]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-phiopt.c
2012-08-14 Richard Guenther <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / tree-ssa-phiopt.c
CommitLineData
4ee9c684 1/* Optimization of PHI nodes by converting them into straightline code.
963aee26 2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
91cf53d5 3 Free Software Foundation, Inc.
4ee9c684 4
5This file is part of GCC.
20e5647c 6
4ee9c684 7GCC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by the
8c4c00c1 9Free Software Foundation; either version 3, or (at your option) any
4ee9c684 10later version.
20e5647c 11
4ee9c684 12GCC is distributed in the hope that it will be useful, but WITHOUT
13ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
20e5647c 16
4ee9c684 17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
4ee9c684 20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
4ee9c684 25#include "ggc.h"
26#include "tree.h"
0beac6fc 27#include "flags.h"
4ee9c684 28#include "tm_p.h"
29#include "basic-block.h"
4ee9c684 30#include "tree-flow.h"
31#include "tree-pass.h"
4ee9c684 32#include "langhooks.h"
e6d0e152 33#include "pointer-set.h"
34#include "domwalk.h"
ec611e12 35#include "cfgloop.h"
36#include "tree-data-ref.h"
239e9670 37#include "gimple-pretty-print.h"
38#include "insn-config.h"
39#include "expr.h"
40#include "optabs.h"
41
42#ifndef HAVE_conditional_move
43#define HAVE_conditional_move (0)
44#endif
4ee9c684 45
75a70cf9 46static unsigned int tree_ssa_phiopt (void);
239e9670 47static unsigned int tree_ssa_phiopt_worker (bool, bool);
a4844041 48static bool conditional_replacement (basic_block, basic_block,
75a70cf9 49 edge, edge, gimple, tree, tree);
fb9912ea 50static int value_replacement (basic_block, basic_block,
51 edge, edge, gimple, tree, tree);
a4844041 52static bool minmax_replacement (basic_block, basic_block,
75a70cf9 53 edge, edge, gimple, tree, tree);
a4844041 54static bool abs_replacement (basic_block, basic_block,
75a70cf9 55 edge, edge, gimple, tree, tree);
e6d0e152 56static bool cond_store_replacement (basic_block, basic_block, edge, edge,
57 struct pointer_set_t *);
91cf53d5 58static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
e6d0e152 59static struct pointer_set_t * get_non_trapping (void);
75a70cf9 60static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
239e9670 61static void hoist_adjacent_loads (basic_block, basic_block,
62 basic_block, basic_block);
63static bool gate_hoist_loads (void);
902929aa 64
caac37c2 65/* This pass tries to replaces an if-then-else block with an
66 assignment. We have four kinds of transformations. Some of these
67 transformations are also performed by the ifcvt RTL optimizer.
68
69 Conditional Replacement
70 -----------------------
71
30c5ffd2 72 This transformation, implemented in conditional_replacement,
caac37c2 73 replaces
4ee9c684 74
75 bb0:
76 if (cond) goto bb2; else goto bb1;
77 bb1:
78 bb2:
caac37c2 79 x = PHI <0 (bb1), 1 (bb0), ...>;
4ee9c684 80
caac37c2 81 with
20e5647c 82
2ab0a163 83 bb0:
caac37c2 84 x' = cond;
85 goto bb2;
2ab0a163 86 bb2:
caac37c2 87 x = PHI <x' (bb0), ...>;
4ee9c684 88
caac37c2 89 We remove bb1 as it becomes unreachable. This occurs often due to
90 gimplification of conditionals.
20e5647c 91
caac37c2 92 Value Replacement
93 -----------------
94
95 This transformation, implemented in value_replacement, replaces
0beac6fc 96
97 bb0:
caac37c2 98 if (a != b) goto bb2; else goto bb1;
0beac6fc 99 bb1:
100 bb2:
caac37c2 101 x = PHI <a (bb1), b (bb0), ...>;
0beac6fc 102
caac37c2 103 with
0beac6fc 104
105 bb0:
0beac6fc 106 bb2:
caac37c2 107 x = PHI <b (bb0), ...>;
108
109 This opportunity can sometimes occur as a result of other
110 optimizations.
0beac6fc 111
caac37c2 112 ABS Replacement
113 ---------------
70512b93 114
caac37c2 115 This transformation, implemented in abs_replacement, replaces
70512b93 116
117 bb0:
caac37c2 118 if (a >= 0) goto bb2; else goto bb1;
70512b93 119 bb1:
caac37c2 120 x = -a;
70512b93 121 bb2:
caac37c2 122 x = PHI <x (bb1), a (bb0), ...>;
70512b93 123
caac37c2 124 with
70512b93 125
126 bb0:
caac37c2 127 x' = ABS_EXPR< a >;
70512b93 128 bb2:
caac37c2 129 x = PHI <x' (bb0), ...>;
130
131 MIN/MAX Replacement
132 -------------------
70512b93 133
caac37c2 134 This transformation, minmax_replacement replaces
194899bf 135
136 bb0:
caac37c2 137 if (a <= b) goto bb2; else goto bb1;
194899bf 138 bb1:
194899bf 139 bb2:
caac37c2 140 x = PHI <b (bb1), a (bb0), ...>;
194899bf 141
caac37c2 142 with
194899bf 143
caac37c2 144 bb0:
145 x' = MIN_EXPR (a, b)
146 bb2:
147 x = PHI <x' (bb0), ...>;
194899bf 148
239e9670 149 A similar transformation is done for MAX_EXPR.
150
151
152 This pass also performs a fifth transformation of a slightly different
153 flavor.
154
155 Adjacent Load Hoisting
156 ----------------------
157
158 This transformation replaces
159
160 bb0:
161 if (...) goto bb2; else goto bb1;
162 bb1:
163 x1 = (<expr>).field1;
164 goto bb3;
165 bb2:
166 x2 = (<expr>).field2;
167 bb3:
168 # x = PHI <x1, x2>;
169
170 with
171
172 bb0:
173 x1 = (<expr>).field1;
174 x2 = (<expr>).field2;
175 if (...) goto bb2; else goto bb1;
176 bb1:
177 goto bb3;
178 bb2:
179 bb3:
180 # x = PHI <x1, x2>;
181
182 The purpose of this transformation is to enable generation of conditional
183 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
184 the loads is speculative, the transformation is restricted to very
185 specific cases to avoid introducing a page fault. We are looking for
186 the common idiom:
187
188 if (...)
189 x = y->left;
190 else
191 x = y->right;
192
193 where left and right are typically adjacent pointers in a tree structure. */
70512b93 194
2a1990e9 195static unsigned int
4ee9c684 196tree_ssa_phiopt (void)
e6d0e152 197{
239e9670 198 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
e6d0e152 199}
200
201/* This pass tries to transform conditional stores into unconditional
202 ones, enabling further simplifications with the simpler then and else
203 blocks. In particular it replaces this:
204
205 bb0:
206 if (cond) goto bb2; else goto bb1;
207 bb1:
91cf53d5 208 *p = RHS;
e6d0e152 209 bb2:
210
211 with
212
213 bb0:
214 if (cond) goto bb1; else goto bb2;
215 bb1:
216 condtmp' = *p;
217 bb2:
218 condtmp = PHI <RHS, condtmp'>
91cf53d5 219 *p = condtmp;
e6d0e152 220
221 This transformation can only be done under several constraints,
91cf53d5 222 documented below. It also replaces:
223
224 bb0:
225 if (cond) goto bb2; else goto bb1;
226 bb1:
227 *p = RHS1;
228 goto bb3;
229 bb2:
230 *p = RHS2;
231 bb3:
232
233 with
234
235 bb0:
236 if (cond) goto bb3; else goto bb1;
237 bb1:
238 bb3:
239 condtmp = PHI <RHS1, RHS2>
240 *p = condtmp; */
e6d0e152 241
242static unsigned int
243tree_ssa_cs_elim (void)
244{
239e9670 245 return tree_ssa_phiopt_worker (true, false);
e6d0e152 246}
247
c3597b05 248/* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
249
250static gimple
251single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
252{
253 gimple_stmt_iterator i;
254 gimple phi = NULL;
255 if (gimple_seq_singleton_p (seq))
256 return gsi_stmt (gsi_start (seq));
257 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
258 {
259 gimple p = gsi_stmt (i);
260 /* If the PHI arguments are equal then we can skip this PHI. */
261 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
262 gimple_phi_arg_def (p, e1->dest_idx)))
263 continue;
264
265 /* If we already have a PHI that has the two edge arguments are
266 different, then return it is not a singleton for these PHIs. */
267 if (phi)
268 return NULL;
269
270 phi = p;
271 }
272 return phi;
273}
274
e6d0e152 275/* The core routine of conditional store replacement and normal
276 phi optimizations. Both share much of the infrastructure in how
277 to match applicable basic block patterns. DO_STORE_ELIM is true
239e9670 278 when we want to do conditional store replacement, false otherwise.
