]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-vect-data-refs.c
[PATCH 3/7] OpenMP 4.0 offloading infrastructure: Offload tables.
[thirdparty/gcc.git] / gcc / tree-vect-data-refs.c
CommitLineData
b8698a0f 1/* Data References Analysis and Manipulation Utilities for Vectorization.
23a5b65a 2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
b8698a0f 3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
ebfd146a
IR
4 and Ira Rosen <irar@il.ibm.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
78c60e3d 25#include "dumpfile.h"
ebfd146a 26#include "tm.h"
ebfd146a 27#include "tree.h"
d8a2d370 28#include "stor-layout.h"
237e9c04 29#include "tm_p.h"
ebfd146a 30#include "target.h"
60393bbc
AM
31#include "predict.h"
32#include "vec.h"
33#include "hashtab.h"
34#include "hash-set.h"
35#include "machmode.h"
36#include "hard-reg-set.h"
37#include "input.h"
38#include "function.h"
39#include "dominance.h"
40#include "cfg.h"
ebfd146a 41#include "basic-block.h"
cf835838 42#include "gimple-pretty-print.h"
2fb9a547
AM
43#include "tree-ssa-alias.h"
44#include "internal-fn.h"
45#include "tree-eh.h"
46#include "gimple-expr.h"
47#include "is-a.h"
18f429e2 48#include "gimple.h"
45b0be94 49#include "gimplify.h"
5be5c238 50#include "gimple-iterator.h"
18f429e2 51#include "gimplify-me.h"
442b4905
AM
52#include "gimple-ssa.h"
53#include "tree-phinodes.h"
54#include "ssa-iterators.h"
d8a2d370 55#include "stringpool.h"
442b4905 56#include "tree-ssanames.h"
e28030cf
AM
57#include "tree-ssa-loop-ivopts.h"
58#include "tree-ssa-loop-manip.h"
442b4905 59#include "tree-ssa-loop.h"
7ee2468b 60#include "dumpfile.h"
ebfd146a 61#include "cfgloop.h"
ebfd146a
IR
62#include "tree-chrec.h"
63#include "tree-scalar-evolution.h"
64#include "tree-vectorizer.h"
718f9c0f 65#include "diagnostic-core.h"
c582198b
AM
66#include "hash-map.h"
67#include "plugin-api.h"
68#include "ipa-ref.h"
0136f8f0 69#include "cgraph.h"
2eb79bbb
SB
70/* Need to include rtl.h, expr.h, etc. for optabs. */
71#include "expr.h"
b0710fe1 72#include "insn-codes.h"
2eb79bbb 73#include "optabs.h"
9b2b7279 74#include "builtins.h"
6ad386b7 75#include "varasm.h"
ebfd146a 76
272c6793
RS
77/* Return true if load- or store-lanes optab OPTAB is implemented for
78 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
79
80static bool
81vect_lanes_optab_supported_p (const char *name, convert_optab optab,
82 tree vectype, unsigned HOST_WIDE_INT count)
83{
ef4bddc2 84 machine_mode mode, array_mode;
272c6793
RS
85 bool limit_p;
86
87 mode = TYPE_MODE (vectype);
88 limit_p = !targetm.array_mode_supported_p (mode, count);
89 array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
90 MODE_INT, limit_p);
91
92 if (array_mode == BLKmode)
93 {
73fbfcad 94 if (dump_enabled_p ())
e645e942
TJ
95 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
96 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]\n",
78c60e3d 97 GET_MODE_NAME (mode), count);
272c6793
RS
98 return false;
99 }
100
101 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
102 {
73fbfcad 103 if (dump_enabled_p ())
78c60e3d 104 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942 105 "cannot use %s<%s><%s>\n", name,
78c60e3d 106 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
272c6793
RS
107 return false;
108 }
109
73fbfcad 110 if (dump_enabled_p ())
78c60e3d 111 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 112 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
78c60e3d 113 GET_MODE_NAME (mode));
272c6793
RS
114
115 return true;
116}
117
118
ebfd146a 119/* Return the smallest scalar part of STMT.
ff802fa1
IR
120 This is used to determine the vectype of the stmt. We generally set the
121 vectype according to the type of the result (lhs). For stmts whose
ebfd146a 122 result-type is different than the type of the arguments (e.g., demotion,
b8698a0f 123 promotion), vectype will be reset appropriately (later). Note that we have
ebfd146a 124 to visit the smallest datatype in this function, because that determines the
ff802fa1 125 VF. If the smallest datatype in the loop is present only as the rhs of a
ebfd146a
IR
126 promotion operation - we'd miss it.
127 Such a case, where a variable of this datatype does not appear in the lhs
128 anywhere in the loop, can only occur if it's an invariant: e.g.:
b8698a0f 129 'int_x = (int) short_inv', which we'd expect to have been optimized away by
ff802fa1
IR
130 invariant motion. However, we cannot rely on invariant motion to always
131 take invariants out of the loop, and so in the case of promotion we also
132 have to check the rhs.
ebfd146a
IR
133 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
134 types. */
135
136tree
137vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
138 HOST_WIDE_INT *rhs_size_unit)
139{
140 tree scalar_type = gimple_expr_type (stmt);
141 HOST_WIDE_INT lhs, rhs;
142
143 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
144
145 if (is_gimple_assign (stmt)
146 && (gimple_assign_cast_p (stmt)
147 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
39f3fed6 148 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
ebfd146a
IR
149 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
150 {
151 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
152
153 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
154 if (rhs < lhs)
155 scalar_type = rhs_type;
156 }
b8698a0f
L
157
158 *lhs_size_unit = lhs;
ebfd146a
IR
159 *rhs_size_unit = rhs;
160 return scalar_type;
161}
162
163
ebfd146a
IR
164/* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
165 tested at run-time. Return TRUE if DDR was successfully inserted.
166 Return false if versioning is not supported. */
167
168static bool
169vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
170{
171 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
172
173 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
174 return false;
175
73fbfcad 176 if (dump_enabled_p ())
ebfd146a 177 {
78c60e3d
SS
178 dump_printf_loc (MSG_NOTE, vect_location,
179 "mark for run-time aliasing test between ");
180 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
181 dump_printf (MSG_NOTE, " and ");
182 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
e645e942 183 dump_printf (MSG_NOTE, "\n");
ebfd146a
IR
184 }
185
186 if (optimize_loop_nest_for_size_p (loop))
187 {
73fbfcad 188 if (dump_enabled_p ())
e645e942
TJ
189 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
190 "versioning not supported when optimizing"
191 " for size.\n");
ebfd146a
IR
192 return false;
193 }
194
195 /* FORNOW: We don't support versioning with outer-loop vectorization. */
196 if (loop->inner)
197 {
73fbfcad 198 if (dump_enabled_p ())
e645e942
TJ
199 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
200 "versioning not yet supported for outer-loops.\n");
ebfd146a
IR
201 return false;
202 }
203
319e6439
RG
204 /* FORNOW: We don't support creating runtime alias tests for non-constant
205 step. */
206 if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
207 || TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
208 {
73fbfcad 209 if (dump_enabled_p ())
e645e942 210 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
78c60e3d 211 "versioning not yet supported for non-constant "
e645e942 212 "step\n");
319e6439
RG
213 return false;
214 }
215
9771b263 216 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
ebfd146a
IR
217 return true;
218}
219
a70d6342 220
ebfd146a
IR
221/* Function vect_analyze_data_ref_dependence.
222
223 Return TRUE if there (might) exist a dependence between a memory-reference
224 DRA and a memory-reference DRB. When versioning for alias may check a
777e1f09
RG
225 dependence at run-time, return FALSE. Adjust *MAX_VF according to
226 the data dependence. */
b8698a0f 227
ebfd146a
IR
228static bool
229vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
5bfdb7d8 230 loop_vec_info loop_vinfo, int *max_vf)
ebfd146a
IR
231{
232 unsigned int i;
5abe1e05 233 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
ebfd146a
IR
234 struct data_reference *dra = DDR_A (ddr);
235 struct data_reference *drb = DDR_B (ddr);
b8698a0f 236 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
ebfd146a 237 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
ebfd146a
IR
238 lambda_vector dist_v;
239 unsigned int loop_depth;
b8698a0f 240
5abe1e05 241 /* In loop analysis all data references should be vectorizable. */
4b5caab7
IR
242 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
243 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
5abe1e05 244 gcc_unreachable ();
4b5caab7 245
5abe1e05 246 /* Independent data accesses. */
ebfd146a 247 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
5abe1e05 248 return false;
a70d6342 249
5abe1e05
RB
250 if (dra == drb
251 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
ebfd146a 252 return false;
5961d779
RB
253
254 /* Even if we have an anti-dependence then, as the vectorized loop covers at
255 least two scalar iterations, there is always also a true dependence.
