]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-ssa-uninit.c
switch from gimple to gimple*
[thirdparty/gcc.git] / gcc / tree-ssa-uninit.c
CommitLineData
34f97b94 1/* Predicate aware uninitialized variable warning.
5624e564 2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
34f97b94
XDL
3 Contributed by Xinliang David Li <davidxl@google.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 3, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
c7131fb2 24#include "backend.h"
34f97b94 25#include "tree.h"
c7131fb2
AM
26#include "gimple.h"
27#include "hard-reg-set.h"
28#include "ssa.h"
29#include "alias.h"
40e23961 30#include "fold-const.h"
34f97b94 31#include "flags.h"
34f97b94 32#include "tm_p.h"
cf835838 33#include "gimple-pretty-print.h"
2fb9a547 34#include "internal-fn.h"
5be5c238 35#include "gimple-iterator.h"
442b4905 36#include "tree-ssa.h"
34f97b94 37#include "tree-inline.h"
34f97b94 38#include "tree-pass.h"
718f9c0f 39#include "diagnostic-core.h"
92261ce0 40#include "params.h"
666e8e06 41#include "tree-cfg.h"
34f97b94
XDL
42
43/* This implements the pass that does predicate aware warning on uses of
44 possibly uninitialized variables. The pass first collects the set of
45 possibly uninitialized SSA names. For each such name, it walks through
46 all its immediate uses. For each immediate use, it rebuilds the condition
47 expression (the predicate) that guards the use. The predicate is then
48 examined to see if the variable is always defined under that same condition.
49 This is done either by pruning the unrealizable paths that lead to the
50 default definitions or by checking if the predicate set that guards the
51 defining paths is a superset of the use predicate. */
52
53
54/* Pointer set of potentially undefined ssa names, i.e.,
55 ssa names that are defined by phi with operands that
56 are not defined or potentially undefined. */
6e2830c3 57static hash_set<tree> *possibly_undefined_names = 0;
34f97b94
XDL
58
59/* Bit mask handling macros. */
60#define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
61#define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
62#define MASK_EMPTY(mask) (mask == 0)
63
64/* Returns the first bit position (starting from LSB)
65 in mask that is non zero. Returns -1 if the mask is empty. */
66static int
67get_mask_first_set_bit (unsigned mask)
68{
69 int pos = 0;
70 if (mask == 0)
71 return -1;
72
73 while ((mask & (1 << pos)) == 0)
74 pos++;
75
76 return pos;
77}
78#define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
79
34f97b94 80/* Return true if T, an SSA_NAME, has an undefined value. */
c152901f
AM
81static bool
82has_undefined_value_p (tree t)
34f97b94 83{
c152901f 84 return (ssa_undefined_value_p (t)
34f97b94 85 || (possibly_undefined_names
6e2830c3 86 && possibly_undefined_names->contains (t)));
34f97b94
XDL
87}
88
c152901f
AM
89
90
91/* Like has_undefined_value_p, but don't return true if TREE_NO_WARNING
ba7e83f8
JJ
92 is set on SSA_NAME_VAR. */
93
94static inline bool
c152901f
AM
95uninit_undefined_value_p (tree t) {
96 if (!has_undefined_value_p (t))
ba7e83f8
JJ
97 return false;
98 if (SSA_NAME_VAR (t) && TREE_NO_WARNING (SSA_NAME_VAR (t)))
99 return false;
100 return true;
101}
102
c152901f
AM
103/* Emit warnings for uninitialized variables. This is done in two passes.
104
105 The first pass notices real uses of SSA names with undefined values.
106 Such uses are unconditionally uninitialized, and we can be certain that
107 such a use is a mistake. This pass is run before most optimizations,
108 so that we catch as many as we can.
109
110 The second pass follows PHI nodes to find uses that are potentially
111 uninitialized. In this case we can't necessarily prove that the use
112 is really uninitialized. This pass is run after most optimizations,
113 so that we thread as many jumps and possible, and delete as much dead
114 code as possible, in order to reduce false positives. We also look
115 again for plain uninitialized variables, since optimization may have
116 changed conditionally uninitialized to unconditionally uninitialized. */
117
118/* Emit a warning for EXPR based on variable VAR at the point in the
119 program T, an SSA_NAME, is used being uninitialized. The exact
e1ec47c4
TP
120 warning text is in MSGID and DATA is the gimple stmt with info about
121 the location in source code. When DATA is a GIMPLE_PHI, PHIARG_IDX
122 gives which argument of the phi node to take the location from. WC
123 is the warning code. */
c152901f
AM
124
125static void
e1ec47c4
TP
126warn_uninit (enum opt_code wc, tree t, tree expr, tree var,
127 const char *gmsgid, void *data, location_t phiarg_loc)
c152901f 128{
355fe088 129 gimple *context = (gimple *) data;
c152901f
AM
130 location_t location, cfun_loc;
131 expanded_location xloc, floc;
132
e1ec47c4
TP
133 /* Ignore COMPLEX_EXPR as initializing only a part of a complex
134 turns in a COMPLEX_EXPR with the not initialized part being
135 set to its previous (undefined) value. */
136 if (is_gimple_assign (context)
137 && gimple_assign_rhs_code (context) == COMPLEX_EXPR)
138 return;
c152901f
AM
139 if (!has_undefined_value_p (t))
140 return;
141
142 /* TREE_NO_WARNING either means we already warned, or the front end
143 wishes to suppress the warning. */
144 if ((context
145 && (gimple_no_warning_p (context)
146 || (gimple_assign_single_p (context)
147 && TREE_NO_WARNING (gimple_assign_rhs1 (context)))))
148 || TREE_NO_WARNING (expr))
149 return;
150
e1ec47c4
TP
151 if (context != NULL && gimple_has_location (context))
152 location = gimple_location (context);
153 else if (phiarg_loc != UNKNOWN_LOCATION)
154 location = phiarg_loc;
155 else
156 location = DECL_SOURCE_LOCATION (var);
c152901f
AM
157 location = linemap_resolve_location (line_table, location,
158 LRK_SPELLING_LOCATION,
159 NULL);
160 cfun_loc = DECL_SOURCE_LOCATION (cfun->decl);
161 xloc = expand_location (location);
162 floc = expand_location (cfun_loc);
163 if (warning_at (location, wc, gmsgid, expr))
164 {
165 TREE_NO_WARNING (expr) = 1;
166
167 if (location == DECL_SOURCE_LOCATION (var))
168 return;
169 if (xloc.file != floc.file
170 || linemap_location_before_p (line_table,
171 location, cfun_loc)
172 || linemap_location_before_p (line_table,
173 cfun->function_end_locus,
174 location))
175 inform (DECL_SOURCE_LOCATION (var), "%qD was declared here", var);
176 }
177}
178
179static unsigned int
180warn_uninitialized_vars (bool warn_possibly_uninitialized)
181{
182 gimple_stmt_iterator gsi;
183 basic_block bb;
184
11cd3bed 185 FOR_EACH_BB_FN (bb, cfun)
c152901f
AM
186 {
187 bool always_executed = dominated_by_p (CDI_POST_DOMINATORS,
fefa31b5 188 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)), bb);
c152901f
AM
189 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
190 {
355fe088 191 gimple *stmt = gsi_stmt (gsi);
c152901f
AM
192 use_operand_p use_p;
193 ssa_op_iter op_iter;
194 tree use;
195
196 if (is_gimple_debug (stmt))
197 continue;
198
199 /* We only do data flow with SSA_NAMEs, so that's all we
200 can warn about. */
201 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, op_iter, SSA_OP_USE)
202 {
203 use = USE_FROM_PTR (use_p);
204 if (always_executed)
205 warn_uninit (OPT_Wuninitialized, use,
206 SSA_NAME_VAR (use), SSA_NAME_VAR (use),
207 "%qD is used uninitialized in this function",
e1ec47c4 208 stmt, UNKNOWN_LOCATION);
c152901f
AM
209 else if (warn_possibly_uninitialized)
210 warn_uninit (OPT_Wmaybe_uninitialized, use,
211 SSA_NAME_VAR (use), SSA_NAME_VAR (use),
212 "%qD may be used uninitialized in this function",
e1ec47c4 213 stmt, UNKNOWN_LOCATION);
c152901f
AM
214 }
215
216 /* For memory the only cheap thing we can do is see if we
217 have a use of the default def of the virtual operand.