279 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
280 of diamond control flow patterns, false otherwise. */
e6d0e152 281static unsigned int
239e9670 282tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
4ee9c684 283{
284 basic_block bb;
194899bf 285 basic_block *bb_order;
286 unsigned n, i;
1e4b21e3 287 bool cfgchanged = false;
e6d0e152 288 struct pointer_set_t *nontrap = 0;
289
290 if (do_store_elim)
03d37e4e 291 /* Calculate the set of non-trapping memory accesses. */
292 nontrap = get_non_trapping ();
194899bf 293
294 /* Search every basic block for COND_EXPR we may be able to optimize.
295
296 We walk the blocks in order that guarantees that a block with
297 a single predecessor is processed before the predecessor.
298 This ensures that we collapse inner ifs before visiting the
299 outer ones, and also that we do not try to visit a removed
300 block. */
301 bb_order = blocks_in_phiopt_order ();
4d2e5d52 302 n = n_basic_blocks - NUM_FIXED_BLOCKS;
4ee9c684 303
48e1416a 304 for (i = 0; i < n; i++)
4ee9c684 305 {
75a70cf9 306 gimple cond_stmt, phi;
33784d89 307 basic_block bb1, bb2;
308 edge e1, e2;
194899bf 309 tree arg0, arg1;
310
311 bb = bb_order[i];
20e5647c 312
75a70cf9 313 cond_stmt = last_stmt (bb);
314 /* Check to see if the last statement is a GIMPLE_COND. */
315 if (!cond_stmt
316 || gimple_code (cond_stmt) != GIMPLE_COND)
33784d89 317 continue;
20e5647c 318
33784d89 319 e1 = EDGE_SUCC (bb, 0);
320 bb1 = e1->dest;
321 e2 = EDGE_SUCC (bb, 1);
322 bb2 = e2->dest;
20e5647c 323
33784d89 324 /* We cannot do the optimization on abnormal edges. */
325 if ((e1->flags & EDGE_ABNORMAL) != 0
326 || (e2->flags & EDGE_ABNORMAL) != 0)
327 continue;
20e5647c 328
33784d89 329 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
ea091dfd 330 if (EDGE_COUNT (bb1->succs) == 0
33784d89 331 || bb2 == NULL
ea091dfd 332 || EDGE_COUNT (bb2->succs) == 0)
33784d89 333 continue;
20e5647c 334
33784d89 335 /* Find the bb which is the fall through to the other. */
336 if (EDGE_SUCC (bb1, 0)->dest == bb2)
337 ;
338 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
339 {
340 basic_block bb_tmp = bb1;
341 edge e_tmp = e1;
342 bb1 = bb2;
343 bb2 = bb_tmp;
344 e1 = e2;
345 e2 = e_tmp;
346 }
91cf53d5 347 else if (do_store_elim
348 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
349 {
350 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
351
352 if (!single_succ_p (bb1)
353 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
354 || !single_succ_p (bb2)
355 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
356 || EDGE_COUNT (bb3->preds) != 2)
357 continue;
358 if (cond_if_else_store_replacement (bb1, bb2, bb3))
359 cfgchanged = true;
360 continue;
361 }
239e9670 362 else if (do_hoist_loads
363 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
364 {
365 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
366
367 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
368 && single_succ_p (bb1)
369 && single_succ_p (bb2)
370 && single_pred_p (bb1)
371 && single_pred_p (bb2)
372 && EDGE_COUNT (bb->succs) == 2
373 && EDGE_COUNT (bb3->preds) == 2
374 /* If one edge or the other is dominant, a conditional move
375 is likely to perform worse than the well-predicted branch. */
376 && !predictable_edge_p (EDGE_SUCC (bb, 0))
377 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
378 hoist_adjacent_loads (bb, bb1, bb2, bb3);
379 continue;
380 }
33784d89 381 else
91cf53d5 382 continue;
20e5647c 383
33784d89 384 e1 = EDGE_SUCC (bb1, 0);
20e5647c 385
33784d89 386 /* Make sure that bb1 is just a fall through. */
db5ba14c 387 if (!single_succ_p (bb1)
33784d89 388 || (e1->flags & EDGE_FALLTHRU) == 0)
389 continue;
20e5647c 390
3472707f 391 /* Also make sure that bb1 only have one predecessor and that it
392 is bb. */
ea091dfd 393 if (!single_pred_p (bb1)
394 || single_pred (bb1) != bb)
33784d89 395 continue;
20e5647c 396
e6d0e152 397 if (do_store_elim)
398 {
399 /* bb1 is the middle block, bb2 the join block, bb the split block,
400 e1 the fallthrough edge from bb1 to bb2. We can't do the
401 optimization if the join block has more than two predecessors. */
402 if (EDGE_COUNT (bb2->preds) > 2)
403 continue;
404 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
405 cfgchanged = true;
406 }
407 else
408 {
75a70cf9 409 gimple_seq phis = phi_nodes (bb2);
2109076a 410 gimple_stmt_iterator gsi;
fb9912ea 411 bool candorest = true;
c3597b05 412
fb9912ea 413 /* Value replacement can work with more than one PHI
414 so try that first. */
415 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
416 {
417 phi = gsi_stmt (gsi);
418 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
419 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
420 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
421 {
422 candorest = false;
423 cfgchanged = true;
424 break;
425 }
426 }
e6d0e152 427
fb9912ea 428 if (!candorest)
429 continue;
c3597b05 430
431 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
2109076a 432 if (!phi)
e6d0e152 433 continue;
434
75a70cf9 435 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
436 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
e6d0e152 437
438 /* Something is wrong if we cannot find the arguments in the PHI
439 node. */
440 gcc_assert (arg0 != NULL && arg1 != NULL);
441
442 /* Do the replacement of conditional if it can be done. */
443 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
444 cfgchanged = true;
e6d0e152 445 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
446 cfgchanged = true;
447 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
448 cfgchanged = true;
449 }
194899bf 450 }
451
452 free (bb_order);
48e1416a 453
e6d0e152 454 if (do_store_elim)
455 pointer_set_destroy (nontrap);
456 /* If the CFG has changed, we should cleanup the CFG. */
457 if (cfgchanged && do_store_elim)
458 {
459 /* In cond-store replacement we have added some loads on edges
460 and new VOPS (as we moved the store, and created a load). */
75a70cf9 461 gsi_commit_edge_inserts ();
e6d0e152 462 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
463 }
464 else if (cfgchanged)
465 return TODO_cleanup_cfg;
466 return 0;
194899bf 467}
468
469/* Returns the list of basic blocks in the function in an order that guarantees
470 that if a block X has just a single predecessor Y, then Y is after X in the
471 ordering. */
472
8530c7be 473basic_block *
194899bf 474blocks_in_phiopt_order (void)
475{
476 basic_block x, y;
945865c5 477 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
48e1416a 478 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
4d2e5d52 479 unsigned np, i;
48e1416a 480 sbitmap visited = sbitmap_alloc (last_basic_block);
194899bf 481
48e1416a 482#define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
483#define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
194899bf 484
485 sbitmap_zero (visited);
486
487 MARK_VISITED (ENTRY_BLOCK_PTR);
488 FOR_EACH_BB (x)
489 {
490 if (VISITED_P (x))
491 continue;
492
493 /* Walk the predecessors of x as long as they have precisely one
494 predecessor and add them to the list, so that they get stored
495 after x. */
496 for (y = x, np = 1;
497 single_pred_p (y) && !VISITED_P (single_pred (y));
498 y = single_pred (y))
499 np++;
500 for (y = x, i = n - np;
501 single_pred_p (y) && !VISITED_P (single_pred (y));
502 y = single_pred (y), i++)
503 {
504 order[i] = y;
505 MARK_VISITED (y);
2ab0a163 506 }
194899bf 507 order[i] = y;
508 MARK_VISITED (y);
509
510 gcc_assert (i == n - 1);
511 n -= np;
4ee9c684 512 }
194899bf 513
514 sbitmap_free (visited);
515 gcc_assert (n == 0);
516 return order;
517
518#undef MARK_VISITED
519#undef VISITED_P
4ee9c684 520}
521
47aaf6e6 522
70512b93 523/* Return TRUE if block BB has no executable statements, otherwise return
524 FALSE. */
47aaf6e6 525
c91e8223 526bool
47aaf6e6 527empty_block_p (basic_block bb)
70512b93 528{
70512b93 529 /* BB must have no executable statements. */
9845d120 530 gimple_stmt_iterator gsi = gsi_after_labels (bb);
c3597b05 531 if (phi_nodes (bb))
532 return false;
9845d120 533 if (gsi_end_p (gsi))
534 return true;
535 if (is_gimple_debug (gsi_stmt (gsi)))
536 gsi_next_nondebug (&gsi);
537 return gsi_end_p (gsi);
70512b93 538}
539
fccee353 540/* Replace PHI node element whose edge is E in block BB with variable NEW.
