]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-switch-conversion.c
re PR c++/53882 (ICE in type_contains_placeholder_1, at tree.c:3015)
[thirdparty/gcc.git] / gcc / tree-switch-conversion.c
CommitLineData
531b10fc
SB
1/* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
b6e99746
MJ
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it
9under the terms of the GNU General Public License as published by the
10Free Software Foundation; either version 3, or (at your option) any
11later version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT
14ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
22
531b10fc
SB
23/* This file handles the lowering of GIMPLE_SWITCH to an indexed
24 load, or a series of bit-test-and-branch expressions. */
25
26#include "config.h"
27#include "system.h"
28#include "coretypes.h"
29#include "tm.h"
30#include "line-map.h"
31#include "params.h"
32#include "flags.h"
33#include "tree.h"
34#include "basic-block.h"
35#include "tree-flow.h"
36#include "tree-flow-inline.h"
37#include "tree-ssa-operands.h"
38#include "tree-pass.h"
39#include "gimple-pretty-print.h"
40#include "tree-dump.h"
41#include "timevar.h"
42#include "langhooks.h"
43
44/* Need to include expr.h and optabs.h for lshift_cheap_p. */
45#include "expr.h"
46#include "optabs.h"
47\f
48/* Maximum number of case bit tests.
49 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
50 targetm.case_values_threshold(), or be its own param. */
51#define MAX_CASE_BIT_TESTS 3
52
53/* Split the basic block at the statement pointed to by GSIP, and insert
54 a branch to the target basic block of E_TRUE conditional on tree
55 expression COND.
56
57 It is assumed that there is already an edge from the to-be-split
58 basic block to E_TRUE->dest block. This edge is removed, and the
59 profile information on the edge is re-used for the new conditional
60 jump.
61
62 The CFG is updated. The dominator tree will not be valid after
63 this transformation, but the immediate dominators are updated if
64 UPDATE_DOMINATORS is true.
65
66 Returns the newly created basic block. */
67
68static basic_block
69hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
70 tree cond, edge e_true,
71 bool update_dominators)
72{
73 tree tmp;
74 gimple cond_stmt;
75 edge e_false;
76 basic_block new_bb, split_bb = gsi_bb (*gsip);
77 bool dominated_e_true = false;
78
79 gcc_assert (e_true->src == split_bb);
80
81 if (update_dominators
82 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
83 dominated_e_true = true;
84
85 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
86 /*before=*/true, GSI_SAME_STMT);
87 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
88 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
89
90 e_false = split_block (split_bb, cond_stmt);
91 new_bb = e_false->dest;
92 redirect_edge_pred (e_true, split_bb);
93
94 e_true->flags &= ~EDGE_FALLTHRU;
95 e_true->flags |= EDGE_TRUE_VALUE;
96
97 e_false->flags &= ~EDGE_FALLTHRU;
98 e_false->flags |= EDGE_FALSE_VALUE;
99 e_false->probability = REG_BR_PROB_BASE - e_true->probability;
100 e_false->count = split_bb->count - e_true->count;
101 new_bb->count = e_false->count;
102
103 if (update_dominators)
104 {
105 if (dominated_e_true)
106 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
107 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
108 }
109
110 return new_bb;
111}
112
113
114/* Determine whether "1 << x" is relatively cheap in word_mode. */
115/* FIXME: This is the function that we need rtl.h and optabs.h for.
116 This function (and similar RTL-related cost code in e.g. IVOPTS) should
117 be moved to some kind of interface file for GIMPLE/RTL interactions. */
118static bool
119lshift_cheap_p (void)
120{
121 /* FIXME: This should be made target dependent via this "this_target"
122 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
123 static bool init[2] = {false, false};
124 static bool cheap[2] = {true, true};
125 bool speed_p;
126
127 /* If the targer has no lshift in word_mode, the operation will most
128 probably not be cheap. ??? Does GCC even work for such targets? */
129 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
130 return false;
131
132 speed_p = optimize_insn_for_speed_p ();
133
134 if (!init[speed_p])
135 {
136 rtx reg = gen_raw_REG (word_mode, 10000);
137 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
138 speed_p);
139 cheap[speed_p] = cost < COSTS_N_INSNS (MAX_CASE_BIT_TESTS);
140 init[speed_p] = true;
141 }
142
143 return cheap[speed_p];
144}
145
146/* Return true if a switch should be expanded as a bit test.
147 RANGE is the difference between highest and lowest case.
148 UNIQ is number of unique case node targets, not counting the default case.
149 COUNT is the number of comparisons needed, not counting the default case. */
150
151static bool
152expand_switch_using_bit_tests_p (tree range,
153 unsigned int uniq,
154 unsigned int count)
155{
156 return (((uniq == 1 && count >= 3)
157 || (uniq == 2 && count >= 5)
158 || (uniq == 3 && count >= 6))
159 && lshift_cheap_p ()
160 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
161 && compare_tree_int (range, 0) > 0);
162}
163\f
164/* Implement switch statements with bit tests
165
166A GIMPLE switch statement can be expanded to a short sequence of bit-wise
167comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
168where CST and MINVAL are integer constants. This is better than a series
169of compare-and-banch insns in some cases, e.g. we can implement:
170
171 if ((x==4) || (x==6) || (x==9) || (x==11))
172
173as a single bit test:
174
175 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
176
177This transformation is only applied if the number of case targets is small,
178if CST constains at least 3 bits, and "x << 1" is cheap. The bit tests are
179performed in "word_mode".
180
181The following example shows the code the transformation generates:
182
183 int bar(int x)
184 {
185 switch (x)
186 {
187 case '0': case '1': case '2': case '3': case '4':
188 case '5': case '6': case '7': case '8': case '9':
189 case 'A': case 'B': case 'C': case 'D': case 'E':
190 case 'F':
191 return 1;
192 }
193 return 0;
194 }
195
196==>
197
198 bar (int x)
199 {
200 tmp1 = x - 48;
201 if (tmp1 > (70 - 48)) goto L2;
202 tmp2 = 1 << tmp1;
203 tmp3 = 0b11111100000001111111111;
204 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
205 L1:
206 return 1;
207 L2:
208 return 0;
209 }
210
211TODO: There are still some improvements to this transformation that could
212be implemented:
213
214* A narrower mode than word_mode could be used if that is cheaper, e.g.
215 for x86_64 where a narrower-mode shift may result in smaller code.
216
217* The compounded constant could be shifted rather than the one. The
218 test would be either on the sign bit or on the least significant bit,
219 depending on the direction of the shift. On some machines, the test
220 for the branch would be free if the bit to test is already set by the
221 shift operation.
