]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-uninit.c
C++: more location wrapper nodes (PR c++/43064, PR c++/43486)
[thirdparty/gcc.git] / gcc / tree-ssa-uninit.c
CommitLineData
a7d4604b 1/* Predicate aware uninitialized variable warning.
8e8f6434 2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
a7d4604b 3 Contributed by Xinliang David Li <davidxl@google.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 3, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
9ef16211 24#include "backend.h"
a7d4604b 25#include "tree.h"
9ef16211 26#include "gimple.h"
7c29e30e 27#include "tree-pass.h"
9ef16211 28#include "ssa.h"
7c29e30e 29#include "gimple-pretty-print.h"
30#include "diagnostic-core.h"
b20a8bb4 31#include "fold-const.h"
dcf1a1ec 32#include "gimple-iterator.h"
073c1fd5 33#include "tree-ssa.h"
13e8ebe8 34#include "params.h"
cac06b02 35#include "tree-cfg.h"
7700b194 36#include "cfghooks.h"
a7d4604b 37
38/* This implements the pass that does predicate aware warning on uses of
49f1670a 39 possibly uninitialized variables. The pass first collects the set of
40 possibly uninitialized SSA names. For each such name, it walks through
41 all its immediate uses. For each immediate use, it rebuilds the condition
42 expression (the predicate) that guards the use. The predicate is then
a7d4604b 43 examined to see if the variable is always defined under that same condition.
44 This is done either by pruning the unrealizable paths that lead to the
45 default definitions or by checking if the predicate set that guards the
46 defining paths is a superset of the use predicate. */
47
7053e959 48/* Max PHI args we can handle in pass. */
49const unsigned max_phi_args = 32;
50
a7d4604b 51/* Pointer set of potentially undefined ssa names, i.e.,
52 ssa names that are defined by phi with operands that
53 are not defined or potentially undefined. */
431205b7 54static hash_set<tree> *possibly_undefined_names = 0;
a7d4604b 55
56/* Bit mask handling macros. */
57#define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
58#define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
59#define MASK_EMPTY(mask) (mask == 0)
60
61/* Returns the first bit position (starting from LSB)
49f1670a 62 in mask that is non zero. Returns -1 if the mask is empty. */
a7d4604b 63static int
64get_mask_first_set_bit (unsigned mask)
65{
66 int pos = 0;
67 if (mask == 0)
68 return -1;
69
70 while ((mask & (1 << pos)) == 0)
71 pos++;
72
73 return pos;
74}
75#define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
76
a7d4604b 77/* Return true if T, an SSA_NAME, has an undefined value. */
1d2fabca 78static bool
79has_undefined_value_p (tree t)
a7d4604b 80{
1d2fabca 81 return (ssa_undefined_value_p (t)
fd9ea52a 82 || (possibly_undefined_names
83 && possibly_undefined_names->contains (t)));
a7d4604b 84}
85
1d2fabca 86/* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
182debc1 87 is set on SSA_NAME_VAR. */
88
89static inline bool
49f1670a 90uninit_undefined_value_p (tree t)
91{
1d2fabca 92 if (!has_undefined_value_p (t))
182debc1 93 return false;
94 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
95 return false;
96 return true;
97}
98
1d2fabca 99/* Emit warnings for uninitialized variables. This is done in two passes.
100
101 The first pass notices real uses of SSA names with undefined values.
102 Such uses are unconditionally uninitialized, and we can be certain that
103 such a use is a mistake. This pass is run before most optimizations,
104 so that we catch as many as we can.
105
106 The second pass follows PHI nodes to find uses that are potentially
107 uninitialized. In this case we can't necessarily prove that the use
108 is really uninitialized. This pass is run after most optimizations,
109 so that we thread as many jumps and possible, and delete as much dead
110 code as possible, in order to reduce false positives. We also look
111 again for plain uninitialized variables, since optimization may have
112 changed conditionally uninitialized to unconditionally uninitialized. */
113
114/* Emit a warning for EXPR based on variable VAR at the point in the
115 program T, an SSA_NAME, is used being uninitialized. The exact
f772e50c 116 warning text is in MSGID and DATA is the gimple stmt with info about
49f1670a 117 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
f772e50c 118 gives which argument of the phi node to take the location from. WC
119 is the warning code. */
1d2fabca 120
121static void
f772e50c 122warn_uninit (enum opt_code wc, tree t, tree expr, tree var,
123 const char *gmsgid, void *data, location_t phiarg_loc)
1d2fabca 124{
42acab1c 125 gimple *context = (gimple *) data;
1d2fabca 126 location_t location, cfun_loc;
127 expanded_location xloc, floc;
128
f772e50c 129 /* Ignore COMPLEX_EXPR as initializing only a part of a complex
130 turns in a COMPLEX_EXPR with the not initialized part being
131 set to its previous (undefined) value. */
132 if (is_gimple_assign (context)
133 && gimple_assign_rhs_code (context) == COMPLEX_EXPR)
134 return;
1d2fabca 135 if (!has_undefined_value_p (t))
136 return;
137
d7f45b87 138 /* Anonymous SSA_NAMEs shouldn't be uninitialized, but ssa_undefined_value_p
139 can return true if the def stmt of anonymous SSA_NAME is COMPLEX_EXPR
140 created for conversion from scalar to complex. Use the underlying var of
141 the COMPLEX_EXPRs real part in that case. See PR71581. */
142 if (expr == NULL_TREE
143 && var == NULL_TREE
144 && SSA_NAME_VAR (t) == NULL_TREE
145 && is_gimple_assign (SSA_NAME_DEF_STMT (t))
146 && gimple_assign_rhs_code (SSA_NAME_DEF_STMT (t)) == COMPLEX_EXPR)
147 {
148 tree v = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (t));
149 if (TREE_CODE (v) == SSA_NAME
150 && has_undefined_value_p (v)
151 && zerop (gimple_assign_rhs2 (SSA_NAME_DEF_STMT (t))))
152 {
153 expr = SSA_NAME_VAR (v);
154 var = expr;
155 }
156 }
157
158 if (expr == NULL_TREE)
159 return;
160
1d2fabca 161 /* TREE_NO_WARNING either means we already warned, or the front end
162 wishes to suppress the warning. */
163 if ((context
164 && (gimple_no_warning_p (context)
165 || (gimple_assign_single_p (context)
166 && TREE_NO_WARNING (gimple_assign_rhs1 (context)))))
167 || TREE_NO_WARNING (expr))
168 return;
169
f772e50c 170 if (context != NULL && gimple_has_location (context))
171 location = gimple_location (context);
172 else if (phiarg_loc != UNKNOWN_LOCATION)
173 location = phiarg_loc;
174 else
175 location = DECL_SOURCE_LOCATION (var);
1d2fabca 176 location = linemap_resolve_location (line_table, location,
49f1670a 177 LRK_SPELLING_LOCATION, NULL);
1d2fabca 178 cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
179 xloc = expand_location (location);
180 floc = expand_location (cfun_loc);
bc35ef65 181 auto_diagnostic_group d;
1d2fabca 182 if (warning_at (location, wc, gmsgid, expr))
183 {
184 TREE_NO_WARNING (expr) = 1;
185
186 if (location == DECL_SOURCE_LOCATION (var))
187 return;
188 if (xloc.file != floc.file
49f1670a 189 || linemap_location_before_p (line_table, location, cfun_loc)
190 || linemap_location_before_p (line_table, cfun->function_end_locus,
1d2fabca 191 location))
192 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
193 }
194}
195
4d2b9d1e 196struct check_defs_data
197{
198 /* If we found any may-defs besides must-def clobbers. */
199 bool found_may_defs;
200};
201
202/* Callback for walk_aliased_vdefs. */
203
204static bool
205check_defs (ao_ref *ref, tree vdef, void *data_)
206{
207 check_defs_data *data = (check_defs_data *)data_;
208 gimple *def_stmt = SSA_NAME_DEF_STMT (vdef);
209 /* If this is a clobber then if it is not a kill walk past it. */
210 if (gimple_clobber_p (def_stmt))
211 {
212 if (stmt_kills_ref_p (def_stmt, ref))
213 return true;
214 return false;
215 }
216 /* Found a may-def on this path. */
217 data->found_may_defs = true;
218 return true;
219}
220
1d2fabca 221static unsigned int
222warn_uninitialized_vars (bool warn_possibly_uninitialized)
223{
224 gimple_stmt_iterator gsi;
225 basic_block bb;
4d2b9d1e 226 unsigned int vdef_cnt = 0;
227 unsigned int oracle_cnt = 0;
228 unsigned limit = 0;
1d2fabca 229
fc00614f 230 FOR_EACH_BB_FN (bb, cfun)
1d2fabca 231 {
49f1670a 232 basic_block succ = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 bool always_executed = dominated_by_p (CDI_POST_DOMINATORS, succ, bb);
1d2fabca 234 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
235 {
42acab1c 236 gimple *stmt = gsi_stmt (gsi);
1d2fabca 237 use_operand_p use_p;
238 ssa_op_iter op_iter;
239 tree use;
240
241 if (is_gimple_debug (stmt))
242 continue;
243
244 /* We only do data flow with SSA_NAMEs, so that's all we
245 can warn about. */
246 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
247 {
36bb9d71 248 /* BIT_INSERT_EXPR first operand should not be considered
249 a use for the purpose of uninit warnings. */
250 if (gassign *ass = dyn_cast <gassign *> (stmt))
251 {
252 if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
253 && use_p->use == gimple_assign_rhs1_ptr (ass))
254 continue;
255 }
1d2fabca 256 use = USE_FROM_PTR (use_p);
257 if (always_executed)
49f1670a 258 warn_uninit (OPT_Wuninitialized, use, SSA_NAME_VAR (use),
259 SSA_NAME_VAR (use),
260 "%qD is used uninitialized in this function", stmt,
261 UNKNOWN_LOCATION);
1d2fabca 262 else if (warn_possibly_uninitialized)
49f1670a 263 warn_uninit (OPT_Wmaybe_uninitialized, use, SSA_NAME_VAR (use),
264 SSA_NAME_VAR (use),
1d2fabca 265 "%qD may be used uninitialized in this function",
f772e50c 266 stmt, UNKNOWN_LOCATION);
1d2fabca 267 }
268
4d2b9d1e 269 /* For limiting the alias walk below we count all
270 vdefs in the function. */
271 if (gimple_vdef (stmt))
272 vdef_cnt++;
273
274 if (gimple_assign_load_p (stmt)
275 && gimple_has_location (stmt))
1d2fabca 276 {
277 tree rhs = gimple_assign_rhs1 (stmt);
c3aec137 278 tree lhs = gimple_assign_lhs (stmt);
279 bool has_bit_insert = false;
280 use_operand_p luse_p;
281 imm_use_iterator liter;
282
4d2b9d1e 283 if (TREE_NO_WARNING (rhs))
284 continue;
285
286 ao_ref ref;
287 ao_ref_init (&ref, rhs);
1d2fabca 288
2088bd28 289 /* Do not warn if the base was marked so or this is a
290 hard register var. */
4d2b9d1e 291 tree base = ao_ref_base (&ref);
2088bd28 292 if ((VAR_P (base)
293 && DECL_HARD_REGISTER (base))
4d2b9d1e 294 || TREE_NO_WARNING (base))
295 continue;
296
9832cf91 297 /* Do not warn if the access is fully outside of the
298 variable. */
fe60c82c 299 poly_int64 decl_size;
2088bd28 300 if (DECL_P (base)
fe60c82c 301 && known_size_p (ref.size)
302 && ((known_eq (ref.max_size, ref.size)
303 && known_le (ref.offset + ref.size, 0))
304 || (known_ge (ref.offset, 0)
2088bd28 305 && DECL_SIZE (base)
fe60c82c 306 && poly_int_tree_p (DECL_SIZE (base), &decl_size)
307 && known_le (decl_size, ref.offset))))
9832cf91 308 continue;
309
c3aec137 310 /* Do not warn if the access is then used for a BIT_INSERT_EXPR. */
311 if (TREE_CODE (lhs) == SSA_NAME)
312 FOR_EACH_IMM_USE_FAST (luse_p, liter, lhs)
313 {
314 gimple *use_stmt = USE_STMT (luse_p);
315 /* BIT_INSERT_EXPR first operand should not be considered
316 a use for the purpose of uninit warnings. */
317 if (gassign *ass = dyn_cast <gassign *> (use_stmt))
318 {
319 if (gimple_assign_rhs_code (ass) == BIT_INSERT_EXPR
320 && luse_p->use == gimple_assign_rhs1_ptr (ass))
321 {
322 has_bit_insert = true;
323 break;
324 }
325 }
326 }
327 if (has_bit_insert)
328 continue;
329
4d2b9d1e 330 /* Limit the walking to a constant number of stmts after
331 we overcommit quadratic behavior for small functions
332 and O(n) behavior. */
333 if (oracle_cnt > 128 * 128
334 && oracle_cnt > vdef_cnt * 2)
335 limit = 32;
336 check_defs_data data;
2088bd28 337 bool fentry_reached = false;
4d2b9d1e 338 data.found_may_defs = false;
339 use = gimple_vuse (stmt);
340 int res = walk_aliased_vdefs (&ref, use,
341 check_defs, &data, NULL,
2088bd28 342 &fentry_reached, limit);
4d2b9d1e 343 if (res == -1)
344 {
345 oracle_cnt += limit;
346 continue;
347 }
348 oracle_cnt += res;
349 if (data.found_may_defs)
1d2fabca 350 continue;
2088bd28 351 /* Do not warn if it can be initialized outside this function.