256 As the vectorizer does not re-order loads and stores we can ignore
257 the anti-dependence if TBAA can disambiguate both DRs similar to the
258 case with known negative distance anti-dependences (positive
259 distance anti-dependences would violate TBAA constraints). */
260 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
261 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
262 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
263 get_alias_set (DR_REF (drb))))
264 return false;
b8698a0f 265
5abe1e05 266 /* Unknown data dependence. */
ebfd146a
IR
267 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
268 {
74bf76ed
JJ
269 /* If user asserted safelen consecutive iterations can be
270 executed concurrently, assume independence. */
271 if (loop->safelen >= 2)
272 {
273 if (loop->safelen < *max_vf)
274 *max_vf = loop->safelen;
d1417442 275 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
74bf76ed
JJ
276 return false;
277 }
278
90eb75f2
RB
279 if (STMT_VINFO_GATHER_P (stmtinfo_a)
280 || STMT_VINFO_GATHER_P (stmtinfo_b))
281 {
282 if (dump_enabled_p ())
283 {
284 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
285 "versioning for alias not supported for: "
286 "can't determine dependence between ");
287 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
288 DR_REF (dra));
289 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
290 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
291 DR_REF (drb));
e645e942 292 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
90eb75f2 293 }
fdf6a7b9 294 return true;
90eb75f2
RB
295 }
296
73fbfcad 297 if (dump_enabled_p ())
5abe1e05
RB
298 {
299 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
300 "versioning for alias required: "
301 "can't determine dependence between ");
302 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
303 DR_REF (dra));
304 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
305 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
306 DR_REF (drb));
e645e942 307 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
5abe1e05 308 }
e4a707c4 309
5abe1e05
RB
310 /* Add to list of ddrs that need to be tested at run-time. */
311 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
a70d6342
IR
312 }
313
5abe1e05 314 /* Known data dependence. */
ebfd146a
IR
315 if (DDR_NUM_DIST_VECTS (ddr) == 0)
316 {
74bf76ed
JJ
317 /* If user asserted safelen consecutive iterations can be
318 executed concurrently, assume independence. */
319 if (loop->safelen >= 2)
320 {
321 if (loop->safelen < *max_vf)
322 *max_vf = loop->safelen;
d1417442 323 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
74bf76ed
JJ
324 return false;
325 }
326
90eb75f2
RB
327 if (STMT_VINFO_GATHER_P (stmtinfo_a)
328 || STMT_VINFO_GATHER_P (stmtinfo_b))
329 {
330 if (dump_enabled_p ())
331 {
332 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
333 "versioning for alias not supported for: "
334 "bad dist vector for ");
335 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
336 DR_REF (dra));
337 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
338 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
339 DR_REF (drb));
e645e942 340 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
90eb75f2 341 }
fdf6a7b9 342 return true;
90eb75f2
RB
343 }
344
73fbfcad 345 if (dump_enabled_p ())
ebfd146a 346 {
e645e942 347 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
78c60e3d
SS
348 "versioning for alias required: "
349 "bad dist vector for ");
350 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
351 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
352 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
e645e942 353 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
ebfd146a
IR
354 }
355 /* Add to list of ddrs that need to be tested at run-time. */
356 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
b8698a0f 357 }
ebfd146a
IR
358
359 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
9771b263 360 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
ebfd146a
IR
361 {
362 int dist = dist_v[loop_depth];
363
73fbfcad 364 if (dump_enabled_p ())
78c60e3d 365 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 366 "dependence distance = %d.\n", dist);
ebfd146a 367
777e1f09 368 if (dist == 0)
ebfd146a 369 {
73fbfcad 370 if (dump_enabled_p ())
ebfd146a 371 {
e645e942
TJ
372 dump_printf_loc (MSG_NOTE, vect_location,
373 "dependence distance == 0 between ");
78c60e3d
SS
374 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
375 dump_printf (MSG_NOTE, " and ");
376 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
e645e942 377 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
ebfd146a
IR
378 }
379
5185d248
RB
380 /* When we perform grouped accesses and perform implicit CSE
381 by detecting equal accesses and doing disambiguation with
382 runtime alias tests like for
383 .. = a[i];
384 .. = a[i+1];
385 a[i] = ..;
386 a[i+1] = ..;
387 *p = ..;
388 .. = a[i];
389 .. = a[i+1];
390 where we will end up loading { a[i], a[i+1] } once, make
391 sure that inserting group loads before the first load and
e33f43b9
RB
392 stores after the last store will do the right thing.
393 Similar for groups like
394 a[i] = ...;
395 ... = a[i];
396 a[i+1] = ...;
397 where loads from the group interleave with the store. */
398 if (STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
399 || STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
5185d248
RB
400 {
401 gimple earlier_stmt;
402 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
403 if (DR_IS_WRITE
404 (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
405 {
406 if (dump_enabled_p ())
407 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942
TJ
408 "READ_WRITE dependence in interleaving."
409 "\n");
5185d248
RB
410 return true;
411 }
ebfd146a 412 }
b8698a0f 413
777e1f09
RG
414 continue;
415 }
416
417 if (dist > 0 && DDR_REVERSED_P (ddr))
418 {
419 /* If DDR_REVERSED_P the order of the data-refs in DDR was
420 reversed (to make distance vector positive), and the actual
421 distance is negative. */
73fbfcad 422 if (dump_enabled_p ())
78c60e3d 423 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942 424 "dependence distance negative.\n");
f2556b68
RB
425 /* Record a negative dependence distance to later limit the
426 amount of stmt copying / unrolling we can perform.
427 Only need to handle read-after-write dependence. */
428 if (DR_IS_READ (drb)
429 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
430 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
431 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
777e1f09
RG
432 continue;
433 }
434
435 if (abs (dist) >= 2
436 && abs (dist) < *max_vf)
437 {
438 /* The dependence distance requires reduction of the maximal
439 vectorization factor. */
440 *max_vf = abs (dist);
73fbfcad 441 if (dump_enabled_p ())
78c60e3d 442 dump_printf_loc (MSG_NOTE, vect_location,
e645e942
TJ
443 "adjusting maximal vectorization factor to %i\n",
444 *max_vf);
ebfd146a
IR
445 }
446
777e1f09 447 if (abs (dist) >= *max_vf)
ebfd146a 448 {
b8698a0f 449 /* Dependence distance does not create dependence, as far as
777e1f09 450 vectorization is concerned, in this case. */
73fbfcad 451 if (dump_enabled_p ())
78c60e3d 452 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 453 "dependence distance >= VF.\n");
ebfd146a
IR
454 continue;
455 }
456
73fbfcad 457 if (dump_enabled_p ())
ebfd146a 458 {
78c60e3d 459 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942
TJ
460 "not vectorized, possible dependence "
461 "between data-refs ");
78c60e3d
SS
462 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
463 dump_printf (MSG_NOTE, " and ");
464 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
e645e942 465 dump_printf (MSG_NOTE, "\n");
ebfd146a
IR
466 }
467
468 return true;
469 }
470
471 return false;
472}
473
474/* Function vect_analyze_data_ref_dependences.
b8698a0f 475
ebfd146a 476 Examine all the data references in the loop, and make sure there do not
777e1f09
RG
477 exist any data dependences between them. Set *MAX_VF according to
478 the maximum vectorization factor the data dependences allow. */
b8698a0f 479
ebfd146a 480bool
5abe1e05 481vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, int *max_vf)
ebfd146a
IR
482{
483 unsigned int i;
ebfd146a
IR
484 struct data_dependence_relation *ddr;
485
73fbfcad 486 if (dump_enabled_p ())
78c60e3d 487 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 488 "=== vect_analyze_data_ref_dependences ===\n");
5abe1e05 489
d1417442 490 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
5abe1e05
RB
491 if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
492 &LOOP_VINFO_DDRS (loop_vinfo),
493 LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
494 return false;
495
496 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
497 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
498 return false;
499
500 return true;
501}
502
503
504/* Function vect_slp_analyze_data_ref_dependence.
505
506 Return TRUE if there (might) exist a dependence between a memory-reference
507 DRA and a memory-reference DRB. When versioning for alias may check a
508 dependence at run-time, return FALSE. Adjust *MAX_VF according to
509 the data dependence. */
510
511static bool
512vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
513{
514 struct data_reference *dra = DDR_A (ddr);
515 struct data_reference *drb = DDR_B (ddr);
516
517 /* We need to check dependences of statements marked as unvectorizable
518 as well, they still can prohibit vectorization. */
519
520 /* Independent data accesses. */
521 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
522 return false;
523
524 if (dra == drb)
525 return false;
526
527 /* Read-read is OK. */
528 if (DR_IS_READ (dra) && DR_IS_READ (drb))
529 return false;
530
e6c9d234
RB
531 /* If dra and drb are part of the same interleaving chain consider
532 them independent. */
533 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra)))
534 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra)))
535 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb)))))
536 return false;
537
5abe1e05
RB
538 /* Unknown data dependence. */
539 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
fcac74a1 540 {
649d196d
RB
541 if (dump_enabled_p ())
542 {
543 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
544 "can't determine dependence between ");
545 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
546 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
547 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
e645e942 548 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
649d196d 549 }
fcac74a1 550 }
649d196d 551 else if (dump_enabled_p ())
fcac74a1 552 {
5abe1e05
RB
553 dump_printf_loc (MSG_NOTE, vect_location,
554 "determined dependence between ");
555 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
556 dump_printf (MSG_NOTE, " and ");
557 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
e645e942 558 dump_printf (MSG_NOTE, "\n");
fcac74a1 559 }
b8698a0f 560
649d196d 561 /* We do not vectorize basic blocks with write-write dependencies. */
5abe1e05
RB
562 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
563 return true;
564
649d196d 565 /* If we have a read-write dependence check that the load is before the store.
5abe1e05
RB
566 When we vectorize basic blocks, vector load can be only before
567 corresponding scalar load, and vector store can be only after its
568 corresponding scalar store. So the order of the acceses is preserved in
569 case the load is before the store. */
649d196d 570 gimple earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
5abe1e05 571 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
649d196d
RB
572 {
573 /* That only holds for load-store pairs taking part in vectorization. */
574 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dra)))
575 && STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (drb))))
576 return false;
577 }
5abe1e05
RB
578
579 return true;
580}
581
582
583/* Function vect_analyze_data_ref_dependences.
