]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-switch-conversion.c
c++: Handle multiple aggregate overloads [PR95319].
[thirdparty/gcc.git] / gcc / tree-switch-conversion.c
CommitLineData
531b10fc
SB
1/* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
8d9254fc 3 Copyright (C) 2006-2020 Free Software Foundation, Inc.
b6e99746
MJ
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by the
9Free Software Foundation; either version 3, or (at your option) any
10later version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT
13ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA. */
21
531b10fc
SB
22/* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
24
25#include "config.h"
26#include "system.h"
27#include "coretypes.h"
c7131fb2 28#include "backend.h"
957060b5
AM
29#include "insn-codes.h"
30#include "rtl.h"
c7131fb2
AM
31#include "tree.h"
32#include "gimple.h"
957060b5
AM
33#include "cfghooks.h"
34#include "tree-pass.h"
c7131fb2 35#include "ssa.h"
957060b5
AM
36#include "optabs-tree.h"
37#include "cgraph.h"
38#include "gimple-pretty-print.h"
40e23961 39#include "fold-const.h"
d8a2d370
DN
40#include "varasm.h"
41#include "stor-layout.h"
60393bbc 42#include "cfganal.h"
45b0be94 43#include "gimplify.h"
5be5c238 44#include "gimple-iterator.h"
18f429e2 45#include "gimplify-me.h"
767d4551 46#include "gimple-fold.h"
442b4905 47#include "tree-cfg.h"
a9e0d843 48#include "cfgloop.h"
9dc3d6a9
ML
49#include "alloc-pool.h"
50#include "target.h"
51#include "tree-into-ssa.h"
46dbeb40 52#include "omp-general.h"
7ee2468b
SB
53
54/* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
55 type in the GIMPLE type system that is language-independent? */
531b10fc
SB
56#include "langhooks.h"
57
789410e4 58#include "tree-switch-conversion.h"
531b10fc 59\f
789410e4 60using namespace tree_switch_conversion;
531b10fc 61
789410e4 62/* Constructor. */
531b10fc 63
4c4503bf 64switch_conversion::switch_conversion (): m_final_bb (NULL),
789410e4
ML
65 m_constructors (NULL), m_default_values (NULL),
66 m_arr_ref_first (NULL), m_arr_ref_last (NULL),
67 m_reason (NULL), m_default_case_nonstandard (false), m_cfg_altered (false)
531b10fc 68{
531b10fc 69}
b6e99746 70
789410e4 71/* Collection information about SWTCH statement. */
886cd84f 72
789410e4
ML
73void
74switch_conversion::collect (gswitch *swtch)
b6e99746 75{
726a989a 76 unsigned int branch_num = gimple_switch_num_labels (swtch);
886cd84f 77 tree min_case, max_case;
789410e4 78 unsigned int i;
18bfe940 79 edge e, e_default, e_first;
886cd84f
SB
80 edge_iterator ei;
81
789410e4 82 m_switch = swtch;
b6e99746
MJ
83
84 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
fd8d363e
SB
85 is a default label which is the first in the vector.
86 Collect the bits we can deduce from the CFG. */
789410e4
ML
87 m_index_expr = gimple_switch_index (swtch);
88 m_switch_bb = gimple_bb (swtch);
61ff5d6f
ML
89 e_default = gimple_switch_default_edge (cfun, swtch);
90 m_default_bb = e_default->dest;
789410e4 91 m_default_prob = e_default->probability;
b6e99746 92
18bfe940
JJ
93 /* Get upper and lower bounds of case values, and the covered range. */
94 min_case = gimple_switch_label (swtch, 1);
95 max_case = gimple_switch_label (swtch, branch_num - 1);
96
789410e4 97 m_range_min = CASE_LOW (min_case);
18bfe940 98 if (CASE_HIGH (max_case) != NULL_TREE)
789410e4 99 m_range_max = CASE_HIGH (max_case);
18bfe940 100 else
789410e4 101 m_range_max = CASE_LOW (max_case);
18bfe940 102
789410e4
ML
103 m_contiguous_range = true;
104 tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : m_range_min;
18bfe940
JJ
105 for (i = 2; i < branch_num; i++)
106 {
107 tree elt = gimple_switch_label (swtch, i);
8e6cdc90 108 if (wi::to_wide (last) + 1 != wi::to_wide (CASE_LOW (elt)))
18bfe940 109 {
789410e4 110 m_contiguous_range = false;
18bfe940
JJ
111 break;
112 }
113 last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt);
114 }
115
789410e4 116 if (m_contiguous_range)
61ff5d6f 117 e_first = gimple_switch_edge (cfun, swtch, 1);
18bfe940 118 else
61ff5d6f 119 e_first = e_default;
18bfe940 120
886cd84f 121 /* See if there is one common successor block for all branch
866f20d6 122 targets. If it exists, record it in FINAL_BB.
18bfe940
JJ
123 Start with the destination of the first non-default case
124 if the range is contiguous and default case otherwise as
125 guess or its destination in case it is a forwarder block. */
126 if (! single_pred_p (e_first->dest))
789410e4 127 m_final_bb = e_first->dest;
18bfe940
JJ
128 else if (single_succ_p (e_first->dest)
129 && ! single_pred_p (single_succ (e_first->dest)))
789410e4 130 m_final_bb = single_succ (e_first->dest);
866f20d6 131 /* Require that all switch destinations are either that common
18bfe940
JJ
132 FINAL_BB or a forwarder to it, except for the default
133 case if contiguous range. */
789410e4
ML
134 if (m_final_bb)
135 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
886cd84f 136 {
789410e4 137 if (e->dest == m_final_bb)
886cd84f
SB
138 continue;
139
140 if (single_pred_p (e->dest)
141 && single_succ_p (e->dest)
789410e4 142 && single_succ (e->dest) == m_final_bb)
886cd84f
SB
143 continue;
144
789410e4 145 if (e == e_default && m_contiguous_range)
18bfe940 146 {
789410e4 147 m_default_case_nonstandard = true;
18bfe940
JJ
148 continue;
149 }
150
789410e4 151 m_final_bb = NULL;
886cd84f
SB
152 break;
153 }
154
789410e4
ML
155 m_range_size
156 = int_const_binop (MINUS_EXPR, m_range_max, m_range_min);
b6e99746 157
886cd84f
SB
158 /* Get a count of the number of case labels. Single-valued case labels
159 simply count as one, but a case range counts double, since it may
160 require two compares if it gets lowered as a branching tree. */
789410e4 161 m_count = 0;
886cd84f
SB
162 for (i = 1; i < branch_num; i++)
163 {
164 tree elt = gimple_switch_label (swtch, i);
789410e4 165 m_count++;
886cd84f
SB
166 if (CASE_HIGH (elt)
167 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
789410e4 168 m_count++;
886cd84f 169 }
dc223ad4
ML
170
171 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
172 block. Assume a CFG cleanup would have already removed degenerate
173 switch statements, this allows us to just use EDGE_COUNT. */
174 m_uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
886cd84f 175}
b6e99746 176
789410e4 177/* Checks whether the range given by individual case statements of the switch
886cd84f
SB
178 switch statement isn't too big and whether the number of branches actually
179 satisfies the size of the new array. */
b6e99746 180
789410e4
ML
181bool
182switch_conversion::check_range ()
886cd84f 183{
789410e4
ML
184 gcc_assert (m_range_size);
185 if (!tree_fits_uhwi_p (m_range_size))
b6e99746 186 {
789410e4 187 m_reason = "index range way too large or otherwise unusable";
b6e99746
MJ
188 return false;
189 }
190
789410e4 191 if (tree_to_uhwi (m_range_size)
028d4092 192 > ((unsigned) m_count * param_switch_conversion_branch_ratio))
b6e99746 193 {
789410e4 194 m_reason = "the maximum range-branch ratio exceeded";
b6e99746
MJ
195 return false;
196 }
197
198 return true;
199}
200
789410e4 201/* Checks whether all but the final BB basic blocks are empty. */
b6e99746 202
789410e4
ML
203bool
204switch_conversion::check_all_empty_except_final ()
b6e99746 205{
789410e4 206 edge e, e_default = find_edge (m_switch_bb, m_default_bb);
886cd84f 207 edge_iterator ei;
b6e99746 208
789410e4 209 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
b6e99746 210 {
789410e4 211 if (e->dest == m_final_bb)
886cd84f 212 continue;
b6e99746 213
886cd84f 214 if (!empty_block_p (e->dest))
b6e99746 215 {
789410e4 216 if (m_contiguous_range && e == e_default)
18bfe940 217 {
789410e4 218 m_default_case_nonstandard = true;
18bfe940
JJ
219 continue;
220 }
221
789410e4 222 m_reason = "bad case - a non-final BB not empty";
b6e99746
MJ
223 return false;
224 }
b6e99746
MJ
225 }
226
227 return true;
228}
229
230/* This function checks whether all required values in phi nodes in final_bb
231 are constants. Required values are those that correspond to a basic block
232 which is a part of the examined switch statement. It returns true if the
233 phi nodes are OK, otherwise false. */
234
789410e4
ML
235bool
236switch_conversion::check_final_bb ()
b6e99746 237{
538dd0b7 238 gphi_iterator gsi;
b6e99746 239
789410e4
ML
240 m_phi_count = 0;
241 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 242 {
538dd0b7 243 gphi *phi = gsi.phi ();
726a989a 244 unsigned int i;
b6e99746 245
18bfe940
JJ
246 if (virtual_operand_p (gimple_phi_result (phi)))
247 continue;
248
789410e4 249 m_phi_count++;
b6e99746 250
726a989a 251 for (i = 0; i < gimple_phi_num_args (phi); i++)
b6e99746 252 {
726a989a 253 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
b6e99746 254
789410e4 255 if (bb == m_switch_bb
18bfe940 256 || (single_pred_p (bb)
789410e4
ML
257 && single_pred (bb) == m_switch_bb
258 && (!m_default_case_nonstandard
18bfe940 259 || empty_block_p (bb))))
b6e99746 260 {
f6e6e990 261 tree reloc, val;
18bfe940 262 const char *reason = NULL;
f6e6e990
JJ
263
264 val = gimple_phi_arg_def (phi, i);
265 if (!is_gimple_ip_invariant (val))
18bfe940
JJ
266 reason = "non-invariant value from a case";
267 else
f6e6e990 268 {
18bfe940
JJ
269 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
270 if ((flag_pic && reloc != null_pointer_node)
271 || (!flag_pic && reloc == NULL_TREE))
272 {
273 if (reloc)
274 reason
275 = "value from a case would need runtime relocations";
276 else
277 reason
278 = "value from a case is not a valid initializer";
279 }
f6e6e990 280 }
18bfe940 281 if (reason)
f6e6e990 282 {
18bfe940
JJ
283 /* For contiguous range, we can allow non-constant
284 or one that needs relocation, as long as it is
285 only reachable from the default case. */
789410e4
ML
286 if (bb == m_switch_bb)
287 bb = m_final_bb;
288 if (!m_contiguous_range || bb != m_default_bb)
18bfe940 289 {
789410e4 290 m_reason = reason;
18bfe940
JJ
291 return false;
292 }
293
789410e4 294 unsigned int branch_num = gimple_switch_num_labels (m_switch);
18bfe940
JJ
295 for (unsigned int i = 1; i < branch_num; i++)
296 {
61ff5d6f 297 if (gimple_switch_label_bb (cfun, m_switch, i) == bb)
18bfe940 298 {
789410e4 299 m_reason = reason;
18bfe940
JJ
300 return false;
301 }
302 }
789410e4 303 m_default_case_nonstandard = true;
f6e6e990 304 }
b6e99746
MJ
305 }
306 }
307 }
308
309 return true;
310}
311
312/* The following function allocates default_values, target_{in,out}_names and
313 constructors arrays. The last one is also populated with pointers to
314 vectors that will become constructors of new arrays. */
315
789410e4
ML
316void
317switch_conversion::create_temp_arrays ()
b6e99746
MJ
318{
319 int i;
320
789410e4 321 m_default_values = XCNEWVEC (tree, m_phi_count * 3);
9771b263
DN
322 /* ??? Macros do not support multi argument templates in their
323 argument list. We create a typedef to work around that problem. */
324 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
789410e4
ML
325 m_constructors = XCNEWVEC (vec_constructor_elt_gc, m_phi_count);
326 m_target_inbound_names = m_default_values + m_phi_count;
327 m_target_outbound_names = m_target_inbound_names + m_phi_count;
328 for (i = 0; i < m_phi_count; i++)
329 vec_alloc (m_constructors[i], tree_to_uhwi (m_range_size) + 1);
b6e99746
MJ
330}
331
332/* Populate the array of default values in the order of phi nodes.