352 If we did not reach function entry then we found killing
353 clobbers on all paths to entry. */
354 if (fentry_reached
355 /* ??? We'd like to use ref_may_alias_global_p but that
356 excludes global readonly memory and thus we get bougs
357 warnings from p = cond ? "a" : "b" for example. */
358 && (!VAR_P (base)
359 || is_global_var (base)))
360 continue;
1d2fabca 361
4d2b9d1e 362 /* We didn't find any may-defs so on all paths either
363 reached function entry or a killing clobber. */
364 location_t location
365 = linemap_resolve_location (line_table, gimple_location (stmt),
366 LRK_SPELLING_LOCATION, NULL);
1d2fabca 367 if (always_executed)
4d2b9d1e 368 {
369 if (warning_at (location, OPT_Wuninitialized,
370 "%qE is used uninitialized in this function",
371 rhs))
372 /* ??? This is only effective for decls as in
373 gcc.dg/uninit-B-O0.c. Avoid doing this for
374 maybe-uninit uses as it may hide important
375 locations. */
376 TREE_NO_WARNING (rhs) = 1;
377 }
1d2fabca 378 else if (warn_possibly_uninitialized)
4d2b9d1e 379 warning_at (location, OPT_Wmaybe_uninitialized,
380 "%qE may be used uninitialized in this function",
381 rhs);
1d2fabca 382 }
383 }
384 }
385
386 return 0;
387}
388
37d099d8 389/* Checks if the operand OPND of PHI is defined by
390 another phi with one operand defined by this PHI,
49f1670a 391 but the rest operands are all defined. If yes,
47ae02b7 392 returns true to skip this operand as being
49f1670a 393 redundant. Can be enhanced to be more general. */
a7d4604b 394
395static bool
42acab1c 396can_skip_redundant_opnd (tree opnd, gimple *phi)
a7d4604b 397{
42acab1c 398 gimple *op_def;
a7d4604b 399 tree phi_def;
400 int i, n;
401
402 phi_def = gimple_phi_result (phi);
403 op_def = SSA_NAME_DEF_STMT (opnd);
404 if (gimple_code (op_def) != GIMPLE_PHI)
405 return false;
406 n = gimple_phi_num_args (op_def);
407 for (i = 0; i < n; ++i)
408 {
409 tree op = gimple_phi_arg_def (op_def, i);
410 if (TREE_CODE (op) != SSA_NAME)
fd9ea52a 411 continue;
182debc1 412 if (op != phi_def && uninit_undefined_value_p (op))
fd9ea52a 413 return false;
a7d4604b 414 }
415
416 return true;
417}
418
419/* Returns a bit mask holding the positions of arguments in PHI
420 that have empty (or possibly empty) definitions. */
421
422static unsigned
1a91d914 423compute_uninit_opnds_pos (gphi *phi)
a7d4604b 424{
425 size_t i, n;
426 unsigned uninit_opnds = 0;
427
428 n = gimple_phi_num_args (phi);
ce4c4ffe 429 /* Bail out for phi with too many args. */
7053e959 430 if (n > max_phi_args)
ce4c4ffe 431 return 0;
a7d4604b 432
433 for (i = 0; i < n; ++i)
434 {
435 tree op = gimple_phi_arg_def (phi, i);
436 if (TREE_CODE (op) == SSA_NAME
fd9ea52a 437 && uninit_undefined_value_p (op)
438 && !can_skip_redundant_opnd (op, phi))
f585c295 439 {
fd9ea52a 440 if (cfun->has_nonlocal_label || cfun->calls_setjmp)
f585c295 441 {
5f4dd0d0 442 /* Ignore SSA_NAMEs that appear on abnormal edges
443 somewhere. */
444 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
445 continue;
f585c295 446 }
447 MASK_SET_BIT (uninit_opnds, i);
448 }
a7d4604b 449 }
450 return uninit_opnds;
451}
452
453/* Find the immediate postdominator PDOM of the specified
454 basic block BLOCK. */
455
456static inline basic_block
457find_pdom (basic_block block)
458{
49f1670a 459 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
460 return EXIT_BLOCK_PTR_FOR_FN (cfun);
461 else
462 {
463 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
464 if (!bb)
465 return EXIT_BLOCK_PTR_FOR_FN (cfun);
466 return bb;
467 }
a7d4604b 468}
469
49f1670a 470/* Find the immediate DOM of the specified basic block BLOCK. */
a7d4604b 471
472static inline basic_block
473find_dom (basic_block block)
474{
49f1670a 475 if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
476 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
477 else
478 {
479 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
480 if (!bb)
481 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
482 return bb;
483 }
a7d4604b 484}
485
486/* Returns true if BB1 is postdominating BB2 and BB1 is
49f1670a 487 not a loop exit bb. The loop exit bb check is simple and does
a7d4604b 488 not cover all cases. */
489
490static bool
491is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
492{
493 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
494 return false;
495
496 if (single_pred_p (bb1) && !single_succ_p (bb2))
497 return false;
498
499 return true;
500}
501
502/* Find the closest postdominator of a specified BB, which is control
503 equivalent to BB. */
504
49f1670a 505static inline basic_block
a7d4604b 506find_control_equiv_block (basic_block bb)
507{
508 basic_block pdom;
509
510 pdom = find_pdom (bb);
511
512 /* Skip the postdominating bb that is also loop exit. */
513 if (!is_non_loop_exit_postdominating (pdom, bb))
514 return NULL;
515
516 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
517 return pdom;
518
519 return NULL;
520}
521
522#define MAX_NUM_CHAINS 8
523#define MAX_CHAIN_LEN 5
ae814dd3 524#define MAX_POSTDOM_CHECK 8
cac06b02 525#define MAX_SWITCH_CASES 40
a7d4604b 526
527/* Computes the control dependence chains (paths of edges)
528 for DEP_BB up to the dominating basic block BB (the head node of a
13e8ebe8 529 chain should be dominated by it). CD_CHAINS is pointer to an
530 array holding the result chains. CUR_CD_CHAIN is the current
a7d4604b 531 chain being computed. *NUM_CHAINS is total number of chains. The
532 function returns true if the information is successfully computed,
533 return false if there is no control dependence or not computed. */
534
535static bool
536compute_control_dep_chain (basic_block bb, basic_block dep_bb,
fd9ea52a 537 vec<edge> *cd_chains,
538 size_t *num_chains,
13e8ebe8 539 vec<edge> *cur_cd_chain,
540 int *num_calls)
a7d4604b 541{
542 edge_iterator ei;
543 edge e;
544 size_t i;
545 bool found_cd_chain = false;
546 size_t cur_chain_len = 0;
547
13e8ebe8 548 if (*num_calls > PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS))
549 return false;
550 ++*num_calls;
551
37d099d8 552 /* Could use a set instead. */
f1f41a6c 553 cur_chain_len = cur_cd_chain->length ();
a7d4604b 554 if (cur_chain_len > MAX_CHAIN_LEN)
555 return false;
556
557 for (i = 0; i < cur_chain_len; i++)
558 {
f1f41a6c 559 edge e = (*cur_cd_chain)[i];
49f1670a 560 /* Cycle detected. */
a7d4604b 561 if (e->src == bb)
fd9ea52a 562 return false;
a7d4604b 563 }
564
565 FOR_EACH_EDGE (e, ei, bb->succs)
566 {
567 basic_block cd_bb;
ae814dd3 568 int post_dom_check = 0;
a7d4604b 569 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
fd9ea52a 570 continue;
a7d4604b 571
572 cd_bb = e->dest;
f1f41a6c 573 cur_cd_chain->safe_push (e);
a7d4604b 574 while (!is_non_loop_exit_postdominating (cd_bb, bb))
fd9ea52a 575 {
576 if (cd_bb == dep_bb)
577 {
578 /* Found a direct control dependence. */
579 if (*num_chains < MAX_NUM_CHAINS)
580 {
581 cd_chains[*num_chains] = cur_cd_chain->copy ();
582 (*num_chains)++;
583 }
584 found_cd_chain = true;
585 /* Check path from next edge. */
586 break;
587 }
588
589 /* Now check if DEP_BB is indirectly control dependent on BB. */
49f1670a 590 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains, num_chains,
591 cur_cd_chain, num_calls))
fd9ea52a 592 {
593 found_cd_chain = true;
594 break;
595 }
a7d4604b 596
fd9ea52a 597 cd_bb = find_pdom (cd_bb);
598 post_dom_check++;
49f1670a 599 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
600 || post_dom_check > MAX_POSTDOM_CHECK)
fd9ea52a 601 break;
602 }
f1f41a6c 603 cur_cd_chain->pop ();
604 gcc_assert (cur_cd_chain->length () == cur_chain_len);
a7d4604b 605 }
f1f41a6c 606 gcc_assert (cur_cd_chain->length () == cur_chain_len);
a7d4604b 607
608 return found_cd_chain;
609}
610
49f1670a 611/* The type to represent a simple predicate. */
37d099d8 612
6dc50383 613struct pred_info
a7d4604b 614{
37d099d8 615 tree pred_lhs;
616 tree pred_rhs;
617 enum tree_code cond_code;
a7d4604b 618 bool invert;
6dc50383 619};
37d099d8 620
621/* The type to represent a sequence of predicates grouped
622 with .AND. operation. */
a7d4604b 623
37d099d8 624typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
a7d4604b 625
37d099d8 626/* The type to represent a sequence of pred_chains grouped
627 with .OR. operation. */
628
629typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
a7d4604b 630
631/* Converts the chains of control dependence edges into a set of
49f1670a 632 predicates. A control dependence chain is represented by a vector
633 edges. DEP_CHAINS points to an array of dependence chains.
634 NUM_CHAINS is the size of the chain array. One edge in a dependence
37d099d8 635 chain is mapped to predicate expression represented by pred_info
49f1670a 636 type. One dependence chain is converted to a composite predicate that
37d099d8 637 is the result of AND operation of pred_info mapped to each edge.
49f1670a 638 A composite predicate is presented by a vector of pred_info. On
a7d4604b 639 return, *PREDS points to the resulting array of composite predicates.