c152901f
AM
218 ??? Not so cheap would be to use the alias oracle via
219 walk_aliased_vdefs, if we don't find any aliasing vdef
220 warn as is-used-uninitialized, if we don't find an aliasing
221 vdef that kills our use (stmt_kills_ref_p), warn as
222 may-be-used-uninitialized. But this walk is quadratic and
223 so must be limited which means we would miss warning
224 opportunities. */
225 use = gimple_vuse (stmt);
226 if (use
227 && gimple_assign_single_p (stmt)
228 && !gimple_vdef (stmt)
229 && SSA_NAME_IS_DEFAULT_DEF (use))
230 {
231 tree rhs = gimple_assign_rhs1 (stmt);
232 tree base = get_base_address (rhs);
233
234 /* Do not warn if it can be initialized outside this function. */
235 if (TREE_CODE (base) != VAR_DECL
236 || DECL_HARD_REGISTER (base)
237 || is_global_var (base))
238 continue;
239
240 if (always_executed)
927734cf 241 warn_uninit (OPT_Wuninitialized, use,
c152901f
AM
242 gimple_assign_rhs1 (stmt), base,
243 "%qE is used uninitialized in this function",
e1ec47c4 244 stmt, UNKNOWN_LOCATION);
c152901f
AM
245 else if (warn_possibly_uninitialized)
246 warn_uninit (OPT_Wmaybe_uninitialized, use,
247 gimple_assign_rhs1 (stmt), base,
248 "%qE may be used uninitialized in this function",
e1ec47c4 249 stmt, UNKNOWN_LOCATION);
c152901f
AM
250 }
251 }
252 }
253
254 return 0;
255}
256
927734cf
XDL
257/* Checks if the operand OPND of PHI is defined by
258 another phi with one operand defined by this PHI,
259 but the rest operands are all defined. If yes,
026c3cfd 260 returns true to skip this operand as being
34f97b94
XDL
261 redundant. Can be enhanced to be more general. */
262
263static bool
355fe088 264can_skip_redundant_opnd (tree opnd, gimple *phi)
34f97b94 265{
355fe088 266 gimple *op_def;
34f97b94
XDL
267 tree phi_def;
268 int i, n;
269
270 phi_def = gimple_phi_result (phi);
271 op_def = SSA_NAME_DEF_STMT (opnd);
272 if (gimple_code (op_def) != GIMPLE_PHI)
273 return false;
274 n = gimple_phi_num_args (op_def);
275 for (i = 0; i < n; ++i)
276 {
277 tree op = gimple_phi_arg_def (op_def, i);
278 if (TREE_CODE (op) != SSA_NAME)
279 continue;
ba7e83f8 280 if (op != phi_def && uninit_undefined_value_p (op))
34f97b94
XDL
281 return false;
282 }
283
284 return true;
285}
286
287/* Returns a bit mask holding the positions of arguments in PHI
288 that have empty (or possibly empty) definitions. */
289
290static unsigned
538dd0b7 291compute_uninit_opnds_pos (gphi *phi)
34f97b94
XDL
292{
293 size_t i, n;
294 unsigned uninit_opnds = 0;
295
296 n = gimple_phi_num_args (phi);
98d30e4f
XDL
297 /* Bail out for phi with too many args. */
298 if (n > 32)
299 return 0;
34f97b94
XDL
300
301 for (i = 0; i < n; ++i)
302 {
303 tree op = gimple_phi_arg_def (phi, i);
304 if (TREE_CODE (op) == SSA_NAME
ba7e83f8 305 && uninit_undefined_value_p (op)
34f97b94 306 && !can_skip_redundant_opnd (op, phi))
e7d764f3 307 {
e7d764f3
JJ
308 if (cfun->has_nonlocal_label || cfun->calls_setjmp)
309 {
aea0101d
RB
310 /* Ignore SSA_NAMEs that appear on abnormal edges
311 somewhere. */
312 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
313 continue;
e7d764f3
JJ
314 }
315 MASK_SET_BIT (uninit_opnds, i);
316 }
34f97b94
XDL
317 }
318 return uninit_opnds;
319}
320
321/* Find the immediate postdominator PDOM of the specified
322 basic block BLOCK. */
323
324static inline basic_block
325find_pdom (basic_block block)
326{
fefa31b5
DM
327 if (block == EXIT_BLOCK_PTR_FOR_FN (cfun))
328 return EXIT_BLOCK_PTR_FOR_FN (cfun);
34f97b94
XDL
329 else
330 {
331 basic_block bb
332 = get_immediate_dominator (CDI_POST_DOMINATORS, block);
333 if (! bb)
fefa31b5 334 return EXIT_BLOCK_PTR_FOR_FN (cfun);
34f97b94
XDL
335 return bb;
336 }
337}
338
339/* Find the immediate DOM of the specified
340 basic block BLOCK. */
341
342static inline basic_block
343find_dom (basic_block block)
344{
fefa31b5
DM
345 if (block == ENTRY_BLOCK_PTR_FOR_FN (cfun))
346 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
34f97b94
XDL
347 else
348 {
349 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
350 if (! bb)
fefa31b5 351 return ENTRY_BLOCK_PTR_FOR_FN (cfun);
34f97b94
XDL
352 return bb;
353 }
354}
355
356/* Returns true if BB1 is postdominating BB2 and BB1 is
357 not a loop exit bb. The loop exit bb check is simple and does
358 not cover all cases. */
359
360static bool
361is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
362{
363 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
364 return false;
365
366 if (single_pred_p (bb1) && !single_succ_p (bb2))
367 return false;
368
369 return true;
370}
371
372/* Find the closest postdominator of a specified BB, which is control
373 equivalent to BB. */
374
375static inline basic_block
376find_control_equiv_block (basic_block bb)
377{
378 basic_block pdom;
379
380 pdom = find_pdom (bb);
381
382 /* Skip the postdominating bb that is also loop exit. */
383 if (!is_non_loop_exit_postdominating (pdom, bb))
384 return NULL;
385
386 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
387 return pdom;
388
389 return NULL;
390}
391
392#define MAX_NUM_CHAINS 8
393#define MAX_CHAIN_LEN 5
4dc1d68c 394#define MAX_POSTDOM_CHECK 8
666e8e06 395#define MAX_SWITCH_CASES 40
34f97b94
XDL
396
397/* Computes the control dependence chains (paths of edges)
398 for DEP_BB up to the dominating basic block BB (the head node of a
92261ce0
JJ
399 chain should be dominated by it). CD_CHAINS is pointer to an
400 array holding the result chains. CUR_CD_CHAIN is the current
34f97b94
XDL
401 chain being computed. *NUM_CHAINS is total number of chains. The
402 function returns true if the information is successfully computed,
403 return false if there is no control dependence or not computed. */
404
405static bool
406compute_control_dep_chain (basic_block bb, basic_block dep_bb,
9771b263 407 vec<edge> *cd_chains,
34f97b94 408 size_t *num_chains,
92261ce0
JJ
409 vec<edge> *cur_cd_chain,
410 int *num_calls)
34f97b94
XDL
411{
412 edge_iterator ei;
413 edge e;
414 size_t i;
415 bool found_cd_chain = false;
416 size_t cur_chain_len = 0;
417
418 if (EDGE_COUNT (bb->succs) < 2)
419 return false;
420
92261ce0
JJ
421 if (*num_calls > PARAM_VALUE (PARAM_UNINIT_CONTROL_DEP_ATTEMPTS))
422 return false;
423 ++*num_calls;
424
927734cf 425 /* Could use a set instead. */
9771b263 426 cur_chain_len = cur_cd_chain->length ();
34f97b94
XDL
427 if (cur_chain_len > MAX_CHAIN_LEN)
428 return false;
429
430 for (i = 0; i < cur_chain_len; i++)
431 {
9771b263 432 edge e = (*cur_cd_chain)[i];
927734cf 433 /* Cycle detected. */
34f97b94
XDL
434 if (e->src == bb)
435 return false;
436 }
437
438 FOR_EACH_EDGE (e, ei, bb->succs)
439 {
440 basic_block cd_bb;
4dc1d68c 441 int post_dom_check = 0;
34f97b94
XDL
442 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
443 continue;
444
445 cd_bb = e->dest;
9771b263 446 cur_cd_chain->safe_push (e);
34f97b94
XDL
447 while (!is_non_loop_exit_postdominating (cd_bb, bb))
448 {
449 if (cd_bb == dep_bb)
450 {
451 /* Found a direct control dependence. */
452 if (*num_chains < MAX_NUM_CHAINS)
453 {
9771b263 454 cd_chains[*num_chains] = cur_cd_chain->copy ();
34f97b94
XDL
455 (*num_chains)++;
456 }
457 found_cd_chain = true;
927734cf 458 /* Check path from next edge. */
34f97b94
XDL
459 break;
460 }
461
462 /* Now check if DEP_BB is indirectly control dependent on BB. */
463 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
92261ce0 464 num_chains, cur_cd_chain, num_calls))
34f97b94
XDL
465 {
466 found_cd_chain = true;
467 break;
468 }
469
470 cd_bb = find_pdom (cd_bb);
4dc1d68c 471 post_dom_check++;
fefa31b5
DM
472 if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || post_dom_check >
473 MAX_POSTDOM_CHECK)
34f97b94
XDL
474 break;
475 }
9771b263
DN
476 cur_cd_chain->pop ();
477 gcc_assert (cur_cd_chain->length () == cur_chain_len);
34f97b94 478 }
9771b263 479 gcc_assert (cur_cd_chain->length () == cur_chain_len);
34f97b94
XDL
480
481 return found_cd_chain;
482}
483
927734cf
XDL
484/* The type to represent a simple predicate */
485
a79683d5 486struct pred_info
34f97b94 487{
927734cf
XDL
488 tree pred_lhs;
489 tree pred_rhs;
490 enum tree_code cond_code;
34f97b94 491 bool invert;
a79683d5 492};
927734cf
XDL
493
494/* The type to represent a sequence of predicates grouped
495 with .AND. operation. */
34f97b94 496
927734cf 497typedef vec<pred_info, va_heap, vl_ptr> pred_chain;
34f97b94 498
927734cf
XDL
499/* The type to represent a sequence of pred_chains grouped
500 with .OR. operation. */
501
502typedef vec<pred_chain, va_heap, vl_ptr> pred_chain_union;
34f97b94
XDL
503
504/* Converts the chains of control dependence edges into a set of
505 predicates. A control dependence chain is represented by a vector
506 edges. DEP_CHAINS points to an array of dependence chains.
507 NUM_CHAINS is the size of the chain array. One edge in a dependence
927734cf 508 chain is mapped to predicate expression represented by pred_info
34f97b94 509 type. One dependence chain is converted to a composite predicate that
927734cf
XDL
510 is the result of AND operation of pred_info mapped to each edge.
511 A composite predicate is presented by a vector of pred_info. On
34f97b94
XDL
512 return, *PREDS points to the resulting array of composite predicates.
513 *NUM_PREDS is the number of composite predictes. */
514
515static bool
9771b263 516convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
34f97b94 517 size_t num_chains,
927734cf 518 pred_chain_union *preds)
34f97b94
XDL
519{
520 bool has_valid_pred = false;
521 size_t i, j;
522 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
523 return false;
524
34f97b94
XDL
525 /* Now convert the control dep chain into a set
526 of predicates. */
927734cf 527 preds->reserve (num_chains);
34f97b94
XDL
528
529 for (i = 0; i < num_chains; i++)
530 {
9771b263 531 vec<edge> one_cd_chain = dep_chains[i];
c375a3a4
DL
532
533 has_valid_pred = false;
927734cf 534 pred_chain t_chain = vNULL;
9771b263 535 for (j = 0; j < one_cd_chain.length (); j++)
34f97b94 536 {
355fe088 537 gimple *cond_stmt;
34f97b94
XDL
538 gimple_stmt_iterator gsi;
539 basic_block guard_bb;
927734cf 540 pred_info one_pred;
34f97b94
XDL
541 edge e;
542
9771b263 543 e = one_cd_chain[j];
34f97b94
XDL
544 guard_bb = e->src;
545 gsi = gsi_last_bb (guard_bb);
546 if (gsi_end_p (gsi))
547 {
548 has_valid_pred = false;
549 break;
550 }
551 cond_stmt = gsi_stmt (gsi);
927734cf 552 if (is_gimple_call (cond_stmt)
34f97b94
XDL
553 && EDGE_COUNT (e->src->succs) >= 2)
554 {
555 /* Ignore EH edge. Can add assertion
556 on the other edge's flag. */
557 continue;
558 }
559 /* Skip if there is essentially one succesor. */
560 if (EDGE_COUNT (e->src->succs) == 2)
561 {
562 edge e1;
563 edge_iterator ei1;