18bfe940
JJ
333 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
334 if the range is non-contiguous or the default case has standard
335 structure, otherwise it is the first non-default case instead. */
b6e99746 336
789410e4
ML
337void
338switch_conversion::gather_default_values (tree default_case)
b6e99746 339{
538dd0b7 340 gphi_iterator gsi;
61ff5d6f 341 basic_block bb = label_to_block (cfun, CASE_LABEL (default_case));
b6e99746 342 edge e;
726a989a 343 int i = 0;
b6e99746 344
18bfe940 345 gcc_assert (CASE_LOW (default_case) == NULL_TREE
789410e4 346 || m_default_case_nonstandard);
b6e99746 347
789410e4
ML
348 if (bb == m_final_bb)
349 e = find_edge (m_switch_bb, bb);
b6e99746
MJ
350 else
351 e = single_succ_edge (bb);
352
789410e4 353 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 354 {
538dd0b7 355 gphi *phi = gsi.phi ();
18bfe940
JJ
356 if (virtual_operand_p (gimple_phi_result (phi)))
357 continue;
b6e99746
MJ
358 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
359 gcc_assert (val);
789410e4 360 m_default_values[i++] = val;
b6e99746
MJ
361 }
362}
363
364/* The following function populates the vectors in the constructors array with
365 future contents of the static arrays. The vectors are populated in the
789410e4 366 order of phi nodes. */
b6e99746 367
789410e4
ML
368void
369switch_conversion::build_constructors ()
b6e99746 370{
789410e4
ML
371 unsigned i, branch_num = gimple_switch_num_labels (m_switch);
372 tree pos = m_range_min;
18bfe940 373 tree pos_one = build_int_cst (TREE_TYPE (pos), 1);
b6e99746 374
726a989a 375 for (i = 1; i < branch_num; i++)
b6e99746 376 {
789410e4 377 tree cs = gimple_switch_label (m_switch, i);
61ff5d6f 378 basic_block bb = label_to_block (cfun, CASE_LABEL (cs));
b6e99746 379 edge e;
726a989a 380 tree high;
538dd0b7 381 gphi_iterator gsi;
b6e99746
MJ
382 int j;
383
789410e4
ML
384 if (bb == m_final_bb)
385 e = find_edge (m_switch_bb, bb);
b6e99746
MJ
386 else
387 e = single_succ_edge (bb);
388 gcc_assert (e);
389
390 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
391 {
392 int k;
789410e4 393 for (k = 0; k < m_phi_count; k++)
b6e99746 394 {
f32682ca 395 constructor_elt elt;
b6e99746 396
789410e4 397 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
d1f98542 398 elt.value
789410e4
ML
399 = unshare_expr_without_location (m_default_values[k]);
400 m_constructors[k]->quick_push (elt);
b6e99746
MJ
401 }
402
18bfe940 403 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
b6e99746 404 }
b1ae1681 405 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
b6e99746
MJ
406
407 j = 0;
408 if (CASE_HIGH (cs))
409 high = CASE_HIGH (cs);
410 else
b1ae1681 411 high = CASE_LOW (cs);
789410e4 412 for (gsi = gsi_start_phis (m_final_bb);
726a989a 413 !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 414 {
538dd0b7 415 gphi *phi = gsi.phi ();
18bfe940
JJ
416 if (virtual_operand_p (gimple_phi_result (phi)))
417 continue;
b6e99746 418 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
7f2a9982 419 tree low = CASE_LOW (cs);
b6e99746
MJ
420 pos = CASE_LOW (cs);
421
b8698a0f 422 do
b6e99746 423 {
f32682ca 424 constructor_elt elt;
b6e99746 425
789410e4 426 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
d1f98542 427 elt.value = unshare_expr_without_location (val);
789410e4 428 m_constructors[j]->quick_push (elt);
b6e99746 429
18bfe940 430 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
7156c8ab
MJ
431 } while (!tree_int_cst_lt (high, pos)
432 && tree_int_cst_lt (low, pos));
b6e99746
MJ
433 j++;
434 }
435 }
436}
437
767d4551
ML
438/* If all values in the constructor vector are products of a linear function
439 a * x + b, then return true. When true, COEFF_A and COEFF_B and
440 coefficients of the linear function. Note that equal values are special
441 case of a linear function with a and b equal to zero. */
7156c8ab 442
767d4551
ML
443bool
444switch_conversion::contains_linear_function_p (vec<constructor_elt, va_gc> *vec,
445 wide_int *coeff_a,
446 wide_int *coeff_b)
7156c8ab 447{
8e97bc2b 448 unsigned int i;
8e97bc2b 449 constructor_elt *elt;
7156c8ab 450
767d4551
ML
451 gcc_assert (vec->length () >= 2);
452
453 /* Let's try to find any linear function a * x + y that can apply to
454 given values. 'a' can be calculated as follows:
455
456 a = (y2 - y1) / (x2 - x1) where x2 - x1 = 1 (consecutive case indices)
457 a = y2 - y1
458
459 and
460
461 b = y2 - a * x2
462
463 */
464
465 tree elt0 = (*vec)[0].value;
466 tree elt1 = (*vec)[1].value;
467
468 if (TREE_CODE (elt0) != INTEGER_CST || TREE_CODE (elt1) != INTEGER_CST)
469 return false;
470
5a5474ba
ML
471 wide_int range_min
472 = wide_int::from (wi::to_wide (m_range_min),
473 TYPE_PRECISION (TREE_TYPE (elt0)),
474 TYPE_SIGN (TREE_TYPE (m_range_min)));
767d4551
ML
475 wide_int y1 = wi::to_wide (elt0);
476 wide_int y2 = wi::to_wide (elt1);
477 wide_int a = y2 - y1;
478 wide_int b = y2 - a * (range_min + 1);
479
480 /* Verify that all values fulfill the linear function. */
9771b263 481 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
7156c8ab 482 {
767d4551
ML
483 if (TREE_CODE (elt->value) != INTEGER_CST)
484 return false;
485
486 wide_int value = wi::to_wide (elt->value);
487 if (a * range_min + b != value)
488 return false;
489
490 ++range_min;
7156c8ab 491 }
767d4551
ML
492
493 *coeff_a = a;
494 *coeff_b = b;
495
496 return true;
7156c8ab
MJ
497}
498
f1b0632a
OH
499/* Return type which should be used for array elements, either TYPE's
500 main variant or, for integral types, some smaller integral type
501 that can still hold all the constants. */
8e97bc2b 502
789410e4
ML
503tree
504switch_conversion::array_value_type (tree type, int num)
8e97bc2b 505{
789410e4 506 unsigned int i, len = vec_safe_length (m_constructors[num]);
8e97bc2b 507 constructor_elt *elt;
8e97bc2b
JJ
508 int sign = 0;
509 tree smaller_type;
510
f1b0632a
OH
511 /* Types with alignments greater than their size can reach here, e.g. out of
512 SRA. We couldn't use these as an array component type so get back to the
513 main variant first, which, for our purposes, is fine for other types as
514 well. */
515
516 type = TYPE_MAIN_VARIANT (type);
517
8e97bc2b
JJ
518 if (!INTEGRAL_TYPE_P (type))
519 return type;
520
7a504f33 521 scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
095a2d76 522 scalar_int_mode mode = get_narrowest_mode (type_mode);
ec35d572 523 if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode))
8e97bc2b
JJ
524 return type;
525
789410e4 526 if (len < (optimize_bb_for_size_p (gimple_bb (m_switch)) ? 2 : 32))
8e97bc2b
JJ
527 return type;
528
789410e4 529 FOR_EACH_VEC_SAFE_ELT (m_constructors[num], i, elt)
8e97bc2b 530 {
807e902e 531 wide_int cst;
8e97bc2b
JJ
532
533 if (TREE_CODE (elt->value) != INTEGER_CST)
534 return type;
535
8e6cdc90 536 cst = wi::to_wide (elt->value);
8e97bc2b
JJ
537 while (1)
538 {
539 unsigned int prec = GET_MODE_BITSIZE (mode);
540 if (prec > HOST_BITS_PER_WIDE_INT)
541 return type;
542
807e902e 543 if (sign >= 0 && cst == wi::zext (cst, prec))
8e97bc2b 544 {
807e902e 545 if (sign == 0 && cst == wi::sext (cst, prec))
8e97bc2b
JJ
546 break;
547 sign = 1;
548 break;
549 }
807e902e 550 if (sign <= 0 && cst == wi::sext (cst, prec))
8e97bc2b
JJ
551 {
552 sign = -1;
553 break;
554 }
555
556 if (sign == 1)
557 sign = 0;
558
490d0f6c 559 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
ec35d572 560 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode))
8e97bc2b
JJ
561 return type;
562 }
563 }
564
565 if (sign == 0)
566 sign = TYPE_UNSIGNED (type) ? 1 : -1;
567 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
7a504f33
RS
568 if (GET_MODE_SIZE (type_mode)
569 <= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type)))
8e97bc2b
JJ
570 return type;
571
572 return smaller_type;
573}
574
789410e4
ML
575/* Create an appropriate array type and declaration and assemble a static
576 array variable. Also create a load statement that initializes
577 the variable in question with a value from the static array. SWTCH is
578 the switch statement being converted, NUM is the index to
579 arrays of constructors, default values and target SSA names
580 for this particular array. ARR_INDEX_TYPE is the type of the index
581 of the new array, PHI is the phi node of the final BB that corresponds
582 to the value that will be loaded from the created array. TIDX
7156c8ab
MJ
583 is an ssa name of a temporary variable holding the index for loads from the
584 new array. */
b6e99746 585
789410e4
ML
586void
587switch_conversion::build_one_array (int num, tree arr_index_type,
588 gphi *phi, tree tidx)
b6e99746 589{
767d4551 590 tree name;
355fe088 591 gimple *load;
789410e4
ML
592 gimple_stmt_iterator gsi = gsi_for_stmt (m_switch);
593 location_t loc = gimple_location (m_switch);
b6e99746 594
789410e4 595 gcc_assert (m_default_values[num]);
b6e99746 596
b731b390 597 name = copy_ssa_name (PHI_RESULT (phi));
789410e4 598 m_target_inbound_names[num] = name;
b6e99746 599
5a5474ba 600 vec<constructor_elt, va_gc> *constructor = m_constructors[num];
767d4551 601 wide_int coeff_a, coeff_b;
5a5474ba 602 bool linear_p = contains_linear_function_p (constructor, &coeff_a, &coeff_b);
1d9cd701
JJ
603 tree type;
604 if (linear_p
605 && (type = range_check_type (TREE_TYPE ((*constructor)[0].value))))
767d4551
ML
606 {
607 if (dump_file && coeff_a.to_uhwi () > 0)
608 fprintf (dump_file, "Linear transformation with A = %" PRId64
609 " and B = %" PRId64 "\n", coeff_a.to_shwi (),
610 coeff_b.to_shwi ());
611
5a5474ba 612 /* We must use type of constructor values. */
767d4551 613 gimple_seq seq = NULL;
1d9cd701
JJ
614 tree tmp = gimple_convert (&seq, type, m_index_expr);
615 tree tmp2 = gimple_build (&seq, MULT_EXPR, type,
616 wide_int_to_tree (type, coeff_a), tmp);
617 tree tmp3 = gimple_build (&seq, PLUS_EXPR, type, tmp2,
618 wide_int_to_tree (type, coeff_b));
767d4551
ML
619 tree tmp4 = gimple_convert (&seq, TREE_TYPE (name), tmp3);
620 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
621 load = gimple_build_assign (name, tmp4);
622 }
7156c8ab
MJ
623 else
624 {
8e97bc2b 625 tree array_type, ctor, decl, value_type, fetch, default_type;
7156c8ab 626
789410e4
ML
627 default_type = TREE_TYPE (m_default_values[num]);
628 value_type = array_value_type (default_type, num);
7156c8ab 629 array_type = build_array_type (value_type, arr_index_type);
8e97bc2b
JJ
630 if (default_type != value_type)
631 {
632 unsigned int i;
633 constructor_elt *elt;
634
5a5474ba 635 FOR_EACH_VEC_SAFE_ELT (constructor, i, elt)
8e97bc2b
JJ
636 elt->value = fold_convert (value_type, elt->value);
637 }
5a5474ba 638 ctor = build_constructor (array_type, constructor);
7156c8ab 639 TREE_CONSTANT (ctor) = true;
5f7ae6b6 640 TREE_STATIC (ctor) = true;
7156c8ab 641
c2255bc4 642 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
7156c8ab
MJ
643 TREE_STATIC (decl) = 1;
