]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-switch-conversion.c
Use cxx_printable_name for __PRETTY_FUNCTION__ in cp_fname_init.
[thirdparty/gcc.git] / gcc / tree-switch-conversion.c
CommitLineData
531b10fc
SB
1/* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
a5544970 3 Copyright (C) 2006-2019 Free Software Foundation, Inc.
b6e99746
MJ
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by the
9Free Software Foundation; either version 3, or (at your option) any
10later version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT
13ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not, write to the Free
19Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2002110-1301, USA. */
21
531b10fc
SB
22/* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
24
25#include "config.h"
26#include "system.h"
27#include "coretypes.h"
c7131fb2 28#include "backend.h"
957060b5
AM
29#include "insn-codes.h"
30#include "rtl.h"
c7131fb2
AM
31#include "tree.h"
32#include "gimple.h"
957060b5
AM
33#include "cfghooks.h"
34#include "tree-pass.h"
c7131fb2 35#include "ssa.h"
957060b5
AM
36#include "optabs-tree.h"
37#include "cgraph.h"
38#include "gimple-pretty-print.h"
531b10fc 39#include "params.h"
40e23961 40#include "fold-const.h"
d8a2d370
DN
41#include "varasm.h"
42#include "stor-layout.h"
60393bbc 43#include "cfganal.h"
45b0be94 44#include "gimplify.h"
5be5c238 45#include "gimple-iterator.h"
18f429e2 46#include "gimplify-me.h"
767d4551 47#include "gimple-fold.h"
442b4905 48#include "tree-cfg.h"
a9e0d843 49#include "cfgloop.h"
9dc3d6a9
ML
50#include "alloc-pool.h"
51#include "target.h"
52#include "tree-into-ssa.h"
46dbeb40 53#include "omp-general.h"
7ee2468b
SB
54
55/* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
56 type in the GIMPLE type system that is language-independent? */
531b10fc
SB
57#include "langhooks.h"
58
789410e4 59#include "tree-switch-conversion.h"
531b10fc 60\f
789410e4 61using namespace tree_switch_conversion;
531b10fc 62
789410e4 63/* Constructor. */
531b10fc 64
789410e4
ML
65switch_conversion::switch_conversion (): m_final_bb (NULL), m_other_count (),
66 m_constructors (NULL), m_default_values (NULL),
67 m_arr_ref_first (NULL), m_arr_ref_last (NULL),
68 m_reason (NULL), m_default_case_nonstandard (false), m_cfg_altered (false)
531b10fc 69{
531b10fc 70}
b6e99746 71
789410e4 72/* Collection information about SWTCH statement. */
886cd84f 73
789410e4
ML
74void
75switch_conversion::collect (gswitch *swtch)
b6e99746 76{
726a989a 77 unsigned int branch_num = gimple_switch_num_labels (swtch);
886cd84f 78 tree min_case, max_case;
789410e4 79 unsigned int i;
18bfe940 80 edge e, e_default, e_first;
886cd84f
SB
81 edge_iterator ei;
82
789410e4 83 m_switch = swtch;
b6e99746
MJ
84
85 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
fd8d363e
SB
86 is a default label which is the first in the vector.
87 Collect the bits we can deduce from the CFG. */
789410e4
ML
88 m_index_expr = gimple_switch_index (swtch);
89 m_switch_bb = gimple_bb (swtch);
61ff5d6f
ML
90 e_default = gimple_switch_default_edge (cfun, swtch);
91 m_default_bb = e_default->dest;
789410e4
ML
92 m_default_prob = e_default->probability;
93 m_default_count = e_default->count ();
94 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
886cd84f 95 if (e != e_default)
789410e4 96 m_other_count += e->count ();
b6e99746 97
18bfe940
JJ
98 /* Get upper and lower bounds of case values, and the covered range. */
99 min_case = gimple_switch_label (swtch, 1);
100 max_case = gimple_switch_label (swtch, branch_num - 1);
101
789410e4 102 m_range_min = CASE_LOW (min_case);
18bfe940 103 if (CASE_HIGH (max_case) != NULL_TREE)
789410e4 104 m_range_max = CASE_HIGH (max_case);
18bfe940 105 else
789410e4 106 m_range_max = CASE_LOW (max_case);
18bfe940 107
789410e4
ML
108 m_contiguous_range = true;
109 tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : m_range_min;
18bfe940
JJ
110 for (i = 2; i < branch_num; i++)
111 {
112 tree elt = gimple_switch_label (swtch, i);
8e6cdc90 113 if (wi::to_wide (last) + 1 != wi::to_wide (CASE_LOW (elt)))
18bfe940 114 {
789410e4 115 m_contiguous_range = false;
18bfe940
JJ
116 break;
117 }
118 last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt);
119 }
120
789410e4 121 if (m_contiguous_range)
61ff5d6f 122 e_first = gimple_switch_edge (cfun, swtch, 1);
18bfe940 123 else
61ff5d6f 124 e_first = e_default;
18bfe940 125
886cd84f 126 /* See if there is one common successor block for all branch
866f20d6 127 targets. If it exists, record it in FINAL_BB.
18bfe940
JJ
128 Start with the destination of the first non-default case
129 if the range is contiguous and default case otherwise as
130 guess or its destination in case it is a forwarder block. */
131 if (! single_pred_p (e_first->dest))
789410e4 132 m_final_bb = e_first->dest;
18bfe940
JJ
133 else if (single_succ_p (e_first->dest)
134 && ! single_pred_p (single_succ (e_first->dest)))
789410e4 135 m_final_bb = single_succ (e_first->dest);
866f20d6 136 /* Require that all switch destinations are either that common
18bfe940
JJ
137 FINAL_BB or a forwarder to it, except for the default
138 case if contiguous range. */
789410e4
ML
139 if (m_final_bb)
140 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
886cd84f 141 {
789410e4 142 if (e->dest == m_final_bb)
886cd84f
SB
143 continue;
144
145 if (single_pred_p (e->dest)
146 && single_succ_p (e->dest)
789410e4 147 && single_succ (e->dest) == m_final_bb)
886cd84f
SB
148 continue;
149
789410e4 150 if (e == e_default && m_contiguous_range)
18bfe940 151 {
789410e4 152 m_default_case_nonstandard = true;
18bfe940
JJ
153 continue;
154 }
155
789410e4 156 m_final_bb = NULL;
886cd84f
SB
157 break;
158 }
159
789410e4
ML
160 m_range_size
161 = int_const_binop (MINUS_EXPR, m_range_max, m_range_min);
b6e99746 162
886cd84f
SB
163 /* Get a count of the number of case labels. Single-valued case labels
164 simply count as one, but a case range counts double, since it may
165 require two compares if it gets lowered as a branching tree. */
789410e4 166 m_count = 0;
886cd84f
SB
167 for (i = 1; i < branch_num; i++)
168 {
169 tree elt = gimple_switch_label (swtch, i);
789410e4 170 m_count++;
886cd84f
SB
171 if (CASE_HIGH (elt)
172 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
789410e4 173 m_count++;
886cd84f 174 }
dc223ad4
ML
175
176 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
177 block. Assume a CFG cleanup would have already removed degenerate
178 switch statements, this allows us to just use EDGE_COUNT. */
179 m_uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
886cd84f 180}
b6e99746 181
789410e4 182/* Checks whether the range given by individual case statements of the switch
886cd84f
SB
183 switch statement isn't too big and whether the number of branches actually
184 satisfies the size of the new array. */
b6e99746 185
789410e4
ML
186bool
187switch_conversion::check_range ()
886cd84f 188{
789410e4
ML
189 gcc_assert (m_range_size);
190 if (!tree_fits_uhwi_p (m_range_size))
b6e99746 191 {
789410e4 192 m_reason = "index range way too large or otherwise unusable";
b6e99746
MJ
193 return false;
194 }
195
789410e4
ML
196 if (tree_to_uhwi (m_range_size)
197 > ((unsigned) m_count * SWITCH_CONVERSION_BRANCH_RATIO))
b6e99746 198 {
789410e4 199 m_reason = "the maximum range-branch ratio exceeded";
b6e99746
MJ
200 return false;
201 }
202
203 return true;
204}
205
789410e4 206/* Checks whether all but the final BB basic blocks are empty. */
b6e99746 207
789410e4
ML
208bool
209switch_conversion::check_all_empty_except_final ()
b6e99746 210{
789410e4 211 edge e, e_default = find_edge (m_switch_bb, m_default_bb);
886cd84f 212 edge_iterator ei;
b6e99746 213
789410e4 214 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
b6e99746 215 {
789410e4 216 if (e->dest == m_final_bb)
886cd84f 217 continue;
b6e99746 218
886cd84f 219 if (!empty_block_p (e->dest))
b6e99746 220 {
789410e4 221 if (m_contiguous_range && e == e_default)
18bfe940 222 {
789410e4 223 m_default_case_nonstandard = true;
18bfe940
JJ
224 continue;
225 }
226
789410e4 227 m_reason = "bad case - a non-final BB not empty";
b6e99746
MJ
228 return false;
229 }
b6e99746
MJ
230 }
231
232 return true;
233}
234
235/* This function checks whether all required values in phi nodes in final_bb
236 are constants. Required values are those that correspond to a basic block
237 which is a part of the examined switch statement. It returns true if the
238 phi nodes are OK, otherwise false. */
239
789410e4
ML
240bool
241switch_conversion::check_final_bb ()
b6e99746 242{
538dd0b7 243 gphi_iterator gsi;
b6e99746 244
789410e4
ML
245 m_phi_count = 0;
246 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 247 {
538dd0b7 248 gphi *phi = gsi.phi ();
726a989a 249 unsigned int i;
b6e99746 250
18bfe940
JJ
251 if (virtual_operand_p (gimple_phi_result (phi)))
252 continue;
253
789410e4 254 m_phi_count++;
b6e99746 255
726a989a 256 for (i = 0; i < gimple_phi_num_args (phi); i++)
b6e99746 257 {
726a989a 258 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
b6e99746 259
789410e4 260 if (bb == m_switch_bb
18bfe940 261 || (single_pred_p (bb)
789410e4
ML
262 && single_pred (bb) == m_switch_bb
263 && (!m_default_case_nonstandard
18bfe940 264 || empty_block_p (bb))))
b6e99746 265 {
f6e6e990 266 tree reloc, val;
18bfe940 267 const char *reason = NULL;
f6e6e990
JJ
268
269 val = gimple_phi_arg_def (phi, i);
270 if (!is_gimple_ip_invariant (val))
18bfe940
JJ
271 reason = "non-invariant value from a case";
272 else
f6e6e990 273 {
18bfe940
JJ
274 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
275 if ((flag_pic && reloc != null_pointer_node)
276 || (!flag_pic && reloc == NULL_TREE))
277 {
278 if (reloc)
279 reason
280 = "value from a case would need runtime relocations";
281 else
282 reason
283 = "value from a case is not a valid initializer";
284 }
f6e6e990 285 }
18bfe940 286 if (reason)
f6e6e990 287 {
18bfe940
JJ
288 /* For contiguous range, we can allow non-constant
289 or one that needs relocation, as long as it is
290 only reachable from the default case. */
789410e4
ML
291 if (bb == m_switch_bb)
292 bb = m_final_bb;
293 if (!m_contiguous_range || bb != m_default_bb)
18bfe940 294 {
789410e4 295 m_reason = reason;
18bfe940
JJ
296 return false;
297 }
298
789410e4 299 unsigned int branch_num = gimple_switch_num_labels (m_switch);
18bfe940
JJ
300 for (unsigned int i = 1; i < branch_num; i++)
301 {
61ff5d6f 302 if (gimple_switch_label_bb (cfun, m_switch, i) == bb)
18bfe940 303 {
789410e4 304 m_reason = reason;
18bfe940
JJ
305 return false;
306 }
307 }
789410e4 308 m_default_case_nonstandard = true;
f6e6e990 309 }
b6e99746
MJ
310 }
311 }
312 }
313
314 return true;
315}
316
317/* The following function allocates default_values, target_{in,out}_names and
318 constructors arrays. The last one is also populated with pointers to
319 vectors that will become constructors of new arrays. */
320
789410e4
ML
321void
322switch_conversion::create_temp_arrays ()
b6e99746
MJ
323{
324 int i;
325
789410e4 326 m_default_values = XCNEWVEC (tree, m_phi_count * 3);
9771b263
DN
327 /* ??? Macros do not support multi argument templates in their
328 argument list. We create a typedef to work around that problem. */
329 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
789410e4
ML
330 m_constructors = XCNEWVEC (vec_constructor_elt_gc, m_phi_count);
331 m_target_inbound_names = m_default_values + m_phi_count;
332 m_target_outbound_names = m_target_inbound_names + m_phi_count;
333 for (i = 0; i < m_phi_count; i++)
334 vec_alloc (m_constructors[i], tree_to_uhwi (m_range_size) + 1);
b6e99746
MJ
335}
336
337/* Populate the array of default values in the order of phi nodes.