564 bool skip = false;
565
566 FOR_EACH_EDGE (e1, ei1, e->src->succs)
567 {
568 if (EDGE_COUNT (e1->dest->succs) == 0)
569 {
570 skip = true;
571 break;
572 }
573 }
574 if (skip)
575 continue;
576 }
666e8e06
RB
577 if (gimple_code (cond_stmt) == GIMPLE_COND)
578 {
579 one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
580 one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
581 one_pred.cond_code = gimple_cond_code (cond_stmt);
582 one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);
583 t_chain.safe_push (one_pred);
584 has_valid_pred = true;
585 }
586 else if (gswitch *gs = dyn_cast <gswitch *> (cond_stmt))
587 {
588 /* Avoid quadratic behavior. */
589 if (gimple_switch_num_labels (gs) > MAX_SWITCH_CASES)
590 {
591 has_valid_pred = false;
592 break;
593 }
594 /* Find the case label. */
595 tree l = NULL_TREE;
596 unsigned idx;
597 for (idx = 0; idx < gimple_switch_num_labels (gs); ++idx)
598 {
599 tree tl = gimple_switch_label (gs, idx);
600 if (e->dest == label_to_block (CASE_LABEL (tl)))
601 {
602 if (!l)
603 l = tl;
604 else
605 {
606 l = NULL_TREE;
607 break;
608 }
609 }
610 }
611 /* If more than one label reaches this block or the case
612 label doesn't have a single value (like the default one)
613 fail. */
614 if (!l
615 || !CASE_LOW (l)
616 || (CASE_HIGH (l) && !operand_equal_p (CASE_LOW (l),
617 CASE_HIGH (l), 0)))
618 {
619 has_valid_pred = false;
620 break;
621 }
622 one_pred.pred_lhs = gimple_switch_index (gs);
623 one_pred.pred_rhs = CASE_LOW (l);
624 one_pred.cond_code = EQ_EXPR;
625 one_pred.invert = false;
626 t_chain.safe_push (one_pred);
627 has_valid_pred = true;
628 }
629 else
34f97b94
XDL
630 {
631 has_valid_pred = false;
632 break;
633 }
34f97b94
XDL
634 }
635
636 if (!has_valid_pred)
637 break;
927734cf
XDL
638 else
639 preds->safe_push (t_chain);
34f97b94
XDL
640 }
641 return has_valid_pred;
642}
643
644/* Computes all control dependence chains for USE_BB. The control
645 dependence chains are then converted to an array of composite
646 predicates pointed to by PREDS. PHI_BB is the basic block of
647 the phi whose result is used in USE_BB. */
648
649static bool
927734cf 650find_predicates (pred_chain_union *preds,
34f97b94
XDL
651 basic_block phi_bb,
652 basic_block use_bb)
653{
654 size_t num_chains = 0, i;
92261ce0
JJ
655 int num_calls = 0;
656 vec<edge> dep_chains[MAX_NUM_CHAINS];
657 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
34f97b94
XDL
658 bool has_valid_pred = false;
659 basic_block cd_root = 0;
660
34f97b94
XDL
661 /* First find the closest bb that is control equivalent to PHI_BB
662 that also dominates USE_BB. */
663 cd_root = phi_bb;
664 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
665 {
666 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
667 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
668 cd_root = ctrl_eq_bb;
669 else
670 break;
671 }
672
92261ce0
JJ
673 compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
674 &cur_chain, &num_calls);
34f97b94
XDL
675
676 has_valid_pred
92261ce0 677 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
34f97b94 678 for (i = 0; i < num_chains; i++)
9771b263 679 dep_chains[i].release ();
34f97b94
XDL
680 return has_valid_pred;
681}
682
683/* Computes the set of incoming edges of PHI that have non empty
684 definitions of a phi chain. The collection will be done
685 recursively on operands that are defined by phis. CD_ROOT
686 is the control dependence root. *EDGES holds the result, and
687 VISITED_PHIS is a pointer set for detecting cycles. */
688
689static void
538dd0b7 690collect_phi_def_edges (gphi *phi, basic_block cd_root,
9771b263 691 vec<edge> *edges,
355fe088 692 hash_set<gimple *> *visited_phis)
34f97b94
XDL
693{
694 size_t i, n;
695 edge opnd_edge;
696 tree opnd;
697
6e2830c3 698 if (visited_phis->add (phi))
34f97b94
XDL
699 return;
700
701 n = gimple_phi_num_args (phi);
702 for (i = 0; i < n; i++)
703 {
704 opnd_edge = gimple_phi_arg_edge (phi, i);
705 opnd = gimple_phi_arg_def (phi, i);
706
e74780a3
XDL
707 if (TREE_CODE (opnd) != SSA_NAME)
708 {
709 if (dump_file && (dump_flags & TDF_DETAILS))
710 {
711 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
712 print_gimple_stmt (dump_file, phi, 0, 0);
713 }
9771b263 714 edges->safe_push (opnd_edge);
e74780a3 715 }
34f97b94
XDL
716 else
717 {
355fe088 718 gimple *def = SSA_NAME_DEF_STMT (opnd);
e74780a3 719
34f97b94
XDL
720 if (gimple_code (def) == GIMPLE_PHI
721 && dominated_by_p (CDI_DOMINATORS,
722 gimple_bb (def), cd_root))
538dd0b7 723 collect_phi_def_edges (as_a <gphi *> (def), cd_root, edges,
34f97b94 724 visited_phis);
ba7e83f8 725 else if (!uninit_undefined_value_p (opnd))
e74780a3
XDL
726 {
727 if (dump_file && (dump_flags & TDF_DETAILS))
728 {
729 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
730 print_gimple_stmt (dump_file, phi, 0, 0);
731 }
9771b263 732 edges->safe_push (opnd_edge);
e74780a3 733 }
34f97b94
XDL
734 }
735 }
736}
737
738/* For each use edge of PHI, computes all control dependence chains.
739 The control dependence chains are then converted to an array of
740 composite predicates pointed to by PREDS. */
741
742static bool
538dd0b7 743find_def_preds (pred_chain_union *preds, gphi *phi)
34f97b94
XDL
744{
745 size_t num_chains = 0, i, n;
92261ce0
JJ
746 vec<edge> dep_chains[MAX_NUM_CHAINS];
747 auto_vec<edge, MAX_CHAIN_LEN + 1> cur_chain;
6e1aa848 748 vec<edge> def_edges = vNULL;
34f97b94
XDL
749 bool has_valid_pred = false;
750 basic_block phi_bb, cd_root = 0;
34f97b94 751
34f97b94
XDL
752 phi_bb = gimple_bb (phi);
753 /* First find the closest dominating bb to be
754 the control dependence root */
755 cd_root = find_dom (phi_bb);
756 if (!cd_root)
757 return false;
758
355fe088 759 hash_set<gimple *> visited_phis;
6e2830c3 760 collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);
34f97b94 761
9771b263 762 n = def_edges.length ();
34f97b94
XDL
763 if (n == 0)
764 return false;
765
766 for (i = 0; i < n; i++)
767 {
768 size_t prev_nc, j;
92261ce0 769 int num_calls = 0;
34f97b94
XDL
770 edge opnd_edge;
771
9771b263 772 opnd_edge = def_edges[i];
34f97b94 773 prev_nc = num_chains;
92261ce0
JJ
774 compute_control_dep_chain (cd_root, opnd_edge->src, dep_chains,
775 &num_chains, &cur_chain, &num_calls);
34f97b94
XDL
776
777 /* Now update the newly added chains with
778 the phi operand edge: */
779 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
780 {
92261ce0
JJ
781 if (prev_nc == num_chains && num_chains < MAX_NUM_CHAINS)
782 dep_chains[num_chains++] = vNULL;
34f97b94 783 for (j = prev_nc; j < num_chains; j++)
92261ce0 784 dep_chains[j].safe_push (opnd_edge);
34f97b94
XDL
785 }
786 }
787
788 has_valid_pred
92261ce0 789 = convert_control_dep_chain_into_preds (dep_chains, num_chains, preds);
34f97b94 790 for (i = 0; i < num_chains; i++)
9771b263 791 dep_chains[i].release ();
34f97b94
XDL
792 return has_valid_pred;
793}
794
795/* Dumps the predicates (PREDS) for USESTMT. */
796
797static void
355fe088 798dump_predicates (gimple *usestmt, pred_chain_union preds,
34f97b94
XDL
799 const char* msg)
800{
801 size_t i, j;
927734cf 802 pred_chain one_pred_chain = vNULL;
81018dcf 803 fprintf (dump_file, "%s", msg);
34f97b94 804 print_gimple_stmt (dump_file, usestmt, 0, 0);
927734cf
XDL
805 fprintf (dump_file, "is guarded by :\n\n");
806 size_t num_preds = preds.length ();
807 /* Do some dumping here: */
34f97b94
XDL
808 for (i = 0; i < num_preds; i++)
809 {
810 size_t np;
811
812 one_pred_chain = preds[i];
9771b263 813 np = one_pred_chain.length ();
34f97b94
XDL
814
815 for (j = 0; j < np; j++)
816 {
927734cf
XDL
817 pred_info one_pred = one_pred_chain[j];
818 if (one_pred.invert)
34f97b94 819 fprintf (dump_file, " (.NOT.) ");
927734cf
XDL
820 print_generic_expr (dump_file, one_pred.pred_lhs, 0);
821 fprintf (dump_file, " %s ", op_symbol_code (one_pred.cond_code));
822 print_generic_expr (dump_file, one_pred.pred_rhs, 0);
34f97b94 823 if (j < np - 1)
927734cf
XDL
824 fprintf (dump_file, " (.AND.) ");
825 else
826 fprintf (dump_file, "\n");
34f97b94
XDL
827 }
828 if (i < num_preds - 1)
829 fprintf (dump_file, "(.OR.)\n");
927734cf
XDL
830 else
831 fprintf (dump_file, "\n\n");
34f97b94
XDL
832 }
833}
834
835/* Destroys the predicate set *PREDS. */
836
837static void
927734cf 838destroy_predicate_vecs (pred_chain_union preds)
34f97b94 839{
927734cf
XDL
840 size_t i;
841
842 size_t n = preds.length ();
34f97b94 843 for (i = 0; i < n; i++)
927734cf
XDL
844 preds[i].release ();
845 preds.release ();
34f97b94
XDL
846}
847
848
927734cf 849/* Computes the 'normalized' conditional code with operand
34f97b94
XDL
850 swapping and condition inversion. */
851
852static enum tree_code
853get_cmp_code (enum tree_code orig_cmp_code,
854 bool swap_cond, bool invert)
855{
856 enum tree_code tc = orig_cmp_code;
857
858 if (swap_cond)
859 tc = swap_tree_comparison (orig_cmp_code);
860 if (invert)
861 tc = invert_tree_comparison (tc, false);
862
863 switch (tc)
864 {
865 case LT_EXPR:
866 case LE_EXPR:
867 case GT_EXPR:
868 case GE_EXPR:
869 case EQ_EXPR:
870 case NE_EXPR:
871 break;
872 default:
873 return ERROR_MARK;
874 }
875 return tc;
876}
877
878/* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
879 all values in the range satisfies (x CMPC BOUNDARY) == true. */
880
881static bool
882is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
883{
884 bool inverted = false;
885 bool is_unsigned;
886 bool result;
887
888 /* Only handle integer constant here. */
889 if (TREE_CODE (val) != INTEGER_CST
890 || TREE_CODE (boundary) != INTEGER_CST)
891 return true;
892
893 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
894
895 if (cmpc == GE_EXPR || cmpc == GT_EXPR
896 || cmpc == NE_EXPR)
897 {
898 cmpc = invert_tree_comparison (cmpc, false);
899 inverted = true;
900 }
901
902 if (is_unsigned)
903 {
904 if (cmpc == EQ_EXPR)
905 result = tree_int_cst_equal (val, boundary);
906 else if (cmpc == LT_EXPR)
807e902e 907 result = tree_int_cst_lt (val, boundary);
34f97b94
XDL
908 else
909 {
910 gcc_assert (cmpc == LE_EXPR);
807e902e 911 result = tree_int_cst_le (val, boundary);
34f97b94
XDL
912 }
913 }
914 else
915 {
916 if (cmpc == EQ_EXPR)
917 result = tree_int_cst_equal (val, boundary);
918 else if (cmpc == LT_EXPR)
807e902e 919 result = tree_int_cst_lt (val, boundary);
34f97b94
XDL
920 else
921 {
922 gcc_assert (cmpc == LE_EXPR);
923 result = (tree_int_cst_equal (val, boundary)
807e902e 924 || tree_int_cst_lt (val, boundary));
34f97b94
XDL
925 }
926 }
927
928 if (inverted)
929 result ^= 1;
930
931 return result;
932}
933
934/* Returns true if PRED is common among all the predicate
935 chains (PREDS) (and therefore can be factored out).