644 DECL_INITIAL (decl) = ctor;
645
646 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
647 DECL_ARTIFICIAL (decl) = 1;
f8d851c6 648 DECL_IGNORED_P (decl) = 1;
7156c8ab 649 TREE_CONSTANT (decl) = 1;
2e3b4885 650 TREE_READONLY (decl) = 1;
d7438551 651 DECL_IGNORED_P (decl) = 1;
46dbeb40
TV
652 if (offloading_function_p (cfun->decl))
653 DECL_ATTRIBUTES (decl)
654 = tree_cons (get_identifier ("omp declare target"), NULL_TREE,
655 NULL_TREE);
9041d2e6 656 varpool_node::finalize_decl (decl);
7156c8ab
MJ
657
658 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
659 NULL_TREE);
8e97bc2b
JJ
660 if (default_type != value_type)
661 {
662 fetch = fold_convert (default_type, fetch);
663 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
664 true, GSI_SAME_STMT);
665 }
7156c8ab
MJ
666 load = gimple_build_assign (name, fetch);
667 }
b6e99746 668
726a989a 669 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
7156c8ab 670 update_stmt (load);
789410e4 671 m_arr_ref_last = load;
b6e99746
MJ
672}
673
674/* Builds and initializes static arrays initialized with values gathered from
789410e4 675 the switch statement. Also creates statements that load values from
b6e99746
MJ
676 them. */
677
789410e4
ML
678void
679switch_conversion::build_arrays ()
b6e99746
MJ
680{
681 tree arr_index_type;
83d5977e 682 tree tidx, sub, utype;
355fe088 683 gimple *stmt;
726a989a 684 gimple_stmt_iterator gsi;
538dd0b7 685 gphi_iterator gpi;
b6e99746 686 int i;
789410e4 687 location_t loc = gimple_location (m_switch);
b6e99746 688
789410e4 689 gsi = gsi_for_stmt (m_switch);
04e78aa9 690
edb9b69e 691 /* Make sure we do not generate arithmetics in a subrange. */
789410e4 692 utype = TREE_TYPE (m_index_expr);
edb9b69e
JJ
693 if (TREE_TYPE (utype))
694 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
695 else
696 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
697
789410e4 698 arr_index_type = build_index_type (m_range_size);
b731b390 699 tidx = make_ssa_name (utype);
edb9b69e 700 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
789410e4
ML
701 fold_convert_loc (loc, utype, m_index_expr),
702 fold_convert_loc (loc, utype, m_range_min));
fae1034e 703 sub = force_gimple_operand_gsi (&gsi, sub,
726a989a
RB
704 false, NULL, true, GSI_SAME_STMT);
705 stmt = gimple_build_assign (tidx, sub);
b6e99746 706
726a989a 707 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
7156c8ab 708 update_stmt (stmt);
789410e4 709 m_arr_ref_first = stmt;
b6e99746 710
789410e4 711 for (gpi = gsi_start_phis (m_final_bb), i = 0;
18bfe940
JJ
712 !gsi_end_p (gpi); gsi_next (&gpi))
713 {
714 gphi *phi = gpi.phi ();
715 if (!virtual_operand_p (gimple_phi_result (phi)))
789410e4 716 build_one_array (i++, arr_index_type, phi, tidx);
8dc6a926
JJ
717 else
718 {
719 edge e;
720 edge_iterator ei;
789410e4 721 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
8dc6a926 722 {
789410e4 723 if (e->dest == m_final_bb)
8dc6a926 724 break;
789410e4
ML
725 if (!m_default_case_nonstandard
726 || e->dest != m_default_bb)
8dc6a926
JJ
727 {
728 e = single_succ_edge (e->dest);
729 break;
730 }
731 }
789410e4
ML
732 gcc_assert (e && e->dest == m_final_bb);
733 m_target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e);
8dc6a926 734 }
18bfe940 735 }
b6e99746
MJ
736}
737
738/* Generates and appropriately inserts loads of default values at the position
789410e4 739 given by GSI. Returns the last inserted statement. */
b6e99746 740
789410e4
ML
741gassign *
742switch_conversion::gen_def_assigns (gimple_stmt_iterator *gsi)
b6e99746
MJ
743{
744 int i;
538dd0b7 745 gassign *assign = NULL;
b6e99746 746
789410e4 747 for (i = 0; i < m_phi_count; i++)
b6e99746 748 {
789410e4
ML
749 tree name = copy_ssa_name (m_target_inbound_names[i]);
750 m_target_outbound_names[i] = name;
751 assign = gimple_build_assign (name, m_default_values[i]);
726a989a 752 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
7156c8ab 753 update_stmt (assign);
b6e99746
MJ
754 }
755 return assign;
756}
757
758/* Deletes the unused bbs and edges that now contain the switch statement and
789410e4
ML
759 its empty branch bbs. BBD is the now dead BB containing
760 the original switch statement, FINAL is the last BB of the converted
761 switch statement (in terms of succession). */
b6e99746 762
789410e4
ML
763void
764switch_conversion::prune_bbs (basic_block bbd, basic_block final,
765 basic_block default_bb)
b6e99746
MJ
766{
767 edge_iterator ei;
768 edge e;
769
770 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
771 {
772 basic_block bb;
773 bb = e->dest;
774 remove_edge (e);
18bfe940 775 if (bb != final && bb != default_bb)
b6e99746
MJ
776 delete_basic_block (bb);
777 }
778 delete_basic_block (bbd);
779}
780
781/* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
782 from the basic block loading values from an array and E2F from the basic
783 block loading default values. BBF is the last switch basic block (see the
784 bbf description in the comment below). */
785
789410e4
ML
786void
787switch_conversion::fix_phi_nodes (edge e1f, edge e2f, basic_block bbf)
b6e99746 788{
538dd0b7 789 gphi_iterator gsi;
b6e99746
MJ
790 int i;
791
726a989a 792 for (gsi = gsi_start_phis (bbf), i = 0;
18bfe940 793 !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 794 {
538dd0b7 795 gphi *phi = gsi.phi ();
18bfe940
JJ
796 tree inbound, outbound;
797 if (virtual_operand_p (gimple_phi_result (phi)))
789410e4 798 inbound = outbound = m_target_vop;
18bfe940
JJ
799 else
800 {
789410e4
ML
801 inbound = m_target_inbound_names[i];
802 outbound = m_target_outbound_names[i++];
18bfe940
JJ
803 }
804 add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION);
789410e4 805 if (!m_default_case_nonstandard)
18bfe940 806 add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION);
b6e99746 807 }
b6e99746
MJ
808}
809
810/* Creates a check whether the switch expression value actually falls into the
811 range given by all the cases. If it does not, the temporaries are loaded
789410e4 812 with default values instead. */
b6e99746 813
789410e4
ML
814void
815switch_conversion::gen_inbound_check ()
b6e99746 816{
c2255bc4
AH
817 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
818 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
819 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
538dd0b7 820 glabel *label1, *label2, *label3;
edb9b69e 821 tree utype, tidx;
b6e99746
MJ
822 tree bound;
823
538dd0b7 824 gcond *cond_stmt;
b6e99746 825
18bfe940 826 gassign *last_assign = NULL;
726a989a 827 gimple_stmt_iterator gsi;
b6e99746 828 basic_block bb0, bb1, bb2, bbf, bbd;
18bfe940 829 edge e01 = NULL, e02, e21, e1d, e1f, e2f;
789410e4 830 location_t loc = gimple_location (m_switch);
b6e99746 831
789410e4 832 gcc_assert (m_default_values);
6ab1ab14 833
789410e4 834 bb0 = gimple_bb (m_switch);
b6e99746 835
789410e4 836 tidx = gimple_assign_lhs (m_arr_ref_first);
edb9b69e 837 utype = TREE_TYPE (tidx);
145544ab 838
b6e99746 839 /* (end of) block 0 */
789410e4 840 gsi = gsi_for_stmt (m_arr_ref_first);
edb9b69e 841 gsi_next (&gsi);
b6e99746 842
789410e4 843 bound = fold_convert_loc (loc, utype, m_range_size);
edb9b69e 844 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
726a989a 845 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
7156c8ab 846 update_stmt (cond_stmt);
b6e99746
MJ
847
848 /* block 2 */
789410e4 849 if (!m_default_case_nonstandard)
18bfe940
JJ
850 {
851 label2 = gimple_build_label (label_decl2);
852 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
789410e4 853 last_assign = gen_def_assigns (&gsi);
18bfe940 854 }
b6e99746
MJ
855
856 /* block 1 */
726a989a
RB
857 label1 = gimple_build_label (label_decl1);
858 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
b6e99746
MJ
859
860 /* block F */
789410e4 861 gsi = gsi_start_bb (m_final_bb);
726a989a
RB
862 label3 = gimple_build_label (label_decl3);
863 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
b6e99746
MJ
864
865 /* cfg fix */
726a989a 866 e02 = split_block (bb0, cond_stmt);
b6e99746
MJ
867 bb2 = e02->dest;
868
789410e4 869 if (m_default_case_nonstandard)
18bfe940
JJ
870 {
871 bb1 = bb2;
789410e4 872 bb2 = m_default_bb;
18bfe940
JJ
873 e01 = e02;
874 e01->flags = EDGE_TRUE_VALUE;
875 e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE);
876 edge e_default = find_edge (bb1, bb2);
877 for (gphi_iterator gsi = gsi_start_phis (bb2);
878 !gsi_end_p (gsi); gsi_next (&gsi))
879 {
880 gphi *phi = gsi.phi ();
881 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default);
882 add_phi_arg (phi, arg, e02,
883 gimple_phi_arg_location_from_edge (phi, e_default));
884 }
885 /* Partially fix the dominator tree, if it is available. */
886 if (dom_info_available_p (CDI_DOMINATORS))
887 redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0);
888 }
889 else
890 {
891 e21 = split_block (bb2, last_assign);
892 bb1 = e21->dest;
893 remove_edge (e21);
894 }
b6e99746 895
789410e4 896 e1d = split_block (bb1, m_arr_ref_last);
b6e99746
MJ
897 bbd = e1d->dest;
898 remove_edge (e1d);
899
789410e4
ML
900 /* Flags and profiles of the edge for in-range values. */
901 if (!m_default_case_nonstandard)
18bfe940 902 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
789410e4 903 e01->probability = m_default_prob.invert ();
b6e99746 904
789410e4 905 /* Flags and profiles of the edge taking care of out-of-range values. */
b6e99746
MJ
906 e02->flags &= ~EDGE_FALLTHRU;
907 e02->flags |= EDGE_FALSE_VALUE;
789410e4 908 e02->probability = m_default_prob;
b6e99746 909
789410e4 910 bbf = m_final_bb;
b6e99746
MJ
911
912 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
357067f2 913 e1f->probability = profile_probability::always ();
b6e99746 914
789410e4 915 if (m_default_case_nonstandard)
18bfe940
JJ
916 e2f = NULL;
917 else
918 {
919 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
357067f2 920 e2f->probability = profile_probability::always ();
18bfe940 921 }
b6e99746
MJ
922
923 /* frequencies of the new BBs */
e7a74006
JH
924 bb1->count = e01->count ();
925 bb2->count = e02->count ();
789410e4 926 if (!m_default_case_nonstandard)
e7a74006 927 bbf->count = e1f->count () + e2f->count ();
b6e99746 928
6ab1ab14 929 /* Tidy blocks that have become unreachable. */
789410e4
ML
930 prune_bbs (bbd, m_final_bb,
931 m_default_case_nonstandard ? m_default_bb : NULL);
b6e99746 932
6ab1ab14 933 /* Fixup the PHI nodes in bbF. */
789410e4 934 fix_phi_nodes (e1f, e2f, bbf);
b6e99746 935
6ab1ab14
SB
936 /* Fix the dominator tree, if it is available. */
937 if (dom_info_available_p (CDI_DOMINATORS))
938 {
9771b263 939 vec<basic_block> bbs_to_fix_dom;
6ab1ab14
SB
940
941 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
789410e4 942 if (!m_default_case_nonstandard)
18bfe940 943 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
531b10fc 944 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
6ab1ab14