640 *NUM_PREDS is the number of composite predictes. */
641
642static bool
f1f41a6c 643convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
fd9ea52a 644 size_t num_chains,
645 pred_chain_union *preds)
a7d4604b 646{
647 bool has_valid_pred = false;
648 size_t i, j;
649 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
650 return false;
651
a7d4604b 652 /* Now convert the control dep chain into a set
653 of predicates. */
37d099d8 654 preds->reserve (num_chains);
a7d4604b 655
656 for (i = 0; i < num_chains; i++)
657 {
f1f41a6c 658 vec<edge> one_cd_chain = dep_chains[i];
658c2e37 659
660 has_valid_pred = false;
37d099d8 661 pred_chain t_chain = vNULL;
f1f41a6c 662 for (j = 0; j < one_cd_chain.length (); j++)
fd9ea52a 663 {
42acab1c 664 gimple *cond_stmt;
fd9ea52a 665 gimple_stmt_iterator gsi;
666 basic_block guard_bb;
667 pred_info one_pred;
668 edge e;
669
670 e = one_cd_chain[j];
671 guard_bb = e->src;
672 gsi = gsi_last_bb (guard_bb);
3e268184 673 /* Ignore empty forwarder blocks. */
7700b194 674 if (empty_block_p (guard_bb) && single_succ_p (guard_bb))
675 continue;
3e268184 676 /* An empty basic block here is likely a PHI, and is not one
677 of the cases we handle below. */
678 if (gsi_end_p (gsi))
679 {
680 has_valid_pred = false;
681 break;
682 }
fd9ea52a 683 cond_stmt = gsi_stmt (gsi);
49f1670a 684 if (is_gimple_call (cond_stmt) && EDGE_COUNT (e->src->succs) >= 2)
685 /* Ignore EH edge. Can add assertion on the other edge's flag. */
686 continue;
fd9ea52a 687 /* Skip if there is essentially one succesor. */
688 if (EDGE_COUNT (e->src->succs) == 2)
689 {
690 edge e1;
691 edge_iterator ei1;
692 bool skip = false;
693
694 FOR_EACH_EDGE (e1, ei1, e->src->succs)
695 {
696 if (EDGE_COUNT (e1->dest->succs) == 0)
697 {
698 skip = true;
699 break;
700 }
701 }
702 if (skip)
703 continue;
704 }
705 if (gimple_code (cond_stmt) == GIMPLE_COND)
cac06b02 706 {
707 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
708 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
709 one_pred.cond_code = gimple_cond_code (cond_stmt);
710 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
711 t_chain.safe_push (one_pred);
712 has_valid_pred = true;
713 }
49f1670a 714 else if (gswitch *gs = dyn_cast<gswitch *> (cond_stmt))
cac06b02 715 {
716 /* Avoid quadratic behavior. */
717 if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
718 {
719 has_valid_pred = false;
720 break;
721 }
722 /* Find the case label. */
723 tree l = NULL_TREE;
724 unsigned idx;
725 for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx)
726 {
727 tree tl = gimple_switch_label (gs, idx);
0fb4f2ce 728 if (e->dest == label_to_block (cfun, CASE_LABEL (tl)))
cac06b02 729 {
730 if (!l)
731 l = tl;
732 else
733 {
734 l = NULL_TREE;
735 break;
736 }
737 }
738 }
739 /* If more than one label reaches this block or the case
fd9ea52a 740 label doesn't have a single value (like the default one)
cac06b02 741 fail. */
742 if (!l
743 || !CASE_LOW (l)
49f1670a 744 || (CASE_HIGH (l)
745 && !operand_equal_p (CASE_LOW (l), CASE_HIGH (l), 0)))
cac06b02 746 {
747 has_valid_pred = false;
748 break;
749 }
750 one_pred.pred_lhs = gimple_switch_index (gs);
751 one_pred.pred_rhs = CASE_LOW (l);
752 one_pred.cond_code = EQ_EXPR;
753 one_pred.invert = false;
754 t_chain.safe_push (one_pred);
755 has_valid_pred = true;
756 }
757 else
fd9ea52a 758 {
759 has_valid_pred = false;
760 break;
761 }
762 }
a7d4604b 763
764 if (!has_valid_pred)
b712a40f 765 break;
37d099d8 766 else
b712a40f 767 preds->safe_push (t_chain);
a7d4604b 768 }
769 return has_valid_pred;
770}
771
49f1670a 772/* Computes all control dependence chains for USE_BB. The control
a7d4604b 773 dependence chains are then converted to an array of composite
774 predicates pointed to by PREDS. PHI_BB is the basic block of
775 the phi whose result is used in USE_BB. */
776
777static bool
37d099d8 778find_predicates (pred_chain_union *preds,
fd9ea52a 779 basic_block phi_bb,
780 basic_block use_bb)
a7d4604b 781{
782 size_t num_chains = 0, i;
13e8ebe8 783 int num_calls = 0;
784 vec<edge> dep_chains[MAX_NUM_CHAINS];
785 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
a7d4604b 786 bool has_valid_pred = false;
787 basic_block cd_root = 0;
788
a7d4604b 789 /* First find the closest bb that is control equivalent to PHI_BB
790 that also dominates USE_BB. */
791 cd_root = phi_bb;
792 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
793 {
794 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
795 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
fd9ea52a 796 cd_root = ctrl_eq_bb;
a7d4604b 797 else
fd9ea52a 798 break;
a7d4604b 799 }
800
13e8ebe8 801 compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
802 &cur_chain, &num_calls);
a7d4604b 803
804 has_valid_pred
13e8ebe8 805 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
a7d4604b 806 for (i = 0; i < num_chains; i++)
f1f41a6c 807 dep_chains[i].release ();
a7d4604b 808 return has_valid_pred;
809}
810
811/* Computes the set of incoming edges of PHI that have non empty
812 definitions of a phi chain. The collection will be done
49f1670a 813 recursively on operands that are defined by phis. CD_ROOT
814 is the control dependence root. *EDGES holds the result, and
a7d4604b 815 VISITED_PHIS is a pointer set for detecting cycles. */
816
817static void
1a91d914 818collect_phi_def_edges (gphi *phi, basic_block cd_root,
b712a40f 819 auto_vec<edge> *edges,
42acab1c 820 hash_set<gimple *> *visited_phis)
a7d4604b 821{
822 size_t i, n;
823 edge opnd_edge;
824 tree opnd;
825
431205b7 826 if (visited_phis->add (phi))
a7d4604b 827 return;
828
829 n = gimple_phi_num_args (phi);
830 for (i = 0; i < n; i++)
831 {
832 opnd_edge = gimple_phi_arg_edge (phi, i);
833 opnd = gimple_phi_arg_def (phi, i);
834
4a06dbea 835 if (TREE_CODE (opnd) != SSA_NAME)
fd9ea52a 836 {
837 if (dump_file && (dump_flags & TDF_DETAILS))
838 {
49f1670a 839 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int) i);
1ffa4346 840 print_gimple_stmt (dump_file, phi, 0);
fd9ea52a 841 }
842 edges->safe_push (opnd_edge);
843 }
a7d4604b 844 else
fd9ea52a 845 {
42acab1c 846 gimple *def = SSA_NAME_DEF_STMT (opnd);
4a06dbea 847
fd9ea52a 848 if (gimple_code (def) == GIMPLE_PHI
49f1670a 849 && dominated_by_p (CDI_DOMINATORS, gimple_bb (def), cd_root))
850 collect_phi_def_edges (as_a<gphi *> (def), cd_root, edges,
fd9ea52a 851 visited_phis);
852 else if (!uninit_undefined_value_p (opnd))
853 {
854 if (dump_file && (dump_flags & TDF_DETAILS))
855 {
49f1670a 856 fprintf (dump_file, "\n[CHECK] Found def edge %d in ",
857 (int) i);
1ffa4346 858 print_gimple_stmt (dump_file, phi, 0);
fd9ea52a 859 }
860 edges->safe_push (opnd_edge);
861 }
862 }
a7d4604b 863 }
864}
865
866/* For each use edge of PHI, computes all control dependence chains.
867 The control dependence chains are then converted to an array of
868 composite predicates pointed to by PREDS. */
869
870static bool
1a91d914 871find_def_preds (pred_chain_union *preds, gphi *phi)
a7d4604b 872{
873 size_t num_chains = 0, i, n;
13e8ebe8 874 vec<edge> dep_chains[MAX_NUM_CHAINS];
875 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
b712a40f 876 auto_vec<edge> def_edges;
a7d4604b 877 bool has_valid_pred = false;
878 basic_block phi_bb, cd_root = 0;
a7d4604b 879
a7d4604b 880 phi_bb = gimple_bb (phi);
881 /* First find the closest dominating bb to be
49f1670a 882 the control dependence root. */
a7d4604b 883 cd_root = find_dom (phi_bb);
884 if (!cd_root)
885 return false;
886
42acab1c 887 hash_set<gimple *> visited_phis;
431205b7 888 collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
a7d4604b 889
f1f41a6c 890 n = def_edges.length ();
a7d4604b 891 if (n == 0)
892 return false;
893
894 for (i = 0; i < n; i++)
895 {
896 size_t prev_nc, j;
13e8ebe8 897 int num_calls = 0;
a7d4604b 898 edge opnd_edge;
899
f1f41a6c 900 opnd_edge = def_edges[i];
a7d4604b 901 prev_nc = num_chains;
13e8ebe8 902 compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains,
903 &num_chains, &cur_chain, &num_calls);
a7d4604b 904
905 /* Now update the newly added chains with
fd9ea52a 906 the phi operand edge: */
a7d4604b 907 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
fd9ea52a 908 {
13e8ebe8 909 if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS)
910 dep_chains[num_chains++] = vNULL;
fd9ea52a 911 for (j = prev_nc; j < num_chains; j++)
13e8ebe8 912 dep_chains[j].safe_push (opnd_edge);
fd9ea52a 913 }
a7d4604b 914 }
915
916 has_valid_pred
13e8ebe8 917 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
a7d4604b 918 for (i = 0; i < num_chains; i++)
f1f41a6c 919 dep_chains[i].release ();
a7d4604b 920 return has_valid_pred;
921}
922
7700b194 923/* Dump a pred_info. */
924
925static void
926dump_pred_info (pred_info one_pred)
927{
928 if (one_pred.invert)
929 fprintf (dump_file, " (.NOT.) ");
930 print_generic_expr (dump_file, one_pred.pred_lhs);
931 fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
932 print_generic_expr (dump_file, one_pred.pred_rhs);
933}
934
935/* Dump a pred_chain. */
936
937static void
938dump_pred_chain (pred_chain one_pred_chain)
939{
940 size_t np = one_pred_chain.length ();
941 for (size_t j = 0; j < np; j++)
942 {
943 dump_pred_info (one_pred_chain[j]);
944 if (j < np - 1)
945 fprintf (dump_file, " (.AND.) ");
946 else
947 fprintf (dump_file, "\n");
948 }
949}
950
a7d4604b 951/* Dumps the predicates (PREDS) for USESTMT. */
952
953static void
49f1670a 954dump_predicates (gimple *usestmt, pred_chain_union preds, const char *msg)
a7d4604b 955{
4cb42f43 956 fprintf (dump_file, "%s", msg);
7700b194 957 if (usestmt)
958 {
959 print_gimple_stmt (dump_file, usestmt, 0);
960 fprintf (dump_file, "is guarded by :\n\n");
961 }
37d099d8 962 size_t num_preds = preds.length ();
7700b194 963 for (size_t i = 0; i < num_preds; i++)
a7d4604b 964 {
7700b194 965 dump_pred_chain (preds[i]);
a7d4604b 966 if (i < num_preds - 1)
fd9ea52a 967 fprintf (dump_file, "(.OR.)\n");
37d099d8 968 else
fd9ea52a 969 fprintf (dump_file, "\n\n");
a7d4604b 970 }
971}
972
973/* Destroys the predicate set *PREDS. */
974
975static void
b712a40f 976destroy_predicate_vecs (pred_chain_union *preds)
a7d4604b 977{
37d099d8 978 size_t i;
979
b712a40f 980 size_t n = preds->length ();
a7d4604b 981 for (i = 0; i < n; i++)
b712a40f 982 (*preds)[i].release ();
983 preds->release ();
a7d4604b 984}
985
37d099d8 986/* Computes the 'normalized' conditional code with operand
a7d4604b 987 swapping and condition inversion. */
988
989static enum tree_code
49f1670a 990get_cmp_code (enum tree_code orig_cmp_code, bool swap_cond, bool invert)
a7d4604b 991{
992 enum tree_code tc = orig_cmp_code;
993
994 if (swap_cond)
995 tc = swap_tree_comparison (orig_cmp_code);
996 if (invert)
997 tc = invert_tree_comparison (tc, false);
998
999 switch (tc)
1000 {
1001 case LT_EXPR:
1002 case LE_EXPR:
1003 case GT_EXPR:
1004 case GE_EXPR:
1005 case EQ_EXPR:
1006 case NE_EXPR:
1007 break;
1008 default:
1009 return ERROR_MARK;
1010 }
1011 return tc;
1012}
1013
1014/* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
1015 all values in the range satisfies (x CMPC BOUNDARY) == true. */
1016
1017static bool
1018is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
1019{
1020 bool inverted = false;
1021 bool is_unsigned;
1022 bool result;
1023
1024 /* Only handle integer constant here. */
49f1670a 1025 if (TREE_CODE (val) != INTEGER_CST || TREE_CODE (boundary) != INTEGER_CST)
a7d4604b 1026 return true;
1027
1028 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
1029
49f1670a 1030 if (cmpc == GE_EXPR || cmpc == GT_EXPR || cmpc == NE_EXPR)
a7d4604b 1031 {
1032 cmpc = invert_tree_comparison (cmpc, false);
1033 inverted = true;
1034 }
1035
1036 if (is_unsigned)
1037 {
1038 if (cmpc == EQ_EXPR)
fd9ea52a 1039 result = tree_int_cst_equal (val, boundary);
a7d4604b 1040 else if (cmpc == LT_EXPR)
fd9ea52a 1041 result = tree_int_cst_lt (val, boundary);
a7d4604b 1042 else
fd9ea52a 1043 {
1044 gcc_assert (cmpc == LE_EXPR);
1045 result = tree_int_cst_le (val, boundary);
1046 }
a7d4604b 1047 }
1048 else
1049 {
1050 if (cmpc == EQ_EXPR)
fd9ea52a 1051 result = tree_int_cst_equal (val, boundary);
a7d4604b 1052 else if (cmpc == LT_EXPR)
fd9ea52a 1053 result = tree_int_cst_lt (val, boundary);
a7d4604b 1054 else
fd9ea52a 1055 {
1056 gcc_assert (cmpc == LE_EXPR);
1057 result = (tree_int_cst_equal (val, boundary)
1058 || tree_int_cst_lt (val, boundary));
1059 }
a7d4604b 1060 }
1061
1062 if (inverted)
1063 result ^= 1;
1064
1065 return result;
1066}
1067
1068/* Returns true if PRED is common among all the predicate
1069 chains (PREDS) (and therefore can be factored out).