936 NUM_PRED_CHAIN is the size of array PREDS. */
937
938static bool
927734cf
XDL
939find_matching_predicate_in_rest_chains (pred_info pred,
940 pred_chain_union preds,
34f97b94
XDL
941 size_t num_pred_chains)
942{
943 size_t i, j, n;
944
927734cf 945 /* Trival case. */
34f97b94
XDL
946 if (num_pred_chains == 1)
947 return true;
948
949 for (i = 1; i < num_pred_chains; i++)
950 {
951 bool found = false;
927734cf 952 pred_chain one_chain = preds[i];
9771b263 953 n = one_chain.length ();
34f97b94
XDL
954 for (j = 0; j < n; j++)
955 {
927734cf
XDL
956 pred_info pred2 = one_chain[j];
957 /* Can relax the condition comparison to not
34f97b94
XDL
958 use address comparison. However, the most common
959 case is that multiple control dependent paths share
960 a common path prefix, so address comparison should
961 be ok. */
962
927734cf
XDL
963 if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
964 && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
965 && pred2.invert == pred.invert)
34f97b94
XDL
966 {
967 found = true;
968 break;
969 }
970 }
971 if (!found)
972 return false;
973 }
974 return true;
975}
976
977/* Forward declaration. */
978static bool
355fe088 979is_use_properly_guarded (gimple *use_stmt,
34f97b94 980 basic_block use_bb,
538dd0b7 981 gphi *phi,
34f97b94 982 unsigned uninit_opnds,
c0503346 983 pred_chain_union *def_preds,
538dd0b7 984 hash_set<gphi *> *visited_phis);
34f97b94 985
2edb37a6
XDL
986/* Returns true if all uninitialized opnds are pruned. Returns false
987 otherwise. PHI is the phi node with uninitialized operands,
988 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
989 FLAG_DEF is the statement defining the flag guarding the use of the
990 PHI output, BOUNDARY_CST is the const value used in the predicate
991 associated with the flag, CMP_CODE is the comparison code used in
992 the predicate, VISITED_PHIS is the pointer set of phis visited, and
993 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
994 that are also phis.
995
996 Example scenario:
997
998 BB1:
999 flag_1 = phi <0, 1> // (1)
1000 var_1 = phi <undef, some_val>
1001
1002
1003 BB2:
1004 flag_2 = phi <0, flag_1, flag_1> // (2)
1005 var_2 = phi <undef, var_1, var_1>
1006 if (flag_2 == 1)
1007 goto BB3;
1008
1009 BB3:
1010 use of var_2 // (3)
1011
1012 Because some flag arg in (1) is not constant, if we do not look into the
1013 flag phis recursively, it is conservatively treated as unknown and var_1
1014 is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
1015 a false warning will be emitted. Checking recursively into (1), the compiler can
1016 find out that only some_val (which is defined) can flow into (3) which is OK.
1017
1018*/
1019
1020static bool
538dd0b7 1021prune_uninit_phi_opnds_in_unrealizable_paths (gphi *phi,
927734cf 1022 unsigned uninit_opnds,
538dd0b7 1023 gphi *flag_def,
927734cf
XDL
1024 tree boundary_cst,
1025 enum tree_code cmp_code,
538dd0b7 1026 hash_set<gphi *> *visited_phis,
927734cf 1027 bitmap *visited_flag_phis)
2edb37a6
XDL
1028{
1029 unsigned i;
1030
1031 for (i = 0; i < MIN (32, gimple_phi_num_args (flag_def)); i++)
1032 {
1033 tree flag_arg;
1034
1035 if (!MASK_TEST_BIT (uninit_opnds, i))
1036 continue;
1037
1038 flag_arg = gimple_phi_arg_def (flag_def, i);
1039 if (!is_gimple_constant (flag_arg))
1040 {
538dd0b7 1041 gphi *flag_arg_def, *phi_arg_def;
2edb37a6
XDL
1042 tree phi_arg;
1043 unsigned uninit_opnds_arg_phi;
1044
1045 if (TREE_CODE (flag_arg) != SSA_NAME)
1046 return false;
538dd0b7
DM
1047 flag_arg_def = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (flag_arg));
1048 if (!flag_arg_def)
2edb37a6
XDL
1049 return false;
1050
1051 phi_arg = gimple_phi_arg_def (phi, i);
1052 if (TREE_CODE (phi_arg) != SSA_NAME)
1053 return false;
1054
538dd0b7
DM
1055 phi_arg_def = dyn_cast <gphi *> (SSA_NAME_DEF_STMT (phi_arg));
1056 if (!phi_arg_def)
2edb37a6
XDL
1057 return false;
1058
1059 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
1060 return false;
1061
1062 if (!*visited_flag_phis)
1063 *visited_flag_phis = BITMAP_ALLOC (NULL);
1064
1065 if (bitmap_bit_p (*visited_flag_phis,
1066 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))))
1067 return false;
1068
1069 bitmap_set_bit (*visited_flag_phis,
1070 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1071
1072 /* Now recursively prune the uninitialized phi args. */
1073 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
927734cf
XDL
1074 if (!prune_uninit_phi_opnds_in_unrealizable_paths
1075 (phi_arg_def, uninit_opnds_arg_phi, flag_arg_def,
1076 boundary_cst, cmp_code, visited_phis, visited_flag_phis))
2edb37a6
XDL
1077 return false;
1078
1079 bitmap_clear_bit (*visited_flag_phis,
1080 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
1081 continue;
1082 }
1083
1084 /* Now check if the constant is in the guarded range. */
1085 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
1086 {
1087 tree opnd;
355fe088 1088 gimple *opnd_def;
2edb37a6
XDL
1089
1090 /* Now that we know that this undefined edge is not
1091 pruned. If the operand is defined by another phi,
1092 we can further prune the incoming edges of that
1093 phi by checking the predicates of this operands. */
1094
1095 opnd = gimple_phi_arg_def (phi, i);
1096 opnd_def = SSA_NAME_DEF_STMT (opnd);
538dd0b7 1097 if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
2edb37a6
XDL
1098 {
1099 edge opnd_edge;
1100 unsigned uninit_opnds2
538dd0b7 1101 = compute_uninit_opnds_pos (opnd_def_phi);
c0503346
PP
1102 pred_chain_union def_preds = vNULL;
1103 bool ok;
2edb37a6
XDL
1104 gcc_assert (!MASK_EMPTY (uninit_opnds2));
1105 opnd_edge = gimple_phi_arg_edge (phi, i);
c0503346
PP
1106 ok = is_use_properly_guarded (phi,
1107 opnd_edge->src,
1108 opnd_def_phi,
1109 uninit_opnds2,
1110 &def_preds,
1111 visited_phis);
1112 destroy_predicate_vecs (def_preds);
1113 if (!ok)
1114 return false;
2edb37a6
XDL
1115 }
1116 else
1117 return false;
1118 }
1119 }
1120
1121 return true;
1122}
1123
34f97b94
XDL
1124/* A helper function that determines if the predicate set
1125 of the use is not overlapping with that of the uninit paths.
1126 The most common senario of guarded use is in Example 1:
1127 Example 1:
1128 if (some_cond)
1129 {
1130 x = ...;
1131 flag = true;
1132 }
1133
1134 ... some code ...
1135
1136 if (flag)
1137 use (x);
1138
1139 The real world examples are usually more complicated, but similar
1140 and usually result from inlining:
1141
1142 bool init_func (int * x)
1143 {
1144 if (some_cond)
1145 return false;
1146 *x = ..
1147 return true;
1148 }
1149
1150 void foo(..)
1151 {
1152 int x;
1153
1154 if (!init_func(&x))
1155 return;
1156
1157 .. some_code ...
1158 use (x);
1159 }
1160
1161 Another possible use scenario is in the following trivial example:
1162
1163 Example 2:
1164 if (n > 0)
1165 x = 1;
1166 ...
1167 if (n > 0)
1168 {
1169 if (m < 2)
1170 .. = x;
1171 }
1172
1173 Predicate analysis needs to compute the composite predicate:
1174
1175 1) 'x' use predicate: (n > 0) .AND. (m < 2)
1176 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
1177 (the predicate chain for phi operand defs can be computed
1178 starting from a bb that is control equivalent to the phi's
1179 bb and is dominating the operand def.)
1180
1181 and check overlapping:
1182 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
1183 <==> false
1184
1185 This implementation provides framework that can handle
1186 scenarios. (Note that many simple cases are handled properly
1187 without the predicate analysis -- this is due to jump threading
1188 transformation which eliminates the merge point thus makes
1189 path sensitive analysis unnecessary.)
1190
1191 NUM_PREDS is the number is the number predicate chains, PREDS is
1192 the array of chains, PHI is the phi node whose incoming (undefined)
1193 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
1194 uninit operand positions. VISITED_PHIS is the pointer set of phi
1195 stmts being checked. */
1196
1197
1198static bool
927734cf 1199use_pred_not_overlap_with_undef_path_pred (pred_chain_union preds,
538dd0b7
DM
1200 gphi *phi, unsigned uninit_opnds,
1201 hash_set<gphi *> *visited_phis)
34f97b94
XDL
1202{
1203 unsigned int i, n;
355fe088 1204 gimple *flag_def = 0;
34f97b94
XDL
1205 tree boundary_cst = 0;
1206 enum tree_code cmp_code;
1207 bool swap_cond = false;
1208 bool invert = false;
927734cf 1209 pred_chain the_pred_chain = vNULL;
2edb37a6
XDL
1210 bitmap visited_flag_phis = NULL;
1211 bool all_pruned = false;
927734cf 1212 size_t num_preds = preds.length ();
34f97b94
XDL
1213
1214 gcc_assert (num_preds > 0);
1215 /* Find within the common prefix of multiple predicate chains
1216 a predicate that is a comparison of a flag variable against
1217 a constant. */
1218 the_pred_chain = preds[0];
9771b263 1219 n = the_pred_chain.length ();
34f97b94
XDL
1220 for (i = 0; i < n; i++)
1221 {
34f97b94
XDL
1222 tree cond_lhs, cond_rhs, flag = 0;
1223
927734cf 1224 pred_info the_pred = the_pred_chain[i];
34f97b94 1225
927734cf
XDL
1226 invert = the_pred.invert;
1227 cond_lhs = the_pred.pred_lhs;
1228 cond_rhs = the_pred.pred_rhs;
1229 cmp_code = the_pred.cond_code;
34f97b94
XDL
1230
1231 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
1232 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1233 {
1234 boundary_cst = cond_rhs;
1235 flag = cond_lhs;
1236 }
1237 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
1238 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1239 {
1240 boundary_cst = cond_lhs;
1241 flag = cond_rhs;
1242 swap_cond = true;
1243 }
1244
1245 if (!flag)
1246 continue;
1247
1248 flag_def = SSA_NAME_DEF_STMT (flag);
1249
1250 if (!flag_def)
1251 continue;
1252
1253 if ((gimple_code (flag_def) == GIMPLE_PHI)
1254 && (gimple_bb (flag_def) == gimple_bb (phi))
927734cf
XDL
1255 && find_matching_predicate_in_rest_chains (the_pred, preds,
1256 num_preds))
34f97b94
XDL
1257 break;
1258
1259 flag_def = 0;
1260 }
1261
1262 if (!flag_def)
1263 return false;
1264
1265 /* Now check all the uninit incoming edge has a constant flag value
1266 that is in conflict with the use guard/predicate. */