SB
945 /* If bbD was the immediate dominator ... */
946 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
947
18bfe940 948 bbs_to_fix_dom.create (3 + (bb2 != bbf));
9771b263
DN
949 bbs_to_fix_dom.quick_push (bb0);
950 bbs_to_fix_dom.quick_push (bb1);
18bfe940
JJ
951 if (bb2 != bbf)
952 bbs_to_fix_dom.quick_push (bb2);
9771b263 953 bbs_to_fix_dom.quick_push (bbf);
6ab1ab14
SB
954
955 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
9771b263 956 bbs_to_fix_dom.release ();
6ab1ab14 957 }
b6e99746
MJ
958}
959
789410e4
ML
960/* The following function is invoked on every switch statement (the current
961 one is given in SWTCH) and runs the individual phases of switch
962 conversion on it one after another until one fails or the conversion
963 is completed. On success, NULL is in m_reason, otherwise points
964 to a string with the reason why the conversion failed. */
b6e99746 965
789410e4
ML
966void
967switch_conversion::expand (gswitch *swtch)
b6e99746 968{
238065a7
SB
969 /* Group case labels so that we get the right results from the heuristics
970 that decide on the code generation approach for this switch. */
789410e4 971 m_cfg_altered |= group_case_labels_stmt (swtch);
d78bcb13
ML
972
973 /* If this switch is now a degenerate case with only a default label,
974 there is nothing left for us to do. */
975 if (gimple_switch_num_labels (swtch) < 2)
976 {
977 m_reason = "switch is a degenerate case";
978 return;
979 }
886cd84f 980
789410e4 981 collect (swtch);
886cd84f
SB
982
983 /* No error markers should reach here (they should be filtered out
984 during gimplification). */
789410e4 985 gcc_checking_assert (TREE_TYPE (m_index_expr) != error_mark_node);
886cd84f 986
531b10fc 987 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
789410e4 988 gcc_checking_assert (!TREE_CONSTANT (m_index_expr));
886cd84f 989
dc223ad4
ML
990 /* Prefer bit test if possible. */
991 if (tree_fits_uhwi_p (m_range_size)
992 && bit_test_cluster::can_be_handled (tree_to_uhwi (m_range_size), m_uniq)
993 && bit_test_cluster::is_beneficial (m_count, m_uniq))
994 {
995 m_reason = "expanding as bit test is preferable";
996 return;
997 }
998
999 if (m_uniq <= 2)
1000 {
1001 /* This will be expanded as a decision tree . */
1002 m_reason = "expanding as jumps is preferable";
1003 return;
1004 }
1005
789410e4
ML
1006 /* If there is no common successor, we cannot do the transformation. */
1007 if (!m_final_bb)
886cd84f 1008 {
789410e4
ML
1009 m_reason = "no common successor to all case label target blocks found";
1010 return;
886cd84f 1011 }
b6e99746
MJ
1012
1013 /* Check the case label values are within reasonable range: */
789410e4 1014 if (!check_range ())
fade902a 1015 {
789410e4
ML
1016 gcc_assert (m_reason);
1017 return;
fade902a 1018 }
b6e99746
MJ
1019
1020 /* For all the cases, see whether they are empty, the assignments they
1021 represent constant and so on... */
789410e4 1022 if (!check_all_empty_except_final ())
8e97bc2b 1023 {
789410e4
ML
1024 gcc_assert (m_reason);
1025 return;
8e97bc2b 1026 }
789410e4 1027 if (!check_final_bb ())
fade902a 1028 {
789410e4
ML
1029 gcc_assert (m_reason);
1030 return;
fade902a 1031 }
b6e99746
MJ
1032
1033 /* At this point all checks have passed and we can proceed with the
1034 transformation. */
1035
789410e4
ML
1036 create_temp_arrays ();
1037 gather_default_values (m_default_case_nonstandard
18bfe940 1038 ? gimple_switch_label (swtch, 1)
789410e4
ML
1039 : gimple_switch_default_label (swtch));
1040 build_constructors ();
b6e99746 1041
789410e4
ML
1042 build_arrays (); /* Build the static arrays and assignments. */
1043 gen_inbound_check (); /* Build the bounds check. */
b6e99746 1044
789410e4
ML
1045 m_cfg_altered = true;
1046}
1047
1048/* Destructor. */
1049
1050switch_conversion::~switch_conversion ()
1051{
1052 XDELETEVEC (m_constructors);
1053 XDELETEVEC (m_default_values);
b6e99746
MJ
1054}
1055
dc223ad4 1056/* Constructor. */
be55bfe6 1057
dc223ad4
ML
1058group_cluster::group_cluster (vec<cluster *> &clusters,
1059 unsigned start, unsigned end)
be55bfe6 1060{
dc223ad4
ML
1061 gcc_checking_assert (end - start + 1 >= 1);
1062 m_prob = profile_probability::never ();
1063 m_cases.create (end - start + 1);
1064 for (unsigned i = start; i <= end; i++)
1065 {
1066 m_cases.quick_push (static_cast<simple_cluster *> (clusters[i]));
1067 m_prob += clusters[i]->m_prob;
1068 }
1069 m_subtree_prob = m_prob;
1070}
be55bfe6 1071
dc223ad4
ML
1072/* Destructor. */
1073
1074group_cluster::~group_cluster ()
be55bfe6 1075{
dc223ad4
ML
1076 for (unsigned i = 0; i < m_cases.length (); i++)
1077 delete m_cases[i];
be55bfe6 1078
dc223ad4
ML
1079 m_cases.release ();
1080}
be55bfe6 1081
dc223ad4 1082/* Dump content of a cluster. */
be55bfe6 1083
dc223ad4
ML
1084void
1085group_cluster::dump (FILE *f, bool details)
b6e99746 1086{
dc223ad4
ML
1087 unsigned total_values = 0;
1088 for (unsigned i = 0; i < m_cases.length (); i++)
1089 total_values += m_cases[i]->get_range (m_cases[i]->get_low (),
1090 m_cases[i]->get_high ());
726a989a 1091
dc223ad4
ML
1092 unsigned comparison_count = 0;
1093 for (unsigned i = 0; i < m_cases.length (); i++)
1094 {
1095 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1096 comparison_count += sc->m_range_p ? 2 : 1;
1097 }
b6e99746 1098
dc223ad4
ML
1099 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1100 fprintf (f, "%s", get_type () == JUMP_TABLE ? "JT" : "BT");
531b10fc 1101
dc223ad4
ML
1102 if (details)
1103 fprintf (f, "(values:%d comparisons:%d range:" HOST_WIDE_INT_PRINT_DEC
1104 " density: %.2f%%)", total_values, comparison_count, range,
1105 100.0f * comparison_count / range);
b6e99746 1106
dc223ad4
ML
1107 fprintf (f, ":");
1108 PRINT_CASE (f, get_low ());
1109 fprintf (f, "-");
1110 PRINT_CASE (f, get_high ());
1111 fprintf (f, " ");
b6e99746
MJ
1112}
1113
dc223ad4 1114/* Emit GIMPLE code to handle the cluster. */
27a4cd48 1115
dc223ad4
ML
1116void
1117jump_table_cluster::emit (tree index_expr, tree,
1118 tree default_label_expr, basic_block default_bb)
27a4cd48 1119{
dbdfaaba
ML
1120 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1121 unsigned HOST_WIDE_INT nondefault_range = 0;
1122
dc223ad4
ML
1123 /* For jump table we just emit a new gswitch statement that will
1124 be latter lowered to jump table. */
1125 auto_vec <tree> labels;
1126 labels.create (m_cases.length ());
1127
1128 make_edge (m_case_bb, default_bb, 0);
1129 for (unsigned i = 0; i < m_cases.length (); i++)
1130 {
1131 labels.quick_push (unshare_expr (m_cases[i]->m_case_label_expr));
1132 make_edge (m_case_bb, m_cases[i]->m_case_bb, 0);
1133 }
1134
1135 gswitch *s = gimple_build_switch (index_expr,
1136 unshare_expr (default_label_expr), labels);
1137 gimple_stmt_iterator gsi = gsi_start_bb (m_case_bb);
1138 gsi_insert_after (&gsi, s, GSI_NEW_STMT);
dbdfaaba
ML
1139
1140 /* Set up even probabilities for all cases. */
1141 for (unsigned i = 0; i < m_cases.length (); i++)
1142 {
1143 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1144 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1145 unsigned HOST_WIDE_INT case_range
1146 = sc->get_range (sc->get_low (), sc->get_high ());
1147 nondefault_range += case_range;
1148
1149 /* case_edge->aux is number of values in a jump-table that are covered
1150 by the case_edge. */
1151 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + case_range);
1152 }
1153
1154 edge default_edge = gimple_switch_default_edge (cfun, s);
1155 default_edge->probability = profile_probability::never ();
1156
1157 for (unsigned i = 0; i < m_cases.length (); i++)
1158 {
1159 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1160 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1161 case_edge->probability
1162 = profile_probability::always ().apply_scale ((intptr_t)case_edge->aux,
1163 range);
1164 }
1165
1166 /* Number of non-default values is probability of default edge. */
1167 default_edge->probability
1168 += profile_probability::always ().apply_scale (nondefault_range,
1169 range).invert ();
1170
1171 switch_decision_tree::reset_out_edges_aux (s);
27a4cd48 1172}
9dc3d6a9 1173
2f928c1b
ML
1174/* Find jump tables of given CLUSTERS, where all members of the vector
1175 are of type simple_cluster. New clusters are returned. */
1176
1177vec<cluster *>
1178jump_table_cluster::find_jump_tables (vec<cluster *> &clusters)
1179{
5885a1bd
ML
1180 if (!is_enabled ())
1181 return clusters.copy ();
1182
2f928c1b
ML
1183 unsigned l = clusters.length ();
1184 auto_vec<min_cluster_item> min;
1185 min.reserve (l + 1);
1186
1187 min.quick_push (min_cluster_item (0, 0, 0));
1188
1189 for (unsigned i = 1; i <= l; i++)
1190 {
1191 /* Set minimal # of clusters with i-th item to infinite. */
1192 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1193
1194 for (unsigned j = 0; j < i; j++)
1195 {
1196 unsigned HOST_WIDE_INT s = min[j].m_non_jt_cases;
1197 if (i - j < case_values_threshold ())
1198 s += i - j;
1199
1200 /* Prefer clusters with smaller number of numbers covered. */
1201 if ((min[j].m_count + 1 < min[i].m_count
1202 || (min[j].m_count + 1 == min[i].m_count
1203 && s < min[i].m_non_jt_cases))
1204 && can_be_handled (clusters, j, i - 1))
1205 min[i] = min_cluster_item (min[j].m_count + 1, j, s);
1206 }
df7c7974
ML
1207
1208 gcc_checking_assert (min[i].m_count != INT_MAX);
2f928c1b
ML
1209 }
1210
1211 /* No result. */
1acbaa75 1212 if (min[l].m_count == l)
2f928c1b
ML
1213 return clusters.copy ();
1214
1215 vec<cluster *> output;
1216 output.create (4);
1217
1218 /* Find and build the clusters. */
1acbaa75 1219 for (unsigned int end = l;;)
2f928c1b
ML
1220 {
1221 int start = min[end].m_start;
1222
1223 /* Do not allow clusters with small number of cases. */
1224 if (is_beneficial (clusters, start, end - 1))
1225 output.safe_push (new jump_table_cluster (clusters, start, end - 1));
1226 else
1227 for (int i = end - 1; i >= start; i--)
1228 output.safe_push (clusters[i]);
1229
1230 end = start;
1231
1232 if (start <= 0)
1233 break;
1234 }
1235
1236 output.reverse ();
1237 return output;
1238}
1239
dc223ad4
ML
1240/* Return true when cluster starting at START and ending at END (inclusive)
1241 can build a jump-table. */
1242
1243bool
1244jump_table_cluster::can_be_handled (const vec<cluster *> &clusters,
1245 unsigned start, unsigned end)
9dc3d6a9 1246{
dc223ad4
ML
1247 /* If the switch is relatively small such that the cost of one
1248 indirect jump on the target are higher than the cost of a
1249 decision tree, go with the decision tree.
9dc3d6a9 1250
dc223ad4
ML
1251 If range of values is much bigger than number of values,
1252 or if it is too large to represent in a HOST_WIDE_INT,
1253 make a sequence of conditional branches instead of a dispatch.
9dc3d6a9 1254
dc223ad4 1255 The definition of "much bigger" depends on whether we are
1acbaa75 1256 optimizing for size or for speed.