1070 NUM_PRED_CHAIN is the size of array PREDS. */
1071
1072static bool
37d099d8 1073find_matching_predicate_in_rest_chains (pred_info pred,
fd9ea52a 1074 pred_chain_union preds,
1075 size_t num_pred_chains)
a7d4604b 1076{
1077 size_t i, j, n;
1078
37d099d8 1079 /* Trival case. */
a7d4604b 1080 if (num_pred_chains == 1)
1081 return true;
1082
1083 for (i = 1; i < num_pred_chains; i++)
1084 {
1085 bool found = false;
37d099d8 1086 pred_chain one_chain = preds[i];
f1f41a6c 1087 n = one_chain.length ();
a7d4604b 1088 for (j = 0; j < n; j++)
fd9ea52a 1089 {
1090 pred_info pred2 = one_chain[j];
1091 /* Can relax the condition comparison to not
49f1670a 1092 use address comparison. However, the most common
fd9ea52a 1093 case is that multiple control dependent paths share
1094 a common path prefix, so address comparison should
1095 be ok. */
1096
1097 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
1098 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
1099 && pred2.invert == pred.invert)
1100 {
1101 found = true;
1102 break;
1103 }
1104 }
a7d4604b 1105 if (!found)
fd9ea52a 1106 return false;
a7d4604b 1107 }
1108 return true;
1109}
1110
1111/* Forward declaration. */
49f1670a 1112static bool is_use_properly_guarded (gimple *use_stmt,
1113 basic_block use_bb,
1114 gphi *phi,
1115 unsigned uninit_opnds,
1116 pred_chain_union *def_preds,
1117 hash_set<gphi *> *visited_phis);
1118
1119/* Returns true if all uninitialized opnds are pruned. Returns false
1120 otherwise. PHI is the phi node with uninitialized operands,
4028020e 1121 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
1122 FLAG_DEF is the statement defining the flag guarding the use of the
1123 PHI output, BOUNDARY_CST is the const value used in the predicate
1124 associated with the flag, CMP_CODE is the comparison code used in
1125 the predicate, VISITED_PHIS is the pointer set of phis visited, and
1126 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
1127 that are also phis.
1128
1129 Example scenario:
1130
1131 BB1:
49f1670a 1132 flag_1 = phi <0, 1> // (1)
4028020e 1133 var_1 = phi <undef, some_val>
1134
1135
1136 BB2:
1137 flag_2 = phi <0, flag_1, flag_1> // (2)
1138 var_2 = phi <undef, var_1, var_1>
1139 if (flag_2 == 1)
1140 goto BB3;
1141
1142 BB3:
49f1670a 1143 use of var_2 // (3)
4028020e 1144
1145 Because some flag arg in (1) is not constant, if we do not look into the
1146 flag phis recursively, it is conservatively treated as unknown and var_1
49f1670a 1147 is thought to be flowed into use at (3). Since var_1 is potentially
1148 uninitialized a false warning will be emitted.
1149 Checking recursively into (1), the compiler can find out that only some_val
1150 (which is defined) can flow into (3) which is OK. */
4028020e 1151
1152static bool
49f1670a 1153prune_uninit_phi_opnds (gphi *phi, unsigned uninit_opnds, gphi *flag_def,
1154 tree boundary_cst, enum tree_code cmp_code,
1155 hash_set<gphi *> *visited_phis,
1156 bitmap *visited_flag_phis)
4028020e 1157{
1158 unsigned i;
1159
7053e959 1160 for (i = 0; i < MIN (max_phi_args, gimple_phi_num_args (flag_def)); i++)
4028020e 1161 {
1162 tree flag_arg;
1163
1164 if (!MASK_TEST_BIT (uninit_opnds, i))
fd9ea52a 1165 continue;
4028020e 1166
1167 flag_arg = gimple_phi_arg_def (flag_def, i);
1168 if (!is_gimple_constant (flag_arg))
fd9ea52a 1169 {
1170 gphi *flag_arg_def, *phi_arg_def;
1171 tree phi_arg;
1172 unsigned uninit_opnds_arg_phi;
1173
1174 if (TREE_CODE (flag_arg) != SSA_NAME)
1175 return false;
49f1670a 1176 flag_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (flag_arg));
1a91d914 1177 if (!flag_arg_def)
fd9ea52a 1178 return false;
4028020e 1179
fd9ea52a 1180 phi_arg = gimple_phi_arg_def (phi, i);
1181 if (TREE_CODE (phi_arg) != SSA_NAME)
1182 return false;
4028020e 1183
49f1670a 1184 phi_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (phi_arg));
1a91d914 1185 if (!phi_arg_def)
fd9ea52a 1186 return false;
4028020e 1187
fd9ea52a 1188 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
1189 return false;
4028020e 1190
fd9ea52a 1191 if (!*visited_flag_phis)
1192 *visited_flag_phis = BITMAP_ALLOC (NULL);
4028020e 1193
49f1670a 1194 tree phi_result = gimple_phi_result (flag_arg_def);
1195 if (bitmap_bit_p (*visited_flag_phis, SSA_NAME_VERSION (phi_result)))
fd9ea52a 1196 return false;
4028020e 1197
fd9ea52a 1198 bitmap_set_bit (*visited_flag_phis,
1199 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
4028020e 1200
fd9ea52a 1201 /* Now recursively prune the uninitialized phi args. */
1202 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
49f1670a 1203 if (!prune_uninit_phi_opnds
1204 (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def, boundary_cst,
1205 cmp_code, visited_phis, visited_flag_phis))
fd9ea52a 1206 return false;
4028020e 1207
49f1670a 1208 phi_result = gimple_phi_result (flag_arg_def);
1209 bitmap_clear_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result));
fd9ea52a 1210 continue;
1211 }
4028020e 1212
1213 /* Now check if the constant is in the guarded range. */
1214 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
fd9ea52a 1215 {
1216 tree opnd;
42acab1c 1217 gimple *opnd_def;
4028020e 1218
fd9ea52a 1219 /* Now that we know that this undefined edge is not
49f1670a 1220 pruned. If the operand is defined by another phi,
fd9ea52a 1221 we can further prune the incoming edges of that
1222 phi by checking the predicates of this operands. */
1223
1224 opnd = gimple_phi_arg_def (phi, i);
1225 opnd_def = SSA_NAME_DEF_STMT (opnd);
1226 if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
1227 {
1228 edge opnd_edge;
49f1670a 1229 unsigned uninit_opnds2 = compute_uninit_opnds_pos (opnd_def_phi);
2e1cb7c0 1230 if (!MASK_EMPTY (uninit_opnds2))
1231 {
1232 pred_chain_union def_preds = vNULL;
1233 bool ok;
1234 opnd_edge = gimple_phi_arg_edge (phi, i);
1235 ok = is_use_properly_guarded (phi,
1236 opnd_edge->src,
1237 opnd_def_phi,
1238 uninit_opnds2,
1239 &def_preds,
1240 visited_phis);
1241 destroy_predicate_vecs (&def_preds);
1242 if (!ok)
1243 return false;
1244 }
fd9ea52a 1245 }
1246 else
1247 return false;
1248 }
4028020e 1249 }
1250
1251 return true;
1252}
1253
a7d4604b 1254/* A helper function that determines if the predicate set
1255 of the use is not overlapping with that of the uninit paths.
1256 The most common senario of guarded use is in Example 1:
1257 Example 1:
fd9ea52a 1258 if (some_cond)
1259 {
1260 x = ...;
1261 flag = true;
1262 }
a7d4604b 1263
fd9ea52a 1264 ... some code ...
a7d4604b 1265
fd9ea52a 1266 if (flag)
1267 use (x);
a7d4604b 1268
1269 The real world examples are usually more complicated, but similar
1270 and usually result from inlining:
1271
fd9ea52a 1272 bool init_func (int * x)
1273 {
1274 if (some_cond)
1275 return false;
1276 *x = ..
1277 return true;
1278 }
a7d4604b 1279
49f1670a 1280 void foo (..)
fd9ea52a 1281 {
1282 int x;
a7d4604b 1283
49f1670a 1284 if (!init_func (&x))
fd9ea52a 1285 return;
a7d4604b 1286
fd9ea52a 1287 .. some_code ...
1288 use (x);
1289 }
a7d4604b 1290
1291 Another possible use scenario is in the following trivial example:
1292
1293 Example 2:
fd9ea52a 1294 if (n > 0)
1295 x = 1;
1296 ...
1297 if (n > 0)
1298 {
1299 if (m < 2)
1300 .. = x;
1301 }
a7d4604b 1302
1303 Predicate analysis needs to compute the composite predicate:
1304
1305 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1306 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1307 (the predicate chain for phi operand defs can be computed
1308 starting from a bb that is control equivalent to the phi's
1309 bb and is dominating the operand def.)
1310
1311 and check overlapping:
fd9ea52a 1312 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1313 <==> false
a7d4604b 1314
1315 This implementation provides framework that can handle
49f1670a 1316 scenarios. (Note that many simple cases are handled properly
a7d4604b 1317 without the predicate analysis -- this is due to jump threading
1318 transformation which eliminates the merge point thus makes
1319 path sensitive analysis unnecessary.)