584
585 Examine all the data references in the basic-block, and make sure there
586 do not exist any data dependences between them. Set *MAX_VF according to
587 the maximum vectorization factor the data dependences allow. */
588
589bool
590vect_slp_analyze_data_ref_dependences (bb_vec_info bb_vinfo)
591{
592 struct data_dependence_relation *ddr;
593 unsigned int i;
594
595 if (dump_enabled_p ())
596 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 597 "=== vect_slp_analyze_data_ref_dependences ===\n");
5abe1e05
RB
598
599 if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo),
600 &BB_VINFO_DDRS (bb_vinfo),
601 vNULL, true))
602 return false;
603
604 FOR_EACH_VEC_ELT (BB_VINFO_DDRS (bb_vinfo), i, ddr)
605 if (vect_slp_analyze_data_ref_dependence (ddr))
ebfd146a
IR
606 return false;
607
608 return true;
609}
610
611
612/* Function vect_compute_data_ref_alignment
613
614 Compute the misalignment of the data reference DR.
615
616 Output:
617 1. If during the misalignment computation it is found that the data reference
618 cannot be vectorized then false is returned.
619 2. DR_MISALIGNMENT (DR) is defined.
620
621 FOR NOW: No analysis is actually performed. Misalignment is calculated
622 only for trivial cases. TODO. */
623
624static bool
625vect_compute_data_ref_alignment (struct data_reference *dr)
626{
627 gimple stmt = DR_STMT (dr);
b8698a0f 628 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
ebfd146a 629 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
a70d6342 630 struct loop *loop = NULL;
ebfd146a
IR
631 tree ref = DR_REF (dr);
632 tree vectype;
633 tree base, base_addr;
634 bool base_aligned;
635 tree misalign;
636 tree aligned_to, alignment;
b8698a0f 637
73fbfcad 638 if (dump_enabled_p ())
78c60e3d 639 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 640 "vect_compute_data_ref_alignment:\n");
ebfd146a 641
a70d6342
IR
642 if (loop_vinfo)
643 loop = LOOP_VINFO_LOOP (loop_vinfo);
b8698a0f 644
ebfd146a
IR
645 /* Initialize misalignment to unknown. */
646 SET_DR_MISALIGNMENT (dr, -1);
647
7595989b
RG
648 /* Strided loads perform only component accesses, misalignment information
649 is irrelevant for them. */
650 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
651 return true;
652
ebfd146a
IR
653 misalign = DR_INIT (dr);
654 aligned_to = DR_ALIGNED_TO (dr);
655 base_addr = DR_BASE_ADDRESS (dr);
656 vectype = STMT_VINFO_VECTYPE (stmt_info);
657
658 /* In case the dataref is in an inner-loop of the loop that is being
659 vectorized (LOOP), we use the base and misalignment information
ff802fa1 660 relative to the outer-loop (LOOP). This is ok only if the misalignment
ebfd146a
IR
661 stays the same throughout the execution of the inner-loop, which is why
662 we have to check that the stride of the dataref in the inner-loop evenly
663 divides by the vector size. */
a70d6342 664 if (loop && nested_in_vect_loop_p (loop, stmt))
ebfd146a
IR
665 {
666 tree step = DR_STEP (dr);
667 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
b8698a0f 668
ebfd146a
IR
669 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
670 {
73fbfcad 671 if (dump_enabled_p ())
78c60e3d 672 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 673 "inner step divides the vector-size.\n");
ebfd146a
IR
674 misalign = STMT_VINFO_DR_INIT (stmt_info);
675 aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
676 base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
677 }
678 else
679 {
73fbfcad 680 if (dump_enabled_p ())
78c60e3d 681 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942 682 "inner step doesn't divide the vector-size.\n");
ebfd146a
IR
683 misalign = NULL_TREE;
684 }
685 }
686
3ebde0e9
UW
687 /* Similarly, if we're doing basic-block vectorization, we can only use
688 base and misalignment information relative to an innermost loop if the
689 misalignment stays the same throughout the execution of the loop.
690 As above, this is the case if the stride of the dataref evenly divides
691 by the vector size. */
692 if (!loop)
693 {
694 tree step = DR_STEP (dr);
695 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
696
697 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)
698 {
73fbfcad 699 if (dump_enabled_p ())
e645e942
TJ
700 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
701 "SLP: step doesn't divide the vector-size.\n");
3ebde0e9
UW
702 misalign = NULL_TREE;
703 }
704 }
705
ebfd146a
IR
706 base = build_fold_indirect_ref (base_addr);
707 alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
708
709 if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
710 || !misalign)
711 {
73fbfcad 712 if (dump_enabled_p ())
ebfd146a 713 {
78c60e3d 714 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942 715 "Unknown alignment for access: ");
78c60e3d 716 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, base);
e645e942 717 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
ebfd146a
IR
718 }
719 return true;
720 }
721
b8698a0f 722 if ((DECL_P (base)
ebfd146a
IR
723 && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
724 alignment) >= 0)
725 || (TREE_CODE (base_addr) == SSA_NAME
726 && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
727 TREE_TYPE (base_addr)))),
7cf64710 728 alignment) >= 0)
0eb77834 729 || (get_pointer_alignment (base_addr) >= TYPE_ALIGN (vectype)))
ebfd146a
IR
730 base_aligned = true;
731 else
b8698a0f 732 base_aligned = false;
ebfd146a 733
b8698a0f 734 if (!base_aligned)
ebfd146a 735 {
d6682315
RG
736 /* Do not change the alignment of global variables here if
737 flag_section_anchors is enabled as we already generated
738 RTL for other functions. Most global variables should
739 have been aligned during the IPA increase_alignment pass. */
740 if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
741 || (TREE_STATIC (base) && flag_section_anchors))
ebfd146a 742 {
73fbfcad 743 if (dump_enabled_p ())
ebfd146a 744 {
78c60e3d 745 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 746 "can't force alignment of ref: ");
78c60e3d 747 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
e645e942 748 dump_printf (MSG_NOTE, "\n");
ebfd146a
IR
749 }
750 return true;
751 }
b8698a0f 752
ebfd146a
IR
753 /* Force the alignment of the decl.
754 NOTE: This is the only change to the code we make during
755 the analysis phase, before deciding to vectorize the loop. */
73fbfcad 756 if (dump_enabled_p ())
720f5239 757 {
78c60e3d
SS
758 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
759 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
e645e942 760 dump_printf (MSG_NOTE, "\n");
720f5239
IR
761 }
762
c716e67f
XDL
763 ((dataref_aux *)dr->aux)->base_decl = base;
764 ((dataref_aux *)dr->aux)->base_misaligned = true;
ebfd146a
IR
765 }
766
46241ea9
RG
767 /* If this is a backward running DR then first access in the larger
768 vectype actually is N-1 elements before the address in the DR.
769 Adjust misalign accordingly. */
770 if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
771 {
772 tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
773 /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
774 otherwise we wouldn't be here. */
775 offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
776 /* PLUS because DR_STEP was negative. */
777 misalign = size_binop (PLUS_EXPR, misalign, offset);
778 }
779
ebfd146a
IR
780 /* Modulo alignment. */
781 misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
782
cc269bb6 783 if (!tree_fits_uhwi_p (misalign))
ebfd146a
IR
784 {
785 /* Negative or overflowed misalignment value. */
73fbfcad 786 if (dump_enabled_p ())
78c60e3d 787 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942 788 "unexpected misalign value\n");
ebfd146a
IR
789 return false;
790 }
791
eb1ce453 792 SET_DR_MISALIGNMENT (dr, tree_to_uhwi (misalign));
ebfd146a 793
73fbfcad 794 if (dump_enabled_p ())
ebfd146a 795 {
78c60e3d
SS
796 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
797 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
798 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
e645e942 799 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
ebfd146a
IR
800 }
801
802 return true;
803}
804
805
806/* Function vect_compute_data_refs_alignment
807
808 Compute the misalignment of data references in the loop.
809 Return FALSE if a data reference is found that cannot be vectorized. */
810
811static bool
b8698a0f 812vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
a70d6342 813 bb_vec_info bb_vinfo)
ebfd146a 814{
9771b263 815 vec<data_reference_p> datarefs;
ebfd146a
IR
816 struct data_reference *dr;
817 unsigned int i;
818
a70d6342
IR
819 if (loop_vinfo)
820 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
821 else
822 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
b8698a0f 823
9771b263 824 FOR_EACH_VEC_ELT (datarefs, i, dr)
4b5caab7
IR
825 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
826 && !vect_compute_data_ref_alignment (dr))
827 {
828 if (bb_vinfo)
829 {
830 /* Mark unsupported statement as unvectorizable. */
831 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
832 continue;
833 }
834 else
835 return false;
836 }
ebfd146a
IR
837
838 return true;
839}
840
841
842/* Function vect_update_misalignment_for_peel
843
844 DR - the data reference whose misalignment is to be adjusted.
845 DR_PEEL - the data reference whose misalignment is being made
846 zero in the vector loop by the peel.
