]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-switch-conversion.c
Daily bump.
[thirdparty/gcc.git] / gcc / tree-switch-conversion.c
CommitLineData
531b10fc
SB
1/* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
b6e99746
MJ
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it
9under the terms of the GNU General Public License as published by the
10Free Software Foundation; either version 3, or (at your option) any
11later version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT
14ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not, write to the Free
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
22
531b10fc
SB
23/* This file handles the lowering of GIMPLE_SWITCH to an indexed
24 load, or a series of bit-test-and-branch expressions. */
25
26#include "config.h"
27#include "system.h"
28#include "coretypes.h"
29#include "tm.h"
30#include "line-map.h"
31#include "params.h"
32#include "flags.h"
33#include "tree.h"
34#include "basic-block.h"
35#include "tree-flow.h"
36#include "tree-flow-inline.h"
37#include "tree-ssa-operands.h"
38#include "tree-pass.h"
39#include "gimple-pretty-print.h"
7ee2468b
SB
40
41/* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
42 type in the GIMPLE type system that is language-independent? */
531b10fc
SB
43#include "langhooks.h"
44
45/* Need to include expr.h and optabs.h for lshift_cheap_p. */
46#include "expr.h"
47#include "optabs.h"
48\f
49/* Maximum number of case bit tests.
50 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
51 targetm.case_values_threshold(), or be its own param. */
52#define MAX_CASE_BIT_TESTS 3
53
54/* Split the basic block at the statement pointed to by GSIP, and insert
55 a branch to the target basic block of E_TRUE conditional on tree
56 expression COND.
57
58 It is assumed that there is already an edge from the to-be-split
59 basic block to E_TRUE->dest block. This edge is removed, and the
60 profile information on the edge is re-used for the new conditional
61 jump.
62
63 The CFG is updated. The dominator tree will not be valid after
64 this transformation, but the immediate dominators are updated if
65 UPDATE_DOMINATORS is true.
66
67 Returns the newly created basic block. */
68
69static basic_block
70hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
71 tree cond, edge e_true,
72 bool update_dominators)
73{
74 tree tmp;
75 gimple cond_stmt;
76 edge e_false;
77 basic_block new_bb, split_bb = gsi_bb (*gsip);
78 bool dominated_e_true = false;
79
80 gcc_assert (e_true->src == split_bb);
81
82 if (update_dominators
83 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
84 dominated_e_true = true;
85
86 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
87 /*before=*/true, GSI_SAME_STMT);
88 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
89 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
90
91 e_false = split_block (split_bb, cond_stmt);
92 new_bb = e_false->dest;
93 redirect_edge_pred (e_true, split_bb);
94
95 e_true->flags &= ~EDGE_FALLTHRU;
96 e_true->flags |= EDGE_TRUE_VALUE;
97
98 e_false->flags &= ~EDGE_FALLTHRU;
99 e_false->flags |= EDGE_FALSE_VALUE;
100 e_false->probability = REG_BR_PROB_BASE - e_true->probability;
101 e_false->count = split_bb->count - e_true->count;
102 new_bb->count = e_false->count;
103
104 if (update_dominators)
105 {
106 if (dominated_e_true)
107 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
108 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
109 }
110
111 return new_bb;
112}
113
114
115/* Determine whether "1 << x" is relatively cheap in word_mode. */
116/* FIXME: This is the function that we need rtl.h and optabs.h for.
117 This function (and similar RTL-related cost code in e.g. IVOPTS) should
118 be moved to some kind of interface file for GIMPLE/RTL interactions. */
119static bool
120lshift_cheap_p (void)
121{
122 /* FIXME: This should be made target dependent via this "this_target"
123 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
124 static bool init[2] = {false, false};
125 static bool cheap[2] = {true, true};
126 bool speed_p;
127
128 /* If the targer has no lshift in word_mode, the operation will most
129 probably not be cheap. ??? Does GCC even work for such targets? */
130 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
131 return false;
132
133 speed_p = optimize_insn_for_speed_p ();
134
135 if (!init[speed_p])
136 {
137 rtx reg = gen_raw_REG (word_mode, 10000);
138 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
139 speed_p);
140 cheap[speed_p] = cost < COSTS_N_INSNS (MAX_CASE_BIT_TESTS);
141 init[speed_p] = true;
142 }
143
144 return cheap[speed_p];
145}
146
147/* Return true if a switch should be expanded as a bit test.
148 RANGE is the difference between highest and lowest case.
149 UNIQ is number of unique case node targets, not counting the default case.
150 COUNT is the number of comparisons needed, not counting the default case. */
151
152static bool
153expand_switch_using_bit_tests_p (tree range,
154 unsigned int uniq,
155 unsigned int count)
156{
157 return (((uniq == 1 && count >= 3)
158 || (uniq == 2 && count >= 5)
159 || (uniq == 3 && count >= 6))
160 && lshift_cheap_p ()
161 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
162 && compare_tree_int (range, 0) > 0);
163}
164\f
165/* Implement switch statements with bit tests
166
167A GIMPLE switch statement can be expanded to a short sequence of bit-wise
168comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
169where CST and MINVAL are integer constants. This is better than a series
170of compare-and-banch insns in some cases, e.g. we can implement:
171
172 if ((x==4) || (x==6) || (x==9) || (x==11))
173
174as a single bit test:
175
176 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
177
178This transformation is only applied if the number of case targets is small,
34540577 179if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
531b10fc
SB
180performed in "word_mode".
181
182The following example shows the code the transformation generates:
183
184 int bar(int x)
185 {
186 switch (x)
187 {
188 case '0': case '1': case '2': case '3': case '4':
189 case '5': case '6': case '7': case '8': case '9':
190 case 'A': case 'B': case 'C': case 'D': case 'E':
191 case 'F':
192 return 1;
193 }
194 return 0;
195 }
196
197==>
198
199 bar (int x)
200 {
201 tmp1 = x - 48;
202 if (tmp1 > (70 - 48)) goto L2;
203 tmp2 = 1 << tmp1;
204 tmp3 = 0b11111100000001111111111;
205 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
206 L1:
207 return 1;
208 L2:
209 return 0;
210 }
211
212TODO: There are still some improvements to this transformation that could
213be implemented:
214
215* A narrower mode than word_mode could be used if that is cheaper, e.g.
216 for x86_64 where a narrower-mode shift may result in smaller code.
217
218* The compounded constant could be shifted rather than the one. The
219 test would be either on the sign bit or on the least significant bit,
220 depending on the direction of the shift. On some machines, the test
221 for the branch would be free if the bit to test is already set by the
222 shift operation.