18bfe940
JJ
338 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
339 if the range is non-contiguous or the default case has standard
340 structure, otherwise it is the first non-default case instead. */
b6e99746 341
789410e4
ML
342void
343switch_conversion::gather_default_values (tree default_case)
b6e99746 344{
538dd0b7 345 gphi_iterator gsi;
61ff5d6f 346 basic_block bb = label_to_block (cfun, CASE_LABEL (default_case));
b6e99746 347 edge e;
726a989a 348 int i = 0;
b6e99746 349
18bfe940 350 gcc_assert (CASE_LOW (default_case) == NULL_TREE
789410e4 351 || m_default_case_nonstandard);
b6e99746 352
789410e4
ML
353 if (bb == m_final_bb)
354 e = find_edge (m_switch_bb, bb);
b6e99746
MJ
355 else
356 e = single_succ_edge (bb);
357
789410e4 358 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 359 {
538dd0b7 360 gphi *phi = gsi.phi ();
18bfe940
JJ
361 if (virtual_operand_p (gimple_phi_result (phi)))
362 continue;
b6e99746
MJ
363 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
364 gcc_assert (val);
789410e4 365 m_default_values[i++] = val;
b6e99746
MJ
366 }
367}
368
369/* The following function populates the vectors in the constructors array with
370 future contents of the static arrays. The vectors are populated in the
789410e4 371 order of phi nodes. */
b6e99746 372
789410e4
ML
373void
374switch_conversion::build_constructors ()
b6e99746 375{
789410e4
ML
376 unsigned i, branch_num = gimple_switch_num_labels (m_switch);
377 tree pos = m_range_min;
18bfe940 378 tree pos_one = build_int_cst (TREE_TYPE (pos), 1);
b6e99746 379
726a989a 380 for (i = 1; i < branch_num; i++)
b6e99746 381 {
789410e4 382 tree cs = gimple_switch_label (m_switch, i);
61ff5d6f 383 basic_block bb = label_to_block (cfun, CASE_LABEL (cs));
b6e99746 384 edge e;
726a989a 385 tree high;
538dd0b7 386 gphi_iterator gsi;
b6e99746
MJ
387 int j;
388
789410e4
ML
389 if (bb == m_final_bb)
390 e = find_edge (m_switch_bb, bb);
b6e99746
MJ
391 else
392 e = single_succ_edge (bb);
393 gcc_assert (e);
394
395 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
396 {
397 int k;
789410e4 398 for (k = 0; k < m_phi_count; k++)
b6e99746 399 {
f32682ca 400 constructor_elt elt;
b6e99746 401
789410e4 402 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
d1f98542 403 elt.value
789410e4
ML
404 = unshare_expr_without_location (m_default_values[k]);
405 m_constructors[k]->quick_push (elt);
b6e99746
MJ
406 }
407
18bfe940 408 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
b6e99746 409 }
b1ae1681 410 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
b6e99746
MJ
411
412 j = 0;
413 if (CASE_HIGH (cs))
414 high = CASE_HIGH (cs);
415 else
b1ae1681 416 high = CASE_LOW (cs);
789410e4 417 for (gsi = gsi_start_phis (m_final_bb);
726a989a 418 !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 419 {
538dd0b7 420 gphi *phi = gsi.phi ();
18bfe940
JJ
421 if (virtual_operand_p (gimple_phi_result (phi)))
422 continue;
b6e99746 423 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
7f2a9982 424 tree low = CASE_LOW (cs);
b6e99746
MJ
425 pos = CASE_LOW (cs);
426
b8698a0f 427 do
b6e99746 428 {
f32682ca 429 constructor_elt elt;
b6e99746 430
789410e4 431 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
d1f98542 432 elt.value = unshare_expr_without_location (val);
789410e4 433 m_constructors[j]->quick_push (elt);
b6e99746 434
18bfe940 435 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
7156c8ab
MJ
436 } while (!tree_int_cst_lt (high, pos)
437 && tree_int_cst_lt (low, pos));
b6e99746
MJ
438 j++;
439 }
440 }
441}
442
767d4551
ML
443/* If all values in the constructor vector are products of a linear function
444 a * x + b, then return true. When true, COEFF_A and COEFF_B and
445 coefficients of the linear function. Note that equal values are special
446 case of a linear function with a and b equal to zero. */
7156c8ab 447
767d4551
ML
448bool
449switch_conversion::contains_linear_function_p (vec<constructor_elt, va_gc> *vec,
450 wide_int *coeff_a,
451 wide_int *coeff_b)
7156c8ab 452{
8e97bc2b 453 unsigned int i;
8e97bc2b 454 constructor_elt *elt;
7156c8ab 455
767d4551
ML
456 gcc_assert (vec->length () >= 2);
457
458 /* Let's try to find any linear function a * x + y that can apply to
459 given values. 'a' can be calculated as follows:
460
461 a = (y2 - y1) / (x2 - x1) where x2 - x1 = 1 (consecutive case indices)
462 a = y2 - y1
463
464 and
465
466 b = y2 - a * x2
467
468 */
469
470 tree elt0 = (*vec)[0].value;
471 tree elt1 = (*vec)[1].value;
472
473 if (TREE_CODE (elt0) != INTEGER_CST || TREE_CODE (elt1) != INTEGER_CST)
474 return false;
475
5a5474ba
ML
476 wide_int range_min
477 = wide_int::from (wi::to_wide (m_range_min),
478 TYPE_PRECISION (TREE_TYPE (elt0)),
479 TYPE_SIGN (TREE_TYPE (m_range_min)));
767d4551
ML
480 wide_int y1 = wi::to_wide (elt0);
481 wide_int y2 = wi::to_wide (elt1);
482 wide_int a = y2 - y1;
483 wide_int b = y2 - a * (range_min + 1);
484
485 /* Verify that all values fulfill the linear function. */
9771b263 486 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
7156c8ab 487 {
767d4551
ML
488 if (TREE_CODE (elt->value) != INTEGER_CST)
489 return false;
490
491 wide_int value = wi::to_wide (elt->value);
492 if (a * range_min + b != value)
493 return false;
494
495 ++range_min;
7156c8ab 496 }
767d4551
ML
497
498 *coeff_a = a;
499 *coeff_b = b;
500
501 return true;
7156c8ab
MJ
502}
503
f1b0632a
OH
504/* Return type which should be used for array elements, either TYPE's
505 main variant or, for integral types, some smaller integral type
506 that can still hold all the constants. */
8e97bc2b 507
789410e4
ML
508tree
509switch_conversion::array_value_type (tree type, int num)
8e97bc2b 510{
789410e4 511 unsigned int i, len = vec_safe_length (m_constructors[num]);
8e97bc2b 512 constructor_elt *elt;
8e97bc2b
JJ
513 int sign = 0;
514 tree smaller_type;
515
f1b0632a
OH
516 /* Types with alignments greater than their size can reach here, e.g. out of
517 SRA. We couldn't use these as an array component type so get back to the
518 main variant first, which, for our purposes, is fine for other types as
519 well. */
520
521 type = TYPE_MAIN_VARIANT (type);
522
8e97bc2b
JJ
523 if (!INTEGRAL_TYPE_P (type))
524 return type;
525
7a504f33 526 scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
095a2d76 527 scalar_int_mode mode = get_narrowest_mode (type_mode);
ec35d572 528 if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode))
8e97bc2b
JJ
529 return type;
530
789410e4 531 if (len < (optimize_bb_for_size_p (gimple_bb (m_switch)) ? 2 : 32))
8e97bc2b
JJ
532 return type;
533
789410e4 534 FOR_EACH_VEC_SAFE_ELT (m_constructors[num], i, elt)
8e97bc2b 535 {
807e902e 536 wide_int cst;
8e97bc2b
JJ
537
538 if (TREE_CODE (elt->value) != INTEGER_CST)
539 return type;
540
8e6cdc90 541 cst = wi::to_wide (elt->value);
8e97bc2b
JJ
542 while (1)
543 {
544 unsigned int prec = GET_MODE_BITSIZE (mode);
545 if (prec > HOST_BITS_PER_WIDE_INT)
546 return type;
547
807e902e 548 if (sign >= 0 && cst == wi::zext (cst, prec))
8e97bc2b 549 {
807e902e 550 if (sign == 0 && cst == wi::sext (cst, prec))
8e97bc2b
JJ
551 break;
552 sign = 1;
553 break;
554 }
807e902e 555 if (sign <= 0 && cst == wi::sext (cst, prec))
8e97bc2b
JJ
556 {
557 sign = -1;
558 break;
559 }
560
561 if (sign == 1)
562 sign = 0;
563
490d0f6c 564 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
ec35d572 565 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode))
8e97bc2b
JJ
566 return type;
567 }
568 }
569
570 if (sign == 0)
571 sign = TYPE_UNSIGNED (type) ? 1 : -1;
572 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
7a504f33
RS
573 if (GET_MODE_SIZE (type_mode)
574 <= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type)))
8e97bc2b
JJ
575 return type;
576
577 return smaller_type;
578}
579
789410e4
ML
580/* Create an appropriate array type and declaration and assemble a static
581 array variable. Also create a load statement that initializes
582 the variable in question with a value from the static array. SWTCH is
583 the switch statement being converted, NUM is the index to
584 arrays of constructors, default values and target SSA names
585 for this particular array. ARR_INDEX_TYPE is the type of the index
586 of the new array, PHI is the phi node of the final BB that corresponds
587 to the value that will be loaded from the created array. TIDX
7156c8ab
MJ
588 is an ssa name of a temporary variable holding the index for loads from the
589 new array. */
b6e99746 590
789410e4
ML
591void
592switch_conversion::build_one_array (int num, tree arr_index_type,
593 gphi *phi, tree tidx)
b6e99746 594{
767d4551 595 tree name;
355fe088 596 gimple *load;
789410e4
ML
597 gimple_stmt_iterator gsi = gsi_for_stmt (m_switch);
598 location_t loc = gimple_location (m_switch);
b6e99746 599
789410e4 600 gcc_assert (m_default_values[num]);
b6e99746 601
b731b390 602 name = copy_ssa_name (PHI_RESULT (phi));
789410e4 603 m_target_inbound_names[num] = name;
b6e99746 604
5a5474ba 605 vec<constructor_elt, va_gc> *constructor = m_constructors[num];
767d4551 606 wide_int coeff_a, coeff_b;
5a5474ba 607 bool linear_p = contains_linear_function_p (constructor, &coeff_a, &coeff_b);
1d9cd701
JJ
608 tree type;
609 if (linear_p
610 && (type = range_check_type (TREE_TYPE ((*constructor)[0].value))))
767d4551
ML
611 {
612 if (dump_file && coeff_a.to_uhwi () > 0)
613 fprintf (dump_file, "Linear transformation with A = %" PRId64
614 " and B = %" PRId64 "\n", coeff_a.to_shwi (),
615 coeff_b.to_shwi ());
616
5a5474ba 617 /* We must use type of constructor values. */
767d4551 618 gimple_seq seq = NULL;
1d9cd701
JJ
619 tree tmp = gimple_convert (&seq, type, m_index_expr);
620 tree tmp2 = gimple_build (&seq, MULT_EXPR, type,
621 wide_int_to_tree (type, coeff_a), tmp);
622 tree tmp3 = gimple_build (&seq, PLUS_EXPR, type, tmp2,
623 wide_int_to_tree (type, coeff_b));
767d4551
ML
624 tree tmp4 = gimple_convert (&seq, TREE_TYPE (name), tmp3);
625 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
626 load = gimple_build_assign (name, tmp4);
627 }
7156c8ab
MJ
628 else
629 {
8e97bc2b 630 tree array_type, ctor, decl, value_type, fetch, default_type;
7156c8ab 631
789410e4
ML
632 default_type = TREE_TYPE (m_default_values[num]);
633 value_type = array_value_type (default_type, num);
7156c8ab 634 array_type = build_array_type (value_type, arr_index_type);
8e97bc2b
JJ
635 if (default_type != value_type)
636 {
637 unsigned int i;
638 constructor_elt *elt;
639
5a5474ba 640 FOR_EACH_VEC_SAFE_ELT (constructor, i, elt)
8e97bc2b
JJ
641 elt->value = fold_convert (value_type, elt->value);
642 }
5a5474ba 643 ctor = build_constructor (array_type, constructor);
7156c8ab 644 TREE_CONSTANT (ctor) = true;
5f7ae6b6 645 TREE_STATIC (ctor) = true;
7156c8ab 646
c2255bc4 647 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