847 NPEEL - the number of iterations in the peel loop if the misalignment
848 of DR_PEEL is known at compile time. */
849
850static void
851vect_update_misalignment_for_peel (struct data_reference *dr,
852 struct data_reference *dr_peel, int npeel)
853{
854 unsigned int i;
9771b263 855 vec<dr_p> same_align_drs;
ebfd146a
IR
856 struct data_reference *current_dr;
857 int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
858 int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
859 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
860 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
861
862 /* For interleaved data accesses the step in the loop must be multiplied by
863 the size of the interleaving group. */
0d0293ac 864 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
e14c1050 865 dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
0d0293ac 866 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
e14c1050 867 dr_peel_size *= GROUP_SIZE (peel_stmt_info);
ebfd146a
IR
868
869 /* It can be assumed that the data refs with the same alignment as dr_peel
870 are aligned in the vector loop. */
871 same_align_drs
872 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
9771b263 873 FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
ebfd146a
IR
874 {
875 if (current_dr != dr)
876 continue;
877 gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
878 DR_MISALIGNMENT (dr_peel) / dr_peel_size);
879 SET_DR_MISALIGNMENT (dr, 0);
880 return;
881 }
882
883 if (known_alignment_for_access_p (dr)
884 && known_alignment_for_access_p (dr_peel))
885 {
d8ba5b19 886 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
ebfd146a
IR
887 int misal = DR_MISALIGNMENT (dr);
888 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
d8ba5b19 889 misal += negative ? -npeel * dr_size : npeel * dr_size;
5aea1e76 890 misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
ebfd146a
IR
891 SET_DR_MISALIGNMENT (dr, misal);
892 return;
893 }
894
73fbfcad 895 if (dump_enabled_p ())
e645e942 896 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.\n");
ebfd146a
IR
897 SET_DR_MISALIGNMENT (dr, -1);
898}
899
900
901/* Function vect_verify_datarefs_alignment
902
903 Return TRUE if all data references in the loop can be
904 handled with respect to alignment. */
905
a70d6342
IR
906bool
907vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
ebfd146a 908{
9771b263 909 vec<data_reference_p> datarefs;
ebfd146a
IR
910 struct data_reference *dr;
911 enum dr_alignment_support supportable_dr_alignment;
912 unsigned int i;
913
a70d6342
IR
914 if (loop_vinfo)
915 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
916 else
917 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
918
9771b263 919 FOR_EACH_VEC_ELT (datarefs, i, dr)
ebfd146a
IR
920 {
921 gimple stmt = DR_STMT (dr);
922 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
923
38eec4c6
UW
924 if (!STMT_VINFO_RELEVANT_P (stmt_info))
925 continue;
926
4b5caab7
IR
927 /* For interleaving, only the alignment of the first access matters.
928 Skip statements marked as not vectorizable. */
0d0293ac 929 if ((STMT_VINFO_GROUPED_ACCESS (stmt_info)
e14c1050 930 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
4b5caab7 931 || !STMT_VINFO_VECTORIZABLE (stmt_info))
ebfd146a
IR
932 continue;
933
a82960aa
RG
934 /* Strided loads perform only component accesses, alignment is
935 irrelevant for them. */
936 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
937 continue;
938
720f5239 939 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
ebfd146a
IR
940 if (!supportable_dr_alignment)
941 {
73fbfcad 942 if (dump_enabled_p ())
ebfd146a
IR
943 {
944 if (DR_IS_READ (dr))
78c60e3d
SS
945 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
946 "not vectorized: unsupported unaligned load.");
ebfd146a 947 else
78c60e3d
SS
948 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
949 "not vectorized: unsupported unaligned "
950 "store.");
4b5caab7 951
78c60e3d
SS
952 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
953 DR_REF (dr));
e645e942 954 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
ebfd146a
IR
955 }
956 return false;
957 }
73fbfcad 958 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
78c60e3d 959 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 960 "Vectorizing an unaligned access.\n");
ebfd146a
IR
961 }
962 return true;
963}
964
4c9bcf89
RG
965/* Given an memory reference EXP return whether its alignment is less
966 than its size. */
967
968static bool
969not_size_aligned (tree exp)
970{
cc269bb6 971 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
4c9bcf89
RG
972 return true;
973
eb1ce453 974 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
4c9bcf89
RG
975 > get_object_alignment (exp));
976}
ebfd146a
IR
977
978/* Function vector_alignment_reachable_p
979
980 Return true if vector alignment for DR is reachable by peeling
981 a few loop iterations. Return false otherwise. */
982
983static bool
984vector_alignment_reachable_p (struct data_reference *dr)
985{
986 gimple stmt = DR_STMT (dr);
987 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
988 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
989
0d0293ac 990 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
ebfd146a
IR
991 {
992 /* For interleaved access we peel only if number of iterations in
993 the prolog loop ({VF - misalignment}), is a multiple of the
994 number of the interleaved accesses. */
995 int elem_size, mis_in_elements;
996 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
997
998 /* FORNOW: handle only known alignment. */
999 if (!known_alignment_for_access_p (dr))
1000 return false;
1001
1002 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
1003 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
1004
e14c1050 1005 if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
ebfd146a
IR
1006 return false;
1007 }
1008
1009 /* If misalignment is known at the compile time then allow peeling
1010 only if natural alignment is reachable through peeling. */
1011 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
1012 {
b8698a0f 1013 HOST_WIDE_INT elmsize =
ebfd146a 1014 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
73fbfcad 1015 if (dump_enabled_p ())
ebfd146a 1016 {
e645e942
TJ
1017 dump_printf_loc (MSG_NOTE, vect_location,
1018 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1019 dump_printf (MSG_NOTE,
1020 ". misalignment = %d.\n", DR_MISALIGNMENT (dr));
ebfd146a
IR
1021 }
1022 if (DR_MISALIGNMENT (dr) % elmsize)
1023 {
73fbfcad 1024 if (dump_enabled_p ())
e645e942
TJ
1025 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1026 "data size does not divide the misalignment.\n");
ebfd146a
IR
1027 return false;
1028 }
1029 }
1030
1031 if (!known_alignment_for_access_p (dr))
1032 {
4c9bcf89
RG
1033 tree type = TREE_TYPE (DR_REF (dr));
1034 bool is_packed = not_size_aligned (DR_REF (dr));
73fbfcad 1035 if (dump_enabled_p ())
e645e942
TJ
1036 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1037 "Unknown misalignment, is_packed = %d\n",is_packed);
afb119be
RB
1038 if ((TYPE_USER_ALIGN (type) && !is_packed)
1039 || targetm.vectorize.vector_alignment_reachable (type, is_packed))
ebfd146a
IR
1040 return true;
1041 else
1042 return false;
1043 }
1044
1045 return true;
1046}
1047
720f5239
IR
1048
1049/* Calculate the cost of the memory access represented by DR. */
1050
92345349 1051static void
720f5239
IR
1052vect_get_data_access_cost (struct data_reference *dr,
1053 unsigned int *inside_cost,
92345349
BS
1054 unsigned int *outside_cost,
1055 stmt_vector_for_cost *body_cost_vec)
720f5239
IR
1056{
1057 gimple stmt = DR_STMT (dr);
1058 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1059 int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
1060 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1061 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1062 int ncopies = vf / nunits;
720f5239 1063
38eec4c6 1064 if (DR_IS_READ (dr))
92345349
BS
1065 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1066 NULL, body_cost_vec, false);
720f5239 1067 else
92345349 1068 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
720f5239 1069
73fbfcad 1070 if (dump_enabled_p ())
78c60e3d
SS
1071 dump_printf_loc (MSG_NOTE, vect_location,
1072 "vect_get_data_access_cost: inside_cost = %d, "
e645e942 1073 "outside_cost = %d.\n", *inside_cost, *outside_cost);
720f5239
IR
1074}
1075
1076
720f5239
IR
1077/* Insert DR into peeling hash table with NPEEL as key. */
1078
1079static void
1080vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
1081 int npeel)
1082{
1083 struct _vect_peel_info elem, *slot;
bf190e8d 1084 _vect_peel_info **new_slot;
720f5239
IR
1085 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1086
1087 elem.npeel = npeel;
c203e8a7 1088 slot = LOOP_VINFO_PEELING_HTAB (loop_vinfo)->find (&elem);
720f5239
IR
1089 if (slot)
1090 slot->count++;
1091 else
1092 {
1093 slot = XNEW (struct _vect_peel_info);
1094 slot->npeel = npeel;
1095 slot->dr = dr;
1096 slot->count = 1;
c203e8a7
TS
1097 new_slot
1098 = LOOP_VINFO_PEELING_HTAB (loop_vinfo)->find_slot (slot, INSERT);
720f5239
IR
1099 *new_slot = slot;
1100 }
1101
8b5e1202
SO
1102 if (!supportable_dr_alignment
1103 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
720f5239
IR
1104 slot->count += VECT_MAX_COST;
1105}
1106
1107
1108/* Traverse peeling hash table to find peeling option that aligns maximum
1109 number of data accesses. */
1110
bf190e8d
LC
1111int
1112vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1113 _vect_peel_extended_info *max)
720f5239 1114{
bf190e8d 1115 vect_peel_info elem = *slot;
720f5239 1116
44542f8e
IR
1117 if (elem->count > max->peel_info.count
1118 || (elem->count == max->peel_info.count
1119 && max->peel_info.npeel > elem->npeel))
720f5239
IR
1120 {
1121 max->peel_info.npeel = elem->npeel;
1122 max->peel_info.count = elem->count;
1123 max->peel_info.dr = elem->dr;
1124 }
1125
1126 return 1;
1127}
1128
1129
ff802fa1
IR
1130/* Traverse peeling hash table and calculate cost for each peeling option.