1320
7053e959 1321 PHI is the phi node whose incoming (undefined) paths need to be
1322 pruned, and UNINIT_OPNDS is the bitmap holding uninit operand
1323 positions. VISITED_PHIS is the pointer set of phi stmts being
1324 checked. */
a7d4604b 1325
a7d4604b 1326static bool
37d099d8 1327use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
fd9ea52a 1328 gphi *phi, unsigned uninit_opnds,
1a91d914 1329 hash_set<gphi *> *visited_phis)
a7d4604b 1330{
1331 unsigned int i, n;
42acab1c 1332 gimple *flag_def = 0;
49f1670a 1333 tree boundary_cst = 0;
a7d4604b 1334 enum tree_code cmp_code;
1335 bool swap_cond = false;
1336 bool invert = false;
37d099d8 1337 pred_chain the_pred_chain = vNULL;
4028020e 1338 bitmap visited_flag_phis = NULL;
1339 bool all_pruned = false;
37d099d8 1340 size_t num_preds = preds.length ();
a7d4604b 1341
1342 gcc_assert (num_preds > 0);
1343 /* Find within the common prefix of multiple predicate chains
1344 a predicate that is a comparison of a flag variable against
1345 a constant. */
1346 the_pred_chain = preds[0];
f1f41a6c 1347 n = the_pred_chain.length ();
a7d4604b 1348 for (i = 0; i < n; i++)
1349 {
a7d4604b 1350 tree cond_lhs, cond_rhs, flag = 0;
1351
37d099d8 1352 pred_info the_pred = the_pred_chain[i];
a7d4604b 1353
37d099d8 1354 invert = the_pred.invert;
1355 cond_lhs = the_pred.pred_lhs;
1356 cond_rhs = the_pred.pred_rhs;
1357 cmp_code = the_pred.cond_code;
a7d4604b 1358
1359 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
fd9ea52a 1360 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1361 {
1362 boundary_cst = cond_rhs;
1363 flag = cond_lhs;
1364 }
a7d4604b 1365 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
fd9ea52a 1366 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1367 {
1368 boundary_cst = cond_lhs;
1369 flag = cond_rhs;
1370 swap_cond = true;
1371 }
a7d4604b 1372
1373 if (!flag)
fd9ea52a 1374 continue;
a7d4604b 1375
1376 flag_def = SSA_NAME_DEF_STMT (flag);
1377
1378 if (!flag_def)
fd9ea52a 1379 continue;
a7d4604b 1380
1381 if ((gimple_code (flag_def) == GIMPLE_PHI)
fd9ea52a 1382 && (gimple_bb (flag_def) == gimple_bb (phi))
1383 && find_matching_predicate_in_rest_chains (the_pred, preds,
37d099d8 1384 num_preds))
fd9ea52a 1385 break;
a7d4604b 1386
1387 flag_def = 0;
1388 }
1389
1390 if (!flag_def)
1391 return false;
1392
1393 /* Now check all the uninit incoming edge has a constant flag value
1394 that is in conflict with the use guard/predicate. */
1395 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1396
1397 if (cmp_code == ERROR_MARK)
1398 return false;
1399
49f1670a 1400 all_pruned = prune_uninit_phi_opnds
1401 (phi, uninit_opnds, as_a<gphi *> (flag_def), boundary_cst, cmp_code,
1402 visited_phis, &visited_flag_phis);
a7d4604b 1403
4028020e 1404 if (visited_flag_phis)
1405 BITMAP_FREE (visited_flag_phis);
a7d4604b 1406
4028020e 1407 return all_pruned;
a7d4604b 1408}
1409
37d099d8 1410/* The helper function returns true if two predicates X1 and X2
49f1670a 1411 are equivalent. It assumes the expressions have already
37d099d8 1412 properly re-associated. */
a7d4604b 1413
1414static inline bool
37d099d8 1415pred_equal_p (pred_info x1, pred_info x2)
a7d4604b 1416{
37d099d8 1417 enum tree_code c1, c2;
1418 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1419 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1420 return false;
a7d4604b 1421
37d099d8 1422 c1 = x1.cond_code;
c1025e7d 1423 if (x1.invert != x2.invert
1424 && TREE_CODE_CLASS (x2.cond_code) == tcc_comparison)
37d099d8 1425 c2 = invert_tree_comparison (x2.cond_code, false);
1426 else
1427 c2 = x2.cond_code;
a7d4604b 1428
37d099d8 1429 return c1 == c2;
1430}
a7d4604b 1431
37d099d8 1432/* Returns true if the predication is testing !=. */
a7d4604b 1433
37d099d8 1434static inline bool
1435is_neq_relop_p (pred_info pred)
a7d4604b 1436{
a7d4604b 1437
49f1670a 1438 return ((pred.cond_code == NE_EXPR && !pred.invert)
1439 || (pred.cond_code == EQ_EXPR && pred.invert));
a7d4604b 1440}
1441
37d099d8 1442/* Returns true if pred is of the form X != 0. */
a7d4604b 1443
fd9ea52a 1444static inline bool
37d099d8 1445is_neq_zero_form_p (pred_info pred)
a7d4604b 1446{
37d099d8 1447 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
1448 || TREE_CODE (pred.pred_lhs) != SSA_NAME)
1449 return false;
1450 return true;
1451}
a7d4604b 1452
37d099d8 1453/* The helper function returns true if two predicates X1
1454 is equivalent to X2 != 0. */
a7d4604b 1455
37d099d8 1456static inline bool
1457pred_expr_equal_p (pred_info x1, tree x2)
1458{
1459 if (!is_neq_zero_form_p (x1))
1460 return false;
a7d4604b 1461
37d099d8 1462 return operand_equal_p (x1.pred_lhs, x2, 0);
a7d4604b 1463}
1464
37d099d8 1465/* Returns true of the domain of single predicate expression
49f1670a 1466 EXPR1 is a subset of that of EXPR2. Returns false if it
37d099d8 1467 can not be proved. */
a7d4604b 1468
1469static bool
37d099d8 1470is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
a7d4604b 1471{
37d099d8 1472 enum tree_code code1, code2;
a7d4604b 1473
37d099d8 1474 if (pred_equal_p (expr1, expr2))
a7d4604b 1475 return true;
1476
37d099d8 1477 if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
1478 || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
1479 return false;
a7d4604b 1480
37d099d8 1481 if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
1482 return false;
a7d4604b 1483
37d099d8 1484 code1 = expr1.cond_code;
1485 if (expr1.invert)
1486 code1 = invert_tree_comparison (code1, false);
1487 code2 = expr2.cond_code;
1488 if (expr2.invert)
1489 code2 = invert_tree_comparison (code2, false);
a7d4604b 1490
49f1670a 1491 if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR) && code2 == BIT_AND_EXPR)
e3d0f65c 1492 return (wi::to_wide (expr1.pred_rhs)
1493 == (wi::to_wide (expr1.pred_rhs) & wi::to_wide (expr2.pred_rhs)));
cac06b02 1494
37d099d8 1495 if (code1 != code2 && code2 != NE_EXPR)
1496 return false;
a7d4604b 1497
37d099d8 1498 if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2))
1499 return true;
a7d4604b 1500
37d099d8 1501 return false;
1502}
a7d4604b 1503
37d099d8 1504/* Returns true if the domain of PRED1 is a subset
49f1670a 1505 of that of PRED2. Returns false if it can not be proved so. */
a7d4604b 1506
37d099d8 1507static bool
49f1670a 1508is_pred_chain_subset_of (pred_chain pred1, pred_chain pred2)
37d099d8 1509{
1510 size_t np1, np2, i1, i2;
a7d4604b 1511
37d099d8 1512 np1 = pred1.length ();
1513 np2 = pred2.length ();
a7d4604b 1514
37d099d8 1515 for (i2 = 0; i2 < np2; i2++)
a7d4604b 1516 {
37d099d8 1517 bool found = false;
1518 pred_info info2 = pred2[i2];
1519 for (i1 = 0; i1 < np1; i1++)
fd9ea52a 1520 {
1521 pred_info info1 = pred1[i1];
1522 if (is_pred_expr_subset_of (info1, info2))
1523 {
1524 found = true;
1525 break;
1526 }
1527 }
37d099d8 1528 if (!found)
fd9ea52a 1529 return false;
a7d4604b 1530 }
37d099d8 1531 return true;
a7d4604b 1532}
1533
37d099d8 1534/* Returns true if the domain defined by
1535 one pred chain ONE_PRED is a subset of the domain
49f1670a 1536 of *PREDS. It returns false if ONE_PRED's domain is
37d099d8 1537 not a subset of any of the sub-domains of PREDS
1538 (corresponding to each individual chains in it), even
1539 though it may be still be a subset of whole domain
1540 of PREDS which is the union (ORed) of all its subdomains.
1541 In other words, the result is conservative. */
a7d4604b 1542
1543static bool
37d099d8 1544is_included_in (pred_chain one_pred, pred_chain_union preds)
a7d4604b 1545{
1546 size_t i;
37d099d8 1547 size_t n = preds.length ();
a7d4604b 1548
37d099d8 1549 for (i = 0; i < n; i++)
a7d4604b 1550 {
37d099d8 1551 if (is_pred_chain_subset_of (one_pred, preds[i]))
fd9ea52a 1552 return true;
a7d4604b 1553 }
37d099d8 1554
a7d4604b 1555 return false;
1556}
1557
37d099d8 1558/* Compares two predicate sets PREDS1 and PREDS2 and returns
1559 true if the domain defined by PREDS1 is a superset
49f1670a 1560 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1561 PREDS2 respectively. The implementation chooses not to build
37d099d8 1562 generic trees (and relying on the folding capability of the
1563 compiler), but instead performs brute force comparison of
1564 individual predicate chains (won't be a compile time problem
49f1670a 1565 as the chains are pretty short). When the function returns
37d099d8 1566 false, it does not necessarily mean *PREDS1 is not a superset
1567 of *PREDS2, but mean it may not be so since the analysis can
49f1670a 1568 not prove it. In such cases, false warnings may still be
37d099d8 1569 emitted. */
a7d4604b 1570
1571static bool
37d099d8 1572is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
a7d4604b 1573{
37d099d8 1574 size_t i, n2;
1575 pred_chain one_pred_chain = vNULL;
a7d4604b 1576
37d099d8 1577 n2 = preds2.length ();
1578
1579 for (i = 0; i < n2; i++)
a7d4604b 1580 {
37d099d8 1581 one_pred_chain = preds2[i];
1582 if (!is_included_in (one_pred_chain, preds1))
fd9ea52a 1583 return false;
a7d4604b 1584 }
37d099d8 1585
a7d4604b 1586 return true;
1587}
1588
37d099d8 1589/* Returns true if X1 is the negate of X2. */
1590
1591static inline bool
1592pred_neg_p (pred_info x1, pred_info x2)
1593{
1594 enum tree_code c1, c2;
1595 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1596 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1597 return false;
fd9ea52a 1598
37d099d8 1599 c1 = x1.cond_code;
1600 if (x1.invert == x2.invert)
1601 c2 = invert_tree_comparison (x2.cond_code, false);
1602 else
1603 c2 = x2.cond_code;
1604
1605 return c1 == c2;
a7d4604b 1606}
1607
37d099d8 1608/* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1609 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1610 3) X OR (!X AND Y) is equivalent to (X OR Y);
1611 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1612 (x != 0 AND y != 0)
1613 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
fd9ea52a 1614 (X AND Y) OR Z
a7d4604b 1615
37d099d8 1616 PREDS is the predicate chains, and N is the number of chains. */
1617
1618/* Helper function to implement rule 1 above. ONE_CHAIN is
1619 the AND predication to be simplified. */
1620
1621static void
1622simplify_pred (pred_chain *one_chain)
a7d4604b 1623{
37d099d8 1624 size_t i, j, n;
1625 bool simplified = false;
1626 pred_chain s_chain = vNULL;
a7d4604b 1627
37d099d8 1628 n = one_chain->length ();
a7d4604b 1629
37d099d8 1630 for (i = 0; i < n; i++)
a7d4604b 1631 {
37d099d8 1632 pred_info *a_pred = &(*one_chain)[i];
1633
1634 if (!a_pred->pred_lhs)
fd9ea52a 1635 continue;
37d099d8 1636 if (!is_neq_zero_form_p (*a_pred))
fd9ea52a 1637 continue;
37d099d8 1638
42acab1c 1639 gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
37d099d8 1640 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
fd9ea52a 1641 continue;
37d099d8 1642 if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
fd9ea52a 1643 {
1644 for (j = 0; j < n; j++)
1645 {
1646 pred_info *b_pred = &(*one_chain)[j];
1647
1648 if (!b_pred->pred_lhs)
1649 continue;
1650 if (!is_neq_zero_form_p (*b_pred))
1651 continue;
1652
1653 if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
1654 || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
49f1670a 1655 {
1656 /* Mark a_pred for removal. */
1657 a_pred->pred_lhs = NULL;
1658 a_pred->pred_rhs = NULL;
1659 simplified = true;
1660 break;
1661 }
fd9ea52a 1662 }
1663 }
a7d4604b 1664 }
a7d4604b 1665
37d099d8 1666 if (!simplified)
49f1670a 1667 return;
a7d4604b 1668
37d099d8 1669 for (i = 0; i < n; i++)
1670 {
1671 pred_info *a_pred = &(*one_chain)[i];
1672 if (!a_pred->pred_lhs)
fd9ea52a 1673 continue;
37d099d8 1674 s_chain.safe_push (*a_pred);
a7d4604b 1675 }
37d099d8 1676
49f1670a 1677 one_chain->release ();
1678 *one_chain = s_chain;
a7d4604b 1679}
1680
37d099d8 1681/* The helper function implements the rule 2 for the
1682 OR predicate PREDS.
1683
1684 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
a7d4604b 1685
1686static bool
37d099d8 1687simplify_preds_2 (pred_chain_union *preds)
a7d4604b 1688{
37d099d8 1689 size_t i, j, n;
1690 bool simplified = false;
1691 pred_chain_union s_preds = vNULL;
a7d4604b 1692
fd9ea52a 1693 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
37d099d8 1694 (X AND Y) OR (X AND !Y) is equivalent to X. */
a7d4604b 1695
37d099d8 1696 n = preds->length ();
1697 for (i = 0; i < n; i++)
1698 {
1699 pred_info x, y;
1700 pred_chain *a_chain = &(*preds)[i];
a7d4604b 1701
37d099d8 1702 if (a_chain->length () != 2)
fd9ea52a 1703 continue;
37d099d8 1704
1705 x = (*a_chain)[0];
1706 y = (*a_chain)[1];
1707
1708 for (j = 0; j < n; j++)
fd9ea52a 1709 {
1710 pred_chain *b_chain;
1711 pred_info x2, y2;
1712
1713 if (j == i)
1714 continue;
1715
1716 b_chain = &(*preds)[j];
1717 if (b_chain->length () != 2)
1718 continue;
1719
1720 x2 = (*b_chain)[0];
1721 y2 = (*b_chain)[1];
1722
1723 if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
1724 {
1725 /* Kill a_chain. */
1726 a_chain->release ();
1727 b_chain->release ();
1728 b_chain->safe_push (x);
1729 simplified = true;
1730 break;
1731 }
1732 if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
1733 {
1734 /* Kill a_chain. */
1735 a_chain->release ();
1736 b_chain->release ();
1737 b_chain->safe_push (y);
1738 simplified = true;
1739 break;
1740 }
1741 }
37d099d8 1742 }
1743 /* Now clean up the chain. */
1744 if (simplified)
1745 {
1746 for (i = 0; i < n; i++)
fd9ea52a 1747 {
1748 if ((*preds)[i].is_empty ())
1749 continue;
1750 s_preds.safe_push ((*preds)[i]);
1751 }
37d099d8 1752 preds->release ();
1753 (*preds) = s_preds;
1754 s_preds = vNULL;
1755 }
a7d4604b 1756
37d099d8 1757 return simplified;
a7d4604b 1758}
1759
37d099d8 1760/* The helper function implements the rule 2 for the
1761 OR predicate PREDS.
1762
1763 3) x OR (!x AND y) is equivalent to x OR y. */
a7d4604b 1764
1765static bool
37d099d8 1766simplify_preds_3 (pred_chain_union *preds)
a7d4604b 1767{
37d099d8 1768 size_t i, j, n;
1769 bool simplified = false;
a7d4604b 1770
37d099d8 1771 /* Now iteratively simplify X OR (!X AND Z ..)