222
223This transformation was contributed by Roger Sayle, see this e-mail:
224 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
225*/
226
227/* A case_bit_test represents a set of case nodes that may be
228 selected from using a bit-wise comparison. HI and LO hold
229 the integer to be tested against, TARGET_EDGE contains the
230 edge to the basic block to jump to upon success and BITS
231 counts the number of case nodes handled by this test,
232 typically the number of bits set in HI:LO. The LABEL field
233 is used to quickly identify all cases in this set without
234 looking at label_to_block for every case label. */
235
236struct case_bit_test
237{
238 HOST_WIDE_INT hi;
239 HOST_WIDE_INT lo;
240 edge target_edge;
241 tree label;
242 int bits;
243};
244
245/* Comparison function for qsort to order bit tests by decreasing
246 probability of execution. Our best guess comes from a measured
247 profile. If the profile counts are equal, break even on the
248 number of case nodes, i.e. the node with the most cases gets
249 tested first.
250
251 TODO: Actually this currently runs before a profile is available.
252 Therefore the case-as-bit-tests transformation should be done
253 later in the pass pipeline, or something along the lines of
254 "Efficient and effective branch reordering using profile data"
255 (Yang et. al., 2002) should be implemented (although, how good
256 is a paper is called "Efficient and effective ..." when the
257 latter is implied by the former, but oh well...). */
258
259static int
260case_bit_test_cmp (const void *p1, const void *p2)
261{
262 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
263 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
264
265 if (d2->target_edge->count != d1->target_edge->count)
266 return d2->target_edge->count - d1->target_edge->count;
267 if (d2->bits != d1->bits)
268 return d2->bits - d1->bits;
269
270 /* Stabilize the sort. */
271 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
272}
273
274/* Expand a switch statement by a short sequence of bit-wise
275 comparisons. "switch(x)" is effectively converted into
276 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
277 integer constants.
278
279 INDEX_EXPR is the value being switched on.
280
281 MINVAL is the lowest case value of in the case nodes,
282 and RANGE is highest value minus MINVAL. MINVAL and RANGE
283 are not guaranteed to be of the same type as INDEX_EXPR
284 (the gimplifier doesn't change the type of case label values,
285 and MINVAL and RANGE are derived from those values).
286
287 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
288 node targets. */
289
290static void
291emit_case_bit_tests (gimple swtch, tree index_expr,
292 tree minval, tree range)
293{
294 struct case_bit_test test[MAX_CASE_BIT_TESTS];
295 unsigned int i, j, k;
296 unsigned int count;
297
298 basic_block switch_bb = gimple_bb (swtch);
299 basic_block default_bb, new_default_bb, new_bb;
300 edge default_edge;
301 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
302
303 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
304
305 tree index_type = TREE_TYPE (index_expr);
306 tree unsigned_index_type = unsigned_type_for (index_type);
307 unsigned int branch_num = gimple_switch_num_labels (swtch);
308
309 gimple_stmt_iterator gsi;
310 gimple shift_stmt;
311
312 tree idx, tmp, csui;
313 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
314 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
315 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
316
317 memset (&test, 0, sizeof (test));
318
319 /* Get the edge for the default case. */
320 tmp = gimple_switch_label (swtch, 0);
321 default_bb = label_to_block (CASE_LABEL (tmp));
322 default_edge = find_edge (switch_bb, default_bb);
323
324 /* Go through all case labels, and collect the case labels, profile
325 counts, and other information we need to build the branch tests. */
326 count = 0;
327 for (i = 1; i < branch_num; i++)
328 {
329 unsigned int lo, hi;
330 tree cs = gimple_switch_label (swtch, i);
331 tree label = CASE_LABEL (cs);
8166ff4d 332 edge e = find_edge (switch_bb, label_to_block (label));
531b10fc 333 for (k = 0; k < count; k++)
8166ff4d 334 if (e == test[k].target_edge)
531b10fc
SB
335 break;
336
337 if (k == count)
338 {
531b10fc
SB
339 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
340 test[k].hi = 0;
341 test[k].lo = 0;
342 test[k].target_edge = e;
343 test[k].label = label;
344 test[k].bits = 1;
345 count++;
346 }
347 else
348 test[k].bits++;
349
350 lo = tree_low_cst (int_const_binop (MINUS_EXPR,
351 CASE_LOW (cs), minval),
352 1);
353 if (CASE_HIGH (cs) == NULL_TREE)
354 hi = lo;
355 else
356 hi = tree_low_cst (int_const_binop (MINUS_EXPR,
357 CASE_HIGH (cs), minval),
358 1);
359
360 for (j = lo; j <= hi; j++)
361 if (j >= HOST_BITS_PER_WIDE_INT)
362 test[k].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
363 else
364 test[k].lo |= (HOST_WIDE_INT) 1 << j;
365 }
366
367 qsort (test, count, sizeof(*test), case_bit_test_cmp);
368
369 /* We generate two jumps to the default case label.