7156c8ab
MJ
648 TREE_STATIC (decl) = 1;
649 DECL_INITIAL (decl) = ctor;
650
651 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
652 DECL_ARTIFICIAL (decl) = 1;
f8d851c6 653 DECL_IGNORED_P (decl) = 1;
7156c8ab 654 TREE_CONSTANT (decl) = 1;
2e3b4885 655 TREE_READONLY (decl) = 1;
d7438551 656 DECL_IGNORED_P (decl) = 1;
46dbeb40
TV
657 if (offloading_function_p (cfun->decl))
658 DECL_ATTRIBUTES (decl)
659 = tree_cons (get_identifier ("omp declare target"), NULL_TREE,
660 NULL_TREE);
9041d2e6 661 varpool_node::finalize_decl (decl);
7156c8ab
MJ
662
663 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
664 NULL_TREE);
8e97bc2b
JJ
665 if (default_type != value_type)
666 {
667 fetch = fold_convert (default_type, fetch);
668 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
669 true, GSI_SAME_STMT);
670 }
7156c8ab
MJ
671 load = gimple_build_assign (name, fetch);
672 }
b6e99746 673
726a989a 674 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
7156c8ab 675 update_stmt (load);
789410e4 676 m_arr_ref_last = load;
b6e99746
MJ
677}
678
679/* Builds and initializes static arrays initialized with values gathered from
789410e4 680 the switch statement. Also creates statements that load values from
b6e99746
MJ
681 them. */
682
789410e4
ML
683void
684switch_conversion::build_arrays ()
b6e99746
MJ
685{
686 tree arr_index_type;
83d5977e 687 tree tidx, sub, utype;
355fe088 688 gimple *stmt;
726a989a 689 gimple_stmt_iterator gsi;
538dd0b7 690 gphi_iterator gpi;
b6e99746 691 int i;
789410e4 692 location_t loc = gimple_location (m_switch);
b6e99746 693
789410e4 694 gsi = gsi_for_stmt (m_switch);
04e78aa9 695
edb9b69e 696 /* Make sure we do not generate arithmetics in a subrange. */
789410e4 697 utype = TREE_TYPE (m_index_expr);
edb9b69e
JJ
698 if (TREE_TYPE (utype))
699 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
700 else
701 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
702
789410e4 703 arr_index_type = build_index_type (m_range_size);
b731b390 704 tidx = make_ssa_name (utype);
edb9b69e 705 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
789410e4
ML
706 fold_convert_loc (loc, utype, m_index_expr),
707 fold_convert_loc (loc, utype, m_range_min));
fae1034e 708 sub = force_gimple_operand_gsi (&gsi, sub,
726a989a
RB
709 false, NULL, true, GSI_SAME_STMT);
710 stmt = gimple_build_assign (tidx, sub);
b6e99746 711
726a989a 712 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
7156c8ab 713 update_stmt (stmt);
789410e4 714 m_arr_ref_first = stmt;
b6e99746 715
789410e4 716 for (gpi = gsi_start_phis (m_final_bb), i = 0;
18bfe940
JJ
717 !gsi_end_p (gpi); gsi_next (&gpi))
718 {
719 gphi *phi = gpi.phi ();
720 if (!virtual_operand_p (gimple_phi_result (phi)))
789410e4 721 build_one_array (i++, arr_index_type, phi, tidx);
8dc6a926
JJ
722 else
723 {
724 edge e;
725 edge_iterator ei;
789410e4 726 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
8dc6a926 727 {
789410e4 728 if (e->dest == m_final_bb)
8dc6a926 729 break;
789410e4
ML
730 if (!m_default_case_nonstandard
731 || e->dest != m_default_bb)
8dc6a926
JJ
732 {
733 e = single_succ_edge (e->dest);
734 break;
735 }
736 }
789410e4
ML
737 gcc_assert (e && e->dest == m_final_bb);
738 m_target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e);
8dc6a926 739 }
18bfe940 740 }
b6e99746
MJ
741}
742
743/* Generates and appropriately inserts loads of default values at the position
789410e4 744 given by GSI. Returns the last inserted statement. */
b6e99746 745
789410e4
ML
746gassign *
747switch_conversion::gen_def_assigns (gimple_stmt_iterator *gsi)
b6e99746
MJ
748{
749 int i;
538dd0b7 750 gassign *assign = NULL;
b6e99746 751
789410e4 752 for (i = 0; i < m_phi_count; i++)
b6e99746 753 {
789410e4
ML
754 tree name = copy_ssa_name (m_target_inbound_names[i]);
755 m_target_outbound_names[i] = name;
756 assign = gimple_build_assign (name, m_default_values[i]);
726a989a 757 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
7156c8ab 758 update_stmt (assign);
b6e99746
MJ
759 }
760 return assign;
761}
762
763/* Deletes the unused bbs and edges that now contain the switch statement and
789410e4
ML
764 its empty branch bbs. BBD is the now dead BB containing
765 the original switch statement, FINAL is the last BB of the converted
766 switch statement (in terms of succession). */
b6e99746 767
789410e4
ML
768void
769switch_conversion::prune_bbs (basic_block bbd, basic_block final,
770 basic_block default_bb)
b6e99746
MJ
771{
772 edge_iterator ei;
773 edge e;
774
775 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
776 {
777 basic_block bb;
778 bb = e->dest;
779 remove_edge (e);
18bfe940 780 if (bb != final && bb != default_bb)
b6e99746
MJ
781 delete_basic_block (bb);
782 }
783 delete_basic_block (bbd);
784}
785
786/* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
787 from the basic block loading values from an array and E2F from the basic
788 block loading default values. BBF is the last switch basic block (see the
789 bbf description in the comment below). */
790
789410e4
ML
791void
792switch_conversion::fix_phi_nodes (edge e1f, edge e2f, basic_block bbf)
b6e99746 793{
538dd0b7 794 gphi_iterator gsi;
b6e99746
MJ
795 int i;
796
726a989a 797 for (gsi = gsi_start_phis (bbf), i = 0;
18bfe940 798 !gsi_end_p (gsi); gsi_next (&gsi))
b6e99746 799 {
538dd0b7 800 gphi *phi = gsi.phi ();
18bfe940
JJ
801 tree inbound, outbound;
802 if (virtual_operand_p (gimple_phi_result (phi)))
789410e4 803 inbound = outbound = m_target_vop;
18bfe940
JJ
804 else
805 {
789410e4
ML
806 inbound = m_target_inbound_names[i];
807 outbound = m_target_outbound_names[i++];
18bfe940
JJ
808 }
809 add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION);
789410e4 810 if (!m_default_case_nonstandard)
18bfe940 811 add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION);
b6e99746 812 }
b6e99746
MJ
813}
814
815/* Creates a check whether the switch expression value actually falls into the
816 range given by all the cases. If it does not, the temporaries are loaded
789410e4 817 with default values instead. */
b6e99746 818
789410e4
ML
819void
820switch_conversion::gen_inbound_check ()
b6e99746 821{
c2255bc4
AH
822 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
823 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
824 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
538dd0b7 825 glabel *label1, *label2, *label3;
edb9b69e 826 tree utype, tidx;
b6e99746
MJ
827 tree bound;
828
538dd0b7 829 gcond *cond_stmt;
b6e99746 830
18bfe940 831 gassign *last_assign = NULL;
726a989a 832 gimple_stmt_iterator gsi;
b6e99746 833 basic_block bb0, bb1, bb2, bbf, bbd;
18bfe940 834 edge e01 = NULL, e02, e21, e1d, e1f, e2f;
789410e4 835 location_t loc = gimple_location (m_switch);
b6e99746 836
789410e4 837 gcc_assert (m_default_values);
6ab1ab14 838
789410e4 839 bb0 = gimple_bb (m_switch);
b6e99746 840
789410e4 841 tidx = gimple_assign_lhs (m_arr_ref_first);
edb9b69e 842 utype = TREE_TYPE (tidx);
145544ab 843
b6e99746 844 /* (end of) block 0 */
789410e4 845 gsi = gsi_for_stmt (m_arr_ref_first);
edb9b69e 846 gsi_next (&gsi);
b6e99746 847
789410e4 848 bound = fold_convert_loc (loc, utype, m_range_size);
edb9b69e 849 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
726a989a 850 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
7156c8ab 851 update_stmt (cond_stmt);
b6e99746
MJ
852
853 /* block 2 */
789410e4 854 if (!m_default_case_nonstandard)
18bfe940
JJ
855 {
856 label2 = gimple_build_label (label_decl2);
857 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
789410e4 858 last_assign = gen_def_assigns (&gsi);
18bfe940 859 }
b6e99746
MJ
860
861 /* block 1 */
726a989a
RB
862 label1 = gimple_build_label (label_decl1);
863 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
b6e99746
MJ
864
865 /* block F */
789410e4 866 gsi = gsi_start_bb (m_final_bb);
726a989a
RB
867 label3 = gimple_build_label (label_decl3);
868 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
b6e99746
MJ
869
870 /* cfg fix */
726a989a 871 e02 = split_block (bb0, cond_stmt);
b6e99746
MJ
872 bb2 = e02->dest;
873
789410e4 874 if (m_default_case_nonstandard)
18bfe940
JJ
875 {
876 bb1 = bb2;
789410e4 877 bb2 = m_default_bb;
18bfe940
JJ
878 e01 = e02;
879 e01->flags = EDGE_TRUE_VALUE;
880 e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE);
881 edge e_default = find_edge (bb1, bb2);
882 for (gphi_iterator gsi = gsi_start_phis (bb2);
883 !gsi_end_p (gsi); gsi_next (&gsi))
884 {
885 gphi *phi = gsi.phi ();
886 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default);
887 add_phi_arg (phi, arg, e02,
888 gimple_phi_arg_location_from_edge (phi, e_default));
889 }
890 /* Partially fix the dominator tree, if it is available. */
891 if (dom_info_available_p (CDI_DOMINATORS))
892 redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0);
893 }
894 else
895 {
896 e21 = split_block (bb2, last_assign);
897 bb1 = e21->dest;
898 remove_edge (e21);
899 }
b6e99746 900
789410e4 901 e1d = split_block (bb1, m_arr_ref_last);
b6e99746
MJ
902 bbd = e1d->dest;
903 remove_edge (e1d);
904
789410e4
ML
905 /* Flags and profiles of the edge for in-range values. */
906 if (!m_default_case_nonstandard)
18bfe940 907 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
789410e4 908 e01->probability = m_default_prob.invert ();
b6e99746 909
789410e4 910 /* Flags and profiles of the edge taking care of out-of-range values. */
b6e99746
MJ
911 e02->flags &= ~EDGE_FALLTHRU;
912 e02->flags |= EDGE_FALSE_VALUE;
789410e4 913 e02->probability = m_default_prob;
b6e99746 914
789410e4 915 bbf = m_final_bb;
b6e99746
MJ
916
917 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
357067f2 918 e1f->probability = profile_probability::always ();
b6e99746 919
789410e4 920 if (m_default_case_nonstandard)
18bfe940
JJ
921 e2f = NULL;
922 else
923 {
924 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
357067f2 925 e2f->probability = profile_probability::always ();
18bfe940 926 }
b6e99746
MJ
927
928 /* frequencies of the new BBs */
e7a74006
JH
929 bb1->count = e01->count ();
930 bb2->count = e02->count ();
789410e4 931 if (!m_default_case_nonstandard)
e7a74006 932 bbf->count = e1f->count () + e2f->count ();
b6e99746 933
6ab1ab14 934 /* Tidy blocks that have become unreachable. */
789410e4
ML
935 prune_bbs (bbd, m_final_bb,
936 m_default_case_nonstandard ? m_default_bb : NULL);
b6e99746 937
6ab1ab14 938 /* Fixup the PHI nodes in bbF. */
789410e4 939 fix_phi_nodes (e1f, e2f, bbf);
b6e99746 940
6ab1ab14
SB
941 /* Fix the dominator tree, if it is available. */
942 if (dom_info_available_p (CDI_DOMINATORS))
943 {
9771b263 944 vec<basic_block> bbs_to_fix_dom;
6ab1ab14
SB
945
946 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
789410e4 947 if (!m_default_case_nonstandard)