1267 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1268
1269 if (cmp_code == ERROR_MARK)
1270 return false;
1271
2edb37a6
XDL
1272 all_pruned = prune_uninit_phi_opnds_in_unrealizable_paths (phi,
1273 uninit_opnds,
538dd0b7 1274 as_a <gphi *> (flag_def),
2edb37a6
XDL
1275 boundary_cst,
1276 cmp_code,
1277 visited_phis,
1278 &visited_flag_phis);
34f97b94 1279
2edb37a6
XDL
1280 if (visited_flag_phis)
1281 BITMAP_FREE (visited_flag_phis);
34f97b94 1282
2edb37a6 1283 return all_pruned;
34f97b94
XDL
1284}
1285
927734cf
XDL
1286/* The helper function returns true if two predicates X1 and X2
1287 are equivalent. It assumes the expressions have already
1288 properly re-associated. */
34f97b94
XDL
1289
1290static inline bool
927734cf 1291pred_equal_p (pred_info x1, pred_info x2)
34f97b94 1292{
927734cf
XDL
1293 enum tree_code c1, c2;
1294 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1295 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1296 return false;
34f97b94 1297
927734cf 1298 c1 = x1.cond_code;
c27348aa
MP
1299 if (x1.invert != x2.invert
1300 && TREE_CODE_CLASS (x2.cond_code) == tcc_comparison)
927734cf
XDL
1301 c2 = invert_tree_comparison (x2.cond_code, false);
1302 else
1303 c2 = x2.cond_code;
34f97b94 1304
927734cf
XDL
1305 return c1 == c2;
1306}
34f97b94 1307
927734cf 1308/* Returns true if the predication is testing !=. */
34f97b94 1309
927734cf
XDL
1310static inline bool
1311is_neq_relop_p (pred_info pred)
34f97b94 1312{
34f97b94 1313
927734cf
XDL
1314 return (pred.cond_code == NE_EXPR && !pred.invert)
1315 || (pred.cond_code == EQ_EXPR && pred.invert);
34f97b94
XDL
1316}
1317
927734cf 1318/* Returns true if pred is of the form X != 0. */
34f97b94 1319
927734cf
XDL
1320static inline bool
1321is_neq_zero_form_p (pred_info pred)
34f97b94 1322{
927734cf
XDL
1323 if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
1324 || TREE_CODE (pred.pred_lhs) != SSA_NAME)
1325 return false;
1326 return true;
1327}
34f97b94 1328
927734cf
XDL
1329/* The helper function returns true if two predicates X1
1330 is equivalent to X2 != 0. */
34f97b94 1331
927734cf
XDL
1332static inline bool
1333pred_expr_equal_p (pred_info x1, tree x2)
1334{
1335 if (!is_neq_zero_form_p (x1))
1336 return false;
34f97b94 1337
927734cf 1338 return operand_equal_p (x1.pred_lhs, x2, 0);
34f97b94
XDL
1339}
1340
927734cf
XDL
1341/* Returns true of the domain of single predicate expression
1342 EXPR1 is a subset of that of EXPR2. Returns false if it
1343 can not be proved. */
34f97b94
XDL
1344
1345static bool
927734cf 1346is_pred_expr_subset_of (pred_info expr1, pred_info expr2)
34f97b94 1347{
927734cf 1348 enum tree_code code1, code2;
34f97b94 1349
927734cf 1350 if (pred_equal_p (expr1, expr2))
34f97b94
XDL
1351 return true;
1352
927734cf
XDL
1353 if ((TREE_CODE (expr1.pred_rhs) != INTEGER_CST)
1354 || (TREE_CODE (expr2.pred_rhs) != INTEGER_CST))
1355 return false;
34f97b94 1356
927734cf
XDL
1357 if (!operand_equal_p (expr1.pred_lhs, expr2.pred_lhs, 0))
1358 return false;
34f97b94 1359
927734cf
XDL
1360 code1 = expr1.cond_code;
1361 if (expr1.invert)
1362 code1 = invert_tree_comparison (code1, false);
1363 code2 = expr2.cond_code;
1364 if (expr2.invert)
1365 code2 = invert_tree_comparison (code2, false);
34f97b94 1366
3cd58c0f
RB
1367 if ((code1 == EQ_EXPR || code1 == BIT_AND_EXPR)
1368 && code2 == BIT_AND_EXPR)
666e8e06
RB
1369 return wi::eq_p (expr1.pred_rhs,
1370 wi::bit_and (expr1.pred_rhs, expr2.pred_rhs));
1371
927734cf
XDL
1372 if (code1 != code2 && code2 != NE_EXPR)
1373 return false;
34f97b94 1374
927734cf
XDL
1375 if (is_value_included_in (expr1.pred_rhs, expr2.pred_rhs, code2))
1376 return true;
34f97b94 1377
927734cf
XDL
1378 return false;
1379}
34f97b94 1380
927734cf
XDL
1381/* Returns true if the domain of PRED1 is a subset
1382 of that of PRED2. Returns false if it can not be proved so. */
34f97b94 1383
927734cf
XDL
1384static bool
1385is_pred_chain_subset_of (pred_chain pred1,
1386 pred_chain pred2)
1387{
1388 size_t np1, np2, i1, i2;
34f97b94 1389
927734cf
XDL
1390 np1 = pred1.length ();
1391 np2 = pred2.length ();
34f97b94 1392
927734cf 1393 for (i2 = 0; i2 < np2; i2++)
34f97b94 1394 {
927734cf
XDL
1395 bool found = false;
1396 pred_info info2 = pred2[i2];
1397 for (i1 = 0; i1 < np1; i1++)
1398 {
1399 pred_info info1 = pred1[i1];
1400 if (is_pred_expr_subset_of (info1, info2))
1401 {
1402 found = true;
1403 break;
1404 }
1405 }
1406 if (!found)
1407 return false;
34f97b94 1408 }
927734cf 1409 return true;
34f97b94
XDL
1410}
1411
927734cf
XDL
1412/* Returns true if the domain defined by
1413 one pred chain ONE_PRED is a subset of the domain
1414 of *PREDS. It returns false if ONE_PRED's domain is
1415 not a subset of any of the sub-domains of PREDS
1416 (corresponding to each individual chains in it), even
1417 though it may be still be a subset of whole domain
1418 of PREDS which is the union (ORed) of all its subdomains.
1419 In other words, the result is conservative. */
34f97b94
XDL
1420
1421static bool
927734cf 1422is_included_in (pred_chain one_pred, pred_chain_union preds)
34f97b94
XDL
1423{
1424 size_t i;
927734cf 1425 size_t n = preds.length ();
34f97b94 1426
927734cf 1427 for (i = 0; i < n; i++)
34f97b94 1428 {
927734cf 1429 if (is_pred_chain_subset_of (one_pred, preds[i]))
34f97b94
XDL
1430 return true;
1431 }
927734cf 1432
34f97b94
XDL
1433 return false;
1434}
1435
927734cf
XDL
1436/* Compares two predicate sets PREDS1 and PREDS2 and returns
1437 true if the domain defined by PREDS1 is a superset
1438 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1439 PREDS2 respectively. The implementation chooses not to build
1440 generic trees (and relying on the folding capability of the
1441 compiler), but instead performs brute force comparison of
1442 individual predicate chains (won't be a compile time problem
1443 as the chains are pretty short). When the function returns
1444 false, it does not necessarily mean *PREDS1 is not a superset
1445 of *PREDS2, but mean it may not be so since the analysis can
1446 not prove it. In such cases, false warnings may still be
1447 emitted. */
34f97b94
XDL
1448
1449static bool
927734cf 1450is_superset_of (pred_chain_union preds1, pred_chain_union preds2)
34f97b94 1451{
927734cf
XDL
1452 size_t i, n2;
1453 pred_chain one_pred_chain = vNULL;
34f97b94 1454
927734cf
XDL
1455 n2 = preds2.length ();
1456
1457 for (i = 0; i < n2; i++)
34f97b94 1458 {
927734cf
XDL
1459 one_pred_chain = preds2[i];
1460 if (!is_included_in (one_pred_chain, preds1))
34f97b94
XDL
1461 return false;
1462 }
927734cf 1463
34f97b94
XDL
1464 return true;
1465}
1466
927734cf 1467/* Returns true if TC is AND or OR. */
34f97b94 1468
927734cf
XDL
1469static inline bool
1470is_and_or_or_p (enum tree_code tc, tree type)
34f97b94 1471{
927734cf
XDL
1472 return (tc == BIT_IOR_EXPR
1473 || (tc == BIT_AND_EXPR
1474 && (type == 0 || TREE_CODE (type) == BOOLEAN_TYPE)));
1475}
34f97b94 1476
927734cf
XDL
1477/* Returns true if X1 is the negate of X2. */
1478
1479static inline bool
1480pred_neg_p (pred_info x1, pred_info x2)
1481{
1482 enum tree_code c1, c2;
1483 if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
1484 || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
1485 return false;
1486
1487 c1 = x1.cond_code;
1488 if (x1.invert == x2.invert)
1489 c2 = invert_tree_comparison (x2.cond_code, false);
1490 else
1491 c2 = x2.cond_code;
1492
1493 return c1 == c2;
34f97b94
XDL
1494}
1495
927734cf
XDL
1496/* 1) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
1497 2) (X AND Y) OR (!X AND Y) is equivalent to Y;
1498 3) X OR (!X AND Y) is equivalent to (X OR Y);
1499 4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
1500 (x != 0 AND y != 0)
1501 5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
1502 (X AND Y) OR Z
34f97b94 1503
927734cf
XDL
1504 PREDS is the predicate chains, and N is the number of chains. */
1505
1506/* Helper function to implement rule 1 above. ONE_CHAIN is
1507 the AND predication to be simplified. */
1508
1509static void
1510simplify_pred (pred_chain *one_chain)
34f97b94 1511{
927734cf
XDL
1512 size_t i, j, n;
1513 bool simplified = false;
1514 pred_chain s_chain = vNULL;
34f97b94 1515
927734cf 1516 n = one_chain->length ();
34f97b94 1517
927734cf 1518 for (i = 0; i < n; i++)
34f97b94 1519 {
927734cf
XDL
1520 pred_info *a_pred = &(*one_chain)[i];
1521
1522 if (!a_pred->pred_lhs)
1523 continue;
1524 if (!is_neq_zero_form_p (*a_pred))
1525 continue;
1526
355fe088 1527 gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred->pred_lhs);
927734cf
XDL
1528 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1529 continue;
1530 if (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR)
34f97b94 1531 {
927734cf 1532 for (j = 0; j < n; j++)
34f97b94 1533 {
927734cf
XDL
1534 pred_info *b_pred = &(*one_chain)[j];
1535
1536 if (!b_pred->pred_lhs)
1537 continue;
1538 if (!is_neq_zero_form_p (*b_pred))
1539 continue;
1540
1541 if (pred_expr_equal_p (*b_pred, gimple_assign_rhs1 (def_stmt))
1542 || pred_expr_equal_p (*b_pred, gimple_assign_rhs2 (def_stmt)))
1543 {
1544 /* Mark a_pred for removal. */
1545 a_pred->pred_lhs = NULL;
1546 a_pred->pred_rhs = NULL;
1547 simplified = true;
1548 break;
1549 }
34f97b94 1550 }
34f97b94
XDL
1551 }
1552 }
34f97b94 1553
927734cf
XDL
1554 if (!simplified)
1555 return;
34f97b94 1556
927734cf
XDL
1557 for (i = 0; i < n; i++)
1558 {
1559 pred_info *a_pred = &(*one_chain)[i];
1560 if (!a_pred->pred_lhs)
1561 continue;
1562 s_chain.safe_push (*a_pred);
34f97b94 1563 }
927734cf
XDL
1564
1565 one_chain->release ();
1566 *one_chain = s_chain;
34f97b94
XDL
1567}
1568
927734cf
XDL
1569/* The helper function implements the rule 2 for the
1570 OR predicate PREDS.
1571
1572 2) (X AND Y) OR (!X AND Y) is equivalent to Y. */
34f97b94
XDL
1573
1574static bool
927734cf 1575simplify_preds_2 (pred_chain_union *preds)
34f97b94 1576{
927734cf
XDL
1577 size_t i, j, n;
1578 bool simplified = false;
1579 pred_chain_union s_preds = vNULL;
34f97b94 1580
927734cf
XDL
1581 /* (X AND Y) OR (!X AND Y) is equivalent to Y.