370 Split the default edge, so that we don't have to do any PHI node
371 updating. */
372 new_default_bb = split_edge (default_edge);
373
374 if (update_dom)
375 {
376 bbs_to_fix_dom = VEC_alloc (basic_block, heap, 10);
377 VEC_quick_push (basic_block, bbs_to_fix_dom, switch_bb);
378 VEC_quick_push (basic_block, bbs_to_fix_dom, default_bb);
379 VEC_quick_push (basic_block, bbs_to_fix_dom, new_default_bb);
380 }
381
382 /* Now build the test-and-branch code. */
383
384 gsi = gsi_last_bb (switch_bb);
385
386 /* idx = (unsigned) (x - minval) */
387 idx = fold_build2 (MINUS_EXPR, index_type, index_expr,
388 fold_convert (index_type, minval));
389 idx = fold_convert (unsigned_index_type, idx);
390 idx = force_gimple_operand_gsi (&gsi, idx,
391 /*simple=*/true, NULL_TREE,
392 /*before=*/true, GSI_SAME_STMT);
393
394 /* if (idx > range) goto default */
395 range = force_gimple_operand_gsi (&gsi,
396 fold_convert (unsigned_index_type, range),
397 /*simple=*/true, NULL_TREE,
398 /*before=*/true, GSI_SAME_STMT);
399 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
400 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
401 if (update_dom)
402 VEC_quick_push (basic_block, bbs_to_fix_dom, new_bb);
403 gcc_assert (gimple_bb (swtch) == new_bb);
404 gsi = gsi_last_bb (new_bb);
405
406 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
407 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
408 if (update_dom)
409 {
410 VEC (basic_block, heap) *dom_bbs;
411 basic_block dom_son;
412
413 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
414 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, dom_son)
415 {
416 edge e = find_edge (new_bb, dom_son);
417 if (e && single_pred_p (e->dest))
418 continue;
419 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
420 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dom_son);
421 }
422 VEC_free (basic_block, heap, dom_bbs);
423 }
424
425 /* csui = (1 << (word_mode) idx) */
426 tmp = create_tmp_var (word_type_node, "csui");
427 add_referenced_var (tmp);
428 csui = make_ssa_name (tmp, NULL);
429 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
430 fold_convert (word_type_node, idx));
431 tmp = force_gimple_operand_gsi (&gsi, tmp,
432 /*simple=*/false, NULL_TREE,
433 /*before=*/true, GSI_SAME_STMT);
434 shift_stmt = gimple_build_assign (csui, tmp);
435 SSA_NAME_DEF_STMT (csui) = shift_stmt;
436 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
437 update_stmt (shift_stmt);
438
439 /* for each unique set of cases:
440 if (const & csui) goto target */
441 for (k = 0; k < count; k++)
442 {
443 tmp = build_int_cst_wide (word_type_node, test[k].lo, test[k].hi);
444 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
445 tmp = force_gimple_operand_gsi (&gsi, tmp,
446 /*simple=*/true, NULL_TREE,
447 /*before=*/true, GSI_SAME_STMT);
448 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
449 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
450 update_dom);
451 if (update_dom)
452 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, new_bb);
453 gcc_assert (gimple_bb (swtch) == new_bb);
454 gsi = gsi_last_bb (new_bb);
455 }
456
457 /* We should have removed all edges now. */
458 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
459
460 /* If nothing matched, go to the default label. */
461 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
462
463 /* The GIMPLE_SWITCH is now redundant. */
464 gsi_remove (&gsi, true);
465
466 if (update_dom)
467 {
468 /* Fix up the dominator tree. */
469 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
470 VEC_free (basic_block, heap, bbs_to_fix_dom);
471 }
472}
473\f
b6e99746
MJ
474/*
475 Switch initialization conversion
476
477The following pass changes simple initializations of scalars in a switch
fade902a
SB
478statement into initializations from a static array. Obviously, the values
479must be constant and known at compile time and a default branch must be
b6e99746
MJ
480provided. For example, the following code:
481
482 int a,b;
483
484 switch (argc)
485 {
486 case 1:
487 case 2:
488 a_1 = 8;
489 b_1 = 6;
490 break;
491 case 3:
492 a_2 = 9;
493 b_2 = 5;
494 break;
495 case 12:
496 a_3 = 10;
497 b_3 = 4;
498 break;
499 default:
500 a_4 = 16;
501 b_4 = 1;
886cd84f 502 break;
b6e99746
MJ
503 }
504 a_5 = PHI <a_1, a_2, a_3, a_4>
505 b_5 = PHI <b_1, b_2, b_3, b_4>
506
507
508is changed into:
509
510 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
511 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
512 16, 16, 10};
513
514 if (((unsigned) argc) - 1 < 11)
515 {
516 a_6 = CSWTCH02[argc - 1];
517 b_6 = CSWTCH01[argc - 1];
518 }
519 else
520 {
521 a_7 = 16;
522 b_7 = 1;
523 }
886cd84f
SB
524 a_5 = PHI <a_6, a_7>
525 b_b = PHI <b_6, b_7>
b6e99746
MJ
526
527There are further constraints. Specifically, the range of values across all
528case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
531b10fc 529eight) times the number of the actual switch branches.
b6e99746 530
531b10fc
SB
531This transformation was contributed by Martin Jambor, see this e-mail:
532 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
b6e99746
MJ
533
534/* The main structure of the pass. */
535struct switch_conv_info
536{
886cd84f 537 /* The expression used to decide the switch branch. */
b6e99746
MJ
538 tree index_expr;
539
886cd84f
SB
540 /* The following integer constants store the minimum and maximum value
541 covered by the case labels. */
b6e99746 542 tree range_min;
886cd84f 543 tree range_max;
b6e99746 544
886cd84f
SB
545 /* The difference between the above two numbers. Stored here because it
546 is used in all the conversion heuristics, as well as for some of the
547 transformation, and it is expensive to re-compute it all the time. */
b6e99746
MJ
548 tree range_size;
549
886cd84f 550 /* Basic block that contains the actual GIMPLE_SWITCH. */
b6e99746
MJ
551 basic_block switch_bb;
552
886cd84f
SB
553 /* Basic block that is the target of the default case. */
554 basic_block default_bb;
555
556 /* The single successor block of all branches out of the GIMPLE_SWITCH,
557 if such a block exists. Otherwise NULL. */
b6e99746
MJ
558 basic_block final_bb;
559
886cd84f
SB
560 /* The probability of the default edge in the replaced switch. */
561 int default_prob;
562
563 /* The count of the default edge in the replaced switch. */
564 gcov_type default_count;
565
566 /* Combined count of all other (non-default) edges in the replaced switch. */
567 gcov_type other_count;
568
b6e99746
MJ
569 /* Number of phi nodes in the final bb (that we'll be replacing). */
570 int phi_count;
571
b1ae1681 572 /* Array of default values, in the same order as phi nodes. */
b6e99746
MJ
573 tree *default_values;
574
575 /* Constructors of new static arrays. */
576 VEC (constructor_elt, gc) **constructors;
577
578 /* Array of ssa names that are initialized with a value from a new static
579 array. */
580 tree *target_inbound_names;
581
582 /* Array of ssa names that are initialized with the default value if the
583 switch expression is out of range. */
584 tree *target_outbound_names;
585
b1ae1681
MJ
586 /* The first load statement that loads a temporary from a new static array.