223
224This transformation was contributed by Roger Sayle, see this e-mail:
225 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
226*/
227
228/* A case_bit_test represents a set of case nodes that may be
229 selected from using a bit-wise comparison. HI and LO hold
230 the integer to be tested against, TARGET_EDGE contains the
231 edge to the basic block to jump to upon success and BITS
232 counts the number of case nodes handled by this test,
233 typically the number of bits set in HI:LO. The LABEL field
234 is used to quickly identify all cases in this set without
235 looking at label_to_block for every case label. */
236
237struct case_bit_test
238{
239 HOST_WIDE_INT hi;
240 HOST_WIDE_INT lo;
241 edge target_edge;
242 tree label;
243 int bits;
244};
245
246/* Comparison function for qsort to order bit tests by decreasing
247 probability of execution. Our best guess comes from a measured
248 profile. If the profile counts are equal, break even on the
249 number of case nodes, i.e. the node with the most cases gets
250 tested first.
251
252 TODO: Actually this currently runs before a profile is available.
253 Therefore the case-as-bit-tests transformation should be done
254 later in the pass pipeline, or something along the lines of
255 "Efficient and effective branch reordering using profile data"
256 (Yang et. al., 2002) should be implemented (although, how good
257 is a paper is called "Efficient and effective ..." when the
258 latter is implied by the former, but oh well...). */
259
260static int
261case_bit_test_cmp (const void *p1, const void *p2)
262{
263 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
264 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
265
266 if (d2->target_edge->count != d1->target_edge->count)
267 return d2->target_edge->count - d1->target_edge->count;
268 if (d2->bits != d1->bits)
269 return d2->bits - d1->bits;
270
271 /* Stabilize the sort. */
272 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
273}
274
275/* Expand a switch statement by a short sequence of bit-wise
276 comparisons. "switch(x)" is effectively converted into
277 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
278 integer constants.
279
280 INDEX_EXPR is the value being switched on.
281
282 MINVAL is the lowest case value of in the case nodes,
283 and RANGE is highest value minus MINVAL. MINVAL and RANGE
284 are not guaranteed to be of the same type as INDEX_EXPR
285 (the gimplifier doesn't change the type of case label values,
286 and MINVAL and RANGE are derived from those values).
287
288 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
289 node targets. */
290
291static void
292emit_case_bit_tests (gimple swtch, tree index_expr,
293 tree minval, tree range)
294{
295 struct case_bit_test test[MAX_CASE_BIT_TESTS];
296 unsigned int i, j, k;
297 unsigned int count;
298
299 basic_block switch_bb = gimple_bb (swtch);
300 basic_block default_bb, new_default_bb, new_bb;
301 edge default_edge;
302 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
303
304 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
305
306 tree index_type = TREE_TYPE (index_expr);
307 tree unsigned_index_type = unsigned_type_for (index_type);
308 unsigned int branch_num = gimple_switch_num_labels (swtch);
309
310 gimple_stmt_iterator gsi;
311 gimple shift_stmt;
312
313 tree idx, tmp, csui;
314 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
315 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
316 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
317
318 memset (&test, 0, sizeof (test));
319
320 /* Get the edge for the default case. */
fd8d363e 321 tmp = gimple_switch_default_label (swtch);
531b10fc
SB
322 default_bb = label_to_block (CASE_LABEL (tmp));
323 default_edge = find_edge (switch_bb, default_bb);
324
325 /* Go through all case labels, and collect the case labels, profile
326 counts, and other information we need to build the branch tests. */
327 count = 0;
328 for (i = 1; i < branch_num; i++)
329 {
330 unsigned int lo, hi;
331 tree cs = gimple_switch_label (swtch, i);
332 tree label = CASE_LABEL (cs);
8166ff4d 333 edge e = find_edge (switch_bb, label_to_block (label));
531b10fc 334 for (k = 0; k < count; k++)
8166ff4d 335 if (e == test[k].target_edge)
531b10fc
SB
336 break;
337
338 if (k == count)
339 {
531b10fc
SB
340 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
341 test[k].hi = 0;
342 test[k].lo = 0;
343 test[k].target_edge = e;
344 test[k].label = label;
345 test[k].bits = 1;
346 count++;
347 }
348 else
349 test[k].bits++;
350
351 lo = tree_low_cst (int_const_binop (MINUS_EXPR,
352 CASE_LOW (cs), minval),
353 1);
354 if (CASE_HIGH (cs) == NULL_TREE)
355 hi = lo;
356 else
357 hi = tree_low_cst (int_const_binop (MINUS_EXPR,
358 CASE_HIGH (cs), minval),
359 1);
360
361 for (j = lo; j <= hi; j++)
362 if (j >= HOST_BITS_PER_WIDE_INT)
363 test[k].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
364 else
365 test[k].lo |= (HOST_WIDE_INT) 1 << j;
366 }
367
368 qsort (test, count, sizeof(*test), case_bit_test_cmp);
369
370 /* We generate two jumps to the default case label.