9dc3d6a9 1257
1acbaa75 1258 For algorithm correctness, jump table for a single case must return
df7c7974
ML
1259 true. We bail out in is_beneficial if it's called just for
1260 a single case. */
1261 if (start == end)
1262 return true;
9dc3d6a9 1263
1aabb71d 1264 unsigned HOST_WIDE_INT max_ratio
26f36b50 1265 = (optimize_insn_for_size_p ()
028d4092
ML
1266 ? param_jump_table_max_growth_ratio_for_size
1267 : param_jump_table_max_growth_ratio_for_speed);
dc223ad4
ML
1268 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1269 clusters[end]->get_high ());
1270 /* Check overflow. */
1271 if (range == 0)
1272 return false;
9dc3d6a9 1273
dc223ad4
ML
1274 unsigned HOST_WIDE_INT comparison_count = 0;
1275 for (unsigned i = start; i <= end; i++)
1276 {
1277 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1278 comparison_count += sc->m_range_p ? 2 : 1;
1279 }
9dc3d6a9 1280
86e3947e
ML
1281 unsigned HOST_WIDE_INT lhs = 100 * range;
1282 if (lhs < range)
1283 return false;
1284
1285 return lhs <= max_ratio * comparison_count;
9dc3d6a9
ML
1286}
1287
dc223ad4
ML
1288/* Return true if cluster starting at START and ending at END (inclusive)
1289 is profitable transformation. */
9dc3d6a9 1290
dc223ad4
ML
1291bool
1292jump_table_cluster::is_beneficial (const vec<cluster *> &,
1293 unsigned start, unsigned end)
9dc3d6a9 1294{
df7c7974
ML
1295 /* Single case bail out. */
1296 if (start == end)
1297 return false;
1298
dc223ad4 1299 return end - start + 1 >= case_values_threshold ();
9dc3d6a9
ML
1300}
1301
2f928c1b
ML
1302/* Find bit tests of given CLUSTERS, where all members of the vector
1303 are of type simple_cluster. New clusters are returned. */
1304
1305vec<cluster *>
1306bit_test_cluster::find_bit_tests (vec<cluster *> &clusters)
1307{
2f928c1b
ML
1308 unsigned l = clusters.length ();
1309 auto_vec<min_cluster_item> min;
1310 min.reserve (l + 1);
1311
1312 min.quick_push (min_cluster_item (0, 0, 0));
1313
1314 for (unsigned i = 1; i <= l; i++)
1315 {
1316 /* Set minimal # of clusters with i-th item to infinite. */
1317 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1318
1319 for (unsigned j = 0; j < i; j++)
1320 {
1321 if (min[j].m_count + 1 < min[i].m_count
1322 && can_be_handled (clusters, j, i - 1))
1323 min[i] = min_cluster_item (min[j].m_count + 1, j, INT_MAX);
1324 }
df7c7974
ML
1325
1326 gcc_checking_assert (min[i].m_count != INT_MAX);
2f928c1b
ML
1327 }
1328
1329 /* No result. */
1acbaa75 1330 if (min[l].m_count == l)
2f928c1b
ML
1331 return clusters.copy ();
1332
1acbaa75
ML
1333 vec<cluster *> output;
1334 output.create (4);
1335
2f928c1b 1336 /* Find and build the clusters. */
377afcd5 1337 for (unsigned end = l;;)
2f928c1b
ML
1338 {
1339 int start = min[end].m_start;
1340
1341 if (is_beneficial (clusters, start, end - 1))
377afcd5
ML
1342 {
1343 bool entire = start == 0 && end == clusters.length ();
1344 output.safe_push (new bit_test_cluster (clusters, start, end - 1,
1345 entire));
1346 }
2f928c1b 1347 else
1d9cd701 1348 for (int i = end - 1; i >= start; i--)
2f928c1b
ML
1349 output.safe_push (clusters[i]);
1350
1351 end = start;
1352
1353 if (start <= 0)
1354 break;
1355 }
1356
1357 output.reverse ();
1358 return output;
1359}
1360
dc223ad4
ML
1361/* Return true when RANGE of case values with UNIQ labels
1362 can build a bit test. */
9dc3d6a9 1363
dc223ad4
ML
1364bool
1365bit_test_cluster::can_be_handled (unsigned HOST_WIDE_INT range,
1366 unsigned int uniq)
9dc3d6a9 1367{
dc223ad4
ML
1368 /* Check overflow. */
1369 if (range == 0)
1370 return 0;
1371
1372 if (range >= GET_MODE_BITSIZE (word_mode))
1373 return false;
1374
1375 return uniq <= 3;
1376}
1377
1378/* Return true when cluster starting at START and ending at END (inclusive)
1379 can build a bit test. */
1380
1381bool
1382bit_test_cluster::can_be_handled (const vec<cluster *> &clusters,
1383 unsigned start, unsigned end)
1384{
df7c7974
ML
1385 /* For algorithm correctness, bit test for a single case must return
1386 true. We bail out in is_beneficial if it's called just for
1387 a single case. */
1388 if (start == end)
1389 return true;
1390
dc223ad4
ML
1391 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1392 clusters[end]->get_high ());
1393 auto_bitmap dest_bbs;
1394
1395 for (unsigned i = start; i <= end; i++)
9dc3d6a9 1396 {
dc223ad4
ML
1397 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1398 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
9dc3d6a9 1399 }
9dc3d6a9 1400
dc223ad4
ML
1401 return can_be_handled (range, bitmap_count_bits (dest_bbs));
1402}
9dc3d6a9 1403
dc223ad4
ML
1404/* Return true when COUNT of cases of UNIQ labels is beneficial for bit test
1405 transformation. */
9dc3d6a9 1406
dc223ad4
ML
1407bool
1408bit_test_cluster::is_beneficial (unsigned count, unsigned uniq)
9dc3d6a9 1409{
dc223ad4
ML
1410 return (((uniq == 1 && count >= 3)
1411 || (uniq == 2 && count >= 5)
1412 || (uniq == 3 && count >= 6)));
9dc3d6a9
ML
1413}
1414
dc223ad4
ML
1415/* Return true if cluster starting at START and ending at END (inclusive)
1416 is profitable transformation. */
9dc3d6a9 1417
dc223ad4
ML
1418bool
1419bit_test_cluster::is_beneficial (const vec<cluster *> &clusters,
1420 unsigned start, unsigned end)
9dc3d6a9 1421{
df7c7974
ML
1422 /* Single case bail out. */
1423 if (start == end)
1424 return false;
1425
dc223ad4 1426 auto_bitmap dest_bbs;
9dc3d6a9 1427
dc223ad4 1428 for (unsigned i = start; i <= end; i++)
9dc3d6a9 1429 {
dc223ad4
ML
1430 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1431 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
9dc3d6a9 1432 }
9dc3d6a9 1433
dc223ad4
ML
1434 unsigned uniq = bitmap_count_bits (dest_bbs);
1435 unsigned count = end - start + 1;
1436 return is_beneficial (count, uniq);
9dc3d6a9
ML
1437}
1438
dc223ad4
ML
1439/* Comparison function for qsort to order bit tests by decreasing
1440 probability of execution. */
9dc3d6a9 1441
dc223ad4
ML
1442int
1443case_bit_test::cmp (const void *p1, const void *p2)
1444{
99b1c316
MS
1445 const case_bit_test *const d1 = (const case_bit_test *) p1;
1446 const case_bit_test *const d2 = (const case_bit_test *) p2;
dc223ad4
ML
1447
1448 if (d2->bits != d1->bits)
1449 return d2->bits - d1->bits;
1450
1451 /* Stabilize the sort. */
1452 return (LABEL_DECL_UID (CASE_LABEL (d2->label))
1453 - LABEL_DECL_UID (CASE_LABEL (d1->label)));
1454}
1455
1456/* Expand a switch statement by a short sequence of bit-wise
1457 comparisons. "switch(x)" is effectively converted into
1458 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
1459 integer constants.
1460
1461 INDEX_EXPR is the value being switched on.
1462
1463 MINVAL is the lowest case value of in the case nodes,
1464 and RANGE is highest value minus MINVAL. MINVAL and RANGE
1465 are not guaranteed to be of the same type as INDEX_EXPR
1466 (the gimplifier doesn't change the type of case label values,
1467 and MINVAL and RANGE are derived from those values).
1468 MAXVAL is MINVAL + RANGE.
9dc3d6a9 1469
dc223ad4
ML
1470 There *MUST* be max_case_bit_tests or less unique case
1471 node targets. */
1472
1473void
1474bit_test_cluster::emit (tree index_expr, tree index_type,
1475 tree, basic_block default_bb)
9dc3d6a9 1476{
99b1c316 1477 case_bit_test test[m_max_case_bit_tests] = { {} };
dc223ad4
ML
1478 unsigned int i, j, k;
1479 unsigned int count;
9dc3d6a9 1480
1d9cd701 1481 tree unsigned_index_type = range_check_type (index_type);
9dc3d6a9 1482
dc223ad4
ML
1483 gimple_stmt_iterator gsi;
1484 gassign *shift_stmt;
9dc3d6a9 1485
dc223ad4
ML
1486 tree idx, tmp, csui;
1487 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
1488 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
1489 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
1490 int prec = TYPE_PRECISION (word_type_node);
1491 wide_int wone = wi::one (prec);
9dc3d6a9 1492
dc223ad4
ML
1493 tree minval = get_low ();
1494 tree maxval = get_high ();
1495 tree range = int_const_binop (MINUS_EXPR, maxval, minval);
377afcd5 1496 unsigned HOST_WIDE_INT bt_range = get_range (minval, maxval);
9dc3d6a9 1497
dc223ad4
ML
1498 /* Go through all case labels, and collect the case labels, profile
1499 counts, and other information we need to build the branch tests. */
1500 count = 0;
1501 for (i = 0; i < m_cases.length (); i++)
1502 {
1503 unsigned int lo, hi;
1504 simple_cluster *n = static_cast<simple_cluster *> (m_cases[i]);
1505 for (k = 0; k < count; k++)
1506 if (n->m_case_bb == test[k].target_bb)
1507 break;
1508
1509 if (k == count)
9dc3d6a9 1510 {
dc223ad4
ML
1511 gcc_checking_assert (count < m_max_case_bit_tests);
1512 test[k].mask = wi::zero (prec);
1513 test[k].target_bb = n->m_case_bb;
1514 test[k].label = n->m_case_label_expr;
377afcd5 1515 test[k].bits = 0;
dc223ad4
ML
1516 count++;
1517 }
377afcd5
ML
1518
1519 test[k].bits += n->get_range (n->get_low (), n->get_high ());
9dc3d6a9 1520
dc223ad4
ML
1521 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_low (), minval));
1522 if (n->get_high () == NULL_TREE)
1523 hi = lo;
1524 else
1525 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_high (),
1526 minval));
9dc3d6a9 1527
dc223ad4
ML
1528 for (j = lo; j <= hi; j++)
1529 test[k].mask |= wi::lshift (wone, j);
1530 }
1531
1532 qsort (test, count, sizeof (*test), case_bit_test::cmp);
1533
1534 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
1535 the minval subtractions, but it might make the mask constants more
1536 expensive. So, compare the costs. */
1537 if (compare_tree_int (minval, 0) > 0
1538 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
1539 {
1540 int cost_diff;
1541 HOST_WIDE_INT m = tree_to_uhwi (minval);
1542 rtx reg = gen_raw_REG (word_mode, 10000);
1543 bool speed_p = optimize_insn_for_speed_p ();
a5cac223
AM
1544 cost_diff = set_src_cost (gen_rtx_PLUS (word_mode, reg,
1545 GEN_INT (-m)),
1546 word_mode, speed_p);
dc223ad4
ML
1547 for (i = 0; i < count; i++)
1548 {
1549 rtx r = immed_wide_int_const (test[i].mask, word_mode);
1550 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
1551 word_mode, speed_p);
1552 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
1553 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
1554 word_mode, speed_p);
9dc3d6a9 1555 }
dc223ad4 1556 if (cost_diff > 0)
9dc3d6a9 1557 {
dc223ad4
ML
1558 for (i = 0; i < count; i++)
1559 test[i].mask = wi::lshift (test[i].mask, m);
1560 minval = build_zero_cst (TREE_TYPE (minval));
1561 range = maxval;
9dc3d6a9
ML
1562 }
1563 }
9dc3d6a9 1564
dc223ad4
ML
1565 /* Now build the test-and-branch code. */
1566
1567 gsi = gsi_last_bb (m_case_bb);
1568
1569 /* idx = (unsigned)x - minval. */
1570 idx = fold_convert (unsigned_index_type, index_expr);
1571 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
1572 fold_convert (unsigned_index_type, minval));
1573 idx = force_gimple_operand_gsi (&gsi, idx,
1574 /*simple=*/true, NULL_TREE,
1575 /*before=*/true, GSI_SAME_STMT);
1576
377afcd5
ML
1577 if (m_handles_entire_switch)
1578 {
1579 /* if (idx > range) goto default */
1580 range
1581 = force_gimple_operand_gsi (&gsi,
dc223ad4
ML
1582 fold_convert (unsigned_index_type, range),
1583 /*simple=*/true, NULL_TREE,
1584 /*before=*/true, GSI_SAME_STMT);
377afcd5
ML
1585 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
1586 basic_block new_bb
1587 = hoist_edge_and_branch_if_true (&gsi, tmp, default_bb,
1588 profile_probability::unlikely ());
1589 gsi = gsi_last_bb (new_bb);
1590 }
dc223ad4
ML
1591
1592 /* csui = (1 << (word_mode) idx) */
1593 csui = make_ssa_name (word_type_node);
1594 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
1595 fold_convert (word_type_node, idx));
1596 tmp = force_gimple_operand_gsi (&gsi, tmp,
1597 /*simple=*/false, NULL_TREE,
1598 /*before=*/true, GSI_SAME_STMT);
1599 shift_stmt = gimple_build_assign (csui, tmp);
1600 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
1601 update_stmt (shift_stmt);
1602
377afcd5
ML
1603 profile_probability prob = profile_probability::always ();
1604
dc223ad4
ML
1605 /* for each unique set of cases:
1606 if (const & csui) goto target */
1607 for (k = 0; k < count; k++)
1608 {
377afcd5
ML
1609 prob = profile_probability::always ().apply_scale (test[k].bits,
1610 bt_range);
1611 bt_range -= test[k].bits;
dc223ad4
ML
1612 tmp = wide_int_to_tree (word_type_node, test[k].mask);
1613 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
1614 tmp = force_gimple_operand_gsi (&gsi, tmp,
1615 /*simple=*/true, NULL_TREE,
1616 /*before=*/true, GSI_SAME_STMT);
1617 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
377afcd5
ML
1618 basic_block new_bb
1619 = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_bb, prob);
dc223ad4
ML
1620 gsi = gsi_last_bb (new_bb);
1621 }
9dc3d6a9 1622
dc223ad4
ML
1623 /* We should have removed all edges now. */
1624 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
9dc3d6a9 1625
dc223ad4 1626 /* If nothing matched, go to the default label. */
377afcd5
ML
1627 edge e = make_edge (gsi_bb (gsi), default_bb, EDGE_FALLTHRU);
1628 e->probability = profile_probability::always ();
dc223ad4 1629}
9dc3d6a9 1630
dc223ad4
ML
1631/* Split the basic block at the statement pointed to by GSIP, and insert
1632 a branch to the target basic block of E_TRUE conditional on tree
1633 expression COND.