18bfe940 948 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
531b10fc 949 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
6ab1ab14
SB
950 /* If bbD was the immediate dominator ... */
951 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
952
18bfe940 953 bbs_to_fix_dom.create (3 + (bb2 != bbf));
9771b263
DN
954 bbs_to_fix_dom.quick_push (bb0);
955 bbs_to_fix_dom.quick_push (bb1);
18bfe940
JJ
956 if (bb2 != bbf)
957 bbs_to_fix_dom.quick_push (bb2);
9771b263 958 bbs_to_fix_dom.quick_push (bbf);
6ab1ab14
SB
959
960 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
9771b263 961 bbs_to_fix_dom.release ();
6ab1ab14 962 }
b6e99746
MJ
963}
964
789410e4
ML
965/* The following function is invoked on every switch statement (the current
966 one is given in SWTCH) and runs the individual phases of switch
967 conversion on it one after another until one fails or the conversion
968 is completed. On success, NULL is in m_reason, otherwise points
969 to a string with the reason why the conversion failed. */
b6e99746 970
789410e4
ML
971void
972switch_conversion::expand (gswitch *swtch)
b6e99746 973{
238065a7
SB
974 /* Group case labels so that we get the right results from the heuristics
975 that decide on the code generation approach for this switch. */
789410e4 976 m_cfg_altered |= group_case_labels_stmt (swtch);
d78bcb13
ML
977
978 /* If this switch is now a degenerate case with only a default label,
979 there is nothing left for us to do. */
980 if (gimple_switch_num_labels (swtch) < 2)
981 {
982 m_reason = "switch is a degenerate case";
983 return;
984 }
886cd84f 985
789410e4 986 collect (swtch);
886cd84f
SB
987
988 /* No error markers should reach here (they should be filtered out
989 during gimplification). */
789410e4 990 gcc_checking_assert (TREE_TYPE (m_index_expr) != error_mark_node);
886cd84f 991
531b10fc 992 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
789410e4 993 gcc_checking_assert (!TREE_CONSTANT (m_index_expr));
886cd84f 994
dc223ad4
ML
995 /* Prefer bit test if possible. */
996 if (tree_fits_uhwi_p (m_range_size)
997 && bit_test_cluster::can_be_handled (tree_to_uhwi (m_range_size), m_uniq)
998 && bit_test_cluster::is_beneficial (m_count, m_uniq))
999 {
1000 m_reason = "expanding as bit test is preferable";
1001 return;
1002 }
1003
1004 if (m_uniq <= 2)
1005 {
1006 /* This will be expanded as a decision tree . */
1007 m_reason = "expanding as jumps is preferable";
1008 return;
1009 }
1010
789410e4
ML
1011 /* If there is no common successor, we cannot do the transformation. */
1012 if (!m_final_bb)
886cd84f 1013 {
789410e4
ML
1014 m_reason = "no common successor to all case label target blocks found";
1015 return;
886cd84f 1016 }
b6e99746
MJ
1017
1018 /* Check the case label values are within reasonable range: */
789410e4 1019 if (!check_range ())
fade902a 1020 {
789410e4
ML
1021 gcc_assert (m_reason);
1022 return;
fade902a 1023 }
b6e99746
MJ
1024
1025 /* For all the cases, see whether they are empty, the assignments they
1026 represent constant and so on... */
789410e4 1027 if (!check_all_empty_except_final ())
8e97bc2b 1028 {
789410e4
ML
1029 gcc_assert (m_reason);
1030 return;
8e97bc2b 1031 }
789410e4 1032 if (!check_final_bb ())
fade902a 1033 {
789410e4
ML
1034 gcc_assert (m_reason);
1035 return;
fade902a 1036 }
b6e99746
MJ
1037
1038 /* At this point all checks have passed and we can proceed with the
1039 transformation. */
1040
789410e4
ML
1041 create_temp_arrays ();
1042 gather_default_values (m_default_case_nonstandard
18bfe940 1043 ? gimple_switch_label (swtch, 1)
789410e4
ML
1044 : gimple_switch_default_label (swtch));
1045 build_constructors ();
b6e99746 1046
789410e4
ML
1047 build_arrays (); /* Build the static arrays and assignments. */
1048 gen_inbound_check (); /* Build the bounds check. */
b6e99746 1049
789410e4
ML
1050 m_cfg_altered = true;
1051}
1052
1053/* Destructor. */
1054
1055switch_conversion::~switch_conversion ()
1056{
1057 XDELETEVEC (m_constructors);
1058 XDELETEVEC (m_default_values);
b6e99746
MJ
1059}
1060
dc223ad4 1061/* Constructor. */
be55bfe6 1062
dc223ad4
ML
1063group_cluster::group_cluster (vec<cluster *> &clusters,
1064 unsigned start, unsigned end)
be55bfe6 1065{
dc223ad4
ML
1066 gcc_checking_assert (end - start + 1 >= 1);
1067 m_prob = profile_probability::never ();
1068 m_cases.create (end - start + 1);
1069 for (unsigned i = start; i <= end; i++)
1070 {
1071 m_cases.quick_push (static_cast<simple_cluster *> (clusters[i]));
1072 m_prob += clusters[i]->m_prob;
1073 }
1074 m_subtree_prob = m_prob;
1075}
be55bfe6 1076
dc223ad4
ML
1077/* Destructor. */
1078
1079group_cluster::~group_cluster ()
be55bfe6 1080{
dc223ad4
ML
1081 for (unsigned i = 0; i < m_cases.length (); i++)
1082 delete m_cases[i];
be55bfe6 1083
dc223ad4
ML
1084 m_cases.release ();
1085}
be55bfe6 1086
dc223ad4 1087/* Dump content of a cluster. */
be55bfe6 1088
dc223ad4
ML
1089void
1090group_cluster::dump (FILE *f, bool details)
b6e99746 1091{
dc223ad4
ML
1092 unsigned total_values = 0;
1093 for (unsigned i = 0; i < m_cases.length (); i++)
1094 total_values += m_cases[i]->get_range (m_cases[i]->get_low (),
1095 m_cases[i]->get_high ());
726a989a 1096
dc223ad4
ML
1097 unsigned comparison_count = 0;
1098 for (unsigned i = 0; i < m_cases.length (); i++)
1099 {
1100 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1101 comparison_count += sc->m_range_p ? 2 : 1;
1102 }
b6e99746 1103
dc223ad4
ML
1104 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1105 fprintf (f, "%s", get_type () == JUMP_TABLE ? "JT" : "BT");
531b10fc 1106
dc223ad4
ML
1107 if (details)
1108 fprintf (f, "(values:%d comparisons:%d range:" HOST_WIDE_INT_PRINT_DEC
1109 " density: %.2f%%)", total_values, comparison_count, range,
1110 100.0f * comparison_count / range);
b6e99746 1111
dc223ad4
ML
1112 fprintf (f, ":");
1113 PRINT_CASE (f, get_low ());
1114 fprintf (f, "-");
1115 PRINT_CASE (f, get_high ());
1116 fprintf (f, " ");
b6e99746
MJ
1117}
1118
dc223ad4 1119/* Emit GIMPLE code to handle the cluster. */
27a4cd48 1120
dc223ad4
ML
1121void
1122jump_table_cluster::emit (tree index_expr, tree,
1123 tree default_label_expr, basic_block default_bb)
27a4cd48 1124{
dbdfaaba
ML
1125 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1126 unsigned HOST_WIDE_INT nondefault_range = 0;
1127
dc223ad4
ML
1128 /* For jump table we just emit a new gswitch statement that will
1129 be latter lowered to jump table. */
1130 auto_vec <tree> labels;
1131 labels.create (m_cases.length ());
1132
1133 make_edge (m_case_bb, default_bb, 0);
1134 for (unsigned i = 0; i < m_cases.length (); i++)
1135 {
1136 labels.quick_push (unshare_expr (m_cases[i]->m_case_label_expr));
1137 make_edge (m_case_bb, m_cases[i]->m_case_bb, 0);
1138 }
1139
1140 gswitch *s = gimple_build_switch (index_expr,
1141 unshare_expr (default_label_expr), labels);
1142 gimple_stmt_iterator gsi = gsi_start_bb (m_case_bb);
1143 gsi_insert_after (&gsi, s, GSI_NEW_STMT);
dbdfaaba
ML
1144
1145 /* Set up even probabilities for all cases. */
1146 for (unsigned i = 0; i < m_cases.length (); i++)
1147 {
1148 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1149 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1150 unsigned HOST_WIDE_INT case_range
1151 = sc->get_range (sc->get_low (), sc->get_high ());
1152 nondefault_range += case_range;
1153
1154 /* case_edge->aux is number of values in a jump-table that are covered
1155 by the case_edge. */
1156 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + case_range);
1157 }
1158
1159 edge default_edge = gimple_switch_default_edge (cfun, s);
1160 default_edge->probability = profile_probability::never ();
1161
1162 for (unsigned i = 0; i < m_cases.length (); i++)
1163 {
1164 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1165 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1166 case_edge->probability
1167 = profile_probability::always ().apply_scale ((intptr_t)case_edge->aux,
1168 range);
1169 }
1170
1171 /* Number of non-default values is probability of default edge. */
1172 default_edge->probability
1173 += profile_probability::always ().apply_scale (nondefault_range,
1174 range).invert ();
1175
1176 switch_decision_tree::reset_out_edges_aux (s);
27a4cd48 1177}
9dc3d6a9 1178
2f928c1b
ML
1179/* Find jump tables of given CLUSTERS, where all members of the vector
1180 are of type simple_cluster. New clusters are returned. */
1181
1182vec<cluster *>
1183jump_table_cluster::find_jump_tables (vec<cluster *> &clusters)
1184{
5885a1bd
ML
1185 if (!is_enabled ())
1186 return clusters.copy ();
1187
2f928c1b
ML
1188 unsigned l = clusters.length ();
1189 auto_vec<min_cluster_item> min;
1190 min.reserve (l + 1);
1191
1192 min.quick_push (min_cluster_item (0, 0, 0));
1193
1194 for (unsigned i = 1; i <= l; i++)
1195 {
1196 /* Set minimal # of clusters with i-th item to infinite. */
1197 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1198
1199 for (unsigned j = 0; j < i; j++)
1200 {
1201 unsigned HOST_WIDE_INT s = min[j].m_non_jt_cases;
1202 if (i - j < case_values_threshold ())
1203 s += i - j;
1204
1205 /* Prefer clusters with smaller number of numbers covered. */
1206 if ((min[j].m_count + 1 < min[i].m_count
1207 || (min[j].m_count + 1 == min[i].m_count
1208 && s < min[i].m_non_jt_cases))
1209 && can_be_handled (clusters, j, i - 1))
1210 min[i] = min_cluster_item (min[j].m_count + 1, j, s);
1211 }
df7c7974
ML
1212
1213 gcc_checking_assert (min[i].m_count != INT_MAX);
2f928c1b
ML
1214 }
1215
1216 /* No result. */
1217 if (min[l].m_count == INT_MAX)
1218 return clusters.copy ();
1219
1220 vec<cluster *> output;
1221 output.create (4);
1222
1223 /* Find and build the clusters. */
1224 for (int end = l;;)
1225 {
1226 int start = min[end].m_start;
1227
1228 /* Do not allow clusters with small number of cases. */
1229 if (is_beneficial (clusters, start, end - 1))
1230 output.safe_push (new jump_table_cluster (clusters, start, end - 1));
1231 else
1232 for (int i = end - 1; i >= start; i--)
1233 output.safe_push (clusters[i]);
1234
1235 end = start;
1236
1237 if (start <= 0)
1238 break;
1239 }
1240
1241 output.reverse ();
1242 return output;
1243}
1244
dc223ad4
ML
1245/* Return true when cluster starting at START and ending at END (inclusive)
1246 can build a jump-table. */
1247
1248bool
1249jump_table_cluster::can_be_handled (const vec<cluster *> &clusters,
1250 unsigned start, unsigned end)
9dc3d6a9 1251{
dc223ad4
ML
1252 /* If the switch is relatively small such that the cost of one
1253 indirect jump on the target are higher than the cost of a
1254 decision tree, go with the decision tree.
9dc3d6a9 1255
dc223ad4
ML
1256 If range of values is much bigger than number of values,
1257 or if it is too large to represent in a HOST_WIDE_INT,
1258 make a sequence of conditional branches instead of a dispatch.