371 Split the default edge, so that we don't have to do any PHI node
372 updating. */
373 new_default_bb = split_edge (default_edge);
374
375 if (update_dom)
376 {
377 bbs_to_fix_dom = VEC_alloc (basic_block, heap, 10);
378 VEC_quick_push (basic_block, bbs_to_fix_dom, switch_bb);
379 VEC_quick_push (basic_block, bbs_to_fix_dom, default_bb);
380 VEC_quick_push (basic_block, bbs_to_fix_dom, new_default_bb);
381 }
382
383 /* Now build the test-and-branch code. */
384
385 gsi = gsi_last_bb (switch_bb);
386
d9e408de
TV
387 /* idx = (unsigned)x - minval. */
388 idx = fold_convert (unsigned_index_type, index_expr);
389 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
390 fold_convert (unsigned_index_type, minval));
531b10fc
SB
391 idx = force_gimple_operand_gsi (&gsi, idx,
392 /*simple=*/true, NULL_TREE,
393 /*before=*/true, GSI_SAME_STMT);
394
395 /* if (idx > range) goto default */
396 range = force_gimple_operand_gsi (&gsi,
397 fold_convert (unsigned_index_type, range),
398 /*simple=*/true, NULL_TREE,
399 /*before=*/true, GSI_SAME_STMT);
400 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
401 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
402 if (update_dom)
403 VEC_quick_push (basic_block, bbs_to_fix_dom, new_bb);
404 gcc_assert (gimple_bb (swtch) == new_bb);
405 gsi = gsi_last_bb (new_bb);
406
407 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
408 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
409 if (update_dom)
410 {
411 VEC (basic_block, heap) *dom_bbs;
412 basic_block dom_son;
413
414 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
415 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, dom_son)
416 {
417 edge e = find_edge (new_bb, dom_son);
418 if (e && single_pred_p (e->dest))
419 continue;
420 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
421 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dom_son);
422 }
423 VEC_free (basic_block, heap, dom_bbs);
424 }
425
426 /* csui = (1 << (word_mode) idx) */
83d5977e 427 csui = make_ssa_name (word_type_node, NULL);
531b10fc
SB
428 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
429 fold_convert (word_type_node, idx));
430 tmp = force_gimple_operand_gsi (&gsi, tmp,
431 /*simple=*/false, NULL_TREE,
432 /*before=*/true, GSI_SAME_STMT);
433 shift_stmt = gimple_build_assign (csui, tmp);
531b10fc
SB
434 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
435 update_stmt (shift_stmt);
436
437 /* for each unique set of cases:
438 if (const & csui) goto target */
439 for (k = 0; k < count; k++)
440 {
441 tmp = build_int_cst_wide (word_type_node, test[k].lo, test[k].hi);
442 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
443 tmp = force_gimple_operand_gsi (&gsi, tmp,
444 /*simple=*/true, NULL_TREE,
445 /*before=*/true, GSI_SAME_STMT);
446 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
447 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
448 update_dom);
449 if (update_dom)
450 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, new_bb);
451 gcc_assert (gimple_bb (swtch) == new_bb);
452 gsi = gsi_last_bb (new_bb);
453 }
454
455 /* We should have removed all edges now. */
456 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
457
458 /* If nothing matched, go to the default label. */
459 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
460
461 /* The GIMPLE_SWITCH is now redundant. */
462 gsi_remove (&gsi, true);
463
464 if (update_dom)
465 {
466 /* Fix up the dominator tree. */
467 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
468 VEC_free (basic_block, heap, bbs_to_fix_dom);
469 }
470}
471\f
b6e99746
MJ
472/*
473 Switch initialization conversion
474
475The following pass changes simple initializations of scalars in a switch
fade902a
SB
476statement into initializations from a static array. Obviously, the values
477must be constant and known at compile time and a default branch must be
b6e99746
MJ
478provided. For example, the following code:
479
480 int a,b;
481
482 switch (argc)
483 {
484 case 1:
485 case 2:
486 a_1 = 8;
487 b_1 = 6;
488 break;
489 case 3:
490 a_2 = 9;
491 b_2 = 5;
492 break;
493 case 12:
494 a_3 = 10;
495 b_3 = 4;
496 break;
497 default:
498 a_4 = 16;
499 b_4 = 1;
886cd84f 500 break;
b6e99746
MJ
501 }
502 a_5 = PHI <a_1, a_2, a_3, a_4>
503 b_5 = PHI <b_1, b_2, b_3, b_4>
504
505
506is changed into:
507
508 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
509 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
510 16, 16, 10};
511
512 if (((unsigned) argc) - 1 < 11)
513 {
514 a_6 = CSWTCH02[argc - 1];
515 b_6 = CSWTCH01[argc - 1];
516 }
517 else
518 {
519 a_7 = 16;
520 b_7 = 1;
521 }
886cd84f
SB
522 a_5 = PHI <a_6, a_7>
523 b_b = PHI <b_6, b_7>
b6e99746
MJ
524
525There are further constraints. Specifically, the range of values across all
526case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
531b10fc 527eight) times the number of the actual switch branches.
b6e99746 528
531b10fc
SB
529This transformation was contributed by Martin Jambor, see this e-mail:
530 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
b6e99746
MJ
531
532/* The main structure of the pass. */
533struct switch_conv_info
534{
886cd84f 535 /* The expression used to decide the switch branch. */
b6e99746
MJ
536 tree index_expr;
537
886cd84f
SB
538 /* The following integer constants store the minimum and maximum value
539 covered by the case labels. */
b6e99746 540 tree range_min;
886cd84f 541 tree range_max;
b6e99746 542
886cd84f
SB
543 /* The difference between the above two numbers. Stored here because it
544 is used in all the conversion heuristics, as well as for some of the
545 transformation, and it is expensive to re-compute it all the time. */
b6e99746
MJ
546 tree range_size;
547
886cd84f 548 /* Basic block that contains the actual GIMPLE_SWITCH. */
b6e99746
MJ
549 basic_block switch_bb;
550
886cd84f
SB
551 /* Basic block that is the target of the default case. */
552 basic_block default_bb;
553
554 /* The single successor block of all branches out of the GIMPLE_SWITCH,
555 if such a block exists. Otherwise NULL. */
b6e99746
MJ
556 basic_block final_bb;
557
886cd84f
SB
558 /* The probability of the default edge in the replaced switch. */
559 int default_prob;
560
561 /* The count of the default edge in the replaced switch. */
562 gcov_type default_count;
563
564 /* Combined count of all other (non-default) edges in the replaced switch. */
565 gcov_type other_count;
566
b6e99746
MJ
567 /* Number of phi nodes in the final bb (that we'll be replacing). */
568 int phi_count;
569
b1ae1681 570 /* Array of default values, in the same order as phi nodes. */
b6e99746
MJ
571 tree *default_values;
572
573 /* Constructors of new static arrays. */
574 VEC (constructor_elt, gc) **constructors;
575
576 /* Array of ssa names that are initialized with a value from a new static
577 array. */
578 tree *target_inbound_names;
579
580 /* Array of ssa names that are initialized with the default value if the
581 switch expression is out of range. */
582 tree *target_outbound_names;
583
b1ae1681
MJ
584 /* The first load statement that loads a temporary from a new static array.
585 */
726a989a 586 gimple arr_ref_first;
b6e99746
MJ
587
588 /* The last load statement that loads a temporary from a new static array. */
726a989a 589 gimple arr_ref_last;
b6e99746
MJ
590
591 /* String reason why the case wasn't a good candidate that is written to the
592 dump file, if there is one. */
593 const char *reason;
8e97bc2b
JJ
594
595 /* Parameters for expand_switch_using_bit_tests. Should be computed
596 the same way as in expand_case. */
886cd84f
SB
597 unsigned int uniq;
598 unsigned int count;
b6e99746
MJ
599};
600
886cd84f 601/* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
b6e99746 602
886cd84f
SB
603static void
604collect_switch_conv_info (gimple swtch, struct switch_conv_info *info)
b6e99746 605{
726a989a 606 unsigned int branch_num = gimple_switch_num_labels (swtch);
886cd84f
SB
607 tree min_case, max_case;
608 unsigned int count, i;
609 edge e, e_default;
610 edge_iterator ei;
611
612 memset (info, 0, sizeof (*info));
b6e99746
MJ
613
614 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
fd8d363e
SB
615 is a default label which is the first in the vector.
