]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-structalias.c
re PR bootstrap/44315 (Circular build/gencondmd.o <- insn-flags.h dependency dropped)
[thirdparty/gcc.git] / gcc / tree-ssa-structalias.c
CommitLineData
910fdc79 1/* Tree based points-to analysis
c75c517d
SB
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
910fdc79
DB
4 Contributed by Daniel Berlin <dberlin@dberlin.org>
5
9dcd6f09 6 This file is part of GCC.
910fdc79 7
9dcd6f09
NC
8 GCC is free software; you can redistribute it and/or modify
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
910fdc79 12
9dcd6f09
NC
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
910fdc79 17
9dcd6f09
NC
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
910fdc79
DB
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
25#include "tm.h"
26#include "ggc.h"
27#include "obstack.h"
28#include "bitmap.h"
910fdc79 29#include "flags.h"
910fdc79
DB
30#include "basic-block.h"
31#include "output.h"
910fdc79 32#include "tree.h"
910fdc79
DB
33#include "tree-flow.h"
34#include "tree-inline.h"
ce1b6498
RG
35#include "diagnostic.h"
36#include "toplev.h"
726a989a 37#include "gimple.h"
910fdc79
DB
38#include "hashtab.h"
39#include "function.h"
40#include "cgraph.h"
41#include "tree-pass.h"
42#include "timevar.h"
43#include "alloc-pool.h"
44#include "splay-tree.h"
a916f21d 45#include "params.h"
4ee00913 46#include "cgraph.h"
c58936b6 47#include "alias.h"
38635499 48#include "pointer-set.h"
910fdc79
DB
49
50/* The idea behind this analyzer is to generate set constraints from the
51 program, then solve the resulting constraints in order to generate the
c58936b6 52 points-to sets.
910fdc79
DB
53
54 Set constraints are a way of modeling program analysis problems that
55 involve sets. They consist of an inclusion constraint language,
56 describing the variables (each variable is a set) and operations that
57 are involved on the variables, and a set of rules that derive facts
58 from these operations. To solve a system of set constraints, you derive
59 all possible facts under the rules, which gives you the correct sets
60 as a consequence.
61
62 See "Efficient Field-sensitive pointer analysis for C" by "David
63 J. Pearce and Paul H. J. Kelly and Chris Hankin, at
64 http://citeseer.ist.psu.edu/pearce04efficient.html
65
66 Also see "Ultra-fast Aliasing Analysis using CLA: A Million Lines
67 of C Code in a Second" by ""Nevin Heintze and Olivier Tardieu" at
c58936b6
DB
68 http://citeseer.ist.psu.edu/heintze01ultrafast.html
69
70 There are three types of real constraint expressions, DEREF,
3e5937d7 71 ADDRESSOF, and SCALAR. Each constraint expression consists
c58936b6 72 of a constraint type, a variable, and an offset.
910fdc79 73
910fdc79
DB
74 SCALAR is a constraint expression type used to represent x, whether
75 it appears on the LHS or the RHS of a statement.
76 DEREF is a constraint expression type used to represent *x, whether
c58936b6 77 it appears on the LHS or the RHS of a statement.
910fdc79 78 ADDRESSOF is a constraint expression used to represent &x, whether
607fb860 79 it appears on the LHS or the RHS of a statement.
c58936b6 80
910fdc79
DB
81 Each pointer variable in the program is assigned an integer id, and
82 each field of a structure variable is assigned an integer id as well.
c58936b6 83
910fdc79
DB
84 Structure variables are linked to their list of fields through a "next
85 field" in each variable that points to the next field in offset
c58936b6
DB
86 order.
87 Each variable for a structure field has
910fdc79
DB
88
89 1. "size", that tells the size in bits of that field.
90 2. "fullsize, that tells the size in bits of the entire structure.
91 3. "offset", that tells the offset in bits from the beginning of the
92 structure to this field.
93
c58936b6 94 Thus,
910fdc79
DB
95 struct f
96 {
97 int a;
98 int b;
99 } foo;
100 int *bar;
101
102 looks like
103
104 foo.a -> id 1, size 32, offset 0, fullsize 64, next foo.b
105 foo.b -> id 2, size 32, offset 32, fullsize 64, next NULL
106 bar -> id 3, size 32, offset 0, fullsize 32, next NULL
107
c58936b6 108
910fdc79
DB
109 In order to solve the system of set constraints, the following is
110 done:
111
112 1. Each constraint variable x has a solution set associated with it,
113 Sol(x).
c58936b6 114
910fdc79
DB
115 2. Constraints are separated into direct, copy, and complex.
116 Direct constraints are ADDRESSOF constraints that require no extra
117 processing, such as P = &Q
118 Copy constraints are those of the form P = Q.
2941f691
DB
119 Complex constraints are all the constraints involving dereferences
120 and offsets (including offsetted copies).
c58936b6 121
910fdc79 122 3. All direct constraints of the form P = &Q are processed, such
c58936b6 123 that Q is added to Sol(P)
910fdc79
DB
124
125 4. All complex constraints for a given constraint variable are stored in a
c58936b6 126 linked list attached to that variable's node.
910fdc79
DB
127
128 5. A directed graph is built out of the copy constraints. Each
c58936b6 129 constraint variable is a node in the graph, and an edge from
910fdc79 130 Q to P is added for each copy constraint of the form P = Q
c58936b6 131
910fdc79
DB
132 6. The graph is then walked, and solution sets are
133 propagated along the copy edges, such that an edge from Q to P
134 causes Sol(P) <- Sol(P) union Sol(Q).
c58936b6 135
910fdc79 136 7. As we visit each node, all complex constraints associated with
607fb860 137 that node are processed by adding appropriate copy edges to the graph, or the
c58936b6 138 appropriate variables to the solution set.
910fdc79
DB
139
140 8. The process of walking the graph is iterated until no solution
141 sets change.
142
143 Prior to walking the graph in steps 6 and 7, We perform static
c58936b6 144 cycle elimination on the constraint graph, as well
910fdc79 145 as off-line variable substitution.
c58936b6 146
910fdc79
DB
147 TODO: Adding offsets to pointer-to-structures can be handled (IE not punted
148 on and turned into anything), but isn't. You can just see what offset
149 inside the pointed-to struct it's going to access.
c58936b6 150
910fdc79 151 TODO: Constant bounded arrays can be handled as if they were structs of the
c58936b6 152 same number of elements.
910fdc79
DB
153
154 TODO: Modeling heap and incoming pointers becomes much better if we
155 add fields to them as we discover them, which we could do.
156
157 TODO: We could handle unions, but to be honest, it's probably not
158 worth the pain or slowdown. */
159
25a6a873
RG
160/* IPA-PTA optimizations possible.
161
162 When the indirect function called is ANYTHING we can add disambiguation
163 based on the function signatures (or simply the parameter count which
164 is the varinfo size). We also do not need to consider functions that
165 do not have their address taken.
166
167 The is_global_var bit which marks escape points is overly conservative
168 in IPA mode. Split it to is_escape_point and is_global_var - only
169 externally visible globals are escape points in IPA mode. This is
170 also needed to fix the pt_solution_includes_global predicate
171 (and thus ptr_deref_may_alias_global_p).
172
173 The way we introduce DECL_PT_UID to avoid fixing up all points-to
174 sets in the translation unit when we copy a DECL during inlining
175 pessimizes precision. The advantage is that the DECL_PT_UID keeps
176 compile-time and memory usage overhead low - the points-to sets
177 do not grow or get unshared as they would during a fixup phase.
178 An alternative solution is to delay IPA PTA until after all
179 inlining transformations have been applied.
180
181 The way we propagate clobber/use information isn't optimized.
182 It should use a new complex constraint that properly filters
183 out local variables of the callee (though that would make
184 the sets invalid after inlining). OTOH we might as well
185 admit defeat to WHOPR and simply do all the clobber/use analysis
186 and propagation after PTA finished but before we threw away
187 points-to information for memory variables. WHOPR and PTA
188 do not play along well anyway - the whole constraint solving
189 would need to be done in WPA phase and it will be very interesting
190 to apply the results to local SSA names during LTRANS phase.
191
192 We probably should compute a per-function unit-ESCAPE solution
193 propagating it simply like the clobber / uses solutions. The
194 solution can go alongside the non-IPA espaced solution and be
195 used to query which vars escape the unit through a function.
196
197 We never put function decls in points-to sets so we do not
198 keep the set of called functions for indirect calls.
199
200 And probably more. */
201
c58936b6 202static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
21392f19
DB
203htab_t heapvar_for_stmt;
204
910fdc79 205static bool use_field_sensitive = true;
4ee00913 206static int in_ipa_mode = 0;
3e5937d7
DB
207
208/* Used for predecessor bitmaps. */
4ee00913 209static bitmap_obstack predbitmap_obstack;
3e5937d7
DB
210
211/* Used for points-to sets. */
212static bitmap_obstack pta_obstack;
213
214/* Used for oldsolution members of variables. */
215static bitmap_obstack oldpta_obstack;
216
217/* Used for per-solver-iteration bitmaps. */
4ee00913
DB
218static bitmap_obstack iteration_obstack;
219
910fdc79 220static unsigned int create_variable_info_for (tree, const char *);
3e5937d7
DB
221typedef struct constraint_graph *constraint_graph_t;
222static void unify_nodes (constraint_graph_t, unsigned int, unsigned int, bool);
910fdc79 223
5006671f
RG
224struct constraint;
225typedef struct constraint *constraint_t;
226
910fdc79 227DEF_VEC_P(constraint_t);
b5efa470 228DEF_VEC_ALLOC_P(constraint_t,heap);
910fdc79 229
4ee00913
DB
230#define EXECUTE_IF_IN_NONNULL_BITMAP(a, b, c, d) \
231 if (a) \
232 EXECUTE_IF_SET_IN_BITMAP (a, b, c, d)
233
910fdc79
DB
234static struct constraint_stats
235{
236 unsigned int total_vars;
3e5937d7 237 unsigned int nonpointer_vars;
910fdc79
DB
238 unsigned int unified_vars_static;
239 unsigned int unified_vars_dynamic;
240 unsigned int iterations;
4ee00913 241 unsigned int num_edges;
3e5937d7
DB
242 unsigned int num_implicit_edges;
243 unsigned int points_to_sets_created;
910fdc79
DB
244} stats;
245
246struct variable_info
247{
248 /* ID of this variable */
249 unsigned int id;
250
910fdc79
DB
251 /* True if this is a variable created by the constraint analysis, such as
252 heap variables and constraints we had to break up. */
74d27244 253 unsigned int is_artificial_var : 1;
c58936b6 254
13c2c08b
DB
255 /* True if this is a special variable whose solution set should not be
256 changed. */
74d27244 257 unsigned int is_special_var : 1;
910fdc79
DB
258
259 /* True for variables whose size is not known or variable. */
74d27244 260 unsigned int is_unknown_size_var : 1;
910fdc79 261
e5bae89b
RG
262 /* True for (sub-)fields that represent a whole variable. */
263 unsigned int is_full_var : 1;
264
e8ca4159 265 /* True if this is a heap variable. */
74d27244
RG
266 unsigned int is_heap_var : 1;
267
268 /* True if this is a variable tracking a restrict pointer source. */
269 unsigned int is_restrict_var : 1;
e8ca4159 270
9e39dba6
RG
271 /* True if this field may contain pointers. */
272 unsigned int may_have_pointers : 1;
273
18abb35e
RG
274 /* True if this field has only restrict qualified pointers. */
275 unsigned int only_restrict_pointers : 1;
276
0bbf2ffa
RG
277 /* True if this represents a global variable. */
278 unsigned int is_global_var : 1;
279
25a6a873
RG
280 /* True if this represents a IPA function info. */
281 unsigned int is_fn_info : 1;
282
795a337a
RG
283 /* A link to the variable for the next field in this structure. */
284 struct variable_info *next;
285
286 /* Offset of this variable, in bits, from the base variable */
287 unsigned HOST_WIDE_INT offset;
288
289 /* Size of the variable, in bits. */
290 unsigned HOST_WIDE_INT size;
291
292 /* Full size of the base variable, in bits. */
293 unsigned HOST_WIDE_INT fullsize;
294
295 /* Name of this variable */
296 const char *name;
297
298 /* Tree that this variable is associated with. */
299 tree decl;
300
910fdc79
DB
301 /* Points-to set for this variable. */
302 bitmap solution;
303
3e5937d7
DB
304 /* Old points-to set for this variable. */
305 bitmap oldsolution;
910fdc79
DB
306};
307typedef struct variable_info *varinfo_t;
308
309static varinfo_t first_vi_for_offset (varinfo_t, unsigned HOST_WIDE_INT);
5006671f
RG
310static varinfo_t first_or_preceding_vi_for_offset (varinfo_t,
311 unsigned HOST_WIDE_INT);
0e1f4c6b 312static varinfo_t lookup_vi_for_tree (tree);
910fdc79
DB
313
314/* Pool of variable info structures. */
315static alloc_pool variable_info_pool;
316
317DEF_VEC_P(varinfo_t);
318
b5efa470 319DEF_VEC_ALLOC_P(varinfo_t, heap);
910fdc79 320
38635499
DN
321/* Table of variable info structures for constraint variables.
322 Indexed directly by variable info id. */
b5efa470 323static VEC(varinfo_t,heap) *varmap;
13c2c08b
DB
324
325/* Return the varmap element N */
326
327static inline varinfo_t
03190594 328get_varinfo (unsigned int n)
13c2c08b 329{
62e5bf5d 330 return VEC_index (varinfo_t, varmap, n);
13c2c08b 331}
910fdc79 332
b7091901
RG
333/* Static IDs for the special variables. */
334enum { nothing_id = 0, anything_id = 1, readonly_id = 2,
3e8542ca
RG
335 escaped_id = 3, nonlocal_id = 4,
336 storedanything_id = 5, integer_id = 6 };
b7091901 337
8bc88f25
RB
338struct GTY(()) heapvar_map {
339 struct tree_map map;
340 unsigned HOST_WIDE_INT offset;
341};
342
343static int
344heapvar_map_eq (const void *p1, const void *p2)
345{
346 const struct heapvar_map *h1 = (const struct heapvar_map *)p1;
347 const struct heapvar_map *h2 = (const struct heapvar_map *)p2;
348 return (h1->map.base.from == h2->map.base.from
349 && h1->offset == h2->offset);
350}
351
352static unsigned int
353heapvar_map_hash (struct heapvar_map *h)
354{
355 return iterative_hash_host_wide_int (h->offset,
356 htab_hash_pointer (h->map.base.from));
357}
358
f5d7990b 359/* Lookup a heap var for FROM, and return it if we find one. */
c900f6aa 360
c58936b6 361static tree
8bc88f25 362heapvar_lookup (tree from, unsigned HOST_WIDE_INT offset)
c900f6aa 363{
8bc88f25
RB
364 struct heapvar_map *h, in;
365 in.map.base.from = from;
366 in.offset = offset;
367 h = (struct heapvar_map *) htab_find_with_hash (heapvar_for_stmt, &in,
368 heapvar_map_hash (&in));
c900f6aa 369 if (h)
8bc88f25 370 return h->map.to;
c900f6aa
DB
371 return NULL_TREE;
372}
373
374/* Insert a mapping FROM->TO in the heap var for statement
375 hashtable. */
376
377static void
8bc88f25 378heapvar_insert (tree from, unsigned HOST_WIDE_INT offset, tree to)
c900f6aa 379{
8bc88f25 380 struct heapvar_map *h;
c900f6aa
DB
381 void **loc;
382
8bc88f25
RB
383 h = GGC_NEW (struct heapvar_map);
384 h->map.base.from = from;
385 h->offset = offset;
386 h->map.hash = heapvar_map_hash (h);
387 h->map.to = to;
388 loc = htab_find_slot_with_hash (heapvar_for_stmt, h, h->map.hash, INSERT);
389 gcc_assert (*loc == NULL);
390 *(struct heapvar_map **) loc = h;
21392f19 391}
c900f6aa 392
910fdc79 393/* Return a new variable info structure consisting for a variable
0bbf2ffa
RG
394 named NAME, and using constraint graph node NODE. Append it
395 to the vector of variable info structures. */
910fdc79
DB
396
397static varinfo_t
0bbf2ffa 398new_var_info (tree t, const char *name)
910fdc79 399{
0bbf2ffa 400 unsigned index = VEC_length (varinfo_t, varmap);
c22940cd 401 varinfo_t ret = (varinfo_t) pool_alloc (variable_info_pool);
910fdc79 402
0bbf2ffa 403 ret->id = index;
910fdc79
DB
404 ret->name = name;
405 ret->decl = t;
0bbf2ffa
RG
406 /* Vars without decl are artificial and do not have sub-variables. */
407 ret->is_artificial_var = (t == NULL_TREE);
13c2c08b 408 ret->is_special_var = false;
910fdc79 409 ret->is_unknown_size_var = false;
02583d3c
RG
410 ret->is_full_var = (t == NULL_TREE);
411 ret->is_heap_var = false;
412 ret->is_restrict_var = false;
9e39dba6 413 ret->may_have_pointers = true;
18abb35e 414 ret->only_restrict_pointers = false;
74d27244 415 ret->is_global_var = (t == NULL_TREE);
25a6a873 416 ret->is_fn_info = false;
0bbf2ffa
RG
417 if (t && DECL_P (t))
418 ret->is_global_var = is_global_var (t);
3e5937d7
DB
419 ret->solution = BITMAP_ALLOC (&pta_obstack);
420 ret->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
910fdc79 421 ret->next = NULL;
0bbf2ffa 422
18abb35e
RG
423 stats.total_vars++;
424
0bbf2ffa
RG
425 VEC_safe_push (varinfo_t, heap, varmap, ret);
426
910fdc79
DB
427 return ret;
428}
429
3e8542ca
RG
430
431/* A map mapping call statements to per-stmt variables for uses
432 and clobbers specific to the call. */
433struct pointer_map_t *call_stmt_vars;
434
435/* Lookup or create the variable for the call statement CALL. */
436
437static varinfo_t
438get_call_vi (gimple call)
439{
440 void **slot_p;
441 varinfo_t vi, vi2;
442
443 slot_p = pointer_map_insert (call_stmt_vars, call);
444 if (*slot_p)
445 return (varinfo_t) *slot_p;
446
447 vi = new_var_info (NULL_TREE, "CALLUSED");
448 vi->offset = 0;
449 vi->size = 1;
450 vi->fullsize = 2;
451 vi->is_full_var = true;
452
453 vi->next = vi2 = new_var_info (NULL_TREE, "CALLCLOBBERED");
454 vi2->offset = 1;
455 vi2->size = 1;
456 vi2->fullsize = 2;
457 vi2->is_full_var = true;
458
459 *slot_p = (void *) vi;
460 return vi;
461}
462
463/* Lookup the variable for the call statement CALL representing
464 the uses. Returns NULL if there is nothing special about this call. */
465
466static varinfo_t
467lookup_call_use_vi (gimple call)
468{
469 void **slot_p;
470
471 slot_p = pointer_map_contains (call_stmt_vars, call);
472 if (slot_p)
473 return (varinfo_t) *slot_p;
474
475 return NULL;
476}
477
478/* Lookup the variable for the call statement CALL representing
479 the clobbers. Returns NULL if there is nothing special about this call. */
480
481static varinfo_t
482lookup_call_clobber_vi (gimple call)
483{
484 varinfo_t uses = lookup_call_use_vi (call);
485 if (!uses)
486 return NULL;
487
488 return uses->next;
489}
490
491/* Lookup or create the variable for the call statement CALL representing
492 the uses. */
493
494static varinfo_t
495get_call_use_vi (gimple call)
496{
497 return get_call_vi (call);
498}
499
500/* Lookup or create the variable for the call statement CALL representing
501 the clobbers. */
502
503static varinfo_t ATTRIBUTE_UNUSED
504get_call_clobber_vi (gimple call)
505{
506 return get_call_vi (call)->next;
507}
508
509
3e5937d7 510typedef enum {SCALAR, DEREF, ADDRESSOF} constraint_expr_type;
910fdc79
DB
511
512/* An expression that appears in a constraint. */
513
c58936b6 514struct constraint_expr
910fdc79
DB
515{
516 /* Constraint type. */
517 constraint_expr_type type;
518
519 /* Variable we are referring to in the constraint. */
520 unsigned int var;
521
522 /* Offset, in bits, of this constraint from the beginning of
523 variables it ends up referring to.
524
525 IOW, in a deref constraint, we would deref, get the result set,
526 then add OFFSET to each member. */
5006671f 527 HOST_WIDE_INT offset;
910fdc79
DB
528};
529
5006671f
RG
530/* Use 0x8000... as special unknown offset. */
531#define UNKNOWN_OFFSET ((HOST_WIDE_INT)-1 << (HOST_BITS_PER_WIDE_INT-1))
532
4ee00913
DB
533typedef struct constraint_expr ce_s;
534DEF_VEC_O(ce_s);
535DEF_VEC_ALLOC_O(ce_s, heap);
c0d459f0 536static void get_constraint_for_1 (tree, VEC(ce_s, heap) **, bool);
1d85354c 537static void get_constraint_for (tree, VEC(ce_s, heap) **);
4ee00913 538static void do_deref (VEC (ce_s, heap) **);
910fdc79
DB
539
540/* Our set constraints are made up of two constraint expressions, one
c58936b6 541 LHS, and one RHS.
910fdc79
DB
542
543 As described in the introduction, our set constraints each represent an
544 operation between set valued variables.
545*/
546struct constraint
547{
548 struct constraint_expr lhs;
549 struct constraint_expr rhs;
550};
551
552/* List of constraints that we use to build the constraint graph from. */
553
b5efa470 554static VEC(constraint_t,heap) *constraints;
910fdc79
DB
555static alloc_pool constraint_pool;
556
57250223
DB
557/* The constraint graph is represented as an array of bitmaps
558 containing successor nodes. */
910fdc79
DB
559
560struct constraint_graph
561{
3e5937d7
DB
562 /* Size of this graph, which may be different than the number of
563 nodes in the variable map. */
564 unsigned int size;
565
566 /* Explicit successors of each node. */
57250223 567 bitmap *succs;
3e5937d7
DB
568
569 /* Implicit predecessors of each node (Used for variable
570 substitution). */
571 bitmap *implicit_preds;
572
573 /* Explicit predecessors of each node (Used for variable substitution). */
57250223 574 bitmap *preds;
910fdc79 575
3e5937d7
DB
576 /* Indirect cycle representatives, or -1 if the node has no indirect
577 cycles. */
578 int *indirect_cycles;
579
580 /* Representative node for a node. rep[a] == a unless the node has
581 been unified. */
582 unsigned int *rep;
583
7b765bed 584 /* Equivalence class representative for a label. This is used for
3e5937d7
DB
585 variable substitution. */
586 int *eq_rep;
587
aa46c8a3
DB
588 /* Pointer equivalence label for a node. All nodes with the same
589 pointer equivalence label can be unified together at some point
590 (either during constraint optimization or after the constraint
591 graph is built). */
7b765bed
DB
592 unsigned int *pe;
593
594 /* Pointer equivalence representative for a label. This is used to
595 handle nodes that are pointer equivalent but not location
596 equivalent. We can unite these once the addressof constraints
597 are transformed into initial points-to sets. */
598 int *pe_rep;
599
600 /* Pointer equivalence label for each node, used during variable
601 substitution. */
602 unsigned int *pointer_label;
603
604 /* Location equivalence label for each node, used during location
605 equivalence finding. */
606 unsigned int *loc_label;
607
608 /* Pointed-by set for each node, used during location equivalence
609 finding. This is pointed-by rather than pointed-to, because it
610 is constructed using the predecessor graph. */
611 bitmap *pointed_by;
612
613 /* Points to sets for pointer equivalence. This is *not* the actual
614 points-to sets for nodes. */
615 bitmap *points_to;
3e5937d7
DB
616
617 /* Bitmap of nodes where the bit is set if the node is a direct
618 node. Used for variable substitution. */
619 sbitmap direct_nodes;
620
7b765bed
DB
621 /* Bitmap of nodes where the bit is set if the node is address
622 taken. Used for variable substitution. */
623 bitmap address_taken;
624
3e5937d7
DB
625 /* Vector of complex constraints for each graph node. Complex
626 constraints are those involving dereferences or offsets that are
627 not 0. */
628 VEC(constraint_t,heap) **complex;
629};
910fdc79
DB
630
631static constraint_graph_t graph;
632
3e5937d7
DB
633/* During variable substitution and the offline version of indirect
634 cycle finding, we create nodes to represent dereferences and
635 address taken constraints. These represent where these start and
636 end. */
637#define FIRST_REF_NODE (VEC_length (varinfo_t, varmap))
638#define LAST_REF_NODE (FIRST_REF_NODE + (FIRST_REF_NODE - 1))
3e5937d7
DB
639
640/* Return the representative node for NODE, if NODE has been unioned
641 with another NODE.
642 This function performs path compression along the way to finding
643 the representative. */
644
645static unsigned int
646find (unsigned int node)
647{
648 gcc_assert (node < graph->size);
649 if (graph->rep[node] != node)
650 return graph->rep[node] = find (graph->rep[node]);
651 return node;
652}
653
654/* Union the TO and FROM nodes to the TO nodes.
655 Note that at some point in the future, we may want to do
656 union-by-rank, in which case we are going to have to return the
657 node we unified to. */
658
659static bool
660unite (unsigned int to, unsigned int from)
661{
662 gcc_assert (to < graph->size && from < graph->size);
663 if (to != from && graph->rep[from] != to)
664 {
665 graph->rep[from] = to;
666 return true;
667 }
668 return false;
669}
670
910fdc79
DB
671/* Create a new constraint consisting of LHS and RHS expressions. */
672
c58936b6 673static constraint_t
910fdc79
DB
674new_constraint (const struct constraint_expr lhs,
675 const struct constraint_expr rhs)
676{
c22940cd 677 constraint_t ret = (constraint_t) pool_alloc (constraint_pool);
910fdc79
DB
678 ret->lhs = lhs;
679 ret->rhs = rhs;
680 return ret;
681}
682
683/* Print out constraint C to FILE. */
684
5006671f 685static void
910fdc79
DB
686dump_constraint (FILE *file, constraint_t c)
687{
688 if (c->lhs.type == ADDRESSOF)
689 fprintf (file, "&");
690 else if (c->lhs.type == DEREF)
c58936b6 691 fprintf (file, "*");
5006671f
RG
692 fprintf (file, "%s", get_varinfo (c->lhs.var)->name);
693 if (c->lhs.offset == UNKNOWN_OFFSET)
694 fprintf (file, " + UNKNOWN");
695 else if (c->lhs.offset != 0)
910fdc79
DB
696 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->lhs.offset);
697 fprintf (file, " = ");
698 if (c->rhs.type == ADDRESSOF)
699 fprintf (file, "&");
700 else if (c->rhs.type == DEREF)
701 fprintf (file, "*");
5006671f
RG
702 fprintf (file, "%s", get_varinfo (c->rhs.var)->name);
703 if (c->rhs.offset == UNKNOWN_OFFSET)
704 fprintf (file, " + UNKNOWN");
705 else if (c->rhs.offset != 0)
910fdc79
DB
706 fprintf (file, " + " HOST_WIDE_INT_PRINT_DEC, c->rhs.offset);
707 fprintf (file, "\n");
708}
709
5006671f
RG
710
711void debug_constraint (constraint_t);
712void debug_constraints (void);
713void debug_constraint_graph (void);
714void debug_solution_for_var (unsigned int);
715void debug_sa_points_to_info (void);
716
910fdc79
DB
717/* Print out constraint C to stderr. */
718
719void
720debug_constraint (constraint_t c)
721{
722 dump_constraint (stderr, c);
723}
724
725/* Print out all constraints to FILE */
726
5006671f 727static void
25a6a873 728dump_constraints (FILE *file, int from)
910fdc79
DB
729{
730 int i;
731 constraint_t c;
25a6a873 732 for (i = from; VEC_iterate (constraint_t, constraints, i, c); i++)
910fdc79
DB
733 dump_constraint (file, c);
734}
735
736/* Print out all constraints to stderr. */
737
738void
739debug_constraints (void)
740{
25a6a873 741 dump_constraints (stderr, 0);
910fdc79
DB
742}
743
fc93bcb6
FP
744/* Print out to FILE the edge in the constraint graph that is created by
745 constraint c. The edge may have a label, depending on the type of
746 constraint that it represents. If complex1, e.g: a = *b, then the label
747 is "=*", if complex2, e.g: *a = b, then the label is "*=", if
748 complex with an offset, e.g: a = b + 8, then the label is "+".
749 Otherwise the edge has no label. */
750
5006671f 751static void
fc93bcb6
FP
752dump_constraint_edge (FILE *file, constraint_t c)
753{
754 if (c->rhs.type != ADDRESSOF)
755 {
5006671f
RG
756 const char *src = get_varinfo (c->rhs.var)->name;
757 const char *dst = get_varinfo (c->lhs.var)->name;
fc93bcb6
FP
758 fprintf (file, " \"%s\" -> \"%s\" ", src, dst);
759 /* Due to preprocessing of constraints, instructions like *a = *b are
760 illegal; thus, we do not have to handle such cases. */
761 if (c->lhs.type == DEREF)
762 fprintf (file, " [ label=\"*=\" ] ;\n");
763 else if (c->rhs.type == DEREF)
764 fprintf (file, " [ label=\"=*\" ] ;\n");
765 else
766 {
767 /* We must check the case where the constraint is an offset.
768 In this case, it is treated as a complex constraint. */
769 if (c->rhs.offset != c->lhs.offset)
770 fprintf (file, " [ label=\"+\" ] ;\n");
771 else
772 fprintf (file, " ;\n");
773 }
774 }
775}
776
777/* Print the constraint graph in dot format. */
778
5006671f 779static void
fc93bcb6
FP
780dump_constraint_graph (FILE *file)
781{
782 unsigned int i=0, size;
783 constraint_t c;
784
785 /* Only print the graph if it has already been initialized: */
786 if (!graph)
787 return;
788
789 /* Print the constraints used to produce the constraint graph. The
790 constraints will be printed as comments in the dot file: */
791 fprintf (file, "\n\n/* Constraints used in the constraint graph:\n");
25a6a873 792 dump_constraints (file, 0);
fc93bcb6
FP
793 fprintf (file, "*/\n");
794
795 /* Prints the header of the dot file: */
796 fprintf (file, "\n\n// The constraint graph in dot format:\n");
797 fprintf (file, "strict digraph {\n");
798 fprintf (file, " node [\n shape = box\n ]\n");
799 fprintf (file, " edge [\n fontsize = \"12\"\n ]\n");
800 fprintf (file, "\n // List of nodes in the constraint graph:\n");
801
802 /* The next lines print the nodes in the graph. In order to get the
803 number of nodes in the graph, we must choose the minimum between the
804 vector VEC (varinfo_t, varmap) and graph->size. If the graph has not
805 yet been initialized, then graph->size == 0, otherwise we must only
806 read nodes that have an entry in VEC (varinfo_t, varmap). */
807 size = VEC_length (varinfo_t, varmap);
808 size = size < graph->size ? size : graph->size;
809 for (i = 0; i < size; i++)
810 {
5006671f 811 const char *name = get_varinfo (graph->rep[i])->name;
fc93bcb6
FP
812 fprintf (file, " \"%s\" ;\n", name);
813 }
814
815 /* Go over the list of constraints printing the edges in the constraint
816 graph. */
817 fprintf (file, "\n // The constraint edges:\n");
818 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
819 if (c)
820 dump_constraint_edge (file, c);
821
822 /* Prints the tail of the dot file. By now, only the closing bracket. */
823 fprintf (file, "}\n\n\n");
824}
825
826/* Print out the constraint graph to stderr. */
827
828void
829debug_constraint_graph (void)
830{
831 dump_constraint_graph (stderr);
832}
833
c58936b6 834/* SOLVER FUNCTIONS
910fdc79
DB
835
836 The solver is a simple worklist solver, that works on the following
837 algorithm:
c58936b6 838
3e5937d7
DB
839 sbitmap changed_nodes = all zeroes;
840 changed_count = 0;
841 For each node that is not already collapsed:
842 changed_count++;
843 set bit in changed nodes
910fdc79 844
910fdc79
DB
845 while (changed_count > 0)
846 {
847 compute topological ordering for constraint graph
c58936b6 848
910fdc79
DB
849 find and collapse cycles in the constraint graph (updating
850 changed if necessary)
c58936b6 851
910fdc79
DB
852 for each node (n) in the graph in topological order:
853 changed_count--;
854
855 Process each complex constraint associated with the node,
856 updating changed if necessary.
857
858 For each outgoing edge from n, propagate the solution from n to
859 the destination of the edge, updating changed as necessary.
860
861 } */
862
863/* Return true if two constraint expressions A and B are equal. */
864
865static bool
866constraint_expr_equal (struct constraint_expr a, struct constraint_expr b)
867{
4ee00913 868 return a.type == b.type && a.var == b.var && a.offset == b.offset;
910fdc79
DB
869}
870
871/* Return true if constraint expression A is less than constraint expression
872 B. This is just arbitrary, but consistent, in order to give them an
873 ordering. */
874
875static bool
876constraint_expr_less (struct constraint_expr a, struct constraint_expr b)
877{
878 if (a.type == b.type)
879 {
880 if (a.var == b.var)
881 return a.offset < b.offset;
882 else
883 return a.var < b.var;
884 }
885 else
886 return a.type < b.type;
887}
888
889/* Return true if constraint A is less than constraint B. This is just
890 arbitrary, but consistent, in order to give them an ordering. */
891
892static bool
893constraint_less (const constraint_t a, const constraint_t b)
894{
895 if (constraint_expr_less (a->lhs, b->lhs))
896 return true;
897 else if (constraint_expr_less (b->lhs, a->lhs))
898 return false;
899 else
900 return constraint_expr_less (a->rhs, b->rhs);
901}
902
903/* Return true if two constraints A and B are equal. */
c58936b6 904
910fdc79
DB
905static bool
906constraint_equal (struct constraint a, struct constraint b)
907{
c58936b6 908 return constraint_expr_equal (a.lhs, b.lhs)
910fdc79
DB
909 && constraint_expr_equal (a.rhs, b.rhs);
910}
911
912
913/* Find a constraint LOOKFOR in the sorted constraint vector VEC */
914
915static constraint_t
b5efa470 916constraint_vec_find (VEC(constraint_t,heap) *vec,
910fdc79
DB
917 struct constraint lookfor)
918{
c58936b6 919 unsigned int place;
910fdc79
DB
920 constraint_t found;
921
922 if (vec == NULL)
923 return NULL;
924
925 place = VEC_lower_bound (constraint_t, vec, &lookfor, constraint_less);
926 if (place >= VEC_length (constraint_t, vec))
927 return NULL;
928 found = VEC_index (constraint_t, vec, place);
929 if (!constraint_equal (*found, lookfor))
930 return NULL;
931 return found;
932}
933
934/* Union two constraint vectors, TO and FROM. Put the result in TO. */
935
936static void
b5efa470
DB
937constraint_set_union (VEC(constraint_t,heap) **to,
938 VEC(constraint_t,heap) **from)
910fdc79
DB
939{
940 int i;
941 constraint_t c;
942
943 for (i = 0; VEC_iterate (constraint_t, *from, i, c); i++)
944 {
945 if (constraint_vec_find (*to, *c) == NULL)
946 {
947 unsigned int place = VEC_lower_bound (constraint_t, *to, c,
948 constraint_less);
b5efa470 949 VEC_safe_insert (constraint_t, heap, *to, place, c);
910fdc79
DB
950 }
951 }
952}
953
5006671f
RG
954/* Expands the solution in SET to all sub-fields of variables included.