587 */
726a989a 588 gimple arr_ref_first;
b6e99746
MJ
589
590 /* The last load statement that loads a temporary from a new static array. */
726a989a 591 gimple arr_ref_last;
b6e99746
MJ
592
593 /* String reason why the case wasn't a good candidate that is written to the
594 dump file, if there is one. */
595 const char *reason;
8e97bc2b
JJ
596
597 /* Parameters for expand_switch_using_bit_tests. Should be computed
598 the same way as in expand_case. */
886cd84f
SB
599 unsigned int uniq;
600 unsigned int count;
b6e99746
MJ
601};
602
886cd84f 603/* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
b6e99746 604
886cd84f
SB
605static void
606collect_switch_conv_info (gimple swtch, struct switch_conv_info *info)
b6e99746 607{
726a989a 608 unsigned int branch_num = gimple_switch_num_labels (swtch);
886cd84f
SB
609 tree min_case, max_case;
610 unsigned int count, i;
611 edge e, e_default;
612 edge_iterator ei;
613
614 memset (info, 0, sizeof (*info));
b6e99746
MJ
615
616 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
8e97bc2b 617 is a default label which is the first in the vector. */
886cd84f 618 gcc_assert (CASE_LOW (gimple_switch_label (swtch, 0)) == NULL_TREE);
b6e99746 619
886cd84f
SB
620 /* Collect the bits we can deduce from the CFG. */
621 info->index_expr = gimple_switch_index (swtch);
622 info->switch_bb = gimple_bb (swtch);
623 info->default_bb =
624 label_to_block (CASE_LABEL (gimple_switch_label (swtch, 0)));
625 e_default = find_edge (info->switch_bb, info->default_bb);
626 info->default_prob = e_default->probability;
627 info->default_count = e_default->count;
628 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
629 if (e != e_default)
630 info->other_count += e->count;
b6e99746 631
886cd84f
SB
632 /* See if there is one common successor block for all branch
633 targets. If it exists, record it in FINAL_BB. */
634 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
635 {
636 if (! single_pred_p (e->dest))
637 {
638 info->final_bb = e->dest;
639 break;
640 }
641 }
642 if (info->final_bb)
643 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
644 {
645 if (e->dest == info->final_bb)
646 continue;
647
648 if (single_pred_p (e->dest)
649 && single_succ_p (e->dest)
650 && single_succ (e->dest) == info->final_bb)
651 continue;
652
653 info->final_bb = NULL;
654 break;
655 }
656
657 /* Get upper and lower bounds of case values, and the covered range. */
658 min_case = gimple_switch_label (swtch, 1);
726a989a 659 max_case = gimple_switch_label (swtch, branch_num - 1);
886cd84f
SB
660
661 info->range_min = CASE_LOW (min_case);
b6e99746 662 if (CASE_HIGH (max_case) != NULL_TREE)
886cd84f 663 info->range_max = CASE_HIGH (max_case);
b6e99746 664 else
886cd84f
SB
665 info->range_max = CASE_LOW (max_case);
666
667 info->range_size =
668 int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
b6e99746 669
886cd84f
SB
670 /* Get a count of the number of case labels. Single-valued case labels
671 simply count as one, but a case range counts double, since it may
672 require two compares if it gets lowered as a branching tree. */
673 count = 0;
674 for (i = 1; i < branch_num; i++)
675 {
676 tree elt = gimple_switch_label (swtch, i);
677 count++;
678 if (CASE_HIGH (elt)
679 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
680 count++;
681 }
682 info->count = count;
683
684 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
685 block. Assume a CFG cleanup would have already removed degenerate
686 switch statements, this allows us to just use EDGE_COUNT. */
687 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
688}
b6e99746 689
886cd84f
SB
690/* Checks whether the range given by individual case statements of the SWTCH
691 switch statement isn't too big and whether the number of branches actually
692 satisfies the size of the new array. */
b6e99746 693
886cd84f
SB
694static bool
695check_range (struct switch_conv_info *info)
696{
fade902a
SB
697 gcc_assert (info->range_size);
698 if (!host_integerp (info->range_size, 1))
b6e99746 699 {
fade902a 700 info->reason = "index range way too large or otherwise unusable";
b6e99746
MJ
701 return false;
702 }
703
fade902a 704 if ((unsigned HOST_WIDE_INT) tree_low_cst (info->range_size, 1)
886cd84f 705 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
b6e99746 706 {
fade902a 707 info->reason = "the maximum range-branch ratio exceeded";
b6e99746
MJ
708 return false;
709 }
710
711 return true;
712}
713
886cd84f 714/* Checks whether all but the FINAL_BB basic blocks are empty. */
b6e99746
MJ
715
716static bool
886cd84f 717check_all_empty_except_final (struct switch_conv_info *info)
b6e99746 718{
b6e99746 719 edge e;
886cd84f 720 edge_iterator ei;
b6e99746 721
886cd84f 722 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
b6e99746 723 {
886cd84f
SB
724 if (e->dest == info->final_bb)
725 continue;
b6e99746 726
886cd84f 727 if (!empty_block_p (e->dest))
b6e99746 728 {
fade902a 729 info->reason = "bad case - a non-final BB not empty";
b6e99746
MJ
730 return false;
731 }
b6e99746
MJ
732 }
733
734 return true;
735}
736
737/* This function checks whether all required values in phi nodes in final_bb
738 are constants. Required values are those that correspond to a basic block
739 which is a part of the examined switch statement. It returns true if the
740 phi nodes are OK, otherwise false. */
741
742static bool
fade902a 743check_final_bb (struct switch_conv_info *info)
b6e99746 744{
726a989a 745 gimple_stmt_iterator gsi;
b6e99746 746
fade902a
SB
747 info->phi_count = 0;
748 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 749 {
726a989a
RB
750 gimple phi = gsi_stmt (gsi);
751 unsigned int i;
b6e99746 752
fade902a 753 info->phi_count++;
b6e99746 754
726a989a 755 for (i = 0; i < gimple_phi_num_args (phi); i++)
b6e99746 756 {
726a989a 757 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
b6e99746 758
fade902a
SB
759 if (bb == info->switch_bb
760 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
b6e99746 761 {
f6e6e990
JJ
762 tree reloc, val;
763
764 val = gimple_phi_arg_def (phi, i);
765 if (!is_gimple_ip_invariant (val))
766 {
fade902a 767 info->reason = "non-invariant value from a case";
f6e6e990
JJ
768 return false; /* Non-invariant argument. */
769 }
770 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
771 if ((flag_pic && reloc != null_pointer_node)
772 || (!flag_pic && reloc == NULL_TREE))
773 {
774 if (reloc)
fade902a
SB
775 info->reason
776 = "value from a case would need runtime relocations";
f6e6e990 777 else
fade902a
SB
778 info->reason
779 = "value from a case is not a valid initializer";
f6e6e990
JJ
780 return false;
781 }
b6e99746
MJ
782 }
783 }
784 }
785
786 return true;
787}
788
789/* The following function allocates default_values, target_{in,out}_names and
790 constructors arrays. The last one is also populated with pointers to
791 vectors that will become constructors of new arrays. */
792
793static void
fade902a 794create_temp_arrays (struct switch_conv_info *info)
b6e99746
MJ
795{
796 int i;
797
fade902a
SB
798 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
799 info->constructors = XCNEWVEC (VEC (constructor_elt, gc) *, info->phi_count);
800 info->target_inbound_names = info->default_values + info->phi_count;
801 info->target_outbound_names = info->target_inbound_names + info->phi_count;
802 for (i = 0; i < info->phi_count; i++)
803 info->constructors[i]
804 = VEC_alloc (constructor_elt, gc, tree_low_cst (info->range_size, 1) + 1);
b6e99746
MJ
805}
806
807/* Free the arrays created by create_temp_arrays(). The vectors that are
808 created by that function are not freed here, however, because they have
809 already become constructors and must be preserved. */
810
811static void
fade902a 812free_temp_arrays (struct switch_conv_info *info)
b6e99746 813{
fade902a
SB
814 XDELETEVEC (info->constructors);
815 XDELETEVEC (info->default_values);
b6e99746
MJ
816}
817
818/* Populate the array of default values in the order of phi nodes.