9dc3d6a9 1259
dc223ad4 1260 The definition of "much bigger" depends on whether we are
de840bde 1261 optimizing for size or for speed. */
dc223ad4
ML
1262 if (!flag_jump_tables)
1263 return false;
9dc3d6a9 1264
df7c7974
ML
1265 /* For algorithm correctness, jump table for a single case must return
1266 true. We bail out in is_beneficial if it's called just for
1267 a single case. */
1268 if (start == end)
1269 return true;
9dc3d6a9 1270
1aabb71d 1271 unsigned HOST_WIDE_INT max_ratio
26f36b50
ML
1272 = (optimize_insn_for_size_p ()
1273 ? PARAM_VALUE (PARAM_JUMP_TABLE_MAX_GROWTH_RATIO_FOR_SIZE)
1274 : PARAM_VALUE (PARAM_JUMP_TABLE_MAX_GROWTH_RATIO_FOR_SPEED));
dc223ad4
ML
1275 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1276 clusters[end]->get_high ());
1277 /* Check overflow. */
1278 if (range == 0)
1279 return false;
9dc3d6a9 1280
dc223ad4
ML
1281 unsigned HOST_WIDE_INT comparison_count = 0;
1282 for (unsigned i = start; i <= end; i++)
1283 {
1284 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1285 comparison_count += sc->m_range_p ? 2 : 1;
1286 }
9dc3d6a9 1287
86e3947e
ML
1288 unsigned HOST_WIDE_INT lhs = 100 * range;
1289 if (lhs < range)
1290 return false;
1291
1292 return lhs <= max_ratio * comparison_count;
9dc3d6a9
ML
1293}
1294
dc223ad4
ML
1295/* Return true if cluster starting at START and ending at END (inclusive)
1296 is profitable transformation. */
9dc3d6a9 1297
dc223ad4
ML
1298bool
1299jump_table_cluster::is_beneficial (const vec<cluster *> &,
1300 unsigned start, unsigned end)
9dc3d6a9 1301{
df7c7974
ML
1302 /* Single case bail out. */
1303 if (start == end)
1304 return false;
1305
dc223ad4 1306 return end - start + 1 >= case_values_threshold ();
9dc3d6a9
ML
1307}
1308
2f928c1b
ML
1309/* Find bit tests of given CLUSTERS, where all members of the vector
1310 are of type simple_cluster. New clusters are returned. */
1311
1312vec<cluster *>
1313bit_test_cluster::find_bit_tests (vec<cluster *> &clusters)
1314{
1315 vec<cluster *> output;
1316 output.create (4);
1317
1318 unsigned l = clusters.length ();
1319 auto_vec<min_cluster_item> min;
1320 min.reserve (l + 1);
1321
1322 min.quick_push (min_cluster_item (0, 0, 0));
1323
1324 for (unsigned i = 1; i <= l; i++)
1325 {
1326 /* Set minimal # of clusters with i-th item to infinite. */
1327 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1328
1329 for (unsigned j = 0; j < i; j++)
1330 {
1331 if (min[j].m_count + 1 < min[i].m_count
1332 && can_be_handled (clusters, j, i - 1))
1333 min[i] = min_cluster_item (min[j].m_count + 1, j, INT_MAX);
1334 }
df7c7974
ML
1335
1336 gcc_checking_assert (min[i].m_count != INT_MAX);
2f928c1b
ML
1337 }
1338
1339 /* No result. */
1340 if (min[l].m_count == INT_MAX)
1341 return clusters.copy ();
1342
1343 /* Find and build the clusters. */
377afcd5 1344 for (unsigned end = l;;)
2f928c1b
ML
1345 {
1346 int start = min[end].m_start;
1347
1348 if (is_beneficial (clusters, start, end - 1))
377afcd5
ML
1349 {
1350 bool entire = start == 0 && end == clusters.length ();
1351 output.safe_push (new bit_test_cluster (clusters, start, end - 1,
1352 entire));
1353 }
2f928c1b 1354 else
1d9cd701 1355 for (int i = end - 1; i >= start; i--)
2f928c1b
ML
1356 output.safe_push (clusters[i]);
1357
1358 end = start;
1359
1360 if (start <= 0)
1361 break;
1362 }
1363
1364 output.reverse ();
1365 return output;
1366}
1367
dc223ad4
ML
1368/* Return true when RANGE of case values with UNIQ labels
1369 can build a bit test. */
9dc3d6a9 1370
dc223ad4
ML
1371bool
1372bit_test_cluster::can_be_handled (unsigned HOST_WIDE_INT range,
1373 unsigned int uniq)
9dc3d6a9 1374{
dc223ad4
ML
1375 /* Check overflow. */
1376 if (range == 0)
1377 return 0;
1378
1379 if (range >= GET_MODE_BITSIZE (word_mode))
1380 return false;
1381
1382 return uniq <= 3;
1383}
1384
1385/* Return true when cluster starting at START and ending at END (inclusive)
1386 can build a bit test. */
1387
1388bool
1389bit_test_cluster::can_be_handled (const vec<cluster *> &clusters,
1390 unsigned start, unsigned end)
1391{
df7c7974
ML
1392 /* For algorithm correctness, bit test for a single case must return
1393 true. We bail out in is_beneficial if it's called just for
1394 a single case. */
1395 if (start == end)
1396 return true;
1397
dc223ad4
ML
1398 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1399 clusters[end]->get_high ());
1400 auto_bitmap dest_bbs;
1401
1402 for (unsigned i = start; i <= end; i++)
9dc3d6a9 1403 {
dc223ad4
ML
1404 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1405 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
9dc3d6a9 1406 }
9dc3d6a9 1407
dc223ad4
ML
1408 return can_be_handled (range, bitmap_count_bits (dest_bbs));
1409}
9dc3d6a9 1410
dc223ad4
ML
1411/* Return true when COUNT of cases of UNIQ labels is beneficial for bit test
1412 transformation. */
9dc3d6a9 1413
dc223ad4
ML
1414bool
1415bit_test_cluster::is_beneficial (unsigned count, unsigned uniq)
9dc3d6a9 1416{
dc223ad4
ML
1417 return (((uniq == 1 && count >= 3)
1418 || (uniq == 2 && count >= 5)
1419 || (uniq == 3 && count >= 6)));
9dc3d6a9
ML
1420}
1421
dc223ad4
ML
1422/* Return true if cluster starting at START and ending at END (inclusive)
1423 is profitable transformation. */
9dc3d6a9 1424
dc223ad4
ML
1425bool
1426bit_test_cluster::is_beneficial (const vec<cluster *> &clusters,
1427 unsigned start, unsigned end)
9dc3d6a9 1428{
df7c7974
ML
1429 /* Single case bail out. */
1430 if (start == end)
1431 return false;
1432
dc223ad4 1433 auto_bitmap dest_bbs;
9dc3d6a9 1434
dc223ad4 1435 for (unsigned i = start; i <= end; i++)
9dc3d6a9 1436 {
dc223ad4
ML
1437 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1438 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
9dc3d6a9 1439 }
9dc3d6a9 1440
dc223ad4
ML
1441 unsigned uniq = bitmap_count_bits (dest_bbs);
1442 unsigned count = end - start + 1;
1443 return is_beneficial (count, uniq);
9dc3d6a9
ML
1444}
1445
dc223ad4
ML
1446/* Comparison function for qsort to order bit tests by decreasing
1447 probability of execution. */
9dc3d6a9 1448
dc223ad4
ML
1449int
1450case_bit_test::cmp (const void *p1, const void *p2)
1451{
99b1c316
MS
1452 const case_bit_test *const d1 = (const case_bit_test *) p1;
1453 const case_bit_test *const d2 = (const case_bit_test *) p2;
dc223ad4
ML
1454
1455 if (d2->bits != d1->bits)
1456 return d2->bits - d1->bits;
1457
1458 /* Stabilize the sort. */
1459 return (LABEL_DECL_UID (CASE_LABEL (d2->label))
1460 - LABEL_DECL_UID (CASE_LABEL (d1->label)));
1461}
1462
1463/* Expand a switch statement by a short sequence of bit-wise
1464 comparisons. "switch(x)" is effectively converted into
1465 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
1466 integer constants.
1467
1468 INDEX_EXPR is the value being switched on.
1469
1470 MINVAL is the lowest case value of in the case nodes,
1471 and RANGE is highest value minus MINVAL. MINVAL and RANGE
1472 are not guaranteed to be of the same type as INDEX_EXPR
1473 (the gimplifier doesn't change the type of case label values,
1474 and MINVAL and RANGE are derived from those values).
1475 MAXVAL is MINVAL + RANGE.
9dc3d6a9 1476
dc223ad4
ML
1477 There *MUST* be max_case_bit_tests or less unique case
1478 node targets. */
1479
1480void
1481bit_test_cluster::emit (tree index_expr, tree index_type,
1482 tree, basic_block default_bb)
9dc3d6a9 1483{
99b1c316 1484 case_bit_test test[m_max_case_bit_tests] = { {} };
dc223ad4
ML
1485 unsigned int i, j, k;
1486 unsigned int count;
9dc3d6a9 1487
1d9cd701 1488 tree unsigned_index_type = range_check_type (index_type);
9dc3d6a9 1489
dc223ad4
ML
1490 gimple_stmt_iterator gsi;
1491 gassign *shift_stmt;
9dc3d6a9 1492
dc223ad4
ML
1493 tree idx, tmp, csui;
1494 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
1495 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
1496 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
1497 int prec = TYPE_PRECISION (word_type_node);
1498 wide_int wone = wi::one (prec);
9dc3d6a9 1499
dc223ad4
ML
1500 tree minval = get_low ();
1501 tree maxval = get_high ();
1502 tree range = int_const_binop (MINUS_EXPR, maxval, minval);
377afcd5 1503 unsigned HOST_WIDE_INT bt_range = get_range (minval, maxval);
9dc3d6a9 1504
dc223ad4
ML
1505 /* Go through all case labels, and collect the case labels, profile
1506 counts, and other information we need to build the branch tests. */
1507 count = 0;
1508 for (i = 0; i < m_cases.length (); i++)
1509 {
1510 unsigned int lo, hi;
1511 simple_cluster *n = static_cast<simple_cluster *> (m_cases[i]);
1512 for (k = 0; k < count; k++)
1513 if (n->m_case_bb == test[k].target_bb)
1514 break;
1515
1516 if (k == count)
9dc3d6a9 1517 {
dc223ad4
ML
1518 gcc_checking_assert (count < m_max_case_bit_tests);
1519 test[k].mask = wi::zero (prec);
1520 test[k].target_bb = n->m_case_bb;
1521 test[k].label = n->m_case_label_expr;
377afcd5 1522 test[k].bits = 0;
dc223ad4
ML
1523 count++;
1524 }
377afcd5
ML
1525
1526 test[k].bits += n->get_range (n->get_low (), n->get_high ());
9dc3d6a9 1527
dc223ad4
ML
1528 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_low (), minval));
1529 if (n->get_high () == NULL_TREE)
1530 hi = lo;
1531 else
1532 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_high (),
1533 minval));
9dc3d6a9 1534
dc223ad4
ML
1535 for (j = lo; j <= hi; j++)
1536 test[k].mask |= wi::lshift (wone, j);
1537 }
1538
1539 qsort (test, count, sizeof (*test), case_bit_test::cmp);
1540
1541 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
1542 the minval subtractions, but it might make the mask constants more
1543 expensive. So, compare the costs. */
1544 if (compare_tree_int (minval, 0) > 0
1545 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
1546 {
1547 int cost_diff;
1548 HOST_WIDE_INT m = tree_to_uhwi (minval);
1549 rtx reg = gen_raw_REG (word_mode, 10000);
1550 bool speed_p = optimize_insn_for_speed_p ();
1551 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
1552 GEN_INT (-m)), speed_p);
1553 for (i = 0; i < count; i++)
1554 {
1555 rtx r = immed_wide_int_const (test[i].mask, word_mode);
1556 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
1557 word_mode, speed_p);
1558 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
1559 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
1560 word_mode, speed_p);
9dc3d6a9 1561 }
dc223ad4 1562 if (cost_diff > 0)
9dc3d6a9 1563 {
dc223ad4
ML
1564 for (i = 0; i < count; i++)
1565 test[i].mask = wi::lshift (test[i].mask, m);
1566 minval = build_zero_cst (TREE_TYPE (minval));
1567 range = maxval;
9dc3d6a9
ML
1568 }
1569 }
9dc3d6a9 1570
dc223ad4
ML
1571 /* Now build the test-and-branch code. */
1572
1573 gsi = gsi_last_bb (m_case_bb);
1574
1575 /* idx = (unsigned)x - minval. */
1576 idx = fold_convert (unsigned_index_type, index_expr);
1577 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
1578 fold_convert (unsigned_index_type, minval));
1579 idx = force_gimple_operand_gsi (&gsi, idx,
1580 /*simple=*/true, NULL_TREE,
1581 /*before=*/true, GSI_SAME_STMT);
1582
377afcd5
ML
1583 if (m_handles_entire_switch)
1584 {
1585 /* if (idx > range) goto default */
1586 range
1587 = force_gimple_operand_gsi (&gsi,
dc223ad4
ML
1588 fold_convert (unsigned_index_type, range),
1589 /*simple=*/true, NULL_TREE,
1590 /*before=*/true, GSI_SAME_STMT);
377afcd5
ML
1591 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
1592 basic_block new_bb
1593 = hoist_edge_and_branch_if_true (&gsi, tmp, default_bb,
1594 profile_probability::unlikely ());
1595 gsi = gsi_last_bb (new_bb);
1596 }
dc223ad4
ML
1597
1598 /* csui = (1 << (word_mode) idx) */
1599 csui = make_ssa_name (word_type_node);
1600 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
1601 fold_convert (word_type_node, idx));
1602 tmp = force_gimple_operand_gsi (&gsi, tmp,
1603 /*simple=*/false, NULL_TREE,
1604 /*before=*/true, GSI_SAME_STMT);
1605 shift_stmt = gimple_build_assign (csui, tmp);
1606 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
1607 update_stmt (shift_stmt);
1608
377afcd5
ML
1609 profile_probability prob = profile_probability::always ();
1610
dc223ad4
ML
1611 /* for each unique set of cases:
1612 if (const & csui) goto target */
1613 for (k = 0; k < count; k++)
1614 {
377afcd5
ML
1615 prob = profile_probability::always ().apply_scale (test[k].bits,
1616 bt_range);
1617 bt_range -= test[k].bits;
dc223ad4
ML
1618 tmp = wide_int_to_tree (word_type_node, test[k].mask);
1619 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
1620 tmp = force_gimple_operand_gsi (&gsi, tmp,
1621 /*simple=*/true, NULL_TREE,
1622 /*before=*/true, GSI_SAME_STMT);
1623 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
377afcd5
ML
1624 basic_block new_bb
1625 = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_bb, prob);
dc223ad4
ML
1626 gsi = gsi_last_bb (new_bb);
1627 }
9dc3d6a9 1628
dc223ad4
ML
1629 /* We should have removed all edges now. */
1630 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
9dc3d6a9 1631
dc223ad4 1632 /* If nothing matched, go to the default label. */
377afcd5
ML
1633 edge e = make_edge (gsi_bb (gsi), default_bb, EDGE_FALLTHRU);
1634 e->probability = profile_probability::always ();
dc223ad4 1635}
9dc3d6a9 1636
dc223ad4
ML
1637/* Split the basic block at the statement pointed to by GSIP, and insert
1638 a branch to the target basic block of E_TRUE conditional on tree
1639 expression COND.