955 Union the expanded result into RESULT. */
956
957static void
958solution_set_expand (bitmap result, bitmap set)
959{
960 bitmap_iterator bi;
961 bitmap vars = NULL;
962 unsigned j;
963
964 /* In a first pass record all variables we need to add all
965 sub-fields off. This avoids quadratic behavior. */
966 EXECUTE_IF_SET_IN_BITMAP (set, 0, j, bi)
967 {
968 varinfo_t v = get_varinfo (j);
969 if (v->is_artificial_var
970 || v->is_full_var)
971 continue;
972 v = lookup_vi_for_tree (v->decl);
973 if (vars == NULL)
974 vars = BITMAP_ALLOC (NULL);
975 bitmap_set_bit (vars, v->id);
976 }
977
978 /* In the second pass now do the addition to the solution and
979 to speed up solving add it to the delta as well. */
980 if (vars != NULL)
981 {
982 EXECUTE_IF_SET_IN_BITMAP (vars, 0, j, bi)
983 {
984 varinfo_t v = get_varinfo (j);
985 for (; v != NULL; v = v->next)
986 bitmap_set_bit (result, v->id);
987 }
988 BITMAP_FREE (vars);
989 }
990}
991
910fdc79
DB
992/* Take a solution set SET, add OFFSET to each member of the set, and
993 overwrite SET with the result when done. */
994
995static void
5006671f 996solution_set_add (bitmap set, HOST_WIDE_INT offset)
910fdc79
DB
997{
998 bitmap result = BITMAP_ALLOC (&iteration_obstack);
999 unsigned int i;
1000 bitmap_iterator bi;
1001
5006671f
RG
1002 /* If the offset is unknown we have to expand the solution to
1003 all subfields. */
1004 if (offset == UNKNOWN_OFFSET)
1005 {
1006 solution_set_expand (set, set);
1007 return;
1008 }
1009
910fdc79
DB
1010 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1011 {
e5bae89b 1012 varinfo_t vi = get_varinfo (i);
c58936b6 1013
e5bae89b
RG
1014 /* If this is a variable with just one field just set its bit
1015 in the result. */
1016 if (vi->is_artificial_var
1017 || vi->is_unknown_size_var
1018 || vi->is_full_var)
1019 bitmap_set_bit (result, i);
1020 else
910fdc79 1021 {
e5bae89b 1022 unsigned HOST_WIDE_INT fieldoffset = vi->offset + offset;
5006671f
RG
1023
1024 /* If the offset makes the pointer point to before the
1025 variable use offset zero for the field lookup. */
1026 if (offset < 0
1027 && fieldoffset > vi->offset)
1028 fieldoffset = 0;
1029
1030 if (offset != 0)
1031 vi = first_or_preceding_vi_for_offset (vi, fieldoffset);
1032
1033 bitmap_set_bit (result, vi->id);
e5bae89b
RG
1034 /* If the result is not exactly at fieldoffset include the next
1035 field as well. See get_constraint_for_ptr_offset for more
1036 rationale. */
5006671f
RG
1037 if (vi->offset != fieldoffset
1038 && vi->next != NULL)
1039 bitmap_set_bit (result, vi->next->id);
910fdc79
DB
1040 }
1041 }
c58936b6
DB
1042
1043 bitmap_copy (set, result);
910fdc79
DB
1044 BITMAP_FREE (result);
1045}
1046
1047/* Union solution sets TO and FROM, and add INC to each member of FROM in the
1048 process. */
1049
1050static bool
5006671f 1051set_union_with_increment (bitmap to, bitmap from, HOST_WIDE_INT inc)
910fdc79
DB
1052{
1053 if (inc == 0)
1054 return bitmap_ior_into (to, from);
1055 else
1056 {
1057 bitmap tmp;
1058 bool res;
1059
1060 tmp = BITMAP_ALLOC (&iteration_obstack);
1061 bitmap_copy (tmp, from);
1062 solution_set_add (tmp, inc);
1063 res = bitmap_ior_into (to, tmp);
1064 BITMAP_FREE (tmp);
1065 return res;
1066 }
1067}
1068
3e5937d7
DB
1069/* Insert constraint C into the list of complex constraints for graph
1070 node VAR. */
910fdc79
DB
1071
1072static void
3e5937d7
DB
1073insert_into_complex (constraint_graph_t graph,
1074 unsigned int var, constraint_t c)
910fdc79 1075{
3e5937d7
DB
1076 VEC (constraint_t, heap) *complex = graph->complex[var];
1077 unsigned int place = VEC_lower_bound (constraint_t, complex, c,
910fdc79 1078 constraint_less);
3e5937d7
DB
1079
1080 /* Only insert constraints that do not already exist. */
1081 if (place >= VEC_length (constraint_t, complex)
1082 || !constraint_equal (*c, *VEC_index (constraint_t, complex, place)))
1083 VEC_safe_insert (constraint_t, heap, graph->complex[var], place, c);
910fdc79
DB
1084}
1085
1086
910fdc79
DB
1087/* Condense two variable nodes into a single variable node, by moving
1088 all associated info from SRC to TO. */
1089
c58936b6 1090static void
3e5937d7
DB
1091merge_node_constraints (constraint_graph_t graph, unsigned int to,
1092 unsigned int from)
910fdc79 1093{
910fdc79
DB
1094 unsigned int i;
1095 constraint_t c;
c58936b6 1096
3e5937d7 1097 gcc_assert (find (from) == to);
c58936b6 1098
910fdc79 1099 /* Move all complex constraints from src node into to node */
3e5937d7 1100 for (i = 0; VEC_iterate (constraint_t, graph->complex[from], i, c); i++)
910fdc79
DB
1101 {
1102 /* In complex constraints for node src, we may have either
3e5937d7
DB
1103 a = *src, and *src = a, or an offseted constraint which are
1104 always added to the rhs node's constraints. */
c58936b6 1105
910fdc79
DB
1106 if (c->rhs.type == DEREF)
1107 c->rhs.var = to;
3e5937d7 1108 else if (c->lhs.type == DEREF)
910fdc79 1109 c->lhs.var = to;
3e5937d7
DB
1110 else
1111 c->rhs.var = to;
910fdc79 1112 }
3e5937d7
DB
1113 constraint_set_union (&graph->complex[to], &graph->complex[from]);
1114 VEC_free (constraint_t, heap, graph->complex[from]);
1115 graph->complex[from] = NULL;
910fdc79
DB
1116}
1117
910fdc79
DB
1118
1119/* Remove edges involving NODE from GRAPH. */
1120
1121static void
1122clear_edges_for_node (constraint_graph_t graph, unsigned int node)
1123{
57250223 1124 if (graph->succs[node])
3e5937d7 1125 BITMAP_FREE (graph->succs[node]);
f71ef09d
DB
1126}
1127
910fdc79
DB
1128/* Merge GRAPH nodes FROM and TO into node TO. */
1129
1130static void
c58936b6 1131merge_graph_nodes (constraint_graph_t graph, unsigned int to,
910fdc79
DB
1132 unsigned int from)
1133{
3e5937d7 1134 if (graph->indirect_cycles[from] != -1)
4ee00913 1135 {
3e5937d7
DB
1136 /* If we have indirect cycles with the from node, and we have
1137 none on the to node, the to node has indirect cycles from the
1138 from node now that they are unified.
1139 If indirect cycles exist on both, unify the nodes that they
1140 are in a cycle with, since we know they are in a cycle with
1141 each other. */
1142 if (graph->indirect_cycles[to] == -1)
7b765bed 1143 graph->indirect_cycles[to] = graph->indirect_cycles[from];
4ee00913 1144 }
910fdc79 1145
57250223
DB
1146 /* Merge all the successor edges. */
1147 if (graph->succs[from])
4ee00913 1148 {
57250223 1149 if (!graph->succs[to])
3e5937d7 1150 graph->succs[to] = BITMAP_ALLOC (&pta_obstack);
c58936b6 1151 bitmap_ior_into (graph->succs[to],
57250223 1152 graph->succs[from]);
4ee00913 1153 }
4ee00913 1154
910fdc79
DB
1155 clear_edges_for_node (graph, from);
1156}
1157
3e5937d7
DB
1158
1159/* Add an indirect graph edge to GRAPH, going from TO to FROM if
1160 it doesn't exist in the graph already. */
1161
1162static void
1163add_implicit_graph_edge (constraint_graph_t graph, unsigned int to,
1164 unsigned int from)
1165{
1166 if (to == from)
1167 return;
1168
1169 if (!graph->implicit_preds[to])
1170 graph->implicit_preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
1171
5f0d975b
RG
1172 if (bitmap_set_bit (graph->implicit_preds[to], from))
1173 stats.num_implicit_edges++;
3e5937d7
DB
1174}
1175
1176/* Add a predecessor graph edge to GRAPH, going from TO to FROM if
1177 it doesn't exist in the graph already.
1178 Return false if the edge already existed, true otherwise. */
1179
1180static void
1181add_pred_graph_edge (constraint_graph_t graph, unsigned int to,
1182 unsigned int from)
1183{
1184 if (!graph->preds[to])
1185 graph->preds[to] = BITMAP_ALLOC (&predbitmap_obstack);
5f0d975b 1186 bitmap_set_bit (graph->preds[to], from);
3e5937d7
DB
1187}
1188
1189/* Add a graph edge to GRAPH, going from FROM to TO if
910fdc79
DB
1190 it doesn't exist in the graph already.
1191 Return false if the edge already existed, true otherwise. */
1192
1193static bool
57250223
DB
1194add_graph_edge (constraint_graph_t graph, unsigned int to,
1195 unsigned int from)
910fdc79 1196{
57250223 1197 if (to == from)
910fdc79
DB
1198 {
1199 return false;
1200 }
1201 else
1202 {
4ee00913 1203 bool r = false;
c58936b6 1204
57250223 1205 if (!graph->succs[from])
3e5937d7 1206 graph->succs[from] = BITMAP_ALLOC (&pta_obstack);
5f0d975b 1207 if (bitmap_set_bit (graph->succs[from], to))
f71ef09d 1208 {
57250223 1209 r = true;
3e5937d7
DB
1210 if (to < FIRST_REF_NODE && from < FIRST_REF_NODE)
1211 stats.num_edges++;
f71ef09d 1212 }
910fdc79
DB
1213 return r;
1214 }
1215}
1216
1217
4ee00913 1218/* Return true if {DEST.SRC} is an existing graph edge in GRAPH. */
910fdc79
DB
1219
1220static bool
c58936b6 1221valid_graph_edge (constraint_graph_t graph, unsigned int src,
4ee00913 1222 unsigned int dest)
910fdc79 1223{
c58936b6 1224 return (graph->succs[dest]
57250223 1225 && bitmap_bit_p (graph->succs[dest], src));
4ee00913
DB
1226}
1227
7b765bed
DB
1228/* Initialize the constraint graph structure to contain SIZE nodes. */
1229
1230static void
1231init_graph (unsigned int size)
1232{
1233 unsigned int j;
1234
1235 graph = XCNEW (struct constraint_graph);
1236 graph->size = size;
1237 graph->succs = XCNEWVEC (bitmap, graph->size);
1238 graph->indirect_cycles = XNEWVEC (int, graph->size);
1239 graph->rep = XNEWVEC (unsigned int, graph->size);
1240 graph->complex = XCNEWVEC (VEC(constraint_t, heap) *, size);
aa46c8a3 1241 graph->pe = XCNEWVEC (unsigned int, graph->size);
7b765bed
DB
1242 graph->pe_rep = XNEWVEC (int, graph->size);
1243
1244 for (j = 0; j < graph->size; j++)
1245 {
1246 graph->rep[j] = j;
7b765bed
DB
1247 graph->pe_rep[j] = -1;
1248 graph->indirect_cycles[j] = -1;
1249 }
1250}
1251
3e5937d7 1252/* Build the constraint graph, adding only predecessor edges right now. */
910fdc79
DB
1253
1254static void
3e5937d7 1255build_pred_graph (void)
910fdc79 1256{
3e5937d7 1257 int i;
910fdc79 1258 constraint_t c;
3e5937d7 1259 unsigned int j;
910fdc79 1260
3e5937d7
DB
1261 graph->implicit_preds = XCNEWVEC (bitmap, graph->size);
1262 graph->preds = XCNEWVEC (bitmap, graph->size);
7b765bed
DB
1263 graph->pointer_label = XCNEWVEC (unsigned int, graph->size);
1264 graph->loc_label = XCNEWVEC (unsigned int, graph->size);
1265 graph->pointed_by = XCNEWVEC (bitmap, graph->size);
1266 graph->points_to = XCNEWVEC (bitmap, graph->size);
3e5937d7 1267 graph->eq_rep = XNEWVEC (int, graph->size);
3e5937d7 1268 graph->direct_nodes = sbitmap_alloc (graph->size);
7b765bed 1269 graph->address_taken = BITMAP_ALLOC (&predbitmap_obstack);
3e5937d7
DB
1270 sbitmap_zero (graph->direct_nodes);
1271
1272 for (j = 0; j < FIRST_REF_NODE; j++)
1273 {
1274 if (!get_varinfo (j)->is_special_var)
1275 SET_BIT (graph->direct_nodes, j);
1276 }
1277
1278 for (j = 0; j < graph->size; j++)
7b765bed 1279 graph->eq_rep[j] = -1;
3e5937d7
DB
1280
1281 for (j = 0; j < VEC_length (varinfo_t, varmap); j++)
1282 graph->indirect_cycles[j] = -1;
e8ca4159 1283
910fdc79
DB
1284 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1285 {
1286 struct constraint_expr lhs = c->lhs;
1287 struct constraint_expr rhs = c->rhs;
5006671f
RG
1288 unsigned int lhsvar = lhs.var;
1289 unsigned int rhsvar = rhs.var;
03190594 1290
910fdc79
DB
1291 if (lhs.type == DEREF)
1292 {
3e5937d7
DB
1293 /* *x = y. */
1294 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1295 add_pred_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
910fdc79
DB
1296 }
1297 else if (rhs.type == DEREF)
1298 {
3e5937d7
DB
1299 /* x = *y */
1300 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1301 add_pred_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1302 else
1303 RESET_BIT (graph->direct_nodes, lhsvar);
910fdc79 1304 }
3e5937d7 1305 else if (rhs.type == ADDRESSOF)
910fdc79 1306 {
10bd6c5c
RG
1307 varinfo_t v;
1308
910fdc79 1309 /* x = &y */
7b765bed
DB
1310 if (graph->points_to[lhsvar] == NULL)
1311 graph->points_to[lhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1312 bitmap_set_bit (graph->points_to[lhsvar], rhsvar);
1313
1314 if (graph->pointed_by[rhsvar] == NULL)
1315 graph->pointed_by[rhsvar] = BITMAP_ALLOC (&predbitmap_obstack);
1316 bitmap_set_bit (graph->pointed_by[rhsvar], lhsvar);
1317
3e5937d7
DB
1318 /* Implicitly, *x = y */
1319 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1320
10bd6c5c 1321 /* All related variables are no longer direct nodes. */
3e5937d7 1322 RESET_BIT (graph->direct_nodes, rhsvar);
5006671f
RG
1323 v = get_varinfo (rhsvar);
1324 if (!v->is_full_var)
1325 {
1326 v = lookup_vi_for_tree (v->decl);
1327 do
1328 {
1329 RESET_BIT (graph->direct_nodes, v->id);
1330 v = v->next;
1331 }
1332 while (v != NULL);
1333 }
7b765bed 1334 bitmap_set_bit (graph->address_taken, rhsvar);
910fdc79 1335 }
3e5937d7
DB
1336 else if (lhsvar > anything_id
1337 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
910fdc79 1338 {
3e5937d7
DB
1339 /* x = y */
1340 add_pred_graph_edge (graph, lhsvar, rhsvar);
1341 /* Implicitly, *x = *y */
1342 add_implicit_graph_edge (graph, FIRST_REF_NODE + lhsvar,
1343 FIRST_REF_NODE + rhsvar);
1344 }
1345 else if (lhs.offset != 0 || rhs.offset != 0)
1346 {
1347 if (rhs.offset != 0)
1348 RESET_BIT (graph->direct_nodes, lhs.var);
7b765bed 1349 else if (lhs.offset != 0)
3e5937d7
DB
1350 RESET_BIT (graph->direct_nodes, rhs.var);
1351 }
1352 }
1353}
1354
1355/* Build the constraint graph, adding successor edges. */
1356
1357static void
1358build_succ_graph (void)
1359{
9e39dba6 1360 unsigned i, t;
3e5937d7
DB
1361 constraint_t c;
1362
1363 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
1364 {
1365 struct constraint_expr lhs;
1366 struct constraint_expr rhs;
1367 unsigned int lhsvar;
1368 unsigned int rhsvar;
1369
1370 if (!c)
1371 continue;
c58936b6 1372
3e5937d7
DB
1373 lhs = c->lhs;
1374 rhs = c->rhs;
5006671f
RG
1375 lhsvar = find (lhs.var);
1376 rhsvar = find (rhs.var);
3e5937d7
DB
1377
1378 if (lhs.type == DEREF)
1379 {
1380 if (rhs.offset == 0 && lhs.offset == 0 && rhs.type == SCALAR)
1381 add_graph_edge (graph, FIRST_REF_NODE + lhsvar, rhsvar);
1382 }
1383 else if (rhs.type == DEREF)
1384 {
1385 if (rhs.offset == 0 && lhs.offset == 0 && lhs.type == SCALAR)
1386 add_graph_edge (graph, lhsvar, FIRST_REF_NODE + rhsvar);
1387 }
1388 else if (rhs.type == ADDRESSOF)
1389 {
1390 /* x = &y */
5006671f 1391 gcc_assert (find (rhs.var) == rhs.var);
3e5937d7
DB
1392 bitmap_set_bit (get_varinfo (lhsvar)->solution, rhsvar);
1393 }
1394 else if (lhsvar > anything_id
1395 && lhsvar != rhsvar && lhs.offset == 0 && rhs.offset == 0)
1396 {
1397 add_graph_edge (graph, lhsvar, rhsvar);
910fdc79
DB
1398 }
1399 }
9e39dba6 1400
de925a03
RG
1401 /* Add edges from STOREDANYTHING to all non-direct nodes that can
1402 receive pointers. */
9e39dba6
RG
1403 t = find (storedanything_id);
1404 for (i = integer_id + 1; i < FIRST_REF_NODE; ++i)
1405 {
de925a03
RG
1406 if (!TEST_BIT (graph->direct_nodes, i)
1407 && get_varinfo (i)->may_have_pointers)
9e39dba6
RG
1408 add_graph_edge (graph, find (i), t);
1409 }
379c6f48
RG
1410
1411 /* Everything stored to ANYTHING also potentially escapes. */
1412 add_graph_edge (graph, find (escaped_id), t);
910fdc79 1413}
e8ca4159
DN
1414
1415
910fdc79
DB
1416/* Changed variables on the last iteration. */
1417static unsigned int changed_count;
1418static sbitmap changed;
1419
910fdc79
DB
1420/* Strongly Connected Component visitation info. */
1421
1422struct scc_info
1423{
1424 sbitmap visited;
7b765bed 1425 sbitmap deleted;
3e5937d7
DB
1426 unsigned int *dfs;
1427 unsigned int *node_mapping;
910fdc79 1428 int current_index;
740e80e8 1429 VEC(unsigned,heap) *scc_stack;
910fdc79
DB
1430};
1431
1432
1433/* Recursive routine to find strongly connected components in GRAPH.
1434 SI is the SCC info to store the information in, and N is the id of current
1435 graph node we are processing.
c58936b6 1436
910fdc79 1437 This is Tarjan's strongly connected component finding algorithm, as
c58936b6 1438 modified by Nuutila to keep only non-root nodes on the stack.
910fdc79
DB
1439 The algorithm can be found in "On finding the strongly connected
1440 connected components in a directed graph" by Esko Nuutila and Eljas
1441 Soisalon-Soininen, in Information Processing Letters volume 49,
1442 number 1, pages 9-14. */
1443
1444static void
1445scc_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
1446{
4ee00913
DB
1447 unsigned int i;
1448 bitmap_iterator bi;
3e5937d7 1449 unsigned int my_dfs;
910fdc79 1450
910fdc79 1451 SET_BIT (si->visited, n);
3e5937d7
DB
1452 si->dfs[n] = si->current_index ++;
1453 my_dfs = si->dfs[n];
c58936b6 1454
910fdc79 1455 /* Visit all the successors. */
57250223 1456 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[n], 0, i, bi)
910fdc79 1457 {
3e5937d7
DB
1458 unsigned int w;
1459
1460 if (i > LAST_REF_NODE)
1461 break;
1462
1463 w = find (i);
7b765bed 1464 if (TEST_BIT (si->deleted, w))
3e5937d7
DB
1465 continue;
1466
4ee00913
DB
1467 if (!TEST_BIT (si->visited, w))
1468 scc_visit (graph, si, w);
3e5937d7
DB
1469 {
1470 unsigned int t = find (w);
1471 unsigned int nnode = find (n);
62e5bf5d 1472 gcc_assert (nnode == n);
3e5937d7
DB
1473
1474 if (si->dfs[t] < si->dfs[nnode])
1475 si->dfs[n] = si->dfs[t];
1476 }
910fdc79 1477 }
c58936b6 1478
910fdc79 1479 /* See if any components have been identified. */
3e5937d7 1480 if (si->dfs[n] == my_dfs)
910fdc79 1481 {
3e5937d7
DB
1482 if (VEC_length (unsigned, si->scc_stack) > 0
1483 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
910fdc79 1484 {
3e5937d7 1485 bitmap scc = BITMAP_ALLOC (NULL);
3e5937d7
DB
1486 unsigned int lowest_node;
1487 bitmap_iterator bi;
910fdc79 1488
3e5937d7 1489 bitmap_set_bit (scc, n);
910fdc79 1490
3e5937d7
DB
1491 while (VEC_length (unsigned, si->scc_stack) != 0
1492 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
1493 {
1494 unsigned int w = VEC_pop (unsigned, si->scc_stack);
910fdc79 1495
3e5937d7 1496 bitmap_set_bit (scc, w);
3e5937d7 1497 }
4ee00913 1498
3e5937d7
DB
1499 lowest_node = bitmap_first_set_bit (scc);
1500 gcc_assert (lowest_node < FIRST_REF_NODE);
7b765bed
DB
1501
1502 /* Collapse the SCC nodes into a single node, and mark the
1503 indirect cycles. */
3e5937d7
DB
1504 EXECUTE_IF_SET_IN_BITMAP (scc, 0, i, bi)
1505 {
1506 if (i < FIRST_REF_NODE)
1507 {
3e5937d7
DB
1508 if (unite (lowest_node, i))
1509 unify_nodes (graph, lowest_node, i, false);
1510 }
1511 else
1512 {
1513 unite (lowest_node, i);
1514 graph->indirect_cycles[i - FIRST_REF_NODE] = lowest_node;
1515 }
1516 }
4ee00913 1517 }
7b765bed 1518 SET_BIT (si->deleted, n);
910fdc79 1519 }
3e5937d7
DB
1520 else
1521 VEC_safe_push (unsigned, heap, si->scc_stack, n);
910fdc79
DB
1522}
1523
3e5937d7
DB
1524/* Unify node FROM into node TO, updating the changed count if
1525 necessary when UPDATE_CHANGED is true. */
910fdc79
DB
1526
1527static void
3e5937d7
DB
1528unify_nodes (constraint_graph_t graph, unsigned int to, unsigned int from,
1529 bool update_changed)
910fdc79 1530{
910fdc79 1531
3e5937d7
DB
1532 gcc_assert (to != from && find (to) == to);
1533 if (dump_file && (dump_flags & TDF_DETAILS))
1534 fprintf (dump_file, "Unifying %s to %s\n",
1535 get_varinfo (from)->name,
1536 get_varinfo (to)->name);
910fdc79 1537
3e5937d7
DB
1538 if (update_changed)
1539 stats.unified_vars_dynamic++;
1540 else
1541 stats.unified_vars_static++;
910fdc79 1542
3e5937d7
DB
1543 merge_graph_nodes (graph, to, from);
1544 merge_node_constraints (graph, to, from);
c58936b6 1545
7b765bed
DB
1546 /* Mark TO as changed if FROM was changed. If TO was already marked
1547 as changed, decrease the changed count. */
1548
3e5937d7 1549 if (update_changed && TEST_BIT (changed, from))
910fdc79 1550 {
3e5937d7
DB
1551 RESET_BIT (changed, from);
1552 if (!TEST_BIT (changed, to))
1553 SET_BIT (changed, to);
910fdc79 1554 else
3e5937d7
DB
1555 {
1556 gcc_assert (changed_count > 0);
1557 changed_count--;
1558 }
1559 }
aa46c8a3 1560 if (get_varinfo (from)->solution)
3e5937d7 1561 {
aa46c8a3
DB
1562 /* If the solution changes because of the merging, we need to mark
1563 the variable as changed. */
1564 if (bitmap_ior_into (get_varinfo (to)->solution,
1565 get_varinfo (from)->solution))
910fdc79 1566 {
aa46c8a3
DB
1567 if (update_changed && !TEST_BIT (changed, to))
1568 {
1569 SET_BIT (changed, to);
1570 changed_count++;
1571 }
1572 }
b8698a0f 1573
aa46c8a3
DB
1574 BITMAP_FREE (get_varinfo (from)->solution);
1575 BITMAP_FREE (get_varinfo (from)->oldsolution);
b8698a0f 1576
aa46c8a3
DB
1577 if (stats.iterations > 0)
1578 {
1579 BITMAP_FREE (get_varinfo (to)->oldsolution);
1580 get_varinfo (to)->oldsolution = BITMAP_ALLOC (&oldpta_obstack);
910fdc79 1581 }
3e5937d7 1582 }
3e5937d7
DB
1583 if (valid_graph_edge (graph, to, to))
1584 {
1585 if (graph->succs[to])
1586 bitmap_clear_bit (graph->succs[to], to);
910fdc79 1587 }
910fdc79
DB
1588}
1589
910fdc79
DB
1590/* Information needed to compute the topological ordering of a graph. */
1591
1592struct topo_info
1593{
1594 /* sbitmap of visited nodes. */
1595 sbitmap visited;
1596 /* Array that stores the topological order of the graph, *in
1597 reverse*. */
740e80e8 1598 VEC(unsigned,heap) *topo_order;
910fdc79
DB
1599};
1600
1601
1602/* Initialize and return a topological info structure. */
1603
1604static struct topo_info *
1605init_topo_info (void)
1606{
7b765bed 1607 size_t size = graph->size;
5ed6ace5 1608 struct topo_info *ti = XNEW (struct topo_info);
910fdc79
DB
1609 ti->visited = sbitmap_alloc (size);
1610 sbitmap_zero (ti->visited);
740e80e8 1611 ti->topo_order = VEC_alloc (unsigned, heap, 1);
910fdc79
DB
1612 return ti;
1613}
1614
1615
1616/* Free the topological sort info pointed to by TI. */
1617
1618static void
1619free_topo_info (struct topo_info *ti)
1620{
1621 sbitmap_free (ti->visited);
740e80e8 1622 VEC_free (unsigned, heap, ti->topo_order);
910fdc79
DB
1623 free (ti);
1624}
1625
1626/* Visit the graph in topological order, and store the order in the
1627 topo_info structure. */
1628
1629static void
1630topo_visit (constraint_graph_t graph, struct topo_info *ti,
1631 unsigned int n)
1632{
4ee00913 1633 bitmap_iterator bi;
4ee00913
DB
1634 unsigned int j;
1635
910fdc79 1636 SET_BIT (ti->visited, n);
4ee00913 1637
3e5937d7
DB
1638 if (graph->succs[n])
1639 EXECUTE_IF_SET_IN_BITMAP (graph->succs[n], 0, j, bi)
4ee00913
DB
1640 {
1641 if (!TEST_BIT (ti->visited, j))
1642 topo_visit (graph, ti, j);
1643 }
3e5937d7 1644
740e80e8 1645 VEC_safe_push (unsigned, heap, ti->topo_order, n);
910fdc79
DB
1646}
1647
5006671f
RG
1648/* Process a constraint C that represents x = *(y + off), using DELTA as the
1649 starting solution for y. */
910fdc79
DB
1650
1651static void
1652do_sd_constraint (constraint_graph_t graph, constraint_t c,
1653 bitmap delta)
1654{
7b765bed 1655 unsigned int lhs = c->lhs.var;
910fdc79
DB
1656 bool flag = false;
1657 bitmap sol = get_varinfo (lhs)->solution;
1658 unsigned int j;
1659 bitmap_iterator bi;
5006671f 1660 HOST_WIDE_INT roffset = c->rhs.offset;
4ee00913 1661
5006671f
RG
1662 /* Our IL does not allow this. */
1663 gcc_assert (c->lhs.offset == 0);
0e1f4c6b 1664
5006671f
RG
1665 /* If the solution of Y contains anything it is good enough to transfer
1666 this to the LHS. */
14c28276
RG
1667 if (bitmap_bit_p (delta, anything_id))
1668 {
1669 flag |= bitmap_set_bit (sol, anything_id);
1670 goto done;
1671 }
1672
5006671f
RG
1673 /* If we do not know at with offset the rhs is dereferenced compute
1674 the reachability set of DELTA, conservatively assuming it is
1675 dereferenced at all valid offsets. */
1676 if (roffset == UNKNOWN_OFFSET)
1677 {
1678 solution_set_expand (delta, delta);
1679 /* No further offset processing is necessary. */
1680 roffset = 0;
1681 }
1682
c58936b6 1683 /* For each variable j in delta (Sol(y)), add
910fdc79
DB
1684 an edge in the graph from j to x, and union Sol(j) into Sol(x). */
1685 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1686 {
5006671f
RG
1687 varinfo_t v = get_varinfo (j);
1688 HOST_WIDE_INT fieldoffset = v->offset + roffset;
1689 unsigned int t;
1690
1691 if (v->is_full_var)
1692 fieldoffset = v->offset;
1693 else if (roffset != 0)
1694 v = first_vi_for_offset (v, fieldoffset);
1695 /* If the access is outside of the variable we can ignore it. */
1696 if (!v)
1697 continue;
910fdc79 1698
5006671f
RG
1699 do
1700 {
3e5937d7 1701 t = find (v->id);
4ee00913
DB
1702
1703 /* Adding edges from the special vars is pointless.