1131 Find the one with the lowest cost. */
720f5239 1132
bf190e8d
LC
1133int
1134vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1135 _vect_peel_extended_info *min)
720f5239 1136{
bf190e8d 1137 vect_peel_info elem = *slot;
720f5239
IR
1138 int save_misalignment, dummy;
1139 unsigned int inside_cost = 0, outside_cost = 0, i;
1140 gimple stmt = DR_STMT (elem->dr);
1141 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1142 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
9771b263 1143 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
720f5239 1144 struct data_reference *dr;
92345349
BS
1145 stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
1146 int single_iter_cost;
1147
9771b263
DN
1148 prologue_cost_vec.create (2);
1149 body_cost_vec.create (2);
1150 epilogue_cost_vec.create (2);
720f5239 1151
9771b263 1152 FOR_EACH_VEC_ELT (datarefs, i, dr)
720f5239
IR
1153 {
1154 stmt = DR_STMT (dr);
1155 stmt_info = vinfo_for_stmt (stmt);
1156 /* For interleaving, only the alignment of the first access
1157 matters. */
0d0293ac 1158 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
e14c1050 1159 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
720f5239
IR
1160 continue;
1161
1162 save_misalignment = DR_MISALIGNMENT (dr);
1163 vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
92345349
BS
1164 vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
1165 &body_cost_vec);
720f5239
IR
1166 SET_DR_MISALIGNMENT (dr, save_misalignment);
1167 }
1168
92345349
BS
1169 single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
1170 outside_cost += vect_get_known_peeling_cost (loop_vinfo, elem->npeel,
1171 &dummy, single_iter_cost,
1172 &prologue_cost_vec,
1173 &epilogue_cost_vec);
1174
1175 /* Prologue and epilogue costs are added to the target model later.
1176 These costs depend only on the scalar iteration cost, the
1177 number of peeling iterations finally chosen, and the number of
1178 misaligned statements. So discard the information found here. */
9771b263
DN
1179 prologue_cost_vec.release ();
1180 epilogue_cost_vec.release ();
720f5239
IR
1181
1182 if (inside_cost < min->inside_cost
1183 || (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
1184 {
1185 min->inside_cost = inside_cost;
1186 min->outside_cost = outside_cost;
9771b263 1187 min->body_cost_vec.release ();
92345349 1188 min->body_cost_vec = body_cost_vec;
720f5239
IR
1189 min->peel_info.dr = elem->dr;
1190 min->peel_info.npeel = elem->npeel;
1191 }
92345349 1192 else
9771b263 1193 body_cost_vec.release ();
720f5239
IR
1194
1195 return 1;
1196}
1197
1198
1199/* Choose best peeling option by traversing peeling hash table and either
1200 choosing an option with the lowest cost (if cost model is enabled) or the
1201 option that aligns as many accesses as possible. */
1202
1203static struct data_reference *
1204vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
c3e7ee41 1205 unsigned int *npeel,
92345349 1206 stmt_vector_for_cost *body_cost_vec)
720f5239
IR
1207{
1208 struct _vect_peel_extended_info res;
1209
1210 res.peel_info.dr = NULL;
c3284718 1211 res.body_cost_vec = stmt_vector_for_cost ();
720f5239 1212
8b5e1202 1213 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
720f5239
IR
1214 {
1215 res.inside_cost = INT_MAX;
1216 res.outside_cost = INT_MAX;
bf190e8d 1217 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
c203e8a7
TS
1218 ->traverse <_vect_peel_extended_info *,
1219 vect_peeling_hash_get_lowest_cost> (&res);
720f5239
IR
1220 }
1221 else
1222 {
1223 res.peel_info.count = 0;
bf190e8d 1224 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
c203e8a7
TS
1225 ->traverse <_vect_peel_extended_info *,
1226 vect_peeling_hash_get_most_frequent> (&res);
720f5239
IR
1227 }
1228
1229 *npeel = res.peel_info.npeel;
92345349 1230 *body_cost_vec = res.body_cost_vec;
720f5239
IR
1231 return res.peel_info.dr;
1232}
1233
1234
ebfd146a
IR
1235/* Function vect_enhance_data_refs_alignment
1236
1237 This pass will use loop versioning and loop peeling in order to enhance
1238 the alignment of data references in the loop.
1239
1240 FOR NOW: we assume that whatever versioning/peeling takes place, only the
ff802fa1 1241 original loop is to be vectorized. Any other loops that are created by
ebfd146a 1242 the transformations performed in this pass - are not supposed to be
ff802fa1 1243 vectorized. This restriction will be relaxed.
ebfd146a
IR
1244
1245 This pass will require a cost model to guide it whether to apply peeling
ff802fa1 1246 or versioning or a combination of the two. For example, the scheme that
ebfd146a
IR
1247 intel uses when given a loop with several memory accesses, is as follows:
1248 choose one memory access ('p') which alignment you want to force by doing
ff802fa1 1249 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
ebfd146a
IR
1250 other accesses are not necessarily aligned, or (2) use loop versioning to
1251 generate one loop in which all accesses are aligned, and another loop in
1252 which only 'p' is necessarily aligned.
1253
1254 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1255 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1256 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1257
ff802fa1 1258 Devising a cost model is the most critical aspect of this work. It will
ebfd146a 1259 guide us on which access to peel for, whether to use loop versioning, how
ff802fa1 1260 many versions to create, etc. The cost model will probably consist of
ebfd146a
IR
1261 generic considerations as well as target specific considerations (on
1262 powerpc for example, misaligned stores are more painful than misaligned
1263 loads).
1264
1265 Here are the general steps involved in alignment enhancements:
1266
1267 -- original loop, before alignment analysis:
1268 for (i=0; i<N; i++){
1269 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1270 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1271 }
1272
1273 -- After vect_compute_data_refs_alignment:
1274 for (i=0; i<N; i++){
1275 x = q[i]; # DR_MISALIGNMENT(q) = 3
1276 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1277 }
1278
1279 -- Possibility 1: we do loop versioning:
1280 if (p is aligned) {
1281 for (i=0; i<N; i++){ # loop 1A
1282 x = q[i]; # DR_MISALIGNMENT(q) = 3
1283 p[i] = y; # DR_MISALIGNMENT(p) = 0
1284 }
1285 }
1286 else {
1287 for (i=0; i<N; i++){ # loop 1B
1288 x = q[i]; # DR_MISALIGNMENT(q) = 3
1289 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1290 }
1291 }
1292
1293 -- Possibility 2: we do loop peeling:
1294 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1295 x = q[i];
1296 p[i] = y;
1297 }
1298 for (i = 3; i < N; i++){ # loop 2A
1299 x = q[i]; # DR_MISALIGNMENT(q) = 0
1300 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1301 }
1302
1303 -- Possibility 3: combination of loop peeling and versioning:
1304 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1305 x = q[i];
1306 p[i] = y;
1307 }
1308 if (p is aligned) {
1309 for (i = 3; i<N; i++){ # loop 3A
1310 x = q[i]; # DR_MISALIGNMENT(q) = 0
1311 p[i] = y; # DR_MISALIGNMENT(p) = 0
1312 }
1313 }
1314 else {
1315 for (i = 3; i<N; i++){ # loop 3B
1316 x = q[i]; # DR_MISALIGNMENT(q) = 0
1317 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1318 }
1319 }
1320
ff802fa1 1321 These loops are later passed to loop_transform to be vectorized. The
ebfd146a
IR
1322 vectorizer will use the alignment information to guide the transformation
1323 (whether to generate regular loads/stores, or with special handling for
1324 misalignment). */
1325
1326bool
1327vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1328{
9771b263 1329 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
ebfd146a
IR
1330 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1331 enum dr_alignment_support supportable_dr_alignment;
720f5239 1332 struct data_reference *dr0 = NULL, *first_store = NULL;
ebfd146a 1333 struct data_reference *dr;
720f5239 1334 unsigned int i, j;
ebfd146a
IR
1335 bool do_peeling = false;
1336 bool do_versioning = false;
1337 bool stat;
1338 gimple stmt;
1339 stmt_vec_info stmt_info;
720f5239
IR
1340 unsigned int npeel = 0;
1341 bool all_misalignments_unknown = true;
1342 unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1343 unsigned possible_npeel_number = 1;
1344 tree vectype;
1345 unsigned int nelements, mis, same_align_drs_max = 0;
c3284718 1346 stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost ();
ebfd146a 1347
73fbfcad 1348 if (dump_enabled_p ())
78c60e3d 1349 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 1350 "=== vect_enhance_data_refs_alignment ===\n");
ebfd146a
IR
1351
1352 /* While cost model enhancements are expected in the future, the high level
1353 view of the code at this time is as follows:
1354
673beced
RE
1355 A) If there is a misaligned access then see if peeling to align
1356 this access can make all data references satisfy
8f439681
RE
1357 vect_supportable_dr_alignment. If so, update data structures
1358 as needed and return true.
ebfd146a
IR
1359
1360 B) If peeling wasn't possible and there is a data reference with an
1361 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1362 then see if loop versioning checks can be used to make all data
1363 references satisfy vect_supportable_dr_alignment. If so, update
1364 data structures as needed and return true.
1365
1366 C) If neither peeling nor versioning were successful then return false if
1367 any data reference does not satisfy vect_supportable_dr_alignment.
