]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-uninit.c
re PR c++/53184 (Unnecessary anonymous namespace warnings)
[thirdparty/gcc.git] / gcc / tree-ssa-uninit.c
CommitLineData
34f97b94 1/* Predicate aware uninitialized variable warning.
5624e564 2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
34f97b94
XDL
3 Contributed by Xinliang David Li <davidxl@google.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 3, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
c7131fb2 24#include "backend.h"
34f97b94 25#include "tree.h"
c7131fb2
AM
26#include "gimple.h"
27#include "hard-reg-set.h"
28#include "ssa.h"
29#include "alias.h"
40e23961 30#include "fold-const.h"
34f97b94 31#include "flags.h"
34f97b94 32#include "tm_p.h"
cf835838 33#include "gimple-pretty-print.h"
2fb9a547 34#include "internal-fn.h"
5be5c238 35#include "gimple-iterator.h"
442b4905 36#include "tree-ssa.h"
34f97b94 37#include "tree-inline.h"
34f97b94 38#include "tree-pass.h"
718f9c0f 39#include "diagnostic-core.h"
92261ce0 40#include "params.h"
666e8e06 41#include "tree-cfg.h"
34f97b94
XDL
42
43/* This implements the pass that does predicate aware warning on uses of
44 possibly uninitialized variables. The pass first collects the set of
45 possibly uninitialized SSA names. For each such name, it walks through
46 all its immediate uses. For each immediate use, it rebuilds the condition
47 expression (the predicate) that guards the use. The predicate is then
48 examined to see if the variable is always defined under that same condition.
49 This is done either by pruning the unrealizable paths that lead to the
50 default definitions or by checking if the predicate set that guards the
51 defining paths is a superset of the use predicate. */
52
53
54/* Pointer set of potentially undefined ssa names, i.e.,
55 ssa names that are defined by phi with operands that
56 are not defined or potentially undefined. */
6e2830c3 57static hash_set<tree> *possibly_undefined_names = 0;
34f97b94
XDL
58
59/* Bit mask handling macros. */
60#define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
61#define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
62#define MASK_EMPTY(mask) (mask == 0)
63
64/* Returns the first bit position (starting from LSB)
65 in mask that is non zero. Returns -1 if the mask is empty. */
66static int
67get_mask_first_set_bit (unsigned mask)
68{
69 int pos = 0;
70 if (mask == 0)
71 return -1;
72
73 while ((mask & (1 << pos)) == 0)
74 pos++;
75
76 return pos;
77}
78#define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
79
34f97b94 80/* Return true if T, an SSA_NAME, has an undefined value. */
c152901f
AM
81static bool
82has_undefined_value_p (tree t)
34f97b94 83{
c152901f 84 return (ssa_undefined_value_p (t)
34f97b94 85 || (possibly_undefined_names
6e2830c3 86 && possibly_undefined_names->contains (t)));
34f97b94
XDL
87}
88
c152901f
AM
89
90
91/* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
ba7e83f8
JJ
92 is set on SSA_NAME_VAR. */
93
94static inline bool
c152901f
AM
95uninit_undefined_value_p (tree t) {
96 if (!has_undefined_value_p (t))
ba7e83f8
JJ
97 return false;
98 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
99 return false;
100 return true;
101}
102
c152901f
AM
103/* Emit warnings for uninitialized variables. This is done in two passes.
104
105 The first pass notices real uses of SSA names with undefined values.
106 Such uses are unconditionally uninitialized, and we can be certain that
107 such a use is a mistake. This pass is run before most optimizations,
108 so that we catch as many as we can.
109
110 The second pass follows PHI nodes to find uses that are potentially
111 uninitialized. In this case we can't necessarily prove that the use
112 is really uninitialized. This pass is run after most optimizations,
113 so that we thread as many jumps and possible, and delete as much dead
114 code as possible, in order to reduce false positives. We also look
115 again for plain uninitialized variables, since optimization may have
116 changed conditionally uninitialized to unconditionally uninitialized. */
117
118/* Emit a warning for EXPR based on variable VAR at the point in the
119 program T, an SSA_NAME, is used being uninitialized. The exact
e1ec47c4
TP
120 warning text is in MSGID and DATA is the gimple stmt with info about
121 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
122 gives which argument of the phi node to take the location from. WC
123 is the warning code. */
c152901f
AM
124
125static void
e1ec47c4
TP
126warn_uninit (enum opt_code wc, tree t, tree expr, tree var,
127 const char *gmsgid, void *data, location_t phiarg_loc)
c152901f
AM
128{
129 gimple context = (gimple) data;
130 location_t location, cfun_loc;
131 expanded_location xloc, floc;
132
e1ec47c4
TP
133 /* Ignore COMPLEX_EXPR as initializing only a part of a complex
134 turns in a COMPLEX_EXPR with the not initialized part being
135 set to its previous (undefined) value. */
136 if (is_gimple_assign (context)
137 && gimple_assign_rhs_code (context) == COMPLEX_EXPR)
138 return;
c152901f
AM
139 if (!has_undefined_value_p (t))
140 return;
141
142 /* TREE_NO_WARNING either means we already warned, or the front end
143 wishes to suppress the warning. */
144 if ((context
145 && (gimple_no_warning_p (context)
146 || (gimple_assign_single_p (context)
147 && TREE_NO_WARNING (gimple_assign_rhs1 (context)))))
148 || TREE_NO_WARNING (expr))
149 return;
150
e1ec47c4
TP
151 if (context != NULL && gimple_has_location (context))
152 location = gimple_location (context);
153 else if (phiarg_loc != UNKNOWN_LOCATION)
154 location = phiarg_loc;
155 else
156 location = DECL_SOURCE_LOCATION (var);
c152901f
AM
157 location = linemap_resolve_location (line_table, location,
158 LRK_SPELLING_LOCATION,
159 NULL);
160 cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
161 xloc = expand_location (location);
162 floc = expand_location (cfun_loc);
163 if (warning_at (location, wc, gmsgid, expr))
164 {
165 TREE_NO_WARNING (expr) = 1;
166
167 if (location == DECL_SOURCE_LOCATION (var))
168 return;
169 if (xloc.file != floc.file
170 || linemap_location_before_p (line_table,
171 location, cfun_loc)
172 || linemap_location_before_p (line_table,
173 cfun->function_end_locus,
174 location))
175 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
176 }
177}
178
179static unsigned int
180warn_uninitialized_vars (bool warn_possibly_uninitialized)
181{
182 gimple_stmt_iterator gsi;
183 basic_block bb;
184
11cd3bed 185 FOR_EACH_BB_FN (bb, cfun)
c152901f
AM
186 {
187 bool always_executed = dominated_by_p (CDI_POST_DOMINATORS,
fefa31b5 188 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)), bb);
c152901f
AM
189 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
190 {
191 gimple stmt = gsi_stmt (gsi);
192 use_operand_p use_p;
193 ssa_op_iter op_iter;
194 tree use;
195
196 if (is_gimple_debug (stmt))
197 continue;
198
199 /* We only do data flow with SSA_NAMEs, so that's all we
200 can warn about. */
201 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
202 {
203 use = USE_FROM_PTR (use_p);
204 if (always_executed)
205 warn_uninit (OPT_Wuninitialized, use,
206 SSA_NAME_VAR (use), SSA_NAME_VAR (use),
207 "%qD is used uninitialized in this function",
e1ec47c4 208 stmt, UNKNOWN_LOCATION);
c152901f
AM
209 else if (warn_possibly_uninitialized)
210 warn_uninit (OPT_Wmaybe_uninitialized, use,
211 SSA_NAME_VAR (use), SSA_NAME_VAR (use),
212 "%qD may be used uninitialized in this function",
e1ec47c4 213 stmt, UNKNOWN_LOCATION);
c152901f
AM
214 }
215
216 /* For memory the only cheap thing we can do is see if we
217 have a use of the default def of the virtual operand.