616 Collect the bits we can deduce from the CFG. */
886cd84f
SB
617 info->index_expr = gimple_switch_index (swtch);
618 info->switch_bb = gimple_bb (swtch);
619 info->default_bb =
fd8d363e 620 label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
886cd84f
SB
621 e_default = find_edge (info->switch_bb, info->default_bb);
622 info->default_prob = e_default->probability;
623 info->default_count = e_default->count;
624 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
625 if (e != e_default)
626 info->other_count += e->count;
b6e99746 627
886cd84f
SB
628 /* See if there is one common successor block for all branch
629 targets. If it exists, record it in FINAL_BB. */
630 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
631 {
632 if (! single_pred_p (e->dest))
633 {
634 info->final_bb = e->dest;
635 break;
636 }
637 }
638 if (info->final_bb)
639 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
640 {
641 if (e->dest == info->final_bb)
642 continue;
643
644 if (single_pred_p (e->dest)
645 && single_succ_p (e->dest)
646 && single_succ (e->dest) == info->final_bb)
647 continue;
648
649 info->final_bb = NULL;
650 break;
651 }
652
653 /* Get upper and lower bounds of case values, and the covered range. */
654 min_case = gimple_switch_label (swtch, 1);
726a989a 655 max_case = gimple_switch_label (swtch, branch_num - 1);
886cd84f
SB
656
657 info->range_min = CASE_LOW (min_case);
b6e99746 658 if (CASE_HIGH (max_case) != NULL_TREE)
886cd84f 659 info->range_max = CASE_HIGH (max_case);
b6e99746 660 else
886cd84f
SB
661 info->range_max = CASE_LOW (max_case);
662
663 info->range_size =
664 int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
b6e99746 665
886cd84f
SB
666 /* Get a count of the number of case labels. Single-valued case labels
667 simply count as one, but a case range counts double, since it may
668 require two compares if it gets lowered as a branching tree. */
669 count = 0;
670 for (i = 1; i < branch_num; i++)
671 {
672 tree elt = gimple_switch_label (swtch, i);
673 count++;
674 if (CASE_HIGH (elt)
675 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
676 count++;
677 }
678 info->count = count;
679
680 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
681 block. Assume a CFG cleanup would have already removed degenerate
682 switch statements, this allows us to just use EDGE_COUNT. */
683 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
684}
b6e99746 685
886cd84f
SB
686/* Checks whether the range given by individual case statements of the SWTCH
687 switch statement isn't too big and whether the number of branches actually
688 satisfies the size of the new array. */
b6e99746 689
886cd84f
SB
690static bool
691check_range (struct switch_conv_info *info)
692{
fade902a
SB
693 gcc_assert (info->range_size);
694 if (!host_integerp (info->range_size, 1))
b6e99746 695 {
fade902a 696 info->reason = "index range way too large or otherwise unusable";
b6e99746
MJ
697 return false;
698 }
699
fade902a 700 if ((unsigned HOST_WIDE_INT) tree_low_cst (info->range_size, 1)
886cd84f 701 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
b6e99746 702 {
fade902a 703 info->reason = "the maximum range-branch ratio exceeded";
b6e99746
MJ
704 return false;
705 }
706
707 return true;
708}
709
886cd84f 710/* Checks whether all but the FINAL_BB basic blocks are empty. */
b6e99746
MJ
711
712static bool
886cd84f 713check_all_empty_except_final (struct switch_conv_info *info)
b6e99746 714{
b6e99746 715 edge e;
886cd84f 716 edge_iterator ei;
b6e99746 717
886cd84f 718 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
b6e99746 719 {
886cd84f
SB
720 if (e->dest == info->final_bb)
721 continue;
b6e99746 722
886cd84f 723 if (!empty_block_p (e->dest))
b6e99746 724 {
fade902a 725 info->reason = "bad case - a non-final BB not empty";
b6e99746
MJ
726 return false;
727 }
b6e99746
MJ
728 }
729
730 return true;
731}
732
733/* This function checks whether all required values in phi nodes in final_bb
734 are constants. Required values are those that correspond to a basic block
735 which is a part of the examined switch statement. It returns true if the
736 phi nodes are OK, otherwise false. */
737
738static bool
fade902a 739check_final_bb (struct switch_conv_info *info)
b6e99746 740{
726a989a 741 gimple_stmt_iterator gsi;
b6e99746 742
fade902a
SB
743 info->phi_count = 0;
744 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 745 {
726a989a
RB
746 gimple phi = gsi_stmt (gsi);
747 unsigned int i;
b6e99746 748
fade902a 749 info->phi_count++;
b6e99746 750
726a989a 751 for (i = 0; i < gimple_phi_num_args (phi); i++)
b6e99746 752 {
726a989a 753 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
b6e99746 754
fade902a
SB
755 if (bb == info->switch_bb
756 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
b6e99746 757 {
f6e6e990
JJ
758 tree reloc, val;
759
760 val = gimple_phi_arg_def (phi, i);
761 if (!is_gimple_ip_invariant (val))
762 {
fade902a 763 info->reason = "non-invariant value from a case";
f6e6e990
JJ
764 return false; /* Non-invariant argument. */
765 }
766 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
767 if ((flag_pic && reloc != null_pointer_node)
768 || (!flag_pic && reloc == NULL_TREE))
769 {
770 if (reloc)
fade902a
SB
771 info->reason
772 = "value from a case would need runtime relocations";
f6e6e990 773 else
fade902a
SB
774 info->reason
775 = "value from a case is not a valid initializer";
f6e6e990
JJ
776 return false;
777 }
b6e99746
MJ
778 }
779 }
780 }
781
782 return true;
783}
784
785/* The following function allocates default_values, target_{in,out}_names and
786 constructors arrays. The last one is also populated with pointers to
787 vectors that will become constructors of new arrays. */
788
789static void
fade902a 790create_temp_arrays (struct switch_conv_info *info)
b6e99746
MJ
791{
792 int i;
793
fade902a
SB
794 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
795 info->constructors = XCNEWVEC (VEC (constructor_elt, gc) *, info->phi_count);
796 info->target_inbound_names = info->default_values + info->phi_count;
797 info->target_outbound_names = info->target_inbound_names + info->phi_count;
798 for (i = 0; i < info->phi_count; i++)
799 info->constructors[i]
800 = VEC_alloc (constructor_elt, gc, tree_low_cst (info->range_size, 1) + 1);
b6e99746
MJ
801}
802
803/* Free the arrays created by create_temp_arrays(). The vectors that are
804 created by that function are not freed here, however, because they have
805 already become constructors and must be preserved. */
806
807static void
fade902a 808free_temp_arrays (struct switch_conv_info *info)
b6e99746 809{
fade902a
SB
810 XDELETEVEC (info->constructors);
811 XDELETEVEC (info->default_values);
b6e99746
MJ
812}
813
814/* Populate the array of default values in the order of phi nodes.
