimple_opt_pass pass_phiopt =
4ee9c684 1950{
20099e35 1951 {
1952 GIMPLE_PASS,
4ee9c684 1953 "phiopt", /* name */
1954 gate_phiopt, /* gate */
1955 tree_ssa_phiopt, /* execute */
1956 NULL, /* sub */
1957 NULL, /* next */
1958 0, /* static_pass_number */
1959 TV_TREE_PHIOPT, /* tv_id */
2f8eb909 1960 PROP_cfg | PROP_ssa, /* properties_required */
4ee9c684 1961 0, /* properties_provided */
1962 0, /* properties_destroyed */
1963 0, /* todo_flags_start */
771e2890 1964 TODO_ggc_collect
88dbf20f 1965 | TODO_verify_ssa
88dbf20f 1966 | TODO_verify_flow
20099e35 1967 | TODO_verify_stmts /* todo_flags_finish */
1968 }
4ee9c684 1969};
e6d0e152 1970
1971static bool
1972gate_cselim (void)
1973{
1974 return flag_tree_cselim;
1975}
1976
20099e35 1977struct gimple_opt_pass pass_cselim =
e6d0e152 1978{
20099e35 1979 {
1980 GIMPLE_PASS,
e6d0e152 1981 "cselim", /* name */
1982 gate_cselim, /* gate */
1983 tree_ssa_cs_elim, /* execute */
1984 NULL, /* sub */
1985 NULL, /* next */
1986 0, /* static_pass_number */
1987 TV_TREE_PHIOPT, /* tv_id */
2f8eb909 1988 PROP_cfg | PROP_ssa, /* properties_required */
e6d0e152 1989 0, /* properties_provided */
1990 0, /* properties_destroyed */
1991 0, /* todo_flags_start */
771e2890 1992 TODO_ggc_collect
e6d0e152 1993 | TODO_verify_ssa
1994 | TODO_verify_flow
20099e35 1995 | TODO_verify_stmts /* todo_flags_finish */
1996 }
e6d0e152 1997};