9dc3d6a9 1640
dc223ad4
ML
1641 It is assumed that there is already an edge from the to-be-split
1642 basic block to E_TRUE->dest block. This edge is removed, and the
1643 profile information on the edge is re-used for the new conditional
1644 jump.
9dc3d6a9 1645
dc223ad4
ML
1646 The CFG is updated. The dominator tree will not be valid after
1647 this transformation, but the immediate dominators are updated if
1648 UPDATE_DOMINATORS is true.
9dc3d6a9 1649
dc223ad4 1650 Returns the newly created basic block. */
9dc3d6a9 1651
dc223ad4
ML
1652basic_block
1653bit_test_cluster::hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
377afcd5
ML
1654 tree cond, basic_block case_bb,
1655 profile_probability prob)
9dc3d6a9 1656{
dc223ad4
ML
1657 tree tmp;
1658 gcond *cond_stmt;
1659 edge e_false;
1660 basic_block new_bb, split_bb = gsi_bb (*gsip);
9dc3d6a9 1661
dc223ad4 1662 edge e_true = make_edge (split_bb, case_bb, EDGE_TRUE_VALUE);
377afcd5 1663 e_true->probability = prob;
dc223ad4 1664 gcc_assert (e_true->src == split_bb);
9dc3d6a9 1665
dc223ad4
ML
1666 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
1667 /*before=*/true, GSI_SAME_STMT);
1668 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
1669 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
9dc3d6a9 1670
dc223ad4
ML
1671 e_false = split_block (split_bb, cond_stmt);
1672 new_bb = e_false->dest;
1673 redirect_edge_pred (e_true, split_bb);
9dc3d6a9 1674
dc223ad4
ML
1675 e_false->flags &= ~EDGE_FALLTHRU;
1676 e_false->flags |= EDGE_FALSE_VALUE;
1677 e_false->probability = e_true->probability.invert ();
1678 new_bb->count = e_false->count ();
1679
1680 return new_bb;
9dc3d6a9
ML
1681}
1682
dc223ad4
ML
1683/* Compute the number of case labels that correspond to each outgoing edge of
1684 switch statement. Record this information in the aux field of the edge. */
9dc3d6a9 1685
dc223ad4
ML
1686void
1687switch_decision_tree::compute_cases_per_edge ()
1688{
dbdfaaba 1689 reset_out_edges_aux (m_switch);
dc223ad4
ML
1690 int ncases = gimple_switch_num_labels (m_switch);
1691 for (int i = ncases - 1; i >= 1; --i)
1692 {
61ff5d6f 1693 edge case_edge = gimple_switch_edge (cfun, m_switch, i);
dc223ad4
ML
1694 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1);
1695 }
1696}
1697
1698/* Analyze switch statement and return true when the statement is expanded
1699 as decision tree. */
9dc3d6a9 1700
dc223ad4
ML
1701bool
1702switch_decision_tree::analyze_switch_statement ()
9dc3d6a9 1703{
dc223ad4
ML
1704 unsigned l = gimple_switch_num_labels (m_switch);
1705 basic_block bb = gimple_bb (m_switch);
1706 auto_vec<cluster *> clusters;
1707 clusters.create (l - 1);
1708
61ff5d6f 1709 basic_block default_bb = gimple_switch_default_bb (cfun, m_switch);
dc223ad4
ML
1710 m_case_bbs.reserve (l);
1711 m_case_bbs.quick_push (default_bb);
1712
1713 compute_cases_per_edge ();
1714
1715 for (unsigned i = 1; i < l; i++)
1716 {
1717 tree elt = gimple_switch_label (m_switch, i);
1718 tree lab = CASE_LABEL (elt);
61ff5d6f 1719 basic_block case_bb = label_to_block (cfun, lab);
dc223ad4
ML
1720 edge case_edge = find_edge (bb, case_bb);
1721 tree low = CASE_LOW (elt);
1722 tree high = CASE_HIGH (elt);
1723
1724 profile_probability p
1725 = case_edge->probability.apply_scale (1, (intptr_t) (case_edge->aux));
61ff5d6f
ML
1726 clusters.quick_push (new simple_cluster (low, high, elt, case_edge->dest,
1727 p));
1728 m_case_bbs.quick_push (case_edge->dest);
dc223ad4
ML
1729 }
1730
dbdfaaba 1731 reset_out_edges_aux (m_switch);
dc223ad4 1732
2f928c1b
ML
1733 /* Find jump table clusters. */
1734 vec<cluster *> output = jump_table_cluster::find_jump_tables (clusters);
1735
df7c7974 1736 /* Find bit test clusters. */
2f928c1b
ML
1737 vec<cluster *> output2;
1738 auto_vec<cluster *> tmp;
1739 output2.create (1);
1740 tmp.create (1);
1741
1742 for (unsigned i = 0; i < output.length (); i++)
1743 {
1744 cluster *c = output[i];
1745 if (c->get_type () != SIMPLE_CASE)
1746 {
1747 if (!tmp.is_empty ())
1748 {
1749 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp);
1750 output2.safe_splice (n);
1751 n.release ();
1752 tmp.truncate (0);
1753 }
1754 output2.safe_push (c);
1755 }
1756 else
1757 tmp.safe_push (c);
1758 }
1759
1760 /* We still can have a temporary vector to test. */
1761 if (!tmp.is_empty ())
1762 {
1763 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp);
1764 output2.safe_splice (n);
1765 n.release ();
1766 }
9dc3d6a9
ML
1767
1768 if (dump_file)
9dc3d6a9 1769 {
dc223ad4 1770 fprintf (dump_file, ";; GIMPLE switch case clusters: ");
2f928c1b
ML
1771 for (unsigned i = 0; i < output2.length (); i++)
1772 output2[i]->dump (dump_file, dump_flags & TDF_DETAILS);
dc223ad4
ML
1773 fprintf (dump_file, "\n");
1774 }
1775
2f928c1b 1776 output.release ();
dc223ad4 1777
2f928c1b
ML
1778 bool expanded = try_switch_expansion (output2);
1779
1780 for (unsigned i = 0; i < output2.length (); i++)
1781 delete output2[i];
1782
1783 output2.release ();
dc223ad4
ML
1784
1785 return expanded;
1786}
1787
1788/* Attempt to expand CLUSTERS as a decision tree. Return true when
1789 expanded. */
1790
1791bool
1792switch_decision_tree::try_switch_expansion (vec<cluster *> &clusters)
1793{
1794 tree index_expr = gimple_switch_index (m_switch);
1795 tree index_type = TREE_TYPE (index_expr);
1796 basic_block bb = gimple_bb (m_switch);
1797
1d9cd701
JJ
1798 if (gimple_switch_num_labels (m_switch) == 1
1799 || range_check_type (index_type) == NULL_TREE)
dc223ad4
ML
1800 return false;
1801
1802 /* Find the default case target label. */
61ff5d6f
ML
1803 edge default_edge = gimple_switch_default_edge (cfun, m_switch);
1804 m_default_bb = default_edge->dest;
dc223ad4
ML
1805
1806 /* Do the insertion of a case label into m_case_list. The labels are
1807 fed to us in descending order from the sorted vector of case labels used
1808 in the tree part of the middle end. So the list we construct is
1809 sorted in ascending order. */
1810
1811 for (int i = clusters.length () - 1; i >= 0; i--)
1812 {
1813 case_tree_node *r = m_case_list;
1814 m_case_list = m_case_node_pool.allocate ();
1815 m_case_list->m_right = r;
1816 m_case_list->m_c = clusters[i];
9dc3d6a9
ML
1817 }
1818
dc223ad4
ML
1819 record_phi_operand_mapping ();
1820
1821 /* Split basic block that contains the gswitch statement. */
9dc3d6a9
ML
1822 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1823 edge e;
1824 if (gsi_end_p (gsi))
1825 e = split_block_after_labels (bb);
1826 else
1827 {
1828 gsi_prev (&gsi);
1829 e = split_block (bb, gsi_stmt (gsi));
1830 }
1831 bb = split_edge (e);
1832
dc223ad4
ML
1833 /* Create new basic blocks for non-case clusters where specific expansion
1834 needs to happen. */
1835 for (unsigned i = 0; i < clusters.length (); i++)
1836 if (clusters[i]->get_type () != SIMPLE_CASE)
1837 {
1838 clusters[i]->m_case_bb = create_empty_bb (bb);
1839 clusters[i]->m_case_bb->loop_father = bb->loop_father;
1840 }
9dc3d6a9 1841
dc223ad4
ML
1842 /* Do not do an extra work for a single cluster. */
1843 if (clusters.length () == 1
1844 && clusters[0]->get_type () != SIMPLE_CASE)
3f10efd4
ML
1845 {
1846 cluster *c = clusters[0];
1847 c->emit (index_expr, index_type,
1848 gimple_switch_default_label (m_switch), m_default_bb);
1849 redirect_edge_succ (single_succ_edge (bb), c->m_case_bb);
1850 }
dc223ad4
ML
1851 else
1852 {
1853 emit (bb, index_expr, default_edge->probability, index_type);
1854
1855 /* Emit cluster-specific switch handling. */
1856 for (unsigned i = 0; i < clusters.length (); i++)
1857 if (clusters[i]->get_type () != SIMPLE_CASE)
1858 clusters[i]->emit (index_expr, index_type,
1859 gimple_switch_default_label (m_switch),
1860 m_default_bb);
1861 }
9dc3d6a9 1862
dc223ad4
ML
1863 fix_phi_operands_for_edges ();
1864
1865 return true;
9dc3d6a9
ML
1866}
1867
dc223ad4
ML
1868/* Before switch transformation, record all SSA_NAMEs defined in switch BB
1869 and used in a label basic block. */
1870
1871void
1872switch_decision_tree::record_phi_operand_mapping ()
9dc3d6a9 1873{
dc223ad4 1874 basic_block switch_bb = gimple_bb (m_switch);
9dc3d6a9 1875 /* Record all PHI nodes that have to be fixed after conversion. */
dc223ad4 1876 for (unsigned i = 0; i < m_case_bbs.length (); i++)
9dc3d6a9 1877 {
9dc3d6a9 1878 gphi_iterator gsi;
dc223ad4 1879 basic_block bb = m_case_bbs[i];
9dc3d6a9
ML
1880 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1881 {
1882 gphi *phi = gsi.phi ();
1883
1884 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
1885 {
1886 basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src;
1887 if (phi_src_bb == switch_bb)
1888 {
1889 tree def = gimple_phi_arg_def (phi, i);
1890 tree result = gimple_phi_result (phi);
dc223ad4 1891 m_phi_mapping.put (result, def);
9dc3d6a9
ML
1892 break;
1893 }
1894 }
1895 }
1896 }
1897}
1898
dc223ad4
ML
1899/* Append new operands to PHI statements that were introduced due to
1900 addition of new edges to case labels. */
9dc3d6a9 1901
dc223ad4
ML
1902void
1903switch_decision_tree::fix_phi_operands_for_edges ()
9dc3d6a9 1904{
dc223ad4 1905 gphi_iterator gsi;
9dc3d6a9 1906
dc223ad4
ML
1907 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1908 {
1909 basic_block bb = m_case_bbs[i];
1910 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1911 {
1912 gphi *phi = gsi.phi ();
1913 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
1914 {
1915 tree def = gimple_phi_arg_def (phi, j);
1916 if (def == NULL_TREE)
1917 {
1918 edge e = gimple_phi_arg_edge (phi, j);
1919 tree *definition
1920 = m_phi_mapping.get (gimple_phi_result (phi));
1921 gcc_assert (definition);
1922 add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION);
1923 }
1924 }
1925 }
1926 }
1927}
9dc3d6a9 1928
dc223ad4
ML
1929/* Generate a decision tree, switching on INDEX_EXPR and jumping to
1930 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
9dc3d6a9 1931
dc223ad4
ML
1932 We generate a binary decision tree to select the appropriate target
1933 code. */
9dc3d6a9 1934
dc223ad4
ML
1935void
1936switch_decision_tree::emit (basic_block bb, tree index_expr,
1937 profile_probability default_prob, tree index_type)
1938{
1939 balance_case_nodes (&m_case_list, NULL);
9dc3d6a9 1940
dc223ad4
ML
1941 if (dump_file)
1942 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1943 if (dump_file && (dump_flags & TDF_DETAILS))
1944 {
1945 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
1946 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
1947 gcc_assert (m_case_list != NULL);
1948 dump_case_nodes (dump_file, m_case_list, indent_step, 0);
1949 }
9dc3d6a9 1950
4359b631
EB
1951 bb = emit_case_nodes (bb, index_expr, m_case_list, default_prob, index_type,
1952 gimple_location (m_switch));
9dc3d6a9 1953
dc223ad4
ML
1954 if (bb)
1955 emit_jump (bb, m_default_bb);
9dc3d6a9 1956
dc223ad4
ML
1957 /* Remove all edges and do just an edge that will reach default_bb. */
1958 bb = gimple_bb (m_switch);
1959 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1960 gsi_remove (&gsi, true);
9dc3d6a9 1961
dc223ad4
ML
1962 delete_basic_block (bb);
1963}
1964
1965/* Take an ordered list of case nodes
1966 and transform them into a near optimal binary tree,
1967 on the assumption that any target code selection value is as
1968 likely as any other.