815 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
816
817static void
fade902a 818gather_default_values (tree default_case, struct switch_conv_info *info)
b6e99746 819{
726a989a 820 gimple_stmt_iterator gsi;
b6e99746
MJ
821 basic_block bb = label_to_block (CASE_LABEL (default_case));
822 edge e;
726a989a 823 int i = 0;
b6e99746
MJ
824
825 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
826
fade902a
SB
827 if (bb == info->final_bb)
828 e = find_edge (info->switch_bb, bb);
b6e99746
MJ
829 else
830 e = single_succ_edge (bb);
831
fade902a 832 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 833 {
726a989a 834 gimple phi = gsi_stmt (gsi);
b6e99746
MJ
835 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
836 gcc_assert (val);
fade902a 837 info->default_values[i++] = val;
b6e99746
MJ
838 }
839}
840
841/* The following function populates the vectors in the constructors array with
842 future contents of the static arrays. The vectors are populated in the
843 order of phi nodes. SWTCH is the switch statement being converted. */
844
845static void
fade902a 846build_constructors (gimple swtch, struct switch_conv_info *info)
b6e99746 847{
726a989a 848 unsigned i, branch_num = gimple_switch_num_labels (swtch);
fade902a 849 tree pos = info->range_min;
b6e99746 850
726a989a 851 for (i = 1; i < branch_num; i++)
b6e99746 852 {
726a989a 853 tree cs = gimple_switch_label (swtch, i);
b6e99746
MJ
854 basic_block bb = label_to_block (CASE_LABEL (cs));
855 edge e;
726a989a
RB
856 tree high;
857 gimple_stmt_iterator gsi;
b6e99746
MJ
858 int j;
859
fade902a
SB
860 if (bb == info->final_bb)
861 e = find_edge (info->switch_bb, bb);
b6e99746
MJ
862 else
863 e = single_succ_edge (bb);
864 gcc_assert (e);
865
866 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
867 {
868 int k;
fade902a 869 for (k = 0; k < info->phi_count; k++)
b6e99746 870 {
f32682ca 871 constructor_elt elt;
b6e99746 872
f32682ca
DN
873 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
874 elt.value = info->default_values[k];
875 VEC_quick_push (constructor_elt, info->constructors[k], elt);
b6e99746
MJ
876 }
877
d35936ab 878 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
b6e99746 879 }
b1ae1681 880 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
b6e99746
MJ
881
882 j = 0;
883 if (CASE_HIGH (cs))
884 high = CASE_HIGH (cs);
885 else
b1ae1681 886 high = CASE_LOW (cs);
fade902a 887 for (gsi = gsi_start_phis (info->final_bb);
726a989a 888 !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 889 {
726a989a 890 gimple phi = gsi_stmt (gsi);
b6e99746 891 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
7f2a9982 892 tree low = CASE_LOW (cs);
b6e99746
MJ
893 pos = CASE_LOW (cs);
894
b8698a0f 895 do
b6e99746 896 {
f32682ca 897 constructor_elt elt;
b6e99746 898
f32682ca
DN
899 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
900 elt.value = val;
901 VEC_quick_push (constructor_elt, info->constructors[j], elt);
b6e99746 902
d35936ab 903 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
7156c8ab
MJ
904 } while (!tree_int_cst_lt (high, pos)
905 && tree_int_cst_lt (low, pos));
b6e99746
MJ
906 j++;
907 }
908 }
909}
910
7156c8ab
MJ
911/* If all values in the constructor vector are the same, return the value.
912 Otherwise return NULL_TREE. Not supposed to be called for empty
913 vectors. */
914
915static tree
916constructor_contains_same_values_p (VEC (constructor_elt, gc) *vec)
917{
8e97bc2b 918 unsigned int i;
7156c8ab 919 tree prev = NULL_TREE;
8e97bc2b 920 constructor_elt *elt;
7156c8ab 921
8e97bc2b 922 FOR_EACH_VEC_ELT (constructor_elt, vec, i, elt)
7156c8ab 923 {
7156c8ab
MJ
924 if (!prev)
925 prev = elt->value;
926 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
927 return NULL_TREE;
928 }
929 return prev;
930}
931
8e97bc2b
JJ
932/* Return type which should be used for array elements, either TYPE,
933 or for integral type some smaller integral type that can still hold
934 all the constants. */
935
936static tree
fade902a
SB
937array_value_type (gimple swtch, tree type, int num,
938 struct switch_conv_info *info)
8e97bc2b 939{
fade902a 940 unsigned int i, len = VEC_length (constructor_elt, info->constructors[num]);
8e97bc2b
JJ
941 constructor_elt *elt;
942 enum machine_mode mode;
943 int sign = 0;
944 tree smaller_type;
945
946 if (!INTEGRAL_TYPE_P (type))
947 return type;
948
949 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
950 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
951 return type;
952
953 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
954 return type;
955
fade902a 956 FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
8e97bc2b
JJ
957 {
958 double_int cst;
959
960 if (TREE_CODE (elt->value) != INTEGER_CST)
961 return type;
962
963 cst = TREE_INT_CST (elt->value);
964 while (1)
965 {
966 unsigned int prec = GET_MODE_BITSIZE (mode);
967 if (prec > HOST_BITS_PER_WIDE_INT)
968 return type;
969
27bcd47c 970 if (sign >= 0 && cst == cst.zext (prec))
8e97bc2b 971 {
27bcd47c 972 if (sign == 0 && cst == cst.sext (prec))
8e97bc2b
JJ
973 break;
974 sign = 1;
975 break;
976 }
27bcd47c 977 if (sign <= 0 && cst == cst.sext (prec))
8e97bc2b
JJ
978 {
979 sign = -1;
980 break;
981 }
982
983 if (sign == 1)
984 sign = 0;
985
986 mode = GET_MODE_WIDER_MODE (mode);
987 if (mode == VOIDmode
988 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
989 return type;
990 }
991 }
992
993 if (sign == 0)
994 sign = TYPE_UNSIGNED (type) ? 1 : -1;
995 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
996 if (GET_MODE_SIZE (TYPE_MODE (type))
997 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
998 return type;
999
1000 return smaller_type;
1001}
1002
b6e99746
MJ
1003/* Create an appropriate array type and declaration and assemble a static array
1004 variable. Also create a load statement that initializes the variable in
1005 question with a value from the static array. SWTCH is the switch statement
1006 being converted, NUM is the index to arrays of constructors, default values
1007 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1008 of the index of the new array, PHI is the phi node of the final BB that
1009 corresponds to the value that will be loaded from the created array. TIDX
7156c8ab
MJ
1010 is an ssa name of a temporary variable holding the index for loads from the
1011 new array. */
b6e99746
MJ
1012
1013static void
726a989a 1014build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