1704 They don't have sets that can change. */
b7091901 1705 if (get_varinfo (t)->is_special_var)
4ee00913 1706 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
b7091901 1707 /* Merging the solution from ESCAPED needlessly increases
472c7fbd 1708 the set. Use ESCAPED as representative instead. */
5006671f 1709 else if (v->id == escaped_id)
6a66f28e 1710 flag |= bitmap_set_bit (sol, escaped_id);
3c323b52
RG
1711 else if (v->may_have_pointers
1712 && add_graph_edge (graph, lhs, t))
4ee00913 1713 flag |= bitmap_ior_into (sol, get_varinfo (t)->solution);
5006671f
RG
1714
1715 /* If the variable is not exactly at the requested offset
1716 we have to include the next one. */
1717 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1718 || v->next == NULL)
1719 break;
1720
1721 v = v->next;
1722 fieldoffset = v->offset;
910fdc79 1723 }
5006671f 1724 while (1);
910fdc79 1725 }
4cf4d6a3 1726
4ee00913 1727done:
910fdc79
DB
1728 /* If the LHS solution changed, mark the var as changed. */
1729 if (flag)
1730 {
1731 get_varinfo (lhs)->solution = sol;
1732 if (!TEST_BIT (changed, lhs))
1733 {
1734 SET_BIT (changed, lhs);
1735 changed_count++;
1736 }
c58936b6 1737 }
910fdc79
DB
1738}
1739
5006671f
RG
1740/* Process a constraint C that represents *(x + off) = y using DELTA
1741 as the starting solution for x. */
910fdc79
DB
1742
1743static void
57250223 1744do_ds_constraint (constraint_t c, bitmap delta)
910fdc79 1745{
7b765bed 1746 unsigned int rhs = c->rhs.var;
910fdc79
DB
1747 bitmap sol = get_varinfo (rhs)->solution;
1748 unsigned int j;
1749 bitmap_iterator bi;
5006671f 1750 HOST_WIDE_INT loff = c->lhs.offset;
11152c95 1751 bool escaped_p = false;
910fdc79 1752
9e39dba6
RG
1753 /* Our IL does not allow this. */
1754 gcc_assert (c->rhs.offset == 0);
1755
1756 /* If the solution of y contains ANYTHING simply use the ANYTHING
1757 solution. This avoids needlessly increasing the points-to sets. */
1758 if (bitmap_bit_p (sol, anything_id))
1759 sol = get_varinfo (find (anything_id))->solution;
1760
1761 /* If the solution for x contains ANYTHING we have to merge the
1762 solution of y into all pointer variables which we do via
1763 STOREDANYTHING. */
1764 if (bitmap_bit_p (delta, anything_id))
1765 {
1766 unsigned t = find (storedanything_id);
1767 if (add_graph_edge (graph, t, rhs))
1768 {
1769 if (bitmap_ior_into (get_varinfo (t)->solution, sol))
1770 {
1771 if (!TEST_BIT (changed, t))
1772 {
1773 SET_BIT (changed, t);
1774 changed_count++;
1775 }
1776 }
1777 }
1778 return;
1779 }
4ee00913 1780
5006671f
RG
1781 /* If we do not know at with offset the rhs is dereferenced compute
1782 the reachability set of DELTA, conservatively assuming it is
1783 dereferenced at all valid offsets. */
1784 if (loff == UNKNOWN_OFFSET)
1785 {
1786 solution_set_expand (delta, delta);
1787 loff = 0;
1788 }
1789
910fdc79
DB
1790 /* For each member j of delta (Sol(x)), add an edge from y to j and
1791 union Sol(y) into Sol(j) */
1792 EXECUTE_IF_SET_IN_BITMAP (delta, 0, j, bi)
1793 {
5006671f
RG
1794 varinfo_t v = get_varinfo (j);
1795 unsigned int t;
1796 HOST_WIDE_INT fieldoffset = v->offset + loff;
c58936b6 1797
5006671f
RG
1798 if (v->is_full_var)
1799 fieldoffset = v->offset;
1800 else if (loff != 0)
1801 v = first_vi_for_offset (v, fieldoffset);
1802 /* If the access is outside of the variable we can ignore it. */
1803 if (!v)
1804 continue;
57250223 1805
5006671f
RG
1806 do
1807 {
9e39dba6 1808 if (v->may_have_pointers)
910fdc79 1809 {
11152c95
RG
1810 /* If v is a global variable then this is an escape point. */
1811 if (v->is_global_var
1812 && !escaped_p)
1813 {
1814 t = find (escaped_id);
1815 if (add_graph_edge (graph, t, rhs)
1816 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1817 && !TEST_BIT (changed, t))
1818 {
1819 SET_BIT (changed, t);
1820 changed_count++;
1821 }
1822 /* Enough to let rhs escape once. */
1823 escaped_p = true;
1824 }
1825
1826 if (v->is_special_var)
1827 break;
1828
9e39dba6 1829 t = find (v->id);
de70bb20
RG
1830 if (add_graph_edge (graph, t, rhs)
1831 && bitmap_ior_into (get_varinfo (t)->solution, sol)
1832 && !TEST_BIT (changed, t))
910fdc79 1833 {
de70bb20
RG
1834 SET_BIT (changed, t);
1835 changed_count++;
1836 }
1837 }
5006671f
RG
1838
1839 /* If the variable is not exactly at the requested offset
1840 we have to include the next one. */
1841 if (v->offset == (unsigned HOST_WIDE_INT)fieldoffset
1842 || v->next == NULL)
1843 break;
1844
1845 v = v->next;
1846 fieldoffset = v->offset;
57250223 1847 }
5006671f 1848 while (1);
910fdc79
DB
1849 }
1850}
1851
3e5937d7
DB
1852/* Handle a non-simple (simple meaning requires no iteration),
1853 constraint (IE *x = &y, x = *y, *x = y, and x = y with offsets involved). */
c58936b6 1854
910fdc79
DB
1855static void
1856do_complex_constraint (constraint_graph_t graph, constraint_t c, bitmap delta)
1857{
1858 if (c->lhs.type == DEREF)
1859 {
1860 if (c->rhs.type == ADDRESSOF)
1861 {
7b765bed 1862 gcc_unreachable();
910fdc79
DB
1863 }
1864 else
1865 {
1866 /* *x = y */
57250223 1867 do_ds_constraint (c, delta);
910fdc79
DB
1868 }
1869 }
57250223 1870 else if (c->rhs.type == DEREF)
910fdc79
DB
1871 {
1872 /* x = *y */
13c2c08b
DB
1873 if (!(get_varinfo (c->lhs.var)->is_special_var))
1874 do_sd_constraint (graph, c, delta);
910fdc79 1875 }
c58936b6 1876 else
57250223 1877 {
c58936b6 1878 bitmap tmp;
57250223
DB
1879 bitmap solution;
1880 bool flag = false;
57250223 1881
62e5bf5d 1882 gcc_assert (c->rhs.type == SCALAR && c->lhs.type == SCALAR);
7b765bed
DB
1883 solution = get_varinfo (c->rhs.var)->solution;
1884 tmp = get_varinfo (c->lhs.var)->solution;
57250223
DB
1885
1886 flag = set_union_with_increment (tmp, solution, c->rhs.offset);
c58936b6 1887
57250223
DB
1888 if (flag)
1889 {
7b765bed
DB
1890 get_varinfo (c->lhs.var)->solution = tmp;
1891 if (!TEST_BIT (changed, c->lhs.var))
57250223 1892 {
7b765bed 1893 SET_BIT (changed, c->lhs.var);
57250223
DB
1894 changed_count++;
1895 }
1896 }
1897 }
910fdc79
DB
1898}
1899
1900/* Initialize and return a new SCC info structure. */
1901
1902static struct scc_info *
3e5937d7 1903init_scc_info (size_t size)
910fdc79 1904{
5ed6ace5 1905 struct scc_info *si = XNEW (struct scc_info);
3e5937d7 1906 size_t i;
910fdc79
DB
1907
1908 si->current_index = 0;
1909 si->visited = sbitmap_alloc (size);
1910 sbitmap_zero (si->visited);
7b765bed
DB
1911 si->deleted = sbitmap_alloc (size);
1912 sbitmap_zero (si->deleted);
3e5937d7
DB
1913 si->node_mapping = XNEWVEC (unsigned int, size);
1914 si->dfs = XCNEWVEC (unsigned int, size);
1915
1916 for (i = 0; i < size; i++)
1917 si->node_mapping[i] = i;
1918
740e80e8 1919 si->scc_stack = VEC_alloc (unsigned, heap, 1);
910fdc79
DB
1920 return si;
1921}
1922
1923/* Free an SCC info structure pointed to by SI */
1924
1925static void
1926free_scc_info (struct scc_info *si)
c58936b6 1927{
910fdc79 1928 sbitmap_free (si->visited);
7b765bed 1929 sbitmap_free (si->deleted);
3e5937d7
DB
1930 free (si->node_mapping);
1931 free (si->dfs);
740e80e8 1932 VEC_free (unsigned, heap, si->scc_stack);
3e5937d7 1933 free (si);
910fdc79
DB
1934}
1935
1936
3e5937d7
DB
1937/* Find indirect cycles in GRAPH that occur, using strongly connected
1938 components, and note them in the indirect cycles map.
1939
1940 This technique comes from Ben Hardekopf and Calvin Lin,
1941 "It Pays to be Lazy: Fast and Accurate Pointer Analysis for Millions of
1942 Lines of Code", submitted to PLDI 2007. */
910fdc79
DB
1943
1944static void
3e5937d7 1945find_indirect_cycles (constraint_graph_t graph)
910fdc79
DB
1946{
1947 unsigned int i;
3e5937d7
DB
1948 unsigned int size = graph->size;
1949 struct scc_info *si = init_scc_info (size);
910fdc79 1950
3e5937d7
DB
1951 for (i = 0; i < MIN (LAST_REF_NODE, size); i ++ )
1952 if (!TEST_BIT (si->visited, i) && find (i) == i)
910fdc79 1953 scc_visit (graph, si, i);
c58936b6 1954
910fdc79
DB
1955 free_scc_info (si);
1956}
1957
1958/* Compute a topological ordering for GRAPH, and store the result in the
1959 topo_info structure TI. */
1960
c58936b6 1961static void
910fdc79
DB
1962compute_topo_order (constraint_graph_t graph,
1963 struct topo_info *ti)
1964{
1965 unsigned int i;
7b765bed 1966 unsigned int size = graph->size;
c58936b6 1967
910fdc79 1968 for (i = 0; i != size; ++i)
3e5937d7 1969 if (!TEST_BIT (ti->visited, i) && find (i) == i)
910fdc79
DB
1970 topo_visit (graph, ti, i);
1971}
1972
7b765bed
DB
1973/* Structure used to for hash value numbering of pointer equivalence
1974 classes. */
1975
1976typedef struct equiv_class_label
1977{
3691626c 1978 hashval_t hashcode;
7b765bed
DB
1979 unsigned int equivalence_class;
1980 bitmap labels;
7b765bed 1981} *equiv_class_label_t;
586de218 1982typedef const struct equiv_class_label *const_equiv_class_label_t;
7b765bed
DB
1983
1984/* A hashtable for mapping a bitmap of labels->pointer equivalence
1985 classes. */
1986static htab_t pointer_equiv_class_table;
1987
1988/* A hashtable for mapping a bitmap of labels->location equivalence
1989 classes. */
1990static htab_t location_equiv_class_table;
1991
1992/* Hash function for a equiv_class_label_t */
1993
1994static hashval_t
1995equiv_class_label_hash (const void *p)
1996{
586de218 1997 const_equiv_class_label_t const ecl = (const_equiv_class_label_t) p;
7b765bed
DB
1998 return ecl->hashcode;
1999}
2000
2001/* Equality function for two equiv_class_label_t's. */
2002
2003static int
2004equiv_class_label_eq (const void *p1, const void *p2)
2005{
586de218
KG
2006 const_equiv_class_label_t const eql1 = (const_equiv_class_label_t) p1;
2007 const_equiv_class_label_t const eql2 = (const_equiv_class_label_t) p2;
821bb7f8
RG
2008 return (eql1->hashcode == eql2->hashcode
2009 && bitmap_equal_p (eql1->labels, eql2->labels));
7b765bed
DB
2010}
2011
2012/* Lookup a equivalence class in TABLE by the bitmap of LABELS it
2013 contains. */
2014
2015static unsigned int
2016equiv_class_lookup (htab_t table, bitmap labels)
2017{
2018 void **slot;
2019 struct equiv_class_label ecl;
2020
2021 ecl.labels = labels;
2022 ecl.hashcode = bitmap_hash (labels);
c58936b6 2023
7b765bed
DB
2024 slot = htab_find_slot_with_hash (table, &ecl,
2025 ecl.hashcode, NO_INSERT);
2026 if (!slot)
2027 return 0;
2028 else
2029 return ((equiv_class_label_t) *slot)->equivalence_class;
2030}
2031
2032
2033/* Add an equivalence class named EQUIVALENCE_CLASS with labels LABELS
2034 to TABLE. */
2035
2036static void
2037equiv_class_add (htab_t table, unsigned int equivalence_class,
2038 bitmap labels)
2039{
2040 void **slot;
2041 equiv_class_label_t ecl = XNEW (struct equiv_class_label);
2042
2043 ecl->labels = labels;
2044 ecl->equivalence_class = equivalence_class;
2045 ecl->hashcode = bitmap_hash (labels);
2046
2047 slot = htab_find_slot_with_hash (table, ecl,
2048 ecl->hashcode, INSERT);
2049 gcc_assert (!*slot);
2050 *slot = (void *) ecl;
2051}
2052
2053/* Perform offline variable substitution.
910fdc79 2054
7b765bed
DB
2055 This is a worst case quadratic time way of identifying variables
2056 that must have equivalent points-to sets, including those caused by
2057 static cycles, and single entry subgraphs, in the constraint graph.
3e5937d7 2058
7b765bed
DB
2059 The technique is described in "Exploiting Pointer and Location
2060 Equivalence to Optimize Pointer Analysis. In the 14th International
2061 Static Analysis Symposium (SAS), August 2007." It is known as the
2062 "HU" algorithm, and is equivalent to value numbering the collapsed
2063 constraint graph including evaluating unions.
3e5937d7
DB
2064
2065 The general method of finding equivalence classes is as follows:
2066 Add fake nodes (REF nodes) and edges for *a = b and a = *b constraints.
7b765bed
DB
2067 Initialize all non-REF nodes to be direct nodes.
2068 For each constraint a = a U {b}, we set pts(a) = pts(a) u {fresh
2069 variable}
2070 For each constraint containing the dereference, we also do the same
2071 thing.
2072
2073 We then compute SCC's in the graph and unify nodes in the same SCC,
2074 including pts sets.
2075
2076 For each non-collapsed node x:
2077 Visit all unvisited explicit incoming edges.
2078 Ignoring all non-pointers, set pts(x) = Union of pts(a) for y
2079 where y->x.
2080 Lookup the equivalence class for pts(x).
2081 If we found one, equivalence_class(x) = found class.
2082 Otherwise, equivalence_class(x) = new class, and new_class is
2083 added to the lookup table.
3e5937d7
DB
2084
2085 All direct nodes with the same equivalence class can be replaced
2086 with a single representative node.
2087 All unlabeled nodes (label == 0) are not pointers and all edges
2088 involving them can be eliminated.
7b765bed
DB
2089 We perform these optimizations during rewrite_constraints
2090
2091 In addition to pointer equivalence class finding, we also perform
2092 location equivalence class finding. This is the set of variables
2093 that always appear together in points-to sets. We use this to
2094 compress the size of the points-to sets. */
2095
2096/* Current maximum pointer equivalence class id. */
2097static int pointer_equiv_class;
3e5937d7 2098
7b765bed
DB
2099/* Current maximum location equivalence class id. */
2100static int location_equiv_class;
3e5937d7
DB
2101
2102/* Recursive routine to find strongly connected components in GRAPH,
7b765bed 2103 and label it's nodes with DFS numbers. */
910fdc79
DB
2104
2105static void
7b765bed 2106condense_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
910fdc79 2107{
3e5937d7
DB
2108 unsigned int i;
2109 bitmap_iterator bi;
2110 unsigned int my_dfs;
c58936b6 2111
3e5937d7
DB
2112 gcc_assert (si->node_mapping[n] == n);
2113 SET_BIT (si->visited, n);
2114 si->dfs[n] = si->current_index ++;
2115 my_dfs = si->dfs[n];
c58936b6 2116
3e5937d7
DB
2117 /* Visit all the successors. */
2118 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
910fdc79 2119 {
3e5937d7 2120 unsigned int w = si->node_mapping[i];
910fdc79 2121
7b765bed 2122 if (TEST_BIT (si->deleted, w))
910fdc79
DB
2123 continue;
2124
3e5937d7 2125 if (!TEST_BIT (si->visited, w))
7b765bed 2126 condense_visit (graph, si, w);
3e5937d7
DB
2127 {
2128 unsigned int t = si->node_mapping[w];
2129 unsigned int nnode = si->node_mapping[n];
62e5bf5d 2130 gcc_assert (nnode == n);
910fdc79 2131
3e5937d7
DB
2132 if (si->dfs[t] < si->dfs[nnode])
2133 si->dfs[n] = si->dfs[t];
2134 }
2135 }
910fdc79 2136
3e5937d7
DB
2137 /* Visit all the implicit predecessors. */
2138 EXECUTE_IF_IN_NONNULL_BITMAP (graph->implicit_preds[n], 0, i, bi)
2139 {
2140 unsigned int w = si->node_mapping[i];
2141
7b765bed 2142 if (TEST_BIT (si->deleted, w))
3e5937d7
DB
2143 continue;
2144
2145 if (!TEST_BIT (si->visited, w))
7b765bed 2146 condense_visit (graph, si, w);
3e5937d7
DB
2147 {
2148 unsigned int t = si->node_mapping[w];
2149 unsigned int nnode = si->node_mapping[n];
2150 gcc_assert (nnode == n);
2151
2152 if (si->dfs[t] < si->dfs[nnode])
2153 si->dfs[n] = si->dfs[t];
2154 }
2155 }
4ee00913 2156
3e5937d7
DB
2157 /* See if any components have been identified. */
2158 if (si->dfs[n] == my_dfs)
2159 {
2160 while (VEC_length (unsigned, si->scc_stack) != 0
2161 && si->dfs[VEC_last (unsigned, si->scc_stack)] >= my_dfs)
910fdc79 2162 {
3e5937d7
DB
2163 unsigned int w = VEC_pop (unsigned, si->scc_stack);
2164 si->node_mapping[w] = n;
2165
2166 if (!TEST_BIT (graph->direct_nodes, w))
2167 RESET_BIT (graph->direct_nodes, n);
3e5937d7 2168
7b765bed
DB
2169 /* Unify our nodes. */
2170 if (graph->preds[w])
2171 {
2172 if (!graph->preds[n])
2173 graph->preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2174 bitmap_ior_into (graph->preds[n], graph->preds[w]);
2175 }
2176 if (graph->implicit_preds[w])
2177 {
2178 if (!graph->implicit_preds[n])
2179 graph->implicit_preds[n] = BITMAP_ALLOC (&predbitmap_obstack);
2180 bitmap_ior_into (graph->implicit_preds[n],
2181 graph->implicit_preds[w]);
2182 }
2183 if (graph->points_to[w])
2184 {
2185 if (!graph->points_to[n])
2186 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2187 bitmap_ior_into (graph->points_to[n],
2188 graph->points_to[w]);
2189 }
3e5937d7 2190 }
7b765bed 2191 SET_BIT (si->deleted, n);
3e5937d7
DB
2192 }
2193 else
2194 VEC_safe_push (unsigned, heap, si->scc_stack, n);
2195}
2196
7b765bed
DB
2197/* Label pointer equivalences. */
2198
2199static void
2200label_visit (constraint_graph_t graph, struct scc_info *si, unsigned int n)
2201{
2202 unsigned int i;
2203 bitmap_iterator bi;
2204 SET_BIT (si->visited, n);
2205
2206 if (!graph->points_to[n])
2207 graph->points_to[n] = BITMAP_ALLOC (&predbitmap_obstack);
2208
2209 /* Label and union our incoming edges's points to sets. */
2210 EXECUTE_IF_IN_NONNULL_BITMAP (graph->preds[n], 0, i, bi)
2211 {
2212 unsigned int w = si->node_mapping[i];
2213 if (!TEST_BIT (si->visited, w))
2214 label_visit (graph, si, w);
2215
2216 /* Skip unused edges */
2217 if (w == n || graph->pointer_label[w] == 0)
3dc21182
DB
2218 continue;
2219
7b765bed
DB
2220 if (graph->points_to[w])
2221 bitmap_ior_into(graph->points_to[n], graph->points_to[w]);
7b765bed
DB
2222 }
2223 /* Indirect nodes get fresh variables. */
2224 if (!TEST_BIT (graph->direct_nodes, n))
2225 bitmap_set_bit (graph->points_to[n], FIRST_REF_NODE + n);
2226
2227 if (!bitmap_empty_p (graph->points_to[n]))
2228 {
2229 unsigned int label = equiv_class_lookup (pointer_equiv_class_table,
2230 graph->points_to[n]);
2231 if (!label)
2232 {
7b765bed
DB
2233 label = pointer_equiv_class++;
2234 equiv_class_add (pointer_equiv_class_table,
2235 label, graph->points_to[n]);
2236 }
2237 graph->pointer_label[n] = label;
2238 }
2239}
2240
3e5937d7
DB
2241/* Perform offline variable substitution, discovering equivalence
2242 classes, and eliminating non-pointer variables. */
2243
2244static struct scc_info *
2245perform_var_substitution (constraint_graph_t graph)
2246{
2247 unsigned int i;
2248 unsigned int size = graph->size;
2249 struct scc_info *si = init_scc_info (size);
2250
2251 bitmap_obstack_initialize (&iteration_obstack);
7b765bed
DB
2252 pointer_equiv_class_table = htab_create (511, equiv_class_label_hash,
2253 equiv_class_label_eq, free);
2254 location_equiv_class_table = htab_create (511, equiv_class_label_hash,
2255 equiv_class_label_eq, free);
2256 pointer_equiv_class = 1;
2257 location_equiv_class = 1;
2258
2259 /* Condense the nodes, which means to find SCC's, count incoming
2260 predecessors, and unite nodes in SCC's. */
aa46c8a3 2261 for (i = 0; i < FIRST_REF_NODE; i++)
7b765bed
DB
2262 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2263 condense_visit (graph, si, si->node_mapping[i]);
3e5937d7 2264
7b765bed
DB
2265 sbitmap_zero (si->visited);
2266 /* Actually the label the nodes for pointer equivalences */
aa46c8a3 2267 for (i = 0; i < FIRST_REF_NODE; i++)
3e5937d7
DB
2268 if (!TEST_BIT (si->visited, si->node_mapping[i]))
2269 label_visit (graph, si, si->node_mapping[i]);
2270
7b765bed
DB
2271 /* Calculate location equivalence labels. */
2272 for (i = 0; i < FIRST_REF_NODE; i++)
2273 {
2274 bitmap pointed_by;
2275 bitmap_iterator bi;
2276 unsigned int j;
2277 unsigned int label;
2278
2279 if (!graph->pointed_by[i])
2280 continue;
2281 pointed_by = BITMAP_ALLOC (&iteration_obstack);
2282
2283 /* Translate the pointed-by mapping for pointer equivalence
2284 labels. */
2285 EXECUTE_IF_SET_IN_BITMAP (graph->pointed_by[i], 0, j, bi)
2286 {
2287 bitmap_set_bit (pointed_by,
2288 graph->pointer_label[si->node_mapping[j]]);
2289 }
2290 /* The original pointed_by is now dead. */
2291 BITMAP_FREE (graph->pointed_by[i]);
2292
2293 /* Look up the location equivalence label if one exists, or make
2294 one otherwise. */
2295 label = equiv_class_lookup (location_equiv_class_table,
2296 pointed_by);
2297 if (label == 0)
2298 {
2299 label = location_equiv_class++;
2300 equiv_class_add (location_equiv_class_table,
2301 label, pointed_by);
2302 }
2303 else
2304 {
2305 if (dump_file && (dump_flags & TDF_DETAILS))
2306 fprintf (dump_file, "Found location equivalence for node %s\n",
2307 get_varinfo (i)->name);
2308 BITMAP_FREE (pointed_by);
2309 }
2310 graph->loc_label[i] = label;
2311
2312 }
2313
3e5937d7
DB
2314 if (dump_file && (dump_flags & TDF_DETAILS))
2315 for (i = 0; i < FIRST_REF_NODE; i++)
2316 {
2317 bool direct_node = TEST_BIT (graph->direct_nodes, i);
2318 fprintf (dump_file,
7b765bed
DB
2319 "Equivalence classes for %s node id %d:%s are pointer: %d"
2320 ", location:%d\n",
3e5937d7 2321 direct_node ? "Direct node" : "Indirect node", i,
62e5bf5d 2322 get_varinfo (i)->name,
7b765bed
DB
2323 graph->pointer_label[si->node_mapping[i]],
2324 graph->loc_label[si->node_mapping[i]]);
3e5937d7
DB
2325 }
2326
2327 /* Quickly eliminate our non-pointer variables. */
2328
2329 for (i = 0; i < FIRST_REF_NODE; i++)
2330 {
2331 unsigned int node = si->node_mapping[i];
2332
aa46c8a3 2333 if (graph->pointer_label[node] == 0)
3e5937d7 2334 {
23e73993 2335 if (dump_file && (dump_flags & TDF_DETAILS))
3e5937d7
DB
2336 fprintf (dump_file,
2337 "%s is a non-pointer variable, eliminating edges.\n",
2338 get_varinfo (node)->name);
2339 stats.nonpointer_vars++;
2340 clear_edges_for_node (graph, node);
910fdc79
DB
2341 }
2342 }
7b765bed 2343
3e5937d7
DB
2344 return si;
2345}
2346
2347/* Free information that was only necessary for variable
2348 substitution. */
910fdc79 2349
3e5937d7
DB
2350static void
2351free_var_substitution_info (struct scc_info *si)
2352{
2353 free_scc_info (si);
7b765bed
DB
2354 free (graph->pointer_label);
2355 free (graph->loc_label);
2356 free (graph->pointed_by);
2357 free (graph->points_to);
3e5937d7
DB
2358 free (graph->eq_rep);
2359 sbitmap_free (graph->direct_nodes);
7b765bed
DB
2360 htab_delete (pointer_equiv_class_table);
2361 htab_delete (location_equiv_class_table);
4ee00913 2362 bitmap_obstack_release (&iteration_obstack);
3e5937d7
DB
2363}
2364
2365/* Return an existing node that is equivalent to NODE, which has
2366 equivalence class LABEL, if one exists. Return NODE otherwise. */
2367
2368static unsigned int
2369find_equivalent_node (constraint_graph_t graph,
2370 unsigned int node, unsigned int label)
2371{
2372 /* If the address version of this variable is unused, we can
2373 substitute it for anything else with the same label.
2374 Otherwise, we know the pointers are equivalent, but not the
7b765bed 2375 locations, and we can unite them later. */
3e5937d7 2376
7b765bed 2377 if (!bitmap_bit_p (graph->address_taken, node))
3e5937d7
DB
2378 {
2379 gcc_assert (label < graph->size);
2380
2381 if (graph->eq_rep[label] != -1)
2382 {
2383 /* Unify the two variables since we know they are equivalent. */
2384 if (unite (graph->eq_rep[label], node))
2385 unify_nodes (graph, graph->eq_rep[label], node, false);
2386 return graph->eq_rep[label];
2387 }
2388 else
2389 {
2390 graph->eq_rep[label] = node;
7b765bed 2391 graph->pe_rep[label] = node;
3e5937d7
DB
2392 }
2393 }
7b765bed
DB
2394 else
2395 {
2396 gcc_assert (label < graph->size);
2397 graph->pe[node] = label;
2398 if (graph->pe_rep[label] == -1)
2399 graph->pe_rep[label] = node;
2400 }
2401
3e5937d7
DB
2402 return node;
2403}
2404
7b765bed
DB
2405/* Unite pointer equivalent but not location equivalent nodes in
2406 GRAPH. This may only be performed once variable substitution is
2407 finished. */
2408
2409static void
2410unite_pointer_equivalences (constraint_graph_t graph)
2411{
2412 unsigned int i;
2413
2414 /* Go through the pointer equivalences and unite them to their
2415 representative, if they aren't already. */
aa46c8a3 2416 for (i = 0; i < FIRST_REF_NODE; i++)
7b765bed
DB
2417 {
2418 unsigned int label = graph->pe[i];
aa46c8a3
DB
2419 if (label)
2420 {
2421 int label_rep = graph->pe_rep[label];
b8698a0f 2422
aa46c8a3
DB
2423 if (label_rep == -1)
2424 continue;
b8698a0f 2425
aa46c8a3
DB
2426 label_rep = find (label_rep);
2427 if (label_rep >= 0 && unite (label_rep, find (i)))
2428 unify_nodes (graph, label_rep, i, false);
2429 }
7b765bed
DB
2430 }
2431}
2432
2433/* Move complex constraints to the GRAPH nodes they belong to. */
3e5937d7
DB
2434
2435static void
7b765bed
DB
2436move_complex_constraints (constraint_graph_t graph)
2437{
2438 int i;
2439 constraint_t c;
2440
2441 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2442 {
2443 if (c)
2444 {
2445 struct constraint_expr lhs = c->lhs;
2446 struct constraint_expr rhs = c->rhs;
2447
2448 if (lhs.type == DEREF)
2449 {
2450 insert_into_complex (graph, lhs.var, c);
2451 }
2452 else if (rhs.type == DEREF)
2453 {
2454 if (!(get_varinfo (lhs.var)->is_special_var))
2455 insert_into_complex (graph, rhs.var, c);
2456 }
2457 else if (rhs.type != ADDRESSOF && lhs.var > anything_id
2458 && (lhs.offset != 0 || rhs.offset != 0))
2459 {
2460 insert_into_complex (graph, rhs.var, c);
2461 }
2462 }
2463 }
2464}
2465
2466
2467/* Optimize and rewrite complex constraints while performing
2468 collapsing of equivalent nodes. SI is the SCC_INFO that is the
2469 result of perform_variable_substitution. */
2470
2471static void
2472rewrite_constraints (constraint_graph_t graph,
2473 struct scc_info *si)
3e5937d7
DB
2474{
2475 int i;
2476 unsigned int j;
2477 constraint_t c;
2478
2479 for (j = 0; j < graph->size; j++)
2480 gcc_assert (find (j) == j);
2481
2482 for (i = 0; VEC_iterate (constraint_t, constraints, i, c); i++)
2483 {
2484 struct constraint_expr lhs = c->lhs;
2485 struct constraint_expr rhs = c->rhs;
5006671f
RG
2486 unsigned int lhsvar = find (lhs.var);
2487 unsigned int rhsvar = find (rhs.var);
3e5937d7
DB
2488 unsigned int lhsnode, rhsnode;
2489 unsigned int lhslabel, rhslabel;
2490
2491 lhsnode = si->node_mapping[lhsvar];
2492 rhsnode = si->node_mapping[rhsvar];
7b765bed
DB
2493 lhslabel = graph->pointer_label[lhsnode];
2494 rhslabel = graph->pointer_label[rhsnode];
3e5937d7
DB
2495
2496 /* See if it is really a non-pointer variable, and if so, ignore
2497 the constraint. */
2498 if (lhslabel == 0)
2499 {
aa46c8a3 2500 if (dump_file && (dump_flags & TDF_DETAILS))
3e5937d7 2501 {
b8698a0f 2502
aa46c8a3
DB
2503 fprintf (dump_file, "%s is a non-pointer variable,"
2504 "ignoring constraint:",
2505 get_varinfo (lhs.var)->name);
2506 dump_constraint (dump_file, c);
3e5937d7 2507 }
aa46c8a3
DB
2508 VEC_replace (constraint_t, constraints, i, NULL);
2509 continue;
3e5937d7
DB
2510 }
2511
2512 if (rhslabel == 0)
2513 {
aa46c8a3 2514 if (dump_file && (dump_flags & TDF_DETAILS))
3e5937d7 2515 {
b8698a0f 2516
aa46c8a3
DB
2517 fprintf (dump_file, "%s is a non-pointer variable,"
2518 "ignoring constraint:",
2519 get_varinfo (rhs.var)->name);
2520 dump_constraint (dump_file, c);
3e5937d7 2521 }
aa46c8a3
DB
2522 VEC_replace (constraint_t, constraints, i, NULL);
2523 continue;
3e5937d7
DB
2524 }
2525
2526 lhsvar = find_equivalent_node (graph, lhsvar, lhslabel);
2527 rhsvar = find_equivalent_node (graph, rhsvar, rhslabel);
2528 c->lhs.var = lhsvar;
2529 c->rhs.var = rhsvar;
2530
3e5937d7
DB
2531 }
2532}
2533
2534/* Eliminate indirect cycles involving NODE. Return true if NODE was
2535 part of an SCC, false otherwise. */
2536
2537static bool
2538eliminate_indirect_cycles (unsigned int node)
2539{
2540 if (graph->indirect_cycles[node] != -1
2541 && !bitmap_empty_p (get_varinfo (node)->solution))
2542 {
2543 unsigned int i;
2544 VEC(unsigned,heap) *queue = NULL;
2545 int queuepos;
2546 unsigned int to = find (graph->indirect_cycles[node]);
2547 bitmap_iterator bi;
2548
2549 /* We can't touch the solution set and call unify_nodes
2550 at the same time, because unify_nodes is going to do
2551 bitmap unions into it. */
2552
2553 EXECUTE_IF_SET_IN_BITMAP (get_varinfo (node)->solution, 0, i, bi)
2554 {
2555 if (find (i) == i && i != to)
2556 {
2557 if (unite (to, i))
2558 VEC_safe_push (unsigned, heap, queue, i);
2559 }
2560 }
2561
2562 for (queuepos = 0;
2563 VEC_iterate (unsigned, queue, queuepos, i);
2564 queuepos++)
2565 {
2566 unify_nodes (graph, to, i, true);
2567 }
2568 VEC_free (unsigned, heap, queue);
2569 return true;
2570 }
2571 return false;
910fdc79
DB
2572}
2573
910fdc79
DB
2574/* Solve the constraint graph GRAPH using our worklist solver.
2575 This is based on the PW* family of solvers from the "Efficient Field
2576 Sensitive Pointer Analysis for C" paper.
2577 It works by iterating over all the graph nodes, processing the complex
2578 constraints and propagating the copy constraints, until everything stops
2579 changed. This corresponds to steps 6-8 in the solving list given above. */
2580
2581static void
2582solve_graph (constraint_graph_t graph)
2583{
7b765bed 2584 unsigned int size = graph->size;
910fdc79 2585 unsigned int i;
3e5937d7 2586 bitmap pts;
910fdc79 2587
3e5937d7 2588 changed_count = 0;
910fdc79 2589 changed = sbitmap_alloc (size);
3e5937d7 2590 sbitmap_zero (changed);
c58936b6 2591
3e5937d7 2592 /* Mark all initial non-collapsed nodes as changed. */
910fdc79 2593 for (i = 0; i < size; i++)
3e5937d7
DB
2594 {
2595 varinfo_t ivi = get_varinfo (i);
2596 if (find (i) == i && !bitmap_empty_p (ivi->solution)
2597 && ((graph->succs[i] && !bitmap_empty_p (graph->succs[i]))
2598 || VEC_length (constraint_t, graph->complex[i]) > 0))
2599 {
2600 SET_BIT (changed, i);
2601 changed_count++;
2602 }
2603 }
2604
2605 /* Allocate a bitmap to be used to store the changed bits. */
2606 pts = BITMAP_ALLOC (&pta_obstack);
c58936b6 2607
910fdc79
DB
2608 while (changed_count > 0)
2609 {
2610 unsigned int i;
2611 struct topo_info *ti = init_topo_info ();
2612 stats.iterations++;
4ee00913 2613
910fdc79 2614 bitmap_obstack_initialize (&iteration_obstack);
c58936b6 2615
910fdc79
DB
2616 compute_topo_order (graph, ti);
2617
740e80e8 2618 while (VEC_length (unsigned, ti->topo_order) != 0)
910fdc79 2619 {
3e5937d7 2620
740e80e8 2621 i = VEC_pop (unsigned, ti->topo_order);
3e5937d7
DB
2622
2623 /* If this variable is not a representative, skip it. */
2624 if (find (i) != i)
2625 continue;
2626
d3c36974
DB
2627 /* In certain indirect cycle cases, we may merge this
2628 variable to another. */
62e5bf5d 2629 if (eliminate_indirect_cycles (i) && find (i) != i)
d3c36974 2630 continue;
910fdc79
DB
2631
2632 /* If the node has changed, we need to process the
2633 complex constraints and outgoing edges again. */
2634 if (TEST_BIT (changed, i))
2635 {
2636 unsigned int j;
2637 constraint_t c;
910fdc79 2638 bitmap solution;
3e5937d7 2639 VEC(constraint_t,heap) *complex = graph->complex[i];
21392f19 2640 bool solution_empty;
48e540b0 2641
910fdc79
DB
2642 RESET_BIT (changed, i);
2643 changed_count--;
2644
3e5937d7
DB
2645 /* Compute the changed set of solution bits. */
2646 bitmap_and_compl (pts, get_varinfo (i)->solution,
2647 get_varinfo (i)->oldsolution);
2648
2649 if (bitmap_empty_p (pts))
2650 continue;
2651
2652 bitmap_ior_into (get_varinfo (i)->oldsolution, pts);
2653
910fdc79 2654 solution = get_varinfo (i)->solution;
21392f19
DB
2655 solution_empty = bitmap_empty_p (solution);
2656
2657 /* Process the complex constraints */
910fdc79 2658 for (j = 0; VEC_iterate (constraint_t, complex, j, c); j++)
21392f19 2659 {
7b765bed
DB
2660 /* XXX: This is going to unsort the constraints in
2661 some cases, which will occasionally add duplicate
2662 constraints during unification. This does not
2663 affect correctness. */
2664 c->lhs.var = find (c->lhs.var);
2665 c->rhs.var = find (c->rhs.var);
2666
21392f19
DB
2667 /* The only complex constraint that can change our
2668 solution to non-empty, given an empty solution,
2669 is a constraint where the lhs side is receiving
2670 some set from elsewhere. */
2671 if (!solution_empty || c->lhs.type != DEREF)
3e5937d7 2672 do_complex_constraint (graph, c, pts);
21392f19 2673 }
910fdc79 2674
21392f19
DB
2675 solution_empty = bitmap_empty_p (solution);
2676
5006671f 2677 if (!solution_empty)
4ee00913 2678 {
3e5937d7 2679 bitmap_iterator bi;
5006671f 2680 unsigned eff_escaped_id = find (escaped_id);
3e5937d7 2681
21392f19 2682 /* Propagate solution to all successors. */
c58936b6 2683 EXECUTE_IF_IN_NONNULL_BITMAP (graph->succs[i],
21392f19 2684 0, j, bi)
4ee00913 2685 {
3e5937d7
DB
2686 bitmap tmp;
2687 bool flag;
2688
2689 unsigned int to = find (j);
2690 tmp = get_varinfo (to)->solution;
2691 flag = false;
c58936b6 2692
3e5937d7
DB
2693 /* Don't try to propagate to ourselves. */
2694 if (to == i)
2695 continue;
c58936b6 2696
5006671f
RG
2697 /* If we propagate from ESCAPED use ESCAPED as
2698 placeholder. */
2699 if (i == eff_escaped_id)
2700 flag = bitmap_set_bit (tmp, escaped_id);
2701 else
2702 flag = set_union_with_increment (tmp, pts, 0);
c58936b6 2703
21392f19 2704 if (flag)
4ee00913 2705 {
3e5937d7
DB
2706 get_varinfo (to)->solution = tmp;
2707 if (!TEST_BIT (changed, to))
21392f19 2708 {
3e5937d7 2709 SET_BIT (changed, to);
21392f19
DB
2710 changed_count++;
2711 }
4ee00913
DB
2712 }
2713 }
910fdc79
DB
2714 }
2715 }
2716 }
2717 free_topo_info (ti);
2718 bitmap_obstack_release (&iteration_obstack);
2719 }
c58936b6 2720
3e5937d7 2721 BITMAP_FREE (pts);
910fdc79 2722 sbitmap_free (changed);
3e5937d7 2723 bitmap_obstack_release (&oldpta_obstack);
910fdc79
DB
2724}
2725
3e5937d7 2726/* Map from trees to variable infos. */
15814ba0 2727static struct pointer_map_t *vi_for_tree;
910fdc79 2728
910fdc79 2729
15814ba0 2730/* Insert ID as the variable id for tree T in the vi_for_tree map. */
910fdc79 2731
c58936b6 2732static void
3e5937d7 2733insert_vi_for_tree (tree t, varinfo_t vi)
910fdc79 2734{
15814ba0
PB
2735 void **slot = pointer_map_insert (vi_for_tree, t);
2736 gcc_assert (vi);
910fdc79 2737 gcc_assert (*slot == NULL);
15814ba0 2738 *slot = vi;
910fdc79
DB
2739}
2740
3e5937d7 2741/* Find the variable info for tree T in VI_FOR_TREE. If T does not
15814ba0 2742 exist in the map, return NULL, otherwise, return the varinfo we found. */
910fdc79 2743
15814ba0
PB
2744static varinfo_t
2745lookup_vi_for_tree (tree t)
910fdc79 2746{
15814ba0
PB
2747 void **slot = pointer_map_contains (vi_for_tree, t);
2748 if (slot == NULL)
2749 return NULL;
910fdc79 2750
15814ba0 2751 return (varinfo_t) *slot;
910fdc79
DB
2752}
2753
2754/* Return a printable name for DECL */
2755
2756static const char *
2757alias_get_name (tree decl)
2758{
27c2cfa6 2759 const char *res;
910fdc79
DB
2760 char *temp;
2761 int num_printed = 0;
2762
27c2cfa6
RG
2763 if (DECL_ASSEMBLER_NAME_SET_P (decl))
2764 res = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
2765 else
2766 res= get_name (decl);
910fdc79
DB
2767 if (res != NULL)
2768 return res;
2769
2770 res = "NULL";
4f6c9110
RG
2771 if (!dump_file)
2772 return res;
2773
910fdc79
DB
2774 if (TREE_CODE (decl) == SSA_NAME)
2775 {
c58936b6 2776 num_printed = asprintf (&temp, "%s_%u",
910fdc79
DB
2777 alias_get_name (SSA_NAME_VAR (decl)),
2778 SSA_NAME_VERSION (decl));
2779 }
2780 else if (DECL_P (decl))
2781 {
2782 num_printed = asprintf (&temp, "D.%u", DECL_UID (decl));
2783 }
2784 if (num_printed > 0)
2785 {
2786 res = ggc_strdup (temp);
2787 free (temp);
2788 }
2789 return res;
2790}
2791
15814ba0
PB
2792/* Find the variable id for tree T in the map.