819 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
820
821static void
fade902a 822gather_default_values (tree default_case, struct switch_conv_info *info)
b6e99746 823{
726a989a 824 gimple_stmt_iterator gsi;
b6e99746
MJ
825 basic_block bb = label_to_block (CASE_LABEL (default_case));
826 edge e;
726a989a 827 int i = 0;
b6e99746
MJ
828
829 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
830
fade902a
SB
831 if (bb == info->final_bb)
832 e = find_edge (info->switch_bb, bb);
b6e99746
MJ
833 else
834 e = single_succ_edge (bb);
835
fade902a 836 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 837 {
726a989a 838 gimple phi = gsi_stmt (gsi);
b6e99746
MJ
839 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
840 gcc_assert (val);
fade902a 841 info->default_values[i++] = val;
b6e99746
MJ
842 }
843}
844
845/* The following function populates the vectors in the constructors array with
846 future contents of the static arrays. The vectors are populated in the
847 order of phi nodes. SWTCH is the switch statement being converted. */
848
849static void
fade902a 850build_constructors (gimple swtch, struct switch_conv_info *info)
b6e99746 851{
726a989a 852 unsigned i, branch_num = gimple_switch_num_labels (swtch);
fade902a 853 tree pos = info->range_min;
b6e99746 854
726a989a 855 for (i = 1; i < branch_num; i++)
b6e99746 856 {
726a989a 857 tree cs = gimple_switch_label (swtch, i);
b6e99746
MJ
858 basic_block bb = label_to_block (CASE_LABEL (cs));
859 edge e;
726a989a
RB
860 tree high;
861 gimple_stmt_iterator gsi;
b6e99746
MJ
862 int j;
863
fade902a
SB
864 if (bb == info->final_bb)
865 e = find_edge (info->switch_bb, bb);
b6e99746
MJ
866 else
867 e = single_succ_edge (bb);
868 gcc_assert (e);
869
870 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
871 {
872 int k;
fade902a 873 for (k = 0; k < info->phi_count; k++)
b6e99746
MJ
874 {
875 constructor_elt *elt;
876
877 elt = VEC_quick_push (constructor_elt,
fade902a 878 info->constructors[k], NULL);
726a989a 879 elt->index = int_const_binop (MINUS_EXPR, pos,
fade902a
SB
880 info->range_min);
881 elt->value = info->default_values[k];
b6e99746
MJ
882 }
883
d35936ab 884 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
b6e99746 885 }
b1ae1681 886 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
b6e99746
MJ
887
888 j = 0;
889 if (CASE_HIGH (cs))
890 high = CASE_HIGH (cs);
891 else
b1ae1681 892 high = CASE_LOW (cs);
fade902a 893 for (gsi = gsi_start_phis (info->final_bb);
726a989a 894 !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 895 {
726a989a 896 gimple phi = gsi_stmt (gsi);
b6e99746 897 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
7f2a9982 898 tree low = CASE_LOW (cs);
b6e99746
MJ
899 pos = CASE_LOW (cs);
900
b8698a0f 901 do
b6e99746
MJ
902 {
903 constructor_elt *elt;
904
905 elt = VEC_quick_push (constructor_elt,
fade902a
SB
906 info->constructors[j], NULL);
907 elt->index = int_const_binop (MINUS_EXPR, pos, info->range_min);
b6e99746
MJ
908 elt->value = val;
909
d35936ab 910 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
7156c8ab
MJ
911 } while (!tree_int_cst_lt (high, pos)
912 && tree_int_cst_lt (low, pos));
b6e99746
MJ
913 j++;
914 }
915 }
916}
917
7156c8ab
MJ
918/* If all values in the constructor vector are the same, return the value.
919 Otherwise return NULL_TREE. Not supposed to be called for empty
920 vectors. */
921
922static tree
923constructor_contains_same_values_p (VEC (constructor_elt, gc) *vec)
924{
8e97bc2b 925 unsigned int i;
7156c8ab 926 tree prev = NULL_TREE;
8e97bc2b 927 constructor_elt *elt;
7156c8ab 928
8e97bc2b 929 FOR_EACH_VEC_ELT (constructor_elt, vec, i, elt)
7156c8ab 930 {
7156c8ab
MJ
931 if (!prev)
932 prev = elt->value;
933 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
934 return NULL_TREE;
935 }
936 return prev;
937}
938
8e97bc2b
JJ
939/* Return type which should be used for array elements, either TYPE,
940 or for integral type some smaller integral type that can still hold
941 all the constants. */
942
943static tree
fade902a
SB
944array_value_type (gimple swtch, tree type, int num,
945 struct switch_conv_info *info)
8e97bc2b 946{
fade902a 947 unsigned int i, len = VEC_length (constructor_elt, info->constructors[num]);
8e97bc2b
JJ
948 constructor_elt *elt;
949 enum machine_mode mode;
950 int sign = 0;
951 tree smaller_type;
952
953 if (!INTEGRAL_TYPE_P (type))
954 return type;
955
956 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
957 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
958 return type;
959
960 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
961 return type;
962
fade902a 963 FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
8e97bc2b
JJ
964 {
965 double_int cst;
966
967 if (TREE_CODE (elt->value) != INTEGER_CST)
968 return type;
969
970 cst = TREE_INT_CST (elt->value);
971 while (1)
972 {
973 unsigned int prec = GET_MODE_BITSIZE (mode);
974 if (prec > HOST_BITS_PER_WIDE_INT)
975 return type;
976
977 if (sign >= 0
978 && double_int_equal_p (cst, double_int_zext (cst, prec)))
979 {
980 if (sign == 0
981 && double_int_equal_p (cst, double_int_sext (cst, prec)))
982 break;
983 sign = 1;
984 break;
985 }
986 if (sign <= 0
987 && double_int_equal_p (cst, double_int_sext (cst, prec)))
988 {
989 sign = -1;
990 break;
991 }
992
993 if (sign == 1)
994 sign = 0;
995
996 mode = GET_MODE_WIDER_MODE (mode);
997 if (mode == VOIDmode
998 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
999 return type;
1000 }
1001 }
1002
1003 if (sign == 0)
1004 sign = TYPE_UNSIGNED (type) ? 1 : -1;
1005 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
1006 if (GET_MODE_SIZE (TYPE_MODE (type))
1007 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
1008 return type;
1009
1010 return smaller_type;
1011}
1012
b6e99746
MJ
1013/* Create an appropriate array type and declaration and assemble a static array
1014 variable. Also create a load statement that initializes the variable in
1015 question with a value from the static array. SWTCH is the switch statement
1016 being converted, NUM is the index to arrays of constructors, default values
1017 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1018 of the index of the new array, PHI is the phi node of the final BB that
1019 corresponds to the value that will be loaded from the created array. TIDX
7156c8ab
MJ
1020 is an ssa name of a temporary variable holding the index for loads from the
1021 new array. */
b6e99746
MJ
1022
1023static void
726a989a 1024build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
fade902a 1025 tree tidx, struct switch_conv_info *info)
b6e99746 1026{