33784d89 541 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
902929aa 542 is known to have two edges, one of which must reach BB). */
543
544static void
a4844041 545replace_phi_edge_with_variable (basic_block cond_block,
75a70cf9 546 edge e, gimple phi, tree new_tree)
902929aa 547{
75a70cf9 548 basic_block bb = gimple_bb (phi);
0e1a77e1 549 basic_block block_to_remove;
75a70cf9 550 gimple_stmt_iterator gsi;
33784d89 551
20e5647c 552 /* Change the PHI argument to new. */
f0d6e81c 553 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
0e1a77e1 554
0e1a77e1 555 /* Remove the empty basic block. */
cd665a06 556 if (EDGE_SUCC (cond_block, 0)->dest == bb)
902929aa 557 {
cd665a06 558 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
559 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
81c5be57 560 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
561 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
0e1a77e1 562
cd665a06 563 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
902929aa 564 }
565 else
566 {
cd665a06 567 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
568 EDGE_SUCC (cond_block, 1)->flags
902929aa 569 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
81c5be57 570 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
571 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
0e1a77e1 572
cd665a06 573 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
902929aa 574 }
0e1a77e1 575 delete_basic_block (block_to_remove);
20e5647c 576
902929aa 577 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
75a70cf9 578 gsi = gsi_last_bb (cond_block);
579 gsi_remove (&gsi, true);
20e5647c 580
902929aa 581 if (dump_file && (dump_flags & TDF_DETAILS))
582 fprintf (dump_file,
583 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
584 cond_block->index,
585 bb->index);
586}
587
588/* The function conditional_replacement does the main work of doing the
589 conditional replacement. Return true if the replacement is done.
590 Otherwise return false.
591 BB is the basic block where the replacement is going to be done on. ARG0
dac49aa5 592 is argument 0 from PHI. Likewise for ARG1. */
902929aa 593
594static bool
33784d89 595conditional_replacement (basic_block cond_bb, basic_block middle_bb,
75a70cf9 596 edge e0, edge e1, gimple phi,
33784d89 597 tree arg0, tree arg1)
902929aa 598{
599 tree result;
75a70cf9 600 gimple stmt, new_stmt;
601 tree cond;
602 gimple_stmt_iterator gsi;
902929aa 603 edge true_edge, false_edge;
75a70cf9 604 tree new_var, new_var2;
678919fd 605 bool neg;
902929aa 606
435e1a75 607 /* FIXME: Gimplification of complex type is too hard for now. */
47b88316 608 /* We aren't prepared to handle vectors either (and it is a question
609 if it would be worthwhile anyway). */
610 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
611 || POINTER_TYPE_P (TREE_TYPE (arg0)))
612 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
613 || POINTER_TYPE_P (TREE_TYPE (arg1))))
435e1a75 614 return false;
615
678919fd 616 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
617 convert it to the conditional. */
902929aa 618 if ((integer_zerop (arg0) && integer_onep (arg1))
619 || (integer_zerop (arg1) && integer_onep (arg0)))
678919fd 620 neg = false;
621 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
622 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
623 neg = true;
902929aa 624 else
625 return false;
20e5647c 626
33784d89 627 if (!empty_block_p (middle_bb))
902929aa 628 return false;
20e5647c 629
75a70cf9 630 /* At this point we know we have a GIMPLE_COND with two successors.
2ab0a163 631 One successor is BB, the other successor is an empty block which
632 falls through into BB.
20e5647c 633
2ab0a163 634 There is a single PHI node at the join point (BB) and its arguments
678919fd 635 are constants (0, 1) or (0, -1).
20e5647c 636
2ab0a163 637 So, given the condition COND, and the two PHI arguments, we can
20e5647c 638 rewrite this PHI into non-branching code:
639
2ab0a163 640 dest = (COND) or dest = COND'
20e5647c 641
2ab0a163 642 We use the condition as-is if the argument associated with the
643 true edge has the value one or the argument associated with the
644 false edge as the value zero. Note that those conditions are not
75a70cf9 645 the same since only one of the outgoing edges from the GIMPLE_COND
2ab0a163 646 will directly reach BB and thus be associated with an argument. */
ae5a4794 647
75a70cf9 648 stmt = last_stmt (cond_bb);
649 result = PHI_RESULT (phi);
b2a02a0e 650
75a70cf9 651 /* To handle special cases like floating point comparison, it is easier and
652 less error-prone to build a tree and gimplify it on the fly though it is
653 less efficient. */
6f9714b3 654 cond = fold_build2_loc (gimple_location (stmt),
655 gimple_cond_code (stmt), boolean_type_node,
656 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
4ee9c684 657
75a70cf9 658 /* We need to know which is the true edge and which is the false
659 edge so that we know when to invert the condition below. */
660 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
661 if ((e0 == true_edge && integer_zerop (arg0))
678919fd 662 || (e0 == false_edge && !integer_zerop (arg0))
75a70cf9 663 || (e1 == true_edge && integer_zerop (arg1))
678919fd 664 || (e1 == false_edge && !integer_zerop (arg1)))
6f9714b3 665 cond = fold_build1_loc (gimple_location (stmt),
678919fd 666 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
667
668 if (neg)
669 {
670 cond = fold_convert_loc (gimple_location (stmt),
671 TREE_TYPE (result), cond);
672 cond = fold_build1_loc (gimple_location (stmt),
673 NEGATE_EXPR, TREE_TYPE (cond), cond);
674 }
75a70cf9 675
676 /* Insert our new statements at the end of conditional block before the
677 COND_STMT. */
678 gsi = gsi_for_stmt (stmt);
679 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
680 GSI_SAME_STMT);
681
682 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
683 {
efbcb6de 684 source_location locus_0, locus_1;
685
03d37e4e 686 new_var2 = make_ssa_name (TREE_TYPE (result), NULL);
75a70cf9 687 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
688 new_var, NULL);
75a70cf9 689 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
690 new_var = new_var2;
efbcb6de 691
692 /* Set the locus to the first argument, unless is doesn't have one. */
693 locus_0 = gimple_phi_arg_location (phi, 0);
694 locus_1 = gimple_phi_arg_location (phi, 1);
695 if (locus_0 == UNKNOWN_LOCATION)
696 locus_0 = locus_1;
697 gimple_set_location (new_stmt, locus_0);
4ee9c684 698 }
20e5647c 699
75a70cf9 700 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
902929aa 701
4ee9c684 702 /* Note that we optimized this PHI. */
703 return true;
704}
705
17b9476e 706/* Update *ARG which is defined in STMT so that it contains the
707 computed value if that seems profitable. Return true if the
708 statement is made dead by that rewriting. */
709
710static bool
711jump_function_from_stmt (tree *arg, gimple stmt)
712{
713 enum tree_code code = gimple_assign_rhs_code (stmt);
714 if (code == ADDR_EXPR)
715 {
716 /* For arg = &p->i transform it to p, if possible. */
717 tree rhs1 = gimple_assign_rhs1 (stmt);
718 HOST_WIDE_INT offset;
719 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
720 &offset);
721 if (tem
722 && TREE_CODE (tem) == MEM_REF
723 && double_int_zero_p
724 (double_int_add (mem_ref_offset (tem),
725 shwi_to_double_int (offset))))
726 {
727 *arg = TREE_OPERAND (tem, 0);
728 return true;
729 }
730 }
731 /* TODO: Much like IPA-CP jump-functions we want to handle constant
732 additions symbolically here, and we'd need to update the comparison
733 code that compares the arg + cst tuples in our caller. For now the
734 code above exactly handles the VEC_BASE pattern from vec.h. */
735 return false;
736}
737
0beac6fc 738/* The function value_replacement does the main work of doing the value
fb9912ea 739 replacement. Return non-zero if the replacement is done. Otherwise return
740 0. If we remove the middle basic block, return 2.
0beac6fc 741 BB is the basic block where the replacement is going to be done on. ARG0
dac49aa5 742 is argument 0 from the PHI. Likewise for ARG1. */
0beac6fc 743
fb9912ea 744static int
33784d89 745value_replacement (basic_block cond_bb, basic_block middle_bb,
75a70cf9 746 edge e0, edge e1, gimple phi,
33784d89 747 tree arg0, tree arg1)
0beac6fc 748{
17b9476e 749 gimple_stmt_iterator gsi;
75a70cf9 750 gimple cond;
0beac6fc 751 edge true_edge, false_edge;
75a70cf9 752 enum tree_code code;
fb9912ea 753 bool emtpy_or_with_defined_p = true;
0beac6fc 754
755 /* If the type says honor signed zeros we cannot do this
dac49aa5 756 optimization. */
0beac6fc 757 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
fb9912ea 758 return 0;
0beac6fc 759
fb9912ea 760 /* If there is a statement in MIDDLE_BB that defines one of the PHI
761 arguments, then adjust arg0 or arg1. */
17b9476e 762 gsi = gsi_after_labels (middle_bb);
fb9912ea 763 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
764 gsi_next_nondebug (&gsi);
765 while (!gsi_end_p (gsi))
17b9476e 766 {
fb9912ea 767 gimple stmt = gsi_stmt (gsi);
768 tree lhs;
769 gsi_next_nondebug (&gsi);
770 if (!is_gimple_assign (stmt))
17b9476e 771 {
fb9912ea 772 emtpy_or_with_defined_p = false;
773 continue;
17b9476e 774 }
fb9912ea 775 /* Now try to adjust arg0 or arg1 according to the computation
776 in the statement. */
777 lhs = gimple_assign_lhs (stmt);
778 if (!(lhs == arg0
779 && jump_function_from_stmt (&arg0, stmt))
780 || (lhs == arg1
781 && jump_function_from_stmt (&arg1, stmt)))
782 emtpy_or_with_defined_p = false;
17b9476e 783 }
0beac6fc 784
75a70cf9 785 cond = last_stmt (cond_bb);
786 code = gimple_cond_code (cond);
0beac6fc 787
788 /* This transformation is only valid for equality comparisons. */
75a70cf9 789 if (code != NE_EXPR && code != EQ_EXPR)
fb9912ea 790 return 0;
0beac6fc 791
792 /* We need to know which is the true edge and which is the false
793 edge so that we know if have abs or negative abs. */
33784d89 794 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
0beac6fc 795
796 /* At this point we know we have a COND_EXPR with two successors.