1772 into X OR (Z ...). */
a7d4604b 1773
37d099d8 1774 n = preds->length ();
1775 if (n < 2)
1776 return false;
1777
1778 for (i = 0; i < n; i++)
a7d4604b 1779 {
37d099d8 1780 pred_info x;
1781 pred_chain *a_chain = &(*preds)[i];
1782
1783 if (a_chain->length () != 1)
fd9ea52a 1784 continue;
37d099d8 1785
1786 x = (*a_chain)[0];
1787
1788 for (j = 0; j < n; j++)
fd9ea52a 1789 {
1790 pred_chain *b_chain;
1791 pred_info x2;
1792 size_t k;
1793
1794 if (j == i)
1795 continue;
1796
1797 b_chain = &(*preds)[j];
1798 if (b_chain->length () < 2)
1799 continue;
1800
1801 for (k = 0; k < b_chain->length (); k++)
1802 {
1803 x2 = (*b_chain)[k];
1804 if (pred_neg_p (x, x2))
1805 {
1806 b_chain->unordered_remove (k);
1807 simplified = true;
1808 break;
1809 }
1810 }
1811 }
a7d4604b 1812 }
37d099d8 1813 return simplified;
a7d4604b 1814}
1815
37d099d8 1816/* The helper function implements the rule 4 for the
1817 OR predicate PREDS.
1818
1819 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1820 (x != 0 ANd y != 0). */
a7d4604b 1821
1822static bool
37d099d8 1823simplify_preds_4 (pred_chain_union *preds)
a7d4604b 1824{
37d099d8 1825 size_t i, j, n;
1826 bool simplified = false;
1827 pred_chain_union s_preds = vNULL;
42acab1c 1828 gimple *def_stmt;
a7d4604b 1829
37d099d8 1830 n = preds->length ();
a7d4604b 1831 for (i = 0; i < n; i++)
1832 {
37d099d8 1833 pred_info z;
1834 pred_chain *a_chain = &(*preds)[i];
1835
1836 if (a_chain->length () != 1)
fd9ea52a 1837 continue;
37d099d8 1838
1839 z = (*a_chain)[0];
1840
1841 if (!is_neq_zero_form_p (z))
fd9ea52a 1842 continue;
37d099d8 1843
1844 def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
1845 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
fd9ea52a 1846 continue;
37d099d8 1847
1848 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
fd9ea52a 1849 continue;
37d099d8 1850
1851 for (j = 0; j < n; j++)
fd9ea52a 1852 {
1853 pred_chain *b_chain;
1854 pred_info x2, y2;
1855
1856 if (j == i)
1857 continue;
1858
1859 b_chain = &(*preds)[j];
1860 if (b_chain->length () != 2)
1861 continue;
1862
1863 x2 = (*b_chain)[0];
1864 y2 = (*b_chain)[1];
49f1670a 1865 if (!is_neq_zero_form_p (x2) || !is_neq_zero_form_p (y2))
fd9ea52a 1866 continue;
1867
1868 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
1869 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
1870 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
1871 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
1872 {
1873 /* Kill a_chain. */
1874 a_chain->release ();
1875 simplified = true;
1876 break;
1877 }
1878 }
37d099d8 1879 }
1880 /* Now clean up the chain. */
1881 if (simplified)
1882 {
1883 for (i = 0; i < n; i++)
fd9ea52a 1884 {
1885 if ((*preds)[i].is_empty ())
1886 continue;
1887 s_preds.safe_push ((*preds)[i]);
1888 }
b712a40f 1889
3b6aa4f2 1890 preds->release ();
37d099d8 1891 (*preds) = s_preds;
1892 s_preds = vNULL;
a7d4604b 1893 }
1894
37d099d8 1895 return simplified;
a7d4604b 1896}
1897
37d099d8 1898/* This function simplifies predicates in PREDS. */
1899
1900static void
42acab1c 1901simplify_preds (pred_chain_union *preds, gimple *use_or_def, bool is_use)
a7d4604b 1902{
37d099d8 1903 size_t i, n;
1904 bool changed = false;
a7d4604b 1905
37d099d8 1906 if (dump_file && dump_flags & TDF_DETAILS)
a7d4604b 1907 {
37d099d8 1908 fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
1909 dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
a7d4604b 1910 }
1911
37d099d8 1912 for (i = 0; i < preds->length (); i++)
1913 simplify_pred (&(*preds)[i]);
1914
1915 n = preds->length ();
1916 if (n < 2)
1917 return;
1918
1919 do
1920 {
1921 changed = false;
1922 if (simplify_preds_2 (preds))
fd9ea52a 1923 changed = true;
37d099d8 1924
1925 /* Now iteratively simplify X OR (!X AND Z ..)
1926 into X OR (Z ...). */
1927 if (simplify_preds_3 (preds))
fd9ea52a 1928 changed = true;
37d099d8 1929
1930 if (simplify_preds_4 (preds))
fd9ea52a 1931 changed = true;
49f1670a 1932 }
1933 while (changed);
37d099d8 1934
1935 return;
a7d4604b 1936}
1937
37d099d8 1938/* This is a helper function which attempts to normalize predicate chains
49f1670a 1939 by following UD chains. It basically builds up a big tree of either IOR
fd9ea52a 1940 operations or AND operations, and convert the IOR tree into a
37d099d8 1941 pred_chain_union or BIT_AND tree into a pred_chain.
1942 Example:
3751887c 1943
37d099d8 1944 _3 = _2 RELOP1 _1;
1945 _6 = _5 RELOP2 _4;
1946 _9 = _8 RELOP3 _7;
1947 _10 = _3 | _6;
1948 _12 = _9 | _0;
1949 _t = _10 | _12;
1950
1951 then _t != 0 will be normalized into a pred_chain_union
1952
1953 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1954
1955 Similarly given,
1956
1957 _3 = _2 RELOP1 _1;
1958 _6 = _5 RELOP2 _4;
1959 _9 = _8 RELOP3 _7;
1960 _10 = _3 & _6;
1961 _12 = _9 & _0;
1962
1963 then _t != 0 will be normalized into a pred_chain:
1964 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
fd9ea52a 1965
37d099d8 1966 */
1967
1968/* This is a helper function that stores a PRED into NORM_PREDS. */
1969
1970inline static void
1971push_pred (pred_chain_union *norm_preds, pred_info pred)
3751887c 1972{
37d099d8 1973 pred_chain pred_chain = vNULL;
1974 pred_chain.safe_push (pred);
1975 norm_preds->safe_push (pred_chain);
1976}
3751887c 1977
37d099d8 1978/* A helper function that creates a predicate of the form
1979 OP != 0 and push it WORK_LIST. */
3751887c 1980
37d099d8 1981inline static void
842e1d3c 1982push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
fd9ea52a 1983 hash_set<tree> *mark_set)
37d099d8 1984{
431205b7 1985 if (mark_set->contains (op))
842e1d3c 1986 return;
431205b7 1987 mark_set->add (op);
842e1d3c 1988
37d099d8 1989 pred_info arg_pred;
1990 arg_pred.pred_lhs = op;
1991 arg_pred.pred_rhs = integer_zero_node;
1992 arg_pred.cond_code = NE_EXPR;
1993 arg_pred.invert = false;
1994 work_list->safe_push (arg_pred);
1995}
3751887c 1996
37d099d8 1997/* A helper that generates a pred_info from a gimple assignment
1998 CMP_ASSIGN with comparison rhs. */
3751887c 1999
37d099d8 2000static pred_info
42acab1c 2001get_pred_info_from_cmp (gimple *cmp_assign)
37d099d8 2002{
2003 pred_info n_pred;
2004 n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
2005 n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
2006 n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
2007 n_pred.invert = false;
2008 return n_pred;
3751887c 2009}
2010
37d099d8 2011/* Returns true if the PHI is a degenerated phi with
49f1670a 2012 all args with the same value (relop). In that case, *PRED
37d099d8 2013 will be updated to that value. */
3751887c 2014
2015static bool
42acab1c 2016is_degenerated_phi (gimple *phi, pred_info *pred_p)
3751887c 2017{
37d099d8 2018 int i, n;
2019 tree op0;
42acab1c 2020 gimple *def0;
37d099d8 2021 pred_info pred0;
3751887c 2022
37d099d8 2023 n = gimple_phi_num_args (phi);
2024 op0 = gimple_phi_arg_def (phi, 0);
2025
2026 if (TREE_CODE (op0) != SSA_NAME)
3751887c 2027 return false;
2028
37d099d8 2029 def0 = SSA_NAME_DEF_STMT (op0);
2030 if (gimple_code (def0) != GIMPLE_ASSIGN)
2031 return false;
49f1670a 2032 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0)) != tcc_comparison)
37d099d8 2033 return false;
2034 pred0 = get_pred_info_from_cmp (def0);
2035
2036 for (i = 1; i < n; ++i)
3751887c 2037 {
42acab1c 2038 gimple *def;
37d099d8 2039 pred_info pred;
2040 tree op = gimple_phi_arg_def (phi, i);
2041
2042 if (TREE_CODE (op) != SSA_NAME)
fd9ea52a 2043 return false;
3751887c 2044
37d099d8 2045 def = SSA_NAME_DEF_STMT (op);
2046 if (gimple_code (def) != GIMPLE_ASSIGN)
fd9ea52a 2047 return false;
49f1670a 2048 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
fd9ea52a 2049 return false;
37d099d8 2050 pred = get_pred_info_from_cmp (def);
2051 if (!pred_equal_p (pred, pred0))
fd9ea52a 2052 return false;
37d099d8 2053 }
2054
2055 *pred_p = pred0;
2056 return true;
2057}
2058
fd9ea52a 2059/* Normalize one predicate PRED
37d099d8 2060 1) if PRED can no longer be normlized, put it into NORM_PREDS.