7156c8ab 1027 tree name, cst;
726a989a 1028 gimple load;
7156c8ab 1029 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
c2255bc4 1030 location_t loc = gimple_location (swtch);
b6e99746 1031
fade902a 1032 gcc_assert (info->default_values[num]);
b6e99746 1033
726a989a 1034 name = make_ssa_name (SSA_NAME_VAR (PHI_RESULT (phi)), NULL);
fade902a 1035 info->target_inbound_names[num] = name;
b6e99746 1036
fade902a 1037 cst = constructor_contains_same_values_p (info->constructors[num]);
7156c8ab
MJ
1038 if (cst)
1039 load = gimple_build_assign (name, cst);
1040 else
1041 {
8e97bc2b 1042 tree array_type, ctor, decl, value_type, fetch, default_type;
7156c8ab 1043
fade902a
SB
1044 default_type = TREE_TYPE (info->default_values[num]);
1045 value_type = array_value_type (swtch, default_type, num, info);
7156c8ab 1046 array_type = build_array_type (value_type, arr_index_type);
8e97bc2b
JJ
1047 if (default_type != value_type)
1048 {
1049 unsigned int i;
1050 constructor_elt *elt;
1051
fade902a 1052 FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
8e97bc2b
JJ
1053 elt->value = fold_convert (value_type, elt->value);
1054 }
fade902a 1055 ctor = build_constructor (array_type, info->constructors[num]);
7156c8ab 1056 TREE_CONSTANT (ctor) = true;
5f7ae6b6 1057 TREE_STATIC (ctor) = true;
7156c8ab 1058
c2255bc4 1059 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
7156c8ab
MJ
1060 TREE_STATIC (decl) = 1;
1061 DECL_INITIAL (decl) = ctor;
1062
1063 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1064 DECL_ARTIFICIAL (decl) = 1;
1065 TREE_CONSTANT (decl) = 1;
2e3b4885 1066 TREE_READONLY (decl) = 1;
7156c8ab
MJ
1067 varpool_finalize_decl (decl);
1068
1069 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1070 NULL_TREE);
8e97bc2b
JJ
1071 if (default_type != value_type)
1072 {
1073 fetch = fold_convert (default_type, fetch);
1074 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1075 true, GSI_SAME_STMT);
1076 }
7156c8ab
MJ
1077 load = gimple_build_assign (name, fetch);
1078 }
b6e99746 1079
7156c8ab 1080 SSA_NAME_DEF_STMT (name) = load;
726a989a 1081 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
7156c8ab 1082 update_stmt (load);
fade902a 1083 info->arr_ref_last = load;
b6e99746
MJ
1084}
1085
1086/* Builds and initializes static arrays initialized with values gathered from
1087 the SWTCH switch statement. Also creates statements that load values from
1088 them. */
1089
1090static void
fade902a 1091build_arrays (gimple swtch, struct switch_conv_info *info)
b6e99746
MJ
1092{
1093 tree arr_index_type;
edb9b69e 1094 tree tidx, sub, tmp, utype;
726a989a
RB
1095 gimple stmt;
1096 gimple_stmt_iterator gsi;
b6e99746 1097 int i;
db3927fb 1098 location_t loc = gimple_location (swtch);
b6e99746 1099
726a989a 1100 gsi = gsi_for_stmt (swtch);
04e78aa9 1101
edb9b69e 1102 /* Make sure we do not generate arithmetics in a subrange. */
fade902a 1103 utype = TREE_TYPE (info->index_expr);
edb9b69e
JJ
1104 if (TREE_TYPE (utype))
1105 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1106 else
1107 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1108
fade902a 1109 arr_index_type = build_index_type (info->range_size);
edb9b69e 1110 tmp = create_tmp_var (utype, "csui");
9925bce0
RG
1111 add_referenced_var (tmp);
1112 tidx = make_ssa_name (tmp, NULL);
edb9b69e 1113 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
fade902a
SB
1114 fold_convert_loc (loc, utype, info->index_expr),
1115 fold_convert_loc (loc, utype, info->range_min));
fae1034e 1116 sub = force_gimple_operand_gsi (&gsi, sub,
726a989a
RB
1117 false, NULL, true, GSI_SAME_STMT);
1118 stmt = gimple_build_assign (tidx, sub);
7156c8ab 1119 SSA_NAME_DEF_STMT (tidx) = stmt;
b6e99746 1120
726a989a 1121 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
7156c8ab 1122 update_stmt (stmt);
fade902a 1123 info->arr_ref_first = stmt;
b6e99746 1124
fade902a 1125 for (gsi = gsi_start_phis (info->final_bb), i = 0;
726a989a 1126 !gsi_end_p (gsi); gsi_next (&gsi), i++)
fade902a 1127 build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info);
b6e99746
MJ
1128}
1129
1130/* Generates and appropriately inserts loads of default values at the position
1131 given by BSI. Returns the last inserted statement. */
1132
726a989a 1133static gimple
fade902a 1134gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
b6e99746
MJ
1135{
1136 int i;
726a989a 1137 gimple assign = NULL;
b6e99746 1138
fade902a 1139 for (i = 0; i < info->phi_count; i++)
b6e99746 1140 {
726a989a 1141 tree name
fade902a 1142 = make_ssa_name (SSA_NAME_VAR (info->target_inbound_names[i]), NULL);
b6e99746 1143
fade902a
SB
1144 info->target_outbound_names[i] = name;
1145 assign = gimple_build_assign (name, info->default_values[i]);
b6e99746 1146 SSA_NAME_DEF_STMT (name) = assign;
726a989a 1147 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
7156c8ab 1148 update_stmt (assign);
b6e99746
MJ
1149 }
1150 return assign;
1151}
1152
1153/* Deletes the unused bbs and edges that now contain the switch statement and
1154 its empty branch bbs. BBD is the now dead BB containing the original switch
1155 statement, FINAL is the last BB of the converted switch statement (in terms
1156 of succession). */
1157
1158static void
1159prune_bbs (basic_block bbd, basic_block final)
1160{
1161 edge_iterator ei;
1162 edge e;
1163
1164 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1165 {
1166 basic_block bb;
1167 bb = e->dest;
1168 remove_edge (e);
1169 if (bb != final)
1170 delete_basic_block (bb);
1171 }
1172 delete_basic_block (bbd);
1173}
1174
1175/* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1176 from the basic block loading values from an array and E2F from the basic
1177 block loading default values. BBF is the last switch basic block (see the
1178 bbf description in the comment below). */
1179
1180static void
fade902a
SB
1181fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1182 struct switch_conv_info *info)
b6e99746 1183{
726a989a 1184 gimple_stmt_iterator gsi;
b6e99746
MJ
1185 int i;
1186
726a989a
RB
1187 for (gsi = gsi_start_phis (bbf), i = 0;
1188 !gsi_end_p (gsi); gsi_next (&gsi), i++)
b6e99746 1189 {
726a989a 1190 gimple phi = gsi_stmt (gsi);
fade902a
SB
1191 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1192 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
b6e99746 1193 }
b6e99746
MJ
1194}
1195
1196/* Creates a check whether the switch expression value actually falls into the
1197 range given by all the cases. If it does not, the temporaries are loaded
1198 with default values instead. SWTCH is the switch statement being converted.