c152901f
AM
218 ??? Not so cheap would be to use the alias oracle via
219 walk_aliased_vdefs, if we don't find any aliasing vdef
220 warn as is-used-uninitialized, if we don't find an aliasing
221 vdef that kills our use (stmt_kills_ref_p), warn as
222 may-be-used-uninitialized. But this walk is quadratic and
223 so must be limited which means we would miss warning
224 opportunities. */
225 use = gimple_vuse (stmt);
226 if (use
227 && gimple_assign_single_p (stmt)
228 && !gimple_vdef (stmt)
229 && SSA_NAME_IS_DEFAULT_DEF (use))
230 {
231 tree rhs = gimple_assign_rhs1 (stmt);
232 tree base = get_base_address (rhs);
233
234 /* Do not warn if it can be initialized outside this function. */
235 if (TREE_CODE (base) != VAR_DECL
236 || DECL_HARD_REGISTER (base)
237 || is_global_var (base))
238 continue;
239
240 if (always_executed)
927734cf 241 warn_uninit (OPT_Wuninitialized, use,
c152901f
AM
242 gimple_assign_rhs1 (stmt), base,
243 "%qE is used uninitialized in this function",
e1ec47c4 244 stmt, UNKNOWN_LOCATION);
c152901f
AM
245 else if (warn_possibly_uninitialized)
246 warn_uninit (OPT_Wmaybe_uninitialized, use,
247 gimple_assign_rhs1 (stmt), base,
248 "%qE may be used uninitialized in this function",
e1ec47c4 249 stmt, UNKNOWN_LOCATION);
c152901f
AM
250 }
251 }
252 }
253
254 return 0;
255}
256
927734cf
XDL
257/* Checks if the operand OPND of PHI is defined by
258 another phi with one operand defined by this PHI,
259 but the rest operands are all defined. If yes,
026c3cfd 260 returns true to skip this operand as being
34f97b94
XDL
261 redundant. Can be enhanced to be more general. */
262
263static bool
264can_skip_redundant_opnd (tree opnd, gimple phi)
265{
266 gimple op_def;
267 tree phi_def;
268 int i, n;
269
270 phi_def = gimple_phi_result (phi);
271 op_def = SSA_NAME_DEF_STMT (opnd);
272 if (gimple_code (op_def) != GIMPLE_PHI)
273 return false;
274 n = gimple_phi_num_args (op_def);
275 for (i = 0; i < n; ++i)
276 {
277 tree op = gimple_phi_arg_def (op_def, i);
278 if (TREE_CODE (op) != SSA_NAME)
279 continue;
ba7e83f8 280 if (op != phi_def && uninit_undefined_value_p (op))
34f97b94
XDL
281 return false;
282 }
283
284 return true;
285}
286
287/* Returns a bit mask holding the positions of arguments in PHI
288 that have empty (or possibly empty) definitions. */
289
290static unsigned
538dd0b7 291compute_uninit_opnds_pos (gphi *phi)
34f97b94
XDL
292{
293 size_t i, n;
294 unsigned uninit_opnds = 0;
295
296 n = gimple_phi_num_args (phi);
98d30e4f
XDL
297 /* Bail out for phi with too many args. */
298 if (n > 32)
299 return 0;
34f97b94
XDL
300
301 for (i = 0; i < n; ++i)
302 {
303 tree op = gimple_phi_arg_def (phi, i);
304 if (TREE_CODE (op) == SSA_NAME
ba7e83f8 305 && uninit_undefined_value_p (op)
34f97b94 306 && !can_skip_redundant_opnd (op, phi))
e7d764f3 307 {
e7d764f3
JJ
308 if (cfun->has_nonlocal_label || cfun->calls_setjmp)
309 {
aea0101d
RB
310 /* Ignore SSA_NAMEs that appear on abnormal edges
311 somewhere. */
312 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
313 continue;
e7d764f3
JJ
314 }
315 MASK_SET_BIT (uninit_opnds, i);
316 }
34f97b94
XDL
317 }
318 return uninit_opnds;
319}
320
321/* Find the immediate postdominator PDOM of the specified
322 basic block BLOCK. */
323
324static inline basic_block
325find_pdom (basic_block block)
326{
fefa31b5
DM
327 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
328 return EXIT_BLOCK_PTR_FOR_FN (cfun);
34f97b94
XDL
329 else
330 {
331 basic_block bb
332 = get_immediate_dominator (CDI_POST_DOMINATORS, block);
333 if (! bb)
fefa31b5 334 return EXIT_BLOCK_PTR_FOR_FN (cfun);
34f97b94
XDL
335 return bb;
336 }
337}
338
339/* Find the immediate DOM of the specified
340 basic block BLOCK. */
341
342static inline basic_block
343find_dom (basic_block block)
344{
fefa31b5
DM
345 if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
346 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
34f97b94
XDL
347 else
348 {
349 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
350 if (! bb)
fefa31b5 351 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
34f97b94
XDL
352 return bb;
353 }
354}
355
356/* Returns true if BB1 is postdominating BB2 and BB1 is
357 not a loop exit bb. The loop exit bb check is simple and does
358 not cover all cases. */
359
360static bool
361is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
362{
363 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
364 return false;
365
366 if (single_pred_p (bb1) && !single_succ_p (bb2))
367 return false;
368
369 return true;
370}
371
372/* Find the closest postdominator of a specified BB, which is control
373 equivalent to BB. */
374
375static inline basic_block
376find_control_equiv_block (basic_block bb)
377{
378 basic_block pdom;
379
380 pdom = find_pdom (bb);
381
382 /* Skip the postdominating bb that is also loop exit. */
383 if (!is_non_loop_exit_postdominating (pdom, bb))
384 return NULL;
385
386 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
387 return pdom;
388
389 return NULL;
390}
391
392#define MAX_NUM_CHAINS 8
393#define MAX_CHAIN_LEN 5
4dc1d68c 394#define MAX_POSTDOM_CHECK 8
666e8e06 395#define MAX_SWITCH_CASES 40
34f97b94
XDL
396
397/* Computes the control dependence chains (paths of edges)
398 for DEP_BB up to the dominating basic block BB (the head node of a
92261ce0
JJ
399 chain should be dominated by it). CD_CHAINS is pointer to an
400 array holding the result chains. CUR_CD_CHAIN is the current
34f97b94
XDL
401 chain being computed. *NUM_CHAINS is total number of chains. The
402 function returns true if the information is successfully computed,
403 return false if there is no control dependence or not computed. */
404
405static bool
406compute_control_dep_chain (basic_block bb, basic_block dep_bb,
9771b263 407 vec<edge> *cd_chains,
34f97b94 408 size_t *num_chains,
92261ce0
JJ
409 vec<edge> *cur_cd_chain,
410 int *num_calls)
34f97b94
XDL
411{
412 edge_iterator ei;
413 edge e;
414 size_t i;
415 bool found_cd_chain = false;
416 size_t cur_chain_len = 0;
417
418 if (EDGE_COUNT (bb->succs) < 2)
419 return false;
420
92261ce0
JJ
421 if (*num_calls > PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS))
422 return false;
423 ++*num_calls;
424
927734cf 425 /* Could use a set instead. */
9771b263 426 cur_chain_len = cur_cd_chain->length ();
34f97b94
XDL
427 if (cur_chain_len > MAX_CHAIN_LEN)
428 return false;
429
430 for (i = 0; i < cur_chain_len; i++)
431 {
9771b263 432 edge e = (*cur_cd_chain)[i];
927734cf 433 /* Cycle detected. */
34f97b94
XDL
434 if (e->src == bb)
435 return false;
436 }
437
438 FOR_EACH_EDGE (e, ei, bb->succs)
439 {
440 basic_block cd_bb;
4dc1d68c 441 int post_dom_check = 0;
34f97b94
XDL
442 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
443 continue;
444
445 cd_bb = e->dest;
9771b263 446 cur_cd_chain->safe_push (e);
34f97b94
XDL
447 while (!is_non_loop_exit_postdominating (cd_bb, bb))
448 {
449 if (cd_bb == dep_bb)
450 {
451 /* Found a direct control dependence. */
452 if (*num_chains < MAX_NUM_CHAINS)
453 {
9771b263 454 cd_chains[*num_chains] = cur_cd_chain->copy ();
34f97b94
XDL
455 (*num_chains)++;
456 }
457 found_cd_chain = true;
927734cf 458 /* Check path from next edge. */
34f97b94
XDL
459 break;
460 }
461
462 /* Now check if DEP_BB is indirectly control dependent on BB. */
463 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
92261ce0 464 num_chains, cur_cd_chain, num_calls))
34f97b94
XDL
465 {
466 found_cd_chain = true;
467 break;
468 }
469
470 cd_bb = find_pdom (cd_bb);
4dc1d68c 471 post_dom_check++;
fefa31b5
DM
472 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || post_dom_check >
473 MAX_POSTDOM_CHECK)
34f97b94
XDL
474 break;
475 }
9771b263
DN
476 cur_cd_chain->pop ();
477 gcc_assert (cur_cd_chain->length () == cur_chain_len);
34f97b94 478 }
9771b263 479 gcc_assert (cur_cd_chain->length () == cur_chain_len);
34f97b94
XDL
480
481 return found_cd_chain;
482}
483
927734cf
XDL
484/* The type to represent a simple predicate */
485
a79683d5 486struct pred_info
34f97b94 487{
927734cf
XDL
488 tree pred_lhs;
489 tree pred_rhs;
490 enum tree_code cond_code;
34f97b94 491 bool invert;
a79683d5 492};
927734cf
XDL
493
494/* The type to represent a sequence of predicates grouped
495 with .AND. operation. */
34f97b94 496
927734cf 497typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
34f97b94 498
927734cf
XDL
499/* The type to represent a sequence of pred_chains grouped
500 with .OR. operation. */
501
502typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
34f97b94
XDL
503
504/* Converts the chains of control dependence edges into a set of
505 predicates. A control dependence chain is represented by a vector
506 edges. DEP_CHAINS points to an array of dependence chains.
507 NUM_CHAINS is the size of the chain array. One edge in a dependence
927734cf 508 chain is mapped to predicate expression represented by pred_info
34f97b94 509 type. One dependence chain is converted to a composite predicate that
927734cf
XDL
510 is the result of AND operation of pred_info mapped to each edge.
511 A composite predicate is presented by a vector of pred_info. On
34f97b94
XDL
512 return, *PREDS points to the resulting array of composite predicates.
513 *NUM_PREDS is the number of composite predictes. */
514
515static bool
9771b263 516convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
34f97b94 517 size_t num_chains,
927734cf 518 pred_chain_union *preds)
34f97b94
XDL
519{
520 bool has_valid_pred = false;
521 size_t i, j;
522 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
523 return false;
524
34f97b94
XDL
525 /* Now convert the control dep chain into a set
526 of predicates. */
927734cf 527 preds->reserve (num_chains);
34f97b94
XDL
528
529 for (i = 0; i < num_chains; i++)
530 {
9771b263 531 vec<edge> one_cd_chain = dep_chains[i];
c375a3a4
DL
532
533 has_valid_pred = false;
927734cf 534 pred_chain t_chain = vNULL;
9771b263 535 for (j = 0; j < one_cd_chain.length (); j++)
34f97b94
XDL
536 {
537 gimple cond_stmt;
538 gimple_stmt_iterator gsi;
539 basic_block guard_bb;
927734cf 540 pred_info one_pred;
34f97b94
XDL
541 edge e;
542
9771b263 543 e = one_cd_chain[j];
34f97b94
XDL
544 guard_bb = e->src;
545 gsi = gsi_last_bb (guard_bb);
546 if (gsi_end_p (gsi))
547 {
548 has_valid_pred = false;
549 break;
550 }
551 cond_stmt = gsi_stmt (gsi);
927734cf 552 if (is_gimple_call (cond_stmt)
34f97b94
XDL
553 && EDGE_COUNT (e->src->succs) >= 2)
554 {
555 /* Ignore EH edge. Can add assertion
556 on the other edge's flag. */
557 continue;
558 }
559 /* Skip if there is essentially one succesor. */
560 if (EDGE_COUNT (e->src->succs) == 2)
561 {
562 edge e1;