2793 If T doesn't exist in the map, create an entry for it and return it. */
910fdc79 2794
3e5937d7
DB
2795static varinfo_t
2796get_vi_for_tree (tree t)
910fdc79 2797{
15814ba0
PB
2798 void **slot = pointer_map_contains (vi_for_tree, t);
2799 if (slot == NULL)
3e5937d7 2800 return get_varinfo (create_variable_info_for (t, alias_get_name (t)));
c58936b6 2801
15814ba0 2802 return (varinfo_t) *slot;
910fdc79
DB
2803}
2804
b14e9388 2805/* Get a scalar constraint expression for a new temporary variable. */
910fdc79
DB
2806
2807static struct constraint_expr
b14e9388 2808new_scalar_tmp_constraint_exp (const char *name)
910fdc79 2809{
b14e9388 2810 struct constraint_expr tmp;
b14e9388 2811 varinfo_t vi;
910fdc79 2812
0bbf2ffa 2813 vi = new_var_info (NULL_TREE, name);
b14e9388
RG
2814 vi->offset = 0;
2815 vi->size = -1;
2816 vi->fullsize = -1;
2817 vi->is_full_var = 1;
c0d459f0 2818
b14e9388
RG
2819 tmp.var = vi->id;
2820 tmp.type = SCALAR;
2821 tmp.offset = 0;
c0d459f0 2822
b14e9388 2823 return tmp;
c0d459f0
RG
2824}
2825
2826/* Get a constraint expression vector from an SSA_VAR_P node.
2827 If address_p is true, the result will be taken its address of. */
2828
2829static void
2830get_constraint_for_ssa_var (tree t, VEC(ce_s, heap) **results, bool address_p)
2831{
2832 struct constraint_expr cexpr;
2833 varinfo_t vi;
2834
2835 /* We allow FUNCTION_DECLs here even though it doesn't make much sense. */
910fdc79
DB
2836 gcc_assert (SSA_VAR_P (t) || DECL_P (t));
2837
2838 /* For parameters, get at the points-to set for the actual parm
2839 decl. */
c58936b6
DB
2840 if (TREE_CODE (t) == SSA_NAME
2841 && TREE_CODE (SSA_NAME_VAR (t)) == PARM_DECL
38635499 2842 && SSA_NAME_IS_DEFAULT_DEF (t))
c0d459f0
RG
2843 {
2844 get_constraint_for_ssa_var (SSA_NAME_VAR (t), results, address_p);
2845 return;
2846 }
910fdc79 2847
c0d459f0
RG
2848 vi = get_vi_for_tree (t);
2849 cexpr.var = vi->id;
910fdc79 2850 cexpr.type = SCALAR;
c0d459f0 2851 cexpr.offset = 0;
47bcb538
DB
2852 /* If we determine the result is "anything", and we know this is readonly,
2853 say it points to readonly memory instead. */
2854 if (cexpr.var == anything_id && TREE_READONLY (t))
910fdc79 2855 {
c0d459f0 2856 gcc_unreachable ();
3e5937d7 2857 cexpr.type = ADDRESSOF;
910fdc79
DB
2858 cexpr.var = readonly_id;
2859 }
c58936b6 2860
c0d459f0
RG
2861 /* If we are not taking the address of the constraint expr, add all
2862 sub-fiels of the variable as well. */
de925a03
RG
2863 if (!address_p
2864 && !vi->is_full_var)
c0d459f0
RG
2865 {
2866 for (; vi; vi = vi->next)
2867 {
2868 cexpr.var = vi->id;
2869 VEC_safe_push (ce_s, heap, *results, &cexpr);
2870 }
2871 return;
2872 }
2873
2874 VEC_safe_push (ce_s, heap, *results, &cexpr);
910fdc79
DB
2875}
2876
faf2ecc5
RG
2877/* Process constraint T, performing various simplifications and then
2878 adding it to our list of overall constraints. */
910fdc79
DB
2879
2880static void
faf2ecc5 2881process_constraint (constraint_t t)
910fdc79
DB
2882{
2883 struct constraint_expr rhs = t->rhs;
2884 struct constraint_expr lhs = t->lhs;
c58936b6 2885
910fdc79
DB
2886 gcc_assert (rhs.var < VEC_length (varinfo_t, varmap));
2887 gcc_assert (lhs.var < VEC_length (varinfo_t, varmap));
2888
5006671f
RG
2889 /* If we didn't get any useful constraint from the lhs we get
2890 &ANYTHING as fallback from get_constraint_for. Deal with
2891 it here by turning it into *ANYTHING. */
2892 if (lhs.type == ADDRESSOF
2893 && lhs.var == anything_id)
2894 lhs.type = DEREF;
2895
2896 /* ADDRESSOF on the lhs is invalid. */
2897 gcc_assert (lhs.type != ADDRESSOF);
910fdc79 2898
3c323b52
RG
2899 /* We shouldn't add constraints from things that cannot have pointers.
2900 It's not completely trivial to avoid in the callers, so do it here. */
2901 if (rhs.type != ADDRESSOF
2902 && !get_varinfo (rhs.var)->may_have_pointers)
2903 return;
2904
2905 /* Likewise adding to the solution of a non-pointer var isn't useful. */
2906 if (!get_varinfo (lhs.var)->may_have_pointers)
2907 return;
2908
910fdc79 2909 /* This can happen in our IR with things like n->a = *p */
5006671f 2910 if (rhs.type == DEREF && lhs.type == DEREF && rhs.var != anything_id)
910fdc79
DB
2911 {
2912 /* Split into tmp = *rhs, *lhs = tmp */
b14e9388
RG
2913 struct constraint_expr tmplhs;
2914 tmplhs = new_scalar_tmp_constraint_exp ("doubledereftmp");
faf2ecc5
RG
2915 process_constraint (new_constraint (tmplhs, rhs));
2916 process_constraint (new_constraint (lhs, tmplhs));
7b765bed
DB
2917 }
2918 else if (rhs.type == ADDRESSOF && lhs.type == DEREF)
2919 {
2920 /* Split into tmp = &rhs, *lhs = tmp */
b14e9388
RG
2921 struct constraint_expr tmplhs;
2922 tmplhs = new_scalar_tmp_constraint_exp ("derefaddrtmp");
faf2ecc5
RG
2923 process_constraint (new_constraint (tmplhs, rhs));
2924 process_constraint (new_constraint (lhs, tmplhs));
910fdc79 2925 }
910fdc79
DB
2926 else
2927 {
3e5937d7 2928 gcc_assert (rhs.type != ADDRESSOF || rhs.offset == 0);
b5efa470 2929 VEC_safe_push (constraint_t, heap, constraints, t);
910fdc79
DB
2930 }
2931}
2932
9e39dba6
RG
2933/* Return true if T is a type that could contain pointers. */
2934
2935static bool
2936type_could_have_pointers (tree type)
2937{
2938 if (POINTER_TYPE_P (type))
2939 return true;
2940
2941 if (TREE_CODE (type) == ARRAY_TYPE)
2942 return type_could_have_pointers (TREE_TYPE (type));
2943
82677400
RB
2944 /* A function or method can consume pointers.
2945 ??? We could be more precise here. */
2946 if (TREE_CODE (type) == FUNCTION_TYPE
2947 || TREE_CODE (type) == METHOD_TYPE)
2948 return true;
2949
9e39dba6
RG
2950 return AGGREGATE_TYPE_P (type);
2951}
2952
21392f19
DB
2953/* Return true if T is a variable of a type that could contain
2954 pointers. */
2955
2956static bool
2957could_have_pointers (tree t)
2958{
a81b065a
RG
2959 return (((TREE_CODE (t) == VAR_DECL
2960 || TREE_CODE (t) == PARM_DECL
2961 || TREE_CODE (t) == RESULT_DECL)
2962 && (TREE_PUBLIC (t) || DECL_EXTERNAL (t) || TREE_ADDRESSABLE (t)))
2963 || type_could_have_pointers (TREE_TYPE (t)));
21392f19 2964}
910fdc79
DB
2965
2966/* Return the position, in bits, of FIELD_DECL from the beginning of its
2967 structure. */
2968
ee7d4b57 2969static HOST_WIDE_INT
910fdc79
DB
2970bitpos_of_field (const tree fdecl)
2971{
2972
ee7d4b57
RG
2973 if (!host_integerp (DECL_FIELD_OFFSET (fdecl), 0)
2974 || !host_integerp (DECL_FIELD_BIT_OFFSET (fdecl), 0))
910fdc79 2975 return -1;
c58936b6 2976
ee7d4b57
RG
2977 return (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (fdecl)) * 8
2978 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fdecl)));
910fdc79
DB
2979}
2980
2981
e5bae89b
RG
2982/* Get constraint expressions for offsetting PTR by OFFSET. Stores the
2983 resulting constraint expressions in *RESULTS. */
2984
2985static void
2986get_constraint_for_ptr_offset (tree ptr, tree offset,
2987 VEC (ce_s, heap) **results)
2988{
bd02b3a0 2989 struct constraint_expr c;
e5bae89b 2990 unsigned int j, n;
5006671f 2991 HOST_WIDE_INT rhsunitoffset, rhsoffset;
e5bae89b
RG
2992
2993 /* If we do not do field-sensitive PTA adding offsets to pointers
2994 does not change the points-to solution. */
2995 if (!use_field_sensitive)
2996 {
2997 get_constraint_for (ptr, results);
2998 return;
2999 }
3000
3001 /* If the offset is not a non-negative integer constant that fits
3002 in a HOST_WIDE_INT, we have to fall back to a conservative
3003 solution which includes all sub-fields of all pointed-to
5006671f 3004 variables of ptr. */
779704e7
RG
3005 if (offset == NULL_TREE
3006 || !host_integerp (offset, 0))
5006671f
RG
3007 rhsoffset = UNKNOWN_OFFSET;
3008 else
e5bae89b 3009 {
5006671f
RG
3010 /* Make sure the bit-offset also fits. */
3011 rhsunitoffset = TREE_INT_CST_LOW (offset);
3012 rhsoffset = rhsunitoffset * BITS_PER_UNIT;
3013 if (rhsunitoffset != rhsoffset / BITS_PER_UNIT)
3014 rhsoffset = UNKNOWN_OFFSET;
e5bae89b
RG
3015 }
3016
3017 get_constraint_for (ptr, results);
3018 if (rhsoffset == 0)
3019 return;
3020
3021 /* As we are eventually appending to the solution do not use
3022 VEC_iterate here. */
3023 n = VEC_length (ce_s, *results);
3024 for (j = 0; j < n; j++)
3025 {
3026 varinfo_t curr;
bd02b3a0
RG
3027 c = *VEC_index (ce_s, *results, j);
3028 curr = get_varinfo (c.var);
e5bae89b 3029
bd02b3a0 3030 if (c.type == ADDRESSOF
5006671f
RG
3031 /* If this varinfo represents a full variable just use it. */
3032 && curr->is_full_var)
bd02b3a0
RG
3033 c.offset = 0;
3034 else if (c.type == ADDRESSOF
5006671f
RG
3035 /* If we do not know the offset add all subfields. */
3036 && rhsoffset == UNKNOWN_OFFSET)
3037 {
3038 varinfo_t temp = lookup_vi_for_tree (curr->decl);
3039 do
3040 {
3041 struct constraint_expr c2;
3042 c2.var = temp->id;
3043 c2.type = ADDRESSOF;
3044 c2.offset = 0;
bd02b3a0 3045 if (c2.var != c.var)
779704e7 3046 VEC_safe_push (ce_s, heap, *results, &c2);
5006671f
RG
3047 temp = temp->next;
3048 }
3049 while (temp);
3050 }
bd02b3a0 3051 else if (c.type == ADDRESSOF)
e5bae89b 3052 {
5006671f
RG
3053 varinfo_t temp;
3054 unsigned HOST_WIDE_INT offset = curr->offset + rhsoffset;
e5bae89b
RG
3055
3056 /* Search the sub-field which overlaps with the
5006671f
RG
3057 pointed-to offset. If the result is outside of the variable
3058 we have to provide a conservative result, as the variable is
3059 still reachable from the resulting pointer (even though it
3060 technically cannot point to anything). The last and first
3061 sub-fields are such conservative results.
e5bae89b
RG
3062 ??? If we always had a sub-field for &object + 1 then
3063 we could represent this in a more precise way. */
5006671f
RG
3064 if (rhsoffset < 0
3065 && curr->offset < offset)
3066 offset = 0;
3067 temp = first_or_preceding_vi_for_offset (curr, offset);
e5bae89b
RG
3068
3069 /* If the found variable is not exactly at the pointed to
3070 result, we have to include the next variable in the
3071 solution as well. Otherwise two increments by offset / 2
3072 do not result in the same or a conservative superset
3073 solution. */
5006671f 3074 if (temp->offset != offset
e5bae89b
RG
3075 && temp->next != NULL)
3076 {
3077 struct constraint_expr c2;
3078 c2.var = temp->next->id;
3079 c2.type = ADDRESSOF;
3080 c2.offset = 0;
3081 VEC_safe_push (ce_s, heap, *results, &c2);
3082 }
bd02b3a0
RG
3083 c.var = temp->id;
3084 c.offset = 0;
e5bae89b 3085 }
e5bae89b 3086 else
bd02b3a0
RG
3087 c.offset = rhsoffset;
3088
3089 VEC_replace (ce_s, *results, j, &c);
e5bae89b
RG
3090 }
3091}
3092
3093
c0d459f0
RG
3094/* Given a COMPONENT_REF T, return the constraint_expr vector for it.
3095 If address_p is true the result will be taken its address of. */
910fdc79 3096
4ee00913 3097static void
c0d459f0
RG
3098get_constraint_for_component_ref (tree t, VEC(ce_s, heap) **results,
3099 bool address_p)
910fdc79 3100{
4ee00913 3101 tree orig_t = t;
b1347638 3102 HOST_WIDE_INT bitsize = -1;
6bec9271 3103 HOST_WIDE_INT bitmaxsize = -1;
910fdc79 3104 HOST_WIDE_INT bitpos;
910fdc79 3105 tree forzero;
4ee00913 3106 struct constraint_expr *result;
910fdc79
DB
3107
3108 /* Some people like to do cute things like take the address of
3109 &0->a.b */
3110 forzero = t;
2ea9dc64
RG
3111 while (handled_component_p (forzero)
3112 || INDIRECT_REF_P (forzero))
4ee00913 3113 forzero = TREE_OPERAND (forzero, 0);
910fdc79 3114
c58936b6 3115 if (CONSTANT_CLASS_P (forzero) && integer_zerop (forzero))
910fdc79 3116 {
4ee00913 3117 struct constraint_expr temp;
c58936b6 3118
4ee00913
DB
3119 temp.offset = 0;
3120 temp.var = integer_id;
3121 temp.type = SCALAR;
3122 VEC_safe_push (ce_s, heap, *results, &temp);
3123 return;
910fdc79 3124 }
c58936b6 3125
6bec9271 3126 t = get_ref_base_and_extent (t, &bitpos, &bitsize, &bitmaxsize);
21392f19 3127
c0d459f0
RG
3128 /* Pretend to take the address of the base, we'll take care of
3129 adding the required subset of sub-fields below. */
3130 get_constraint_for_1 (t, results, true);
c0d459f0 3131 gcc_assert (VEC_length (ce_s, *results) == 1);
e5bae89b 3132 result = VEC_last (ce_s, *results);
910fdc79 3133
e5bae89b
RG
3134 if (result->type == SCALAR
3135 && get_varinfo (result->var)->is_full_var)
3136 /* For single-field vars do not bother about the offset. */
3137 result->offset = 0;
3138 else if (result->type == SCALAR)
910fdc79
DB
3139 {
3140 /* In languages like C, you can access one past the end of an
3141 array. You aren't allowed to dereference it, so we can
3142 ignore this constraint. When we handle pointer subtraction,
3143 we may have to do something cute here. */
c58936b6 3144
c0d459f0 3145 if ((unsigned HOST_WIDE_INT)bitpos < get_varinfo (result->var)->fullsize
18455d17 3146 && bitmaxsize != 0)
dd68d988
DB
3147 {
3148 /* It's also not true that the constraint will actually start at the
3149 right offset, it may start in some padding. We only care about
3150 setting the constraint to the first actual field it touches, so
c58936b6 3151 walk to find it. */
c0d459f0 3152 struct constraint_expr cexpr = *result;
dd68d988 3153 varinfo_t curr;
c0d459f0
RG
3154 VEC_pop (ce_s, *results);
3155 cexpr.offset = 0;
3156 for (curr = get_varinfo (cexpr.var); curr; curr = curr->next)
dd68d988 3157 {
63d195d5 3158 if (ranges_overlap_p (curr->offset, curr->size,
c0d459f0 3159 bitpos, bitmaxsize))
dd68d988 3160 {
c0d459f0
RG
3161 cexpr.var = curr->id;
3162 VEC_safe_push (ce_s, heap, *results, &cexpr);
3163 if (address_p)
3164 break;
dd68d988
DB
3165 }
3166 }
e5bae89b
RG
3167 /* If we are going to take the address of this field then
3168 to be able to compute reachability correctly add at least
3169 the last field of the variable. */
3170 if (address_p
3171 && VEC_length (ce_s, *results) == 0)
3172 {
3173 curr = get_varinfo (cexpr.var);
3174 while (curr->next != NULL)
3175 curr = curr->next;
3176 cexpr.var = curr->id;
3177 VEC_safe_push (ce_s, heap, *results, &cexpr);
3178 }
3179 else
3180 /* Assert that we found *some* field there. The user couldn't be
3181 accessing *only* padding. */
3182 /* Still the user could access one past the end of an array
3183 embedded in a struct resulting in accessing *only* padding. */
3184 gcc_assert (VEC_length (ce_s, *results) >= 1
3185 || ref_contains_array_ref (orig_t));
dd68d988 3186 }
18455d17
RG
3187 else if (bitmaxsize == 0)
3188 {
3189 if (dump_file && (dump_flags & TDF_DETAILS))
3190 fprintf (dump_file, "Access to zero-sized part of variable,"
3191 "ignoring\n");
3192 }
910fdc79
DB
3193 else
3194 if (dump_file && (dump_flags & TDF_DETAILS))
3195 fprintf (dump_file, "Access to past the end of variable, ignoring\n");
910fdc79 3196 }
5006671f 3197 else if (result->type == DEREF)
7b765bed 3198 {
5006671f
RG
3199 /* If we do not know exactly where the access goes say so. Note
3200 that only for non-structure accesses we know that we access
3201 at most one subfiled of any variable. */
3202 if (bitpos == -1
3203 || bitsize != bitmaxsize
3204 || AGGREGATE_TYPE_P (TREE_TYPE (orig_t)))
3205 result->offset = UNKNOWN_OFFSET;
3206 else
3207 result->offset = bitpos;
7b765bed 3208 }
b51605c4
RG
3209 else if (result->type == ADDRESSOF)
3210 {
3211 /* We can end up here for component references on a
3212 VIEW_CONVERT_EXPR <>(&foobar). */
3213 result->type = SCALAR;
3214 result->var = anything_id;
3215 result->offset = 0;
3216 }
c0d459f0 3217 else
5006671f 3218 gcc_unreachable ();
910fdc79
DB
3219}
3220
3221
3222/* Dereference the constraint expression CONS, and return the result.
3223 DEREF (ADDRESSOF) = SCALAR
3224 DEREF (SCALAR) = DEREF
3225 DEREF (DEREF) = (temp = DEREF1; result = DEREF(temp))
3226 This is needed so that we can handle dereferencing DEREF constraints. */
3227
4ee00913
DB
3228static void
3229do_deref (VEC (ce_s, heap) **constraints)
910fdc79 3230{
4ee00913
DB
3231 struct constraint_expr *c;
3232 unsigned int i = 0;
c58936b6 3233
4ee00913 3234 for (i = 0; VEC_iterate (ce_s, *constraints, i, c); i++)
910fdc79 3235 {
4ee00913
DB
3236 if (c->type == SCALAR)
3237 c->type = DEREF;
3238 else if (c->type == ADDRESSOF)
3239 c->type = SCALAR;
3240 else if (c->type == DEREF)
3241 {
b14e9388
RG
3242 struct constraint_expr tmplhs;
3243 tmplhs = new_scalar_tmp_constraint_exp ("dereftmp");
4ee00913
DB
3244 process_constraint (new_constraint (tmplhs, *c));
3245 c->var = tmplhs.var;
3246 }
3247 else
3248 gcc_unreachable ();
910fdc79 3249 }
910fdc79
DB
3250}
3251
1d24fdd9
RG
3252static void get_constraint_for_1 (tree, VEC (ce_s, heap) **, bool);
3253
3254/* Given a tree T, return the constraint expression for taking the
3255 address of it. */
3256
3257static void
3258get_constraint_for_address_of (tree t, VEC (ce_s, heap) **results)
3259{
3260 struct constraint_expr *c;
3261 unsigned int i;
3262
3263 get_constraint_for_1 (t, results, true);
3264
3265 for (i = 0; VEC_iterate (ce_s, *results, i, c); i++)
3266 {
3267 if (c->type == DEREF)
3268 c->type = SCALAR;
3269 else
3270 c->type = ADDRESSOF;
3271 }
3272}
3273
910fdc79
DB
3274/* Given a tree T, return the constraint expression for it. */
3275
4ee00913 3276static void
c0d459f0 3277get_constraint_for_1 (tree t, VEC (ce_s, heap) **results, bool address_p)
910fdc79
DB
3278{
3279 struct constraint_expr temp;
3280
3281 /* x = integer is all glommed to a single variable, which doesn't
3282 point to anything by itself. That is, of course, unless it is an
3283 integer constant being treated as a pointer, in which case, we
3284 will return that this is really the addressof anything. This
3285 happens below, since it will fall into the default case. The only
3286 case we know something about an integer treated like a pointer is
3287 when it is the NULL pointer, and then we just say it points to
89ebafc6
PB
3288 NULL.
3289
3290 Do not do that if -fno-delete-null-pointer-checks though, because
3291 in that case *NULL does not fail, so it _should_ alias *anything.
3292 It is not worth adding a new option or renaming the existing one,
3293 since this case is relatively obscure. */
8eb7bc3c
RG
3294 if ((TREE_CODE (t) == INTEGER_CST
3295 && integer_zerop (t))
3296 /* The only valid CONSTRUCTORs in gimple with pointer typed
3297 elements are zero-initializer. But in IPA mode we also
3298 process global initializers, so verify at least. */
3299 || (TREE_CODE (t) == CONSTRUCTOR
3300 && CONSTRUCTOR_NELTS (t) == 0))
3301 {
3302 if (flag_delete_null_pointer_checks)
3303 temp.var = nothing_id;
3304 else
3305 temp.var = anything_id;
910fdc79
DB
3306 temp.type = ADDRESSOF;
3307 temp.offset = 0;
4ee00913
DB
3308 VEC_safe_push (ce_s, heap, *results, &temp);
3309 return;
910fdc79
DB
3310 }
3311
bd1f29d9
EB
3312 /* String constants are read-only. */
3313 if (TREE_CODE (t) == STRING_CST)
3314 {
3315 temp.var = readonly_id;
3316 temp.type = SCALAR;
3317 temp.offset = 0;
3318 VEC_safe_push (ce_s, heap, *results, &temp);
3319 return;
3320 }
3321
910fdc79
DB
3322 switch (TREE_CODE_CLASS (TREE_CODE (t)))
3323 {
3324 case tcc_expression:
3325 {
3326 switch (TREE_CODE (t))
3327 {
3328 case ADDR_EXPR:
1d24fdd9
RG
3329 get_constraint_for_address_of (TREE_OPERAND (t, 0), results);
3330 return;
e5bae89b 3331 default:;
910fdc79 3332 }
e5bae89b 3333 break;
910fdc79
DB
3334 }
3335 case tcc_reference:
3336 {
3337 switch (TREE_CODE (t))
3338 {
3339 case INDIRECT_REF:
3340 {
c0d459f0 3341 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
4ee00913
DB
3342 do_deref (results);
3343 return;
910fdc79
DB
3344 }
3345 case ARRAY_REF:
32961db5 3346 case ARRAY_RANGE_REF:
910fdc79 3347 case COMPONENT_REF:
c0d459f0 3348 get_constraint_for_component_ref (t, results, address_p);
4ee00913 3349 return;
5006671f
RG
3350 case VIEW_CONVERT_EXPR:
3351 get_constraint_for_1 (TREE_OPERAND (t, 0), results, address_p);
3352 return;
3353 /* We are missing handling for TARGET_MEM_REF here. */
e5bae89b 3354 default:;
910fdc79 3355 }
e5bae89b 3356 break;
910fdc79 3357 }
910fdc79
DB
3358 case tcc_exceptional:
3359 {
3360 switch (TREE_CODE (t))
3361 {
910fdc79 3362 case SSA_NAME:
4ee00913 3363 {
c0d459f0 3364 get_constraint_for_ssa_var (t, results, address_p);
4ee00913
DB
3365 return;
3366 }
47d8a903
RG
3367 case CONSTRUCTOR:
3368 {
3369 unsigned int i;
3370 tree val;
3371 VEC (ce_s, heap) *tmp = NULL;
3372 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
3373 {
3374 struct constraint_expr *rhsp;
3375 unsigned j;
3376 get_constraint_for_1 (val, &tmp, address_p);
3377 for (j = 0; VEC_iterate (ce_s, tmp, j, rhsp); ++j)
3378 VEC_safe_push (ce_s, heap, *results, rhsp);
3379 VEC_truncate (ce_s, tmp, 0);
3380 }
3381 VEC_free (ce_s, heap, tmp);
3382 /* We do not know whether the constructor was complete,
3383 so technically we have to add &NOTHING or &ANYTHING
3384 like we do for an empty constructor as well. */
3385 return;
3386 }
e5bae89b 3387 default:;
910fdc79 3388 }
e5bae89b 3389 break;
910fdc79
DB
3390 }
3391 case tcc_declaration:
4ee00913 3392 {
c0d459f0 3393 get_constraint_for_ssa_var (t, results, address_p);
4ee00913
DB
3394 return;
3395 }
e5bae89b 3396 default:;
910fdc79 3397 }
e5bae89b
RG
3398
3399 /* The default fallback is a constraint from anything. */
3400 temp.type = ADDRESSOF;
3401 temp.var = anything_id;
3402 temp.offset = 0;
3403 VEC_safe_push (ce_s, heap, *results, &temp);
910fdc79
DB
3404}
3405
c0d459f0
RG
3406/* Given a gimple tree T, return the constraint expression vector for it. */
3407
3408static void
3409get_constraint_for (tree t, VEC (ce_s, heap) **results)
3410{
3411 gcc_assert (VEC_length (ce_s, *results) == 0);
3412
3413 get_constraint_for_1 (t, results, false);
3414}
910fdc79 3415
779704e7
RG
3416
3417/* Efficiently generates constraints from all entries in *RHSC to all
3418 entries in *LHSC. */
3419
3420static void
3421process_all_all_constraints (VEC (ce_s, heap) *lhsc, VEC (ce_s, heap) *rhsc)
3422{
3423 struct constraint_expr *lhsp, *rhsp;
3424 unsigned i, j;
3425
3426 if (VEC_length (ce_s, lhsc) <= 1
3427 || VEC_length (ce_s, rhsc) <= 1)
3428 {
3429 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3430 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); ++j)
3431 process_constraint (new_constraint (*lhsp, *rhsp));
3432 }
3433 else
3434 {
3435 struct constraint_expr tmp;
b14e9388 3436 tmp = new_scalar_tmp_constraint_exp ("allalltmp");
779704e7
RG
3437 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
3438 process_constraint (new_constraint (tmp, *rhsp));
3439 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
3440 process_constraint (new_constraint (*lhsp, tmp));
3441 }
3442}
3443
910fdc79
DB
3444/* Handle aggregate copies by expanding into copies of the respective
3445 fields of the structures. */
3446
3447static void
3448do_structure_copy (tree lhsop, tree rhsop)
3449{
5006671f 3450 struct constraint_expr *lhsp, *rhsp;
4ee00913 3451 VEC (ce_s, heap) *lhsc = NULL, *rhsc = NULL;
5006671f
RG
3452 unsigned j;
3453
3454 get_constraint_for (lhsop, &lhsc);
3455 get_constraint_for (rhsop, &rhsc);
3456 lhsp = VEC_index (ce_s, lhsc, 0);
3457 rhsp = VEC_index (ce_s, rhsc, 0);
3458 if (lhsp->type == DEREF
3459 || (lhsp->type == ADDRESSOF && lhsp->var == anything_id)
3460 || rhsp->type == DEREF)
b28ae58f
RG
3461 {
3462 if (lhsp->type == DEREF)
3463 {
3464 gcc_assert (VEC_length (ce_s, lhsc) == 1);
3465 lhsp->offset = UNKNOWN_OFFSET;
3466 }
3467 if (rhsp->type == DEREF)
3468 {
3469 gcc_assert (VEC_length (ce_s, rhsc) == 1);
3470 rhsp->offset = UNKNOWN_OFFSET;
3471 }
3472 process_all_all_constraints (lhsc, rhsc);
3473 }
5006671f
RG
3474 else if (lhsp->type == SCALAR
3475 && (rhsp->type == SCALAR
3476 || rhsp->type == ADDRESSOF))
910fdc79 3477 {
5006671f
RG
3478 HOST_WIDE_INT lhssize, lhsmaxsize, lhsoffset;
3479 HOST_WIDE_INT rhssize, rhsmaxsize, rhsoffset;
3480 unsigned k = 0;
0f900dfa
JJ
3481 get_ref_base_and_extent (lhsop, &lhsoffset, &lhssize, &lhsmaxsize);
3482 get_ref_base_and_extent (rhsop, &rhsoffset, &rhssize, &rhsmaxsize);
5006671f 3483 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp);)
910fdc79 3484 {
5006671f
RG
3485 varinfo_t lhsv, rhsv;
3486 rhsp = VEC_index (ce_s, rhsc, k);
3487 lhsv = get_varinfo (lhsp->var);
3488 rhsv = get_varinfo (rhsp->var);
3489 if (lhsv->may_have_pointers
3490 && ranges_overlap_p (lhsv->offset + rhsoffset, lhsv->size,
3491 rhsv->offset + lhsoffset, rhsv->size))
3492 process_constraint (new_constraint (*lhsp, *rhsp));
3493 if (lhsv->offset + rhsoffset + lhsv->size
3494 > rhsv->offset + lhsoffset + rhsv->size)
3495 {
3496 ++k;
3497 if (k >= VEC_length (ce_s, rhsc))
3498 break;
3499 }
910fdc79 3500 else
5006671f 3501 ++j;
910fdc79
DB
3502 }
3503 }
3504 else
5006671f 3505 gcc_unreachable ();
a5eadacc 3506
5006671f
RG
3507 VEC_free (ce_s, heap, lhsc);
3508 VEC_free (ce_s, heap, rhsc);
910fdc79
DB
3509}
3510
b7091901
RG
3511/* Create a constraint ID = OP. */
3512
3513static void
3514make_constraint_to (unsigned id, tree op)
3515{
3516 VEC(ce_s, heap) *rhsc = NULL;
3517 struct constraint_expr *c;
3518 struct constraint_expr includes;
3519 unsigned int j;
3520
3521 includes.var = id;
3522 includes.offset = 0;
3523 includes.type = SCALAR;
3524
3525 get_constraint_for (op, &rhsc);
3526 for (j = 0; VEC_iterate (ce_s, rhsc, j, c); j++)
faf2ecc5 3527 process_constraint (new_constraint (includes, *c));
b7091901
RG
3528 VEC_free (ce_s, heap, rhsc);
3529}
3530
74d27244
RG
3531/* Create a constraint ID = &FROM. */
3532
3533static void
3534make_constraint_from (varinfo_t vi, int from)
3535{
3536 struct constraint_expr lhs, rhs;
3537
3538 lhs.var = vi->id;
3539 lhs.offset = 0;
3540 lhs.type = SCALAR;
3541
3542 rhs.var = from;
3543 rhs.offset = 0;
3544 rhs.type = ADDRESSOF;
3545 process_constraint (new_constraint (lhs, rhs));
3546}
3547
3548/* Create a constraint ID = FROM. */
3549
3550static void
3551make_copy_constraint (varinfo_t vi, int from)
3552{
3553 struct constraint_expr lhs, rhs;
3554
3555 lhs.var = vi->id;
3556 lhs.offset = 0;
3557 lhs.type = SCALAR;
3558
3559 rhs.var = from;
3560 rhs.offset = 0;
3561 rhs.type = SCALAR;
3562 process_constraint (new_constraint (lhs, rhs));
3563}
3564
b7091901
RG
3565/* Make constraints necessary to make OP escape. */
3566
3567static void
3568make_escape_constraint (tree op)
3569{
3570 make_constraint_to (escaped_id, op);
3571}
3572
3e8542ca
RG
3573/* Add constraints to that the solution of VI is transitively closed. */
3574
3575static void
3576make_transitive_closure_constraints (varinfo_t vi)
3577{
3578 struct constraint_expr lhs, rhs;
3579
3580 /* VAR = *VAR; */
3581 lhs.type = SCALAR;
3582 lhs.var = vi->id;
3583 lhs.offset = 0;
3584 rhs.type = DEREF;
3585 rhs.var = vi->id;
3586 rhs.offset = 0;
3587 process_constraint (new_constraint (lhs, rhs));
3588
3589 /* VAR = VAR + UNKNOWN; */
3590 lhs.type = SCALAR;
3591 lhs.var = vi->id;
3592 lhs.offset = 0;
3593 rhs.type = SCALAR;
3594 rhs.var = vi->id;
3595 rhs.offset = UNKNOWN_OFFSET;
3596 process_constraint (new_constraint (lhs, rhs));
3597}
3598
0b7b376d
RG
3599/* Create a new artificial heap variable with NAME.