9dc3d6a9 1634
dc223ad4
ML
1635 It is assumed that there is already an edge from the to-be-split
1636 basic block to E_TRUE->dest block. This edge is removed, and the
1637 profile information on the edge is re-used for the new conditional
1638 jump.
9dc3d6a9 1639
dc223ad4
ML
1640 The CFG is updated. The dominator tree will not be valid after
1641 this transformation, but the immediate dominators are updated if
1642 UPDATE_DOMINATORS is true.
9dc3d6a9 1643
dc223ad4 1644 Returns the newly created basic block. */
9dc3d6a9 1645
dc223ad4
ML
1646basic_block
1647bit_test_cluster::hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
377afcd5
ML
1648 tree cond, basic_block case_bb,
1649 profile_probability prob)
9dc3d6a9 1650{
dc223ad4
ML
1651 tree tmp;
1652 gcond *cond_stmt;
1653 edge e_false;
1654 basic_block new_bb, split_bb = gsi_bb (*gsip);
9dc3d6a9 1655
dc223ad4 1656 edge e_true = make_edge (split_bb, case_bb, EDGE_TRUE_VALUE);
377afcd5 1657 e_true->probability = prob;
dc223ad4 1658 gcc_assert (e_true->src == split_bb);
9dc3d6a9 1659
dc223ad4
ML
1660 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
1661 /*before=*/true, GSI_SAME_STMT);
1662 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
1663 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
9dc3d6a9 1664
dc223ad4
ML
1665 e_false = split_block (split_bb, cond_stmt);
1666 new_bb = e_false->dest;
1667 redirect_edge_pred (e_true, split_bb);
9dc3d6a9 1668
dc223ad4
ML
1669 e_false->flags &= ~EDGE_FALLTHRU;
1670 e_false->flags |= EDGE_FALSE_VALUE;
1671 e_false->probability = e_true->probability.invert ();
1672 new_bb->count = e_false->count ();
1673
1674 return new_bb;
9dc3d6a9
ML
1675}
1676
dc223ad4
ML
1677/* Compute the number of case labels that correspond to each outgoing edge of
1678 switch statement. Record this information in the aux field of the edge. */
9dc3d6a9 1679
dc223ad4
ML
1680void
1681switch_decision_tree::compute_cases_per_edge ()
1682{
dbdfaaba 1683 reset_out_edges_aux (m_switch);
dc223ad4
ML
1684 int ncases = gimple_switch_num_labels (m_switch);
1685 for (int i = ncases - 1; i >= 1; --i)
1686 {
61ff5d6f 1687 edge case_edge = gimple_switch_edge (cfun, m_switch, i);
dc223ad4
ML
1688 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1);
1689 }
1690}
1691
1692/* Analyze switch statement and return true when the statement is expanded
1693 as decision tree. */
9dc3d6a9 1694
dc223ad4
ML
1695bool
1696switch_decision_tree::analyze_switch_statement ()
9dc3d6a9 1697{
dc223ad4
ML
1698 unsigned l = gimple_switch_num_labels (m_switch);
1699 basic_block bb = gimple_bb (m_switch);
1700 auto_vec<cluster *> clusters;
1701 clusters.create (l - 1);
1702
61ff5d6f 1703 basic_block default_bb = gimple_switch_default_bb (cfun, m_switch);
dc223ad4
ML
1704 m_case_bbs.reserve (l);
1705 m_case_bbs.quick_push (default_bb);
1706
1707 compute_cases_per_edge ();
1708
1709 for (unsigned i = 1; i < l; i++)
1710 {
1711 tree elt = gimple_switch_label (m_switch, i);
1712 tree lab = CASE_LABEL (elt);
61ff5d6f 1713 basic_block case_bb = label_to_block (cfun, lab);
dc223ad4
ML
1714 edge case_edge = find_edge (bb, case_bb);
1715 tree low = CASE_LOW (elt);
1716 tree high = CASE_HIGH (elt);
1717
1718 profile_probability p
1719 = case_edge->probability.apply_scale (1, (intptr_t) (case_edge->aux));
61ff5d6f
ML
1720 clusters.quick_push (new simple_cluster (low, high, elt, case_edge->dest,
1721 p));
1722 m_case_bbs.quick_push (case_edge->dest);
dc223ad4
ML
1723 }
1724
dbdfaaba 1725 reset_out_edges_aux (m_switch);
dc223ad4 1726
2f928c1b
ML
1727 /* Find jump table clusters. */
1728 vec<cluster *> output = jump_table_cluster::find_jump_tables (clusters);
1729
df7c7974 1730 /* Find bit test clusters. */
2f928c1b
ML
1731 vec<cluster *> output2;
1732 auto_vec<cluster *> tmp;
1733 output2.create (1);
1734 tmp.create (1);
1735
1736 for (unsigned i = 0; i < output.length (); i++)
1737 {
1738 cluster *c = output[i];
1739 if (c->get_type () != SIMPLE_CASE)
1740 {
1741 if (!tmp.is_empty ())
1742 {
1743 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp);
1744 output2.safe_splice (n);
1745 n.release ();
1746 tmp.truncate (0);
1747 }
1748 output2.safe_push (c);
1749 }
1750 else
1751 tmp.safe_push (c);
1752 }
1753
1754 /* We still can have a temporary vector to test. */
1755 if (!tmp.is_empty ())
1756 {
1757 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp);
1758 output2.safe_splice (n);
1759 n.release ();
1760 }
9dc3d6a9
ML
1761
1762 if (dump_file)
9dc3d6a9 1763 {
dc223ad4 1764 fprintf (dump_file, ";; GIMPLE switch case clusters: ");
2f928c1b
ML
1765 for (unsigned i = 0; i < output2.length (); i++)
1766 output2[i]->dump (dump_file, dump_flags & TDF_DETAILS);
dc223ad4
ML
1767 fprintf (dump_file, "\n");
1768 }
1769
2f928c1b 1770 output.release ();
dc223ad4 1771
2f928c1b
ML
1772 bool expanded = try_switch_expansion (output2);
1773
1774 for (unsigned i = 0; i < output2.length (); i++)
1775 delete output2[i];
1776
1777 output2.release ();
dc223ad4
ML
1778
1779 return expanded;
1780}
1781
1782/* Attempt to expand CLUSTERS as a decision tree. Return true when
1783 expanded. */
1784
1785bool
1786switch_decision_tree::try_switch_expansion (vec<cluster *> &clusters)
1787{
1788 tree index_expr = gimple_switch_index (m_switch);
1789 tree index_type = TREE_TYPE (index_expr);
1790 basic_block bb = gimple_bb (m_switch);
1791
1d9cd701
JJ
1792 if (gimple_switch_num_labels (m_switch) == 1
1793 || range_check_type (index_type) == NULL_TREE)
dc223ad4
ML
1794 return false;
1795
1796 /* Find the default case target label. */
61ff5d6f
ML
1797 edge default_edge = gimple_switch_default_edge (cfun, m_switch);
1798 m_default_bb = default_edge->dest;
dc223ad4
ML
1799
1800 /* Do the insertion of a case label into m_case_list. The labels are
1801 fed to us in descending order from the sorted vector of case labels used
1802 in the tree part of the middle end. So the list we construct is
1803 sorted in ascending order. */
1804
1805 for (int i = clusters.length () - 1; i >= 0; i--)
1806 {
1807 case_tree_node *r = m_case_list;
1808 m_case_list = m_case_node_pool.allocate ();
1809 m_case_list->m_right = r;
1810 m_case_list->m_c = clusters[i];
9dc3d6a9
ML
1811 }
1812
dc223ad4
ML
1813 record_phi_operand_mapping ();
1814
1815 /* Split basic block that contains the gswitch statement. */
9dc3d6a9
ML
1816 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1817 edge e;
1818 if (gsi_end_p (gsi))
1819 e = split_block_after_labels (bb);
1820 else
1821 {
1822 gsi_prev (&gsi);
1823 e = split_block (bb, gsi_stmt (gsi));
1824 }
1825 bb = split_edge (e);
1826
dc223ad4
ML
1827 /* Create new basic blocks for non-case clusters where specific expansion
1828 needs to happen. */
1829 for (unsigned i = 0; i < clusters.length (); i++)
1830 if (clusters[i]->get_type () != SIMPLE_CASE)
1831 {
1832 clusters[i]->m_case_bb = create_empty_bb (bb);
8c3785c4 1833 clusters[i]->m_case_bb->count = bb->count;
dc223ad4
ML
1834 clusters[i]->m_case_bb->loop_father = bb->loop_father;
1835 }
9dc3d6a9 1836
dc223ad4
ML
1837 /* Do not do an extra work for a single cluster. */
1838 if (clusters.length () == 1
1839 && clusters[0]->get_type () != SIMPLE_CASE)
3f10efd4
ML
1840 {
1841 cluster *c = clusters[0];
1842 c->emit (index_expr, index_type,
1843 gimple_switch_default_label (m_switch), m_default_bb);
1844 redirect_edge_succ (single_succ_edge (bb), c->m_case_bb);
1845 }
dc223ad4
ML
1846 else
1847 {
1848 emit (bb, index_expr, default_edge->probability, index_type);
1849
1850 /* Emit cluster-specific switch handling. */
1851 for (unsigned i = 0; i < clusters.length (); i++)
1852 if (clusters[i]->get_type () != SIMPLE_CASE)
1853 clusters[i]->emit (index_expr, index_type,
1854 gimple_switch_default_label (m_switch),
1855 m_default_bb);
1856 }
9dc3d6a9 1857
dc223ad4
ML
1858 fix_phi_operands_for_edges ();
1859
1860 return true;
9dc3d6a9
ML
1861}
1862
dc223ad4
ML
1863/* Before switch transformation, record all SSA_NAMEs defined in switch BB
1864 and used in a label basic block. */
1865
1866void
1867switch_decision_tree::record_phi_operand_mapping ()
9dc3d6a9 1868{
dc223ad4 1869 basic_block switch_bb = gimple_bb (m_switch);
9dc3d6a9 1870 /* Record all PHI nodes that have to be fixed after conversion. */
dc223ad4 1871 for (unsigned i = 0; i < m_case_bbs.length (); i++)
9dc3d6a9 1872 {
9dc3d6a9 1873 gphi_iterator gsi;
dc223ad4 1874 basic_block bb = m_case_bbs[i];
9dc3d6a9
ML
1875 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1876 {
1877 gphi *phi = gsi.phi ();
1878
1879 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
1880 {
1881 basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src;
1882 if (phi_src_bb == switch_bb)
1883 {
1884 tree def = gimple_phi_arg_def (phi, i);
1885 tree result = gimple_phi_result (phi);
dc223ad4 1886 m_phi_mapping.put (result, def);
9dc3d6a9
ML
1887 break;
1888 }
1889 }
1890 }
1891 }
1892}
1893
dc223ad4
ML
1894/* Append new operands to PHI statements that were introduced due to
1895 addition of new edges to case labels. */
9dc3d6a9 1896
dc223ad4
ML
1897void
1898switch_decision_tree::fix_phi_operands_for_edges ()
9dc3d6a9 1899{
dc223ad4 1900 gphi_iterator gsi;
9dc3d6a9 1901
dc223ad4
ML
1902 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1903 {
1904 basic_block bb = m_case_bbs[i];
1905 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1906 {
1907 gphi *phi = gsi.phi ();
1908 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
1909 {
1910 tree def = gimple_phi_arg_def (phi, j);
1911 if (def == NULL_TREE)
1912 {
1913 edge e = gimple_phi_arg_edge (phi, j);
1914 tree *definition
1915 = m_phi_mapping.get (gimple_phi_result (phi));
1916 gcc_assert (definition);
1917 add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION);
1918 }
1919 }
1920 }
1921 }
1922}
9dc3d6a9 1923
dc223ad4
ML
1924/* Generate a decision tree, switching on INDEX_EXPR and jumping to
1925 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
9dc3d6a9 1926
dc223ad4
ML
1927 We generate a binary decision tree to select the appropriate target
1928 code. */
9dc3d6a9 1929
dc223ad4
ML
1930void
1931switch_decision_tree::emit (basic_block bb, tree index_expr,
1932 profile_probability default_prob, tree index_type)
1933{
1934 balance_case_nodes (&m_case_list, NULL);
9dc3d6a9 1935
dc223ad4
ML
1936 if (dump_file)
1937 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1938 if (dump_file && (dump_flags & TDF_DETAILS))
1939 {
1940 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
1941 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
1942 gcc_assert (m_case_list != NULL);
1943 dump_case_nodes (dump_file, m_case_list, indent_step, 0);
1944 }
9dc3d6a9 1945
4359b631
EB
1946 bb = emit_case_nodes (bb, index_expr, m_case_list, default_prob, index_type,
1947 gimple_location (m_switch));
9dc3d6a9 1948
dc223ad4
ML
1949 if (bb)
1950 emit_jump (bb, m_default_bb);
9dc3d6a9 1951
dc223ad4
ML
1952 /* Remove all edges and do just an edge that will reach default_bb. */
1953 bb = gimple_bb (m_switch);
1954 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1955 gsi_remove (&gsi, true);
9dc3d6a9 1956
dc223ad4
ML
1957 delete_basic_block (bb);
1958}
1959
1960/* Take an ordered list of case nodes
1961 and transform them into a near optimal binary tree,
1962 on the assumption that any target code selection value is as
1963 likely as any other.