563 edge_iterator ei1;
564 bool skip = false;
565
566 FOR_EACH_EDGE (e1, ei1, e->src->succs)
567 {
568 if (EDGE_COUNT (e1->dest->succs) == 0)
569 {
570 skip = true;
571 break;
572 }
573 }
574 if (skip)
575 continue;
576 }
666e8e06
RB
577 if (gimple_code (cond_stmt) == GIMPLE_COND)
578 {
579 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
580 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
581 one_pred.cond_code = gimple_cond_code (cond_stmt);
582 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
583 t_chain.safe_push (one_pred);
584 has_valid_pred = true;
585 }
586 else if (gswitch *gs = dyn_cast <gswitch *> (cond_stmt))
587 {
588 /* Avoid quadratic behavior. */
589 if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
590 {
591 has_valid_pred = false;
592 break;
593 }
594 /* Find the case label. */
595 tree l = NULL_TREE;
596 unsigned idx;
597 for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx)
598 {
599 tree tl = gimple_switch_label (gs, idx);
600 if (e->dest == label_to_block (CASE_LABEL (tl)))
601 {
602 if (!l)
603 l = tl;
604 else
605 {
606 l = NULL_TREE;
607 break;
608 }
609 }
610 }
611 /* If more than one label reaches this block or the case
612 label doesn't have a single value (like the default one)
613 fail. */
614 if (!l
615 || !CASE_LOW (l)
616 || (CASE_HIGH (l) && !operand_equal_p (CASE_LOW (l),
617 CASE_HIGH (l), 0)))
618 {
619 has_valid_pred = false;
620 break;
621 }
622 one_pred.pred_lhs = gimple_switch_index (gs);
623 one_pred.pred_rhs = CASE_LOW (l);
624 one_pred.cond_code = EQ_EXPR;
625 one_pred.invert = false;
626 t_chain.safe_push (one_pred);
627 has_valid_pred = true;
628 }
629 else
34f97b94
XDL
630 {
631 has_valid_pred = false;
632 break;
633 }
34f97b94
XDL
634 }
635
636 if (!has_valid_pred)
637 break;
927734cf
XDL
638 else
639 preds->safe_push (t_chain);
34f97b94
XDL
640 }
641 return has_valid_pred;
642}
643
644/* Computes all control dependence chains for USE_BB. The control
645 dependence chains are then converted to an array of composite
646 predicates pointed to by PREDS. PHI_BB is the basic block of
647 the phi whose result is used in USE_BB. */
648
649static bool
927734cf 650find_predicates (pred_chain_union *preds,
34f97b94
XDL
651 basic_block phi_bb,
652 basic_block use_bb)
653{
654 size_t num_chains = 0, i;
92261ce0
JJ
655 int num_calls = 0;
656 vec<edge> dep_chains[MAX_NUM_CHAINS];
657 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
34f97b94
XDL
658 bool has_valid_pred = false;
659 basic_block cd_root = 0;
660
34f97b94
XDL
661 /* First find the closest bb that is control equivalent to PHI_BB
662 that also dominates USE_BB. */
663 cd_root = phi_bb;
664 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
665 {
666 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
667 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
668 cd_root = ctrl_eq_bb;
669 else
670 break;
671 }
672
92261ce0
JJ
673 compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
674 &cur_chain, &num_calls);
34f97b94
XDL
675
676 has_valid_pred
92261ce0 677 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
34f97b94 678 for (i = 0; i < num_chains; i++)
9771b263 679 dep_chains[i].release ();
34f97b94
XDL
680 return has_valid_pred;
681}
682
683/* Computes the set of incoming edges of PHI that have non empty
684 definitions of a phi chain. The collection will be done
685 recursively on operands that are defined by phis. CD_ROOT
686 is the control dependence root. *EDGES holds the result, and
687 VISITED_PHIS is a pointer set for detecting cycles. */
688
689static void
538dd0b7 690collect_phi_def_edges (gphi *phi, basic_block cd_root,
9771b263 691 vec<edge> *edges,
6e2830c3 692 hash_set<gimple> *visited_phis)
34f97b94
XDL
693{
694 size_t i, n;
695 edge opnd_edge;
696 tree opnd;
697
6e2830c3 698 if (visited_phis->add (phi))
34f97b94
XDL
699 return;
700
701 n = gimple_phi_num_args (phi);
702 for (i = 0; i < n; i++)
703 {
704 opnd_edge = gimple_phi_arg_edge (phi, i);
705 opnd = gimple_phi_arg_def (phi, i);
706
e74780a3
XDL
707 if (TREE_CODE (opnd) != SSA_NAME)
708 {
709 if (dump_file && (dump_flags & TDF_DETAILS))
710 {
711 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
712 print_gimple_stmt (dump_file, phi, 0, 0);
713 }
9771b263 714 edges->safe_push (opnd_edge);
e74780a3 715 }
34f97b94
XDL
716 else
717 {
718 gimple def = SSA_NAME_DEF_STMT (opnd);
e74780a3 719
34f97b94
XDL
720 if (gimple_code (def) == GIMPLE_PHI
721 && dominated_by_p (CDI_DOMINATORS,
722 gimple_bb (def), cd_root))
538dd0b7 723 collect_phi_def_edges (as_a <gphi *> (def), cd_root, edges,
34f97b94 724 visited_phis);
ba7e83f8 725 else if (!uninit_undefined_value_p (opnd))
e74780a3
XDL
726 {
727 if (dump_file && (dump_flags & TDF_DETAILS))
728 {
729 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
730 print_gimple_stmt (dump_file, phi, 0, 0);
731 }
9771b263 732 edges->safe_push (opnd_edge);
e74780a3 733 }
34f97b94
XDL
734 }
735 }
736}
737
738/* For each use edge of PHI, computes all control dependence chains.
739 The control dependence chains are then converted to an array of
740 composite predicates pointed to by PREDS. */
741
742static bool
538dd0b7 743find_def_preds (pred_chain_union *preds, gphi *phi)
34f97b94
XDL
744{
745 size_t num_chains = 0, i, n;
92261ce0
JJ
746 vec<edge> dep_chains[MAX_NUM_CHAINS];
747 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
6e1aa848 748 vec<edge> def_edges = vNULL;
34f97b94
XDL
749 bool has_valid_pred = false;
750 basic_block phi_bb, cd_root = 0;
34f97b94 751
34f97b94
XDL
752 phi_bb = gimple_bb (phi);
753 /* First find the closest dominating bb to be
754 the control dependence root */
755 cd_root = find_dom (phi_bb);
756 if (!cd_root)
757 return false;
758
6e2830c3
TS
759 hash_set<gimple> visited_phis;
760 collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
34f97b94 761
9771b263 762 n = def_edges.length ();
34f97b94
XDL
763 if (n == 0)
764 return false;
765
766 for (i = 0; i < n; i++)
767 {
768 size_t prev_nc, j;
92261ce0 769 int num_calls = 0;
34f97b94
XDL
770 edge opnd_edge;
771
9771b263 772 opnd_edge = def_edges[i];
34f97b94 773 prev_nc = num_chains;
92261ce0
JJ
774 compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains,
775 &num_chains, &cur_chain, &num_calls);
34f97b94
XDL
776
777 /* Now update the newly added chains with
778 the phi operand edge: */
779 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
780 {
92261ce0
JJ
781 if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS)
782 dep_chains[num_chains++] = vNULL;
34f97b94 783 for (j = prev_nc; j < num_chains; j++)
92261ce0 784 dep_chains[j].safe_push (opnd_edge);
34f97b94
XDL
785 }
786 }
787
788 has_valid_pred
92261ce0 789 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
34f97b94 790 for (i = 0; i < num_chains; i++)
9771b263 791 dep_chains[i].release ();
34f97b94
XDL
792 return has_valid_pred;
793}
794
795/* Dumps the predicates (PREDS) for USESTMT. */
796
797static void
927734cf 798dump_predicates (gimple usestmt, pred_chain_union preds,
34f97b94
XDL
799 const char* msg)
800{
801 size_t i, j;
927734cf 802 pred_chain one_pred_chain = vNULL;
81018dcf 803 fprintf (dump_file, "%s", msg);
34f97b94 804 print_gimple_stmt (dump_file, usestmt, 0, 0);
927734cf
XDL
805 fprintf (dump_file, "is guarded by :\n\n");
806 size_t num_preds = preds.length ();
807 /* Do some dumping here: */
34f97b94
XDL
808 for (i = 0; i < num_preds; i++)
809 {
810 size_t np;
811
812 one_pred_chain = preds[i];
9771b263 813 np = one_pred_chain.length ();
34f97b94
XDL
814
815 for (j = 0; j < np; j++)
816 {
927734cf
XDL
817 pred_info one_pred = one_pred_chain[j];
818 if (one_pred.invert)
34f97b94 819 fprintf (dump_file, " (.NOT.) ");
927734cf
XDL
820 print_generic_expr (dump_file, one_pred.pred_lhs, 0);
821 fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
822 print_generic_expr (dump_file, one_pred.pred_rhs, 0);
34f97b94 823 if (j < np - 1)
927734cf
XDL
824 fprintf (dump_file, " (.AND.) ");
825 else
826 fprintf (dump_file, "\n");
34f97b94
XDL
827 }
828 if (i < num_preds - 1)
829 fprintf (dump_file, "(.OR.)\n");
927734cf
XDL
830 else
831 fprintf (dump_file, "\n\n");
34f97b94
XDL
832 }
833}
834
835/* Destroys the predicate set *PREDS. */
836
837static void
927734cf 838destroy_predicate_vecs (pred_chain_union preds)
34f97b94 839{
927734cf
XDL
840 size_t i;
841
842 size_t n = preds.length ();
34f97b94 843 for (i = 0; i < n; i++)
927734cf
XDL
844 preds[i].release ();
845 preds.release ();
34f97b94
XDL
846}
847
848
927734cf 849/* Computes the 'normalized' conditional code with operand
34f97b94
XDL
850 swapping and condition inversion. */
851
852static enum tree_code
853get_cmp_code (enum tree_code orig_cmp_code,
854 bool swap_cond, bool invert)
855{
856 enum tree_code tc = orig_cmp_code;
857
858 if (swap_cond)
859 tc = swap_tree_comparison (orig_cmp_code);
860 if (invert)
861 tc = invert_tree_comparison (tc, false);
862
863 switch (tc)
864 {
865 case LT_EXPR:
866 case LE_EXPR:
867 case GT_EXPR:
868 case GE_EXPR:
869 case EQ_EXPR:
870 case NE_EXPR:
871 break;
872 default:
873 return ERROR_MARK;
874 }
875 return tc;
876}
877
878/* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
879 all values in the range satisfies (x CMPC BOUNDARY) == true. */
880
881static bool
882is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
883{
884 bool inverted = false;
885 bool is_unsigned;
886 bool result;
887
888 /* Only handle integer constant here. */
889 if (TREE_CODE (val) != INTEGER_CST
890 || TREE_CODE (boundary) != INTEGER_CST)
891 return true;
892
893 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
894
895 if (cmpc == GE_EXPR || cmpc == GT_EXPR
896 || cmpc == NE_EXPR)
897 {
898 cmpc = invert_tree_comparison (cmpc, false);
899 inverted = true;
900 }
901
902 if (is_unsigned)
903 {
904 if (cmpc == EQ_EXPR)
905 result = tree_int_cst_equal (val, boundary);
906 else if (cmpc == LT_EXPR)
807e902e 907 result = tree_int_cst_lt (val, boundary);
34f97b94
XDL
908 else
909 {
910 gcc_assert (cmpc == LE_EXPR);
807e902e 911 result = tree_int_cst_le (val, boundary);
34f97b94
XDL
912 }
913 }
914 else
915 {
916 if (cmpc == EQ_EXPR)
917 result = tree_int_cst_equal (val, boundary);
918 else if (cmpc == LT_EXPR)
807e902e 919 result = tree_int_cst_lt (val, boundary);
34f97b94
XDL
920 else
921 {
922 gcc_assert (cmpc == LE_EXPR);
923 result = (tree_int_cst_equal (val, boundary)
807e902e 924 || tree_int_cst_lt (val, boundary));
34f97b94
XDL
925 }
926 }
927
928 if (inverted)
929 result ^= 1;
930
931 return result;
932}
933
934/* Returns true if PRED is common among all the predicate
935 chains (PREDS) (and therefore can be factored out).