3600 Return the created variable. */
74d27244
RG
3601
3602static varinfo_t
0b7b376d 3603make_heapvar_for (varinfo_t lhs, const char *name)
74d27244
RG
3604{
3605 varinfo_t vi;
8bc88f25 3606 tree heapvar = heapvar_lookup (lhs->decl, lhs->offset);
74d27244
RG
3607
3608 if (heapvar == NULL_TREE)
3609 {
3610 var_ann_t ann;
3611 heapvar = create_tmp_var_raw (ptr_type_node, name);
3612 DECL_EXTERNAL (heapvar) = 1;
3613
8bc88f25 3614 heapvar_insert (lhs->decl, lhs->offset, heapvar);
74d27244
RG
3615
3616 ann = get_var_ann (heapvar);
3617 ann->is_heapvar = 1;
3618 }
3619
3620 /* For global vars we need to add a heapvar to the list of referenced
3621 vars of a different function than it was created for originally. */
25a6a873 3622 if (cfun && gimple_referenced_vars (cfun))
74d27244
RG
3623 add_referenced_var (heapvar);
3624
3625 vi = new_var_info (heapvar, name);
3626 vi->is_artificial_var = true;
3627 vi->is_heap_var = true;
3628 vi->is_unknown_size_var = true;
b41e33fe 3629 vi->offset = 0;
74d27244
RG
3630 vi->fullsize = ~0;
3631 vi->size = ~0;
3632 vi->is_full_var = true;
3633 insert_vi_for_tree (heapvar, vi);
3634
0b7b376d
RG
3635 return vi;
3636}
3637
3638/* Create a new artificial heap variable with NAME and make a
3639 constraint from it to LHS. Return the created variable. */
3640
3641static varinfo_t
3642make_constraint_from_heapvar (varinfo_t lhs, const char *name)
3643{
3644 varinfo_t vi = make_heapvar_for (lhs, name);
74d27244
RG
3645 make_constraint_from (lhs, vi->id);
3646
3647 return vi;
3648}
3649
3650/* Create a new artificial heap variable with NAME and make a
3651 constraint from it to LHS. Set flags according to a tag used
3652 for tracking restrict pointers. */
3653
3654static void
3655make_constraint_from_restrict (varinfo_t lhs, const char *name)
3656{
3657 varinfo_t vi;
3658 vi = make_constraint_from_heapvar (lhs, name);
3659 vi->is_restrict_var = 1;
3660 vi->is_global_var = 0;
3661 vi->is_special_var = 1;
3662 vi->may_have_pointers = 0;
3663}
3664
25a6a873
RG
3665/* In IPA mode there are varinfos for different aspects of reach
3666 function designator. One for the points-to set of the return
3667 value, one for the variables that are clobbered by the function,
3668 one for its uses and one for each parameter (including a single
3669 glob for remaining variadic arguments). */
3670
3671enum { fi_clobbers = 1, fi_uses = 2,
3672 fi_static_chain = 3, fi_result = 4, fi_parm_base = 5 };
3673
3674/* Get a constraint for the requested part of a function designator FI
3675 when operating in IPA mode. */
3676
3677static struct constraint_expr
3678get_function_part_constraint (varinfo_t fi, unsigned part)
3679{
3680 struct constraint_expr c;
3681
3682 gcc_assert (in_ipa_mode);
3683
3684 if (fi->id == anything_id)
3685 {
3686 /* ??? We probably should have a ANYFN special variable. */
3687 c.var = anything_id;
3688 c.offset = 0;
3689 c.type = SCALAR;
3690 }
3691 else if (TREE_CODE (fi->decl) == FUNCTION_DECL)
3692 {
3693 varinfo_t ai = first_vi_for_offset (fi, part);
18abb35e
RG
3694 if (ai)
3695 c.var = ai->id;
3696 else
3697 c.var = anything_id;
25a6a873
RG
3698 c.offset = 0;
3699 c.type = SCALAR;
3700 }
3701 else
3702 {
3703 c.var = fi->id;
3704 c.offset = part;
3705 c.type = DEREF;
3706 }
3707
3708 return c;
3709}
3710
7b765bed
DB
3711/* For non-IPA mode, generate constraints necessary for a call on the
3712 RHS. */
3713
3714static void
472c7fbd 3715handle_rhs_call (gimple stmt, VEC(ce_s, heap) **results)
7b765bed 3716{
472c7fbd 3717 struct constraint_expr rhsc;
726a989a 3718 unsigned i;
0b7b376d 3719 bool returns_uses = false;
7b765bed 3720
726a989a
RB
3721 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3722 {
3723 tree arg = gimple_call_arg (stmt, i);
0b7b376d 3724 int flags = gimple_call_arg_flags (stmt, i);
726a989a 3725
0b7b376d
RG
3726 /* If the argument is not used or it does not contain pointers
3727 we can ignore it. */
3728 if ((flags & EAF_UNUSED)
3729 || !could_have_pointers (arg))
3730 continue;
3731
3732 /* As we compute ESCAPED context-insensitive we do not gain
3733 any precision with just EAF_NOCLOBBER but not EAF_NOESCAPE
3734 set. The argument would still get clobbered through the
3735 escape solution.
3736 ??? We might get away with less (and more precise) constraints
3737 if using a temporary for transitively closing things. */
3738 if ((flags & EAF_NOCLOBBER)
3739 && (flags & EAF_NOESCAPE))
3740 {
3741 varinfo_t uses = get_call_use_vi (stmt);
3742 if (!(flags & EAF_DIRECT))
3743 make_transitive_closure_constraints (uses);
3744 make_constraint_to (uses->id, arg);
3745 returns_uses = true;
3746 }
3747 else if (flags & EAF_NOESCAPE)
3748 {
3749 varinfo_t uses = get_call_use_vi (stmt);
3750 varinfo_t clobbers = get_call_clobber_vi (stmt);
3751 if (!(flags & EAF_DIRECT))
3752 {
3753 make_transitive_closure_constraints (uses);
3754 make_transitive_closure_constraints (clobbers);
3755 }
3756 make_constraint_to (uses->id, arg);
3757 make_constraint_to (clobbers->id, arg);
3758 returns_uses = true;
3759 }
3760 else
726a989a
RB
3761 make_escape_constraint (arg);
3762 }
b7091901 3763
0b7b376d
RG
3764 /* If we added to the calls uses solution make sure we account for
3765 pointers to it to be returned. */
3766 if (returns_uses)
3767 {
3768 rhsc.var = get_call_use_vi (stmt)->id;
3769 rhsc.offset = 0;
3770 rhsc.type = SCALAR;
3771 VEC_safe_push (ce_s, heap, *results, &rhsc);
3772 }
3773
b7091901 3774 /* The static chain escapes as well. */
726a989a
RB
3775 if (gimple_call_chain (stmt))
3776 make_escape_constraint (gimple_call_chain (stmt));
472c7fbd 3777
1d24fdd9
RG
3778 /* And if we applied NRV the address of the return slot escapes as well. */
3779 if (gimple_call_return_slot_opt_p (stmt)
3780 && gimple_call_lhs (stmt) != NULL_TREE
4d61856d 3781 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
1d24fdd9
RG
3782 {
3783 VEC(ce_s, heap) *tmpc = NULL;
3784 struct constraint_expr lhsc, *c;
3785 get_constraint_for_address_of (gimple_call_lhs (stmt), &tmpc);
3786 lhsc.var = escaped_id;
3787 lhsc.offset = 0;
3788 lhsc.type = SCALAR;
3789 for (i = 0; VEC_iterate (ce_s, tmpc, i, c); ++i)
3790 process_constraint (new_constraint (lhsc, *c));
3791 VEC_free(ce_s, heap, tmpc);
3792 }
3793
5006671f
RG
3794 /* Regular functions return nonlocal memory. */
3795 rhsc.var = nonlocal_id;
472c7fbd 3796 rhsc.offset = 0;
5006671f 3797 rhsc.type = SCALAR;
472c7fbd 3798 VEC_safe_push (ce_s, heap, *results, &rhsc);
7b765bed 3799}
e8ca4159 3800
af947da7
RG
3801/* For non-IPA mode, generate constraints necessary for a call
3802 that returns a pointer and assigns it to LHS. This simply makes
b7091901 3803 the LHS point to global and escaped variables. */
af947da7
RG
3804
3805static void
0b7b376d
RG
3806handle_lhs_call (gimple stmt, tree lhs, int flags, VEC(ce_s, heap) *rhsc,
3807 tree fndecl)
af947da7
RG
3808{
3809 VEC(ce_s, heap) *lhsc = NULL;
af947da7 3810
b7091901 3811 get_constraint_for (lhs, &lhsc);
0b7b376d
RG
3812 /* If the store is to a global decl make sure to
3813 add proper escape constraints. */
3814 lhs = get_base_address (lhs);
3815 if (lhs
3816 && DECL_P (lhs)
3817 && is_global_var (lhs))
3818 {
3819 struct constraint_expr tmpc;
3820 tmpc.var = escaped_id;
3821 tmpc.offset = 0;
3822 tmpc.type = SCALAR;
3823 VEC_safe_push (ce_s, heap, lhsc, &tmpc);
3824 }
183ae595 3825
0b7b376d
RG
3826 /* If the call returns an argument unmodified override the rhs
3827 constraints. */
3828 flags = gimple_call_return_flags (stmt);
3829 if (flags & ERF_RETURNS_ARG
3830 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
3831 {
3832 tree arg;
3833 rhsc = NULL;
3834 arg = gimple_call_arg (stmt, flags & ERF_RETURN_ARG_MASK);
3835 get_constraint_for (arg, &rhsc);
3836 process_all_all_constraints (lhsc, rhsc);
3837 VEC_free (ce_s, heap, rhsc);
3838 }
3839 else if (flags & ERF_NOALIAS)
183ae595 3840 {
183ae595 3841 varinfo_t vi;
0b7b376d
RG
3842 struct constraint_expr tmpc;
3843 rhsc = NULL;
3844 vi = make_heapvar_for (get_vi_for_tree (lhs), "HEAP");
14c41b9b
RG
3845 /* We delay marking allocated storage global until we know if
3846 it escapes. */
91deb937 3847 DECL_EXTERNAL (vi->decl) = 0;
14c41b9b 3848 vi->is_global_var = 0;
72d182d3 3849 /* If this is not a real malloc call assume the memory was
0b7b376d 3850 initialized and thus may point to global memory. All
72d182d3
RG
3851 builtin functions with the malloc attribute behave in a sane way. */
3852 if (!fndecl
3853 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL)
3854 make_constraint_from (vi, nonlocal_id);
0b7b376d
RG
3855 tmpc.var = vi->id;
3856 tmpc.offset = 0;
3857 tmpc.type = ADDRESSOF;
3858 VEC_safe_push (ce_s, heap, rhsc, &tmpc);
183ae595 3859 }
0b7b376d
RG
3860
3861 process_all_all_constraints (lhsc, rhsc);
3862
b7091901
RG
3863 VEC_free (ce_s, heap, lhsc);
3864}
3865
3866/* For non-IPA mode, generate constraints necessary for a call of a
3867 const function that returns a pointer in the statement STMT. */
3868
3869static void
472c7fbd 3870handle_const_call (gimple stmt, VEC(ce_s, heap) **results)
b7091901 3871{
b14e9388 3872 struct constraint_expr rhsc;
472c7fbd 3873 unsigned int k;
b7091901 3874
472c7fbd
RG
3875 /* Treat nested const functions the same as pure functions as far
3876 as the static chain is concerned. */
726a989a 3877 if (gimple_call_chain (stmt))
b7091901 3878 {
3e8542ca
RG
3879 varinfo_t uses = get_call_use_vi (stmt);
3880 make_transitive_closure_constraints (uses);
3881 make_constraint_to (uses->id, gimple_call_chain (stmt));
3882 rhsc.var = uses->id;
b7091901 3883 rhsc.offset = 0;
472c7fbd
RG
3884 rhsc.type = SCALAR;
3885 VEC_safe_push (ce_s, heap, *results, &rhsc);
b7091901
RG
3886 }
3887
b7091901 3888 /* May return arguments. */
726a989a
RB
3889 for (k = 0; k < gimple_call_num_args (stmt); ++k)
3890 {
3891 tree arg = gimple_call_arg (stmt, k);
3892
3893 if (could_have_pointers (arg))
3894 {
3895 VEC(ce_s, heap) *argc = NULL;
b14e9388 3896 unsigned i;
726a989a 3897 struct constraint_expr *argp;
726a989a 3898 get_constraint_for (arg, &argc);
b14e9388
RG
3899 for (i = 0; VEC_iterate (ce_s, argc, i, argp); ++i)
3900 VEC_safe_push (ce_s, heap, *results, argp);
3901 VEC_free(ce_s, heap, argc);
726a989a
RB
3902 }
3903 }
b7091901 3904
472c7fbd
RG
3905 /* May return addresses of globals. */
3906 rhsc.var = nonlocal_id;
3907 rhsc.offset = 0;
3908 rhsc.type = ADDRESSOF;
3909 VEC_safe_push (ce_s, heap, *results, &rhsc);
af947da7
RG
3910}
3911
15c15196
RG
3912/* For non-IPA mode, generate constraints necessary for a call to a
3913 pure function in statement STMT. */
3914
3915static void
472c7fbd 3916handle_pure_call (gimple stmt, VEC(ce_s, heap) **results)
15c15196 3917{
472c7fbd 3918 struct constraint_expr rhsc;
726a989a 3919 unsigned i;
3e8542ca 3920 varinfo_t uses = NULL;
15c15196
RG
3921
3922 /* Memory reached from pointer arguments is call-used. */
726a989a
RB
3923 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3924 {
3925 tree arg = gimple_call_arg (stmt, i);
3926
3927 if (could_have_pointers (arg))
472c7fbd 3928 {
3e8542ca
RG
3929 if (!uses)
3930 {
3931 uses = get_call_use_vi (stmt);
3932 make_transitive_closure_constraints (uses);
3933 }
3934 make_constraint_to (uses->id, arg);
472c7fbd 3935 }
726a989a 3936 }
15c15196
RG
3937
3938 /* The static chain is used as well. */
726a989a 3939 if (gimple_call_chain (stmt))
15c15196 3940 {
3e8542ca
RG
3941 if (!uses)
3942 {
3943 uses = get_call_use_vi (stmt);
3944 make_transitive_closure_constraints (uses);
3945 }
3946 make_constraint_to (uses->id, gimple_call_chain (stmt));
472c7fbd 3947 }
15c15196 3948
3e8542ca
RG
3949 /* Pure functions may return call-used and nonlocal memory. */
3950 if (uses)
472c7fbd 3951 {
3e8542ca 3952 rhsc.var = uses->id;
15c15196 3953 rhsc.offset = 0;
472c7fbd
RG
3954 rhsc.type = SCALAR;
3955 VEC_safe_push (ce_s, heap, *results, &rhsc);
15c15196 3956 }
5006671f 3957 rhsc.var = nonlocal_id;
472c7fbd 3958 rhsc.offset = 0;
5006671f 3959 rhsc.type = SCALAR;
472c7fbd 3960 VEC_safe_push (ce_s, heap, *results, &rhsc);
15c15196
RG
3961}
3962
25a6a873
RG
3963
3964/* Return the varinfo for the callee of CALL. */
3965
3966static varinfo_t
3967get_fi_for_callee (gimple call)
3968{
3969 tree decl;
3970
3971 /* If we can directly resolve the function being called, do so.
3972 Otherwise, it must be some sort of indirect expression that
3973 we should still be able to handle. */
3974 decl = gimple_call_fndecl (call);
3975 if (decl)
3976 return get_vi_for_tree (decl);
3977
3978 decl = gimple_call_fn (call);
3979 /* The function can be either an SSA name pointer or,
3980 worse, an OBJ_TYPE_REF. In this case we have no
3981 clue and should be getting ANYFN (well, ANYTHING for now). */
3982 if (TREE_CODE (decl) == SSA_NAME)
3983 {
3984 if (TREE_CODE (decl) == SSA_NAME
3985 && TREE_CODE (SSA_NAME_VAR (decl)) == PARM_DECL
3986 && SSA_NAME_IS_DEFAULT_DEF (decl))
3987 decl = SSA_NAME_VAR (decl);
3988 return get_vi_for_tree (decl);
3989 }
3990 else if (TREE_CODE (decl) == INTEGER_CST
3991 || TREE_CODE (decl) == OBJ_TYPE_REF)
3992 return get_varinfo (anything_id);
3993 else
3994 gcc_unreachable ();
3995}
3996
e8ca4159
DN
3997/* Walk statement T setting up aliasing constraints according to the
3998 references found in T. This function is the main part of the
3999 constraint builder. AI points to auxiliary alias information used
4000 when building alias sets and computing alias grouping heuristics. */
910fdc79
DB
4001
4002static void
726a989a 4003find_func_aliases (gimple origt)
910fdc79 4004{
726a989a 4005 gimple t = origt;
4ee00913
DB
4006 VEC(ce_s, heap) *lhsc = NULL;
4007 VEC(ce_s, heap) *rhsc = NULL;
4008 struct constraint_expr *c;
25a6a873 4009 varinfo_t fi;
910fdc79 4010
e8ca4159 4011 /* Now build constraints expressions. */
726a989a 4012 if (gimple_code (t) == GIMPLE_PHI)
e8ca4159 4013 {
726a989a 4014 gcc_assert (!AGGREGATE_TYPE_P (TREE_TYPE (gimple_phi_result (t))));
6df11ca1 4015
e8ca4159
DN
4016 /* Only care about pointers and structures containing
4017 pointers. */
726a989a 4018 if (could_have_pointers (gimple_phi_result (t)))
e8ca4159 4019 {
726a989a 4020 size_t i;
4ee00913 4021 unsigned int j;
c58936b6 4022
4ee00913
DB
4023 /* For a phi node, assign all the arguments to
4024 the result. */
726a989a
RB
4025 get_constraint_for (gimple_phi_result (t), &lhsc);
4026 for (i = 0; i < gimple_phi_num_args (t); i++)
c58936b6 4027 {
0a4288d9
RG
4028 tree strippedrhs = PHI_ARG_DEF (t, i);
4029
4030 STRIP_NOPS (strippedrhs);
726a989a 4031 get_constraint_for (gimple_phi_arg_def (t, i), &rhsc);
0a4288d9 4032
4ee00913
DB
4033 for (j = 0; VEC_iterate (ce_s, lhsc, j, c); j++)
4034 {
4035 struct constraint_expr *c2;
4036 while (VEC_length (ce_s, rhsc) > 0)
4037 {
4038 c2 = VEC_last (ce_s, rhsc);
4039 process_constraint (new_constraint (*c, *c2));
4040 VEC_pop (ce_s, rhsc);
4041 }
4042 }
c58936b6 4043 }
4ee00913
DB
4044 }
4045 }
4046 /* In IPA mode, we need to generate constraints to pass call
726a989a
RB
4047 arguments through their calls. There are two cases,
4048 either a GIMPLE_CALL returning a value, or just a plain
4049 GIMPLE_CALL when we are not.
7b765bed
DB
4050
4051 In non-ipa mode, we need to generate constraints for each
4052 pointer passed by address. */
726a989a 4053 else if (is_gimple_call (t))
4ee00913 4054 {
5c245b95
RG
4055 tree fndecl = gimple_call_fndecl (t);
4056 if (fndecl != NULL_TREE
779704e7
RG
4057 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
4058 /* ??? All builtins that are handled here need to be handled
4059 in the alias-oracle query functions explicitly! */
4060 switch (DECL_FUNCTION_CODE (fndecl))
4061 {
4062 /* All the following functions return a pointer to the same object
4063 as their first argument points to. The functions do not add
4064 to the ESCAPED solution. The functions make the first argument
4065 pointed to memory point to what the second argument pointed to
4066 memory points to. */
4067 case BUILT_IN_STRCPY:
4068 case BUILT_IN_STRNCPY:
4069 case BUILT_IN_BCOPY:
4070 case BUILT_IN_MEMCPY:
4071 case BUILT_IN_MEMMOVE:
4072 case BUILT_IN_MEMPCPY:
4073 case BUILT_IN_STPCPY:
4074 case BUILT_IN_STPNCPY:
4075 case BUILT_IN_STRCAT:
4076 case BUILT_IN_STRNCAT:
4077 {
4078 tree res = gimple_call_lhs (t);
1307c758
RG
4079 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4080 == BUILT_IN_BCOPY ? 1 : 0));
4081 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (fndecl)
4082 == BUILT_IN_BCOPY ? 0 : 1));
779704e7
RG
4083 if (res != NULL_TREE)
4084 {
4085 get_constraint_for (res, &lhsc);
4086 if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMPCPY
4087 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPCPY
4088 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STPNCPY)
4089 get_constraint_for_ptr_offset (dest, NULL_TREE, &rhsc);
4090 else
4091 get_constraint_for (dest, &rhsc);
4092 process_all_all_constraints (lhsc, rhsc);
4093 VEC_free (ce_s, heap, lhsc);
4094 VEC_free (ce_s, heap, rhsc);
4095 }
4096 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4097 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4098 do_deref (&lhsc);
4099 do_deref (&rhsc);
4100 process_all_all_constraints (lhsc, rhsc);
4101 VEC_free (ce_s, heap, lhsc);
4102 VEC_free (ce_s, heap, rhsc);
4103 return;
4104 }
4105 case BUILT_IN_MEMSET:
4106 {
4107 tree res = gimple_call_lhs (t);
4108 tree dest = gimple_call_arg (t, 0);
4109 unsigned i;
4110 ce_s *lhsp;
4111 struct constraint_expr ac;
4112 if (res != NULL_TREE)
4113 {
4114 get_constraint_for (res, &lhsc);
4115 get_constraint_for (dest, &rhsc);
4116 process_all_all_constraints (lhsc, rhsc);
4117 VEC_free (ce_s, heap, lhsc);
4118 VEC_free (ce_s, heap, rhsc);
4119 }
4120 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4121 do_deref (&lhsc);
825be69e
RG
4122 if (flag_delete_null_pointer_checks
4123 && integer_zerop (gimple_call_arg (t, 1)))
4124 {
4125 ac.type = ADDRESSOF;
4126 ac.var = nothing_id;
4127 }
4128 else
4129 {
4130 ac.type = SCALAR;
4131 ac.var = integer_id;
4132 }
779704e7
RG
4133 ac.offset = 0;
4134 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
4135 process_constraint (new_constraint (*lhsp, ac));
4136 VEC_free (ce_s, heap, lhsc);
4137 return;
4138 }
4139 /* All the following functions do not return pointers, do not
4140 modify the points-to sets of memory reachable from their
4141 arguments and do not add to the ESCAPED solution. */
4142 case BUILT_IN_SINCOS:
4143 case BUILT_IN_SINCOSF:
4144 case BUILT_IN_SINCOSL:
4145 case BUILT_IN_FREXP:
4146 case BUILT_IN_FREXPF:
4147 case BUILT_IN_FREXPL:
4148 case BUILT_IN_GAMMA_R:
4149 case BUILT_IN_GAMMAF_R:
4150 case BUILT_IN_GAMMAL_R:
4151 case BUILT_IN_LGAMMA_R:
4152 case BUILT_IN_LGAMMAF_R:
4153 case BUILT_IN_LGAMMAL_R:
4154 case BUILT_IN_MODF:
4155 case BUILT_IN_MODFF:
4156 case BUILT_IN_MODFL:
4157 case BUILT_IN_REMQUO:
4158 case BUILT_IN_REMQUOF:
4159 case BUILT_IN_REMQUOL:
4160 case BUILT_IN_FREE:
4161 return;
25a6a873
RG
4162 /* Trampolines are special - they set up passing the static
4163 frame. */
4164 case BUILT_IN_INIT_TRAMPOLINE:
4165 {
4166 tree tramp = gimple_call_arg (t, 0);
4167 tree nfunc = gimple_call_arg (t, 1);
4168 tree frame = gimple_call_arg (t, 2);
4169 unsigned i;
4170 struct constraint_expr lhs, *rhsp;
4171 if (in_ipa_mode)
4172 {
4173 varinfo_t nfi = NULL;
4174 gcc_assert (TREE_CODE (nfunc) == ADDR_EXPR);
4175 nfi = lookup_vi_for_tree (TREE_OPERAND (nfunc, 0));
4176 if (nfi)
4177 {
4178 lhs = get_function_part_constraint (nfi, fi_static_chain);
4179 get_constraint_for (frame, &rhsc);
4180 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
4181 process_constraint (new_constraint (lhs, *rhsp));
4182 VEC_free (ce_s, heap, rhsc);
4183
4184 /* Make the frame point to the function for
4185 the trampoline adjustment call. */
4186 get_constraint_for (tramp, &lhsc);
4187 do_deref (&lhsc);
4188 get_constraint_for (nfunc, &rhsc);
4189 process_all_all_constraints (lhsc, rhsc);
4190 VEC_free (ce_s, heap, rhsc);
4191 VEC_free (ce_s, heap, lhsc);
4192
4193 return;
4194 }
4195 }
4196 /* Else fallthru to generic handling which will let
4197 the frame escape. */
4198 break;
4199 }
4200 case BUILT_IN_ADJUST_TRAMPOLINE:
4201 {
4202 tree tramp = gimple_call_arg (t, 0);
4203 tree res = gimple_call_lhs (t);
4204 if (in_ipa_mode && res)
4205 {
4206 get_constraint_for (res, &lhsc);
4207 get_constraint_for (tramp, &rhsc);
4208 do_deref (&rhsc);
4209 process_all_all_constraints (lhsc, rhsc);
4210 VEC_free (ce_s, heap, rhsc);
4211 VEC_free (ce_s, heap, lhsc);
4212 }
4213 return;
4214 }
4215 /* Variadic argument handling needs to be handled in IPA
4216 mode as well. */
4217 case BUILT_IN_VA_START:
4218 {
4219 if (in_ipa_mode)
4220 {
4221 tree valist = gimple_call_arg (t, 0);
4222 struct constraint_expr rhs, *lhsp;
4223 unsigned i;
4224 /* The va_list gets access to pointers in variadic
4225 arguments. */
4226 fi = lookup_vi_for_tree (cfun->decl);
4227 gcc_assert (fi != NULL);
4228 get_constraint_for (valist, &lhsc);
4229 do_deref (&lhsc);
4230 rhs = get_function_part_constraint (fi, ~0);
4231 rhs.type = ADDRESSOF;
4232 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); ++i)
4233 process_constraint (new_constraint (*lhsp, rhs));
4234 VEC_free (ce_s, heap, lhsc);
4235 /* va_list is clobbered. */
4236 make_constraint_to (get_call_clobber_vi (t)->id, valist);
4237 return;
4238 }
4239 break;
4240 }
4241 /* va_end doesn't have any effect that matters. */
4242 case BUILT_IN_VA_END:
4243 return;
779704e7
RG
4244 /* printf-style functions may have hooks to set pointers to
4245 point to somewhere into the generated string. Leave them
4246 for a later excercise... */
4247 default:
4248 /* Fallthru to general call handling. */;
4249 }
5c245b95
RG
4250 if (!in_ipa_mode
4251 || (fndecl
25a6a873
RG
4252 && (!(fi = lookup_vi_for_tree (fndecl))
4253 || !fi->is_fn_info)))
4ee00913 4254 {
472c7fbd 4255 VEC(ce_s, heap) *rhsc = NULL;
726a989a
RB
4256 int flags = gimple_call_flags (t);
4257
b7091901
RG
4258 /* Const functions can return their arguments and addresses
4259 of global memory but not of escaped memory. */
472c7fbd 4260 if (flags & (ECF_CONST|ECF_NOVOPS))
b7091901 4261 {
726a989a
RB
4262 if (gimple_call_lhs (t)
4263 && could_have_pointers (gimple_call_lhs (t)))
472c7fbd 4264 handle_const_call (t, &rhsc);
b7091901 4265 }
726a989a
RB
4266 /* Pure functions can return addresses in and of memory
4267 reachable from their arguments, but they are not an escape
4268 point for reachable memory of their arguments. */
472c7fbd
RG
4269 else if (flags & (ECF_PURE|ECF_LOOPING_CONST_OR_PURE))
4270 handle_pure_call (t, &rhsc);
726a989a 4271 else
472c7fbd
RG
4272 handle_rhs_call (t, &rhsc);
4273 if (gimple_call_lhs (t)
4274 && could_have_pointers (gimple_call_lhs (t)))
0b7b376d 4275 handle_lhs_call (t, gimple_call_lhs (t), flags, rhsc, fndecl);
472c7fbd 4276 VEC_free (ce_s, heap, rhsc);
4ee00913
DB
4277 }
4278 else
4279 {
7b765bed 4280 tree lhsop;
25a6a873 4281 unsigned j;
726a989a 4282
25a6a873 4283 fi = get_fi_for_callee (t);
6e7e772d 4284
7b765bed
DB
4285 /* Assign all the passed arguments to the appropriate incoming
4286 parameters of the function. */
726a989a 4287 for (j = 0; j < gimple_call_num_args (t); j++)
4ee00913 4288 {
7b765bed
DB
4289 struct constraint_expr lhs ;
4290 struct constraint_expr *rhsp;
726a989a 4291 tree arg = gimple_call_arg (t, j);
7b765bed 4292
25a6a873
RG
4293 if (!could_have_pointers (arg))
4294 continue;
4295
7b765bed 4296 get_constraint_for (arg, &rhsc);
25a6a873 4297 lhs = get_function_part_constraint (fi, fi_parm_base + j);
7b765bed
DB
4298 while (VEC_length (ce_s, rhsc) != 0)
4299 {
4300 rhsp = VEC_last (ce_s, rhsc);
4301 process_constraint (new_constraint (lhs, *rhsp));
4302 VEC_pop (ce_s, rhsc);
4303 }
4ee00913 4304 }
7b765bed
DB
4305
4306 /* If we are returning a value, assign it to the result. */
25a6a873
RG
4307 lhsop = gimple_call_lhs (t);
4308 if (lhsop
a81b065a 4309 && type_could_have_pointers (TREE_TYPE (lhsop)))
4ee00913 4310 {
7b765bed
DB
4311 struct constraint_expr rhs;
4312 struct constraint_expr *lhsp;
7b765bed
DB
4313
4314 get_constraint_for (lhsop, &lhsc);
25a6a873
RG
4315 rhs = get_function_part_constraint (fi, fi_result);
4316 if (fndecl
4317 && DECL_RESULT (fndecl)
4318 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
7b765bed 4319 {
25a6a873
RG
4320 VEC(ce_s, heap) *tem = NULL;
4321 VEC_safe_push (ce_s, heap, tem, &rhs);
4322 do_deref (&tem);
4323 rhs = *VEC_index (ce_s, tem, 0);
4324 VEC_free(ce_s, heap, tem);
7b765bed
DB
4325 }
4326 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
4327 process_constraint (new_constraint (*lhsp, rhs));
4ee00913 4328 }
25a6a873
RG
4329
4330 /* If we pass the result decl by reference, honor that. */
4331 if (lhsop
4332 && fndecl
4333 && DECL_RESULT (fndecl)
4334 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
4335 {
4336 struct constraint_expr lhs;
4337 struct constraint_expr *rhsp;
4338
4339 get_constraint_for_address_of (lhsop, &rhsc);
4340 lhs = get_function_part_constraint (fi, fi_result);
4341 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); j++)
4342 process_constraint (new_constraint (lhs, *rhsp));
4343 VEC_free (ce_s, heap, rhsc);
4344 }
4345
4346 /* If we use a static chain, pass it along. */
4347 if (gimple_call_chain (t))
4348 {
4349 struct constraint_expr lhs;
4350 struct constraint_expr *rhsp;
4351
4352 get_constraint_for (gimple_call_chain (t), &rhsc);
4353 lhs = get_function_part_constraint (fi, fi_static_chain);
4354 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); j++)
4355 process_constraint (new_constraint (lhs, *rhsp));
4356 }
c58936b6 4357 }
e8ca4159 4358 }
e5bae89b
RG
4359 /* Otherwise, just a regular assignment statement. Only care about
4360 operations with pointer result, others are dealt with as escape
4361 points if they have pointer operands. */
726a989a 4362 else if (is_gimple_assign (t)
a81b065a 4363 && type_could_have_pointers (TREE_TYPE (gimple_assign_lhs (t))))
e8ca4159 4364 {
726a989a
RB
4365 /* Otherwise, just a regular assignment statement. */
4366 tree lhsop = gimple_assign_lhs (t);
4367 tree rhsop = (gimple_num_ops (t) == 2) ? gimple_assign_rhs1 (t) : NULL;
e8ca4159 4368
726a989a 4369 if (rhsop && AGGREGATE_TYPE_P (TREE_TYPE (lhsop)))
e5bae89b 4370 do_structure_copy (lhsop, rhsop);
e8ca4159
DN
4371 else
4372 {
726a989a 4373 struct constraint_expr temp;
e5bae89b 4374 get_constraint_for (lhsop, &lhsc);
726a989a
RB
4375
4376 if (gimple_assign_rhs_code (t) == POINTER_PLUS_EXPR)
4377 get_constraint_for_ptr_offset (gimple_assign_rhs1 (t),
4378 gimple_assign_rhs2 (t), &rhsc);
1a87cf0c 4379 else if ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (t))
1961418e
RG
4380 && !(POINTER_TYPE_P (gimple_expr_type (t))
4381 && !POINTER_TYPE_P (TREE_TYPE (rhsop))))
4382 || gimple_assign_single_p (t))
726a989a
RB
4383 get_constraint_for (rhsop, &rhsc);
4384 else
4385 {
4386 temp.type = ADDRESSOF;
4387 temp.var = anything_id;
4388 temp.offset = 0;
4389 VEC_safe_push (ce_s, heap, rhsc, &temp);
4390 }
779704e7 4391 process_all_all_constraints (lhsc, rhsc);
e8ca4159 4392 }
de70bb20
RG
4393 /* If there is a store to a global variable the rhs escapes. */
4394 if ((lhsop = get_base_address (lhsop)) != NULL_TREE
4395 && DECL_P (lhsop)
25a6a873
RG
4396 && is_global_var (lhsop)
4397 && (!in_ipa_mode
4398 || DECL_EXTERNAL (lhsop) || TREE_PUBLIC (lhsop)))
de70bb20 4399 make_escape_constraint (rhsop);
74d27244
RG
4400 /* If this is a conversion of a non-restrict pointer to a
4401 restrict pointer track it with a new heapvar. */
4402 else if (gimple_assign_cast_p (t)
4403 && POINTER_TYPE_P (TREE_TYPE (rhsop))
4404 && POINTER_TYPE_P (TREE_TYPE (lhsop))
4405 && !TYPE_RESTRICT (TREE_TYPE (rhsop))
4406 && TYPE_RESTRICT (TREE_TYPE (lhsop)))
4407 make_constraint_from_restrict (get_vi_for_tree (lhsop),
4408 "CAST_RESTRICT");
910fdc79 4409 }
2e407842
RG
4410 /* For conversions of pointers to non-pointers the pointer escapes. */
4411 else if (gimple_assign_cast_p (t)
4412 && POINTER_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (t)))
4413 && !POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (t))))
b7091901 4414 {
726a989a 4415 make_escape_constraint (gimple_assign_rhs1 (t));
b7091901 4416 }
14c41b9b
RG
4417 /* Handle escapes through return. */
4418 else if (gimple_code (t) == GIMPLE_RETURN
4419 && gimple_return_retval (t) != NULL_TREE
4420 && could_have_pointers (gimple_return_retval (t)))
4421 {
25a6a873
RG
4422 fi = NULL;
4423 if (!in_ipa_mode
4424 || !(fi = get_vi_for_tree (cfun->decl)))
4425 make_escape_constraint (gimple_return_retval (t));
4426 else if (in_ipa_mode
4427 && fi != NULL)
4428 {
4429 struct constraint_expr lhs ;
4430 struct constraint_expr *rhsp;
4431 unsigned i;
4432
4433 lhs = get_function_part_constraint (fi, fi_result);
4434 get_constraint_for (gimple_return_retval (t), &rhsc);
4435 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4436 process_constraint (new_constraint (lhs, *rhsp));
4437 }
14c41b9b 4438 }
2e407842
RG
4439 /* Handle asms conservatively by adding escape constraints to everything. */
4440 else if (gimple_code (t) == GIMPLE_ASM)
b7091901 4441 {
5006671f
RG
4442 unsigned i, noutputs;
4443 const char **oconstraints;
4444 const char *constraint;
4445 bool allows_mem, allows_reg, is_inout;
4446
4447 noutputs = gimple_asm_noutputs (t);
4448 oconstraints = XALLOCAVEC (const char *, noutputs);
4449
4450 for (i = 0; i < noutputs; ++i)
b7091901 4451 {
5006671f
RG
4452 tree link = gimple_asm_output_op (t, i);
4453 tree op = TREE_VALUE (link);
4454
4455 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4456 oconstraints[i] = constraint;
4457 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4458 &allows_reg, &is_inout);
4459
4460 /* A memory constraint makes the address of the operand escape. */
4461 if (!allows_reg && allows_mem)
4462 make_escape_constraint (build_fold_addr_expr (op));
4463
4464 /* The asm may read global memory, so outputs may point to
4465 any global memory. */
b7091901 4466 if (op && could_have_pointers (op))
5006671f
RG
4467 {
4468 VEC(ce_s, heap) *lhsc = NULL;
4469 struct constraint_expr rhsc, *lhsp;
4470 unsigned j;
4471 get_constraint_for (op, &lhsc);
4472 rhsc.var = nonlocal_id;
4473 rhsc.offset = 0;
4474 rhsc.type = SCALAR;
4475 for (j = 0; VEC_iterate (ce_s, lhsc, j, lhsp); j++)
4476 process_constraint (new_constraint (*lhsp, rhsc));
4477 VEC_free (ce_s, heap, lhsc);
4478 }
b7091901 4479 }
726a989a 4480 for (i = 0; i < gimple_asm_ninputs (t); ++i)
b7091901 4481 {
5006671f
RG
4482 tree link = gimple_asm_input_op (t, i);
4483 tree op = TREE_VALUE (link);
4484
4485 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
4486
4487 parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints,
4488 &allows_mem, &allows_reg);
4489
4490 /* A memory constraint makes the address of the operand escape. */
4491 if (!allows_reg && allows_mem)
4492 make_escape_constraint (build_fold_addr_expr (op));
4493 /* Strictly we'd only need the constraint to ESCAPED if
3e8542ca
RG
4494 the asm clobbers memory, otherwise using something
4495 along the lines of per-call clobbers/uses would be enough. */
5006671f 4496 else if (op && could_have_pointers (op))
b7091901
RG
4497 make_escape_constraint (op);
4498 }
4499 }
4500
4ee00913
DB
4501 VEC_free (ce_s, heap, rhsc);
4502 VEC_free (ce_s, heap, lhsc);
910fdc79
DB
4503}
4504
4505
25a6a873
RG
4506/* Create a constraint adding to the clobber set of FI the memory
4507 pointed to by PTR. */
4508
4509static void
4510process_ipa_clobber (varinfo_t fi, tree ptr)
4511{
4512 VEC(ce_s, heap) *ptrc = NULL;
4513 struct constraint_expr *c, lhs;
4514 unsigned i;
4515 get_constraint_for (ptr, &ptrc);
4516 lhs = get_function_part_constraint (fi, fi_clobbers);
4517 for (i = 0; VEC_iterate (ce_s, ptrc, i, c); i++)
4518 process_constraint (new_constraint (lhs, *c));
4519 VEC_free (ce_s, heap, ptrc);
4520}
4521
4522/* Walk statement T setting up clobber and use constraints according to the
4523 references found in T. This function is a main part of the
4524 IPA constraint builder. */
4525
4526static void
4527find_func_clobbers (gimple origt)
4528{
4529 gimple t = origt;
4530 VEC(ce_s, heap) *lhsc = NULL;
4531 VEC(ce_s, heap) *rhsc = NULL;
4532 varinfo_t fi;
4533
4534 /* Add constraints for clobbered/used in IPA mode.