797 One successor is BB, the other successor is an empty block which
798 falls through into BB.
799
800 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
801
802 There is a single PHI node at the join point (BB) with two arguments.
803
804 We now need to verify that the two arguments in the PHI node match
805 the two arguments to the equality comparison. */
20e5647c 806
75a70cf9 807 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
808 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
809 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
810 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
0beac6fc 811 {
812 edge e;
813 tree arg;
814
50737d20 815 /* For NE_EXPR, we want to build an assignment result = arg where
816 arg is the PHI argument associated with the true edge. For
817 EQ_EXPR we want the PHI argument associated with the false edge. */
75a70cf9 818 e = (code == NE_EXPR ? true_edge : false_edge);
50737d20 819
820 /* Unfortunately, E may not reach BB (it may instead have gone to
821 OTHER_BLOCK). If that is the case, then we want the single outgoing
822 edge from OTHER_BLOCK which reaches BB and represents the desired
823 path from COND_BLOCK. */
33784d89 824 if (e->dest == middle_bb)
ea091dfd 825 e = single_succ_edge (e->dest);
50737d20 826
827 /* Now we know the incoming edge to BB that has the argument for the
828 RHS of our new assignment statement. */
33784d89 829 if (e0 == e)
0beac6fc 830 arg = arg0;
831 else
832 arg = arg1;
833
fb9912ea 834 /* If the middle basic block was empty or is defining the
c3597b05 835 PHI arguments and this is a single phi where the args are different
836 for the edges e0 and e1 then we can remove the middle basic block. */
fb9912ea 837 if (emtpy_or_with_defined_p
c3597b05 838 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
839 e0, e1))
fb9912ea 840 {
841 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
842 /* Note that we optimized this PHI. */
843 return 2;
844 }
845 else
846 {
847 /* Replace the PHI arguments with arg. */
848 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
849 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
850 if (dump_file && (dump_flags & TDF_DETAILS))
851 {
852 fprintf (dump_file, "PHI ");
853 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
c3597b05 854 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
855 cond_bb->index);
fb9912ea 856 print_generic_expr (dump_file, arg, 0);
857 fprintf (dump_file, ".\n");
858 }
859 return 1;
860 }
0beac6fc 861
0beac6fc 862 }
fb9912ea 863 return 0;
0beac6fc 864}
865
194899bf 866/* The function minmax_replacement does the main work of doing the minmax
867 replacement. Return true if the replacement is done. Otherwise return
868 false.
869 BB is the basic block where the replacement is going to be done on. ARG0
870 is argument 0 from the PHI. Likewise for ARG1. */
871
872static bool
873minmax_replacement (basic_block cond_bb, basic_block middle_bb,
75a70cf9 874 edge e0, edge e1, gimple phi,
194899bf 875 tree arg0, tree arg1)
876{
877 tree result, type;
75a70cf9 878 gimple cond, new_stmt;
194899bf 879 edge true_edge, false_edge;
880 enum tree_code cmp, minmax, ass_code;
881 tree smaller, larger, arg_true, arg_false;
75a70cf9 882 gimple_stmt_iterator gsi, gsi_from;
194899bf 883
884 type = TREE_TYPE (PHI_RESULT (phi));
885
886 /* The optimization may be unsafe due to NaNs. */
887 if (HONOR_NANS (TYPE_MODE (type)))
888 return false;
889
75a70cf9 890 cond = last_stmt (cond_bb);
891 cmp = gimple_cond_code (cond);
194899bf 892
893 /* This transformation is only valid for order comparisons. Record which
894 operand is smaller/larger if the result of the comparison is true. */
895 if (cmp == LT_EXPR || cmp == LE_EXPR)
896 {
75a70cf9 897 smaller = gimple_cond_lhs (cond);
898 larger = gimple_cond_rhs (cond);
194899bf 899 }
900 else if (cmp == GT_EXPR || cmp == GE_EXPR)
901 {
75a70cf9 902 smaller = gimple_cond_rhs (cond);
903 larger = gimple_cond_lhs (cond);
194899bf 904 }
905 else
906 return false;
907
908 /* We need to know which is the true edge and which is the false
909 edge so that we know if have abs or negative abs. */
910 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
911
912 /* Forward the edges over the middle basic block. */
913 if (true_edge->dest == middle_bb)
914 true_edge = EDGE_SUCC (true_edge->dest, 0);
915 if (false_edge->dest == middle_bb)
916 false_edge = EDGE_SUCC (false_edge->dest, 0);
917
918 if (true_edge == e0)
919 {
920 gcc_assert (false_edge == e1);
921 arg_true = arg0;
922 arg_false = arg1;
923 }
924 else
925 {
926 gcc_assert (false_edge == e0);
927 gcc_assert (true_edge == e1);
928 arg_true = arg1;
929 arg_false = arg0;
930 }
931
932 if (empty_block_p (middle_bb))
933 {
934 if (operand_equal_for_phi_arg_p (arg_true, smaller)
935 && operand_equal_for_phi_arg_p (arg_false, larger))
936 {
937 /* Case
48e1416a 938
194899bf 939 if (smaller < larger)
940 rslt = smaller;
941 else
942 rslt = larger; */
943 minmax = MIN_EXPR;
944 }
945 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
946 && operand_equal_for_phi_arg_p (arg_true, larger))
947 minmax = MAX_EXPR;
948 else
949 return false;
950 }
951 else
952 {
953 /* Recognize the following case, assuming d <= u:
954
955 if (a <= u)
956 b = MAX (a, d);
957 x = PHI <b, u>
958
959 This is equivalent to
960
961 b = MAX (a, d);
962 x = MIN (b, u); */
963
75a70cf9 964 gimple assign = last_and_only_stmt (middle_bb);
965 tree lhs, op0, op1, bound;
194899bf 966
967 if (!assign
75a70cf9 968 || gimple_code (assign) != GIMPLE_ASSIGN)
194899bf 969 return false;
970
75a70cf9 971 lhs = gimple_assign_lhs (assign);
972 ass_code = gimple_assign_rhs_code (assign);
194899bf 973 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
974 return false;
75a70cf9 975 op0 = gimple_assign_rhs1 (assign);
976 op1 = gimple_assign_rhs2 (assign);
194899bf 977
978 if (true_edge->src == middle_bb)
979 {
980 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
981 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
982 return false;
983
984 if (operand_equal_for_phi_arg_p (arg_false, larger))
985 {
986 /* Case
987
988 if (smaller < larger)
989 {
990 r' = MAX_EXPR (smaller, bound)
991 }
992 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
993 if (ass_code != MAX_EXPR)
994 return false;
995
996 minmax = MIN_EXPR;
997 if (operand_equal_for_phi_arg_p (op0, smaller))
998 bound = op1;
999 else if (operand_equal_for_phi_arg_p (op1, smaller))
1000 bound = op0;
1001 else
1002 return false;
1003
1004 /* We need BOUND <= LARGER. */
49d00087 1005 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1006 bound, larger)))
194899bf 1007 return false;
1008 }
1009 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
1010 {
1011 /* Case
1012
1013 if (smaller < larger)
1014 {
1015 r' = MIN_EXPR (larger, bound)
1016 }
1017 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1018 if (ass_code != MIN_EXPR)
1019 return false;
1020
1021 minmax = MAX_EXPR;
1022 if (operand_equal_for_phi_arg_p (op0, larger))
1023 bound = op1;
1024 else if (operand_equal_for_phi_arg_p (op1, larger))
1025 bound = op0;
1026 else
1027 return false;
1028
1029 /* We need BOUND >= SMALLER. */
49d00087 1030 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1031 bound, smaller)))
194899bf 1032 return false;
1033 }
1034 else
1035 return false;
1036 }
1037 else
1038 {
1039 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1040 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1041 return false;
1042
1043 if (operand_equal_for_phi_arg_p (arg_true, larger))
1044 {
1045 /* Case
1046
1047 if (smaller > larger)
1048 {
1049 r' = MIN_EXPR (smaller, bound)
1050 }
1051 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1052 if (ass_code != MIN_EXPR)
1053 return false;
1054
1055 minmax = MAX_EXPR;
1056 if (operand_equal_for_phi_arg_p (op0, smaller))
1057 bound = op1;
1058 else if (operand_equal_for_phi_arg_p (op1, smaller))
1059 bound = op0;
1060 else
1061 return false;
1062
1063 /* We need BOUND >= LARGER. */
49d00087 1064 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1065 bound, larger)))
194899bf 1066 return false;
1067 }
1068 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1069 {
1070 /* Case
1071
1072 if (smaller > larger)
1073 {
1074 r' = MAX_EXPR (larger, bound)
1075 }
1076 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1077 if (ass_code != MAX_EXPR)
1078 return false;
1079
1080 minmax = MIN_EXPR;
1081 if (operand_equal_for_phi_arg_p (op0, larger))
1082 bound = op1;
1083 else if (operand_equal_for_phi_arg_p (op1, larger))
1084 bound = op0;
1085 else
1086 return false;
1087
1088 /* We need BOUND <= SMALLER. */
49d00087 1089 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1090 bound, smaller)))
194899bf 1091 return false;
1092 }
1093 else
1094 return false;
1095 }
1096
1097 /* Move the statement from the middle block. */
75a70cf9 1098 gsi = gsi_last_bb (cond_bb);
445a6ba5 1099 gsi_from = gsi_last_nondebug_bb (middle_bb);
75a70cf9 1100 gsi_move_before (&gsi_from, &gsi);
194899bf 1101 }
1102
1103 /* Emit the statement to compute min/max. */
1104 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
75a70cf9 1105 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
1106 gsi = gsi_last_bb (cond_bb);
1107 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
194899bf 1108
a4844041 1109 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
194899bf 1110 return true;
1111}
1112
70512b93 1113/* The function absolute_replacement does the main work of doing the absolute
1114 replacement. Return true if the replacement is done. Otherwise return
1115 false.