1368
1369 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1370
1371 Note, Possibility 3 above (which is peeling and versioning together) is not
1372 being done at this time. */
1373
1374 /* (1) Peeling to force alignment. */
1375
1376 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1377 Considerations:
1378 + How many accesses will become aligned due to the peeling
1379 - How many accesses will become unaligned due to the peeling,
1380 and the cost of misaligned accesses.
b8698a0f 1381 - The cost of peeling (the extra runtime checks, the increase
720f5239 1382 in code size). */
ebfd146a 1383
9771b263 1384 FOR_EACH_VEC_ELT (datarefs, i, dr)
ebfd146a
IR
1385 {
1386 stmt = DR_STMT (dr);
1387 stmt_info = vinfo_for_stmt (stmt);
1388
38eec4c6 1389 if (!STMT_VINFO_RELEVANT_P (stmt_info))
39becbac
RG
1390 continue;
1391
ebfd146a
IR
1392 /* For interleaving, only the alignment of the first access
1393 matters. */
0d0293ac 1394 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
e14c1050 1395 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
ebfd146a
IR
1396 continue;
1397
39becbac
RG
1398 /* For invariant accesses there is nothing to enhance. */
1399 if (integer_zerop (DR_STEP (dr)))
1400 continue;
1401
319e6439
RG
1402 /* Strided loads perform only component accesses, alignment is
1403 irrelevant for them. */
1404 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1405 continue;
1406
720f5239
IR
1407 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1408 do_peeling = vector_alignment_reachable_p (dr);
1409 if (do_peeling)
ebfd146a 1410 {
720f5239
IR
1411 if (known_alignment_for_access_p (dr))
1412 {
1413 unsigned int npeel_tmp;
d8ba5b19
RG
1414 bool negative = tree_int_cst_compare (DR_STEP (dr),
1415 size_zero_node) < 0;
720f5239
IR
1416
1417 /* Save info about DR in the hash table. */
c203e8a7
TS
1418 if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo))
1419 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1420 = new hash_table<peel_info_hasher> (1);
720f5239
IR
1421
1422 vectype = STMT_VINFO_VECTYPE (stmt_info);
1423 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1424 mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
1425 TREE_TYPE (DR_REF (dr))));
d8ba5b19 1426 npeel_tmp = (negative
8b8bba2d
RG
1427 ? (mis - nelements) : (nelements - mis))
1428 & (nelements - 1);
720f5239
IR
1429
1430 /* For multiple types, it is possible that the bigger type access
ff802fa1 1431 will have more than one peeling option. E.g., a loop with two
720f5239 1432 types: one of size (vector size / 4), and the other one of
ff802fa1 1433 size (vector size / 8). Vectorization factor will 8. If both
720f5239 1434 access are misaligned by 3, the first one needs one scalar
ff802fa1 1435 iteration to be aligned, and the second one needs 5. But the
720f5239
IR
1436 the first one will be aligned also by peeling 5 scalar
1437 iterations, and in that case both accesses will be aligned.
1438 Hence, except for the immediate peeling amount, we also want
1439 to try to add full vector size, while we don't exceed
1440 vectorization factor.
1441 We do this automtically for cost model, since we calculate cost
1442 for every peeling option. */
8b5e1202 1443 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
720f5239
IR
1444 possible_npeel_number = vf /nelements;
1445
1446 /* Handle the aligned case. We may decide to align some other
1447 access, making DR unaligned. */
1448 if (DR_MISALIGNMENT (dr) == 0)
1449 {
1450 npeel_tmp = 0;
8b5e1202 1451 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
720f5239
IR
1452 possible_npeel_number++;
1453 }
1454
1455 for (j = 0; j < possible_npeel_number; j++)
1456 {
1457 gcc_assert (npeel_tmp <= vf);
1458 vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
1459 npeel_tmp += nelements;
1460 }
1461
1462 all_misalignments_unknown = false;
1463 /* Data-ref that was chosen for the case that all the
1464 misalignments are unknown is not relevant anymore, since we
1465 have a data-ref with known alignment. */
1466 dr0 = NULL;
1467 }
1468 else
1469 {
4ba5ea11
RB
1470 /* If we don't know any misalignment values, we prefer
1471 peeling for data-ref that has the maximum number of data-refs
720f5239
IR
1472 with the same alignment, unless the target prefers to align
1473 stores over load. */
1474 if (all_misalignments_unknown)
1475 {
4ba5ea11
RB
1476 unsigned same_align_drs
1477 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1478 if (!dr0
1479 || same_align_drs_max < same_align_drs)
720f5239 1480 {
4ba5ea11 1481 same_align_drs_max = same_align_drs;
720f5239
IR
1482 dr0 = dr;
1483 }
4ba5ea11
RB
1484 /* For data-refs with the same number of related
1485 accesses prefer the one where the misalign
1486 computation will be invariant in the outermost loop. */
1487 else if (same_align_drs_max == same_align_drs)
1488 {
1489 struct loop *ivloop0, *ivloop;
1490 ivloop0 = outermost_invariant_loop_for_expr
1491 (loop, DR_BASE_ADDRESS (dr0));
1492 ivloop = outermost_invariant_loop_for_expr
1493 (loop, DR_BASE_ADDRESS (dr));
1494 if ((ivloop && !ivloop0)
1495 || (ivloop && ivloop0
1496 && flow_loop_nested_p (ivloop, ivloop0)))
1497 dr0 = dr;
1498 }
720f5239 1499
b0af49c4 1500 if (!first_store && DR_IS_WRITE (dr))
720f5239
IR
1501 first_store = dr;
1502 }
1503
1504 /* If there are both known and unknown misaligned accesses in the
1505 loop, we choose peeling amount according to the known
1506 accesses. */
720f5239
IR
1507 if (!supportable_dr_alignment)
1508 {
1509 dr0 = dr;
b0af49c4 1510 if (!first_store && DR_IS_WRITE (dr))
720f5239
IR
1511 first_store = dr;
1512 }
1513 }
1514 }
1515 else
1516 {
1517 if (!aligned_access_p (dr))
1518 {
73fbfcad 1519 if (dump_enabled_p ())
e645e942
TJ
1520 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1521 "vector alignment may not be reachable\n");
720f5239
IR
1522 break;
1523 }
1524 }
ebfd146a
IR
1525 }
1526
afb119be
RB
1527 /* Check if we can possibly peel the loop. */
1528 if (!vect_can_advance_ivs_p (loop_vinfo)
ebfd146a
IR
1529 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1530 do_peeling = false;
1531
b1aef01e
RB
1532 /* If we don't know how many times the peeling loop will run
1533 assume it will run VF-1 times and disable peeling if the remaining
1534 iters are less than the vectorization factor. */
1535 if (do_peeling
1536 && all_misalignments_unknown
1537 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1538 && (LOOP_VINFO_INT_NITERS (loop_vinfo)
1539 < 2 * (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1))
1540 do_peeling = false;
1541
1542 if (do_peeling
1543 && all_misalignments_unknown
720f5239
IR
1544 && vect_supportable_dr_alignment (dr0, false))
1545 {
720f5239
IR
1546 /* Check if the target requires to prefer stores over loads, i.e., if
1547 misaligned stores are more expensive than misaligned loads (taking
1548 drs with same alignment into account). */
1549 if (first_store && DR_IS_READ (dr0))
1550 {
1551 unsigned int load_inside_cost = 0, load_outside_cost = 0;
1552 unsigned int store_inside_cost = 0, store_outside_cost = 0;
1553 unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
1554 unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
9771b263
DN
1555 stmt_vector_for_cost dummy;
1556 dummy.create (2);
92345349
BS
1557
1558 vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
1559 &dummy);
1560 vect_get_data_access_cost (first_store, &store_inside_cost,
1561 &store_outside_cost, &dummy);
720f5239 1562
9771b263 1563 dummy.release ();
720f5239
IR
1564
1565 /* Calculate the penalty for leaving FIRST_STORE unaligned (by
1566 aligning the load DR0). */
1567 load_inside_penalty = store_inside_cost;
1568 load_outside_penalty = store_outside_cost;
9771b263
DN
1569 for (i = 0;
1570 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1571 DR_STMT (first_store))).iterate (i, &dr);
720f5239
IR
1572 i++)
1573 if (DR_IS_READ (dr))
1574 {
1575 load_inside_penalty += load_inside_cost;
1576 load_outside_penalty += load_outside_cost;
1577 }
1578 else
1579 {
1580 load_inside_penalty += store_inside_cost;
1581 load_outside_penalty += store_outside_cost;
1582 }
1583
1584 /* Calculate the penalty for leaving DR0 unaligned (by
1585 aligning the FIRST_STORE). */
1586 store_inside_penalty = load_inside_cost;
1587 store_outside_penalty = load_outside_cost;
9771b263
DN
1588 for (i = 0;
1589 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1590 DR_STMT (dr0))).iterate (i, &dr);
720f5239
IR
1591 i++)
1592 if (DR_IS_READ (dr))
1593 {
1594 store_inside_penalty += load_inside_cost;
1595 store_outside_penalty += load_outside_cost;
1596 }
1597 else
1598 {
1599 store_inside_penalty += store_inside_cost;
1600 store_outside_penalty += store_outside_cost;
1601 }
1602
1603 if (load_inside_penalty > store_inside_penalty
1604 || (load_inside_penalty == store_inside_penalty
1605 && load_outside_penalty > store_outside_penalty))
1606 dr0 = first_store;
1607 }
1608
1609 /* In case there are only loads with different unknown misalignments, use
1610 peeling only if it may help to align other accesses in the loop. */
9771b263
DN
1611 if (!first_store
1612 && !STMT_VINFO_SAME_ALIGN_REFS (
1613 vinfo_for_stmt (DR_STMT (dr0))).length ()
720f5239
IR
1614 && vect_supportable_dr_alignment (dr0, false)
1615 != dr_unaligned_supported)
1616 do_peeling = false;
1617 }
1618
1619 if (do_peeling && !dr0)
1620 {
1621 /* Peeling is possible, but there is no data access that is not supported
1622 unless aligned. So we try to choose the best possible peeling. */
1623
1624 /* We should get here only if there are drs with known misalignment. */
1625 gcc_assert (!all_misalignments_unknown);
1626
1627 /* Choose the best peeling from the hash table. */
c3e7ee41 1628 dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel,
92345349 1629 &body_cost_vec);
720f5239
IR
1630 if (!dr0 || !npeel)
1631 do_peeling = false;
b1aef01e
RB
1632
1633 /* If peeling by npeel will result in a remaining loop not iterating
1634 enough to be vectorized then do not peel. */
1635 if (do_peeling
1636 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1637 && (LOOP_VINFO_INT_NITERS (loop_vinfo)