fade902a 1015 tree tidx, struct switch_conv_info *info)
b6e99746 1016{
7156c8ab 1017 tree name, cst;
726a989a 1018 gimple load;
7156c8ab 1019 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
c2255bc4 1020 location_t loc = gimple_location (swtch);
b6e99746 1021
fade902a 1022 gcc_assert (info->default_values[num]);
b6e99746 1023
070ecdfd 1024 name = copy_ssa_name (PHI_RESULT (phi), NULL);
fade902a 1025 info->target_inbound_names[num] = name;
b6e99746 1026
fade902a 1027 cst = constructor_contains_same_values_p (info->constructors[num]);
7156c8ab
MJ
1028 if (cst)
1029 load = gimple_build_assign (name, cst);
1030 else
1031 {
8e97bc2b 1032 tree array_type, ctor, decl, value_type, fetch, default_type;
7156c8ab 1033
fade902a
SB
1034 default_type = TREE_TYPE (info->default_values[num]);
1035 value_type = array_value_type (swtch, default_type, num, info);
7156c8ab 1036 array_type = build_array_type (value_type, arr_index_type);
8e97bc2b
JJ
1037 if (default_type != value_type)
1038 {
1039 unsigned int i;
1040 constructor_elt *elt;
1041
fade902a 1042 FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
8e97bc2b
JJ
1043 elt->value = fold_convert (value_type, elt->value);
1044 }
fade902a 1045 ctor = build_constructor (array_type, info->constructors[num]);
7156c8ab 1046 TREE_CONSTANT (ctor) = true;
5f7ae6b6 1047 TREE_STATIC (ctor) = true;
7156c8ab 1048
c2255bc4 1049 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
7156c8ab
MJ
1050 TREE_STATIC (decl) = 1;
1051 DECL_INITIAL (decl) = ctor;
1052
1053 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1054 DECL_ARTIFICIAL (decl) = 1;
1055 TREE_CONSTANT (decl) = 1;
2e3b4885 1056 TREE_READONLY (decl) = 1;
7156c8ab
MJ
1057 varpool_finalize_decl (decl);
1058
1059 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1060 NULL_TREE);
8e97bc2b
JJ
1061 if (default_type != value_type)
1062 {
1063 fetch = fold_convert (default_type, fetch);
1064 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1065 true, GSI_SAME_STMT);
1066 }
7156c8ab
MJ
1067 load = gimple_build_assign (name, fetch);
1068 }
b6e99746 1069
726a989a 1070 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
7156c8ab 1071 update_stmt (load);
fade902a 1072 info->arr_ref_last = load;
b6e99746
MJ
1073}
1074
1075/* Builds and initializes static arrays initialized with values gathered from
1076 the SWTCH switch statement. Also creates statements that load values from
1077 them. */
1078
1079static void
fade902a 1080build_arrays (gimple swtch, struct switch_conv_info *info)
b6e99746
MJ
1081{
1082 tree arr_index_type;
83d5977e 1083 tree tidx, sub, utype;
726a989a
RB
1084 gimple stmt;
1085 gimple_stmt_iterator gsi;
b6e99746 1086 int i;
db3927fb 1087 location_t loc = gimple_location (swtch);
b6e99746 1088
726a989a 1089 gsi = gsi_for_stmt (swtch);
04e78aa9 1090
edb9b69e 1091 /* Make sure we do not generate arithmetics in a subrange. */
fade902a 1092 utype = TREE_TYPE (info->index_expr);
edb9b69e
JJ
1093 if (TREE_TYPE (utype))
1094 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1095 else
1096 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1097
fade902a 1098 arr_index_type = build_index_type (info->range_size);
83d5977e 1099 tidx = make_ssa_name (utype, NULL);
edb9b69e 1100 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
fade902a
SB
1101 fold_convert_loc (loc, utype, info->index_expr),
1102 fold_convert_loc (loc, utype, info->range_min));
fae1034e 1103 sub = force_gimple_operand_gsi (&gsi, sub,
726a989a
RB
1104 false, NULL, true, GSI_SAME_STMT);
1105 stmt = gimple_build_assign (tidx, sub);
b6e99746 1106
726a989a 1107 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
7156c8ab 1108 update_stmt (stmt);
fade902a 1109 info->arr_ref_first = stmt;
b6e99746 1110
fade902a 1111 for (gsi = gsi_start_phis (info->final_bb), i = 0;
726a989a 1112 !gsi_end_p (gsi); gsi_next (&gsi), i++)
fade902a 1113 build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info);
b6e99746
MJ
1114}
1115
1116/* Generates and appropriately inserts loads of default values at the position
1117 given by BSI. Returns the last inserted statement. */
1118
726a989a 1119static gimple
fade902a 1120gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
b6e99746
MJ
1121{
1122 int i;
726a989a 1123 gimple assign = NULL;
b6e99746 1124
fade902a 1125 for (i = 0; i < info->phi_count; i++)
b6e99746 1126 {
070ecdfd 1127 tree name = copy_ssa_name (info->target_inbound_names[i], NULL);
fade902a
SB
1128 info->target_outbound_names[i] = name;
1129 assign = gimple_build_assign (name, info->default_values[i]);
726a989a 1130 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
7156c8ab 1131 update_stmt (assign);
b6e99746
MJ
1132 }
1133 return assign;
1134}
1135
1136/* Deletes the unused bbs and edges that now contain the switch statement and
1137 its empty branch bbs. BBD is the now dead BB containing the original switch
1138 statement, FINAL is the last BB of the converted switch statement (in terms
1139 of succession). */
1140
1141static void
1142prune_bbs (basic_block bbd, basic_block final)
1143{
1144 edge_iterator ei;
1145 edge e;
1146
1147 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1148 {
1149 basic_block bb;
1150 bb = e->dest;
1151 remove_edge (e);
1152 if (bb != final)
1153 delete_basic_block (bb);
1154 }
1155 delete_basic_block (bbd);
1156}
1157
1158/* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1159 from the basic block loading values from an array and E2F from the basic
1160 block loading default values. BBF is the last switch basic block (see the
1161 bbf description in the comment below). */
1162
1163static void
fade902a
SB
1164fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1165 struct switch_conv_info *info)
b6e99746 1166{
726a989a 1167 gimple_stmt_iterator gsi;
b6e99746
MJ
1168 int i;
1169
726a989a
RB
1170 for (gsi = gsi_start_phis (bbf), i = 0;
1171 !gsi_end_p (gsi); gsi_next (&gsi), i++)
b6e99746 1172 {
726a989a 1173 gimple phi = gsi_stmt (gsi);
9e227d60
DC
1174 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1175 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
b6e99746 1176 }
b6e99746
MJ
1177}
1178
1179/* Creates a check whether the switch expression value actually falls into the
1180 range given by all the cases. If it does not, the temporaries are loaded
1181 with default values instead. SWTCH is the switch statement being converted.