2061 2) otherwise if PRED is of the form x != 0, follow x's definition
2062 and put normalized predicates into WORK_LIST. */
fd9ea52a 2063
37d099d8 2064static void
fd9ea52a 2065normalize_one_pred_1 (pred_chain_union *norm_preds,
2066 pred_chain *norm_chain,
2067 pred_info pred,
2068 enum tree_code and_or_code,
2069 vec<pred_info, va_heap, vl_ptr> *work_list,
431205b7 2070 hash_set<tree> *mark_set)
37d099d8 2071{
2072 if (!is_neq_zero_form_p (pred))
2073 {
2074 if (and_or_code == BIT_IOR_EXPR)
fd9ea52a 2075 push_pred (norm_preds, pred);
37d099d8 2076 else
fd9ea52a 2077 norm_chain->safe_push (pred);
37d099d8 2078 return;
2079 }
2080
42acab1c 2081 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
fd9ea52a 2082
37d099d8 2083 if (gimple_code (def_stmt) == GIMPLE_PHI
2084 && is_degenerated_phi (def_stmt, &pred))
2085 work_list->safe_push (pred);
49f1670a 2086 else if (gimple_code (def_stmt) == GIMPLE_PHI && and_or_code == BIT_IOR_EXPR)
37d099d8 2087 {
2088 int i, n;
2089 n = gimple_phi_num_args (def_stmt);
2090
49f1670a 2091 /* If we see non zero constant, we should punt. The predicate
37d099d8 2092 * should be one guarding the phi edge. */
2093 for (i = 0; i < n; ++i)
fd9ea52a 2094 {
2095 tree op = gimple_phi_arg_def (def_stmt, i);
2096 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
2097 {
2098 push_pred (norm_preds, pred);
2099 return;
2100 }
2101 }
3751887c 2102
37d099d8 2103 for (i = 0; i < n; ++i)
fd9ea52a 2104 {
2105 tree op = gimple_phi_arg_def (def_stmt, i);
2106 if (integer_zerop (op))
2107 continue;
37d099d8 2108
fd9ea52a 2109 push_to_worklist (op, work_list, mark_set);
2110 }
842e1d3c 2111 }
2112 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
2113 {
2114 if (and_or_code == BIT_IOR_EXPR)
2115 push_pred (norm_preds, pred);
2116 else
2117 norm_chain->safe_push (pred);
2118 }
2119 else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
2120 {
cac06b02 2121 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
2122 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
2123 {
2124 /* But treat x & 3 as condition. */
2125 if (and_or_code == BIT_AND_EXPR)
2126 {
2127 pred_info n_pred;
2128 n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
2129 n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
2130 n_pred.cond_code = and_or_code;
2131 n_pred.invert = false;
2132 norm_chain->safe_push (n_pred);
2133 }
2134 }
2135 else
2136 {
2137 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
2138 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
2139 }
842e1d3c 2140 }
2141 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
2142 == tcc_comparison)
2143 {
2144 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2145 if (and_or_code == BIT_IOR_EXPR)
2146 push_pred (norm_preds, n_pred);
2147 else
2148 norm_chain->safe_push (n_pred);
2149 }
2150 else
2151 {
2152 if (and_or_code == BIT_IOR_EXPR)
2153 push_pred (norm_preds, pred);
2154 else
2155 norm_chain->safe_push (pred);
2156 }
37d099d8 2157}
2158
2159/* Normalize PRED and store the normalized predicates into NORM_PREDS. */
2160
2161static void
49f1670a 2162normalize_one_pred (pred_chain_union *norm_preds, pred_info pred)
37d099d8 2163{
2164 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2165 enum tree_code and_or_code = ERROR_MARK;
2166 pred_chain norm_chain = vNULL;
3751887c 2167
37d099d8 2168 if (!is_neq_zero_form_p (pred))
3751887c 2169 {
37d099d8 2170 push_pred (norm_preds, pred);
2171 return;
2172 }
3751887c 2173
42acab1c 2174 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
37d099d8 2175 if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
2176 and_or_code = gimple_assign_rhs_code (def_stmt);
49f1670a 2177 if (and_or_code != BIT_IOR_EXPR && and_or_code != BIT_AND_EXPR)
37d099d8 2178 {
49f1670a 2179 if (TREE_CODE_CLASS (and_or_code) == tcc_comparison)
fd9ea52a 2180 {
2181 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2182 push_pred (norm_preds, n_pred);
2183 }
49f1670a 2184 else
2185 push_pred (norm_preds, pred);
37d099d8 2186 return;
2187 }
3751887c 2188
37d099d8 2189 work_list.safe_push (pred);
431205b7 2190 hash_set<tree> mark_set;
842e1d3c 2191
37d099d8 2192 while (!work_list.is_empty ())
2193 {
2194 pred_info a_pred = work_list.pop ();
49f1670a 2195 normalize_one_pred_1 (norm_preds, &norm_chain, a_pred, and_or_code,
2196 &work_list, &mark_set);
3751887c 2197 }
37d099d8 2198 if (and_or_code == BIT_AND_EXPR)
2199 norm_preds->safe_push (norm_chain);
2200
2201 work_list.release ();
2202}
3751887c 2203
37d099d8 2204static void
49f1670a 2205normalize_one_pred_chain (pred_chain_union *norm_preds, pred_chain one_chain)
37d099d8 2206{
2207 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
431205b7 2208 hash_set<tree> mark_set;
37d099d8 2209 pred_chain norm_chain = vNULL;
2210 size_t i;
2211
2212 for (i = 0; i < one_chain.length (); i++)
842e1d3c 2213 {
2214 work_list.safe_push (one_chain[i]);
431205b7 2215 mark_set.add (one_chain[i].pred_lhs);
842e1d3c 2216 }
37d099d8 2217
2218 while (!work_list.is_empty ())
3751887c 2219 {
37d099d8 2220 pred_info a_pred = work_list.pop ();
49f1670a 2221 normalize_one_pred_1 (0, &norm_chain, a_pred, BIT_AND_EXPR, &work_list,
2222 &mark_set);
3751887c 2223 }
37d099d8 2224
2225 norm_preds->safe_push (norm_chain);
2226 work_list.release ();
3751887c 2227}
2228
37d099d8 2229/* Normalize predicate chains PREDS and returns the normalized one. */
2230
2231static pred_chain_union
42acab1c 2232normalize_preds (pred_chain_union preds, gimple *use_or_def, bool is_use)
37d099d8 2233{
2234 pred_chain_union norm_preds = vNULL;
2235 size_t n = preds.length ();
2236 size_t i;
2237
2238 if (dump_file && dump_flags & TDF_DETAILS)
2239 {
2240 fprintf (dump_file, "[BEFORE NORMALIZATION --");
2241 dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2242 }
2243
2244 for (i = 0; i < n; i++)
2245 {
2246 if (preds[i].length () != 1)
fd9ea52a 2247 normalize_one_pred_chain (&norm_preds, preds[i]);
37d099d8 2248 else
fd9ea52a 2249 {
2250 normalize_one_pred (&norm_preds, preds[i][0]);
2251 preds[i].release ();
2252 }
37d099d8 2253 }
2254
2255 if (dump_file)
2256 {
2257 fprintf (dump_file, "[AFTER NORMALIZATION -- ");
49f1670a 2258 dump_predicates (use_or_def, norm_preds,
2259 is_use ? "[USE]:\n" : "[DEF]:\n");
37d099d8 2260 }
2261
b712a40f 2262 destroy_predicate_vecs (&preds);
37d099d8 2263 return norm_preds;
2264}
3751887c 2265
7053e959 2266/* Return TRUE if PREDICATE can be invalidated by any individual
7700b194 2267 predicate in USE_GUARD. */
7053e959 2268
2269static bool
2270can_one_predicate_be_invalidated_p (pred_info predicate,
39883211 2271 pred_chain use_guard)
7053e959 2272{
7700b194 2273 if (dump_file && dump_flags & TDF_DETAILS)
2274 {
2275 fprintf (dump_file, "Testing if this predicate: ");
2276 dump_pred_info (predicate);
2277 fprintf (dump_file, "\n...can be invalidated by a USE guard of: ");
2278 dump_pred_chain (use_guard);
2279 }
39883211 2280 for (size_t i = 0; i < use_guard.length (); ++i)
7053e959 2281 {
7053e959 2282 /* NOTE: This is a very simple check, and only understands an
2283 exact opposite. So, [i == 0] is currently only invalidated
2284 by [.NOT. i == 0] or [i != 0]. Ideally we should also
2285 invalidate with say [i > 5] or [i == 8]. There is certainly
2286 room for improvement here. */
39883211 2287 if (pred_neg_p (predicate, use_guard[i]))
7700b194 2288 {
2289 if (dump_file && dump_flags & TDF_DETAILS)
2290 {
2291 fprintf (dump_file, " Predicate was invalidated by: ");
2292 dump_pred_info (use_guard[i]);
2293 fputc ('\n', dump_file);
2294 }
2295 return true;
2296 }
7053e959 2297 }
2298 return false;
2299}
2300
39883211 2301/* Return TRUE if all predicates in UNINIT_PRED are invalidated by
2302 USE_GUARD being true. */
7053e959 2303
2304static bool
39883211 2305can_chain_union_be_invalidated_p (pred_chain_union uninit_pred,
2306 pred_chain use_guard)
7053e959 2307{
39883211 2308 if (uninit_pred.is_empty ())
2309 return false;
7700b194 2310 if (dump_file && dump_flags & TDF_DETAILS)
2311 dump_predicates (NULL, uninit_pred,
2312 "Testing if anything here can be invalidated: ");
39883211 2313 for (size_t i = 0; i < uninit_pred.length (); ++i)
7053e959 2314 {
39883211 2315 pred_chain c = uninit_pred[i];
7700b194 2316 size_t j;
2317 for (j = 0; j < c.length (); ++j)
2318 if (can_one_predicate_be_invalidated_p (c[j], use_guard))
2319 break;
2320
2321 /* If we were unable to invalidate any predicate in C, then there
2322 is a viable path from entry to the PHI where the PHI takes
2323 an uninitialized value and continues to a use of the PHI. */
2324 if (j == c.length ())
2325 return false;
7053e959 2326 }
2327 return true;
2328}
2329
39883211 2330/* Return TRUE if none of the uninitialized operands in UNINT_OPNDS
2331 can actually happen if we arrived at a use for PHI.
7053e959 2332
39883211 2333 PHI_USE_GUARDS are the guard conditions for the use of the PHI. */
7053e959 2334
39883211 2335static bool
2336uninit_uses_cannot_happen (gphi *phi, unsigned uninit_opnds,
2337 pred_chain_union phi_use_guards)
7053e959 2338{
39883211 2339 unsigned phi_args = gimple_phi_num_args (phi);
2340 if (phi_args > max_phi_args)
2341 return false;
7053e959 2342
39883211 2343 /* PHI_USE_GUARDS are OR'ed together. If we have more than one
2344 possible guard, there's no way of knowing which guard was true.
2345 Since we need to be absolutely sure that the uninitialized
2346 operands will be invalidated, bail. */
2347 if (phi_use_guards.length () != 1)
2348 return false;
7053e959 2349
7053e959 2350 /* Look for the control dependencies of all the uninitialized
39883211 2351 operands and build guard predicates describing them. */
3b6aa4f2 2352 pred_chain_union uninit_preds;
2353 bool ret = true;
2354 for (unsigned i = 0; i < phi_args; ++i)
7053e959 2355 {
2356 if (!MASK_TEST_BIT (uninit_opnds, i))
2357 continue;
2358
2359 edge e = gimple_phi_arg_edge (phi, i);
2360 vec<edge> dep_chains[MAX_NUM_CHAINS];
2361 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
2362 size_t num_chains = 0;
2363 int num_calls = 0;
2364
39883211 2365 /* Build the control dependency chain for uninit operand `i'... */
3b6aa4f2 2366 uninit_preds = vNULL;
7700b194 2367 if (!compute_control_dep_chain (ENTRY_BLOCK_PTR_FOR_FN (cfun),
39883211 2368 e->src, dep_chains, &num_chains,
2369 &cur_chain, &num_calls))
3b6aa4f2 2370 {
2371 ret = false;
2372 break;
2373 }
39883211 2374 /* ...and convert it into a set of predicates. */
7700b194 2375 bool has_valid_preds
2376 = convert_control_dep_chain_into_preds (dep_chains, num_chains,
2377 &uninit_preds);
39883211 2378 for (size_t j = 0; j < num_chains; ++j)
2379 dep_chains[j].release ();
7700b194 2380 if (!has_valid_preds)
2381 {
2382 ret = false;
2383 break;
2384 }
3b6aa4f2 2385 simplify_preds (&uninit_preds, NULL, false);
2386 uninit_preds = normalize_preds (uninit_preds, NULL, false);
39883211 2387
2388 /* Can the guard for this uninitialized operand be invalidated
2389 by the PHI use? */
3b6aa4f2 2390 if (!can_chain_union_be_invalidated_p (uninit_preds, phi_use_guards[0]))
2391 {
2392 ret = false;
2393 break;
2394 }
7053e959 2395 }
3b6aa4f2 2396 destroy_predicate_vecs (&uninit_preds);
2397 return ret;
7053e959 2398}
2399
a7d4604b 2400/* Computes the predicates that guard the use and checks
2401 if the incoming paths that have empty (or possibly
49f1670a 2402 empty) definition can be pruned/filtered. The function returns
a7d4604b 2403 true if it can be determined that the use of PHI's def in
2404 USE_STMT is guarded with a predicate set not overlapping with
2405 predicate sets of all runtime paths that do not have a definition.
0686247f 2406
49f1670a 2407 Returns false if it is not or it can not be determined. USE_BB is
a7d4604b 2408 the bb of the use (for phi operand use, the bb is not the bb of
0686247f 2409 the phi stmt, but the src bb of the operand edge).
2410
49f1670a 2411 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
0686247f 2412 corresponding bit in the vector is 1. VISITED_PHIS is a pointer
2413 set of phis being visited.
2414
2415 *DEF_PREDS contains the (memoized) defining predicate chains of PHI.