1582 (X AND Y) OR (X AND !Y) is equivalent to X. */
34f97b94 1583
927734cf
XDL
1584 n = preds->length ();
1585 for (i = 0; i < n; i++)
1586 {
1587 pred_info x, y;
1588 pred_chain *a_chain = &(*preds)[i];
34f97b94 1589
927734cf
XDL
1590 if (a_chain->length () != 2)
1591 continue;
1592
1593 x = (*a_chain)[0];
1594 y = (*a_chain)[1];
1595
1596 for (j = 0; j < n; j++)
1597 {
1598 pred_chain *b_chain;
1599 pred_info x2, y2;
1600
1601 if (j == i)
1602 continue;
1603
1604 b_chain = &(*preds)[j];
1605 if (b_chain->length () != 2)
1606 continue;
34f97b94 1607
927734cf
XDL
1608 x2 = (*b_chain)[0];
1609 y2 = (*b_chain)[1];
34f97b94 1610
927734cf
XDL
1611 if (pred_equal_p (x, x2) && pred_neg_p (y, y2))
1612 {
1613 /* Kill a_chain. */
1614 a_chain->release ();
1615 b_chain->release ();
1616 b_chain->safe_push (x);
1617 simplified = true;
1618 break;
1619 }
1620 if (pred_neg_p (x, x2) && pred_equal_p (y, y2))
1621 {
1622 /* Kill a_chain. */
1623 a_chain->release ();
1624 b_chain->release ();
1625 b_chain->safe_push (y);
1626 simplified = true;
1627 break;
1628 }
1629 }
1630 }
1631 /* Now clean up the chain. */
1632 if (simplified)
1633 {
1634 for (i = 0; i < n; i++)
1635 {
1636 if ((*preds)[i].is_empty ())
1637 continue;
1638 s_preds.safe_push ((*preds)[i]);
1639 }
1640 preds->release ();
1641 (*preds) = s_preds;
1642 s_preds = vNULL;
1643 }
34f97b94 1644
927734cf 1645 return simplified;
34f97b94
XDL
1646}
1647
927734cf
XDL
1648/* The helper function implements the rule 2 for the
1649 OR predicate PREDS.
1650
1651 3) x OR (!x AND y) is equivalent to x OR y. */
34f97b94
XDL
1652
1653static bool
927734cf 1654simplify_preds_3 (pred_chain_union *preds)
34f97b94 1655{
927734cf
XDL
1656 size_t i, j, n;
1657 bool simplified = false;
34f97b94 1658
927734cf
XDL
1659 /* Now iteratively simplify X OR (!X AND Z ..)
1660 into X OR (Z ...). */
34f97b94 1661
927734cf
XDL
1662 n = preds->length ();
1663 if (n < 2)
1664 return false;
1665
1666 for (i = 0; i < n; i++)
34f97b94 1667 {
927734cf
XDL
1668 pred_info x;
1669 pred_chain *a_chain = &(*preds)[i];
1670
1671 if (a_chain->length () != 1)
1672 continue;
1673
1674 x = (*a_chain)[0];
1675
1676 for (j = 0; j < n; j++)
34f97b94 1677 {
927734cf
XDL
1678 pred_chain *b_chain;
1679 pred_info x2;
1680 size_t k;
1681
1682 if (j == i)
1683 continue;
1684
1685 b_chain = &(*preds)[j];
1686 if (b_chain->length () < 2)
1687 continue;
1688
1689 for (k = 0; k < b_chain->length (); k++)
34f97b94 1690 {
927734cf
XDL
1691 x2 = (*b_chain)[k];
1692 if (pred_neg_p (x, x2))
1693 {
1694 b_chain->unordered_remove (k);
1695 simplified = true;
1696 break;
1697 }
34f97b94
XDL
1698 }
1699 }
34f97b94 1700 }
927734cf 1701 return simplified;
34f97b94
XDL
1702}
1703
927734cf
XDL
1704/* The helper function implements the rule 4 for the
1705 OR predicate PREDS.
1706
1707 2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
1708 (x != 0 ANd y != 0). */
34f97b94
XDL
1709
1710static bool
927734cf 1711simplify_preds_4 (pred_chain_union *preds)
34f97b94 1712{
927734cf
XDL
1713 size_t i, j, n;
1714 bool simplified = false;
1715 pred_chain_union s_preds = vNULL;
355fe088 1716 gimple *def_stmt;
34f97b94 1717
927734cf 1718 n = preds->length ();
34f97b94
XDL
1719 for (i = 0; i < n; i++)
1720 {
927734cf
XDL
1721 pred_info z;
1722 pred_chain *a_chain = &(*preds)[i];
1723
1724 if (a_chain->length () != 1)
1725 continue;
1726
1727 z = (*a_chain)[0];
1728
1729 if (!is_neq_zero_form_p (z))
1730 continue;
1731
1732 def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
1733 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
1734 continue;
1735
1736 if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
1737 continue;
1738
1739 for (j = 0; j < n; j++)
1740 {
1741 pred_chain *b_chain;
1742 pred_info x2, y2;
1743
1744 if (j == i)
1745 continue;
1746
1747 b_chain = &(*preds)[j];
1748 if (b_chain->length () != 2)
1749 continue;
1750
1751 x2 = (*b_chain)[0];
1752 y2 = (*b_chain)[1];
1753 if (!is_neq_zero_form_p (x2)
1754 || !is_neq_zero_form_p (y2))
1755 continue;
1756
1757 if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
1758 && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
1759 || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
1760 && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
1761 {
1762 /* Kill a_chain. */
1763 a_chain->release ();
1764 simplified = true;
1765 break;
1766 }
1767 }
1768 }
1769 /* Now clean up the chain. */
1770 if (simplified)
1771 {
1772 for (i = 0; i < n; i++)
1773 {
1774 if ((*preds)[i].is_empty ())
1775 continue;
1776 s_preds.safe_push ((*preds)[i]);
1777 }
1778 preds->release ();
1779 (*preds) = s_preds;
1780 s_preds = vNULL;
34f97b94
XDL
1781 }
1782
927734cf 1783 return simplified;
34f97b94
XDL
1784}
1785
34f97b94 1786
927734cf
XDL
1787/* This function simplifies predicates in PREDS. */
1788
1789static void
355fe088 1790simplify_preds (pred_chain_union *preds, gimple *use_or_def, bool is_use)
34f97b94 1791{
927734cf
XDL
1792 size_t i, n;
1793 bool changed = false;
34f97b94 1794
927734cf 1795 if (dump_file && dump_flags & TDF_DETAILS)
34f97b94 1796 {
927734cf
XDL
1797 fprintf (dump_file, "[BEFORE SIMPLICATION -- ");
1798 dump_predicates (use_or_def, *preds, is_use ? "[USE]:\n" : "[DEF]:\n");
34f97b94
XDL
1799 }
1800
927734cf
XDL
1801 for (i = 0; i < preds->length (); i++)
1802 simplify_pred (&(*preds)[i]);
1803
1804 n = preds->length ();
1805 if (n < 2)
1806 return;
1807
1808 do
1809 {
1810 changed = false;
1811 if (simplify_preds_2 (preds))
1812 changed = true;
1813
1814 /* Now iteratively simplify X OR (!X AND Z ..)
1815 into X OR (Z ...). */
1816 if (simplify_preds_3 (preds))
1817 changed = true;
1818
1819 if (simplify_preds_4 (preds))
1820 changed = true;
1821
1822 } while (changed);
1823
1824 return;
34f97b94
XDL
1825}
1826
927734cf
XDL
1827/* This is a helper function which attempts to normalize predicate chains
1828 by following UD chains. It basically builds up a big tree of either IOR
1829 operations or AND operations, and convert the IOR tree into a
1830 pred_chain_union or BIT_AND tree into a pred_chain.
1831 Example:
56b67510 1832
927734cf
XDL
1833 _3 = _2 RELOP1 _1;
1834 _6 = _5 RELOP2 _4;
1835 _9 = _8 RELOP3 _7;
1836 _10 = _3 | _6;
1837 _12 = _9 | _0;
1838 _t = _10 | _12;
1839
1840 then _t != 0 will be normalized into a pred_chain_union
1841
1842 (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)
1843
1844 Similarly given,
1845
1846 _3 = _2 RELOP1 _1;
1847 _6 = _5 RELOP2 _4;
1848 _9 = _8 RELOP3 _7;
1849 _10 = _3 & _6;
1850 _12 = _9 & _0;
1851
1852 then _t != 0 will be normalized into a pred_chain:
1853 (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
1854
1855 */
1856
1857/* This is a helper function that stores a PRED into NORM_PREDS. */
1858
1859inline static void
1860push_pred (pred_chain_union *norm_preds, pred_info pred)
56b67510 1861{
927734cf
XDL
1862 pred_chain pred_chain = vNULL;
1863 pred_chain.safe_push (pred);
1864 norm_preds->safe_push (pred_chain);
1865}
56b67510 1866
927734cf
XDL
1867/* A helper function that creates a predicate of the form
1868 OP != 0 and push it WORK_LIST. */
56b67510 1869
927734cf 1870inline static void
ade3ff24 1871push_to_worklist (tree op, vec<pred_info, va_heap, vl_ptr> *work_list,
6e2830c3 1872 hash_set<tree> *mark_set)
927734cf 1873{
6e2830c3 1874 if (mark_set->contains (op))
ade3ff24 1875 return;
6e2830c3 1876 mark_set->add (op);
ade3ff24 1877
927734cf
XDL
1878 pred_info arg_pred;
1879 arg_pred.pred_lhs = op;
1880 arg_pred.pred_rhs = integer_zero_node;
1881 arg_pred.cond_code = NE_EXPR;
1882 arg_pred.invert = false;
1883 work_list->safe_push (arg_pred);
1884}
56b67510 1885
927734cf
XDL
1886/* A helper that generates a pred_info from a gimple assignment
1887 CMP_ASSIGN with comparison rhs. */
56b67510 1888
927734cf 1889static pred_info
355fe088 1890get_pred_info_from_cmp (gimple *cmp_assign)
927734cf
XDL
1891{
1892 pred_info n_pred;
1893 n_pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
1894 n_pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
1895 n_pred.cond_code = gimple_assign_rhs_code (cmp_assign);
1896 n_pred.invert = false;
1897 return n_pred;
56b67510
XDL
1898}
1899
927734cf
XDL
1900/* Returns true if the PHI is a degenerated phi with
1901 all args with the same value (relop). In that case, *PRED
1902 will be updated to that value. */
56b67510
XDL
1903
1904static bool
355fe088 1905is_degenerated_phi (gimple *phi, pred_info *pred_p)
56b67510 1906{
927734cf
XDL
1907 int i, n;
1908 tree op0;
355fe088 1909 gimple *def0;
927734cf 1910 pred_info pred0;
56b67510 1911
927734cf
XDL
1912 n = gimple_phi_num_args (phi);
1913 op0 = gimple_phi_arg_def (phi, 0);
1914
1915 if (TREE_CODE (op0) != SSA_NAME)
56b67510
XDL
1916 return false;
1917
927734cf
XDL
1918 def0 = SSA_NAME_DEF_STMT (op0);
1919 if (gimple_code (def0) != GIMPLE_ASSIGN)
1920 return false;
1921 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0))
1922 != tcc_comparison)
1923 return false;
1924 pred0 = get_pred_info_from_cmp (def0);
1925
1926 for (i = 1; i < n; ++i)
56b67510 1927 {
355fe088 1928 gimple *def;
927734cf
XDL
1929 pred_info pred;
1930 tree op = gimple_phi_arg_def (phi, i);
1931
1932 if (TREE_CODE (op) != SSA_NAME)
56b67510
XDL
1933 return false;
1934
927734cf
XDL
1935 def = SSA_NAME_DEF_STMT (op);
1936 if (gimple_code (def) != GIMPLE_ASSIGN)
1937 return false;
1938 if (TREE_CODE_CLASS (gimple_assign_rhs_code (def))
1939 != tcc_comparison)
1940 return false;
1941 pred = get_pred_info_from_cmp (def);
1942 if (!pred_equal_p (pred, pred0))
1943 return false;
1944 }
1945
1946 *pred_p = pred0;
1947 return true;
1948}
1949
1950/* Normalize one predicate PRED
1951 1) if PRED can no longer be normlized, put it into NORM_PREDS.