1182
1183 bb0 is the bb with the switch statement, however, we'll end it with a
1184 condition instead.
1185
1186 bb1 is the bb to be used when the range check went ok. It is derived from
1187 the switch BB
1188
1189 bb2 is the bb taken when the expression evaluated outside of the range
1190 covered by the created arrays. It is populated by loads of default
1191 values.
1192
1193 bbF is a fall through for both bb1 and bb2 and contains exactly what
1194 originally followed the switch statement.
1195
1196 bbD contains the switch statement (in the end). It is unreachable but we
1197 still need to strip off its edges.
1198*/
1199
1200static void
fade902a 1201gen_inbound_check (gimple swtch, struct switch_conv_info *info)
b6e99746 1202{
c2255bc4
AH
1203 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1204 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1205 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
726a989a 1206 gimple label1, label2, label3;
edb9b69e 1207 tree utype, tidx;
b6e99746
MJ
1208 tree bound;
1209
726a989a 1210 gimple cond_stmt;
b6e99746 1211
726a989a
RB
1212 gimple last_assign;
1213 gimple_stmt_iterator gsi;
b6e99746
MJ
1214 basic_block bb0, bb1, bb2, bbf, bbd;
1215 edge e01, e02, e21, e1d, e1f, e2f;
db3927fb 1216 location_t loc = gimple_location (swtch);
b6e99746 1217
fade902a 1218 gcc_assert (info->default_values);
6ab1ab14 1219
726a989a 1220 bb0 = gimple_bb (swtch);
b6e99746 1221
fade902a 1222 tidx = gimple_assign_lhs (info->arr_ref_first);
edb9b69e 1223 utype = TREE_TYPE (tidx);
145544ab 1224
b6e99746 1225 /* (end of) block 0 */
fade902a 1226 gsi = gsi_for_stmt (info->arr_ref_first);
edb9b69e 1227 gsi_next (&gsi);
b6e99746 1228
fade902a 1229 bound = fold_convert_loc (loc, utype, info->range_size);
edb9b69e 1230 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
726a989a 1231 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
7156c8ab 1232 update_stmt (cond_stmt);
b6e99746
MJ
1233
1234 /* block 2 */
726a989a
RB
1235 label2 = gimple_build_label (label_decl2);
1236 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
fade902a 1237 last_assign = gen_def_assigns (&gsi, info);
b6e99746
MJ
1238
1239 /* block 1 */
726a989a
RB
1240 label1 = gimple_build_label (label_decl1);
1241 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
b6e99746
MJ
1242
1243 /* block F */
fade902a 1244 gsi = gsi_start_bb (info->final_bb);
726a989a
RB
1245 label3 = gimple_build_label (label_decl3);
1246 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
b6e99746
MJ
1247
1248 /* cfg fix */
726a989a 1249 e02 = split_block (bb0, cond_stmt);
b6e99746
MJ
1250 bb2 = e02->dest;
1251
1252 e21 = split_block (bb2, last_assign);
1253 bb1 = e21->dest;
1254 remove_edge (e21);
1255
fade902a 1256 e1d = split_block (bb1, info->arr_ref_last);
b6e99746
MJ
1257 bbd = e1d->dest;
1258 remove_edge (e1d);
1259
1260 /* flags and profiles of the edge for in-range values */
1261 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
fade902a
SB
1262 e01->probability = REG_BR_PROB_BASE - info->default_prob;
1263 e01->count = info->other_count;
b6e99746
MJ
1264
1265 /* flags and profiles of the edge taking care of out-of-range values */
1266 e02->flags &= ~EDGE_FALLTHRU;
1267 e02->flags |= EDGE_FALSE_VALUE;
fade902a
SB
1268 e02->probability = info->default_prob;
1269 e02->count = info->default_count;
b6e99746 1270
fade902a 1271 bbf = info->final_bb;
b6e99746
MJ
1272
1273 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1274 e1f->probability = REG_BR_PROB_BASE;
fade902a 1275 e1f->count = info->other_count;
b6e99746
MJ
1276
1277 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1278 e2f->probability = REG_BR_PROB_BASE;
fade902a 1279 e2f->count = info->default_count;
b6e99746
MJ
1280
1281 /* frequencies of the new BBs */
1282 bb1->frequency = EDGE_FREQUENCY (e01);
1283 bb2->frequency = EDGE_FREQUENCY (e02);
1284 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1285
6ab1ab14
SB
1286 /* Tidy blocks that have become unreachable. */
1287 prune_bbs (bbd, info->final_bb);
b6e99746 1288
6ab1ab14 1289 /* Fixup the PHI nodes in bbF. */
fade902a 1290 fix_phi_nodes (e1f, e2f, bbf, info);
b6e99746 1291
6ab1ab14
SB
1292 /* Fix the dominator tree, if it is available. */
1293 if (dom_info_available_p (CDI_DOMINATORS))
1294 {
1295 VEC (basic_block, heap) *bbs_to_fix_dom;
1296
1297 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1298 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
531b10fc 1299 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
6ab1ab14
SB
1300 /* If bbD was the immediate dominator ... */
1301 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1302
1303 bbs_to_fix_dom = VEC_alloc (basic_block, heap, 4);
1304 VEC_quick_push (basic_block, bbs_to_fix_dom, bb0);
1305 VEC_quick_push (basic_block, bbs_to_fix_dom, bb1);
1306 VEC_quick_push (basic_block, bbs_to_fix_dom, bb2);
1307 VEC_quick_push (basic_block, bbs_to_fix_dom, bbf);
1308
1309 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1310 VEC_free (basic_block, heap, bbs_to_fix_dom);
1311 }
b6e99746
MJ
1312}
1313
1314/* The following function is invoked on every switch statement (the current one
1315 is given in SWTCH) and runs the individual phases of switch conversion on it
fade902a
SB
1316 one after another until one fails or the conversion is completed.