1964
1965 The transformation is performed by splitting the ordered
1966 list into two equal sections plus a pivot. The parts are
1967 then attached to the pivot as left and right branches. Each
1968 branch is then transformed recursively. */
1969
1970void
1971switch_decision_tree::balance_case_nodes (case_tree_node **head,
1972 case_tree_node *parent)
1973{
1974 case_tree_node *np;
1975
1976 np = *head;
1977 if (np)
9dc3d6a9 1978 {
dc223ad4
ML
1979 int i = 0;
1980 int ranges = 0;
1981 case_tree_node **npp;
1982 case_tree_node *left;
add4cbca 1983 profile_probability prob = profile_probability::never ();
9dc3d6a9 1984
dc223ad4 1985 /* Count the number of entries on branch. Also count the ranges. */
9dc3d6a9 1986
dc223ad4
ML
1987 while (np)
1988 {
1989 if (!tree_int_cst_equal (np->m_c->get_low (), np->m_c->get_high ()))
1990 ranges++;
9dc3d6a9 1991
dc223ad4 1992 i++;
add4cbca 1993 prob += np->m_c->m_prob;
dc223ad4
ML
1994 np = np->m_right;
1995 }
9dc3d6a9 1996
dc223ad4
ML
1997 if (i > 2)
1998 {
1999 /* Split this list if it is long enough for that to help. */
2000 npp = head;
2001 left = *npp;
add4cbca 2002 profile_probability pivot_prob = prob.apply_scale (1, 2);
9dc3d6a9 2003
add4cbca
ML
2004 /* Find the place in the list that bisects the list's total cost,
2005 where ranges count as 2. */
2006 while (1)
dc223ad4 2007 {
add4cbca
ML
2008 /* Skip nodes while their probability does not reach
2009 that amount. */
2010 prob -= (*npp)->m_c->m_prob;
a6b75a69
ML
2011 if ((prob.initialized_p () && prob < pivot_prob)
2012 || ! (*npp)->m_right)
add4cbca
ML
2013 break;
2014 npp = &(*npp)->m_right;
dc223ad4 2015 }
add4cbca
ML
2016
2017 np = *npp;
2018 *npp = 0;
2019 *head = np;
dc223ad4 2020 np->m_parent = parent;
add4cbca 2021 np->m_left = left == np ? NULL : left;
9dc3d6a9 2022
dc223ad4
ML
2023 /* Optimize each of the two split parts. */
2024 balance_case_nodes (&np->m_left, np);
2025 balance_case_nodes (&np->m_right, np);
2026 np->m_c->m_subtree_prob = np->m_c->m_prob;
add4cbca
ML
2027 if (np->m_left)
2028 np->m_c->m_subtree_prob += np->m_left->m_c->m_subtree_prob;
2029 if (np->m_right)
2030 np->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
dc223ad4
ML
2031 }
2032 else
2033 {
2034 /* Else leave this branch as one level,
2035 but fill in `parent' fields. */
2036 np = *head;
2037 np->m_parent = parent;
2038 np->m_c->m_subtree_prob = np->m_c->m_prob;
2039 for (; np->m_right; np = np->m_right)
2040 {
2041 np->m_right->m_parent = np;
2042 (*head)->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2043 }
2044 }
9dc3d6a9 2045 }
dc223ad4
ML
2046}
2047
2048/* Dump ROOT, a list or tree of case nodes, to file. */
9dc3d6a9 2049
dc223ad4
ML
2050void
2051switch_decision_tree::dump_case_nodes (FILE *f, case_tree_node *root,
2052 int indent_step, int indent_level)
2053{
2054 if (root == 0)
2055 return;
2056 indent_level++;
2057
2058 dump_case_nodes (f, root->m_left, indent_step, indent_level);
2059
2060 fputs (";; ", f);
2061 fprintf (f, "%*s", indent_step * indent_level, "");
2062 root->m_c->dump (f);
2063 root->m_c->m_prob.dump (f);
bb79aba4
ML
2064 fputs (" subtree: ", f);
2065 root->m_c->m_subtree_prob.dump (f);
2066 fputs (")\n", f);
dc223ad4
ML
2067
2068 dump_case_nodes (f, root->m_right, indent_step, indent_level);
2069}
2070
2071
2072/* Add an unconditional jump to CASE_BB that happens in basic block BB. */
2073
2074void
2075switch_decision_tree::emit_jump (basic_block bb, basic_block case_bb)
2076{
2077 edge e = single_succ_edge (bb);
2078 redirect_edge_succ (e, case_bb);
2079}
2080
2081/* Generate code to compare OP0 with OP1 so that the condition codes are
2082 set and to jump to LABEL_BB if the condition is true.
2083 COMPARISON is the GIMPLE comparison (EQ, NE, GT, etc.).
2084 PROB is the probability of jumping to LABEL_BB. */
2085
2086basic_block
2087switch_decision_tree::emit_cmp_and_jump_insns (basic_block bb, tree op0,
2088 tree op1, tree_code comparison,
2089 basic_block label_bb,
4359b631
EB
2090 profile_probability prob,
2091 location_t loc)
dc223ad4
ML
2092{
2093 // TODO: it's once called with lhs != index.
2094 op1 = fold_convert (TREE_TYPE (op0), op1);
2095
2096 gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE);
4359b631 2097 gimple_set_location (cond, loc);
dc223ad4
ML
2098 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2099 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
2100
2101 gcc_assert (single_succ_p (bb));
2102
2103 /* Make a new basic block where false branch will take place. */
2104 edge false_edge = split_block (bb, cond);
2105 false_edge->flags = EDGE_FALSE_VALUE;
2106 false_edge->probability = prob.invert ();
2107
2108 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2109 true_edge->probability = prob;
2110
2111 return false_edge->dest;
2112}
2113
bb79aba4
ML
2114/* Generate code to jump to LABEL if OP0 and OP1 are equal.
2115 PROB is the probability of jumping to LABEL_BB.
2116 BB is a basic block where the new condition will be placed. */
2117
2118basic_block
2119switch_decision_tree::do_jump_if_equal (basic_block bb, tree op0, tree op1,
2120 basic_block label_bb,
4359b631
EB
2121 profile_probability prob,
2122 location_t loc)
bb79aba4
ML
2123{
2124 op1 = fold_convert (TREE_TYPE (op0), op1);
2125
2126 gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE);
4359b631 2127 gimple_set_location (cond, loc);
bb79aba4
ML
2128 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2129 gsi_insert_before (&gsi, cond, GSI_SAME_STMT);
2130
2131 gcc_assert (single_succ_p (bb));
2132
2133 /* Make a new basic block where false branch will take place. */
2134 edge false_edge = split_block (bb, cond);
2135 false_edge->flags = EDGE_FALSE_VALUE;
2136 false_edge->probability = prob.invert ();
2137
2138 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2139 true_edge->probability = prob;
2140
2141 return false_edge->dest;
2142}
2143
dc223ad4
ML
2144/* Emit step-by-step code to select a case for the value of INDEX.
2145 The thus generated decision tree follows the form of the
2146 case-node binary tree NODE, whose nodes represent test conditions.
2147 DEFAULT_PROB is probability of cases leading to default BB.
2148 INDEX_TYPE is the type of the index of the switch. */
2149
2150basic_block
2151switch_decision_tree::emit_case_nodes (basic_block bb, tree index,
2152 case_tree_node *node,
2153 profile_probability default_prob,
4359b631 2154 tree index_type, location_t loc)
dc223ad4 2155{
bb79aba4
ML
2156 profile_probability p;
2157
dc223ad4
ML
2158 /* If node is null, we are done. */
2159 if (node == NULL)
2160 return bb;
2161
bb79aba4
ML
2162 /* Single value case. */
2163 if (node->m_c->is_single_value_p ())
2164 {
2165 /* Node is single valued. First see if the index expression matches
2166 this node and then check our children, if any. */
2167 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2168 bb = do_jump_if_equal (bb, index, node->m_c->get_low (),
4359b631 2169 node->m_c->m_case_bb, p, loc);
bb79aba4
ML
2170 /* Since this case is taken at this point, reduce its weight from
2171 subtree_weight. */
2172 node->m_c->m_subtree_prob -= p;
2173
2174 if (node->m_left != NULL && node->m_right != NULL)
2175 {
2176 /* 1) the node has both children
2177
2178 If both children are single-valued cases with no
2179 children, finish up all the work. This way, we can save
2180 one ordered comparison. */
2181
2182 if (!node->m_left->has_child ()
2183 && node->m_left->m_c->is_single_value_p ()
2184 && !node->m_right->has_child ()
2185 && node->m_right->m_c->is_single_value_p ())
2186 {
2187 p = (node->m_right->m_c->m_prob
2188 / (node->m_c->m_subtree_prob + default_prob));
2189 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
4359b631 2190 node->m_right->m_c->m_case_bb, p, loc);
bb79aba4
ML
2191
2192 p = (node->m_left->m_c->m_prob
2193 / (node->m_c->m_subtree_prob + default_prob));
2194 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
4359b631 2195 node->m_left->m_c->m_case_bb, p, loc);
bb79aba4
ML
2196 }
2197 else
2198 {
2199 /* Branch to a label where we will handle it later. */
2200 basic_block test_bb = split_edge (single_succ_edge (bb));
2201 redirect_edge_succ (single_pred_edge (test_bb),
2202 single_succ_edge (bb)->dest);
2203
2204 p = ((node->m_right->m_c->m_subtree_prob
2205 + default_prob.apply_scale (1, 2))
2206 / (node->m_c->m_subtree_prob + default_prob));
2207 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
4359b631 2208 GT_EXPR, test_bb, p, loc);
bb79aba4
ML
2209 default_prob = default_prob.apply_scale (1, 2);
2210
2211 /* Handle the left-hand subtree. */
2212 bb = emit_case_nodes (bb, index, node->m_left,
4359b631 2213 default_prob, index_type, loc);
bb79aba4
ML
2214
2215 /* If the left-hand subtree fell through,
2216 don't let it fall into the right-hand subtree. */
2217 if (bb && m_default_bb)
2218 emit_jump (bb, m_default_bb);
2219
2220 bb = emit_case_nodes (test_bb, index, node->m_right,
4359b631 2221 default_prob, index_type, loc);
bb79aba4
ML
2222 }
2223 }
2224 else if (node->m_left == NULL && node->m_right != NULL)
2225 {
2226 /* 2) the node has only right child. */
dc223ad4 2227
bb79aba4
ML
2228 /* Here we have a right child but no left so we issue a conditional
2229 branch to default and process the right child.