1969
1970 The transformation is performed by splitting the ordered
1971 list into two equal sections plus a pivot. The parts are
1972 then attached to the pivot as left and right branches. Each
1973 branch is then transformed recursively. */
1974
1975void
1976switch_decision_tree::balance_case_nodes (case_tree_node **head,
1977 case_tree_node *parent)
1978{
1979 case_tree_node *np;
1980
1981 np = *head;
1982 if (np)
9dc3d6a9 1983 {
dc223ad4
ML
1984 int i = 0;
1985 int ranges = 0;
1986 case_tree_node **npp;
1987 case_tree_node *left;
add4cbca 1988 profile_probability prob = profile_probability::never ();
9dc3d6a9 1989
dc223ad4 1990 /* Count the number of entries on branch. Also count the ranges. */
9dc3d6a9 1991
dc223ad4
ML
1992 while (np)
1993 {
1994 if (!tree_int_cst_equal (np->m_c->get_low (), np->m_c->get_high ()))
1995 ranges++;
9dc3d6a9 1996
dc223ad4 1997 i++;
add4cbca 1998 prob += np->m_c->m_prob;
dc223ad4
ML
1999 np = np->m_right;
2000 }
9dc3d6a9 2001
dc223ad4
ML
2002 if (i > 2)
2003 {
2004 /* Split this list if it is long enough for that to help. */
2005 npp = head;
2006 left = *npp;
add4cbca 2007 profile_probability pivot_prob = prob.apply_scale (1, 2);
9dc3d6a9 2008
add4cbca
ML
2009 /* Find the place in the list that bisects the list's total cost,
2010 where ranges count as 2. */
2011 while (1)
dc223ad4 2012 {
add4cbca
ML
2013 /* Skip nodes while their probability does not reach
2014 that amount. */
2015 prob -= (*npp)->m_c->m_prob;
a6b75a69
ML
2016 if ((prob.initialized_p () && prob < pivot_prob)
2017 || ! (*npp)->m_right)
add4cbca
ML
2018 break;
2019 npp = &(*npp)->m_right;
dc223ad4 2020 }
add4cbca
ML
2021
2022 np = *npp;
2023 *npp = 0;
2024 *head = np;
dc223ad4 2025 np->m_parent = parent;
add4cbca 2026 np->m_left = left == np ? NULL : left;
9dc3d6a9 2027
dc223ad4
ML
2028 /* Optimize each of the two split parts. */
2029 balance_case_nodes (&np->m_left, np);
2030 balance_case_nodes (&np->m_right, np);
2031 np->m_c->m_subtree_prob = np->m_c->m_prob;
add4cbca
ML
2032 if (np->m_left)
2033 np->m_c->m_subtree_prob += np->m_left->m_c->m_subtree_prob;
2034 if (np->m_right)
2035 np->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
dc223ad4
ML
2036 }
2037 else
2038 {
2039 /* Else leave this branch as one level,
2040 but fill in `parent' fields. */
2041 np = *head;
2042 np->m_parent = parent;
2043 np->m_c->m_subtree_prob = np->m_c->m_prob;
2044 for (; np->m_right; np = np->m_right)
2045 {
2046 np->m_right->m_parent = np;
2047 (*head)->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2048 }
2049 }
9dc3d6a9 2050 }
dc223ad4
ML
2051}
2052
2053/* Dump ROOT, a list or tree of case nodes, to file. */
9dc3d6a9 2054
dc223ad4
ML
2055void
2056switch_decision_tree::dump_case_nodes (FILE *f, case_tree_node *root,
2057 int indent_step, int indent_level)
2058{
2059 if (root == 0)
2060 return;
2061 indent_level++;
2062
2063 dump_case_nodes (f, root->m_left, indent_step, indent_level);
2064
2065 fputs (";; ", f);
2066 fprintf (f, "%*s", indent_step * indent_level, "");
2067 root->m_c->dump (f);
2068 root->m_c->m_prob.dump (f);
bb79aba4
ML
2069 fputs (" subtree: ", f);
2070 root->m_c->m_subtree_prob.dump (f);
2071 fputs (")\n", f);
dc223ad4
ML
2072
2073 dump_case_nodes (f, root->m_right, indent_step, indent_level);
2074}
2075
2076
2077/* Add an unconditional jump to CASE_BB that happens in basic block BB. */
2078
2079void
2080switch_decision_tree::emit_jump (basic_block bb, basic_block case_bb)
2081{
2082 edge e = single_succ_edge (bb);
2083 redirect_edge_succ (e, case_bb);
2084}
2085
2086/* Generate code to compare OP0 with OP1 so that the condition codes are
2087 set and to jump to LABEL_BB if the condition is true.
2088 COMPARISON is the GIMPLE comparison (EQ, NE, GT, etc.).
2089 PROB is the probability of jumping to LABEL_BB. */
2090
2091basic_block
2092switch_decision_tree::emit_cmp_and_jump_insns (basic_block bb, tree op0,
2093 tree op1, tree_code comparison,
2094 basic_block label_bb,
4359b631
EB
2095 profile_probability prob,
2096 location_t loc)
dc223ad4
ML
2097{
2098 // TODO: it's once called with lhs != index.
2099 op1 = fold_convert (TREE_TYPE (op0), op1);
2100
2101 gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE);
4359b631 2102 gimple_set_location (cond, loc);
dc223ad4
ML
2103 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2104 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
2105
2106 gcc_assert (single_succ_p (bb));
2107
2108 /* Make a new basic block where false branch will take place. */
2109 edge false_edge = split_block (bb, cond);
2110 false_edge->flags = EDGE_FALSE_VALUE;
2111 false_edge->probability = prob.invert ();
2112
2113 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2114 true_edge->probability = prob;
2115
2116 return false_edge->dest;
2117}
2118
bb79aba4
ML
2119/* Generate code to jump to LABEL if OP0 and OP1 are equal.
2120 PROB is the probability of jumping to LABEL_BB.
2121 BB is a basic block where the new condition will be placed. */
2122
2123basic_block
2124switch_decision_tree::do_jump_if_equal (basic_block bb, tree op0, tree op1,
2125 basic_block label_bb,
4359b631
EB
2126 profile_probability prob,
2127 location_t loc)
bb79aba4
ML
2128{
2129 op1 = fold_convert (TREE_TYPE (op0), op1);
2130
2131 gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE);
4359b631 2132 gimple_set_location (cond, loc);
bb79aba4
ML
2133 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2134 gsi_insert_before (&gsi, cond, GSI_SAME_STMT);
2135
2136 gcc_assert (single_succ_p (bb));
2137
2138 /* Make a new basic block where false branch will take place. */
2139 edge false_edge = split_block (bb, cond);
2140 false_edge->flags = EDGE_FALSE_VALUE;
2141 false_edge->probability = prob.invert ();
2142
2143 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2144 true_edge->probability = prob;
2145
2146 return false_edge->dest;
2147}
2148
dc223ad4
ML
2149/* Emit step-by-step code to select a case for the value of INDEX.
2150 The thus generated decision tree follows the form of the
2151 case-node binary tree NODE, whose nodes represent test conditions.
2152 DEFAULT_PROB is probability of cases leading to default BB.
2153 INDEX_TYPE is the type of the index of the switch. */
2154
2155basic_block
2156switch_decision_tree::emit_case_nodes (basic_block bb, tree index,
2157 case_tree_node *node,
2158 profile_probability default_prob,
4359b631 2159 tree index_type, location_t loc)
dc223ad4 2160{
bb79aba4
ML
2161 profile_probability p;
2162
dc223ad4
ML
2163 /* If node is null, we are done. */
2164 if (node == NULL)
2165 return bb;
2166
bb79aba4
ML
2167 /* Single value case. */
2168 if (node->m_c->is_single_value_p ())
2169 {
2170 /* Node is single valued. First see if the index expression matches
2171 this node and then check our children, if any. */
2172 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2173 bb = do_jump_if_equal (bb, index, node->m_c->get_low (),
4359b631 2174 node->m_c->m_case_bb, p, loc);
bb79aba4
ML
2175 /* Since this case is taken at this point, reduce its weight from
2176 subtree_weight. */
2177 node->m_c->m_subtree_prob -= p;
2178
2179 if (node->m_left != NULL && node->m_right != NULL)
2180 {
2181 /* 1) the node has both children
2182
2183 If both children are single-valued cases with no
2184 children, finish up all the work. This way, we can save
2185 one ordered comparison. */
2186
2187 if (!node->m_left->has_child ()
2188 && node->m_left->m_c->is_single_value_p ()
2189 && !node->m_right->has_child ()
2190 && node->m_right->m_c->is_single_value_p ())
2191 {
2192 p = (node->m_right->m_c->m_prob
2193 / (node->m_c->m_subtree_prob + default_prob));
2194 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
4359b631 2195 node->m_right->m_c->m_case_bb, p, loc);
bb79aba4
ML
2196
2197 p = (node->m_left->m_c->m_prob
2198 / (node->m_c->m_subtree_prob + default_prob));
2199 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
4359b631 2200 node->m_left->m_c->m_case_bb, p, loc);
bb79aba4
ML
2201 }
2202 else
2203 {
2204 /* Branch to a label where we will handle it later. */
2205 basic_block test_bb = split_edge (single_succ_edge (bb));
2206 redirect_edge_succ (single_pred_edge (test_bb),
2207 single_succ_edge (bb)->dest);
2208
2209 p = ((node->m_right->m_c->m_subtree_prob
2210 + default_prob.apply_scale (1, 2))
2211 / (node->m_c->m_subtree_prob + default_prob));
2212 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
4359b631 2213 GT_EXPR, test_bb, p, loc);
bb79aba4
ML
2214 default_prob = default_prob.apply_scale (1, 2);
2215
2216 /* Handle the left-hand subtree. */
2217 bb = emit_case_nodes (bb, index, node->m_left,
4359b631 2218 default_prob, index_type, loc);
bb79aba4
ML
2219
2220 /* If the left-hand subtree fell through,
2221 don't let it fall into the right-hand subtree. */
2222 if (bb && m_default_bb)
2223 emit_jump (bb, m_default_bb);
2224
2225 bb = emit_case_nodes (test_bb, index, node->m_right,
4359b631 2226 default_prob, index_type, loc);
bb79aba4
ML
2227 }
2228 }
2229 else if (node->m_left == NULL && node->m_right != NULL)
2230 {
2231 /* 2) the node has only right child. */
dc223ad4 2232
bb79aba4
ML
2233 /* Here we have a right child but no left so we issue a conditional
2234 branch to default and process the right child.