936 NUM_PRED_CHAIN is the size of array PREDS. */
937
938static bool
927734cf
XDL
939find_matching_predicate_in_rest_chains (pred_info pred,
940 pred_chain_union preds,
34f97b94
XDL
941 size_t num_pred_chains)
942{
943 size_t i, j, n;
944
927734cf 945 /* Trival case. */
34f97b94
XDL
946 if (num_pred_chains == 1)
947 return true;
948
949 for (i = 1; i < num_pred_chains; i++)
950 {
951 bool found = false;
927734cf 952 pred_chain one_chain = preds[i];
9771b263 953 n = one_chain.length ();
34f97b94
XDL
954 for (j = 0; j < n; j++)
955 {
927734cf
XDL
956 pred_info pred2 = one_chain[j];
957 /* Can relax the condition comparison to not
34f97b94
XDL
958 use address comparison. However, the most common
959 case is that multiple control dependent paths share
960 a common path prefix, so address comparison should
961 be ok. */
962
927734cf
XDL
963 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
964 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
965 && pred2.invert == pred.invert)
34f97b94
XDL
966 {
967 found = true;
968 break;
969 }
970 }
971 if (!found)
972 return false;
973 }
974 return true;
975}
976
977/* Forward declaration. */
978static bool
979is_use_properly_guarded (gimple use_stmt,
980 basic_block use_bb,
538dd0b7 981 gphi *phi,
34f97b94 982 unsigned uninit_opnds,
c0503346 983 pred_chain_union *def_preds,
538dd0b7 984 hash_set<gphi *> *visited_phis);
34f97b94 985
2edb37a6
XDL
986/* Returns true if all uninitialized opnds are pruned. Returns false
987 otherwise. PHI is the phi node with uninitialized operands,
988 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
989 FLAG_DEF is the statement defining the flag guarding the use of the
990 PHI output, BOUNDARY_CST is the const value used in the predicate
991 associated with the flag, CMP_CODE is the comparison code used in
992 the predicate, VISITED_PHIS is the pointer set of phis visited, and
993 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
994 that are also phis.
995
996 Example scenario:
997
998 BB1:
999 flag_1 = phi <0, 1> // (1)
1000 var_1 = phi <undef, some_val>
1001
1002
1003 BB2:
1004 flag_2 = phi <0, flag_1, flag_1> // (2)
1005 var_2 = phi <undef, var_1, var_1>
1006 if (flag_2 == 1)
1007 goto BB3;
1008
1009 BB3:
1010 use of var_2 // (3)
1011
1012 Because some flag arg in (1) is not constant, if we do not look into the
1013 flag phis recursively, it is conservatively treated as unknown and var_1
1014 is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
1015 a false warning will be emitted. Checking recursively into (1), the compiler can
1016 find out that only some_val (which is defined) can flow into (3) which is OK.
1017
1018*/
1019
1020static bool
538dd0b7 1021prune_uninit_phi_opnds_in_unrealizable_paths (gphi *phi,
927734cf 1022 unsigned uninit_opnds,
538dd0b7 1023 gphi *flag_def,
927734cf
XDL
1024 tree boundary_cst,
1025 enum tree_code cmp_code,
538dd0b7 1026 hash_set<gphi *> *visited_phis,
927734cf 1027 bitmap *visited_flag_phis)
2edb37a6
XDL
1028{
1029 unsigned i;
1030
1031 for (i = 0; i < MIN (32, gimple_phi_num_args (flag_def)); i++)
1032 {
1033 tree flag_arg;
1034
1035 if (!MASK_TEST_BIT (uninit_opnds, i))
1036 continue;
1037
1038 flag_arg = gimple_phi_arg_def (flag_def, i);
1039 if (!is_gimple_constant (flag_arg))
1040 {
538dd0b7 1041 gphi *flag_arg_def, *phi_arg_def;
2edb37a6
XDL
1042 tree phi_arg;
1043 unsigned uninit_opnds_arg_phi;
1044
1045 if (TREE_CODE (flag_arg) != SSA_NAME)
1046 return false;
538dd0b7
DM
1047 flag_arg_def = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (flag_arg));
1048 if (!flag_arg_def)
2edb37a6
XDL
1049 return false;
1050
1051 phi_arg = gimple_phi_arg_def (phi, i);
1052 if (TREE_CODE (phi_arg) != SSA_NAME)
1053 return false;
1054
538dd0b7
DM
1055 phi_arg_def = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (phi_arg));
1056 if (!phi_arg_def)
2edb37a6
XDL
1057 return false;
1058
1059 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
1060 return false;
1061
1062 if (!*visited_flag_phis)
1063 *visited_flag_phis = BITMAP_ALLOC (NULL);
1064
1065 if (bitmap_bit_p (*visited_flag_phis,
1066 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))))
1067 return false;
1068
1069 bitmap_set_bit (*visited_flag_phis,
1070 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1071
1072 /* Now recursively prune the uninitialized phi args. */
1073 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
927734cf
XDL
1074 if (!prune_uninit_phi_opnds_in_unrealizable_paths
1075 (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def,
1076 boundary_cst, cmp_code, visited_phis, visited_flag_phis))
2edb37a6
XDL
1077 return false;
1078
1079 bitmap_clear_bit (*visited_flag_phis,
1080 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1081 continue;
1082 }
1083
1084 /* Now check if the constant is in the guarded range. */
1085 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
1086 {
1087 tree opnd;
1088 gimple opnd_def;
1089
1090 /* Now that we know that this undefined edge is not
1091 pruned. If the operand is defined by another phi,
1092 we can further prune the incoming edges of that
1093 phi by checking the predicates of this operands. */
1094
1095 opnd = gimple_phi_arg_def (phi, i);
1096 opnd_def = SSA_NAME_DEF_STMT (opnd);
538dd0b7 1097 if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
2edb37a6
XDL
1098 {
1099 edge opnd_edge;
1100 unsigned uninit_opnds2
538dd0b7 1101 = compute_uninit_opnds_pos (opnd_def_phi);
c0503346
PP
1102 pred_chain_union def_preds = vNULL;
1103 bool ok;
2edb37a6
XDL
1104 gcc_assert (!MASK_EMPTY (uninit_opnds2));
1105 opnd_edge = gimple_phi_arg_edge (phi, i);
c0503346
PP
1106 ok = is_use_properly_guarded (phi,
1107 opnd_edge->src,
1108 opnd_def_phi,
1109 uninit_opnds2,
1110 &def_preds,
1111 visited_phis);
1112 destroy_predicate_vecs (def_preds);
1113 if (!ok)
1114 return false;
2edb37a6
XDL
1115 }
1116 else
1117 return false;
1118 }
1119 }
1120
1121 return true;
1122}
1123
34f97b94
XDL
1124/* A helper function that determines if the predicate set
1125 of the use is not overlapping with that of the uninit paths.
1126 The most common senario of guarded use is in Example 1:
1127 Example 1:
1128 if (some_cond)
1129 {
1130 x = ...;
1131 flag = true;
1132 }
1133
1134 ... some code ...
1135
1136 if (flag)
1137 use (x);
1138
1139 The real world examples are usually more complicated, but similar
1140 and usually result from inlining:
1141
1142 bool init_func (int * x)
1143 {
1144 if (some_cond)
1145 return false;
1146 *x = ..
1147 return true;
1148 }
1149
1150 void foo(..)
1151 {
1152 int x;
1153
1154 if (!init_func(&x))
1155 return;
1156
1157 .. some_code ...
1158 use (x);
1159 }
1160
1161 Another possible use scenario is in the following trivial example:
1162
1163 Example 2:
1164 if (n > 0)
1165 x = 1;
1166 ...
1167 if (n > 0)
1168 {
1169 if (m < 2)
1170 .. = x;
1171 }
1172
1173 Predicate analysis needs to compute the composite predicate:
1174
1175 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1176 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1177 (the predicate chain for phi operand defs can be computed
1178 starting from a bb that is control equivalent to the phi's
1179 bb and is dominating the operand def.)
1180
1181 and check overlapping:
1182 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1183 <==> false
1184
1185 This implementation provides framework that can handle
1186 scenarios. (Note that many simple cases are handled properly
1187 without the predicate analysis -- this is due to jump threading
1188 transformation which eliminates the merge point thus makes
1189 path sensitive analysis unnecessary.)
1190
1191 NUM_PREDS is the number is the number predicate chains, PREDS is
1192 the array of chains, PHI is the phi node whose incoming (undefined)
1193 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
1194 uninit operand positions. VISITED_PHIS is the pointer set of phi
1195 stmts being checked. */
1196
1197
1198static bool
927734cf 1199use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
538dd0b7
DM
1200 gphi *phi, unsigned uninit_opnds,
1201 hash_set<gphi *> *visited_phis)
34f97b94
XDL
1202{
1203 unsigned int i, n;
1204 gimple flag_def = 0;
1205 tree boundary_cst = 0;
1206 enum tree_code cmp_code;
1207 bool swap_cond = false;
1208 bool invert = false;
927734cf 1209 pred_chain the_pred_chain = vNULL;
2edb37a6
XDL
1210 bitmap visited_flag_phis = NULL;
1211 bool all_pruned = false;
927734cf 1212 size_t num_preds = preds.length ();
34f97b94
XDL
1213
1214 gcc_assert (num_preds > 0);
1215 /* Find within the common prefix of multiple predicate chains
1216 a predicate that is a comparison of a flag variable against
1217 a constant. */
1218 the_pred_chain = preds[0];
9771b263 1219 n = the_pred_chain.length ();
34f97b94
XDL
1220 for (i = 0; i < n; i++)
1221 {
34f97b94
XDL
1222 tree cond_lhs, cond_rhs, flag = 0;
1223
927734cf 1224 pred_info the_pred = the_pred_chain[i];
34f97b94 1225
927734cf
XDL
1226 invert = the_pred.invert;
1227 cond_lhs = the_pred.pred_lhs;
1228 cond_rhs = the_pred.pred_rhs;
1229 cmp_code = the_pred.cond_code;
34f97b94
XDL
1230
1231 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
1232 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1233 {
1234 boundary_cst = cond_rhs;
1235 flag = cond_lhs;
1236 }
1237 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
1238 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1239 {
1240 boundary_cst = cond_lhs;
1241 flag = cond_rhs;
1242 swap_cond = true;
1243 }
1244
1245 if (!flag)
1246 continue;
1247
1248 flag_def = SSA_NAME_DEF_STMT (flag);
1249
1250 if (!flag_def)
1251 continue;
1252
1253 if ((gimple_code (flag_def) == GIMPLE_PHI)
1254 && (gimple_bb (flag_def) == gimple_bb (phi))
927734cf
XDL