2230
2231 Omit the conditional branch to default if the right child
2232 does not have any children and is single valued; it would
2233 cost too much space to save so little time. */
2234
2235 if (node->m_right->has_child ()
2236 || !node->m_right->m_c->is_single_value_p ())
2237 {
2238 p = (default_prob.apply_scale (1, 2)
2239 / (node->m_c->m_subtree_prob + default_prob));
2240 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
4359b631 2241 LT_EXPR, m_default_bb, p, loc);
bb79aba4
ML
2242 default_prob = default_prob.apply_scale (1, 2);
2243
2244 bb = emit_case_nodes (bb, index, node->m_right, default_prob,
4359b631 2245 index_type, loc);
bb79aba4
ML
2246 }
2247 else
2248 {
2249 /* We cannot process node->right normally
2250 since we haven't ruled out the numbers less than
2251 this node's value. So handle node->right explicitly. */
2252 p = (node->m_right->m_c->m_subtree_prob
2253 / (node->m_c->m_subtree_prob + default_prob));
2254 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
4359b631 2255 node->m_right->m_c->m_case_bb, p, loc);
bb79aba4
ML
2256 }
2257 }
2258 else if (node->m_left != NULL && node->m_right == NULL)
2259 {
2260 /* 3) just one subtree, on the left. Similar case as previous. */
2261
2262 if (node->m_left->has_child ()
2263 || !node->m_left->m_c->is_single_value_p ())
2264 {
2265 p = (default_prob.apply_scale (1, 2)
2266 / (node->m_c->m_subtree_prob + default_prob));
2267 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
4359b631 2268 GT_EXPR, m_default_bb, p, loc);
bb79aba4
ML
2269 default_prob = default_prob.apply_scale (1, 2);
2270
2271 bb = emit_case_nodes (bb, index, node->m_left, default_prob,
4359b631 2272 index_type, loc);
bb79aba4
ML
2273 }
2274 else
2275 {
2276 /* We cannot process node->left normally
2277 since we haven't ruled out the numbers less than
2278 this node's value. So handle node->left explicitly. */
2279 p = (node->m_left->m_c->m_subtree_prob
2280 / (node->m_c->m_subtree_prob + default_prob));
2281 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
4359b631 2282 node->m_left->m_c->m_case_bb, p, loc);
bb79aba4
ML
2283 }
2284 }
2285 }
2286 else
2287 {
2288 /* Node is a range. These cases are very similar to those for a single
2289 value, except that we do not start by testing whether this node
2290 is the one to branch to. */
2291 if (node->has_child () || node->m_c->get_type () != SIMPLE_CASE)
2292 {
2293 /* Branch to a label where we will handle it later. */
2294 basic_block test_bb = split_edge (single_succ_edge (bb));
2295 redirect_edge_succ (single_pred_edge (test_bb),
2296 single_succ_edge (bb)->dest);
2297
2298
2299 profile_probability right_prob = profile_probability::never ();
2300 if (node->m_right)
2301 right_prob = node->m_right->m_c->m_subtree_prob;
2302 p = ((right_prob + default_prob.apply_scale (1, 2))
2303 / (node->m_c->m_subtree_prob + default_prob));
2304
2305 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
4359b631 2306 GT_EXPR, test_bb, p, loc);
bb79aba4
ML
2307 default_prob = default_prob.apply_scale (1, 2);
2308
2309 /* Value belongs to this node or to the left-hand subtree. */
2310 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2311 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
4359b631 2312 GE_EXPR, node->m_c->m_case_bb, p, loc);
bb79aba4
ML
2313
2314 /* Handle the left-hand subtree. */
2315 bb = emit_case_nodes (bb, index, node->m_left,
4359b631 2316 default_prob, index_type, loc);
bb79aba4
ML
2317
2318 /* If the left-hand subtree fell through,
2319 don't let it fall into the right-hand subtree. */
2320 if (bb && m_default_bb)
2321 emit_jump (bb, m_default_bb);
2322
2323 bb = emit_case_nodes (test_bb, index, node->m_right,
4359b631 2324 default_prob, index_type, loc);
bb79aba4
ML
2325 }
2326 else
2327 {
2328 /* Node has no children so we check low and high bounds to remove
2329 redundant tests. Only one of the bounds can exist,
2330 since otherwise this node is bounded--a case tested already. */
2331 tree lhs, rhs;
2332 generate_range_test (bb, index, node->m_c->get_low (),
2333 node->m_c->get_high (), &lhs, &rhs);
2334 p = default_prob / (node->m_c->m_subtree_prob + default_prob);
2335
2336 bb = emit_cmp_and_jump_insns (bb, lhs, rhs, GT_EXPR,
4359b631 2337 m_default_bb, p, loc);
bb79aba4
ML
2338
2339 emit_jump (bb, node->m_c->m_case_bb);
2340 return NULL;
2341 }
2342 }
dc223ad4
ML
2343
2344 return bb;
2345}
2346
2347/* The main function of the pass scans statements for switches and invokes
2348 process_switch on them. */
2349
2350namespace {
2351
2352const pass_data pass_data_convert_switch =
2353{
2354 GIMPLE_PASS, /* type */
2355 "switchconv", /* name */
2356 OPTGROUP_NONE, /* optinfo_flags */
2357 TV_TREE_SWITCH_CONVERSION, /* tv_id */
2358 ( PROP_cfg | PROP_ssa ), /* properties_required */
2359 0, /* properties_provided */
2360 0, /* properties_destroyed */
2361 0, /* todo_flags_start */
2362 TODO_update_ssa, /* todo_flags_finish */
2363};
2364
2365class pass_convert_switch : public gimple_opt_pass
2366{
2367public:
2368 pass_convert_switch (gcc::context *ctxt)
2369 : gimple_opt_pass (pass_data_convert_switch, ctxt)
2370 {}
2371
2372 /* opt_pass methods: */
2373 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
2374 virtual unsigned int execute (function *);
2375
2376}; // class pass_convert_switch
2377
2378unsigned int
2379pass_convert_switch::execute (function *fun)
2380{
2381 basic_block bb;
2382 bool cfg_altered = false;
2383
2384 FOR_EACH_BB_FN (bb, fun)
2385 {
2386 gimple *stmt = last_stmt (bb);
2387 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
2388 {
2389 if (dump_file)
2390 {
2391 expanded_location loc = expand_location (gimple_location (stmt));
2392
2393 fprintf (dump_file, "beginning to process the following "
2394 "SWITCH statement (%s:%d) : ------- \n",
2395 loc.file, loc.line);
2396 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2397 putc ('\n', dump_file);
2398 }
2399
2400 switch_conversion sconv;
2401 sconv.expand (as_a <gswitch *> (stmt));
2402 cfg_altered |= sconv.m_cfg_altered;
2403 if (!sconv.m_reason)
2404 {
2405 if (dump_file)
2406 {
2407 fputs ("Switch converted\n", dump_file);
2408 fputs ("--------------------------------\n", dump_file);
2409 }
2410
2411 /* Make no effort to update the post-dominator tree.
2412 It is actually not that hard for the transformations
2413 we have performed, but it is not supported
2414 by iterate_fix_dominators. */
2415 free_dominance_info (CDI_POST_DOMINATORS);
2416 }
2417 else
2418 {
2419 if (dump_file)
2420 {
2421 fputs ("Bailing out - ", dump_file);
2422 fputs (sconv.m_reason, dump_file);
2423 fputs ("\n--------------------------------\n", dump_file);
2424 }
2425 }
2426 }
2427 }
2428
2429 return cfg_altered ? TODO_cleanup_cfg : 0;;
2430}
2431
2432} // anon namespace
2433
2434gimple_opt_pass *
2435make_pass_convert_switch (gcc::context *ctxt)
2436{
2437 return new pass_convert_switch (ctxt);
9dc3d6a9
ML
2438}
2439
2440/* The main function of the pass scans statements for switches and invokes
2441 process_switch on them. */
2442
2443namespace {
2444
eb63c01f 2445template <bool O0> class pass_lower_switch: public gimple_opt_pass
9dc3d6a9 2446{
eb63c01f
ML
2447public:
2448 pass_lower_switch (gcc::context *ctxt) : gimple_opt_pass (data, ctxt) {}
2449
2450 static const pass_data data;
2451 opt_pass *
2452 clone ()
2453 {
2454 return new pass_lower_switch<O0> (m_ctxt);
2455 }
2456
2457 virtual bool
2458 gate (function *)
2459 {
2460 return !O0 || !optimize;
2461 }
2462
2463 virtual unsigned int execute (function *fun);
2464}; // class pass_lower_switch
2465
2466template <bool O0>
2467const pass_data pass_lower_switch<O0>::data = {
2468 GIMPLE_PASS, /* type */
2469 O0 ? "switchlower_O0" : "switchlower", /* name */
9dc3d6a9
ML
2470 OPTGROUP_NONE, /* optinfo_flags */
2471 TV_TREE_SWITCH_LOWERING, /* tv_id */
2472 ( PROP_cfg | PROP_ssa ), /* properties_required */
2473 0, /* properties_provided */
2474 0, /* properties_destroyed */
2475 0, /* todo_flags_start */
2476 TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
2477};
2478
eb63c01f 2479template <bool O0>
9dc3d6a9 2480unsigned int
eb63c01f 2481pass_lower_switch<O0>::execute (function *fun)
9dc3d6a9
ML
2482{
2483 basic_block bb;
2484 bool expanded = false;
2485
dc223ad4
ML
2486 auto_vec<gimple *> switch_statements;
2487 switch_statements.create (1);
2488
9dc3d6a9
ML
2489 FOR_EACH_BB_FN (bb, fun)
2490 {
2491 gimple *stmt = last_stmt (bb);
e6c5d9f0
ML
2492 gswitch *swtch;
2493 if (stmt && (swtch = dyn_cast<gswitch *> (stmt)))
2494 {
2495 if (!O0)
2496 group_case_labels_stmt (swtch);
2497 switch_statements.safe_push (swtch);
2498 }
dc223ad4
ML
2499 }
2500
2501 for (unsigned i = 0; i < switch_statements.length (); i++)
2502 {
2503 gimple *stmt = switch_statements[i];
2504 if (dump_file)
9dc3d6a9 2505 {
dc223ad4 2506 expanded_location loc = expand_location (gimple_location (stmt));
9dc3d6a9 2507
dc223ad4
ML
2508 fprintf (dump_file, "beginning to process the following "
2509 "SWITCH statement (%s:%d) : ------- \n",
2510 loc.file, loc.line);
2511 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2512 putc ('\n', dump_file);
2513 }
9dc3d6a9 2514
dc223ad4
ML
2515 gswitch *swtch = dyn_cast<gswitch *> (stmt);
2516 if (swtch)
2517 {
2518 switch_decision_tree dt (swtch);
2519 expanded |= dt.analyze_switch_statement ();
9dc3d6a9
ML
2520 }
2521 }
2522
2523 if (expanded)
2524 {
2525 free_dominance_info (CDI_DOMINATORS);
2526 free_dominance_info (CDI_POST_DOMINATORS);
2527 mark_virtual_operands_for_renaming (cfun);
2528 }
2529
2530 return 0;
2531}
2532
2533} // anon namespace
2534
2535gimple_opt_pass *
eb63c01f 2536make_pass_lower_switch_O0 (gcc::context *ctxt)
9dc3d6a9 2537{
eb63c01f 2538 return new pass_lower_switch<true> (ctxt);
9dc3d6a9 2539}
eb63c01f
ML
2540gimple_opt_pass *
2541make_pass_lower_switch (gcc::context *ctxt)
9dc3d6a9 2542{
eb63c01f 2543 return new pass_lower_switch<false> (ctxt);
9dc3d6a9
ML
2544}
2545
9dc3d6a9 2546