1952 2) otherwise if PRED is of the form x != 0, follow x's definition
1953 and put normalized predicates into WORK_LIST. */
1954
1955static void
1956normalize_one_pred_1 (pred_chain_union *norm_preds,
1957 pred_chain *norm_chain,
1958 pred_info pred,
1959 enum tree_code and_or_code,
ade3ff24 1960 vec<pred_info, va_heap, vl_ptr> *work_list,
6e2830c3 1961 hash_set<tree> *mark_set)
927734cf
XDL
1962{
1963 if (!is_neq_zero_form_p (pred))
1964 {
1965 if (and_or_code == BIT_IOR_EXPR)
1966 push_pred (norm_preds, pred);
1967 else
1968 norm_chain->safe_push (pred);
1969 return;
1970 }
1971
355fe088 1972 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
927734cf
XDL
1973
1974 if (gimple_code (def_stmt) == GIMPLE_PHI
1975 && is_degenerated_phi (def_stmt, &pred))
1976 work_list->safe_push (pred);
1977 else if (gimple_code (def_stmt) == GIMPLE_PHI
1978 && and_or_code == BIT_IOR_EXPR)
1979 {
1980 int i, n;
1981 n = gimple_phi_num_args (def_stmt);
1982
1983 /* If we see non zero constant, we should punt. The predicate
1984 * should be one guarding the phi edge. */
1985 for (i = 0; i < n; ++i)
56b67510 1986 {
927734cf
XDL
1987 tree op = gimple_phi_arg_def (def_stmt, i);
1988 if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
1989 {
1990 push_pred (norm_preds, pred);
1991 return;
1992 }
56b67510
XDL
1993 }
1994
927734cf
XDL
1995 for (i = 0; i < n; ++i)
1996 {
1997 tree op = gimple_phi_arg_def (def_stmt, i);
1998 if (integer_zerop (op))
1999 continue;
2000
ade3ff24 2001 push_to_worklist (op, work_list, mark_set);
927734cf 2002 }
ade3ff24
RH
2003 }
2004 else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
2005 {
2006 if (and_or_code == BIT_IOR_EXPR)
2007 push_pred (norm_preds, pred);
2008 else
2009 norm_chain->safe_push (pred);
2010 }
2011 else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
2012 {
666e8e06
RB
2013 /* Avoid splitting up bit manipulations like x & 3 or y | 1. */
2014 if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
2015 {
2016 /* But treat x & 3 as condition. */
2017 if (and_or_code == BIT_AND_EXPR)
2018 {
2019 pred_info n_pred;
2020 n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
2021 n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
2022 n_pred.cond_code = and_or_code;
2023 n_pred.invert = false;
2024 norm_chain->safe_push (n_pred);
2025 }
2026 }
2027 else
2028 {
2029 push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
2030 push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
2031 }
ade3ff24
RH
2032 }
2033 else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
2034 == tcc_comparison)
2035 {
2036 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2037 if (and_or_code == BIT_IOR_EXPR)
2038 push_pred (norm_preds, n_pred);
2039 else
2040 norm_chain->safe_push (n_pred);
2041 }
2042 else
2043 {
2044 if (and_or_code == BIT_IOR_EXPR)
2045 push_pred (norm_preds, pred);
2046 else
2047 norm_chain->safe_push (pred);
2048 }
927734cf
XDL
2049}
2050
2051/* Normalize PRED and store the normalized predicates into NORM_PREDS. */
2052
2053static void
2054normalize_one_pred (pred_chain_union *norm_preds,
2055 pred_info pred)
2056{
2057 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
2058 enum tree_code and_or_code = ERROR_MARK;
2059 pred_chain norm_chain = vNULL;
56b67510 2060
927734cf 2061 if (!is_neq_zero_form_p (pred))
56b67510 2062 {
927734cf
XDL
2063 push_pred (norm_preds, pred);
2064 return;
2065 }
56b67510 2066
355fe088 2067 gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
927734cf
XDL
2068 if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
2069 and_or_code = gimple_assign_rhs_code (def_stmt);
2070 if (and_or_code != BIT_IOR_EXPR
2071 && and_or_code != BIT_AND_EXPR)
2072 {
2073 if (TREE_CODE_CLASS (and_or_code)
2074 == tcc_comparison)
2075 {
2076 pred_info n_pred = get_pred_info_from_cmp (def_stmt);
2077 push_pred (norm_preds, n_pred);
2078 }
2079 else
2080 push_pred (norm_preds, pred);
2081 return;
2082 }
56b67510 2083
927734cf 2084 work_list.safe_push (pred);
6e2830c3 2085 hash_set<tree> mark_set;
ade3ff24 2086
927734cf
XDL
2087 while (!work_list.is_empty ())
2088 {
2089 pred_info a_pred = work_list.pop ();
2090 normalize_one_pred_1 (norm_preds, &norm_chain, a_pred,
6e2830c3 2091 and_or_code, &work_list, &mark_set);
56b67510 2092 }
927734cf
XDL
2093 if (and_or_code == BIT_AND_EXPR)
2094 norm_preds->safe_push (norm_chain);
2095
2096 work_list.release ();
2097}
56b67510 2098
927734cf
XDL
2099static void
2100normalize_one_pred_chain (pred_chain_union *norm_preds,
2101 pred_chain one_chain)
2102{
2103 vec<pred_info, va_heap, vl_ptr> work_list = vNULL;
6e2830c3 2104 hash_set<tree> mark_set;
927734cf
XDL
2105 pred_chain norm_chain = vNULL;
2106 size_t i;
2107
2108 for (i = 0; i < one_chain.length (); i++)
ade3ff24
RH
2109 {
2110 work_list.safe_push (one_chain[i]);
6e2830c3 2111 mark_set.add (one_chain[i].pred_lhs);
ade3ff24 2112 }
927734cf
XDL
2113
2114 while (!work_list.is_empty ())
56b67510 2115 {
927734cf
XDL
2116 pred_info a_pred = work_list.pop ();
2117 normalize_one_pred_1 (0, &norm_chain, a_pred,
6e2830c3 2118 BIT_AND_EXPR, &work_list, &mark_set);
56b67510 2119 }
927734cf
XDL
2120
2121 norm_preds->safe_push (norm_chain);
2122 work_list.release ();
56b67510
XDL
2123}
2124
927734cf
XDL
2125/* Normalize predicate chains PREDS and returns the normalized one. */
2126
2127static pred_chain_union
355fe088 2128normalize_preds (pred_chain_union preds, gimple *use_or_def, bool is_use)
927734cf
XDL
2129{
2130 pred_chain_union norm_preds = vNULL;
2131 size_t n = preds.length ();
2132 size_t i;
2133
2134 if (dump_file && dump_flags & TDF_DETAILS)
2135 {
2136 fprintf (dump_file, "[BEFORE NORMALIZATION --");
2137 dump_predicates (use_or_def, preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2138 }
2139
2140 for (i = 0; i < n; i++)
2141 {
2142 if (preds[i].length () != 1)
2143 normalize_one_pred_chain (&norm_preds, preds[i]);
2144 else
2145 {
2146 normalize_one_pred (&norm_preds, preds[i][0]);
2147 preds[i].release ();
2148 }
2149 }
2150
2151 if (dump_file)
2152 {
2153 fprintf (dump_file, "[AFTER NORMALIZATION -- ");
2154 dump_predicates (use_or_def, norm_preds, is_use ? "[USE]:\n" : "[DEF]:\n");
2155 }
2156
2157 preds.release ();
2158 return norm_preds;
2159}
56b67510
XDL
2160
2161
34f97b94
XDL
2162/* Computes the predicates that guard the use and checks
2163 if the incoming paths that have empty (or possibly
073a8998 2164 empty) definition can be pruned/filtered. The function returns
34f97b94
XDL
2165 true if it can be determined that the use of PHI's def in
2166 USE_STMT is guarded with a predicate set not overlapping with
2167 predicate sets of all runtime paths that do not have a definition.
c0503346 2168
34f97b94
XDL
2169 Returns false if it is not or it can not be determined. USE_BB is
2170 the bb of the use (for phi operand use, the bb is not the bb of
c0503346
PP
2171 the phi stmt, but the src bb of the operand edge).
2172
2173 UNINIT_OPNDS is a bit vector. If an operand of PHI is uninitialized, the
2174 corresponding bit in the vector is 1. VISITED_PHIS is a pointer
2175 set of phis being visited.
2176
2177 *DEF_PREDS contains the (memoized) defining predicate chains of PHI.