1638 < LOOP_VINFO_VECT_FACTOR (loop_vinfo) + npeel))
1639 do_peeling = false;
720f5239
IR
1640 }
1641
ebfd146a
IR
1642 if (do_peeling)
1643 {
720f5239
IR
1644 stmt = DR_STMT (dr0);
1645 stmt_info = vinfo_for_stmt (stmt);
1646 vectype = STMT_VINFO_VECTYPE (stmt_info);
1647 nelements = TYPE_VECTOR_SUBPARTS (vectype);
ebfd146a
IR
1648
1649 if (known_alignment_for_access_p (dr0))
1650 {
d8ba5b19
RG
1651 bool negative = tree_int_cst_compare (DR_STEP (dr0),
1652 size_zero_node) < 0;
720f5239
IR
1653 if (!npeel)
1654 {
1655 /* Since it's known at compile time, compute the number of
1656 iterations in the peeled loop (the peeling factor) for use in
1657 updating DR_MISALIGNMENT values. The peeling factor is the
1658 vectorization factor minus the misalignment as an element
1659 count. */
1660 mis = DR_MISALIGNMENT (dr0);
1661 mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
8b8bba2d
RG
1662 npeel = ((negative ? mis - nelements : nelements - mis)
1663 & (nelements - 1));
720f5239 1664 }
ebfd146a 1665
b8698a0f 1666 /* For interleaved data access every iteration accesses all the
ebfd146a
IR
1667 members of the group, therefore we divide the number of iterations
1668 by the group size. */
b8698a0f 1669 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
0d0293ac 1670 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
e14c1050 1671 npeel /= GROUP_SIZE (stmt_info);
ebfd146a 1672
73fbfcad 1673 if (dump_enabled_p ())
78c60e3d 1674 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 1675 "Try peeling by %d\n", npeel);
ebfd146a
IR
1676 }
1677
1678 /* Ensure that all data refs can be vectorized after the peel. */
9771b263 1679 FOR_EACH_VEC_ELT (datarefs, i, dr)
ebfd146a
IR
1680 {
1681 int save_misalignment;
1682
1683 if (dr == dr0)
1684 continue;
1685
1686 stmt = DR_STMT (dr);
1687 stmt_info = vinfo_for_stmt (stmt);
1688 /* For interleaving, only the alignment of the first access
1689 matters. */
0d0293ac 1690 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
e14c1050 1691 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
ebfd146a
IR
1692 continue;
1693
319e6439
RG
1694 /* Strided loads perform only component accesses, alignment is
1695 irrelevant for them. */
1696 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1697 continue;
1698
ebfd146a
IR
1699 save_misalignment = DR_MISALIGNMENT (dr);
1700 vect_update_misalignment_for_peel (dr, dr0, npeel);
720f5239 1701 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
ebfd146a 1702 SET_DR_MISALIGNMENT (dr, save_misalignment);
b8698a0f 1703
ebfd146a
IR
1704 if (!supportable_dr_alignment)
1705 {
1706 do_peeling = false;
1707 break;
1708 }
1709 }
1710
720f5239
IR
1711 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
1712 {
1713 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1714 if (!stat)
1715 do_peeling = false;
1716 else
c7e62a26 1717 {
9771b263 1718 body_cost_vec.release ();
c7e62a26
RG
1719 return stat;
1720 }
720f5239
IR
1721 }
1722
4f17aa0b
XDL
1723 if (do_peeling)
1724 {
1725 unsigned max_allowed_peel
1726 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
1727 if (max_allowed_peel != (unsigned)-1)
1728 {
1729 unsigned max_peel = npeel;
1730 if (max_peel == 0)
1731 {
1732 gimple dr_stmt = DR_STMT (dr0);
1733 stmt_vec_info vinfo = vinfo_for_stmt (dr_stmt);
1734 tree vtype = STMT_VINFO_VECTYPE (vinfo);
1735 max_peel = TYPE_VECTOR_SUBPARTS (vtype) - 1;
1736 }
1737 if (max_peel > max_allowed_peel)
1738 {
1739 do_peeling = false;
1740 if (dump_enabled_p ())
1741 dump_printf_loc (MSG_NOTE, vect_location,
1742 "Disable peeling, max peels reached: %d\n", max_peel);
1743 }
1744 }
1745 }
1746
ebfd146a
IR
1747 if (do_peeling)
1748 {
c3e7ee41 1749 stmt_info_for_cost *si;
92345349 1750 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
c3e7ee41 1751
ebfd146a
IR
1752 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1753 If the misalignment of DR_i is identical to that of dr0 then set
1754 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1755 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1756 by the peeling factor times the element size of DR_i (MOD the
1757 vectorization factor times the size). Otherwise, the
1758 misalignment of DR_i must be set to unknown. */
9771b263 1759 FOR_EACH_VEC_ELT (datarefs, i, dr)
ebfd146a
IR
1760 if (dr != dr0)
1761 vect_update_misalignment_for_peel (dr, dr0, npeel);
1762
1763 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
720f5239 1764 if (npeel)
15e693cc 1765 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
720f5239 1766 else
15e693cc
RB
1767 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1768 = DR_MISALIGNMENT (dr0);
ebfd146a 1769 SET_DR_MISALIGNMENT (dr0, 0);
73fbfcad 1770 if (dump_enabled_p ())
78c60e3d
SS
1771 {
1772 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 1773 "Alignment of access forced using peeling.\n");
78c60e3d 1774 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 1775 "Peeling for alignment will be applied.\n");
78c60e3d 1776 }
c3e7ee41
BS
1777 /* We've delayed passing the inside-loop peeling costs to the
1778 target cost model until we were sure peeling would happen.
1779 Do so now. */
9771b263 1780 if (body_cost_vec.exists ())
c3e7ee41 1781 {
9771b263 1782 FOR_EACH_VEC_ELT (body_cost_vec, i, si)
92345349
BS
1783 {
1784 struct _stmt_vec_info *stmt_info
1785 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
1786 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
1787 si->misalign, vect_body);
1788 }
9771b263 1789 body_cost_vec.release ();
c3e7ee41
BS
1790 }
1791
a70d6342 1792 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
ebfd146a
IR
1793 gcc_assert (stat);
1794 return stat;
1795 }
1796 }
1797
9771b263 1798 body_cost_vec.release ();
ebfd146a
IR
1799
1800 /* (2) Versioning to force alignment. */
1801
1802 /* Try versioning if:
d6d11272
XDL
1803 1) optimize loop for speed
1804 2) there is at least one unsupported misaligned data ref with an unknown
ebfd146a 1805 misalignment, and
d6d11272
XDL
1806 3) all misaligned data refs with a known misalignment are supported, and
1807 4) the number of runtime alignment checks is within reason. */
ebfd146a 1808
b8698a0f 1809 do_versioning =
d6d11272 1810 optimize_loop_nest_for_speed_p (loop)
ebfd146a
IR
1811 && (!loop->inner); /* FORNOW */
1812
1813 if (do_versioning)
1814 {
9771b263 1815 FOR_EACH_VEC_ELT (datarefs, i, dr)
ebfd146a
IR
1816 {
1817 stmt = DR_STMT (dr);
1818 stmt_info = vinfo_for_stmt (stmt);
1819
1820 /* For interleaving, only the alignment of the first access
1821 matters. */
1822 if (aligned_access_p (dr)
0d0293ac 1823 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
e14c1050 1824 && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
ebfd146a
IR
1825 continue;
1826
319e6439
RG
1827 /* Strided loads perform only component accesses, alignment is
1828 irrelevant for them. */
1829 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1830 continue;
1831
720f5239 1832 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
ebfd146a
IR
1833
1834 if (!supportable_dr_alignment)
1835 {
1836 gimple stmt;
1837 int mask;
1838 tree vectype;
1839
1840 if (known_alignment_for_access_p (dr)
9771b263 1841 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
ebfd146a
IR
1842 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
1843 {
1844 do_versioning = false;
1845 break;
1846 }
1847
1848 stmt = DR_STMT (dr);
1849 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1850 gcc_assert (vectype);
b8698a0f 1851
ebfd146a
IR
1852 /* The rightmost bits of an aligned address must be zeros.
1853 Construct the mask needed for this test. For example,
1854 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
1855 mask must be 15 = 0xf. */
1856 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
1857
1858 /* FORNOW: use the same mask to test all potentially unaligned
1859 references in the loop. The vectorizer currently supports
1860 a single vector size, see the reference to
1861 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
1862 vectorization factor is computed. */
1863 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
1864 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
1865 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
9771b263
DN
1866 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
1867 DR_STMT (dr));
ebfd146a
IR
1868 }
1869 }
b8698a0f 1870
ebfd146a 1871 /* Versioning requires at least one misaligned data reference. */
e9dbe7bb 1872 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
ebfd146a
IR
1873 do_versioning = false;
1874 else if (!do_versioning)
9771b263 1875 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
ebfd146a
IR
1876 }
1877
1878 if (do_versioning)
1879 {
9771b263 1880 vec<gimple> may_misalign_stmts
ebfd146a
IR
1881 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1882 gimple stmt;
1883
1884 /* It can now be assumed that the data references in the statements
1885 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
1886 of the loop being vectorized. */
9771b263 1887 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
ebfd146a
IR
1888 {
1889 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1890 dr = STMT_VINFO_DATA_REF (stmt_info);
1891 SET_DR_MISALIGNMENT (dr, 0);
73fbfcad 1892 if (dump_enabled_p ())
e645e942
TJ
1893 dump_printf_loc (MSG_NOTE, vect_location,
1894 "Alignment of access forced using versioning.\n");
ebfd146a
IR
1895 }
1896
73fbfcad 1897 if (dump_enabled_p ())
e645e942
TJ
1898 dump_printf_loc (MSG_NOTE, vect_location,
1899 "Versioning for alignment will be applied.\n");
ebfd146a
IR
1900
1901 /* Peeling and versioning can't be done together at this time. */
1902 gcc_assert (! (do_peeling && do_versioning));
1903
a70d6342 1904 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
ebfd146a
IR
1905 gcc_assert (stat);
1906 return stat;
1907 }
1908
1909 /* This point is reached if neither peeling nor versioning is being done. */
1910 gcc_assert (! (do_peeling || do_versioning));
1911
a70d6342 1912 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
ebfd146a
IR
1913 return stat;
1914}
1915
1916
777e1f09
RG
1917/* Function vect_find_same_alignment_drs.