1255 && find_matching_predicate_in_rest_chains (the_pred, preds,
1256 num_preds))
34f97b94
XDL
1257 break;
1258
1259 flag_def = 0;
1260 }
1261
1262 if (!flag_def)
1263 return false;
1264
1265 /* Now check all the uninit incoming edge has a constant flag value
1266 that is in conflict with the use guard/predicate. */
1267 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1268
1269 if (cmp_code == ERROR_MARK)
1270 return false;
1271
2edb37a6
XDL
1272 all_pruned = prune_uninit_phi_opnds_in_unrealizable_paths (phi,
1273 uninit_opnds,
538dd0b7 1274 as_a <gphi *> (flag_def),
2edb37a6
XDL
1275 boundary_cst,
1276 cmp_code,
1277 visited_phis,
1278 &visited_flag_phis);
34f97b94 1279
2edb37a6
XDL
1280 if (visited_flag_phis)
1281 BITMAP_FREE (visited_flag_phis);
34f97b94 1282
2edb37a6 1283 return all_pruned;
34f97b94
XDL
1284}
1285
927734cf
XDL
1286/* The helper function returns true if two predicates X1 and X2
1287 are equivalent. It assumes the expressions have already
1288 properly re-associated. */
34f97b94
XDL
1289
1290static inline bool
927734cf 1291pred_equal_p (pred_info x1, pred_info x2)
34f97b94 1292{
927734cf
XDL
1293 enum tree_code c1, c2;
1294 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1295 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1296 return false;
34f97b94 1297
927734cf
XDL
1298 c1 = x1.cond_code;
1299 if (x1.invert != x2.invert)
1300 c2 = invert_tree_comparison (x2.cond_code, false);
1301 else
1302 c2 = x2.cond_code;
34f97b94 1303
927734cf
XDL
1304 return c1 == c2;
1305}
34f97b94 1306
927734cf 1307/* Returns true if the predication is testing !=. */
34f97b94 1308
927734cf
XDL
1309static inline bool
1310is_neq_relop_p (pred_info pred)
34f97b94 1311{
34f97b94 1312
927734cf
XDL
1313 return (pred.cond_code == NE_EXPR && !pred.invert)
1314 || (pred.cond_code == EQ_EXPR && pred.invert);
34f97b94
XDL
1315}
1316
927734cf 1317/* Returns true if pred is of the form X != 0. */
34f97b94 1318
927734cf
XDL
1319static inline bool
1320is_neq_zero_form_p (pred_info pred)
34f97b94 1321{
927734cf
XDL
1322 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
1323 || TREE_CODE (pred.pred_lhs) != SSA_NAME)
1324 return false;
1325 return true;
1326}
34f97b94 1327
927734cf
XDL
1328/* The helper function returns true if two predicates X1
1329 is equivalent to X2 != 0. */
34f97b94 1330
927734cf
XDL
1331static inline bool
1332pred_expr_equal_p (pred_info x1, tree x2)
1333{
1334 if (!is_neq_zero_form_p (x1))
1335 return false;
34f97b94 1336
927734cf 1337 return operand_equal_p (x1.pred_lhs, x2, 0);
34f97b94
XDL
1338}
1339
927734cf
XDL
1340/* Returns true of the domain of single predicate expression
1341 EXPR1 is a subset of that of EXPR2. Returns false if it
1342 can not be proved. */
34f97b94
XDL
1343
1344static bool
927734cf 1345is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
34f97b94 1346{
927734cf 1347 enum tree_code code1, code2;
34f97b94 1348
927734cf 1349 if (pred_equal_p (expr1, expr2))
34f97b94
XDL
1350 return true;
1351
927734cf
XDL
1352 if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
1353 || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
1354 return false;
34f97b94 1355
927734cf
XDL
1356 if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
1357 return false;
34f97b94 1358
927734cf
XDL
1359 code1 = expr1.cond_code;
1360 if (expr1.invert)
1361 code1 = invert_tree_comparison (code1, false);
1362 code2 = expr2.cond_code;
1363 if (expr2.invert)
1364 code2 = invert_tree_comparison (code2, false);
34f97b94 1365
3cd58c0f
RB
1366 if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR)
1367 && code2 == BIT_AND_EXPR)
666e8e06
RB
1368 return wi::eq_p (expr1.pred_rhs,
1369 wi::bit_and (expr1.pred_rhs, expr2.pred_rhs));
1370
927734cf
XDL
1371 if (code1 != code2 && code2 != NE_EXPR)
1372 return false;
34f97b94 1373
927734cf
XDL
1374 if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2))
1375 return true;
34f97b94 1376
927734cf
XDL
1377 return false;
1378}
34f97b94 1379
927734cf
XDL
1380/* Returns true if the domain of PRED1 is a subset
1381 of that of PRED2. Returns false if it can not be proved so. */
34f97b94 1382
927734cf
XDL
1383static bool
1384is_pred_chain_subset_of (pred_chain pred1,
1385 pred_chain pred2)
1386{
1387 size_t np1, np2, i1, i2;
34f97b94 1388
927734cf
XDL
1389 np1 = pred1.length ();
1390 np2 = pred2.length ();
34f97b94 1391
927734cf 1392 for (i2 = 0; i2 < np2; i2++)
34f97b94 1393 {
927734cf
XDL
1394 bool found = false;
1395 pred_info info2 = pred2[i2];
1396 for (i1 = 0; i1 < np1; i1++)
1397 {
1398 pred_info info1 = pred1[i1];
1399 if (is_pred_expr_subset_of (info1, info2))
1400 {
1401 found = true;
1402 break;
1403 }
1404 }
1405 if (!found)
1406 return false;
34f97b94 1407 }
927734cf 1408 return true;
34f97b94
XDL
1409}
1410
927734cf
XDL
1411/* Returns true if the domain defined by
1412 one pred chain ONE_PRED is a subset of the domain
1413 of *PREDS. It returns false if ONE_PRED's domain is
1414 not a subset of any of the sub-domains of PREDS
1415 (corresponding to each individual chains in it), even
1416 though it may be still be a subset of whole domain
1417 of PREDS which is the union (ORed) of all its subdomains.
1418 In other words, the result is conservative. */
34f97b94
XDL
1419
1420static bool
927734cf 1421is_included_in (pred_chain one_pred, pred_chain_union preds)
34f97b94
XDL
1422{
1423 size_t i;
927734cf 1424 size_t n = preds.length ();
34f97b94 1425
927734cf 1426 for (i = 0; i < n; i++)
34f97b94 1427 {
927734cf 1428 if (is_pred_chain_subset_of (one_pred, preds[i]))
34f97b94
XDL
1429 return true;
1430 }
927734cf 1431
34f97b94
XDL
1432 return false;
1433}
1434
927734cf
XDL
1435/* Compares two predicate sets PREDS1 and PREDS2 and returns
1436 true if the domain defined by PREDS1 is a superset
1437 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1438 PREDS2 respectively. The implementation chooses not to build
1439 generic trees (and relying on the folding capability of the
1440 compiler), but instead performs brute force comparison of
1441 individual predicate chains (won't be a compile time problem
1442 as the chains are pretty short). When the function returns
1443 false, it does not necessarily mean *PREDS1 is not a superset
1444 of *PREDS2, but mean it may not be so since the analysis can
1445 not prove it. In such cases, false warnings may still be
1446 emitted. */
34f97b94
XDL
1447
1448static bool
927734cf 1449is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
34f97b94 1450{
927734cf
XDL
1451 size_t i, n2;
1452 pred_chain one_pred_chain = vNULL;
34f97b94 1453
927734cf
XDL
1454 n2 = preds2.length ();
1455
1456 for (i = 0; i < n2; i++)
34f97b94 1457 {
927734cf
XDL
1458 one_pred_chain = preds2[i];
1459 if (!is_included_in (one_pred_chain, preds1))
34f97b94
XDL
1460 return false;
1461 }
927734cf 1462
34f97b94
XDL
1463 return true;
1464}
1465
927734cf 1466/* Returns true if TC is AND or OR. */
34f97b94 1467
927734cf
XDL
1468static inline bool
1469is_and_or_or_p (enum tree_code tc, tree type)
34f97b94 1470{
927734cf
XDL
1471 return (tc == BIT_IOR_EXPR
1472 || (tc == BIT_AND_EXPR
1473 && (type == 0 || TREE_CODE (type) == BOOLEAN_TYPE)));
1474}
34f97b94 1475
927734cf
XDL
1476/* Returns true if X1 is the negate of X2. */
1477
1478static inline bool
1479pred_neg_p (pred_info x1, pred_info x2)
1480{
1481 enum tree_code c1, c2;
1482 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1483 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1484 return false;
1485
1486 c1 = x1.cond_code;
1487 if (x1.invert == x2.invert)
1488 c2 = invert_tree_comparison (x2.cond_code, false);
1489 else
1490 c2 = x2.cond_code;
1491
1492 return c1 == c2;
34f97b94
XDL
1493}
1494
927734cf
XDL
1495/* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1496 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1497 3) X OR (!X AND Y) is equivalent to (X OR Y);
1498 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1499 (x != 0 AND y != 0)
1500 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1501 (X AND Y) OR Z
34f97b94 1502
927734cf
XDL
1503 PREDS is the predicate chains, and N is the number of chains. */
1504
1505/* Helper function to implement rule 1 above. ONE_CHAIN is
1506 the AND predication to be simplified. */
1507
1508static void
1509simplify_pred (pred_chain *one_chain)
34f97b94 1510{
927734cf
XDL
1511 size_t i, j, n;
1512 bool simplified = false;
1513 pred_chain s_chain = vNULL;
34f97b94 1514
927734cf 1515 n = one_chain->length ();
34f97b94 1516
927734cf 1517 for (i = 0; i < n; i++)
34f97b94 1518 {
927734cf
XDL
1519 pred_info *a_pred = &(*one_chain)[i];
1520
1521 if (!a_pred->pred_lhs)
1522 continue;
1523 if (!is_neq_zero_form_p (*a_pred))
1524 continue;
1525
1526 gimple def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
1527 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1528 continue;
1529 if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
34f97b94 1530 {
927734cf 1531 for (j = 0; j < n; j++)
34f97b94 1532 {
927734cf
XDL
1533 pred_info *b_pred = &(*one_chain)[j];
1534
1535 if (!b_pred->pred_lhs)
1536 continue;
1537 if (!is_neq_zero_form_p (*b_pred))
1538 continue;
1539
1540 if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
1541 || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
1542 {
1543 /* Mark a_pred for removal. */
1544 a_pred->pred_lhs = NULL;
1545 a_pred->pred_rhs = NULL;
1546 simplified = true;
1547 break;
1548 }
34f97b94 1549 }
34f97b94
XDL
1550 }
1551 }
34f97b94 1552
927734cf
XDL
1553 if (!simplified)
1554 return;
34f97b94 1555
927734cf
XDL
1556 for (i = 0; i < n; i++)
1557 {
1558 pred_info *a_pred = &(*one_chain)[i];
1559 if (!a_pred->pred_lhs)
1560 continue;
1561 s_chain.safe_push (*a_pred);
34f97b94 1562 }
927734cf
XDL
1563
1564 one_chain->release ();
1565 *one_chain = s_chain;