4535 We are not interested in what automatic variables are clobbered
4536 or used as we only use the information in the caller to which
4537 they do not escape. */
4538 gcc_assert (in_ipa_mode);
4539
4540 /* If the stmt refers to memory in any way it better had a VUSE. */
4541 if (gimple_vuse (t) == NULL_TREE)
4542 return;
4543
4544 /* We'd better have function information for the current function. */
4545 fi = lookup_vi_for_tree (cfun->decl);
4546 gcc_assert (fi != NULL);
4547
4548 /* Account for stores in assignments and calls. */
4549 if (gimple_vdef (t) != NULL_TREE
4550 && gimple_has_lhs (t))
4551 {
4552 tree lhs = gimple_get_lhs (t);
4553 tree tem = lhs;
4554 while (handled_component_p (tem))
4555 tem = TREE_OPERAND (tem, 0);
4556 if ((DECL_P (tem)
4557 && !auto_var_in_fn_p (tem, cfun->decl))
4558 || INDIRECT_REF_P (tem))
4559 {
4560 struct constraint_expr lhsc, *rhsp;
4561 unsigned i;
4562 lhsc = get_function_part_constraint (fi, fi_clobbers);
4563 get_constraint_for_address_of (lhs, &rhsc);
4564 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4565 process_constraint (new_constraint (lhsc, *rhsp));
4566 VEC_free (ce_s, heap, rhsc);
4567 }
4568 }
4569
4570 /* Account for uses in assigments and returns. */
4571 if (gimple_assign_single_p (t)
4572 || (gimple_code (t) == GIMPLE_RETURN
4573 && gimple_return_retval (t) != NULL_TREE))
4574 {
4575 tree rhs = (gimple_assign_single_p (t)
4576 ? gimple_assign_rhs1 (t) : gimple_return_retval (t));
4577 tree tem = rhs;
4578 while (handled_component_p (tem))
4579 tem = TREE_OPERAND (tem, 0);
4580 if ((DECL_P (tem)
4581 && !auto_var_in_fn_p (tem, cfun->decl))
4582 || INDIRECT_REF_P (tem))
4583 {
4584 struct constraint_expr lhs, *rhsp;
4585 unsigned i;
4586 lhs = get_function_part_constraint (fi, fi_uses);
4587 get_constraint_for_address_of (rhs, &rhsc);
4588 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4589 process_constraint (new_constraint (lhs, *rhsp));
4590 VEC_free (ce_s, heap, rhsc);
4591 }
4592 }
4593
4594 if (is_gimple_call (t))
4595 {
4596 varinfo_t cfi = NULL;
4597 tree decl = gimple_call_fndecl (t);
4598 struct constraint_expr lhs, rhs;
4599 unsigned i, j;
4600
4601 /* For builtins we do not have separate function info. For those
4602 we do not generate escapes for we have to generate clobbers/uses. */
4603 if (decl
4604 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
4605 switch (DECL_FUNCTION_CODE (decl))
4606 {
4607 /* The following functions use and clobber memory pointed to
4608 by their arguments. */
4609 case BUILT_IN_STRCPY:
4610 case BUILT_IN_STRNCPY:
4611 case BUILT_IN_BCOPY:
4612 case BUILT_IN_MEMCPY:
4613 case BUILT_IN_MEMMOVE:
4614 case BUILT_IN_MEMPCPY:
4615 case BUILT_IN_STPCPY:
4616 case BUILT_IN_STPNCPY:
4617 case BUILT_IN_STRCAT:
4618 case BUILT_IN_STRNCAT:
4619 {
4620 tree dest = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4621 == BUILT_IN_BCOPY ? 1 : 0));
4622 tree src = gimple_call_arg (t, (DECL_FUNCTION_CODE (decl)
4623 == BUILT_IN_BCOPY ? 0 : 1));
4624 unsigned i;
4625 struct constraint_expr *rhsp, *lhsp;
4626 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4627 lhs = get_function_part_constraint (fi, fi_clobbers);
4628 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); i++)
4629 process_constraint (new_constraint (lhs, *lhsp));
4630 VEC_free (ce_s, heap, lhsc);
4631 get_constraint_for_ptr_offset (src, NULL_TREE, &rhsc);
4632 lhs = get_function_part_constraint (fi, fi_uses);
4633 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); i++)
4634 process_constraint (new_constraint (lhs, *rhsp));
4635 VEC_free (ce_s, heap, rhsc);
4636 return;
4637 }
4638 /* The following function clobbers memory pointed to by
4639 its argument. */
4640 case BUILT_IN_MEMSET:
4641 {
4642 tree dest = gimple_call_arg (t, 0);
4643 unsigned i;
4644 ce_s *lhsp;
4645 get_constraint_for_ptr_offset (dest, NULL_TREE, &lhsc);
4646 lhs = get_function_part_constraint (fi, fi_clobbers);
4647 for (i = 0; VEC_iterate (ce_s, lhsc, i, lhsp); i++)
4648 process_constraint (new_constraint (lhs, *lhsp));
4649 VEC_free (ce_s, heap, lhsc);
4650 return;
4651 }
4652 /* The following functions clobber their second and third
4653 arguments. */
4654 case BUILT_IN_SINCOS:
4655 case BUILT_IN_SINCOSF:
4656 case BUILT_IN_SINCOSL:
4657 {
4658 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4659 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4660 return;
4661 }
4662 /* The following functions clobber their second argument. */
4663 case BUILT_IN_FREXP:
4664 case BUILT_IN_FREXPF:
4665 case BUILT_IN_FREXPL:
4666 case BUILT_IN_LGAMMA_R:
4667 case BUILT_IN_LGAMMAF_R:
4668 case BUILT_IN_LGAMMAL_R:
4669 case BUILT_IN_GAMMA_R:
4670 case BUILT_IN_GAMMAF_R:
4671 case BUILT_IN_GAMMAL_R:
4672 case BUILT_IN_MODF:
4673 case BUILT_IN_MODFF:
4674 case BUILT_IN_MODFL:
4675 {
4676 process_ipa_clobber (fi, gimple_call_arg (t, 1));
4677 return;
4678 }
4679 /* The following functions clobber their third argument. */
4680 case BUILT_IN_REMQUO:
4681 case BUILT_IN_REMQUOF:
4682 case BUILT_IN_REMQUOL:
4683 {
4684 process_ipa_clobber (fi, gimple_call_arg (t, 2));
4685 return;
4686 }
4687 /* The following functions neither read nor clobber memory. */
4688 case BUILT_IN_FREE:
4689 return;
4690 /* Trampolines are of no interest to us. */
4691 case BUILT_IN_INIT_TRAMPOLINE:
4692 case BUILT_IN_ADJUST_TRAMPOLINE:
4693 return;
4694 case BUILT_IN_VA_START:
4695 case BUILT_IN_VA_END:
4696 return;
4697 /* printf-style functions may have hooks to set pointers to
4698 point to somewhere into the generated string. Leave them
4699 for a later excercise... */
4700 default:
4701 /* Fallthru to general call handling. */;
4702 }
4703
4704 /* Parameters passed by value are used. */
4705 lhs = get_function_part_constraint (fi, fi_uses);
4706 for (i = 0; i < gimple_call_num_args (t); i++)
4707 {
4708 struct constraint_expr *rhsp;
4709 tree arg = gimple_call_arg (t, i);
4710
4711 if (TREE_CODE (arg) == SSA_NAME
4712 || is_gimple_min_invariant (arg))
4713 continue;
4714
4715 get_constraint_for_address_of (arg, &rhsc);
4716 for (j = 0; VEC_iterate (ce_s, rhsc, j, rhsp); j++)
4717 process_constraint (new_constraint (lhs, *rhsp));
4718 VEC_free (ce_s, heap, rhsc);
4719 }
4720
4721 /* Build constraints for propagating clobbers/uses along the
4722 callgraph edges. */
4723 cfi = get_fi_for_callee (t);
4724 if (cfi->id == anything_id)
4725 {
4726 if (gimple_vdef (t))
4727 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4728 anything_id);
4729 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4730 anything_id);
4731 return;
4732 }
4733
4734 /* For callees without function info (that's external functions),
4735 ESCAPED is clobbered and used. */
4736 if (gimple_call_fndecl (t)
4737 && !cfi->is_fn_info)
4738 {
4739 varinfo_t vi;
4740
4741 if (gimple_vdef (t))
4742 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4743 escaped_id);
4744 make_copy_constraint (first_vi_for_offset (fi, fi_uses), escaped_id);
4745
4746 /* Also honor the call statement use/clobber info. */
4747 if ((vi = lookup_call_clobber_vi (t)) != NULL)
4748 make_copy_constraint (first_vi_for_offset (fi, fi_clobbers),
4749 vi->id);
4750 if ((vi = lookup_call_use_vi (t)) != NULL)
4751 make_copy_constraint (first_vi_for_offset (fi, fi_uses),
4752 vi->id);
4753 return;
4754 }
4755
4756 /* Otherwise the caller clobbers and uses what the callee does.
4757 ??? This should use a new complex constraint that filters
4758 local variables of the callee. */
4759 if (gimple_vdef (t))
4760 {
4761 lhs = get_function_part_constraint (fi, fi_clobbers);
4762 rhs = get_function_part_constraint (cfi, fi_clobbers);
4763 process_constraint (new_constraint (lhs, rhs));
4764 }
4765 lhs = get_function_part_constraint (fi, fi_uses);
4766 rhs = get_function_part_constraint (cfi, fi_uses);
4767 process_constraint (new_constraint (lhs, rhs));
4768 }
4769 else if (gimple_code (t) == GIMPLE_ASM)
4770 {
4771 /* ??? Ick. We can do better. */
4772 if (gimple_vdef (t))
4773 make_constraint_from (first_vi_for_offset (fi, fi_clobbers),
4774 anything_id);
4775 make_constraint_from (first_vi_for_offset (fi, fi_uses),
4776 anything_id);
4777 }
4778
4779 VEC_free (ce_s, heap, rhsc);
4780}
4781
4782
910fdc79 4783/* Find the first varinfo in the same variable as START that overlaps with
5006671f 4784 OFFSET. Return NULL if we can't find one. */
910fdc79 4785
c58936b6 4786static varinfo_t
910fdc79
DB
4787first_vi_for_offset (varinfo_t start, unsigned HOST_WIDE_INT offset)
4788{
5006671f
RG
4789 /* If the offset is outside of the variable, bail out. */
4790 if (offset >= start->fullsize)
4791 return NULL;
4792
4793 /* If we cannot reach offset from start, lookup the first field
4794 and start from there. */
4795 if (start->offset > offset)
4796 start = lookup_vi_for_tree (start->decl);
4797
4798 while (start)
910fdc79
DB
4799 {
4800 /* We may not find a variable in the field list with the actual
4801 offset when when we have glommed a structure to a variable.
4802 In that case, however, offset should still be within the size
4803 of the variable. */
5006671f 4804 if (offset >= start->offset
de925a03 4805 && (offset - start->offset) < start->size)
5006671f
RG
4806 return start;
4807
4808 start= start->next;
910fdc79 4809 }
5006671f 4810
8971094d 4811 return NULL;
910fdc79
DB
4812}
4813
5006671f
RG
4814/* Find the first varinfo in the same variable as START that overlaps with
4815 OFFSET. If there is no such varinfo the varinfo directly preceding
4816 OFFSET is returned. */
4817
4818static varinfo_t
4819first_or_preceding_vi_for_offset (varinfo_t start,
4820 unsigned HOST_WIDE_INT offset)
4821{
4822 /* If we cannot reach offset from start, lookup the first field
4823 and start from there. */
4824 if (start->offset > offset)
4825 start = lookup_vi_for_tree (start->decl);
4826
4827 /* We may not find a variable in the field list with the actual
4828 offset when when we have glommed a structure to a variable.
4829 In that case, however, offset should still be within the size
4830 of the variable.
4831 If we got beyond the offset we look for return the field
4832 directly preceding offset which may be the last field. */
4833 while (start->next
4834 && offset >= start->offset
de925a03 4835 && !((offset - start->offset) < start->size))
5006671f
RG
4836 start = start->next;
4837
4838 return start;
4839}
4840
910fdc79 4841
31de5b77
RG
4842/* This structure is used during pushing fields onto the fieldstack
4843 to track the offset of the field, since bitpos_of_field gives it
4844 relative to its immediate containing type, and we want it relative
4845 to the ultimate containing object. */
4846
4847struct fieldoff
4848{
ee7d4b57
RG
4849 /* Offset from the base of the base containing object to this field. */
4850 HOST_WIDE_INT offset;
31de5b77
RG
4851
4852 /* Size, in bits, of the field. */
ee7d4b57 4853 unsigned HOST_WIDE_INT size;
31de5b77 4854
ee7d4b57 4855 unsigned has_unknown_size : 1;
31de5b77 4856
ee7d4b57 4857 unsigned may_have_pointers : 1;
74d27244
RG
4858
4859 unsigned only_restrict_pointers : 1;
31de5b77
RG
4860};
4861typedef struct fieldoff fieldoff_s;
4862
4863DEF_VEC_O(fieldoff_s);
4864DEF_VEC_ALLOC_O(fieldoff_s,heap);
4865
910fdc79
DB
4866/* qsort comparison function for two fieldoff's PA and PB */
4867
c58936b6 4868static int
910fdc79
DB
4869fieldoff_compare (const void *pa, const void *pb)
4870{
4871 const fieldoff_s *foa = (const fieldoff_s *)pa;
4872 const fieldoff_s *fob = (const fieldoff_s *)pb;
185ab3b6 4873 unsigned HOST_WIDE_INT foasize, fobsize;
c58936b6 4874
185ab3b6
RG
4875 if (foa->offset < fob->offset)
4876 return -1;
4877 else if (foa->offset > fob->offset)
4878 return 1;
910fdc79 4879
ee7d4b57
RG
4880 foasize = foa->size;
4881 fobsize = fob->size;
185ab3b6 4882 if (foasize < fobsize)
ee7d4b57 4883 return -1;
185ab3b6
RG
4884 else if (foasize > fobsize)
4885 return 1;
4886 return 0;
910fdc79
DB
4887}
4888
4889/* Sort a fieldstack according to the field offset and sizes. */
31de5b77 4890static void
83f676b3 4891sort_fieldstack (VEC(fieldoff_s,heap) *fieldstack)
910fdc79 4892{
c58936b6
DB
4893 qsort (VEC_address (fieldoff_s, fieldstack),
4894 VEC_length (fieldoff_s, fieldstack),
910fdc79
DB
4895 sizeof (fieldoff_s),
4896 fieldoff_compare);
4897}
4898
31de5b77
RG
4899/* Return true if V is a tree that we can have subvars for.
4900 Normally, this is any aggregate type. Also complex
4901 types which are not gimple registers can have subvars. */
4902
4903static inline bool
4904var_can_have_subvars (const_tree v)
4905{
4906 /* Volatile variables should never have subvars. */
4907 if (TREE_THIS_VOLATILE (v))
4908 return false;
4909
4910 /* Non decls or memory tags can never have subvars. */
5006671f 4911 if (!DECL_P (v))
31de5b77
RG
4912 return false;
4913
4914 /* Aggregates without overlapping fields can have subvars. */
4915 if (TREE_CODE (TREE_TYPE (v)) == RECORD_TYPE)
4916 return true;
4917
4918 return false;
4919}
4920
d7705551
DN
4921/* Given a TYPE, and a vector of field offsets FIELDSTACK, push all
4922 the fields of TYPE onto fieldstack, recording their offsets along
4923 the way.
4924
4925 OFFSET is used to keep track of the offset in this entire
4926 structure, rather than just the immediately containing structure.
18abb35e
RG
4927 Returns false if the caller is supposed to handle the field we
4928 recursed for. */
910fdc79 4929
18abb35e 4930static bool
c58936b6 4931push_fields_onto_fieldstack (tree type, VEC(fieldoff_s,heap) **fieldstack,
a81b065a 4932 HOST_WIDE_INT offset, bool must_have_pointers_p)
910fdc79
DB
4933{
4934 tree field;
18abb35e 4935 bool empty_p = true;
31de5b77
RG
4936
4937 if (TREE_CODE (type) != RECORD_TYPE)
18abb35e 4938 return false;
3fe2f42a
RG
4939
4940 /* If the vector of fields is growing too big, bail out early.
4941 Callers check for VEC_length <= MAX_FIELDS_FOR_FIELD_SENSITIVE, make
4942 sure this fails. */
31de5b77 4943 if (VEC_length (fieldoff_s, *fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
18abb35e 4944 return false;
c58936b6 4945
31de5b77
RG
4946 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
4947 if (TREE_CODE (field) == FIELD_DECL)
4948 {
4949 bool push = false;
ee7d4b57 4950 HOST_WIDE_INT foff = bitpos_of_field (field);
31de5b77 4951
ee7d4b57
RG
4952 if (!var_can_have_subvars (field)
4953 || TREE_CODE (TREE_TYPE (field)) == QUAL_UNION_TYPE
4954 || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
31de5b77 4955 push = true;
18abb35e 4956 else if (!push_fields_onto_fieldstack
a81b065a
RG
4957 (TREE_TYPE (field), fieldstack, offset + foff,
4958 must_have_pointers_p)
31de5b77
RG
4959 && (DECL_SIZE (field)
4960 && !integer_zerop (DECL_SIZE (field))))
4961 /* Empty structures may have actual size, like in C++. So
4962 see if we didn't push any subfields and the size is
4963 nonzero, push the field onto the stack. */
4964 push = true;
4965
4966 if (push)
910fdc79 4967 {
ee7d4b57
RG
4968 fieldoff_s *pair = NULL;
4969 bool has_unknown_size = false;
4970
4971 if (!VEC_empty (fieldoff_s, *fieldstack))
4972 pair = VEC_last (fieldoff_s, *fieldstack);
4973
4974 if (!DECL_SIZE (field)
4975 || !host_integerp (DECL_SIZE (field), 1))
4976 has_unknown_size = true;
4977
4978 /* If adjacent fields do not contain pointers merge them. */
4979 if (pair
4980 && !pair->may_have_pointers
ee7d4b57
RG
4981 && !pair->has_unknown_size
4982 && !has_unknown_size
18abb35e 4983 && pair->offset + (HOST_WIDE_INT)pair->size == offset + foff
a81b065a 4984 && !must_have_pointers_p
18abb35e 4985 && !could_have_pointers (field))
ee7d4b57 4986 {
ee7d4b57
RG
4987 pair->size += TREE_INT_CST_LOW (DECL_SIZE (field));
4988 }
4989 else
4990 {
4991 pair = VEC_safe_push (fieldoff_s, heap, *fieldstack, NULL);
4992 pair->offset = offset + foff;
4993 pair->has_unknown_size = has_unknown_size;
4994 if (!has_unknown_size)
4995 pair->size = TREE_INT_CST_LOW (DECL_SIZE (field));
4996 else
4997 pair->size = -1;
a81b065a
RG
4998 pair->may_have_pointers
4999 = must_have_pointers_p || could_have_pointers (field);
74d27244
RG
5000 pair->only_restrict_pointers
5001 = (!has_unknown_size
5002 && POINTER_TYPE_P (TREE_TYPE (field))
5003 && TYPE_RESTRICT (TREE_TYPE (field)));
ee7d4b57 5004 }
31de5b77 5005 }
18abb35e
RG
5006
5007 empty_p = false;
31de5b77 5008 }
910fdc79 5009
18abb35e 5010 return !empty_p;
910fdc79
DB
5011}
5012
5006671f
RG
5013/* Count the number of arguments DECL has, and set IS_VARARGS to true
5014 if it is a varargs function. */
5015
5016static unsigned int
5017count_num_arguments (tree decl, bool *is_varargs)
5018{
de925a03 5019 unsigned int num = 0;
5006671f
RG
5020 tree t;
5021
de925a03
RG
5022 /* Capture named arguments for K&R functions. They do not
5023 have a prototype and thus no TYPE_ARG_TYPES. */
5024 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5025 ++num;
c58936b6 5026
de925a03
RG
5027 /* Check if the function has variadic arguments. */
5028 for (t = TYPE_ARG_TYPES (TREE_TYPE (decl)); t; t = TREE_CHAIN (t))
5029 if (TREE_VALUE (t) == void_type_node)
5030 break;
4ee00913
DB
5031 if (!t)
5032 *is_varargs = true;
de925a03
RG
5033
5034 return num;
4ee00913
DB
5035}
5036
5037/* Creation function node for DECL, using NAME, and return the index
5038 of the variable we've created for the function. */
5039
27c2cfa6 5040static varinfo_t
4ee00913
DB
5041create_function_info_for (tree decl, const char *name)
5042{
25a6a873
RG
5043 struct function *fn = DECL_STRUCT_FUNCTION (decl);
5044 varinfo_t vi, prev_vi;
c58936b6 5045 tree arg;
4ee00913
DB
5046 unsigned int i;
5047 bool is_varargs = false;
25a6a873 5048 unsigned int num_args = count_num_arguments (decl, &is_varargs);
4ee00913
DB
5049
5050 /* Create the variable info. */
5051
0bbf2ffa 5052 vi = new_var_info (decl, name);
4ee00913 5053 vi->offset = 0;
4ee00913 5054 vi->size = 1;
25a6a873
RG
5055 vi->fullsize = fi_parm_base + num_args;
5056 vi->is_fn_info = 1;
5057 vi->may_have_pointers = false;
5058 if (is_varargs)
5059 vi->fullsize = ~0;
3e5937d7 5060 insert_vi_for_tree (vi->decl, vi);
4ee00913 5061
25a6a873
RG
5062 prev_vi = vi;
5063
5064 /* Create a variable for things the function clobbers and one for
5065 things the function uses. */
4ee00913 5066 {
25a6a873
RG
5067 varinfo_t clobbervi, usevi;
5068 const char *newname;
5069 char *tempname;
5070
5071 asprintf (&tempname, "%s.clobber", name);
5072 newname = ggc_strdup (tempname);
5073 free (tempname);
5074
5075 clobbervi = new_var_info (NULL, newname);
5076 clobbervi->offset = fi_clobbers;
5077 clobbervi->size = 1;
5078 clobbervi->fullsize = vi->fullsize;
5079 clobbervi->is_full_var = true;
5080 clobbervi->is_global_var = false;
5081 gcc_assert (prev_vi->offset < clobbervi->offset);
5082 prev_vi->next = clobbervi;
5083 prev_vi = clobbervi;
25a6a873
RG
5084
5085 asprintf (&tempname, "%s.use", name);
5086 newname = ggc_strdup (tempname);
5087 free (tempname);
5088
5089 usevi = new_var_info (NULL, newname);
5090 usevi->offset = fi_uses;
5091 usevi->size = 1;
5092 usevi->fullsize = vi->fullsize;
5093 usevi->is_full_var = true;
5094 usevi->is_global_var = false;
5095 gcc_assert (prev_vi->offset < usevi->offset);
5096 prev_vi->next = usevi;
5097 prev_vi = usevi;
4ee00913
DB
5098 }
5099
25a6a873
RG
5100 /* And one for the static chain. */
5101 if (fn->static_chain_decl != NULL_TREE)
5102 {
5103 varinfo_t chainvi;
5104 const char *newname;
5105 char *tempname;
5106
5107 asprintf (&tempname, "%s.chain", name);
5108 newname = ggc_strdup (tempname);
5109 free (tempname);
5110
5111 chainvi = new_var_info (fn->static_chain_decl, newname);
5112 chainvi->offset = fi_static_chain;
5113 chainvi->size = 1;
5114 chainvi->fullsize = vi->fullsize;
5115 chainvi->is_full_var = true;
5116 chainvi->is_global_var = false;
5117 gcc_assert (prev_vi->offset < chainvi->offset);
5118 prev_vi->next = chainvi;
5119 prev_vi = chainvi;
25a6a873
RG
5120 insert_vi_for_tree (fn->static_chain_decl, chainvi);
5121 }
5122
5123 /* Create a variable for the return var. */
5124 if (DECL_RESULT (decl) != NULL
5125 || !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
5126 {
5127 varinfo_t resultvi;
5128 const char *newname;
5129 char *tempname;
5130 tree resultdecl = decl;
5131
5132 if (DECL_RESULT (decl))
5133 resultdecl = DECL_RESULT (decl);
5134
5135 asprintf (&tempname, "%s.result", name);
5136 newname = ggc_strdup (tempname);
5137 free (tempname);
5138
5139 resultvi = new_var_info (resultdecl, newname);
5140 resultvi->offset = fi_result;
5141 resultvi->size = 1;
5142 resultvi->fullsize = vi->fullsize;
5143 resultvi->is_full_var = true;
5144 if (DECL_RESULT (decl))
5145 resultvi->may_have_pointers = could_have_pointers (DECL_RESULT (decl));
5146 gcc_assert (prev_vi->offset < resultvi->offset);
5147 prev_vi->next = resultvi;
5148 prev_vi = resultvi;
25a6a873
RG
5149 if (DECL_RESULT (decl))
5150 insert_vi_for_tree (DECL_RESULT (decl), resultvi);
5151 }
4ee00913 5152
6416ae7f 5153 /* Set up variables for each argument. */
25a6a873
RG
5154 arg = DECL_ARGUMENTS (decl);
5155 for (i = 0; i < num_args; i++)
c58936b6 5156 {
4ee00913
DB
5157 varinfo_t argvi;
5158 const char *newname;
5159 char *tempname;
4ee00913
DB
5160 tree argdecl = decl;
5161
5162 if (arg)
5163 argdecl = arg;
c58936b6 5164
25a6a873 5165 asprintf (&tempname, "%s.arg%d", name, i);
4ee00913
DB
5166 newname = ggc_strdup (tempname);
5167 free (tempname);
5168
0bbf2ffa 5169 argvi = new_var_info (argdecl, newname);
25a6a873 5170 argvi->offset = fi_parm_base + i;
4ee00913 5171 argvi->size = 1;
e5bae89b 5172 argvi->is_full_var = true;
4ee00913 5173 argvi->fullsize = vi->fullsize;
25a6a873
RG
5174 if (arg)
5175 argvi->may_have_pointers = could_have_pointers (arg);
5176 gcc_assert (prev_vi->offset < argvi->offset);
5177 prev_vi->next = argvi;
5178 prev_vi = argvi;
4ee00913
DB
5179 if (arg)
5180 {
3e5937d7 5181 insert_vi_for_tree (arg, argvi);
4ee00913
DB
5182 arg = TREE_CHAIN (arg);
5183 }
5184 }
4cf4d6a3 5185
25a6a873
RG
5186 /* Add one representative for all further args. */
5187 if (is_varargs)
4ee00913 5188 {
25a6a873 5189 varinfo_t argvi;
4ee00913
DB
5190 const char *newname;
5191 char *tempname;
25a6a873 5192 tree decl;
c58936b6 5193
25a6a873 5194 asprintf (&tempname, "%s.varargs", name);
4ee00913
DB
5195 newname = ggc_strdup (tempname);
5196 free (tempname);
5197
25a6a873
RG
5198 /* We need sth that can be pointed to for va_start. */
5199 decl = create_tmp_var_raw (ptr_type_node, name);
5200 get_var_ann (decl);
5201
5202 argvi = new_var_info (decl, newname);
5203 argvi->offset = fi_parm_base + num_args;
5204 argvi->size = ~0;
5205 argvi->is_full_var = true;
5206 argvi->is_heap_var = true;
5207 argvi->fullsize = vi->fullsize;
5208 gcc_assert (prev_vi->offset < argvi->offset);
5209 prev_vi->next = argvi;
5210 prev_vi = argvi;
4ee00913 5211 }
0bbf2ffa 5212
27c2cfa6 5213 return vi;
c58936b6 5214}
4ee00913 5215
6c11790d 5216
c58936b6 5217/* Return true if FIELDSTACK contains fields that overlap.
6c11790d
DB
5218 FIELDSTACK is assumed to be sorted by offset. */
5219
5220static bool
5221check_for_overlaps (VEC (fieldoff_s,heap) *fieldstack)
5222{
5223 fieldoff_s *fo = NULL;
5224 unsigned int i;
30d2662c 5225 HOST_WIDE_INT lastoffset = -1;
6c11790d
DB
5226
5227 for (i = 0; VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5228 {
5229 if (fo->offset == lastoffset)
5230 return true;
5231 lastoffset = fo->offset;
5232 }
5233 return false;
5234}
21392f19 5235
910fdc79
DB
5236/* Create a varinfo structure for NAME and DECL, and add it to VARMAP.