1199
1200 bb0 is the bb with the switch statement, however, we'll end it with a
1201 condition instead.
1202
1203 bb1 is the bb to be used when the range check went ok. It is derived from
1204 the switch BB
1205
1206 bb2 is the bb taken when the expression evaluated outside of the range
1207 covered by the created arrays. It is populated by loads of default
1208 values.
1209
1210 bbF is a fall through for both bb1 and bb2 and contains exactly what
1211 originally followed the switch statement.
1212
1213 bbD contains the switch statement (in the end). It is unreachable but we
1214 still need to strip off its edges.
1215*/
1216
1217static void
fade902a 1218gen_inbound_check (gimple swtch, struct switch_conv_info *info)
b6e99746 1219{
c2255bc4
AH
1220 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1221 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1222 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
726a989a 1223 gimple label1, label2, label3;
edb9b69e 1224 tree utype, tidx;
b6e99746
MJ
1225 tree bound;
1226
726a989a 1227 gimple cond_stmt;
b6e99746 1228
726a989a
RB
1229 gimple last_assign;
1230 gimple_stmt_iterator gsi;
b6e99746
MJ
1231 basic_block bb0, bb1, bb2, bbf, bbd;
1232 edge e01, e02, e21, e1d, e1f, e2f;
db3927fb 1233 location_t loc = gimple_location (swtch);
b6e99746 1234
fade902a 1235 gcc_assert (info->default_values);
6ab1ab14 1236
726a989a 1237 bb0 = gimple_bb (swtch);
b6e99746 1238
fade902a 1239 tidx = gimple_assign_lhs (info->arr_ref_first);
edb9b69e 1240 utype = TREE_TYPE (tidx);
145544ab 1241
b6e99746 1242 /* (end of) block 0 */
fade902a 1243 gsi = gsi_for_stmt (info->arr_ref_first);
edb9b69e 1244 gsi_next (&gsi);
b6e99746 1245
fade902a 1246 bound = fold_convert_loc (loc, utype, info->range_size);
edb9b69e 1247 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
726a989a 1248 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
7156c8ab 1249 update_stmt (cond_stmt);
b6e99746
MJ
1250
1251 /* block 2 */
726a989a
RB
1252 label2 = gimple_build_label (label_decl2);
1253 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
fade902a 1254 last_assign = gen_def_assigns (&gsi, info);
b6e99746
MJ
1255
1256 /* block 1 */
726a989a
RB
1257 label1 = gimple_build_label (label_decl1);
1258 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
b6e99746
MJ
1259
1260 /* block F */
fade902a 1261 gsi = gsi_start_bb (info->final_bb);
726a989a
RB
1262 label3 = gimple_build_label (label_decl3);
1263 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
b6e99746
MJ
1264
1265 /* cfg fix */
726a989a 1266 e02 = split_block (bb0, cond_stmt);
b6e99746
MJ
1267 bb2 = e02->dest;
1268
1269 e21 = split_block (bb2, last_assign);
1270 bb1 = e21->dest;
1271 remove_edge (e21);
1272
fade902a 1273 e1d = split_block (bb1, info->arr_ref_last);
b6e99746
MJ
1274 bbd = e1d->dest;
1275 remove_edge (e1d);
1276
1277 /* flags and profiles of the edge for in-range values */
1278 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
fade902a
SB
1279 e01->probability = REG_BR_PROB_BASE - info->default_prob;
1280 e01->count = info->other_count;
b6e99746
MJ
1281
1282 /* flags and profiles of the edge taking care of out-of-range values */
1283 e02->flags &= ~EDGE_FALLTHRU;
1284 e02->flags |= EDGE_FALSE_VALUE;
fade902a
SB
1285 e02->probability = info->default_prob;
1286 e02->count = info->default_count;
b6e99746 1287
fade902a 1288 bbf = info->final_bb;
b6e99746
MJ
1289
1290 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1291 e1f->probability = REG_BR_PROB_BASE;
fade902a 1292 e1f->count = info->other_count;
b6e99746
MJ
1293
1294 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1295 e2f->probability = REG_BR_PROB_BASE;
fade902a 1296 e2f->count = info->default_count;
b6e99746
MJ
1297
1298 /* frequencies of the new BBs */
1299 bb1->frequency = EDGE_FREQUENCY (e01);
1300 bb2->frequency = EDGE_FREQUENCY (e02);
1301 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1302
6ab1ab14
SB
1303 /* Tidy blocks that have become unreachable. */
1304 prune_bbs (bbd, info->final_bb);
b6e99746 1305
6ab1ab14 1306 /* Fixup the PHI nodes in bbF. */
fade902a 1307 fix_phi_nodes (e1f, e2f, bbf, info);
b6e99746 1308
6ab1ab14
SB
1309 /* Fix the dominator tree, if it is available. */
1310 if (dom_info_available_p (CDI_DOMINATORS))
1311 {
1312 VEC (basic_block, heap) *bbs_to_fix_dom;
1313
1314 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1315 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
531b10fc 1316 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
6ab1ab14
SB
1317 /* If bbD was the immediate dominator ... */
1318 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1319
1320 bbs_to_fix_dom = VEC_alloc (basic_block, heap, 4);
1321 VEC_quick_push (basic_block, bbs_to_fix_dom, bb0);
1322 VEC_quick_push (basic_block, bbs_to_fix_dom, bb1);
1323 VEC_quick_push (basic_block, bbs_to_fix_dom, bb2);
1324 VEC_quick_push (basic_block, bbs_to_fix_dom, bbf);
1325
1326 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1327 VEC_free (basic_block, heap, bbs_to_fix_dom);
1328 }
b6e99746
MJ
1329}
1330
1331/* The following function is invoked on every switch statement (the current one
1332 is given in SWTCH) and runs the individual phases of switch conversion on it
fade902a
SB
1333 one after another until one fails or the conversion is completed.