34f97b94
XDL
1566}
1567
927734cf
XDL
1568/* The helper function implements the rule 2 for the
1569 OR predicate PREDS.
1570
1571 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
34f97b94
XDL
1572
1573static bool
927734cf 1574simplify_preds_2 (pred_chain_union *preds)
34f97b94 1575{
927734cf
XDL
1576 size_t i, j, n;
1577 bool simplified = false;
1578 pred_chain_union s_preds = vNULL;
34f97b94 1579
927734cf
XDL
1580 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1581 (X AND Y) OR (X AND !Y) is equivalent to X. */
34f97b94 1582
927734cf
XDL
1583 n = preds->length ();
1584 for (i = 0; i < n; i++)
1585 {
1586 pred_info x, y;
1587 pred_chain *a_chain = &(*preds)[i];
34f97b94 1588
927734cf
XDL
1589 if (a_chain->length () != 2)
1590 continue;
1591
1592 x = (*a_chain)[0];
1593 y = (*a_chain)[1];
1594
1595 for (j = 0; j < n; j++)
1596 {
1597 pred_chain *b_chain;
1598 pred_info x2, y2;
1599
1600 if (j == i)
1601 continue;
1602
1603 b_chain = &(*preds)[j];
1604 if (b_chain->length () != 2)
1605 continue;
34f97b94 1606
927734cf
XDL
1607 x2 = (*b_chain)[0];
1608 y2 = (*b_chain)[1];
34f97b94 1609
927734cf
XDL
1610 if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
1611 {
1612 /* Kill a_chain. */
1613 a_chain->release ();
1614 b_chain->release ();
1615 b_chain->safe_push (x);
1616 simplified = true;
1617 break;
1618 }
1619 if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
1620 {
1621 /* Kill a_chain. */
1622 a_chain->release ();
1623 b_chain->release ();
1624 b_chain->safe_push (y);
1625 simplified = true;
1626 break;
1627 }
1628 }
1629 }
1630 /* Now clean up the chain. */
1631 if (simplified)
1632 {
1633 for (i = 0; i < n; i++)
1634 {
1635 if ((*preds)[i].is_empty ())
1636 continue;
1637 s_preds.safe_push ((*preds)[i]);
1638 }
1639 preds->release ();
1640 (*preds) = s_preds;
1641 s_preds = vNULL;
1642 }
34f97b94 1643
927734cf 1644 return simplified;
34f97b94
XDL
1645}
1646
927734cf
XDL
1647/* The helper function implements the rule 2 for the
1648 OR predicate PREDS.
1649
1650 3) x OR (!x AND y) is equivalent to x OR y. */
34f97b94
XDL
1651
1652static bool
927734cf 1653simplify_preds_3 (pred_chain_union *preds)
34f97b94 1654{
927734cf
XDL
1655 size_t i, j, n;
1656 bool simplified = false;
34f97b94 1657
927734cf
XDL
1658 /* Now iteratively simplify X OR (!X AND Z ..)
1659 into X OR (Z ...). */
34f97b94 1660
927734cf
XDL
1661 n = preds->length ();
1662 if (n < 2)
1663 return false;
1664
1665 for (i = 0; i < n; i++)
34f97b94 1666 {
927734cf
XDL
1667 pred_info x;
1668 pred_chain *a_chain = &(*preds)[i];
1669
1670 if (a_chain->length () != 1)
1671 continue;
1672
1673 x = (*a_chain)[0];
1674
1675 for (j = 0; j < n; j++)
34f97b94 1676 {
927734cf
XDL
1677 pred_chain *b_chain;
1678 pred_info x2;
1679 size_t k;
1680
1681 if (j == i)
1682 continue;
1683
1684 b_chain = &(*preds)[j];
1685 if (b_chain->length () < 2)
1686 continue;
1687
1688 for (k = 0; k < b_chain->length (); k++)
34f97b94 1689 {
927734cf
XDL
1690 x2 = (*b_chain)[k];
1691 if (pred_neg_p (x, x2))
1692 {
1693 b_chain->unordered_remove (k);
1694 simplified = true;
1695 break;
1696 }
34f97b94
XDL
1697 }
1698 }
34f97b94 1699 }
927734cf 1700 return simplified;
34f97b94
XDL
1701}
1702
927734cf
XDL
1703/* The helper function implements the rule 4 for the
1704 OR predicate PREDS.
1705
1706 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1707 (x != 0 ANd y != 0). */
34f97b94
XDL
1708
1709static bool
927734cf 1710simplify_preds_4 (pred_chain_union *preds)
34f97b94 1711{
927734cf
XDL
1712 size_t i, j, n;
1713 bool simplified = false;
1714 pred_chain_union s_preds = vNULL;
1715 gimple def_stmt;
34f97b94 1716
927734cf 1717 n = preds->length ();
34f97b94
XDL
1718 for (i = 0; i < n; i++)
1719 {
927734cf
XDL
1720 pred_info z;
1721 pred_chain *a_chain = &(*preds)[i];
1722
1723 if (a_chain->length () != 1)
1724 continue;
1725
1726 z = (*a_chain)[0];
1727
1728 if (!is_neq_zero_form_p (z))
1729 continue;
1730
1731 def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
1732 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1733 continue;
1734
1735 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
1736 continue;
1737
1738 for (j = 0; j < n; j++)
1739 {
1740 pred_chain *b_chain;
1741 pred_info x2, y2;
1742
1743 if (j == i)
1744 continue;
1745
1746 b_chain = &(*preds)[j];
1747 if (b_chain->length () != 2)
1748 continue;
1749
1750 x2 = (*b_chain)[0];
1751 y2 = (*b_chain)[1];
1752 if (!is_neq_zero_form_p (x2)
1753 || !is_neq_zero_form_p (y2))
1754 continue;
1755
1756 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
1757 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
1758 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
1759 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
1760 {
1761 /* Kill a_chain. */
1762 a_chain->release ();
1763 simplified = true;
1764 break;
1765 }
1766 }
1767 }
1768 /* Now clean up the chain. */
1769 if (simplified)
1770 {
1771 for (i = 0; i < n; i++)
1772 {
1773 if ((*preds)[i].is_empty ())
1774 continue;
1775 s_preds.safe_push ((*preds)[i]);
1776 }
1777 preds->release ();
1778 (*preds) = s_preds;
1779 s_preds = vNULL;
34f97b94
XDL
1780 }
1781
927734cf 1782 return simplified;
34f97b94
XDL
1783}
1784
34f97b94 1785
927734cf
XDL
1786/* This function simplifies predicates in PREDS. */
1787
1788static void
1789simplify_preds (pred_chain_union *preds, gimple use_or_def, bool is_use)
34f97b94 1790{
927734cf
XDL
1791 size_t i, n;
1792 bool changed = false;
34f97b94 1793
927734cf 1794 if (dump_file && dump_flags & TDF_DETAILS)
34f97b94 1795 {
927734cf
XDL
1796 fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
1797 dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
34f97b94
XDL
1798 }
1799
927734cf
XDL
1800 for (i = 0; i < preds->length (); i++)
1801 simplify_pred (&(*preds)[i]);
1802
1803 n = preds->length ();
1804 if (n < 2)
1805 return;
1806
1807 do
1808 {
1809 changed = false;
1810 if (simplify_preds_2 (preds))
1811 changed = true;
1812
1813 /* Now iteratively simplify X OR (!X AND Z ..)
1814 into X OR (Z ...). */
1815 if (simplify_preds_3 (preds))
1816 changed = true;
1817
1818 if (simplify_preds_4 (preds))
1819 changed = true;
1820
1821 } while (changed);
1822
1823 return;
34f97b94
XDL
1824}
1825
927734cf
XDL
1826/* This is a helper function which attempts to normalize predicate chains
1827 by following UD chains. It basically builds up a big tree of either IOR
1828 operations or AND operations, and convert the IOR tree into a
1829 pred_chain_union or BIT_AND tree into a pred_chain.
1830 Example:
56b67510 1831
927734cf
XDL
1832 _3 = _2 RELOP1 _1;
1833 _6 = _5 RELOP2 _4;
1834 _9 = _8 RELOP3 _7;
1835 _10 = _3 | _6;
1836 _12 = _9 | _0;
1837 _t = _10 | _12;
1838
1839 then _t != 0 will be normalized into a pred_chain_union
1840
1841 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1842
1843 Similarly given,
1844
1845 _3 = _2 RELOP1 _1;
1846 _6 = _5 RELOP2 _4;
1847 _9 = _8 RELOP3 _7;
1848 _10 = _3 & _6;
1849 _12 = _9 & _0;
1850
1851 then _t != 0 will be normalized into a pred_chain:
1852 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1853
1854 */
1855
1856/* This is a helper function that stores a PRED into NORM_PREDS. */
1857
1858inline static void
1859push_pred (pred_chain_union *norm_preds, pred_info pred)
56b67510 1860{
927734cf
XDL
1861 pred_chain pred_chain = vNULL;
1862 pred_chain.safe_push (pred);
1863 norm_preds->safe_push (pred_chain);
1864}
56b67510 1865
927734cf
XDL
1866/* A helper function that creates a predicate of the form
1867 OP != 0 and push it WORK_LIST. */
56b67510 1868
927734cf 1869inline static void
ade3ff24 1870push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
6e2830c3 1871 hash_set<tree> *mark_set)
927734cf 1872{
6e2830c3 1873 if (mark_set->contains (op))
ade3ff24 1874 return;
6e2830c3 1875 mark_set->add (op);
ade3ff24 1876
927734cf
XDL
1877 pred_info arg_pred;
1878 arg_pred.pred_lhs = op;
1879 arg_pred.pred_rhs = integer_zero_node;
1880 arg_pred.cond_code = NE_EXPR;
1881 arg_pred.invert = false;
1882 work_list->safe_push (arg_pred);
1883}
56b67510 1884
927734cf
XDL
1885/* A helper that generates a pred_info from a gimple assignment
1886 CMP_ASSIGN with comparison rhs. */
56b67510 1887
927734cf
XDL
1888static pred_info
1889get_pred_info_from_cmp (gimple cmp_assign)
1890{
1891 pred_info n_pred;
1892 n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
1893 n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
1894 n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
1895 n_pred.invert = false;
1896 return n_pred;
56b67510
XDL
1897}
1898
927734cf
XDL
1899/* Returns true if the PHI is a degenerated phi with
1900 all args with the same value (relop). In that case, *PRED
1901 will be updated to that value. */
56b67510
XDL
1902
1903static bool
927734cf 1904is_degenerated_phi (gimple phi, pred_info *pred_p)
56b67510 1905{
927734cf
XDL
1906 int i, n;
1907 tree op0;
1908 gimple def0;
1909 pred_info pred0;
56b67510 1910
927734cf
XDL
1911 n = gimple_phi_num_args (phi);
1912 op0 = gimple_phi_arg_def (phi, 0);
1913
1914 if (TREE_CODE (op0) != SSA_NAME)
56b67510
XDL
1915 return false;
1916
927734cf
XDL
1917 def0 = SSA_NAME_DEF_STMT (op0);
1918 if (gimple_code (def0) != GIMPLE_ASSIGN)
1919 return false;
1920 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0))
1921 != tcc_comparison)
1922 return false;
1923 pred0 = get_pred_info_from_cmp (def0);
1924
1925 for (i = 1; i < n; ++i)
56b67510 1926 {
927734cf
XDL
1927 gimple def;
1928 pred_info pred;
1929 tree op = gimple_phi_arg_def (phi, i);
1930
1931 if (TREE_CODE (op) != SSA_NAME)
56b67510
XDL
1932 return false;
1933
927734cf
XDL
1934 def = SSA_NAME_DEF_STMT (op);
1935 if (gimple_code (def) != GIMPLE_ASSIGN)
1936 return false;
1937 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def))
1938 != tcc_comparison)
1939 return false;
1940 pred = get_pred_info_from_cmp (def);
1941 if (!pred_equal_p (pred, pred0))
1942 return false;
1943 }
1944
1945 *pred_p = pred0;
1946 return true;
1947}
1948
1949/* Normalize one predicate PRED
1950 1) if PRED can no longer be normlized, put it into NORM_PREDS.