5237 This will also create any varinfo structures necessary for fields
5238 of DECL. */
5239
18abb35e
RG
5240static varinfo_t
5241create_variable_info_for_1 (tree decl, const char *name)
910fdc79 5242{
18abb35e 5243 varinfo_t vi, newvi;
82d6e6fc
KG
5244 tree decl_type = TREE_TYPE (decl);
5245 tree declsize = DECL_P (decl) ? DECL_SIZE (decl) : TYPE_SIZE (decl_type);
910fdc79 5246 VEC (fieldoff_s,heap) *fieldstack = NULL;
18abb35e
RG
5247 fieldoff_s *fo;
5248 unsigned int i;
c58936b6 5249
4ee00913 5250 if (!declsize
ee7d4b57 5251 || !host_integerp (declsize, 1))
910fdc79 5252 {
18abb35e
RG
5253 vi = new_var_info (decl, name);
5254 vi->offset = 0;
910fdc79 5255 vi->size = ~0;
18abb35e
RG
5256 vi->fullsize = ~0;
5257 vi->is_unknown_size_var = true;
5258 vi->is_full_var = true;
5259 vi->may_have_pointers = could_have_pointers (decl);
5260 return vi;
910fdc79 5261 }
18abb35e
RG
5262
5263 /* Collect field information. */
5264 if (use_field_sensitive
5265 && var_can_have_subvars (decl)
5266 /* ??? Force us to not use subfields for global initializers
5267 in IPA mode. Else we'd have to parse arbitrary initializers. */
5268 && !(in_ipa_mode
5269 && is_global_var (decl)
5270 && DECL_INITIAL (decl)))
910fdc79 5271 {
18abb35e
RG
5272 fieldoff_s *fo = NULL;
5273 bool notokay = false;
5274 unsigned int i;
5275
a81b065a
RG
5276 push_fields_onto_fieldstack (decl_type, &fieldstack, 0,
5277 TREE_PUBLIC (decl)
5278 || DECL_EXTERNAL (decl)
5279 || TREE_ADDRESSABLE (decl));
18abb35e
RG
5280
5281 for (i = 0; !notokay && VEC_iterate (fieldoff_s, fieldstack, i, fo); i++)
5282 if (fo->has_unknown_size
5283 || fo->offset < 0)
5284 {
5285 notokay = true;
5286 break;
5287 }
5288
5289 /* We can't sort them if we have a field with a variable sized type,
5290 which will make notokay = true. In that case, we are going to return
5291 without creating varinfos for the fields anyway, so sorting them is a
5292 waste to boot. */
5293 if (!notokay)
5294 {
5295 sort_fieldstack (fieldstack);
5296 /* Due to some C++ FE issues, like PR 22488, we might end up
5297 what appear to be overlapping fields even though they,
5298 in reality, do not overlap. Until the C++ FE is fixed,
5299 we will simply disable field-sensitivity for these cases. */
5300 notokay = check_for_overlaps (fieldstack);
5301 }
5302
5303 if (notokay)
5304 VEC_free (fieldoff_s, heap, fieldstack);
5305 }
5306
5307 /* If we didn't end up collecting sub-variables create a full
5308 variable for the decl. */
5309 if (VEC_length (fieldoff_s, fieldstack) <= 1
5310 || VEC_length (fieldoff_s, fieldstack) > MAX_FIELDS_FOR_FIELD_SENSITIVE)
5311 {
5312 vi = new_var_info (decl, name);
5313 vi->offset = 0;
5314 vi->may_have_pointers = could_have_pointers (decl);
4ee00913 5315 vi->fullsize = TREE_INT_CST_LOW (declsize);
910fdc79 5316 vi->size = vi->fullsize;
18abb35e
RG
5317 vi->is_full_var = true;
5318 VEC_free (fieldoff_s, heap, fieldstack);
5319 return vi;
910fdc79 5320 }
c58936b6 5321
18abb35e
RG
5322 vi = new_var_info (decl, name);
5323 vi->fullsize = TREE_INT_CST_LOW (declsize);
5324 for (i = 0, newvi = vi;
5325 VEC_iterate (fieldoff_s, fieldstack, i, fo);
5326 ++i, newvi = newvi->next)
5327 {
5328 const char *newname = "NULL";
5329 char *tempname;
5330
5331 if (dump_file)
5332 {
5333 asprintf (&tempname, "%s." HOST_WIDE_INT_PRINT_DEC
5334 "+" HOST_WIDE_INT_PRINT_DEC, name, fo->offset, fo->size);
5335 newname = ggc_strdup (tempname);
5336 free (tempname);
5337 }
5338 newvi->name = newname;
5339 newvi->offset = fo->offset;
5340 newvi->size = fo->size;
5341 newvi->fullsize = vi->fullsize;
5342 newvi->may_have_pointers = fo->may_have_pointers;
5343 newvi->only_restrict_pointers = fo->only_restrict_pointers;
5344 if (i + 1 < VEC_length (fieldoff_s, fieldstack))
5345 newvi->next = new_var_info (decl, name);
5346 }
5347
5348 VEC_free (fieldoff_s, heap, fieldstack);
25a6a873 5349
18abb35e
RG
5350 return vi;
5351}
5352
5353static unsigned int
5354create_variable_info_for (tree decl, const char *name)
5355{
5356 varinfo_t vi = create_variable_info_for_1 (decl, name);
5357 unsigned int id = vi->id;
5358
5359 insert_vi_for_tree (decl, vi);
5360
5361 /* Create initial constraints for globals. */
5362 for (; vi; vi = vi->next)
13c6bff4 5363 {
18abb35e
RG
5364 if (!vi->may_have_pointers
5365 || !vi->is_global_var)
5366 continue;
5367
25a6a873 5368 /* Mark global restrict qualified pointers. */
18abb35e
RG
5369 if ((POINTER_TYPE_P (TREE_TYPE (decl))
5370 && TYPE_RESTRICT (TREE_TYPE (decl)))
5371 || vi->only_restrict_pointers)
74d27244 5372 make_constraint_from_restrict (vi, "GLOBAL_RESTRICT");
25a6a873
RG
5373
5374 /* For escaped variables initialize them from nonlocal. */
5375 if (!in_ipa_mode
5376 || DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5377 make_copy_constraint (vi, nonlocal_id);
5378
5379 /* If this is a global variable with an initializer and we are in
5380 IPA mode generate constraints for it. In non-IPA mode
5381 the initializer from nonlocal is all we need. */
5382 if (in_ipa_mode
18abb35e 5383 && DECL_INITIAL (decl))
25a6a873
RG
5384 {
5385 VEC (ce_s, heap) *rhsc = NULL;
5386 struct constraint_expr lhs, *rhsp;
5387 unsigned i;
18abb35e 5388 get_constraint_for (DECL_INITIAL (decl), &rhsc);
25a6a873
RG
5389 lhs.var = vi->id;
5390 lhs.offset = 0;
5391 lhs.type = SCALAR;
5392 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
5393 process_constraint (new_constraint (lhs, *rhsp));
5394 /* If this is a variable that escapes from the unit
5395 the initializer escapes as well. */
5396 if (DECL_EXTERNAL (decl) || TREE_PUBLIC (decl))
5397 {
5398 lhs.var = escaped_id;
5399 lhs.offset = 0;
5400 lhs.type = SCALAR;
5401 for (i = 0; VEC_iterate (ce_s, rhsc, i, rhsp); ++i)
5402 process_constraint (new_constraint (lhs, *rhsp));
5403 }
5404 VEC_free (ce_s, heap, rhsc);
25a6a873 5405 }
13c6bff4 5406 }
910fdc79 5407
18abb35e 5408 return id;
910fdc79
DB
5409}
5410
5411/* Print out the points-to solution for VAR to FILE. */
5412
5006671f 5413static void
910fdc79
DB
5414dump_solution_for_var (FILE *file, unsigned int var)
5415{
5416 varinfo_t vi = get_varinfo (var);
5417 unsigned int i;
c58936b6
DB
5418 bitmap_iterator bi;
5419
25a6a873
RG
5420 /* Dump the solution for unified vars anyway, this avoids difficulties
5421 in scanning dumps in the testsuite. */
5422 fprintf (file, "%s = { ", vi->name);
5423 vi = get_varinfo (find (var));
5424 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5425 fprintf (file, "%s ", get_varinfo (i)->name);
5426 fprintf (file, "}");
5427
5428 /* But note when the variable was unified. */
5429 if (vi->id != var)
5430 fprintf (file, " same as %s", vi->name);
5431
5432 fprintf (file, "\n");
910fdc79
DB
5433}
5434
5435/* Print the points-to solution for VAR to stdout. */
5436
5437void
5438debug_solution_for_var (unsigned int var)
5439{
5440 dump_solution_for_var (stdout, var);
5441}
5442
910fdc79
DB
5443/* Create varinfo structures for all of the variables in the
5444 function for intraprocedural mode. */
5445
5446static void
5447intra_create_variable_infos (void)
5448{
5449 tree t;
b23987ec 5450
6e7e772d 5451 /* For each incoming pointer argument arg, create the constraint ARG
0d3c82d6
RG
5452 = NONLOCAL or a dummy variable if it is a restrict qualified
5453 passed-by-reference argument. */
910fdc79
DB
5454 for (t = DECL_ARGUMENTS (current_function_decl); t; t = TREE_CHAIN (t))
5455 {
910fdc79 5456 varinfo_t p;
c58936b6 5457
21392f19
DB
5458 if (!could_have_pointers (t))
5459 continue;
c58936b6 5460
bacd3fb6
RG
5461 /* For restrict qualified pointers to objects passed by
5462 reference build a real representative for the pointed-to object. */
5463 if (DECL_BY_REFERENCE (t)
5464 && POINTER_TYPE_P (TREE_TYPE (t))
5465 && TYPE_RESTRICT (TREE_TYPE (t)))
5466 {
5467 struct constraint_expr lhsc, rhsc;
5468 varinfo_t vi;
5469 tree heapvar = heapvar_lookup (t, 0);
5470 if (heapvar == NULL_TREE)
5471 {
5472 var_ann_t ann;
5473 heapvar = create_tmp_var_raw (TREE_TYPE (TREE_TYPE (t)),
5474 "PARM_NOALIAS");
5475 DECL_EXTERNAL (heapvar) = 1;
5476 heapvar_insert (t, 0, heapvar);
5477 ann = get_var_ann (heapvar);
5478 ann->is_heapvar = 1;
5479 }
5480 if (gimple_referenced_vars (cfun))
5481 add_referenced_var (heapvar);
5482 lhsc.var = get_vi_for_tree (t)->id;
5483 lhsc.type = SCALAR;
5484 lhsc.offset = 0;
5485 rhsc.var = (vi = get_vi_for_tree (heapvar))->id;
5486 rhsc.type = ADDRESSOF;
5487 rhsc.offset = 0;
5488 process_constraint (new_constraint (lhsc, rhsc));
5489 vi->is_restrict_var = 1;
5490 continue;
5491 }
5492
10174ddf 5493 for (p = get_vi_for_tree (t); p; p = p->next)
18abb35e
RG
5494 {
5495 if (p->may_have_pointers)
5496 make_constraint_from (p, nonlocal_id);
5497 if (p->only_restrict_pointers)
5498 make_constraint_from_restrict (p, "PARM_RESTRICT");
5499 }
74d27244
RG
5500 if (POINTER_TYPE_P (TREE_TYPE (t))
5501 && TYPE_RESTRICT (TREE_TYPE (t)))
5502 make_constraint_from_restrict (get_vi_for_tree (t), "PARM_RESTRICT");
21392f19 5503 }
75af9746 5504
10bd6c5c
RG
5505 /* Add a constraint for a result decl that is passed by reference. */
5506 if (DECL_RESULT (cfun->decl)
5507 && DECL_BY_REFERENCE (DECL_RESULT (cfun->decl)))
5508 {
5509 varinfo_t p, result_vi = get_vi_for_tree (DECL_RESULT (cfun->decl));
5510
5511 for (p = result_vi; p; p = p->next)
5006671f 5512 make_constraint_from (p, nonlocal_id);
10bd6c5c
RG
5513 }
5514
75af9746
RG
5515 /* Add a constraint for the incoming static chain parameter. */
5516 if (cfun->static_chain_decl != NULL_TREE)
5517 {
5518 varinfo_t p, chain_vi = get_vi_for_tree (cfun->static_chain_decl);
5519
5520 for (p = chain_vi; p; p = p->next)
5521 make_constraint_from (p, nonlocal_id);
5522 }
910fdc79
DB
5523}
5524
1296c31f
DB
5525/* Structure used to put solution bitmaps in a hashtable so they can
5526 be shared among variables with the same points-to set. */
5527
5528typedef struct shared_bitmap_info
5529{
5530 bitmap pt_vars;
5531 hashval_t hashcode;
5532} *shared_bitmap_info_t;
e5cfc29f 5533typedef const struct shared_bitmap_info *const_shared_bitmap_info_t;
1296c31f
DB
5534
5535static htab_t shared_bitmap_table;
5536
5537/* Hash function for a shared_bitmap_info_t */
5538
5539static hashval_t
5540shared_bitmap_hash (const void *p)
5541{
e5cfc29f 5542 const_shared_bitmap_info_t const bi = (const_shared_bitmap_info_t) p;
1296c31f
DB
5543 return bi->hashcode;
5544}
5545
5546/* Equality function for two shared_bitmap_info_t's. */
5547
5548static int
5549shared_bitmap_eq (const void *p1, const void *p2)
5550{
e5cfc29f
KG
5551 const_shared_bitmap_info_t const sbi1 = (const_shared_bitmap_info_t) p1;
5552 const_shared_bitmap_info_t const sbi2 = (const_shared_bitmap_info_t) p2;
1296c31f
DB
5553 return bitmap_equal_p (sbi1->pt_vars, sbi2->pt_vars);
5554}
5555
5556/* Lookup a bitmap in the shared bitmap hashtable, and return an already
5557 existing instance if there is one, NULL otherwise. */
5558
5559static bitmap
5560shared_bitmap_lookup (bitmap pt_vars)
5561{
5562 void **slot;
5563 struct shared_bitmap_info sbi;
5564
5565 sbi.pt_vars = pt_vars;
5566 sbi.hashcode = bitmap_hash (pt_vars);
7b765bed 5567
1296c31f
DB
5568 slot = htab_find_slot_with_hash (shared_bitmap_table, &sbi,
5569 sbi.hashcode, NO_INSERT);
5570 if (!slot)
5571 return NULL;
5572 else
5573 return ((shared_bitmap_info_t) *slot)->pt_vars;
5574}
5575
5576
5577/* Add a bitmap to the shared bitmap hashtable. */
5578
5579static void
5580shared_bitmap_add (bitmap pt_vars)
5581{
5582 void **slot;
5583 shared_bitmap_info_t sbi = XNEW (struct shared_bitmap_info);
7b765bed 5584
1296c31f
DB
5585 sbi->pt_vars = pt_vars;
5586 sbi->hashcode = bitmap_hash (pt_vars);
7b765bed 5587
1296c31f
DB
5588 slot = htab_find_slot_with_hash (shared_bitmap_table, sbi,
5589 sbi->hashcode, INSERT);
5590 gcc_assert (!*slot);
5591 *slot = (void *) sbi;
5592}
5593
5594
4d7a65ea 5595/* Set bits in INTO corresponding to the variable uids in solution set FROM. */
910fdc79 5596
b8698a0f 5597static void
4d7a65ea 5598set_uids_in_ptset (bitmap into, bitmap from, struct pt_solution *pt)
910fdc79
DB
5599{
5600 unsigned int i;
5601 bitmap_iterator bi;
f83ca251 5602
910fdc79
DB
5603 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
5604 {
5605 varinfo_t vi = get_varinfo (i);
c58936b6 5606
e8ca4159
DN
5607 /* The only artificial variables that are allowed in a may-alias
5608 set are heap variables. */
5609 if (vi->is_artificial_var && !vi->is_heap_var)
5610 continue;
c58936b6 5611
5611cf0b
RG
5612 if (TREE_CODE (vi->decl) == VAR_DECL
5613 || TREE_CODE (vi->decl) == PARM_DECL
5614 || TREE_CODE (vi->decl) == RESULT_DECL)
58b82d2b 5615 {
25a6a873
RG
5616 /* If we are in IPA mode we will not recompute points-to
5617 sets after inlining so make sure they stay valid. */
5618 if (in_ipa_mode
5619 && !DECL_PT_UID_SET_P (vi->decl))
5620 SET_DECL_PT_UID (vi->decl, DECL_UID (vi->decl));
5621
5006671f
RG
5622 /* Add the decl to the points-to set. Note that the points-to
5623 set contains global variables. */
25a6a873 5624 bitmap_set_bit (into, DECL_PT_UID (vi->decl));
74d27244 5625 if (vi->is_global_var)
5006671f 5626 pt->vars_contains_global = true;
e8ca4159 5627 }
910fdc79
DB
5628 }
5629}
e8ca4159
DN
5630
5631
4d7a65ea 5632/* Compute the points-to solution *PT for the variable VI. */
ce1b6498
RG
5633
5634static void
1cfd38be 5635find_what_var_points_to (varinfo_t orig_vi, struct pt_solution *pt)
ce1b6498 5636{
4d7a65ea 5637 unsigned int i;
5006671f
RG
5638 bitmap_iterator bi;
5639 bitmap finished_solution;
5640 bitmap result;
1cfd38be 5641 varinfo_t vi;
5006671f
RG
5642
5643 memset (pt, 0, sizeof (struct pt_solution));
5644
5645 /* This variable may have been collapsed, let's get the real
5646 variable. */
1cfd38be 5647 vi = get_varinfo (find (orig_vi->id));
5006671f
RG
5648
5649 /* Translate artificial variables into SSA_NAME_PTR_INFO
5650 attributes. */
5651 EXECUTE_IF_SET_IN_BITMAP (vi->solution, 0, i, bi)
5652 {
5653 varinfo_t vi = get_varinfo (i);
5654
5655 if (vi->is_artificial_var)
5656 {
5657 if (vi->id == nothing_id)
5658 pt->null = 1;
5659 else if (vi->id == escaped_id)
25a6a873
RG
5660 {
5661 if (in_ipa_mode)
5662 pt->ipa_escaped = 1;
5663 else
5664 pt->escaped = 1;
5665 }
5006671f
RG
5666 else if (vi->id == nonlocal_id)
5667 pt->nonlocal = 1;
5668 else if (vi->is_heap_var)
5669 /* We represent heapvars in the points-to set properly. */
5670 ;
91deb937
RG
5671 else if (vi->id == readonly_id)
5672 /* Nobody cares. */
5673 ;
5006671f 5674 else if (vi->id == anything_id
5006671f
RG
5675 || vi->id == integer_id)
5676 pt->anything = 1;
5677 }
74d27244
RG
5678 if (vi->is_restrict_var)
5679 pt->vars_contains_restrict = true;
5006671f
RG
5680 }
5681
5682 /* Instead of doing extra work, simply do not create
5683 elaborate points-to information for pt_anything pointers. */
74d27244 5684 if (pt->anything
1cfd38be 5685 && (orig_vi->is_artificial_var
74d27244 5686 || !pt->vars_contains_restrict))
4d7a65ea 5687 return;
5006671f
RG
5688
5689 /* Share the final set of variables when possible. */
5690 finished_solution = BITMAP_GGC_ALLOC ();
5691 stats.points_to_sets_created++;
5692
4d7a65ea 5693 set_uids_in_ptset (finished_solution, vi->solution, pt);
5006671f
RG
5694 result = shared_bitmap_lookup (finished_solution);
5695 if (!result)
5696 {
5697 shared_bitmap_add (finished_solution);
5698 pt->vars = finished_solution;
5699 }
5700 else
5701 {
5702 pt->vars = result;
5703 bitmap_clear (finished_solution);
5704 }
5006671f
RG
5705}
5706
4d7a65ea 5707/* Given a pointer variable P, fill in its points-to set. */
5006671f
RG
5708
5709static void
4d7a65ea 5710find_what_p_points_to (tree p)
5006671f
RG
5711{
5712 struct ptr_info_def *pi;
7cc92f92 5713 tree lookup_p = p;
3e5937d7 5714 varinfo_t vi;
e8ca4159 5715
7cc92f92
RG
5716 /* For parameters, get at the points-to set for the actual parm
5717 decl. */
c58936b6
DB
5718 if (TREE_CODE (p) == SSA_NAME
5719 && TREE_CODE (SSA_NAME_VAR (p)) == PARM_DECL
38635499 5720 && SSA_NAME_IS_DEFAULT_DEF (p))
7cc92f92
RG
5721 lookup_p = SSA_NAME_VAR (p);
5722
15814ba0 5723 vi = lookup_vi_for_tree (lookup_p);
5006671f
RG
5724 if (!vi)
5725 return;
5726
5727 pi = get_ptr_info (p);
4d7a65ea 5728 find_what_var_points_to (vi, &pi->pt);
5006671f 5729}
7b765bed 5730
910fdc79 5731
5006671f 5732/* Query statistics for points-to solutions. */
c58936b6 5733
5006671f
RG
5734static struct {
5735 unsigned HOST_WIDE_INT pt_solution_includes_may_alias;
5736 unsigned HOST_WIDE_INT pt_solution_includes_no_alias;
5737 unsigned HOST_WIDE_INT pt_solutions_intersect_may_alias;
5738 unsigned HOST_WIDE_INT pt_solutions_intersect_no_alias;
5739} pta_stats;
e8ca4159 5740
5006671f
RG
5741void
5742dump_pta_stats (FILE *s)
5743{
5744 fprintf (s, "\nPTA query stats:\n");
5745 fprintf (s, " pt_solution_includes: "
5746 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5747 HOST_WIDE_INT_PRINT_DEC" queries\n",
5748 pta_stats.pt_solution_includes_no_alias,
5749 pta_stats.pt_solution_includes_no_alias
5750 + pta_stats.pt_solution_includes_may_alias);
5751 fprintf (s, " pt_solutions_intersect: "
5752 HOST_WIDE_INT_PRINT_DEC" disambiguations, "
5753 HOST_WIDE_INT_PRINT_DEC" queries\n",
5754 pta_stats.pt_solutions_intersect_no_alias,
5755 pta_stats.pt_solutions_intersect_no_alias
5756 + pta_stats.pt_solutions_intersect_may_alias);
5757}
e8ca4159 5758
9f09b13f 5759
5006671f
RG
5760/* Reset the points-to solution *PT to a conservative default
5761 (point to anything). */
7b765bed 5762
5006671f
RG
5763void
5764pt_solution_reset (struct pt_solution *pt)
5765{
5766 memset (pt, 0, sizeof (struct pt_solution));
5767 pt->anything = true;
5768}
1296c31f 5769
55b34b5f 5770/* Set the points-to solution *PT to point only to the variables
25a6a873
RG
5771 in VARS. VARS_CONTAINS_GLOBAL specifies whether that contains
5772 global variables and VARS_CONTAINS_RESTRICT specifies whether
5773 it contains restrict tag variables. */
55b34b5f
RG
5774
5775void
25a6a873
RG
5776pt_solution_set (struct pt_solution *pt, bitmap vars,
5777 bool vars_contains_global, bool vars_contains_restrict)
55b34b5f 5778{
55b34b5f
RG
5779 memset (pt, 0, sizeof (struct pt_solution));
5780 pt->vars = vars;
25a6a873
RG
5781 pt->vars_contains_global = vars_contains_global;
5782 pt->vars_contains_restrict = vars_contains_restrict;
5783}
5784
5785/* Computes the union of the points-to solutions *DEST and *SRC and
5786 stores the result in *DEST. This changes the points-to bitmap
5787 of *DEST and thus may not be used if that might be shared.
5788 The points-to bitmap of *SRC and *DEST will not be shared after
5789 this function if they were not before. */
5790
5791static void
5792pt_solution_ior_into (struct pt_solution *dest, struct pt_solution *src)
5793{
5794 dest->anything |= src->anything;
5795 if (dest->anything)
55b34b5f 5796 {
25a6a873
RG
5797 pt_solution_reset (dest);
5798 return;
55b34b5f 5799 }
25a6a873
RG
5800
5801 dest->nonlocal |= src->nonlocal;
5802 dest->escaped |= src->escaped;
5803 dest->ipa_escaped |= src->ipa_escaped;
5804 dest->null |= src->null;
5805 dest->vars_contains_global |= src->vars_contains_global;
5806 dest->vars_contains_restrict |= src->vars_contains_restrict;
5807 if (!src->vars)
5808 return;
5809
5810 if (!dest->vars)
5811 dest->vars = BITMAP_GGC_ALLOC ();
5812 bitmap_ior_into (dest->vars, src->vars);
55b34b5f
RG
5813}
5814
5006671f 5815/* Return true if the points-to solution *PT is empty. */
e8ca4159 5816
25a6a873 5817bool
5006671f
RG
5818pt_solution_empty_p (struct pt_solution *pt)
5819{
5820 if (pt->anything
5821 || pt->nonlocal)
5822 return false;
e8ca4159 5823
5006671f
RG
5824 if (pt->vars
5825 && !bitmap_empty_p (pt->vars))
5826 return false;
e8ca4159 5827
5006671f
RG
5828 /* If the solution includes ESCAPED, check if that is empty. */
5829 if (pt->escaped
5830 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5831 return false;
5832
25a6a873
RG
5833 /* If the solution includes ESCAPED, check if that is empty. */
5834 if (pt->ipa_escaped
5835 && !pt_solution_empty_p (&ipa_escaped_pt))
5836 return false;
5837
5006671f 5838 return true;
910fdc79
DB
5839}
5840
5006671f 5841/* Return true if the points-to solution *PT includes global memory. */
63a4ef6f 5842
2f571334 5843bool
5006671f 5844pt_solution_includes_global (struct pt_solution *pt)
2f571334 5845{
5006671f
RG
5846 if (pt->anything
5847 || pt->nonlocal
5848 || pt->vars_contains_global)
5849 return true;
2f571334 5850
5006671f
RG
5851 if (pt->escaped)
5852 return pt_solution_includes_global (&cfun->gimple_df->escaped);
2f571334 5853
25a6a873
RG
5854 if (pt->ipa_escaped)
5855 return pt_solution_includes_global (&ipa_escaped_pt);
5856
5857 /* ??? This predicate is not correct for the IPA-PTA solution
5858 as we do not properly distinguish between unit escape points
5859 and global variables. */
5860 if (cfun->gimple_df->ipa_pta)
5861 return true;
5862
5006671f
RG
5863 return false;
5864}
2f571334 5865
5006671f
RG
5866/* Return true if the points-to solution *PT includes the variable
5867 declaration DECL. */
15c15196 5868
5006671f
RG
5869static bool
5870pt_solution_includes_1 (struct pt_solution *pt, const_tree decl)
5871{
5872 if (pt->anything)
5873 return true;
2f571334 5874
5006671f
RG
5875 if (pt->nonlocal
5876 && is_global_var (decl))
5877 return true;
2f571334 5878
5006671f 5879 if (pt->vars
25a6a873 5880 && bitmap_bit_p (pt->vars, DECL_PT_UID (decl)))
5006671f 5881 return true;
2f571334 5882
5006671f
RG
5883 /* If the solution includes ESCAPED, check it. */
5884 if (pt->escaped
5885 && pt_solution_includes_1 (&cfun->gimple_df->escaped, decl))
5886 return true;
2f571334 5887
25a6a873
RG
5888 /* If the solution includes ESCAPED, check it. */
5889 if (pt->ipa_escaped
5890 && pt_solution_includes_1 (&ipa_escaped_pt, decl))
5891 return true;
5892
5006671f 5893 return false;
2f571334 5894}
910fdc79 5895
5006671f
RG
5896bool
5897pt_solution_includes (struct pt_solution *pt, const_tree decl)
15c15196 5898{
5006671f
RG
5899 bool res = pt_solution_includes_1 (pt, decl);
5900 if (res)
5901 ++pta_stats.pt_solution_includes_may_alias;
5902 else
5903 ++pta_stats.pt_solution_includes_no_alias;
5904 return res;
5905}
15c15196 5906
5006671f
RG
5907/* Return true if both points-to solutions PT1 and PT2 have a non-empty
5908 intersection. */
15c15196 5909
5006671f
RG
5910static bool
5911pt_solutions_intersect_1 (struct pt_solution *pt1, struct pt_solution *pt2)
5912{
5913 if (pt1->anything || pt2->anything)
5914 return true;
15c15196 5915
5006671f
RG
5916 /* If either points to unknown global memory and the other points to
5917 any global memory they alias. */
5918 if ((pt1->nonlocal
5919 && (pt2->nonlocal
5920 || pt2->vars_contains_global))
5921 || (pt2->nonlocal
5922 && pt1->vars_contains_global))
5923 return true;
15c15196 5924
5006671f
RG
5925 /* Check the escaped solution if required. */
5926 if ((pt1->escaped || pt2->escaped)
5927 && !pt_solution_empty_p (&cfun->gimple_df->escaped))
5928 {
5929 /* If both point to escaped memory and that solution
5930 is not empty they alias. */
5931 if (pt1->escaped && pt2->escaped)
5932 return true;
15c15196 5933
5006671f
RG
5934 /* If either points to escaped memory see if the escaped solution
5935 intersects with the other. */
5936 if ((pt1->escaped
5937 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt2))
5938 || (pt2->escaped
5939 && pt_solutions_intersect_1 (&cfun->gimple_df->escaped, pt1)))
5940 return true;
15c15196
RG
5941 }
5942
25a6a873
RG
5943 /* Check the escaped solution if required.
5944 ??? Do we need to check the local against the IPA escaped sets? */
5945 if ((pt1->ipa_escaped || pt2->ipa_escaped)
5946 && !pt_solution_empty_p (&ipa_escaped_pt))
5947 {
5948 /* If both point to escaped memory and that solution
5949 is not empty they alias. */
5950 if (pt1->ipa_escaped && pt2->ipa_escaped)
5951 return true;
5952
5953 /* If either points to escaped memory see if the escaped solution
5954 intersects with the other. */
5955 if ((pt1->ipa_escaped
5956 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt2))
5957 || (pt2->ipa_escaped
5958 && pt_solutions_intersect_1 (&ipa_escaped_pt, pt1)))
5959 return true;
5960 }
5961
5006671f
RG
5962 /* Now both pointers alias if their points-to solution intersects. */
5963 return (pt1->vars
5964 && pt2->vars
5965 && bitmap_intersect_p (pt1->vars, pt2->vars));
5966}
5967
5968bool
5969pt_solutions_intersect (struct pt_solution *pt1, struct pt_solution *pt2)
5970{
5971 bool res = pt_solutions_intersect_1 (pt1, pt2);
5972 if (res)
5973 ++pta_stats.pt_solutions_intersect_may_alias;
5974 else
5975 ++pta_stats.pt_solutions_intersect_no_alias;
5976 return res;
15c15196
RG
5977}
5978
74d27244
RG
5979/* Return true if both points-to solutions PT1 and PT2 for two restrict
5980 qualified pointers are possibly based on the same pointer. */
5981
5982bool
5983pt_solutions_same_restrict_base (struct pt_solution *pt1,
5984 struct pt_solution *pt2)
5985{
5986 /* If we deal with points-to solutions of two restrict qualified
5987 pointers solely rely on the pointed-to variable bitmap intersection.