1116 bb is the basic block where the replacement is going to be done on. arg0
f7f07c95 1117 is argument 0 from the phi. Likewise for arg1. */
33784d89 1118
70512b93 1119static bool
33784d89 1120abs_replacement (basic_block cond_bb, basic_block middle_bb,
a4844041 1121 edge e0 ATTRIBUTE_UNUSED, edge e1,
75a70cf9 1122 gimple phi, tree arg0, tree arg1)
70512b93 1123{
1124 tree result;
75a70cf9 1125 gimple new_stmt, cond;
1126 gimple_stmt_iterator gsi;
70512b93 1127 edge true_edge, false_edge;
75a70cf9 1128 gimple assign;
70512b93 1129 edge e;
194899bf 1130 tree rhs, lhs;
70512b93 1131 bool negate;
1132 enum tree_code cond_code;
1133
1134 /* If the type says honor signed zeros we cannot do this
dac49aa5 1135 optimization. */
70512b93 1136 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
1137 return false;
1138
70512b93 1139 /* OTHER_BLOCK must have only one executable statement which must have the
1140 form arg0 = -arg1 or arg1 = -arg0. */
70512b93 1141
194899bf 1142 assign = last_and_only_stmt (middle_bb);
70512b93 1143 /* If we did not find the proper negation assignment, then we can not
1144 optimize. */
1145 if (assign == NULL)
1146 return false;
48e1416a 1147
194899bf 1148 /* If we got here, then we have found the only executable statement
1149 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1150 arg1 = -arg0, then we can not optimize. */
75a70cf9 1151 if (gimple_code (assign) != GIMPLE_ASSIGN)
194899bf 1152 return false;
1153
75a70cf9 1154 lhs = gimple_assign_lhs (assign);
194899bf 1155
75a70cf9 1156 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
194899bf 1157 return false;
1158
75a70cf9 1159 rhs = gimple_assign_rhs1 (assign);
48e1416a 1160
194899bf 1161 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1162 if (!(lhs == arg0 && rhs == arg1)
1163 && !(lhs == arg1 && rhs == arg0))
1164 return false;
70512b93 1165
75a70cf9 1166 cond = last_stmt (cond_bb);
70512b93 1167 result = PHI_RESULT (phi);
1168
1169 /* Only relationals comparing arg[01] against zero are interesting. */
75a70cf9 1170 cond_code = gimple_cond_code (cond);
70512b93 1171 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1172 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1173 return false;
1174
dac49aa5 1175 /* Make sure the conditional is arg[01] OP y. */
75a70cf9 1176 if (gimple_cond_lhs (cond) != rhs)
70512b93 1177 return false;
1178
75a70cf9 1179 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1180 ? real_zerop (gimple_cond_rhs (cond))
1181 : integer_zerop (gimple_cond_rhs (cond)))
70512b93 1182 ;
1183 else
1184 return false;
1185
1186 /* We need to know which is the true edge and which is the false
1187 edge so that we know if have abs or negative abs. */
33784d89 1188 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
70512b93 1189
1190 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1191 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1192 the false edge goes to OTHER_BLOCK. */
1193 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1194 e = true_edge;
1195 else
1196 e = false_edge;
20e5647c 1197
33784d89 1198 if (e->dest == middle_bb)
70512b93 1199 negate = true;
1200 else
1201 negate = false;
20e5647c 1202
33784d89 1203 result = duplicate_ssa_name (result, NULL);
20e5647c 1204
70512b93 1205 if (negate)
03d37e4e 1206 lhs = make_ssa_name (TREE_TYPE (result), NULL);
70512b93 1207 else
1208 lhs = result;
1209
dac49aa5 1210 /* Build the modify expression with abs expression. */
75a70cf9 1211 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
70512b93 1212
75a70cf9 1213 gsi = gsi_last_bb (cond_bb);
1214 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
70512b93 1215
1216 if (negate)
1217 {
75a70cf9 1218 /* Get the right GSI. We want to insert after the recently
70512b93 1219 added ABS_EXPR statement (which we know is the first statement
1220 in the block. */
75a70cf9 1221 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
70512b93 1222
75a70cf9 1223 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
70512b93 1224 }
20e5647c 1225
a4844041 1226 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
70512b93 1227
1228 /* Note that we optimized this PHI. */
1229 return true;
1230}
1231
e6d0e152 1232/* Auxiliary functions to determine the set of memory accesses which
1233 can't trap because they are preceded by accesses to the same memory
182cf5a9 1234 portion. We do that for MEM_REFs, so we only need to track
e6d0e152 1235 the SSA_NAME of the pointer indirectly referenced. The algorithm
1236 simply is a walk over all instructions in dominator order. When
182cf5a9 1237 we see an MEM_REF we determine if we've already seen a same
e6d0e152 1238 ref anywhere up to the root of the dominator tree. If we do the
af4f74fa 1239 current access can't trap. If we don't see any dominating access
e6d0e152 1240 the current access might trap, but might also make later accesses
af4f74fa 1241 non-trapping, so we remember it. We need to be careful with loads
1242 or stores, for instance a load might not trap, while a store would,
1243 so if we see a dominating read access this doesn't mean that a later
1244 write access would not trap. Hence we also need to differentiate the
1245 type of access(es) seen.
1246
1247 ??? We currently are very conservative and assume that a load might
1248 trap even if a store doesn't (write-only memory). This probably is
1249 overly conservative. */
e6d0e152 1250
182cf5a9 1251/* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
e6d0e152 1252 through it was seen, which would constitute a no-trap region for
1253 same accesses. */
1254struct name_to_bb
1255{
963aee26 1256 unsigned int ssa_name_ver;
1257 bool store;
1258 HOST_WIDE_INT offset, size;
e6d0e152 1259 basic_block bb;
1260};
1261
1262/* The hash table for remembering what we've seen. */
1263static htab_t seen_ssa_names;
1264
182cf5a9 1265/* The set of MEM_REFs which can't trap. */
e6d0e152 1266static struct pointer_set_t *nontrap_set;
1267
963aee26 1268/* The hash function. */
e6d0e152 1269static hashval_t
1270name_to_bb_hash (const void *p)
1271{
963aee26 1272 const struct name_to_bb *n = (const struct name_to_bb *) p;
1273 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1274 ^ (n->offset << 6) ^ (n->size << 3);
e6d0e152 1275}
1276
963aee26 1277/* The equality function of *P1 and *P2. */
e6d0e152 1278static int
1279name_to_bb_eq (const void *p1, const void *p2)
1280{
af4f74fa 1281 const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1282 const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
e6d0e152 1283
963aee26 1284 return n1->ssa_name_ver == n2->ssa_name_ver
1285 && n1->store == n2->store
1286 && n1->offset == n2->offset
1287 && n1->size == n2->size;
e6d0e152 1288}
1289
f0b5f617 1290/* We see the expression EXP in basic block BB. If it's an interesting
182cf5a9 1291 expression (an MEM_REF through an SSA_NAME) possibly insert the
af4f74fa 1292 expression into the set NONTRAP or the hash table of seen expressions.