1334 Returns NULL on success, or a pointer to a string with the reason why the
1335 conversion failed. */
b6e99746 1336
fade902a 1337static const char *
726a989a 1338process_switch (gimple swtch)
b6e99746 1339{
fade902a 1340 struct switch_conv_info info;
b6e99746 1341
886cd84f
SB
1342 /* Degenerate case with only a default label should never happen. */
1343 gcc_checking_assert (gimple_switch_num_labels (swtch) > 1);
1344
1345 collect_switch_conv_info (swtch, &info);
1346
1347 /* No error markers should reach here (they should be filtered out
1348 during gimplification). */
1349 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1350
531b10fc
SB
1351 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1352 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
886cd84f 1353
531b10fc 1354 if (info.uniq <= MAX_CASE_BIT_TESTS)
886cd84f 1355 {
531b10fc 1356 if (expand_switch_using_bit_tests_p (info.range_size,
886cd84f 1357 info.uniq, info.count))
531b10fc
SB
1358 {
1359 if (dump_file)
1360 fputs (" expanding as bit test is preferable\n", dump_file);
1361 emit_case_bit_tests (swtch, info.index_expr,
1362 info.range_min, info.range_size);
1363 return NULL;
1364 }
1365
1366 if (info.uniq <= 2)
1367 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1368 return " expanding as jumps is preferable";
886cd84f 1369 }
b6e99746 1370
531b10fc
SB
1371 /* If there is no common successor, we cannot do the transformation. */
1372 if (! info.final_bb)
1373 return "no common successor to all case label target blocks found";
1374
b6e99746 1375 /* Check the case label values are within reasonable range: */
886cd84f 1376 if (!check_range (&info))
fade902a
SB
1377 {
1378 gcc_assert (info.reason);
1379 return info.reason;
1380 }
b6e99746
MJ
1381
1382 /* For all the cases, see whether they are empty, the assignments they
1383 represent constant and so on... */
886cd84f 1384 if (! check_all_empty_except_final (&info))
8e97bc2b 1385 {
886cd84f
SB
1386 gcc_assert (info.reason);
1387 return info.reason;
8e97bc2b 1388 }
fade902a
SB
1389 if (!check_final_bb (&info))
1390 {
1391 gcc_assert (info.reason);
1392 return info.reason;
1393 }
b6e99746
MJ
1394
1395 /* At this point all checks have passed and we can proceed with the
1396 transformation. */
1397
fade902a
SB
1398 create_temp_arrays (&info);
1399 gather_default_values (gimple_switch_label (swtch, 0), &info);
1400 build_constructors (swtch, &info);
b6e99746 1401
fade902a
SB
1402 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1403 gen_inbound_check (swtch, &info); /* Build the bounds check. */
b6e99746
MJ
1404
1405 /* Cleanup: */
fade902a
SB
1406 free_temp_arrays (&info);
1407 return NULL;
b6e99746
MJ
1408}
1409
1410/* The main function of the pass scans statements for switches and invokes
1411 process_switch on them. */
1412
1413static unsigned int
1414do_switchconv (void)
1415{
1416 basic_block bb;
1417
1418 FOR_EACH_BB (bb)
1419 {
fade902a 1420 const char *failure_reason;
726a989a
RB
1421 gimple stmt = last_stmt (bb);
1422 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
b6e99746 1423 {
b6e99746
MJ
1424 if (dump_file)
1425 {
726a989a
RB
1426 expanded_location loc = expand_location (gimple_location (stmt));
1427
b6e99746
MJ
1428 fprintf (dump_file, "beginning to process the following "
1429 "SWITCH statement (%s:%d) : ------- \n",
1430 loc.file, loc.line);
726a989a 1431 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
edb30094 1432 putc ('\n', dump_file);
b6e99746
MJ
1433 }
1434
fade902a
SB
1435 failure_reason = process_switch (stmt);
1436 if (! failure_reason)
b6e99746
MJ
1437 {
1438 if (dump_file)
1439 {
edb30094
UB
1440 fputs ("Switch converted\n", dump_file);
1441 fputs ("--------------------------------\n", dump_file);
b6e99746 1442 }
531b10fc
SB
1443
1444 /* Make no effort to update the post-dominator tree. It is actually not
1445 that hard for the transformations we have performed, but it is not
1446 supported by iterate_fix_dominators. */
1447 free_dominance_info (CDI_POST_DOMINATORS);
b6e99746
MJ
1448 }
1449 else
1450 {
1451 if (dump_file)
1452 {
edb30094 1453 fputs ("Bailing out - ", dump_file);
fade902a
SB
1454 fputs (failure_reason, dump_file);
1455 fputs ("\n--------------------------------\n", dump_file);
b6e99746
MJ
1456 }
1457 }
1458 }
1459 }
1460
1461 return 0;
1462}
1463
1464/* The pass gate. */
1465
1466static bool
1467switchconv_gate (void)
1468{
1469 return flag_tree_switch_conversion != 0;
1470}
1471
1472struct gimple_opt_pass pass_convert_switch =
1473{
1474 {
1475 GIMPLE_PASS,
1476 "switchconv", /* name */
b1ae1681 1477 switchconv_gate, /* gate */
b6e99746
MJ
1478 do_switchconv, /* execute */
1479 NULL, /* sub */
1480 NULL, /* next */
1481 0, /* static_pass_number */
a167a676 1482 TV_TREE_SWITCH_CONVERSION, /* tv_id */
b6e99746
MJ
1483 PROP_cfg | PROP_ssa, /* properties_required */
1484 0, /* properties_provided */
1485 0, /* properties_destroyed */
1486 0, /* todo_flags_start */
22c5fa5f 1487 TODO_update_ssa
531b10fc
SB
1488 | TODO_ggc_collect | TODO_verify_ssa
1489 | TODO_verify_stmts
1490 | TODO_verify_flow /* todo_flags_finish */
b6e99746
MJ
1491 }
1492};