5988 For two pointers that are based on each other the bitmaps will
5989 intersect. */
5990 if (pt1->vars_contains_restrict
5991 && pt2->vars_contains_restrict)
5992 {
5993 gcc_assert (pt1->vars && pt2->vars);
5994 return bitmap_intersect_p (pt1->vars, pt2->vars);
5995 }
5996
5997 return true;
5998}
5999
b7091901 6000
63a4ef6f
DN
6001/* Dump points-to information to OUTFILE. */
6002
5006671f 6003static void
910fdc79
DB
6004dump_sa_points_to_info (FILE *outfile)
6005{
910fdc79 6006 unsigned int i;
63a4ef6f 6007
e8ca4159 6008 fprintf (outfile, "\nPoints-to sets\n\n");
63a4ef6f 6009
910fdc79
DB
6010 if (dump_flags & TDF_STATS)
6011 {
6012 fprintf (outfile, "Stats:\n");
63a4ef6f 6013 fprintf (outfile, "Total vars: %d\n", stats.total_vars);
3e5937d7
DB
6014 fprintf (outfile, "Non-pointer vars: %d\n",
6015 stats.nonpointer_vars);
63a4ef6f
DN
6016 fprintf (outfile, "Statically unified vars: %d\n",
6017 stats.unified_vars_static);
63a4ef6f
DN
6018 fprintf (outfile, "Dynamically unified vars: %d\n",
6019 stats.unified_vars_dynamic);
6020 fprintf (outfile, "Iterations: %d\n", stats.iterations);
4ee00913 6021 fprintf (outfile, "Number of edges: %d\n", stats.num_edges);
3e5937d7
DB
6022 fprintf (outfile, "Number of implicit edges: %d\n",
6023 stats.num_implicit_edges);
910fdc79 6024 }
63a4ef6f 6025
910fdc79 6026 for (i = 0; i < VEC_length (varinfo_t, varmap); i++)
25a6a873
RG
6027 {
6028 varinfo_t vi = get_varinfo (i);
6029 if (!vi->may_have_pointers)
b28ae58f 6030 continue;
25a6a873
RG
6031 dump_solution_for_var (outfile, i);
6032 }
910fdc79
DB
6033}
6034
6035
63a4ef6f
DN
6036/* Debug points-to information to stderr. */
6037
6038void
6039debug_sa_points_to_info (void)
6040{
6041 dump_sa_points_to_info (stderr);
6042}
6043
6044
910fdc79
DB
6045/* Initialize the always-existing constraint variables for NULL
6046 ANYTHING, READONLY, and INTEGER */
6047
6048static void
6049init_base_vars (void)
6050{
6051 struct constraint_expr lhs, rhs;
0bbf2ffa
RG
6052 varinfo_t var_anything;
6053 varinfo_t var_nothing;
6054 varinfo_t var_readonly;
6055 varinfo_t var_escaped;
6056 varinfo_t var_nonlocal;
0bbf2ffa
RG
6057 varinfo_t var_storedanything;
6058 varinfo_t var_integer;
910fdc79
DB
6059
6060 /* Create the NULL variable, used to represent that a variable points
6061 to NULL. */
0bbf2ffa
RG
6062 var_nothing = new_var_info (NULL_TREE, "NULL");
6063 gcc_assert (var_nothing->id == nothing_id);
910fdc79
DB
6064 var_nothing->is_artificial_var = 1;
6065 var_nothing->offset = 0;
6066 var_nothing->size = ~0;
6067 var_nothing->fullsize = ~0;
13c2c08b 6068 var_nothing->is_special_var = 1;
b28ae58f
RG
6069 var_nothing->may_have_pointers = 0;
6070 var_nothing->is_global_var = 0;
910fdc79
DB
6071
6072 /* Create the ANYTHING variable, used to represent that a variable
6073 points to some unknown piece of memory. */
0bbf2ffa
RG
6074 var_anything = new_var_info (NULL_TREE, "ANYTHING");
6075 gcc_assert (var_anything->id == anything_id);
910fdc79
DB
6076 var_anything->is_artificial_var = 1;
6077 var_anything->size = ~0;
6078 var_anything->offset = 0;
6079 var_anything->next = NULL;
6080 var_anything->fullsize = ~0;
13c2c08b 6081 var_anything->is_special_var = 1;
910fdc79
DB
6082
6083 /* Anything points to anything. This makes deref constraints just
c58936b6 6084 work in the presence of linked list and other p = *p type loops,
910fdc79 6085 by saying that *ANYTHING = ANYTHING. */
910fdc79
DB
6086 lhs.type = SCALAR;
6087 lhs.var = anything_id;
6088 lhs.offset = 0;
3e5937d7 6089 rhs.type = ADDRESSOF;
910fdc79
DB
6090 rhs.var = anything_id;
6091 rhs.offset = 0;
e8ca4159 6092
a5eadacc
DB
6093 /* This specifically does not use process_constraint because
6094 process_constraint ignores all anything = anything constraints, since all
6095 but this one are redundant. */
b5efa470 6096 VEC_safe_push (constraint_t, heap, constraints, new_constraint (lhs, rhs));
c58936b6 6097
910fdc79
DB
6098 /* Create the READONLY variable, used to represent that a variable
6099 points to readonly memory. */
0bbf2ffa
RG
6100 var_readonly = new_var_info (NULL_TREE, "READONLY");
6101 gcc_assert (var_readonly->id == readonly_id);
910fdc79
DB
6102 var_readonly->is_artificial_var = 1;
6103 var_readonly->offset = 0;
6104 var_readonly->size = ~0;
6105 var_readonly->fullsize = ~0;
6106 var_readonly->next = NULL;
13c2c08b 6107 var_readonly->is_special_var = 1;
910fdc79
DB
6108
6109 /* readonly memory points to anything, in order to make deref
6110 easier. In reality, it points to anything the particular
6111 readonly variable can point to, but we don't track this
607fb860 6112 separately. */
910fdc79
DB
6113 lhs.type = SCALAR;
6114 lhs.var = readonly_id;
6115 lhs.offset = 0;
3e5937d7 6116 rhs.type = ADDRESSOF;
b7091901 6117 rhs.var = readonly_id; /* FIXME */
910fdc79 6118 rhs.offset = 0;
b7091901 6119 process_constraint (new_constraint (lhs, rhs));
c58936b6 6120
b7091901
RG
6121 /* Create the ESCAPED variable, used to represent the set of escaped
6122 memory. */
0bbf2ffa
RG
6123 var_escaped = new_var_info (NULL_TREE, "ESCAPED");
6124 gcc_assert (var_escaped->id == escaped_id);
b7091901
RG
6125 var_escaped->is_artificial_var = 1;
6126 var_escaped->offset = 0;
6127 var_escaped->size = ~0;
6128 var_escaped->fullsize = ~0;
6129 var_escaped->is_special_var = 0;
b7091901 6130
b7091901
RG
6131 /* Create the NONLOCAL variable, used to represent the set of nonlocal
6132 memory. */
0bbf2ffa
RG
6133 var_nonlocal = new_var_info (NULL_TREE, "NONLOCAL");
6134 gcc_assert (var_nonlocal->id == nonlocal_id);
b7091901
RG
6135 var_nonlocal->is_artificial_var = 1;
6136 var_nonlocal->offset = 0;
6137 var_nonlocal->size = ~0;
6138 var_nonlocal->fullsize = ~0;
6139 var_nonlocal->is_special_var = 1;
b7091901 6140
5006671f
RG
6141 /* ESCAPED = *ESCAPED, because escaped is may-deref'd at calls, etc. */
6142 lhs.type = SCALAR;
6143 lhs.var = escaped_id;
6144 lhs.offset = 0;
6145 rhs.type = DEREF;
6146 rhs.var = escaped_id;
6147 rhs.offset = 0;
6148 process_constraint (new_constraint (lhs, rhs));
6149
6150 /* ESCAPED = ESCAPED + UNKNOWN_OFFSET, because if a sub-field escapes the
6151 whole variable escapes. */
6152 lhs.type = SCALAR;
6153 lhs.var = escaped_id;
6154 lhs.offset = 0;
6155 rhs.type = SCALAR;
6156 rhs.var = escaped_id;
6157 rhs.offset = UNKNOWN_OFFSET;
6158 process_constraint (new_constraint (lhs, rhs));
6159
6160 /* *ESCAPED = NONLOCAL. This is true because we have to assume
6161 everything pointed to by escaped points to what global memory can
6162 point to. */
6163 lhs.type = DEREF;
6164 lhs.var = escaped_id;
6165 lhs.offset = 0;
6166 rhs.type = SCALAR;
6167 rhs.var = nonlocal_id;
6168 rhs.offset = 0;
6169 process_constraint (new_constraint (lhs, rhs));
6170
6171 /* NONLOCAL = &NONLOCAL, NONLOCAL = &ESCAPED. This is true because
6172 global memory may point to global memory and escaped memory. */
b7091901
RG
6173 lhs.type = SCALAR;
6174 lhs.var = nonlocal_id;
6175 lhs.offset = 0;
6176 rhs.type = ADDRESSOF;
5006671f
RG
6177 rhs.var = nonlocal_id;
6178 rhs.offset = 0;
6179 process_constraint (new_constraint (lhs, rhs));
6180 rhs.type = ADDRESSOF;
b7091901
RG
6181 rhs.var = escaped_id;
6182 rhs.offset = 0;
910fdc79 6183 process_constraint (new_constraint (lhs, rhs));
c58936b6 6184
9e39dba6
RG
6185 /* Create the STOREDANYTHING variable, used to represent the set of
6186 variables stored to *ANYTHING. */
0bbf2ffa
RG
6187 var_storedanything = new_var_info (NULL_TREE, "STOREDANYTHING");
6188 gcc_assert (var_storedanything->id == storedanything_id);
9e39dba6
RG
6189 var_storedanything->is_artificial_var = 1;
6190 var_storedanything->offset = 0;
6191 var_storedanything->size = ~0;
6192 var_storedanything->fullsize = ~0;
6193 var_storedanything->is_special_var = 0;
9e39dba6 6194
910fdc79 6195 /* Create the INTEGER variable, used to represent that a variable points
5006671f 6196 to what an INTEGER "points to". */
0bbf2ffa
RG
6197 var_integer = new_var_info (NULL_TREE, "INTEGER");
6198 gcc_assert (var_integer->id == integer_id);
910fdc79
DB
6199 var_integer->is_artificial_var = 1;
6200 var_integer->size = ~0;
6201 var_integer->fullsize = ~0;
6202 var_integer->offset = 0;
6203 var_integer->next = NULL;
13c2c08b 6204 var_integer->is_special_var = 1;
a5eadacc 6205
21392f19
DB
6206 /* INTEGER = ANYTHING, because we don't know where a dereference of
6207 a random integer will point to. */
a5eadacc
DB
6208 lhs.type = SCALAR;
6209 lhs.var = integer_id;
6210 lhs.offset = 0;
3e5937d7 6211 rhs.type = ADDRESSOF;
a5eadacc
DB
6212 rhs.var = anything_id;
6213 rhs.offset = 0;
6214 process_constraint (new_constraint (lhs, rhs));
c58936b6 6215}
910fdc79 6216
4ee00913 6217/* Initialize things necessary to perform PTA */
910fdc79 6218
4ee00913
DB
6219static void
6220init_alias_vars (void)
910fdc79 6221{
e5bae89b
RG
6222 use_field_sensitive = (MAX_FIELDS_FOR_FIELD_SENSITIVE > 1);
6223
3e5937d7
DB
6224 bitmap_obstack_initialize (&pta_obstack);
6225 bitmap_obstack_initialize (&oldpta_obstack);
4ee00913 6226 bitmap_obstack_initialize (&predbitmap_obstack);
910fdc79 6227
c58936b6 6228 constraint_pool = create_alloc_pool ("Constraint pool",
910fdc79
DB
6229 sizeof (struct constraint), 30);
6230 variable_info_pool = create_alloc_pool ("Variable info pool",
6231 sizeof (struct variable_info), 30);
b5efa470
DB
6232 constraints = VEC_alloc (constraint_t, heap, 8);
6233 varmap = VEC_alloc (varinfo_t, heap, 8);
15814ba0 6234 vi_for_tree = pointer_map_create ();
3e8542ca 6235 call_stmt_vars = pointer_map_create ();
3e5937d7 6236
910fdc79 6237 memset (&stats, 0, sizeof (stats));
1296c31f
DB
6238 shared_bitmap_table = htab_create (511, shared_bitmap_hash,
6239 shared_bitmap_eq, free);
910fdc79 6240 init_base_vars ();
4ee00913
DB
6241}
6242
3e5937d7
DB
6243/* Remove the REF and ADDRESS edges from GRAPH, as well as all the
6244 predecessor edges. */
6245
6246static void
6247remove_preds_and_fake_succs (constraint_graph_t graph)
6248{
6249 unsigned int i;
6250
6251 /* Clear the implicit ref and address nodes from the successor
6252 lists. */
6253 for (i = 0; i < FIRST_REF_NODE; i++)
6254 {
6255 if (graph->succs[i])
6256 bitmap_clear_range (graph->succs[i], FIRST_REF_NODE,
6257 FIRST_REF_NODE * 2);
6258 }
6259
6260 /* Free the successor list for the non-ref nodes. */
6261 for (i = FIRST_REF_NODE; i < graph->size; i++)
6262 {
6263 if (graph->succs[i])
6264 BITMAP_FREE (graph->succs[i]);
6265 }
6266
6267 /* Now reallocate the size of the successor list as, and blow away
6268 the predecessor bitmaps. */
6269 graph->size = VEC_length (varinfo_t, varmap);
c22940cd 6270 graph->succs = XRESIZEVEC (bitmap, graph->succs, graph->size);
3e5937d7
DB
6271
6272 free (graph->implicit_preds);
6273 graph->implicit_preds = NULL;
6274 free (graph->preds);
6275 graph->preds = NULL;
6276 bitmap_obstack_release (&predbitmap_obstack);
6277}
6278
5006671f
RG
6279/* Initialize the heapvar for statement mapping. */
6280
6281static void
6282init_alias_heapvars (void)
6283{
6284 if (!heapvar_for_stmt)
8bc88f25 6285 heapvar_for_stmt = htab_create_ggc (11, tree_map_hash, heapvar_map_eq,
5006671f
RG
6286 NULL);
6287}
6288
6289/* Delete the heapvar for statement mapping. */
6290
6291void
6292delete_alias_heapvars (void)
6293{
6294 if (heapvar_for_stmt)
6295 htab_delete (heapvar_for_stmt);
6296 heapvar_for_stmt = NULL;
6297}
6298
5c245b95 6299/* Solve the constraint set. */
4ee00913 6300
5006671f 6301static void
5c245b95 6302solve_constraints (void)
4ee00913 6303{
3e5937d7 6304 struct scc_info *si;
910fdc79 6305
21392f19
DB
6306 if (dump_file)
6307 fprintf (dump_file,
6308 "\nCollapsing static cycles and doing variable "
7b765bed
DB
6309 "substitution\n");
6310
6311 init_graph (VEC_length (varinfo_t, varmap) * 2);
b8698a0f 6312
7b765bed
DB
6313 if (dump_file)
6314 fprintf (dump_file, "Building predecessor graph\n");
3e5937d7 6315 build_pred_graph ();
b8698a0f 6316
7b765bed
DB
6317 if (dump_file)
6318 fprintf (dump_file, "Detecting pointer and location "
6319 "equivalences\n");
3e5937d7 6320 si = perform_var_substitution (graph);
b8698a0f 6321
7b765bed
DB
6322 if (dump_file)
6323 fprintf (dump_file, "Rewriting constraints and unifying "
6324 "variables\n");
6325 rewrite_constraints (graph, si);
3e5937d7
DB
6326
6327 build_succ_graph ();
9e39dba6 6328 free_var_substitution_info (si);
fc93bcb6
FP
6329
6330 if (dump_file && (dump_flags & TDF_GRAPH))
6331 dump_constraint_graph (dump_file);
6332
7b765bed
DB
6333 move_complex_constraints (graph);
6334
6335 if (dump_file)
6336 fprintf (dump_file, "Uniting pointer but not location equivalent "
6337 "variables\n");
6338 unite_pointer_equivalences (graph);
6339
6340 if (dump_file)
6341 fprintf (dump_file, "Finding indirect cycles\n");
3e5937d7 6342 find_indirect_cycles (graph);
c58936b6 6343
3e5937d7
DB
6344 /* Implicit nodes and predecessors are no longer necessary at this
6345 point. */
6346 remove_preds_and_fake_succs (graph);
c58936b6 6347
21392f19 6348 if (dump_file)
7b765bed 6349 fprintf (dump_file, "Solving graph\n");
c58936b6 6350
21392f19 6351 solve_graph (graph);
c58936b6 6352
910fdc79
DB
6353 if (dump_file)
6354 dump_sa_points_to_info (dump_file);
5c245b95
RG
6355}
6356
6357/* Create points-to sets for the current function. See the comments
6358 at the start of the file for an algorithmic overview. */
6359
6360static void
6361compute_points_to_sets (void)
6362{
6363 basic_block bb;
6364 unsigned i;
6365 varinfo_t vi;
6366
6367 timevar_push (TV_TREE_PTA);
6368
6369 init_alias_vars ();
6370 init_alias_heapvars ();
6371
6372 intra_create_variable_infos ();
6373
25a6a873 6374 /* Now walk all statements and build the constraint set. */
5c245b95
RG
6375 FOR_EACH_BB (bb)
6376 {
6377 gimple_stmt_iterator gsi;
6378
6379 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6380 {
6381 gimple phi = gsi_stmt (gsi);
6382
6383 if (is_gimple_reg (gimple_phi_result (phi)))
6384 find_func_aliases (phi);
6385 }
6386
6387 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6388 {
6389 gimple stmt = gsi_stmt (gsi);
6390
6391 find_func_aliases (stmt);
6392 }
6393 }
6394
25a6a873
RG
6395 if (dump_file)
6396 {
6397 fprintf (dump_file, "Points-to analysis\n\nConstraints:\n\n");
6398 dump_constraints (dump_file, 0);
6399 }
6400
5c245b95
RG
6401 /* From the constraints compute the points-to sets. */
6402 solve_constraints ();
c58936b6 6403
3e8542ca 6404 /* Compute the points-to set for ESCAPED used for call-clobber analysis. */
0bbf2ffa
RG
6405 find_what_var_points_to (get_varinfo (escaped_id),
6406 &cfun->gimple_df->escaped);
5006671f
RG
6407
6408 /* Make sure the ESCAPED solution (which is used as placeholder in
6409 other solutions) does not reference itself. This simplifies
6410 points-to solution queries. */
6411 cfun->gimple_df->escaped.escaped = 0;
6412
14c41b9b
RG
6413 /* Mark escaped HEAP variables as global. */
6414 for (i = 0; VEC_iterate (varinfo_t, varmap, i, vi); ++i)
6415 if (vi->is_heap_var
91deb937 6416 && !vi->is_restrict_var
14c41b9b 6417 && !vi->is_global_var)
91deb937
RG
6418 DECL_EXTERNAL (vi->decl) = vi->is_global_var
6419 = pt_solution_includes (&cfun->gimple_df->escaped, vi->decl);
14c41b9b 6420
5006671f
RG
6421 /* Compute the points-to sets for pointer SSA_NAMEs. */
6422 for (i = 0; i < num_ssa_names; ++i)
6423 {
6424 tree ptr = ssa_name (i);
6425 if (ptr
6426 && POINTER_TYPE_P (TREE_TYPE (ptr)))
4d7a65ea 6427 find_what_p_points_to (ptr);
5006671f 6428 }
e8ca4159 6429
d086d311
RG
6430 /* Compute the call-used/clobbered sets. */
6431 FOR_EACH_BB (bb)
6432 {
6433 gimple_stmt_iterator gsi;
6434
6435 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6436 {
6437 gimple stmt = gsi_stmt (gsi);
6438 struct pt_solution *pt;
6439 if (!is_gimple_call (stmt))
6440 continue;
6441
6442 pt = gimple_call_use_set (stmt);
6443 if (gimple_call_flags (stmt) & ECF_CONST)
6444 memset (pt, 0, sizeof (struct pt_solution));
3e8542ca 6445 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
d086d311 6446 {
3e8542ca
RG
6447 find_what_var_points_to (vi, pt);
6448 /* Escaped (and thus nonlocal) variables are always
6449 implicitly used by calls. */
d086d311
RG
6450 /* ??? ESCAPED can be empty even though NONLOCAL
6451 always escaped. */
6452 pt->nonlocal = 1;
6453 pt->escaped = 1;
6454 }
6455 else
6456 {
3e8542ca
RG
6457 /* If there is nothing special about this call then
6458 we have made everything that is used also escape. */
d086d311
RG
6459 *pt = cfun->gimple_df->escaped;
6460 pt->nonlocal = 1;
6461 }
6462
6463 pt = gimple_call_clobber_set (stmt);
6464 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6465 memset (pt, 0, sizeof (struct pt_solution));
3e8542ca
RG
6466 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6467 {
6468 find_what_var_points_to (vi, pt);
6469 /* Escaped (and thus nonlocal) variables are always
6470 implicitly clobbered by calls. */
6471 /* ??? ESCAPED can be empty even though NONLOCAL
6472 always escaped. */
6473 pt->nonlocal = 1;
6474 pt->escaped = 1;
6475 }
d086d311
RG
6476 else
6477 {
3e8542ca
RG
6478 /* If there is nothing special about this call then
6479 we have made everything that is used also escape. */
d086d311
RG
6480 *pt = cfun->gimple_df->escaped;
6481 pt->nonlocal = 1;
6482 }
6483 }
6484 }
6485
e8ca4159 6486 timevar_pop (TV_TREE_PTA);
910fdc79
DB
6487}
6488
910fdc79
DB
6489
6490/* Delete created points-to sets. */
6491
5006671f 6492static void
e8ca4159 6493delete_points_to_sets (void)
910fdc79 6494{
7b765bed 6495 unsigned int i;
c58936b6 6496
1296c31f 6497 htab_delete (shared_bitmap_table);
3e5937d7
DB
6498 if (dump_file && (dump_flags & TDF_STATS))
6499 fprintf (dump_file, "Points to sets created:%d\n",
6500 stats.points_to_sets_created);
6501
15814ba0 6502 pointer_map_destroy (vi_for_tree);
3e8542ca 6503 pointer_map_destroy (call_stmt_vars);
3e5937d7 6504 bitmap_obstack_release (&pta_obstack);
b5efa470 6505 VEC_free (constraint_t, heap, constraints);
c58936b6 6506
7b765bed 6507 for (i = 0; i < graph->size; i++)
3e5937d7 6508 VEC_free (constraint_t, heap, graph->complex[i]);
285463b5 6509 free (graph->complex);
21392f19 6510
3e5937d7 6511 free (graph->rep);
57250223 6512 free (graph->succs);
7b765bed
DB
6513 free (graph->pe);
6514 free (graph->pe_rep);
3e5937d7 6515 free (graph->indirect_cycles);
b5efa470
DB
6516 free (graph);
6517
6518 VEC_free (varinfo_t, heap, varmap);
910fdc79 6519 free_alloc_pool (variable_info_pool);
c58936b6 6520 free_alloc_pool (constraint_pool);
910fdc79 6521}
973162ec 6522
5006671f
RG
6523
6524/* Compute points-to information for every SSA_NAME pointer in the
6525 current function and compute the transitive closure of escaped
6526 variables to re-initialize the call-clobber states of local variables. */
6527
6528unsigned int
6529compute_may_aliases (void)
6530{
25a6a873
RG
6531 if (cfun->gimple_df->ipa_pta)
6532 {
6533 if (dump_file)
6534 {
6535 fprintf (dump_file, "\nNot re-computing points-to information "
6536 "because IPA points-to information is available.\n\n");
6537
6538 /* But still dump what we have remaining it. */
6539 dump_alias_info (dump_file);
6540
6541 if (dump_flags & TDF_DETAILS)
6542 dump_referenced_vars (dump_file);
6543 }
6544
6545 return 0;
6546 }
6547
5006671f
RG
6548 /* For each pointer P_i, determine the sets of variables that P_i may
6549 point-to. Compute the reachability set of escaped and call-used
6550 variables. */
6551 compute_points_to_sets ();
6552
6553 /* Debugging dumps. */
6554 if (dump_file)
6555 {
6556 dump_alias_info (dump_file);
6557
6558 if (dump_flags & TDF_DETAILS)
6559 dump_referenced_vars (dump_file);
6560 }
6561
6562 /* Deallocate memory used by aliasing data structures and the internal
6563 points-to solution. */
6564 delete_points_to_sets ();
6565
6566 gcc_assert (!need_ssa_update_p (cfun));
6567
6568 return 0;
6569}
6570
248fc9f3
RG
6571static bool
6572gate_tree_pta (void)
6573{
6574 return flag_tree_pta;
6575}
5006671f
RG
6576
6577/* A dummy pass to cause points-to information to be computed via
6578 TODO_rebuild_alias. */
6579
6580struct gimple_opt_pass pass_build_alias =
6581{
6582 {
6583 GIMPLE_PASS,
6584 "alias", /* name */
248fc9f3 6585 gate_tree_pta, /* gate */
5006671f
RG
6586 NULL, /* execute */
6587 NULL, /* sub */
6588 NULL, /* next */
6589 0, /* static_pass_number */
7072a650 6590 TV_NONE, /* tv_id */
5006671f 6591 PROP_cfg | PROP_ssa, /* properties_required */
4effdf02 6592 0, /* properties_provided */
5006671f
RG
6593 0, /* properties_destroyed */
6594 0, /* todo_flags_start */
6595 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6596 }
6597};
6598
6b8ed145
RG
6599/* A dummy pass to cause points-to information to be computed via
6600 TODO_rebuild_alias. */
6601
6602struct gimple_opt_pass pass_build_ealias =
6603{
6604 {
6605 GIMPLE_PASS,
6606 "ealias", /* name */
6607 gate_tree_pta, /* gate */
6608 NULL, /* execute */
6609 NULL, /* sub */
6610 NULL, /* next */
6611 0, /* static_pass_number */
6612 TV_NONE, /* tv_id */
6613 PROP_cfg | PROP_ssa, /* properties_required */
6614 0, /* properties_provided */
6615 0, /* properties_destroyed */
6616 0, /* todo_flags_start */
6617 TODO_rebuild_alias | TODO_dump_func /* todo_flags_finish */
6618 }
6619};
6620
5006671f 6621
4ee00913
DB
6622/* Return true if we should execute IPA PTA. */
6623static bool
6624gate_ipa_pta (void)
6625{
de925a03
RG
6626 return (optimize
6627 && flag_ipa_pta
4ee00913 6628 /* Don't bother doing anything if the program has errors. */
1da2ed5f 6629 && !seen_error ());
4ee00913
DB
6630}
6631
25a6a873
RG
6632/* IPA PTA solutions for ESCAPED. */
6633struct pt_solution ipa_escaped_pt
6634 = { true, false, false, false, false, false, false, NULL };
6635
4ee00913 6636/* Execute the driver for IPA PTA. */
c2924966 6637static unsigned int
4ee00913
DB
6638ipa_pta_execute (void)
6639{
6640 struct cgraph_node *node;
25a6a873
RG
6641 struct varpool_node *var;
6642 int from;
3e5937d7 6643
4ee00913 6644 in_ipa_mode = 1;
5c245b95 6645
4cf4d6a3 6646 init_alias_heapvars ();
4ee00913 6647 init_alias_vars ();
c58936b6 6648
5c245b95 6649 /* Build the constraints. */
4ee00913
DB
6650 for (node = cgraph_nodes; node; node = node->next)
6651 {
27c2cfa6
RG
6652 struct cgraph_node *alias;
6653 varinfo_t vi;
6654
5c245b95
RG
6655 /* Nodes without a body are not interesting. Especially do not
6656 visit clones at this point for now - we get duplicate decls
6657 there for inline clones at least. */
6658 if (!gimple_has_body_p (node->decl)
6659 || node->clone_of)
6660 continue;
6661
27c2cfa6
RG
6662 vi = create_function_info_for (node->decl,
6663 alias_get_name (node->decl));
6664
6665 /* Associate the varinfo node with all aliases. */
6666 for (alias = node->same_body; alias; alias = alias->next)
6667 insert_vi_for_tree (alias->decl, vi);
4ee00913 6668 }
5c245b95 6669
25a6a873
RG
6670 /* Create constraints for global variables and their initializers. */
6671 for (var = varpool_nodes; var; var = var->next)
27c2cfa6
RG
6672 {
6673 struct varpool_node *alias;
6674 varinfo_t vi;
6675
6676 vi = get_vi_for_tree (var->decl);
6677
6678 /* Associate the varinfo node with all aliases. */
6679 for (alias = var->extra_name; alias; alias = alias->next)
6680 insert_vi_for_tree (alias->decl, vi);
6681 }
25a6a873
RG
6682
6683 if (dump_file)
6684 {
6685 fprintf (dump_file,
6686 "Generating constraints for global initializers\n\n");
6687 dump_constraints (dump_file, 0);
6688 fprintf (dump_file, "\n");
6689 }
6690 from = VEC_length (constraint_t, constraints);
6691
4ee00913
DB
6692 for (node = cgraph_nodes; node; node = node->next)
6693 {
5c245b95
RG
6694 struct function *func;
6695 basic_block bb;
6696 tree old_func_decl;
4ee00913 6697
5c245b95
RG
6698 /* Nodes without a body are not interesting. */
6699 if (!gimple_has_body_p (node->decl)
6700 || node->clone_of)
6701 continue;
c58936b6 6702
5c245b95 6703 if (dump_file)
27c2cfa6
RG
6704 {
6705 fprintf (dump_file,
6706 "Generating constraints for %s", cgraph_node_name (node));
6707 if (DECL_ASSEMBLER_NAME_SET_P (node->decl))
6708 fprintf (dump_file, " (%s)",
6709 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (node->decl)));
6710 fprintf (dump_file, "\n");
6711 }
c58936b6 6712
5c245b95
RG
6713 func = DECL_STRUCT_FUNCTION (node->decl);
6714 old_func_decl = current_function_decl;
6715 push_cfun (func);
6716 current_function_decl = node->decl;
726a989a 6717
5c245b95
RG
6718 /* For externally visible functions use local constraints for
6719 their arguments. For local functions we see all callers
6720 and thus do not need initial constraints for parameters. */
6721 if (node->local.externally_visible)
6722 intra_create_variable_infos ();
4ee00913 6723
5c245b95
RG
6724 /* Build constriants for the function body. */
6725 FOR_EACH_BB_FN (bb, func)
6726 {
6727 gimple_stmt_iterator gsi;
c58936b6 6728
5c245b95
RG
6729 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
6730 gsi_next (&gsi))
6731 {
6732 gimple phi = gsi_stmt (gsi);
c58936b6 6733
5c245b95
RG
6734 if (is_gimple_reg (gimple_phi_result (phi)))
6735 find_func_aliases (phi);
6736 }
3e5937d7 6737
5c245b95
RG
6738 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6739 {
6740 gimple stmt = gsi_stmt (gsi);
3e5937d7 6741
5c245b95 6742 find_func_aliases (stmt);
25a6a873 6743 find_func_clobbers (stmt);
5c245b95
RG
6744 }
6745 }
c58936b6 6746
5c245b95
RG
6747 current_function_decl = old_func_decl;
6748 pop_cfun ();
25a6a873
RG
6749
6750 if (dump_file)
6751 {
6752 fprintf (dump_file, "\n");
6753 dump_constraints (dump_file, from);
6754 fprintf (dump_file, "\n");
6755 }
6756 from = VEC_length (constraint_t, constraints);
5c245b95 6757 }
c58936b6 6758
5c245b95
RG
6759 /* From the constraints compute the points-to sets. */
6760 solve_constraints ();
c58936b6 6761
25a6a873
RG
6762 /* Compute the global points-to sets for ESCAPED.
6763 ??? Note that the computed escape set is not correct
6764 for the whole unit as we fail to consider graph edges to
6765 externally visible functions. */
6766 find_what_var_points_to (get_varinfo (escaped_id), &ipa_escaped_pt);
6767
6768 /* Make sure the ESCAPED solution (which is used as placeholder in
6769 other solutions) does not reference itself. This simplifies
6770 points-to solution queries. */
6771 ipa_escaped_pt.ipa_escaped = 0;
6772
6773 /* Assign the points-to sets to the SSA names in the unit. */
6774 for (node = cgraph_nodes; node; node = node->next)
6775 {
6776 tree ptr;
6777 struct function *fn;
6778 unsigned i;
6779 varinfo_t fi;
6780 basic_block bb;
6781 struct pt_solution uses, clobbers;
6782 struct cgraph_edge *e;
6783
6784 /* Nodes without a body are not interesting. */
6785 if (!gimple_has_body_p (node->decl)
6786 || node->clone_of)
6787 continue;
6788
6789 fn = DECL_STRUCT_FUNCTION (node->decl);
6790
6791 /* Compute the points-to sets for pointer SSA_NAMEs. */
6792 for (i = 0; VEC_iterate (tree, fn->gimple_df->ssa_names, i, ptr); ++i)
6793 {
6794 if (ptr
6795 && POINTER_TYPE_P (TREE_TYPE (ptr)))
6796 find_what_p_points_to (ptr);
6797 }
6798
6799 /* Compute the call-use and call-clobber sets for all direct calls. */
6800 fi = lookup_vi_for_tree (node->decl);
6801 gcc_assert (fi->is_fn_info);
6802 find_what_var_points_to (first_vi_for_offset (fi, fi_clobbers),
6803 &clobbers);
6804 find_what_var_points_to (first_vi_for_offset (fi, fi_uses), &uses);
6805 for (e = node->callers; e; e = e->next_caller)
6806 {
6807 if (!e->call_stmt)
6808 continue;
6809
6810 *gimple_call_clobber_set (e->call_stmt) = clobbers;
6811 *gimple_call_use_set (e->call_stmt) = uses;
6812 }
6813
6814 /* Compute the call-use and call-clobber sets for indirect calls
6815 and calls to external functions. */
6816 FOR_EACH_BB_FN (bb, fn)
6817 {
6818 gimple_stmt_iterator gsi;
6819
6820 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6821 {
6822 gimple stmt = gsi_stmt (gsi);
6823 struct pt_solution *pt;
6824 varinfo_t vi;
6825 tree decl;
6826
6827 if (!is_gimple_call (stmt))
6828 continue;
6829
6830 /* Handle direct calls to external functions. */
6831 decl = gimple_call_fndecl (stmt);
6832 if (decl
6833 && (!(fi = lookup_vi_for_tree (decl))
6834 || !fi->is_fn_info))
6835 {
6836 pt = gimple_call_use_set (stmt);
6837 if (gimple_call_flags (stmt) & ECF_CONST)
6838 memset (pt, 0, sizeof (struct pt_solution));
6839 else if ((vi = lookup_call_use_vi (stmt)) != NULL)
6840 {
6841 find_what_var_points_to (vi, pt);
6842 /* Escaped (and thus nonlocal) variables are always
6843 implicitly used by calls. */
6844 /* ??? ESCAPED can be empty even though NONLOCAL
6845 always escaped. */
6846 pt->nonlocal = 1;
6847 pt->ipa_escaped = 1;
6848 }
6849 else
6850 {
6851 /* If there is nothing special about this call then
6852 we have made everything that is used also escape. */
6853 *pt = ipa_escaped_pt;
6854 pt->nonlocal = 1;
6855 }
6856
6857 pt = gimple_call_clobber_set (stmt);
6858 if (gimple_call_flags (stmt) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
6859 memset (pt, 0, sizeof (struct pt_solution));
6860 else if ((vi = lookup_call_clobber_vi (stmt)) != NULL)
6861 {
6862 find_what_var_points_to (vi, pt);
6863 /* Escaped (and thus nonlocal) variables are always
6864 implicitly clobbered by calls. */
6865 /* ??? ESCAPED can be empty even though NONLOCAL
6866 always escaped. */
6867 pt->nonlocal = 1;
6868 pt->ipa_escaped = 1;
6869 }
6870 else
6871 {
6872 /* If there is nothing special about this call then
6873 we have made everything that is used also escape. */
6874 *pt = ipa_escaped_pt;
6875 pt->nonlocal = 1;
6876 }
6877 }
6878
6879 /* Handle indirect calls. */
6880 if (!decl
6881 && (fi = get_fi_for_callee (stmt)))
6882 {
6883 /* We need to accumulate all clobbers/uses of all possible
6884 callees. */
6885 fi = get_varinfo (find (fi->id));
6886 /* If we cannot constrain the set of functions we'll end up
6887 calling we end up using/clobbering everything. */
6888 if (bitmap_bit_p (fi->solution, anything_id)
6889 || bitmap_bit_p (fi->solution, nonlocal_id)
6890 || bitmap_bit_p (fi->solution, escaped_id))
6891 {
6892 pt_solution_reset (gimple_call_clobber_set (stmt));
6893 pt_solution_reset (gimple_call_use_set (stmt));
6894 }
6895 else
6896 {
6897 bitmap_iterator bi;
6898 unsigned i;
6899 struct pt_solution *uses, *clobbers;
6900
6901 uses = gimple_call_use_set (stmt);
6902 clobbers = gimple_call_clobber_set (stmt);
6903 memset (uses, 0, sizeof (struct pt_solution));
6904 memset (clobbers, 0, sizeof (struct pt_solution));
6905 EXECUTE_IF_SET_IN_BITMAP (fi->solution, 0, i, bi)
6906 {
6907 struct pt_solution sol;
6908
6909 vi = get_varinfo (i);
6910 if (!vi->is_fn_info)
6911 {
6912 /* ??? We could be more precise here? */
6913 uses->nonlocal = 1;
6914 uses->ipa_escaped = 1;
6915 clobbers->nonlocal = 1;
6916 clobbers->ipa_escaped = 1;
6917 continue;
6918 }
6919
6920 if (!uses->anything)
6921 {
6922 find_what_var_points_to
6923 (first_vi_for_offset (vi, fi_uses), &sol);
6924 pt_solution_ior_into (uses, &sol);
6925 }
6926 if (!clobbers->anything)
6927 {
6928 find_what_var_points_to
6929 (first_vi_for_offset (vi, fi_clobbers), &sol);
6930 pt_solution_ior_into (clobbers, &sol);
6931 }
6932 }
6933 }
6934 }
6935 }
6936 }
6937
6938 fn->gimple_df->ipa_pta = true;
6939 }
6940
5c245b95 6941 delete_points_to_sets ();
c58936b6 6942
4ee00913 6943 in_ipa_mode = 0;
5c245b95 6944
c2924966 6945 return 0;
4ee00913 6946}
c58936b6 6947
8ddbbcae 6948struct simple_ipa_opt_pass pass_ipa_pta =
4ee00913 6949{
8ddbbcae
JH
6950 {
6951 SIMPLE_IPA_PASS,
4ee00913
DB
6952 "pta", /* name */
6953 gate_ipa_pta, /* gate */
6954 ipa_pta_execute, /* execute */
6955 NULL, /* sub */
6956 NULL, /* next */
6957 0, /* static_pass_number */
6958 TV_IPA_PTA, /* tv_id */
6959 0, /* properties_required */
6960 0, /* properties_provided */
6961 0, /* properties_destroyed */
6962 0, /* todo_flags_start */
8ddbbcae
JH
6963 TODO_update_ssa /* todo_flags_finish */
6964 }
4ee00913
DB
6965};
6966
c900f6aa 6967
c900f6aa 6968#include "gt-tree-ssa-structalias.h"