1293 STORE is true if this expression is on the LHS, otherwise it's on
1294 the RHS. */
e6d0e152 1295static void
af4f74fa 1296add_or_mark_expr (basic_block bb, tree exp,
1297 struct pointer_set_t *nontrap, bool store)
e6d0e152 1298{
963aee26 1299 HOST_WIDE_INT size;
1300
182cf5a9 1301 if (TREE_CODE (exp) == MEM_REF
963aee26 1302 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1303 && host_integerp (TREE_OPERAND (exp, 1), 0)
1304 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
e6d0e152 1305 {
1306 tree name = TREE_OPERAND (exp, 0);
1307 struct name_to_bb map;
1308 void **slot;
af4f74fa 1309 struct name_to_bb *n2bb;
e6d0e152 1310 basic_block found_bb = 0;
1311
182cf5a9 1312 /* Try to find the last seen MEM_REF through the same
e6d0e152 1313 SSA_NAME, which can trap. */
963aee26 1314 map.ssa_name_ver = SSA_NAME_VERSION (name);
e6d0e152 1315 map.bb = 0;
af4f74fa 1316 map.store = store;
963aee26 1317 map.offset = tree_low_cst (TREE_OPERAND (exp, 1), 0);
1318 map.size = size;
1319
e6d0e152 1320 slot = htab_find_slot (seen_ssa_names, &map, INSERT);
af4f74fa 1321 n2bb = (struct name_to_bb *) *slot;
1322 if (n2bb)
1323 found_bb = n2bb->bb;
e6d0e152 1324
182cf5a9 1325 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
e6d0e152 1326 (it's in a basic block on the path from us to the dominator root)
1327 then we can't trap. */
1328 if (found_bb && found_bb->aux == (void *)1)
1329 {
1330 pointer_set_insert (nontrap, exp);
1331 }
1332 else
1333 {
1334 /* EXP might trap, so insert it into the hash table. */
af4f74fa 1335 if (n2bb)
e6d0e152 1336 {
af4f74fa 1337 n2bb->bb = bb;
e6d0e152 1338 }
1339 else
1340 {
af4f74fa 1341 n2bb = XNEW (struct name_to_bb);
963aee26 1342 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
af4f74fa 1343 n2bb->bb = bb;
1344 n2bb->store = store;
963aee26 1345 n2bb->offset = map.offset;
1346 n2bb->size = size;
af4f74fa 1347 *slot = n2bb;
e6d0e152 1348 }
1349 }
1350 }
1351}
1352
1353/* Called by walk_dominator_tree, when entering the block BB. */
1354static void
1355nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1356{
75a70cf9 1357 gimple_stmt_iterator gsi;
e6d0e152 1358 /* Mark this BB as being on the path to dominator root. */
1359 bb->aux = (void*)1;
1360
1361 /* And walk the statements in order. */
75a70cf9 1362 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
e6d0e152 1363 {
75a70cf9 1364 gimple stmt = gsi_stmt (gsi);
e6d0e152 1365
963aee26 1366 if (gimple_assign_single_p (stmt))
e6d0e152 1367 {
75a70cf9 1368 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1369 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
e6d0e152 1370 }
1371 }
1372}
1373
1374/* Called by walk_dominator_tree, when basic block BB is exited. */
1375static void
1376nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1377{
1378 /* This BB isn't on the path to dominator root anymore. */
1379 bb->aux = NULL;
1380}
1381
1382/* This is the entry point of gathering non trapping memory accesses.
1383 It will do a dominator walk over the whole function, and it will
1384 make use of the bb->aux pointers. It returns a set of trees
182cf5a9 1385 (the MEM_REFs itself) which can't trap. */
e6d0e152 1386static struct pointer_set_t *
1387get_non_trapping (void)
1388{
1389 struct pointer_set_t *nontrap;
1390 struct dom_walk_data walk_data;
1391
1392 nontrap = pointer_set_create ();
1393 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1394 free);
1395 /* We're going to do a dominator walk, so ensure that we have
1396 dominance information. */
1397 calculate_dominance_info (CDI_DOMINATORS);
1398
1399 /* Setup callbacks for the generic dominator tree walker. */
1400 nontrap_set = nontrap;
e6d0e152 1401 walk_data.dom_direction = CDI_DOMINATORS;
1402 walk_data.initialize_block_local_data = NULL;
6bf320fb 1403 walk_data.before_dom_children = nt_init_block;
1404 walk_data.after_dom_children = nt_fini_block;
e6d0e152 1405 walk_data.global_data = NULL;
1406 walk_data.block_local_data_size = 0;
e6d0e152 1407
1408 init_walk_dominator_tree (&walk_data);
1409 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1410 fini_walk_dominator_tree (&walk_data);
1411 htab_delete (seen_ssa_names);
1412
1413 return nontrap;
1414}
1415
1416/* Do the main work of conditional store replacement. We already know
1417 that the recognized pattern looks like so:
1418
1419 split:
1420 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1421 MIDDLE_BB:
1422 something
1423 fallthrough (edge E0)
1424 JOIN_BB:
1425 some more
1426
1427 We check that MIDDLE_BB contains only one store, that that store
1428 doesn't trap (not via NOTRAP, but via checking if an access to the same
1429 memory location dominates us) and that the store has a "simple" RHS. */
1430
1431static bool
1432cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1433 edge e0, edge e1, struct pointer_set_t *nontrap)
1434{
75a70cf9 1435 gimple assign = last_and_only_stmt (middle_bb);
03d37e4e 1436 tree lhs, rhs, name, name2;
75a70cf9 1437 gimple newphi, new_stmt;
1438 gimple_stmt_iterator gsi;
efbcb6de 1439 source_location locus;
e6d0e152 1440
1441 /* Check if middle_bb contains of only one store. */
1442 if (!assign
91cf53d5 1443 || !gimple_assign_single_p (assign))
e6d0e152 1444 return false;
1445
efbcb6de 1446 locus = gimple_location (assign);
75a70cf9 1447 lhs = gimple_assign_lhs (assign);
1448 rhs = gimple_assign_rhs1 (assign);
182cf5a9 1449 if (TREE_CODE (lhs) != MEM_REF
91cf53d5 1450 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
3211fa0a 1451 || !is_gimple_reg_type (TREE_TYPE (lhs)))
e6d0e152 1452 return false;
91cf53d5 1453
e6d0e152 1454 /* Prove that we can move the store down. We could also check
1455 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1456 whose value is not available readily, which we want to avoid. */
1457 if (!pointer_set_contains (nontrap, lhs))
1458 return false;
1459
1460 /* Now we've checked the constraints, so do the transformation:
1461 1) Remove the single store. */
75a70cf9 1462 gsi = gsi_for_stmt (assign);
3211fa0a 1463 unlink_stmt_vdef (assign);
75a70cf9 1464 gsi_remove (&gsi, true);
91cf53d5 1465 release_defs (assign);
e6d0e152 1466
03d37e4e 1467 /* 2) Insert a load from the memory of the store to the temporary
e6d0e152 1468 on the edge which did not contain the store. */
1469 lhs = unshare_expr (lhs);
03d37e4e 1470 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1471 new_stmt = gimple_build_assign (name, lhs);
efbcb6de 1472 gimple_set_location (new_stmt, locus);
75a70cf9 1473 gsi_insert_on_edge (e1, new_stmt);
e6d0e152 1474
03d37e4e 1475 /* 3) Create a PHI node at the join block, with one argument
e6d0e152 1476 holding the old RHS, and the other holding the temporary
1477 where we stored the old memory contents. */
03d37e4e 1478 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1479 newphi = create_phi_node (name2, join_bb);
60d535d2 1480 add_phi_arg (newphi, rhs, e0, locus);
1481 add_phi_arg (newphi, name, e1, locus);
e6d0e152 1482
1483 lhs = unshare_expr (lhs);
75a70cf9 1484 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
e6d0e152 1485
03d37e4e 1486 /* 4) Insert that PHI node. */
75a70cf9 1487 gsi = gsi_after_labels (join_bb);
1488 if (gsi_end_p (gsi))
e6d0e152 1489 {
75a70cf9 1490 gsi = gsi_last_bb (join_bb);
1491 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
e6d0e152 1492 }
1493 else
75a70cf9 1494 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
e6d0e152 1495
1496 return true;
1497}
4ee9c684 1498
ec611e12 1499/* Do the main work of conditional store replacement. */
91cf53d5 1500
1501static bool
ec611e12 1502cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1503 basic_block join_bb, gimple then_assign,
1504 gimple else_assign)
91cf53d5 1505{
03d37e4e 1506 tree lhs_base, lhs, then_rhs, else_rhs, name;
91cf53d5 1507 source_location then_locus, else_locus;
1508 gimple_stmt_iterator gsi;
1509 gimple newphi, new_stmt;
1510
91cf53d5 1511 if (then_assign == NULL
1512 || !gimple_assign_single_p (then_assign)
3c25489e 1513 || gimple_clobber_p (then_assign)
91cf53d5 1514 || else_assign == NULL
3c25489e 1515 || !gimple_assign_single_p (else_assign)
1516 || gimple_clobber_p (else_assign))
91cf53d5 1517 return false;
1518
1519 lhs = gimple_assign_lhs (then_assign);
1520 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1521 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1522 return false;
1523
1524 lhs_base = get_base_address (lhs);
1525 if (lhs_base == NULL_TREE
1526 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1527 return false;
1528
1529 then_rhs = gimple_assign_rhs1 (then_assign);
1530 else_rhs = gimple_assign_rhs1 (else_assign);
1531 then_locus = gimple_location (then_assign);
1532 else_locus = gimple_location (else_assign);
1533
1534 /* Now we've checked the constraints, so do the transformation:
1535 1) Remove the stores. */
1536 gsi = gsi_for_stmt (then_assign);
1537 unlink_stmt_vdef (then_assign);
1538 gsi_remove (&gsi, true);
1539 release_defs (then_assign);
1540
1541 gsi = gsi_for_stmt (else_assign);
1542 unlink_stmt_vdef (else_assign);
1543 gsi_remove (&gsi, true);
1544 release_defs (else_assign);
1545
03d37e4e 1546 /* 2) Create a PHI node at the join block, with one argument
91cf53d5 1547 holding the old RHS, and the other holding the temporary
1548 where we stored the old memory contents. */
03d37e4e 1549 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1550 newphi = create_phi_node (name, join_bb);
60d535d2 1551 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1552 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
91cf53d5 1553
1554 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1555
03d37e4e 1556 /* 3) Insert that PHI node. */
91cf53d5 1557 gsi = gsi_after_labels (join_bb);
1558 if (gsi_end_p (gsi))
1559 {
1560 gsi = gsi_last_bb (join_bb);
1561 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1562 }
1563 else
1564 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1565
1566 return true;
1567}
1568
ec611e12 1569/* Conditional store replacement. We already know
1570 that the recognized pattern looks like so:
1571
1572 split:
1573 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1574 THEN_BB:
1575 ...