1317 Returns NULL on success, or a pointer to a string with the reason why the
1318 conversion failed. */
b6e99746 1319
fade902a 1320static const char *
726a989a 1321process_switch (gimple swtch)
b6e99746 1322{
fade902a 1323 struct switch_conv_info info;
b6e99746 1324
238065a7
SB
1325 /* Group case labels so that we get the right results from the heuristics
1326 that decide on the code generation approach for this switch. */
1327 group_case_labels_stmt (swtch);
1328
1329 /* If this switch is now a degenerate case with only a default label,
1330 there is nothing left for us to do. */
1331 if (gimple_switch_num_labels (swtch) < 2)
1332 return "switch is a degenerate case";
886cd84f
SB
1333
1334 collect_switch_conv_info (swtch, &info);
1335
1336 /* No error markers should reach here (they should be filtered out
1337 during gimplification). */
1338 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1339
531b10fc
SB
1340 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1341 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
886cd84f 1342
531b10fc 1343 if (info.uniq <= MAX_CASE_BIT_TESTS)
886cd84f 1344 {
531b10fc 1345 if (expand_switch_using_bit_tests_p (info.range_size,
886cd84f 1346 info.uniq, info.count))
531b10fc
SB
1347 {
1348 if (dump_file)
1349 fputs (" expanding as bit test is preferable\n", dump_file);
1350 emit_case_bit_tests (swtch, info.index_expr,
1351 info.range_min, info.range_size);
1352 return NULL;
1353 }
1354
1355 if (info.uniq <= 2)
1356 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1357 return " expanding as jumps is preferable";
886cd84f 1358 }
b6e99746 1359
531b10fc
SB
1360 /* If there is no common successor, we cannot do the transformation. */
1361 if (! info.final_bb)
1362 return "no common successor to all case label target blocks found";
1363
b6e99746 1364 /* Check the case label values are within reasonable range: */
886cd84f 1365 if (!check_range (&info))
fade902a
SB
1366 {
1367 gcc_assert (info.reason);
1368 return info.reason;
1369 }
b6e99746
MJ
1370
1371 /* For all the cases, see whether they are empty, the assignments they
1372 represent constant and so on... */
886cd84f 1373 if (! check_all_empty_except_final (&info))
8e97bc2b 1374 {
886cd84f
SB
1375 gcc_assert (info.reason);
1376 return info.reason;
8e97bc2b 1377 }
fade902a
SB
1378 if (!check_final_bb (&info))
1379 {
1380 gcc_assert (info.reason);
1381 return info.reason;
1382 }
b6e99746
MJ
1383
1384 /* At this point all checks have passed and we can proceed with the
1385 transformation. */
1386
fade902a 1387 create_temp_arrays (&info);
fd8d363e 1388 gather_default_values (gimple_switch_default_label (swtch), &info);
fade902a 1389 build_constructors (swtch, &info);
b6e99746 1390
fade902a
SB
1391 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1392 gen_inbound_check (swtch, &info); /* Build the bounds check. */
b6e99746
MJ
1393
1394 /* Cleanup: */
fade902a
SB
1395 free_temp_arrays (&info);
1396 return NULL;
b6e99746
MJ
1397}
1398
1399/* The main function of the pass scans statements for switches and invokes
1400 process_switch on them. */
1401
1402static unsigned int
1403do_switchconv (void)
1404{
1405 basic_block bb;
1406
1407 FOR_EACH_BB (bb)
1408 {
fade902a 1409 const char *failure_reason;
726a989a
RB
1410 gimple stmt = last_stmt (bb);
1411 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
b6e99746 1412 {
b6e99746
MJ
1413 if (dump_file)
1414 {
726a989a
RB
1415 expanded_location loc = expand_location (gimple_location (stmt));
1416
b6e99746
MJ
1417 fprintf (dump_file, "beginning to process the following "
1418 "SWITCH statement (%s:%d) : ------- \n",
1419 loc.file, loc.line);
726a989a 1420 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
edb30094 1421 putc ('\n', dump_file);
b6e99746
MJ
1422 }
1423
fade902a
SB
1424 failure_reason = process_switch (stmt);
1425 if (! failure_reason)
b6e99746
MJ
1426 {
1427 if (dump_file)
1428 {
edb30094
UB
1429 fputs ("Switch converted\n", dump_file);
1430 fputs ("--------------------------------\n", dump_file);
b6e99746 1431 }
531b10fc
SB
1432
1433 /* Make no effort to update the post-dominator tree. It is actually not
1434 that hard for the transformations we have performed, but it is not
1435 supported by iterate_fix_dominators. */
1436 free_dominance_info (CDI_POST_DOMINATORS);
b6e99746
MJ
1437 }
1438 else
1439 {
1440 if (dump_file)
1441 {
edb30094 1442 fputs ("Bailing out - ", dump_file);
fade902a
SB
1443 fputs (failure_reason, dump_file);
1444 fputs ("\n--------------------------------\n", dump_file);
b6e99746
MJ
1445 }
1446 }
1447 }
1448 }
1449
1450 return 0;
1451}
1452
1453/* The pass gate. */
1454
1455static bool
1456switchconv_gate (void)
1457{
1458 return flag_tree_switch_conversion != 0;
1459}
1460
1461struct gimple_opt_pass pass_convert_switch =
1462{
1463 {
1464 GIMPLE_PASS,
1465 "switchconv", /* name */
2b4e6bf1 1466 OPTGROUP_NONE, /* optinfo_flags */
b1ae1681 1467 switchconv_gate, /* gate */
b6e99746
MJ
1468 do_switchconv, /* execute */
1469 NULL, /* sub */
1470 NULL, /* next */
1471 0, /* static_pass_number */
a167a676 1472 TV_TREE_SWITCH_CONVERSION, /* tv_id */
b6e99746
MJ
1473 PROP_cfg | PROP_ssa, /* properties_required */
1474 0, /* properties_provided */
1475 0, /* properties_destroyed */
1476 0, /* todo_flags_start */
22c5fa5f 1477 TODO_update_ssa
531b10fc
SB
1478 | TODO_ggc_collect | TODO_verify_ssa
1479 | TODO_verify_stmts
1480 | TODO_verify_flow /* todo_flags_finish */
b6e99746
MJ
1481 }
1482};