2416 If *DEF_PREDS is the empty vector, the defining predicate chains of
2417 PHI will be computed and stored into *DEF_PREDS as needed.
2418
2419 VISITED_PHIS is a pointer set of phis being visited. */
a7d4604b 2420
2421static bool
42acab1c 2422is_use_properly_guarded (gimple *use_stmt,
fd9ea52a 2423 basic_block use_bb,
2424 gphi *phi,
2425 unsigned uninit_opnds,
0686247f 2426 pred_chain_union *def_preds,
fd9ea52a 2427 hash_set<gphi *> *visited_phis)
a7d4604b 2428{
2429 basic_block phi_bb;
37d099d8 2430 pred_chain_union preds = vNULL;
a7d4604b 2431 bool has_valid_preds = false;
2432 bool is_properly_guarded = false;
2433
431205b7 2434 if (visited_phis->add (phi))
a7d4604b 2435 return false;
2436
2437 phi_bb = gimple_bb (phi);
2438
2439 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
2440 return false;
2441
37d099d8 2442 has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
a7d4604b 2443
2444 if (!has_valid_preds)
2445 {
b712a40f 2446 destroy_predicate_vecs (&preds);
a7d4604b 2447 return false;
2448 }
2449
49f1670a 2450 /* Try to prune the dead incoming phi edges. */
37d099d8 2451 is_properly_guarded
2452 = use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
2453 visited_phis);
a7d4604b 2454
7053e959 2455 /* We might be able to prove that if the control dependencies
2456 for UNINIT_OPNDS are true, that the control dependencies for
2457 USE_STMT can never be true. */
2458 if (!is_properly_guarded)
39883211 2459 is_properly_guarded |= uninit_uses_cannot_happen (phi, uninit_opnds,
2460 preds);
7053e959 2461
37d099d8 2462 if (is_properly_guarded)
a7d4604b 2463 {
b712a40f 2464 destroy_predicate_vecs (&preds);
37d099d8 2465 return true;
2466 }
3751887c 2467
0686247f 2468 if (def_preds->is_empty ())
37d099d8 2469 {
0686247f 2470 has_valid_preds = find_def_preds (def_preds, phi);
2471
2472 if (!has_valid_preds)
2473 {
b712a40f 2474 destroy_predicate_vecs (&preds);
0686247f 2475 return false;
2476 }
2477
2478 simplify_preds (def_preds, phi, false);
2479 *def_preds = normalize_preds (*def_preds, phi, false);
a7d4604b 2480 }
2481
37d099d8 2482 simplify_preds (&preds, use_stmt, true);
2483 preds = normalize_preds (preds, use_stmt, true);
2484
0686247f 2485 is_properly_guarded = is_superset_of (*def_preds, preds);
a7d4604b 2486
b712a40f 2487 destroy_predicate_vecs (&preds);
a7d4604b 2488 return is_properly_guarded;
2489}
2490
2491/* Searches through all uses of a potentially
2492 uninitialized variable defined by PHI and returns a use
49f1670a 2493 statement if the use is not properly guarded. It returns
2494 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2495 holding the position(s) of uninit PHI operands. WORKLIST
a7d4604b 2496 is the vector of candidate phis that may be updated by this
49f1670a 2497 function. ADDED_TO_WORKLIST is the pointer set tracking
a7d4604b 2498 if the new phi is already in the worklist. */
2499
42acab1c 2500static gimple *
1a91d914 2501find_uninit_use (gphi *phi, unsigned uninit_opnds,
fd9ea52a 2502 vec<gphi *> *worklist,
1a91d914 2503 hash_set<gphi *> *added_to_worklist)
a7d4604b 2504{
2505 tree phi_result;
2506 use_operand_p use_p;
42acab1c 2507 gimple *use_stmt;
a7d4604b 2508 imm_use_iterator iter;
0686247f 2509 pred_chain_union def_preds = vNULL;
42acab1c 2510 gimple *ret = NULL;
a7d4604b 2511
2512 phi_result = gimple_phi_result (phi);
2513
2514 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
2515 {
a7d4604b 2516 basic_block use_bb;
2517
b1832a02 2518 use_stmt = USE_STMT (use_p);
2519 if (is_gimple_debug (use_stmt))
2520 continue;
a7d4604b 2521
49f1670a 2522 if (gphi *use_phi = dyn_cast<gphi *> (use_stmt))
1a91d914 2523 use_bb = gimple_phi_arg_edge (use_phi,
b1832a02 2524 PHI_ARG_INDEX_FROM_USE (use_p))->src;
2525 else
2526 use_bb = gimple_bb (use_stmt);
a7d4604b 2527
1a91d914 2528 hash_set<gphi *> visited_phis;
37d099d8 2529 if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds,
0686247f 2530 &def_preds, &visited_phis))
431205b7 2531 continue;
a7d4604b 2532
4a06dbea 2533 if (dump_file && (dump_flags & TDF_DETAILS))
fd9ea52a 2534 {
2535 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
1ffa4346 2536 print_gimple_stmt (dump_file, use_stmt, 0);
fd9ea52a 2537 }
a7d4604b 2538 /* Found one real use, return. */
2539 if (gimple_code (use_stmt) != GIMPLE_PHI)
0686247f 2540 {
2541 ret = use_stmt;
2542 break;
2543 }
a7d4604b 2544
2545 /* Found a phi use that is not guarded,
fd9ea52a 2546 add the phi to the worklist. */
49f1670a 2547 if (!added_to_worklist->add (as_a<gphi *> (use_stmt)))
fd9ea52a 2548 {
2549 if (dump_file && (dump_flags & TDF_DETAILS))
2550 {
2551 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
1ffa4346 2552 print_gimple_stmt (dump_file, use_stmt, 0);
fd9ea52a 2553 }
2554
49f1670a 2555 worklist->safe_push (as_a<gphi *> (use_stmt));
fd9ea52a 2556 possibly_undefined_names->add (phi_result);
2557 }
a7d4604b 2558 }
2559
b712a40f 2560 destroy_predicate_vecs (&def_preds);
0686247f 2561 return ret;
a7d4604b 2562}
2563
2564/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2565 and gives warning if there exists a runtime path from the entry to a
49f1670a 2566 use of the PHI def that does not contain a definition. In other words,
2567 the warning is on the real use. The more dead paths that can be pruned
2568 by the compiler, the fewer false positives the warning is. WORKLIST
2569 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
a7d4604b 2570 a pointer set tracking if the new phi is added to the worklist or not. */
2571
2572static void
1a91d914 2573warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist,
fd9ea52a 2574 hash_set<gphi *> *added_to_worklist)
a7d4604b 2575{
2576 unsigned uninit_opnds;
42acab1c 2577 gimple *uninit_use_stmt = 0;
a7d4604b 2578 tree uninit_op;
f772e50c 2579 int phiarg_index;
2580 location_t loc;
a7d4604b 2581
7c782c9b 2582 /* Don't look at virtual operands. */
2583 if (virtual_operand_p (gimple_phi_result (phi)))
a7d4604b 2584 return;
2585
2586 uninit_opnds = compute_uninit_opnds_pos (phi);
2587
49f1670a 2588 if (MASK_EMPTY (uninit_opnds))
a7d4604b 2589 return;
2590
4a06dbea 2591 if (dump_file && (dump_flags & TDF_DETAILS))
2592 {
2593 fprintf (dump_file, "[CHECK]: examining phi: ");
1ffa4346 2594 print_gimple_stmt (dump_file, phi, 0);
4a06dbea 2595 }
2596
a7d4604b 2597 /* Now check if we have any use of the value without proper guard. */
2598 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
fd9ea52a 2599 worklist, added_to_worklist);
a7d4604b 2600
2601 /* All uses are properly guarded. */
2602 if (!uninit_use_stmt)
2603 return;
2604
f772e50c 2605 phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds);
2606 uninit_op = gimple_phi_arg_def (phi, phiarg_index);
ec11736b 2607 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
2608 return;
f772e50c 2609 if (gimple_phi_arg_has_location (phi, phiarg_index))
2610 loc = gimple_phi_arg_location (phi, phiarg_index);
2611 else
2612 loc = UNKNOWN_LOCATION;
33da34ea 2613 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
2614 SSA_NAME_VAR (uninit_op),
fd9ea52a 2615 "%qD may be used uninitialized in this function",
2616 uninit_use_stmt, loc);
a7d4604b 2617}
2618
65b0537f 2619static bool
2620gate_warn_uninitialized (void)
2621{
2622 return warn_uninitialized || warn_maybe_uninitialized;
2623}
a7d4604b 2624
65b0537f 2625namespace {
a7d4604b 2626
65b0537f 2627const pass_data pass_data_late_warn_uninitialized =
2628{
2629 GIMPLE_PASS, /* type */
2630 "uninit", /* name */
2631 OPTGROUP_NONE, /* optinfo_flags */
65b0537f 2632 TV_NONE, /* tv_id */
2633 PROP_ssa, /* properties_required */
2634 0, /* properties_provided */
2635 0, /* properties_destroyed */
2636 0, /* todo_flags_start */
2637 0, /* todo_flags_finish */
2638};
2639
2640class pass_late_warn_uninitialized : public gimple_opt_pass
2641{
2642public:
2643 pass_late_warn_uninitialized (gcc::context *ctxt)
2644 : gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt)
2645 {}
2646
2647 /* opt_pass methods: */
49f1670a 2648 opt_pass *clone () { return new pass_late_warn_uninitialized (m_ctxt); }
65b0537f 2649 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2650 virtual unsigned int execute (function *);
2651
2652}; // class pass_late_warn_uninitialized
2653
2654unsigned int
2655pass_late_warn_uninitialized::execute (function *fun)
a7d4604b 2656{
2657 basic_block bb;
1a91d914 2658 gphi_iterator gsi;
2659 vec<gphi *> worklist = vNULL;
a7d4604b 2660
2661 calculate_dominance_info (CDI_DOMINATORS);
2662 calculate_dominance_info (CDI_POST_DOMINATORS);
2663 /* Re-do the plain uninitialized variable check, as optimization may have
2664 straightened control flow. Do this first so that we don't accidentally
2665 get a "may be" warning when we'd have seen an "is" warning later. */
2666 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2667
2668 timevar_push (TV_TREE_UNINIT);
2669
431205b7 2670 possibly_undefined_names = new hash_set<tree>;
1a91d914 2671 hash_set<gphi *> added_to_worklist;
a7d4604b 2672
2673 /* Initialize worklist */
65b0537f 2674 FOR_EACH_BB_FN (bb, fun)
a7d4604b 2675 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2676 {
1a91d914 2677 gphi *phi = gsi.phi ();
65b0537f 2678 size_t n, i;
2679
2680 n = gimple_phi_num_args (phi);
2681
2682 /* Don't look at virtual operands. */
2683 if (virtual_operand_p (gimple_phi_result (phi)))
2684 continue;
2685
2686 for (i = 0; i < n; ++i)
2687 {
2688 tree op = gimple_phi_arg_def (phi, i);
49f1670a 2689 if (TREE_CODE (op) == SSA_NAME && uninit_undefined_value_p (op))
65b0537f 2690 {
2691 worklist.safe_push (phi);
431205b7 2692 added_to_worklist.add (phi);
65b0537f 2693 if (dump_file && (dump_flags & TDF_DETAILS))
2694 {
2695 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
1ffa4346 2696 print_gimple_stmt (dump_file, phi, 0);
65b0537f 2697 }
2698 break;
2699 }
2700 }
a7d4604b 2701 }
2702
f1f41a6c 2703 while (worklist.length () != 0)
a7d4604b 2704 {
1a91d914 2705 gphi *cur_phi = 0;
f1f41a6c 2706 cur_phi = worklist.pop ();
431205b7 2707 warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist);
a7d4604b 2708 }
4a06dbea 2709
f1f41a6c 2710 worklist.release ();
431205b7 2711 delete possibly_undefined_names;
a7d4604b 2712 possibly_undefined_names = NULL;
2713 free_dominance_info (CDI_POST_DOMINATORS);
2714 timevar_pop (TV_TREE_UNINIT);
2715 return 0;
2716}
2717
cbe8bda8 2718} // anon namespace
2719
2720gimple_opt_pass *
2721make_pass_late_warn_uninitialized (gcc::context *ctxt)
2722{
2723 return new pass_late_warn_uninitialized (ctxt);
2724}
1d2fabca 2725
1d2fabca 2726static unsigned int
2727execute_early_warn_uninitialized (void)
2728{
2729 /* Currently, this pass runs always but
49f1670a 2730 execute_late_warn_uninitialized only runs with optimization. With
1d2fabca 2731 optimization we want to warn about possible uninitialized as late
2732 as possible, thus don't do it here. However, without
37d099d8 2733 optimization we need to warn here about "may be uninitialized". */
1d2fabca 2734 calculate_dominance_info (CDI_POST_DOMINATORS);
2735
2736 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
2737
49f1670a 2738 /* Post-dominator information can not be reliably updated. Free it
1d2fabca 2739 after the use. */
2740
2741 free_dominance_info (CDI_POST_DOMINATORS);
2742 return 0;
2743}
2744
1d2fabca 2745namespace {
2746
2747const pass_data pass_data_early_warn_uninitialized =
2748{
2749 GIMPLE_PASS, /* type */
2750 "*early_warn_uninitialized", /* name */
2751 OPTGROUP_NONE, /* optinfo_flags */
1d2fabca 2752 TV_TREE_UNINIT, /* tv_id */
2753 PROP_ssa, /* properties_required */
2754 0, /* properties_provided */
2755 0, /* properties_destroyed */
2756 0, /* todo_flags_start */
2757 0, /* todo_flags_finish */
2758};
2759
2760class pass_early_warn_uninitialized : public gimple_opt_pass
2761{
2762public:
9af5ce0c 2763 pass_early_warn_uninitialized (gcc::context *ctxt)
2764 : gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt)
1d2fabca 2765 {}
2766
2767 /* opt_pass methods: */
31315c24 2768 virtual bool gate (function *) { return gate_warn_uninitialized (); }
65b0537f 2769 virtual unsigned int execute (function *)
49f1670a 2770 {
2771 return execute_early_warn_uninitialized ();
2772 }
1d2fabca 2773
2774}; // class pass_early_warn_uninitialized
2775
2776} // anon namespace
2777
2778gimple_opt_pass *
2779make_pass_early_warn_uninitialized (gcc::context *ctxt)
2780{
2781 return new pass_early_warn_uninitialized (ctxt);
2782}