1576 X = Y;
1577 ...
1578 goto JOIN_BB;
1579 ELSE_BB:
1580 ...
1581 X = Z;
1582 ...
1583 fallthrough (edge E0)
1584 JOIN_BB:
1585 some more
1586
1587 We check that it is safe to sink the store to JOIN_BB by verifying that
1588 there are no read-after-write or write-after-write dependencies in
1589 THEN_BB and ELSE_BB. */
1590
1591static bool
1592cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1593 basic_block join_bb)
1594{
1595 gimple then_assign = last_and_only_stmt (then_bb);
1596 gimple else_assign = last_and_only_stmt (else_bb);
1597 VEC (data_reference_p, heap) *then_datarefs, *else_datarefs;
1598 VEC (ddr_p, heap) *then_ddrs, *else_ddrs;
1599 gimple then_store, else_store;
1600 bool found, ok = false, res;
1601 struct data_dependence_relation *ddr;
1602 data_reference_p then_dr, else_dr;
1603 int i, j;
1604 tree then_lhs, else_lhs;
1605 VEC (gimple, heap) *then_stores, *else_stores;
1606 basic_block blocks[3];
1607
1608 if (MAX_STORES_TO_SINK == 0)
1609 return false;
1610
1611 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1612 if (then_assign && else_assign)
1613 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1614 then_assign, else_assign);
1615
1616 /* Find data references. */
1617 then_datarefs = VEC_alloc (data_reference_p, heap, 1);
1618 else_datarefs = VEC_alloc (data_reference_p, heap, 1);
1619 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1620 == chrec_dont_know)
1621 || !VEC_length (data_reference_p, then_datarefs)
1622 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1623 == chrec_dont_know)
1624 || !VEC_length (data_reference_p, else_datarefs))
1625 {
1626 free_data_refs (then_datarefs);
1627 free_data_refs (else_datarefs);
1628 return false;
1629 }
1630
1631 /* Find pairs of stores with equal LHS. */
1632 then_stores = VEC_alloc (gimple, heap, 1);
1633 else_stores = VEC_alloc (gimple, heap, 1);
1634 FOR_EACH_VEC_ELT (data_reference_p, then_datarefs, i, then_dr)
1635 {
1636 if (DR_IS_READ (then_dr))
1637 continue;
1638
1639 then_store = DR_STMT (then_dr);
728dcc71 1640 then_lhs = gimple_get_lhs (then_store);
ec611e12 1641 found = false;
1642
1643 FOR_EACH_VEC_ELT (data_reference_p, else_datarefs, j, else_dr)
1644 {
1645 if (DR_IS_READ (else_dr))
1646 continue;
1647
1648 else_store = DR_STMT (else_dr);
728dcc71 1649 else_lhs = gimple_get_lhs (else_store);
ec611e12 1650
1651 if (operand_equal_p (then_lhs, else_lhs, 0))
1652 {
1653 found = true;
1654 break;
1655 }
1656 }
1657
1658 if (!found)
1659 continue;
1660
1661 VEC_safe_push (gimple, heap, then_stores, then_store);
1662 VEC_safe_push (gimple, heap, else_stores, else_store);
1663 }
1664
1665 /* No pairs of stores found. */
1666 if (!VEC_length (gimple, then_stores)
1667 || VEC_length (gimple, then_stores) > (unsigned) MAX_STORES_TO_SINK)
1668 {
1669 free_data_refs (then_datarefs);
1670 free_data_refs (else_datarefs);
1671 VEC_free (gimple, heap, then_stores);
1672 VEC_free (gimple, heap, else_stores);
1673 return false;
1674 }
1675
1676 /* Compute and check data dependencies in both basic blocks. */
1677 then_ddrs = VEC_alloc (ddr_p, heap, 1);
1678 else_ddrs = VEC_alloc (ddr_p, heap, 1);
8b3fb720 1679 if (!compute_all_dependences (then_datarefs, &then_ddrs, NULL, false)
1680 || !compute_all_dependences (else_datarefs, &else_ddrs, NULL, false))
1681 {
1682 free_dependence_relations (then_ddrs);
1683 free_dependence_relations (else_ddrs);
1684 free_data_refs (then_datarefs);
1685 free_data_refs (else_datarefs);
1686 VEC_free (gimple, heap, then_stores);
1687 VEC_free (gimple, heap, else_stores);
1688 return false;
1689 }
ec611e12 1690 blocks[0] = then_bb;
1691 blocks[1] = else_bb;
1692 blocks[2] = join_bb;
1693 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1694
1695 /* Check that there are no read-after-write or write-after-write dependencies
1696 in THEN_BB. */
1697 FOR_EACH_VEC_ELT (ddr_p, then_ddrs, i, ddr)
1698 {
1699 struct data_reference *dra = DDR_A (ddr);
1700 struct data_reference *drb = DDR_B (ddr);
1701
1702 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1703 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1704 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1705 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1706 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1707 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1708 {
1709 free_dependence_relations (then_ddrs);
1710 free_dependence_relations (else_ddrs);
2473bfb7 1711 free_data_refs (then_datarefs);
1712 free_data_refs (else_datarefs);
ec611e12 1713 VEC_free (gimple, heap, then_stores);
1714 VEC_free (gimple, heap, else_stores);
1715 return false;
1716 }
1717 }
1718
1719 /* Check that there are no read-after-write or write-after-write dependencies
1720 in ELSE_BB. */
1721 FOR_EACH_VEC_ELT (ddr_p, else_ddrs, i, ddr)
1722 {
1723 struct data_reference *dra = DDR_A (ddr);
1724 struct data_reference *drb = DDR_B (ddr);
1725
1726 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1727 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1728 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1729 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1730 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1731 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1732 {
1733 free_dependence_relations (then_ddrs);
1734 free_dependence_relations (else_ddrs);
2473bfb7 1735 free_data_refs (then_datarefs);
1736 free_data_refs (else_datarefs);
ec611e12 1737 VEC_free (gimple, heap, then_stores);
1738 VEC_free (gimple, heap, else_stores);
1739 return false;
1740 }
1741 }
1742
1743 /* Sink stores with same LHS. */
1744 FOR_EACH_VEC_ELT (gimple, then_stores, i, then_store)
1745 {
1746 else_store = VEC_index (gimple, else_stores, i);
1747 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1748 then_store, else_store);
1749 ok = ok || res;
1750 }
1751
1752 free_dependence_relations (then_ddrs);
1753 free_dependence_relations (else_ddrs);
2473bfb7 1754 free_data_refs (then_datarefs);
1755 free_data_refs (else_datarefs);
ec611e12 1756 VEC_free (gimple, heap, then_stores);
1757 VEC_free (gimple, heap, else_stores);
1758
1759 return ok;
1760}
1761
239e9670 1762/* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1763
1764static bool
1765local_mem_dependence (gimple stmt, basic_block bb)
1766{
1767 tree vuse = gimple_vuse (stmt);
1768 gimple def;
1769
1770 if (!vuse)
1771 return false;
1772
1773 def = SSA_NAME_DEF_STMT (vuse);
1774 return (def && gimple_bb (def) == bb);
1775}
1776
1777/* Given a "diamond" control-flow pattern where BB0 tests a condition,
1778 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1779 and BB3 rejoins control flow following BB1 and BB2, look for
1780 opportunities to hoist loads as follows. If BB3 contains a PHI of
1781 two loads, one each occurring in BB1 and BB2, and the loads are
1782 provably of adjacent fields in the same structure, then move both
1783 loads into BB0. Of course this can only be done if there are no
1784 dependencies preventing such motion.