1951 2) otherwise if PRED is of the form x != 0, follow x's definition
1952 and put normalized predicates into WORK_LIST. */
1953
1954static void
1955normalize_one_pred_1 (pred_chain_union *norm_preds,
1956 pred_chain *norm_chain,
1957 pred_info pred,
1958 enum tree_code and_or_code,
ade3ff24 1959 vec<pred_info, va_heap, vl_ptr> *work_list,
6e2830c3 1960 hash_set<tree> *mark_set)
927734cf
XDL
1961{
1962 if (!is_neq_zero_form_p (pred))
1963 {
1964 if (and_or_code == BIT_IOR_EXPR)
1965 push_pred (norm_preds, pred);
1966 else
1967 norm_chain->safe_push (pred);
1968 return;
1969 }
1970
1971 gimple def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
1972
1973 if (gimple_code (def_stmt) == GIMPLE_PHI
1974 && is_degenerated_phi (def_stmt, &pred))
1975 work_list->safe_push (pred);
1976 else if (gimple_code (def_stmt) == GIMPLE_PHI
1977 && and_or_code == BIT_IOR_EXPR)
1978 {
1979 int i, n;
1980 n = gimple_phi_num_args (def_stmt);
1981
1982 /* If we see non zero constant, we should punt. The predicate
1983 * should be one guarding the phi edge. */
1984 for (i = 0; i < n; ++i)
56b67510 1985 {
927734cf
XDL
1986 tree op = gimple_phi_arg_def (def_stmt, i);
1987 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
1988 {
1989 push_pred (norm_preds, pred);
1990 return;
1991 }
56b67510
XDL
1992 }
1993
927734cf
XDL
1994 for (i = 0; i < n; ++i)
1995 {
1996 tree op = gimple_phi_arg_def (def_stmt, i);
1997 if (integer_zerop (op))
1998 continue;
1999
ade3ff24 2000 push_to_worklist (op, work_list, mark_set);
927734cf 2001 }
ade3ff24
RH
2002 }
2003 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
2004 {
2005 if (and_or_code == BIT_IOR_EXPR)
2006 push_pred (norm_preds, pred);
2007 else
2008 norm_chain->safe_push (pred);
2009 }
2010 else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
2011 {
666e8e06
RB
2012 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
2013 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
2014 {
2015 /* But treat x & 3 as condition. */
2016 if (and_or_code == BIT_AND_EXPR)
2017 {
2018 pred_info n_pred;
2019 n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
2020 n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
2021 n_pred.cond_code = and_or_code;
2022 n_pred.invert = false;
2023 norm_chain->safe_push (n_pred);
2024 }
2025 }
2026 else
2027 {
2028 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
2029 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
2030 }
ade3ff24
RH
2031 }
2032 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
2033 == tcc_comparison)
2034 {
2035 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2036 if (and_or_code == BIT_IOR_EXPR)
2037 push_pred (norm_preds, n_pred);
2038 else
2039 norm_chain->safe_push (n_pred);
2040 }
2041 else
2042 {
2043 if (and_or_code == BIT_IOR_EXPR)
2044 push_pred (norm_preds, pred);
2045 else
2046 norm_chain->safe_push (pred);
2047 }
927734cf
XDL
2048}
2049
2050/* Normalize PRED and store the normalized predicates into NORM_PREDS. */
2051
2052static void
2053normalize_one_pred (pred_chain_union *norm_preds,
2054 pred_info pred)
2055{
2056 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2057 enum tree_code and_or_code = ERROR_MARK;
2058 pred_chain norm_chain = vNULL;
56b67510 2059
927734cf 2060 if (!is_neq_zero_form_p (pred))
56b67510 2061 {
927734cf
XDL
2062 push_pred (norm_preds, pred);
2063 return;
2064 }
56b67510 2065
927734cf
XDL
2066 gimple def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
2067 if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
2068 and_or_code = gimple_assign_rhs_code (def_stmt);
2069 if (and_or_code != BIT_IOR_EXPR
2070 && and_or_code != BIT_AND_EXPR)
2071 {
2072 if (TREE_CODE_CLASS (and_or_code)
2073 == tcc_comparison)
2074 {
2075 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2076 push_pred (norm_preds, n_pred);
2077 }
2078 else
2079 push_pred (norm_preds, pred);
2080 return;
2081 }
56b67510 2082
927734cf 2083 work_list.safe_push (pred);
6e2830c3 2084 hash_set<tree> mark_set;
ade3ff24 2085
927734cf
XDL
2086 while (!work_list.is_empty ())
2087 {
2088 pred_info a_pred = work_list.pop ();
2089 normalize_one_pred_1 (norm_preds, &norm_chain, a_pred,
6e2830c3 2090 and_or_code, &work_list, &mark_set);
56b67510 2091 }
927734cf
XDL
2092 if (and_or_code == BIT_AND_EXPR)
2093 norm_preds->safe_push (norm_chain);
2094
2095 work_list.release ();
2096}
56b67510 2097
927734cf
XDL
2098static void
2099normalize_one_pred_chain (pred_chain_union *norm_preds,
2100 pred_chain one_chain)
2101{
2102 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
6e2830c3 2103 hash_set<tree> mark_set;
927734cf
XDL
2104 pred_chain norm_chain = vNULL;
2105 size_t i;
2106
2107 for (i = 0; i < one_chain.length (); i++)
ade3ff24
RH
2108 {
2109 work_list.safe_push (one_chain[i]);
6e2830c3 2110 mark_set.add (one_chain[i].pred_lhs);
ade3ff24 2111 }
927734cf
XDL
2112
2113 while (!work_list.is_empty ())
56b67510 2114 {
927734cf
XDL
2115 pred_info a_pred = work_list.pop ();
2116 normalize_one_pred_1 (0, &norm_chain, a_pred,
6e2830c3 2117 BIT_AND_EXPR, &work_list, &mark_set);
56b67510 2118 }
927734cf
XDL
2119
2120 norm_preds->safe_push (norm_chain);
2121 work_list.release ();
56b67510
XDL
2122}
2123
927734cf
XDL
2124/* Normalize predicate chains PREDS and returns the normalized one. */
2125
2126static pred_chain_union
2127normalize_preds (pred_chain_union preds, gimple use_or_def, bool is_use)
2128{
2129 pred_chain_union norm_preds = vNULL;
2130 size_t n = preds.length ();
2131 size_t i;
2132
2133 if (dump_file && dump_flags & TDF_DETAILS)
2134 {
2135 fprintf (dump_file, "[BEFORE NORMALIZATION --");
2136 dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2137 }
2138
2139 for (i = 0; i < n; i++)
2140 {
2141 if (preds[i].length () != 1)
2142 normalize_one_pred_chain (&norm_preds, preds[i]);
2143 else
2144 {
2145 normalize_one_pred (&norm_preds, preds[i][0]);
2146 preds[i].release ();
2147 }
2148 }
2149
2150 if (dump_file)
2151 {
2152 fprintf (dump_file, "[AFTER NORMALIZATION -- ");
2153 dump_predicates (use_or_def, norm_preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2154 }
2155
2156 preds.release ();
2157 return norm_preds;
2158}
56b67510
XDL
2159
2160
34f97b94
XDL
2161/* Computes the predicates that guard the use and checks
2162 if the incoming paths that have empty (or possibly
073a8998 2163 empty) definition can be pruned/filtered. The function returns
34f97b94
XDL
2164 true if it can be determined that the use of PHI's def in
2165 USE_STMT is guarded with a predicate set not overlapping with
2166 predicate sets of all runtime paths that do not have a definition.
c0503346 2167
34f97b94
XDL
2168 Returns false if it is not or it can not be determined. USE_BB is
2169 the bb of the use (for phi operand use, the bb is not the bb of
c0503346
PP
2170 the phi stmt, but the src bb of the operand edge).
2171
2172 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
2173 corresponding bit in the vector is 1. VISITED_PHIS is a pointer
2174 set of phis being visited.
2175
2176 *DEF_PREDS contains the (memoized) defining predicate chains of PHI.