2178 If *DEF_PREDS is the empty vector, the defining predicate chains of
2179 PHI will be computed and stored into *DEF_PREDS as needed.
2180
2181 VISITED_PHIS is a pointer set of phis being visited. */
34f97b94
XDL
2182
2183static bool
355fe088 2184is_use_properly_guarded (gimple *use_stmt,
34f97b94 2185 basic_block use_bb,
538dd0b7 2186 gphi *phi,
34f97b94 2187 unsigned uninit_opnds,
c0503346 2188 pred_chain_union *def_preds,
538dd0b7 2189 hash_set<gphi *> *visited_phis)
34f97b94
XDL
2190{
2191 basic_block phi_bb;
927734cf 2192 pred_chain_union preds = vNULL;
34f97b94
XDL
2193 bool has_valid_preds = false;
2194 bool is_properly_guarded = false;
2195
6e2830c3 2196 if (visited_phis->add (phi))
34f97b94
XDL
2197 return false;
2198
2199 phi_bb = gimple_bb (phi);
2200
2201 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
2202 return false;
2203
927734cf 2204 has_valid_preds = find_predicates (&preds, phi_bb, use_bb);
34f97b94
XDL
2205
2206 if (!has_valid_preds)
2207 {
927734cf 2208 destroy_predicate_vecs (preds);
34f97b94
XDL
2209 return false;
2210 }
2211
927734cf
XDL
2212 /* Try to prune the dead incoming phi edges. */
2213 is_properly_guarded
2214 = use_pred_not_overlap_with_undef_path_pred (preds, phi, uninit_opnds,
2215 visited_phis);
34f97b94 2216
927734cf 2217 if (is_properly_guarded)
34f97b94 2218 {
927734cf
XDL
2219 destroy_predicate_vecs (preds);
2220 return true;
2221 }
56b67510 2222
c0503346 2223 if (def_preds->is_empty ())
927734cf 2224 {
c0503346
PP
2225 has_valid_preds = find_def_preds (def_preds, phi);
2226
2227 if (!has_valid_preds)
2228 {
2229 destroy_predicate_vecs (preds);
2230 return false;
2231 }
2232
2233 simplify_preds (def_preds, phi, false);
2234 *def_preds = normalize_preds (*def_preds, phi, false);
34f97b94
XDL
2235 }
2236
927734cf
XDL
2237 simplify_preds (&preds, use_stmt, true);
2238 preds = normalize_preds (preds, use_stmt, true);
2239
c0503346 2240 is_properly_guarded = is_superset_of (*def_preds, preds);
34f97b94 2241
927734cf 2242 destroy_predicate_vecs (preds);
34f97b94
XDL
2243 return is_properly_guarded;
2244}
2245
2246/* Searches through all uses of a potentially
2247 uninitialized variable defined by PHI and returns a use
2248 statement if the use is not properly guarded. It returns
2249 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
2250 holding the position(s) of uninit PHI operands. WORKLIST
2251 is the vector of candidate phis that may be updated by this
2252 function. ADDED_TO_WORKLIST is the pointer set tracking
2253 if the new phi is already in the worklist. */
2254
355fe088 2255static gimple *
538dd0b7
DM
2256find_uninit_use (gphi *phi, unsigned uninit_opnds,
2257 vec<gphi *> *worklist,
2258 hash_set<gphi *> *added_to_worklist)
34f97b94
XDL
2259{
2260 tree phi_result;
2261 use_operand_p use_p;
355fe088 2262 gimple *use_stmt;
34f97b94 2263 imm_use_iterator iter;
c0503346 2264 pred_chain_union def_preds = vNULL;
355fe088 2265 gimple *ret = NULL;
34f97b94
XDL
2266
2267 phi_result = gimple_phi_result (phi);
2268
2269 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
2270 {
34f97b94
XDL
2271 basic_block use_bb;
2272
480161b5
RG
2273 use_stmt = USE_STMT (use_p);
2274 if (is_gimple_debug (use_stmt))
2275 continue;
34f97b94 2276
538dd0b7
DM
2277 if (gphi *use_phi = dyn_cast <gphi *> (use_stmt))
2278 use_bb = gimple_phi_arg_edge (use_phi,
480161b5
RG
2279 PHI_ARG_INDEX_FROM_USE (use_p))->src;
2280 else
2281 use_bb = gimple_bb (use_stmt);
34f97b94 2282
538dd0b7 2283 hash_set<gphi *> visited_phis;
927734cf 2284 if (is_use_properly_guarded (use_stmt, use_bb, phi, uninit_opnds,
c0503346 2285 &def_preds, &visited_phis))
6e2830c3 2286 continue;
34f97b94 2287
e74780a3
XDL
2288 if (dump_file && (dump_flags & TDF_DETAILS))
2289 {
2290 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
2291 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2292 }
34f97b94
XDL
2293 /* Found one real use, return. */
2294 if (gimple_code (use_stmt) != GIMPLE_PHI)
c0503346
PP
2295 {
2296 ret = use_stmt;
2297 break;
2298 }
34f97b94
XDL
2299
2300 /* Found a phi use that is not guarded,
2301 add the phi to the worklist. */
538dd0b7 2302 if (!added_to_worklist->add (as_a <gphi *> (use_stmt)))
34f97b94 2303 {
e74780a3
XDL
2304 if (dump_file && (dump_flags & TDF_DETAILS))
2305 {
2306 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
2307 print_gimple_stmt (dump_file, use_stmt, 0, 0);
2308 }
2309
538dd0b7 2310 worklist->safe_push (as_a <gphi *> (use_stmt));
6e2830c3 2311 possibly_undefined_names->add (phi_result);
34f97b94
XDL
2312 }
2313 }
2314
c0503346
PP
2315 destroy_predicate_vecs (def_preds);
2316 return ret;
34f97b94
XDL
2317}
2318
2319/* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
2320 and gives warning if there exists a runtime path from the entry to a
2321 use of the PHI def that does not contain a definition. In other words,
2322 the warning is on the real use. The more dead paths that can be pruned
2323 by the compiler, the fewer false positives the warning is. WORKLIST
2324 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
2325 a pointer set tracking if the new phi is added to the worklist or not. */
2326
2327static void
538dd0b7
DM
2328warn_uninitialized_phi (gphi *phi, vec<gphi *> *worklist,
2329 hash_set<gphi *> *added_to_worklist)
34f97b94
XDL
2330{
2331 unsigned uninit_opnds;
355fe088 2332 gimple *uninit_use_stmt = 0;
34f97b94 2333 tree uninit_op;
e1ec47c4
TP
2334 int phiarg_index;
2335 location_t loc;
34f97b94 2336
ea057359
RG
2337 /* Don't look at virtual operands. */
2338 if (virtual_operand_p (gimple_phi_result (phi)))
34f97b94
XDL
2339 return;
2340
2341 uninit_opnds = compute_uninit_opnds_pos (phi);
2342
2343 if (MASK_EMPTY (uninit_opnds))
2344 return;
2345
e74780a3
XDL
2346 if (dump_file && (dump_flags & TDF_DETAILS))
2347 {
2348 fprintf (dump_file, "[CHECK]: examining phi: ");
2349 print_gimple_stmt (dump_file, phi, 0, 0);
2350 }
2351
34f97b94
XDL
2352 /* Now check if we have any use of the value without proper guard. */
2353 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
2354 worklist, added_to_worklist);
2355
2356 /* All uses are properly guarded. */
2357 if (!uninit_use_stmt)
2358 return;
2359
e1ec47c4
TP
2360 phiarg_index = MASK_FIRST_SET_BIT (uninit_opnds);
2361 uninit_op = gimple_phi_arg_def (phi, phiarg_index);
70b5e7dc
RG
2362 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
2363 return;
e1ec47c4
TP
2364 if (gimple_phi_arg_has_location (phi, phiarg_index))
2365 loc = gimple_phi_arg_location (phi, phiarg_index);
2366 else
2367 loc = UNKNOWN_LOCATION;
8d2b0410
RG
2368 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
2369 SSA_NAME_VAR (uninit_op),
34f97b94 2370 "%qD may be used uninitialized in this function",
e1ec47c4 2371 uninit_use_stmt, loc);
34f97b94
XDL
2372
2373}
2374
be55bfe6
TS
2375static bool
2376gate_warn_uninitialized (void)
2377{
2378 return warn_uninitialized || warn_maybe_uninitialized;
2379}
34f97b94 2380
be55bfe6 2381namespace {
34f97b94 2382
be55bfe6
TS
2383const pass_data pass_data_late_warn_uninitialized =
2384{
2385 GIMPLE_PASS, /* type */
2386 "uninit", /* name */
2387 OPTGROUP_NONE, /* optinfo_flags */
be55bfe6
TS
2388 TV_NONE, /* tv_id */
2389 PROP_ssa, /* properties_required */
2390 0, /* properties_provided */
2391 0, /* properties_destroyed */
2392 0, /* todo_flags_start */
2393 0, /* todo_flags_finish */
2394};
2395
2396class pass_late_warn_uninitialized : public gimple_opt_pass
2397{
2398public:
2399 pass_late_warn_uninitialized (gcc::context *ctxt)
2400 : gimple_opt_pass (pass_data_late_warn_uninitialized, ctxt)
2401 {}
2402
2403 /* opt_pass methods: */
2404 opt_pass * clone () { return new pass_late_warn_uninitialized (m_ctxt); }
2405 virtual bool gate (function *) { return gate_warn_uninitialized (); }
2406 virtual unsigned int execute (function *);
2407
2408}; // class pass_late_warn_uninitialized
2409
2410unsigned int
2411pass_late_warn_uninitialized::execute (function *fun)
34f97b94
XDL
2412{
2413 basic_block bb;
538dd0b7
DM
2414 gphi_iterator gsi;
2415 vec<gphi *> worklist = vNULL;
34f97b94
XDL
2416
2417 calculate_dominance_info (CDI_DOMINATORS);
2418 calculate_dominance_info (CDI_POST_DOMINATORS);
2419 /* Re-do the plain uninitialized variable check, as optimization may have
2420 straightened control flow. Do this first so that we don't accidentally
2421 get a "may be" warning when we'd have seen an "is" warning later. */
2422 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
2423
2424 timevar_push (TV_TREE_UNINIT);
2425
6e2830c3 2426 possibly_undefined_names = new hash_set<tree>;
538dd0b7 2427 hash_set<gphi *> added_to_worklist;
34f97b94
XDL
2428
2429 /* Initialize worklist */
be55bfe6 2430 FOR_EACH_BB_FN (bb, fun)
34f97b94
XDL
2431 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2432 {
538dd0b7 2433 gphi *phi = gsi.phi ();
be55bfe6
TS
2434 size_t n, i;
2435
2436 n = gimple_phi_num_args (phi);
2437
2438 /* Don't look at virtual operands. */
2439 if (virtual_operand_p (gimple_phi_result (phi)))
2440 continue;
2441
2442 for (i = 0; i < n; ++i)
2443 {
2444 tree op = gimple_phi_arg_def (phi, i);
2445 if (TREE_CODE (op) == SSA_NAME
2446 && uninit_undefined_value_p (op))
2447 {
2448 worklist.safe_push (phi);
6e2830c3 2449 added_to_worklist.add (phi);
be55bfe6
TS
2450 if (dump_file && (dump_flags & TDF_DETAILS))
2451 {
2452 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
2453 print_gimple_stmt (dump_file, phi, 0, 0);
2454 }
2455 break;
2456 }
2457 }
34f97b94
XDL
2458 }
2459
9771b263 2460 while (worklist.length () != 0)
34f97b94 2461 {
538dd0b7 2462 gphi *cur_phi = 0;
9771b263 2463 cur_phi = worklist.pop ();
6e2830c3 2464 warn_uninitialized_phi (cur_phi, &worklist, &added_to_worklist);
34f97b94 2465 }
e74780a3 2466
9771b263 2467 worklist.release ();
6e2830c3 2468 delete possibly_undefined_names;
34f97b94
XDL
2469 possibly_undefined_names = NULL;
2470 free_dominance_info (CDI_POST_DOMINATORS);
2471 timevar_pop (TV_TREE_UNINIT);
2472 return 0;
2473}
2474
27a4cd48
DM
2475} // anon namespace
2476
2477gimple_opt_pass *
2478make_pass_late_warn_uninitialized (gcc::context *ctxt)
2479{
2480 return new pass_late_warn_uninitialized (ctxt);
2481}
c152901f
AM
2482
2483
2484static unsigned int
2485execute_early_warn_uninitialized (void)
2486{
2487 /* Currently, this pass runs always but
2488 execute_late_warn_uninitialized only runs with optimization. With
2489 optimization we want to warn about possible uninitialized as late
2490 as possible, thus don't do it here. However, without
927734cf 2491 optimization we need to warn here about "may be uninitialized". */
c152901f
AM
2492 calculate_dominance_info (CDI_POST_DOMINATORS);
2493
2494 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/!optimize);
2495
2496 /* Post-dominator information can not be reliably updated. Free it
2497 after the use. */
2498
2499 free_dominance_info (CDI_POST_DOMINATORS);
2500 return 0;
2501}
2502
2503
2504namespace {
2505
2506const pass_data pass_data_early_warn_uninitialized =
2507{
2508 GIMPLE_PASS, /* type */
2509 "*early_warn_uninitialized", /* name */
2510 OPTGROUP_NONE, /* optinfo_flags */
c152901f
AM
2511 TV_TREE_UNINIT, /* tv_id */
2512 PROP_ssa, /* properties_required */
2513 0, /* properties_provided */
2514 0, /* properties_destroyed */
2515 0, /* todo_flags_start */
2516 0, /* todo_flags_finish */
2517};
2518
2519class pass_early_warn_uninitialized : public gimple_opt_pass
2520{
2521public:
c3284718
RS
2522 pass_early_warn_uninitialized (gcc::context *ctxt)
2523 : gimple_opt_pass (pass_data_early_warn_uninitialized, ctxt)
c152901f
AM
2524 {}
2525
2526 /* opt_pass methods: */
1a3d085c 2527 virtual bool gate (function *) { return gate_warn_uninitialized (); }
be55bfe6
TS
2528 virtual unsigned int execute (function *)
2529 {
2530 return execute_early_warn_uninitialized ();
2531 }
c152901f
AM
2532
2533}; // class pass_early_warn_uninitialized
2534
2535} // anon namespace
2536
2537gimple_opt_pass *
2538make_pass_early_warn_uninitialized (gcc::context *ctxt)
2539{
2540 return new pass_early_warn_uninitialized (ctxt);
2541}