1785
1786 One of the hoisted loads will always be speculative, so the
1787 transformation is currently conservative:
1788
1789 - The fields must be strictly adjacent.
1790 - The two fields must occupy a single memory block that is
1791 guaranteed to not cross a page boundary.
1792
1793 The last is difficult to prove, as such memory blocks should be
1794 aligned on the minimum of the stack alignment boundary and the
1795 alignment guaranteed by heap allocation interfaces. Thus we rely
1796 on a parameter for the alignment value.
1797
1798 Provided a good value is used for the last case, the first
1799 restriction could possibly be relaxed. */
1800
1801static void
1802hoist_adjacent_loads (basic_block bb0, basic_block bb1,
1803 basic_block bb2, basic_block bb3)
1804{
1805 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
1806 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1807 gimple_stmt_iterator gsi;
1808
1809 /* Walk the phis in bb3 looking for an opportunity. We are looking
1810 for phis of two SSA names, one each of which is defined in bb1 and
1811 bb2. */
1812 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
1813 {
1814 gimple phi_stmt = gsi_stmt (gsi);
1815 gimple def1, def2, defswap;
1816 tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
1817 tree tree_offset1, tree_offset2, tree_size2, next;
1818 int offset1, offset2, size2;
1819 unsigned align1;
1820 gimple_stmt_iterator gsi2;
1821 basic_block bb_for_def1, bb_for_def2;
1822
7c782c9b 1823 if (gimple_phi_num_args (phi_stmt) != 2
1824 || virtual_operand_p (gimple_phi_result (phi_stmt)))
239e9670 1825 continue;
1826
1827 arg1 = gimple_phi_arg_def (phi_stmt, 0);
1828 arg2 = gimple_phi_arg_def (phi_stmt, 1);
1829
1830 if (TREE_CODE (arg1) != SSA_NAME
1831 || TREE_CODE (arg2) != SSA_NAME
1832 || SSA_NAME_IS_DEFAULT_DEF (arg1)
7c782c9b 1833 || SSA_NAME_IS_DEFAULT_DEF (arg2))
239e9670 1834 continue;
1835
1836 def1 = SSA_NAME_DEF_STMT (arg1);
1837 def2 = SSA_NAME_DEF_STMT (arg2);
1838
1839 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
1840 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
1841 continue;
1842
1843 /* Check the mode of the arguments to be sure a conditional move
1844 can be generated for it. */
1845 if (!optab_handler (cmov_optab, TYPE_MODE (TREE_TYPE (arg1))))
1846 continue;
1847
1848 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
1849 if (!gimple_assign_single_p (def1)
1850 || !gimple_assign_single_p (def2))
1851 continue;
1852
1853 ref1 = gimple_assign_rhs1 (def1);
1854 ref2 = gimple_assign_rhs1 (def2);
1855
1856 if (TREE_CODE (ref1) != COMPONENT_REF
1857 || TREE_CODE (ref2) != COMPONENT_REF)
1858 continue;
1859
1860 /* The zeroth operand of the two component references must be
1861 identical. It is not sufficient to compare get_base_address of
1862 the two references, because this could allow for different
1863 elements of the same array in the two trees. It is not safe to
1864 assume that the existence of one array element implies the
1865 existence of a different one. */
1866 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
1867 continue;
1868
1869 field1 = TREE_OPERAND (ref1, 1);
1870 field2 = TREE_OPERAND (ref2, 1);
1871
1872 /* Check for field adjacency, and ensure field1 comes first. */
1873 for (next = DECL_CHAIN (field1);
1874 next && TREE_CODE (next) != FIELD_DECL;
1875 next = DECL_CHAIN (next))
1876 ;
1877
1878 if (next != field2)
1879 {
1880 for (next = DECL_CHAIN (field2);
1881 next && TREE_CODE (next) != FIELD_DECL;
1882 next = DECL_CHAIN (next))
1883 ;
1884
1885 if (next != field1)
1886 continue;
1887
1888 fieldswap = field1;
1889 field1 = field2;
1890 field2 = fieldswap;
1891 defswap = def1;
1892 def1 = def2;
1893 def2 = defswap;
239e9670 1894 }
1895
7c74ee50 1896 bb_for_def1 = gimple_bb (def1);
1897 bb_for_def2 = gimple_bb (def2);
1898
239e9670 1899 /* Check for proper alignment of the first field. */
1900 tree_offset1 = bit_position (field1);
1901 tree_offset2 = bit_position (field2);
1902 tree_size2 = DECL_SIZE (field2);
1903
1904 if (!host_integerp (tree_offset1, 1)
1905 || !host_integerp (tree_offset2, 1)
1906 || !host_integerp (tree_size2, 1))
1907 continue;
1908
1909 offset1 = TREE_INT_CST_LOW (tree_offset1);
1910 offset2 = TREE_INT_CST_LOW (tree_offset2);
1911 size2 = TREE_INT_CST_LOW (tree_size2);
1912 align1 = DECL_ALIGN (field1) % param_align_bits;
1913
1914 if (offset1 % BITS_PER_UNIT != 0)
1915 continue;
1916
1917 /* For profitability, the two field references should fit within
1918 a single cache line. */
1919 if (align1 + offset2 - offset1 + size2 > param_align_bits)
1920 continue;
1921
1922 /* The two expressions cannot be dependent upon vdefs defined
1923 in bb1/bb2. */
1924 if (local_mem_dependence (def1, bb_for_def1)
1925 || local_mem_dependence (def2, bb_for_def2))
1926 continue;
1927
1928 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
1929 bb0. We hoist the first one first so that a cache miss is handled
1930 efficiently regardless of hardware cache-fill policy. */
1931 gsi2 = gsi_for_stmt (def1);
1932 gsi_move_to_bb_end (&gsi2, bb0);
1933 gsi2 = gsi_for_stmt (def2);
1934 gsi_move_to_bb_end (&gsi2, bb0);
1935
1936 if (dump_file && (dump_flags & TDF_DETAILS))
1937 {
1938 fprintf (dump_file,
1939 "\nHoisting adjacent loads from %d and %d into %d: \n",
1940 bb_for_def1->index, bb_for_def2->index, bb0->index);
1941 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
1942 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
1943 }
1944 }
1945}
1946
1947/* Determine whether we should attempt to hoist adjacent loads out of
1948 diamond patterns in pass_phiopt. Always hoist loads if
1949 -fhoist-adjacent-loads is specified and the target machine has
6f0ddab1 1950 both a conditional move instruction and a defined cache line size. */
239e9670 1951
1952static bool
1953gate_hoist_loads (void)
1954{
6f0ddab1 1955 return (flag_hoist_adjacent_loads == 1
1956 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
1957 && HAVE_conditional_move);
239e9670 1958}
1959
4ee9c684 1960/* Always do these optimizations if we have SSA
20e5647c 1961 trees to work on. */
4ee9c684 1962static bool
1963gate_phiopt (void)
1964{
1965 return 1;
1966}
20e5647c 1967
20099e35 1968struct gimple_opt_pass pass_phiopt =
4ee9c684 1969{
20099e35 1970 {
1971 GIMPLE_PASS,
4ee9c684 1972 "phiopt", /* name */
1973 gate_phiopt, /* gate */
1974 tree_ssa_phiopt, /* execute */
1975 NULL, /* sub */
1976 NULL, /* next */
1977 0, /* static_pass_number */
1978 TV_TREE_PHIOPT, /* tv_id */
2f8eb909 1979 PROP_cfg | PROP_ssa, /* properties_required */
4ee9c684 1980 0, /* properties_provided */
1981 0, /* properties_destroyed */
1982 0, /* todo_flags_start */
771e2890 1983 TODO_ggc_collect
88dbf20f 1984 | TODO_verify_ssa
88dbf20f 1985 | TODO_verify_flow
20099e35 1986 | TODO_verify_stmts /* todo_flags_finish */
1987 }
4ee9c684 1988};
e6d0e152 1989
1990static bool
1991gate_cselim (void)
1992{
1993 return flag_tree_cselim;
1994}
1995
20099e35 1996struct gimple_opt_pass pass_cselim =
e6d0e152 1997{
20099e35 1998 {
1999 GIMPLE_PASS,
e6d0e152 2000 "cselim", /* name */
2001 gate_cselim, /* gate */
2002 tree_ssa_cs_elim, /* execute */
2003 NULL, /* sub */
2004 NULL, /* next */
2005 0, /* static_pass_number */
2006 TV_TREE_PHIOPT, /* tv_id */
2f8eb909 2007 PROP_cfg | PROP_ssa, /* properties_required */
e6d0e152 2008 0, /* properties_provided */
2009 0, /* properties_destroyed */
2010 0, /* todo_flags_start */
771e2890 2011 TODO_ggc_collect
e6d0e152 2012 | TODO_verify_ssa
2013 | TODO_verify_flow
20099e35 2014 | TODO_verify_stmts /* todo_flags_finish */
2015 }
e6d0e152 2016};