2177 If *DEF_PREDS is the empty vector, the defining predicate chains of
2178 PHI will be computed and stored into *DEF_PREDS as needed.
2179
2180 VISITED_PHIS is a pointer set of phis being visited. */
34f97b94
XDL
2181
2182static bool
2183is_use_properly_guarded (gimple use_stmt,
2184 basic_block use_bb,
538dd0b7 2185 gphi *phi,
34f97b94 2186 unsigned uninit_opnds,
c0503346 2187 pred_chain_union *def_preds,
538dd0b7 2188 hash_set<gphi *> *visited_phis)
34f97b94
XDL
2189{
2190 basic_block phi_bb;
927734cf 2191 pred_chain_union preds = vNULL;
34f97b94
XDL
2192 bool has_valid_preds = false;
2193 bool is_properly_guarded = false;
2194
6e2830c3 2195 if (visited_phis->add (phi))
34f97b94
XDL
2196 return false;
2197
2198 phi_bb = gimple_bb (phi);
2199
2200 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
2201 return false;
2202
927734cf 2203 has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
34f97b94
XDL
2204
2205 if (!has_valid_preds)
2206 {
927734cf 2207 destroy_predicate_vecs (preds);
34f97b94
XDL
2208 return false;
2209 }
2210
927734cf
XDL
2211 /* Try to prune the dead incoming phi edges. */
2212 is_properly_guarded
2213 = use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
2214 visited_phis);
34f97b94 2215
927734cf 2216 if (is_properly_guarded)
34f97b94 2217 {
927734cf
XDL
2218 destroy_predicate_vecs (preds);
2219 return true;
2220 }
56b67510 2221
c0503346 2222 if (def_preds->is_empty ())
927734cf 2223 {
c0503346
PP
2224 has_valid_preds = find_def_preds (def_preds, phi);
2225
2226 if (!has_valid_preds)
2227 {
2228 destroy_predicate_vecs (preds);
2229 return false;
2230 }
2231
2232 simplify_preds (def_preds, phi, false);
2233 *def_preds = normalize_preds (*def_preds, phi, false);
34f97b94
XDL
2234 }
2235
927734cf
XDL
2236 simplify_preds (&preds, use_stmt, true);
2237 preds = normalize_preds (preds, use_stmt, true);
2238
c0503346 2239 is_properly_guarded = is_superset_of (*def_preds, preds);
34f97b94 2240
927734cf 2241 destroy_predicate_vecs (preds);
34f97b94
XDL
2242 return is_properly_guarded;
2243}
2244
2245/* Searches through all uses of a potentially
2246 uninitialized variable defined by PHI and returns a use
2247 statement if the use is not properly guarded. It returns
2248 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2249 holding the position(s) of uninit PHI operands. WORKLIST
2250 is the vector of candidate phis that may be updated by this
2251 function. ADDED_TO_WORKLIST is the pointer set tracking
2252 if the new phi is already in the worklist. */
2253
2254static gimple
538dd0b7
DM
2255find_uninit_use (gphi *phi, unsigned uninit_opnds,
2256 vec<gphi *> *worklist,
2257 hash_set<gphi *> *added_to_worklist)
34f97b94
XDL
2258{
2259 tree phi_result;
2260 use_operand_p use_p;
2261 gimple use_stmt;
2262 imm_use_iterator iter;
c0503346
PP
2263 pred_chain_union def_preds = vNULL;
2264 gimple ret = NULL;
34f97b94
XDL
2265
2266 phi_result = gimple_phi_result (phi);
2267
2268 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
2269 {
34f97b94
XDL
2270 basic_block use_bb;
2271
480161b5
RG
2272 use_stmt = USE_STMT (use_p);
2273 if (is_gimple_debug (use_stmt))
2274 continue;
34f97b94 2275
538dd0b7
DM
2276 if (gphi *use_phi = dyn_cast <gphi *> (use_stmt))
2277 use_bb = gimple_phi_arg_edge (use_phi,
480161b5
RG
2278 PHI_ARG_INDEX_FROM_USE (use_p))->src;
2279 else
2280 use_bb = gimple_bb (use_stmt);
34f97b94 2281
538dd0b7 2282 hash_set<gphi *> visited_phis;
927734cf 2283 if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds,
c0503346 2284 &def_preds, &visited_phis))
6e2830c3 2285 continue;
34f97b94 2286
e74780a3
XDL
2287 if (dump_file && (dump_flags & TDF_DETAILS))
2288 {
2289 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
2290 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2291 }
34f97b94
XDL
2292 /* Found one real use, return. */
2293 if (gimple_code (use_stmt) != GIMPLE_PHI)
c0503346
PP
2294 {
2295 ret = use_stmt;
2296 break;
2297 }
34f97b94
XDL
2298
2299 /* Found a phi use that is not guarded,
2300 add the phi to the worklist. */
538dd0b7 2301 if (!added_to_worklist->add (as_a <gphi *> (use_stmt)))
34f97b94 2302 {
e74780a3
XDL
2303 if (dump_file && (dump_flags & TDF_DETAILS))
2304 {
2305 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
2306 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2307 }
2308
538dd0b7 2309 worklist->safe_push (as_a <gphi *> (use_stmt));
6e2830c3 2310 possibly_undefined_names->add (phi_result);
34f97b94
XDL
2311 }
2312 }
2313
c0503346
PP
2314 destroy_predicate_vecs (def_preds);
2315 return ret;
34f97b94
XDL
2316}
2317
2318/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2319 and gives warning if there exists a runtime path from the entry to a
2320 use of the PHI def that does not contain a definition. In other words,
2321 the warning is on the real use. The more dead paths that can be pruned
2322 by the compiler, the fewer false positives the warning is. WORKLIST
2323 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
2324 a pointer set tracking if the new phi is added to the worklist or not. */
2325
2326static void
538dd0b7
DM
2327warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist,
2328 hash_set<gphi *> *added_to_worklist)
34f97b94
XDL
2329{
2330 unsigned uninit_opnds;
2331 gimple uninit_use_stmt = 0;
2332 tree uninit_op;
e1ec47c4
TP
2333 int phiarg_index;
2334 location_t loc;
34f97b94 2335
ea057359
RG
2336 /* Don't look at virtual operands. */
2337 if (virtual_operand_p (gimple_phi_result (phi)))
34f97b94
XDL
2338 return;
2339
2340 uninit_opnds = compute_uninit_opnds_pos (phi);
2341
2342 if (MASK_EMPTY (uninit_opnds))
2343 return;
2344
e74780a3
XDL
2345 if (dump_file && (dump_flags & TDF_DETAILS))
2346 {
2347 fprintf (dump_file, "[CHECK]: examining phi: ");
2348 print_gimple_stmt (dump_file, phi, 0, 0);
2349 }
2350
34f97b94
XDL
2351 /* Now check if we have any use of the value without proper guard. */
2352 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
2353 worklist, added_to_worklist);
2354
2355 /* All uses are properly guarded. */
2356 if (!uninit_use_stmt)
2357 return;
2358
e1ec47c4
TP
2359 phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds);
2360 uninit_op = gimple_phi_arg_def (phi, phiarg_index);
70b5e7dc
RG
2361 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
2362 return;
e1ec47c4
TP
2363 if (gimple_phi_arg_has_location (phi, phiarg_index))
2364 loc = gimple_phi_arg_location (phi, phiarg_index);
2365 else
2366 loc = UNKNOWN_LOCATION;
8d2b0410
RG
2367 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
2368 SSA_NAME_VAR (uninit_op),
34f97b94 2369 "%qD may be used uninitialized in this function",
e1ec47c4 2370 uninit_use_stmt, loc);
34f97b94
XDL
2371
2372}
2373
be55bfe6
TS
2374static bool
2375gate_warn_uninitialized (void)
2376{
2377 return warn_uninitialized || warn_maybe_uninitialized;
2378}
34f97b94 2379
be55bfe6 2380namespace {
34f97b94 2381
be55bfe6
TS
2382const pass_data pass_data_late_warn_uninitialized =
2383{
2384 GIMPLE_PASS, /* type */
2385 "uninit", /* name */
2386 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
2387 TV_NONE, /* tv_id */
2388 PROP_ssa, /* properties_required */
2389 0, /* properties_provided */
2390 0, /* properties_destroyed */
2391 0, /* todo_flags_start */
2392 0, /* todo_flags_finish */
2393};
2394
2395class pass_late_warn_uninitialized : public gimple_opt_pass
2396{
2397public:
2398 pass_late_warn_uninitialized (gcc::context *ctxt)
2399 : gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt)
2400 {}
2401
2402 /* opt_pass methods: */
2403 opt_pass * clone () { return new pass_late_warn_uninitialized (m_ctxt); }
2404 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2405 virtual unsigned int execute (function *);
2406
2407}; // class pass_late_warn_uninitialized
2408
2409unsigned int
2410pass_late_warn_uninitialized::execute (function *fun)
34f97b94
XDL
2411{
2412 basic_block bb;
538dd0b7
DM
2413 gphi_iterator gsi;
2414 vec<gphi *> worklist = vNULL;
34f97b94
XDL
2415
2416 calculate_dominance_info (CDI_DOMINATORS);
2417 calculate_dominance_info (CDI_POST_DOMINATORS);
2418 /* Re-do the plain uninitialized variable check, as optimization may have
2419 straightened control flow. Do this first so that we don't accidentally
2420 get a "may be" warning when we'd have seen an "is" warning later. */
2421 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2422
2423 timevar_push (TV_TREE_UNINIT);
2424
6e2830c3 2425 possibly_undefined_names = new hash_set<tree>;
538dd0b7 2426 hash_set<gphi *> added_to_worklist;
34f97b94
XDL
2427
2428 /* Initialize worklist */
be55bfe6 2429 FOR_EACH_BB_FN (bb, fun)
34f97b94
XDL
2430 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2431 {
538dd0b7 2432 gphi *phi = gsi.phi ();
be55bfe6
TS
2433 size_t n, i;
2434
2435 n = gimple_phi_num_args (phi);
2436
2437 /* Don't look at virtual operands. */
2438 if (virtual_operand_p (gimple_phi_result (phi)))
2439 continue;
2440
2441 for (i = 0; i < n; ++i)
2442 {
2443 tree op = gimple_phi_arg_def (phi, i);
2444 if (TREE_CODE (op) == SSA_NAME
2445 && uninit_undefined_value_p (op))
2446 {
2447 worklist.safe_push (phi);
6e2830c3 2448 added_to_worklist.add (phi);
be55bfe6
TS
2449 if (dump_file && (dump_flags & TDF_DETAILS))
2450 {
2451 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
2452 print_gimple_stmt (dump_file, phi, 0, 0);
2453 }
2454 break;
2455 }
2456 }
34f97b94
XDL
2457 }
2458
9771b263 2459 while (worklist.length () != 0)
34f97b94 2460 {
538dd0b7 2461 gphi *cur_phi = 0;
9771b263 2462 cur_phi = worklist.pop ();
6e2830c3 2463 warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist);
34f97b94 2464 }
e74780a3 2465
9771b263 2466 worklist.release ();
6e2830c3 2467 delete possibly_undefined_names;
34f97b94
XDL
2468 possibly_undefined_names = NULL;
2469 free_dominance_info (CDI_POST_DOMINATORS);
2470 timevar_pop (TV_TREE_UNINIT);
2471 return 0;
2472}
2473
27a4cd48
DM
2474} // anon namespace
2475
2476gimple_opt_pass *
2477make_pass_late_warn_uninitialized (gcc::context *ctxt)
2478{
2479 return new pass_late_warn_uninitialized (ctxt);
2480}
c152901f
AM
2481
2482
2483static unsigned int
2484execute_early_warn_uninitialized (void)
2485{
2486 /* Currently, this pass runs always but
2487 execute_late_warn_uninitialized only runs with optimization. With
2488 optimization we want to warn about possible uninitialized as late
2489 as possible, thus don't do it here. However, without
927734cf 2490 optimization we need to warn here about "may be uninitialized". */
c152901f
AM
2491 calculate_dominance_info (CDI_POST_DOMINATORS);
2492
2493 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
2494
2495 /* Post-dominator information can not be reliably updated. Free it
2496 after the use. */
2497
2498 free_dominance_info (CDI_POST_DOMINATORS);
2499 return 0;
2500}
2501
2502
2503namespace {
2504
2505const pass_data pass_data_early_warn_uninitialized =
2506{
2507 GIMPLE_PASS, /* type */
2508 "*early_warn_uninitialized", /* name */
2509 OPTGROUP_NONE, /* optinfo_flags */
c152901f
AM
2510 TV_TREE_UNINIT, /* tv_id */
2511 PROP_ssa, /* properties_required */
2512 0, /* properties_provided */
2513 0, /* properties_destroyed */
2514 0, /* todo_flags_start */
2515 0, /* todo_flags_finish */
2516};
2517
2518class pass_early_warn_uninitialized : public gimple_opt_pass
2519{
2520public:
c3284718
RS
2521 pass_early_warn_uninitialized (gcc::context *ctxt)
2522 : gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt)
c152901f
AM
2523 {}
2524
2525 /* opt_pass methods: */
1a3d085c 2526 virtual bool gate (function *) { return gate_warn_uninitialized (); }
be55bfe6
TS
2527 virtual unsigned int execute (function *)
2528 {
2529 return execute_early_warn_uninitialized ();
2530 }
c152901f
AM
2531
2532}; // class pass_early_warn_uninitialized
2533
2534} // anon namespace
2535
2536gimple_opt_pass *
2537make_pass_early_warn_uninitialized (gcc::context *ctxt)
2538{
2539 return new pass_early_warn_uninitialized (ctxt);
2540}