2235
2236 Omit the conditional branch to default if the right child
2237 does not have any children and is single valued; it would
2238 cost too much space to save so little time. */
2239
2240 if (node->m_right->has_child ()
2241 || !node->m_right->m_c->is_single_value_p ())
2242 {
2243 p = (default_prob.apply_scale (1, 2)
2244 / (node->m_c->m_subtree_prob + default_prob));
2245 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
4359b631 2246 LT_EXPR, m_default_bb, p, loc);
bb79aba4
ML
2247 default_prob = default_prob.apply_scale (1, 2);
2248
2249 bb = emit_case_nodes (bb, index, node->m_right, default_prob,
4359b631 2250 index_type, loc);
bb79aba4
ML
2251 }
2252 else
2253 {
2254 /* We cannot process node->right normally
2255 since we haven't ruled out the numbers less than
2256 this node's value. So handle node->right explicitly. */
2257 p = (node->m_right->m_c->m_subtree_prob
2258 / (node->m_c->m_subtree_prob + default_prob));
2259 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
4359b631 2260 node->m_right->m_c->m_case_bb, p, loc);
bb79aba4
ML
2261 }
2262 }
2263 else if (node->m_left != NULL && node->m_right == NULL)
2264 {
2265 /* 3) just one subtree, on the left. Similar case as previous. */
2266
2267 if (node->m_left->has_child ()
2268 || !node->m_left->m_c->is_single_value_p ())
2269 {
2270 p = (default_prob.apply_scale (1, 2)
2271 / (node->m_c->m_subtree_prob + default_prob));
2272 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
4359b631 2273 GT_EXPR, m_default_bb, p, loc);
bb79aba4
ML
2274 default_prob = default_prob.apply_scale (1, 2);
2275
2276 bb = emit_case_nodes (bb, index, node->m_left, default_prob,
4359b631 2277 index_type, loc);
bb79aba4
ML
2278 }
2279 else
2280 {
2281 /* We cannot process node->left normally
2282 since we haven't ruled out the numbers less than
2283 this node's value. So handle node->left explicitly. */
2284 p = (node->m_left->m_c->m_subtree_prob
2285 / (node->m_c->m_subtree_prob + default_prob));
2286 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
4359b631 2287 node->m_left->m_c->m_case_bb, p, loc);
bb79aba4
ML
2288 }
2289 }
2290 }
2291 else
2292 {
2293 /* Node is a range. These cases are very similar to those for a single
2294 value, except that we do not start by testing whether this node
2295 is the one to branch to. */
2296 if (node->has_child () || node->m_c->get_type () != SIMPLE_CASE)
2297 {
2298 /* Branch to a label where we will handle it later. */
2299 basic_block test_bb = split_edge (single_succ_edge (bb));
2300 redirect_edge_succ (single_pred_edge (test_bb),
2301 single_succ_edge (bb)->dest);
2302
2303
2304 profile_probability right_prob = profile_probability::never ();
2305 if (node->m_right)
2306 right_prob = node->m_right->m_c->m_subtree_prob;
2307 p = ((right_prob + default_prob.apply_scale (1, 2))
2308 / (node->m_c->m_subtree_prob + default_prob));
2309
2310 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
4359b631 2311 GT_EXPR, test_bb, p, loc);
bb79aba4
ML
2312 default_prob = default_prob.apply_scale (1, 2);
2313
2314 /* Value belongs to this node or to the left-hand subtree. */
2315 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2316 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
4359b631 2317 GE_EXPR, node->m_c->m_case_bb, p, loc);
bb79aba4
ML
2318
2319 /* Handle the left-hand subtree. */
2320 bb = emit_case_nodes (bb, index, node->m_left,
4359b631 2321 default_prob, index_type, loc);
bb79aba4
ML
2322
2323 /* If the left-hand subtree fell through,
2324 don't let it fall into the right-hand subtree. */
2325 if (bb && m_default_bb)
2326 emit_jump (bb, m_default_bb);
2327
2328 bb = emit_case_nodes (test_bb, index, node->m_right,
4359b631 2329 default_prob, index_type, loc);
bb79aba4
ML
2330 }
2331 else
2332 {
2333 /* Node has no children so we check low and high bounds to remove
2334 redundant tests. Only one of the bounds can exist,
2335 since otherwise this node is bounded--a case tested already. */
2336 tree lhs, rhs;
2337 generate_range_test (bb, index, node->m_c->get_low (),
2338 node->m_c->get_high (), &lhs, &rhs);
2339 p = default_prob / (node->m_c->m_subtree_prob + default_prob);
2340
2341 bb = emit_cmp_and_jump_insns (bb, lhs, rhs, GT_EXPR,
4359b631 2342 m_default_bb, p, loc);
bb79aba4
ML
2343
2344 emit_jump (bb, node->m_c->m_case_bb);
2345 return NULL;
2346 }
2347 }
dc223ad4
ML
2348
2349 return bb;
2350}
2351
2352/* The main function of the pass scans statements for switches and invokes
2353 process_switch on them. */
2354
2355namespace {
2356
2357const pass_data pass_data_convert_switch =
2358{
2359 GIMPLE_PASS, /* type */
2360 "switchconv", /* name */
2361 OPTGROUP_NONE, /* optinfo_flags */
2362 TV_TREE_SWITCH_CONVERSION, /* tv_id */
2363 ( PROP_cfg | PROP_ssa ), /* properties_required */
2364 0, /* properties_provided */
2365 0, /* properties_destroyed */
2366 0, /* todo_flags_start */
2367 TODO_update_ssa, /* todo_flags_finish */
2368};
2369
2370class pass_convert_switch : public gimple_opt_pass
2371{
2372public:
2373 pass_convert_switch (gcc::context *ctxt)
2374 : gimple_opt_pass (pass_data_convert_switch, ctxt)
2375 {}
2376
2377 /* opt_pass methods: */
2378 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
2379 virtual unsigned int execute (function *);
2380
2381}; // class pass_convert_switch
2382
2383unsigned int
2384pass_convert_switch::execute (function *fun)
2385{
2386 basic_block bb;
2387 bool cfg_altered = false;
2388
2389 FOR_EACH_BB_FN (bb, fun)
2390 {
2391 gimple *stmt = last_stmt (bb);
2392 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
2393 {
2394 if (dump_file)
2395 {
2396 expanded_location loc = expand_location (gimple_location (stmt));
2397
2398 fprintf (dump_file, "beginning to process the following "
2399 "SWITCH statement (%s:%d) : ------- \n",
2400 loc.file, loc.line);
2401 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2402 putc ('\n', dump_file);
2403 }
2404
2405 switch_conversion sconv;
2406 sconv.expand (as_a <gswitch *> (stmt));
2407 cfg_altered |= sconv.m_cfg_altered;
2408 if (!sconv.m_reason)
2409 {
2410 if (dump_file)
2411 {
2412 fputs ("Switch converted\n", dump_file);
2413 fputs ("--------------------------------\n", dump_file);
2414 }
2415
2416 /* Make no effort to update the post-dominator tree.
2417 It is actually not that hard for the transformations
2418 we have performed, but it is not supported
2419 by iterate_fix_dominators. */
2420 free_dominance_info (CDI_POST_DOMINATORS);
2421 }
2422 else
2423 {
2424 if (dump_file)
2425 {
2426 fputs ("Bailing out - ", dump_file);
2427 fputs (sconv.m_reason, dump_file);
2428 fputs ("\n--------------------------------\n", dump_file);
2429 }
2430 }
2431 }
2432 }
2433
2434 return cfg_altered ? TODO_cleanup_cfg : 0;;
2435}
2436
2437} // anon namespace
2438
2439gimple_opt_pass *
2440make_pass_convert_switch (gcc::context *ctxt)
2441{
2442 return new pass_convert_switch (ctxt);
9dc3d6a9
ML
2443}
2444
2445/* The main function of the pass scans statements for switches and invokes
2446 process_switch on them. */
2447
2448namespace {
2449
eb63c01f 2450template <bool O0> class pass_lower_switch: public gimple_opt_pass
9dc3d6a9 2451{
eb63c01f
ML
2452public:
2453 pass_lower_switch (gcc::context *ctxt) : gimple_opt_pass (data, ctxt) {}
2454
2455 static const pass_data data;
2456 opt_pass *
2457 clone ()
2458 {
2459 return new pass_lower_switch<O0> (m_ctxt);
2460 }
2461
2462 virtual bool
2463 gate (function *)
2464 {
2465 return !O0 || !optimize;
2466 }
2467
2468 virtual unsigned int execute (function *fun);
2469}; // class pass_lower_switch
2470
2471template <bool O0>
2472const pass_data pass_lower_switch<O0>::data = {
2473 GIMPLE_PASS, /* type */
2474 O0 ? "switchlower_O0" : "switchlower", /* name */
9dc3d6a9
ML
2475 OPTGROUP_NONE, /* optinfo_flags */
2476 TV_TREE_SWITCH_LOWERING, /* tv_id */
2477 ( PROP_cfg | PROP_ssa ), /* properties_required */
2478 0, /* properties_provided */
2479 0, /* properties_destroyed */
2480 0, /* todo_flags_start */
2481 TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
2482};
2483
eb63c01f 2484template <bool O0>
9dc3d6a9 2485unsigned int
eb63c01f 2486pass_lower_switch<O0>::execute (function *fun)
9dc3d6a9
ML
2487{
2488 basic_block bb;
2489 bool expanded = false;
2490
dc223ad4
ML
2491 auto_vec<gimple *> switch_statements;
2492 switch_statements.create (1);
2493
9dc3d6a9
ML
2494 FOR_EACH_BB_FN (bb, fun)
2495 {
2496 gimple *stmt = last_stmt (bb);
e6c5d9f0
ML
2497 gswitch *swtch;
2498 if (stmt && (swtch = dyn_cast<gswitch *> (stmt)))
2499 {
2500 if (!O0)
2501 group_case_labels_stmt (swtch);
2502 switch_statements.safe_push (swtch);
2503 }
dc223ad4
ML
2504 }
2505
2506 for (unsigned i = 0; i < switch_statements.length (); i++)
2507 {
2508 gimple *stmt = switch_statements[i];
2509 if (dump_file)
9dc3d6a9 2510 {
dc223ad4 2511 expanded_location loc = expand_location (gimple_location (stmt));
9dc3d6a9 2512
dc223ad4
ML
2513 fprintf (dump_file, "beginning to process the following "
2514 "SWITCH statement (%s:%d) : ------- \n",
2515 loc.file, loc.line);
2516 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2517 putc ('\n', dump_file);
2518 }
9dc3d6a9 2519
dc223ad4
ML
2520 gswitch *swtch = dyn_cast<gswitch *> (stmt);
2521 if (swtch)
2522 {
2523 switch_decision_tree dt (swtch);
2524 expanded |= dt.analyze_switch_statement ();
9dc3d6a9
ML
2525 }
2526 }
2527
2528 if (expanded)
2529 {
2530 free_dominance_info (CDI_DOMINATORS);
2531 free_dominance_info (CDI_POST_DOMINATORS);
2532 mark_virtual_operands_for_renaming (cfun);
2533 }
2534
2535 return 0;
2536}
2537
2538} // anon namespace
2539
2540gimple_opt_pass *
eb63c01f 2541make_pass_lower_switch_O0 (gcc::context *ctxt)
9dc3d6a9 2542{
eb63c01f 2543 return new pass_lower_switch<true> (ctxt);
9dc3d6a9 2544}
eb63c01f
ML
2545gimple_opt_pass *
2546make_pass_lower_switch (gcc::context *ctxt)
9dc3d6a9 2547{
eb63c01f 2548 return new pass_lower_switch<false> (ctxt);
9dc3d6a9
ML
2549}
2550
9dc3d6a9 2551