1918
1919 Update group and alignment relations according to the chosen
1920 vectorization factor. */
1921
1922static void
1923vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
1924 loop_vec_info loop_vinfo)
1925{
1926 unsigned int i;
1927 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1928 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1929 struct data_reference *dra = DDR_A (ddr);
1930 struct data_reference *drb = DDR_B (ddr);
1931 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
1932 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
1933 int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
1934 int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
1935 lambda_vector dist_v;
1936 unsigned int loop_depth;
1937
1938 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1939 return;
1940
720f5239 1941 if (dra == drb)
777e1f09
RG
1942 return;
1943
1944 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1945 return;
1946
1947 /* Loop-based vectorization and known data dependence. */
1948 if (DDR_NUM_DIST_VECTS (ddr) == 0)
1949 return;
1950
46241ea9
RG
1951 /* Data-dependence analysis reports a distance vector of zero
1952 for data-references that overlap only in the first iteration
1953 but have different sign step (see PR45764).
1954 So as a sanity check require equal DR_STEP. */
1955 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
1956 return;
1957
777e1f09 1958 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
9771b263 1959 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
777e1f09
RG
1960 {
1961 int dist = dist_v[loop_depth];
1962
73fbfcad 1963 if (dump_enabled_p ())
78c60e3d 1964 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 1965 "dependence distance = %d.\n", dist);
777e1f09
RG
1966
1967 /* Same loop iteration. */
1968 if (dist == 0
1969 || (dist % vectorization_factor == 0 && dra_size == drb_size))
1970 {
1971 /* Two references with distance zero have the same alignment. */
9771b263
DN
1972 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
1973 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
73fbfcad 1974 if (dump_enabled_p ())
777e1f09 1975 {
e645e942
TJ
1976 dump_printf_loc (MSG_NOTE, vect_location,
1977 "accesses have the same alignment.\n");
78c60e3d 1978 dump_printf (MSG_NOTE,
e645e942 1979 "dependence distance modulo vf == 0 between ");
78c60e3d
SS
1980 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
1981 dump_printf (MSG_NOTE, " and ");
1982 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
e645e942 1983 dump_printf (MSG_NOTE, "\n");
777e1f09
RG
1984 }
1985 }
1986 }
1987}
1988
1989
ebfd146a
IR
1990/* Function vect_analyze_data_refs_alignment
1991
1992 Analyze the alignment of the data-references in the loop.
1993 Return FALSE if a data reference is found that cannot be vectorized. */
1994
1995bool
b8698a0f 1996vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
a70d6342 1997 bb_vec_info bb_vinfo)
ebfd146a 1998{
73fbfcad 1999 if (dump_enabled_p ())
78c60e3d 2000 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 2001 "=== vect_analyze_data_refs_alignment ===\n");
ebfd146a 2002
777e1f09
RG
2003 /* Mark groups of data references with same alignment using
2004 data dependence information. */
2005 if (loop_vinfo)
2006 {
9771b263 2007 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
777e1f09
RG
2008 struct data_dependence_relation *ddr;
2009 unsigned int i;
2010
9771b263 2011 FOR_EACH_VEC_ELT (ddrs, i, ddr)
777e1f09
RG
2012 vect_find_same_alignment_drs (ddr, loop_vinfo);
2013 }
2014
a70d6342 2015 if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
ebfd146a 2016 {
73fbfcad 2017 if (dump_enabled_p ())
e645e942
TJ
2018 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2019 "not vectorized: can't calculate alignment "
2020 "for data ref.\n");
ebfd146a
IR
2021 return false;
2022 }
2023
2024 return true;
2025}
2026
2027
0d0293ac
MM
2028/* Analyze groups of accesses: check that DR belongs to a group of
2029 accesses of legal size, step, etc. Detect gaps, single element
2030 interleaving, and other special cases. Set grouped access info.
ebfd146a
IR
2031 Collect groups of strided stores for further use in SLP analysis. */
2032
2033static bool
2034vect_analyze_group_access (struct data_reference *dr)
2035{
2036 tree step = DR_STEP (dr);
2037 tree scalar_type = TREE_TYPE (DR_REF (dr));
2038 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2039 gimple stmt = DR_STMT (dr);
2040 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2041 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
a70d6342 2042 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
ebfd146a 2043 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
0d0293ac 2044 HOST_WIDE_INT groupsize, last_accessed_element = 1;
ebfd146a 2045 bool slp_impossible = false;
deaf836c
IR
2046 struct loop *loop = NULL;
2047
2048 if (loop_vinfo)
2049 loop = LOOP_VINFO_LOOP (loop_vinfo);
ebfd146a 2050
0d0293ac
MM
2051 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2052 size of the interleaving group (including gaps). */
08940f33 2053 groupsize = absu_hwi (dr_step) / type_size;
ebfd146a
IR
2054
2055 /* Not consecutive access is possible only if it is a part of interleaving. */
e14c1050 2056 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
ebfd146a
IR
2057 {
2058 /* Check if it this DR is a part of interleaving, and is a single
2059 element of the group that is accessed in the loop. */
b8698a0f 2060
ebfd146a
IR
2061 /* Gaps are supported only for loads. STEP must be a multiple of the type
2062 size. The size of the group must be a power of 2. */
2063 if (DR_IS_READ (dr)
2064 && (dr_step % type_size) == 0
0d0293ac
MM
2065 && groupsize > 0
2066 && exact_log2 (groupsize) != -1)
ebfd146a 2067 {
e14c1050 2068 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
0d0293ac 2069 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
73fbfcad 2070 if (dump_enabled_p ())
ebfd146a 2071 {
e645e942
TJ
2072 dump_printf_loc (MSG_NOTE, vect_location,
2073 "Detected single element interleaving ");
78c60e3d
SS
2074 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2075 dump_printf (MSG_NOTE, " step ");
2076 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
e645e942 2077 dump_printf (MSG_NOTE, "\n");
ebfd146a 2078 }
48df3fa6
IR
2079
2080 if (loop_vinfo)
2081 {
73fbfcad 2082 if (dump_enabled_p ())
78c60e3d 2083 dump_printf_loc (MSG_NOTE, vect_location,
e645e942
TJ
2084 "Data access with gaps requires scalar "
2085 "epilogue loop\n");
deaf836c
IR
2086 if (loop->inner)
2087 {
73fbfcad 2088 if (dump_enabled_p ())
78c60e3d
SS
2089 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2090 "Peeling for outer loop is not"
e645e942 2091 " supported\n");
deaf836c
IR
2092 return false;
2093 }
2094
2095 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
48df3fa6
IR
2096 }
2097
ebfd146a
IR
2098 return true;
2099 }
4b5caab7 2100
73fbfcad 2101 if (dump_enabled_p ())
4b5caab7 2102 {
78c60e3d 2103 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942
TJ
2104 "not consecutive access ");
2105 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2106 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
4b5caab7
IR
2107 }
2108
2109 if (bb_vinfo)
2110 {
2111 /* Mark the statement as unvectorizable. */
2112 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2113 return true;
2114 }
78c60e3d 2115
ebfd146a
IR
2116 return false;
2117 }
2118
e14c1050 2119 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
ebfd146a
IR
2120 {
2121 /* First stmt in the interleaving chain. Check the chain. */
e14c1050 2122 gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
ebfd146a 2123 struct data_reference *data_ref = dr;
df398a37 2124 unsigned int count = 1;
ebfd146a
IR
2125 tree prev_init = DR_INIT (data_ref);
2126 gimple prev = stmt;
08940f33
RB
2127 HOST_WIDE_INT diff, gaps = 0;
2128 unsigned HOST_WIDE_INT count_in_bytes;
ebfd146a
IR
2129
2130 while (next)
2131 {
ff802fa1
IR
2132 /* Skip same data-refs. In case that two or more stmts share
2133 data-ref (supported only for loads), we vectorize only the first
2134 stmt, and the rest get their vectorized loads from the first
2135 one. */
ebfd146a
IR
2136 if (!tree_int_cst_compare (DR_INIT (data_ref),
2137 DR_INIT (STMT_VINFO_DATA_REF (
2138 vinfo_for_stmt (next)))))
2139 {
b0af49c4 2140 if (DR_IS_WRITE (data_ref))
ebfd146a 2141 {
73fbfcad 2142 if (dump_enabled_p ())
e645e942
TJ
2143 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2144 "Two store stmts share the same dr.\n");
ebfd146a
IR
2145 return false;
2146 }
2147
ebfd146a 2148 /* For load use the same data-ref load. */
e14c1050 2149 GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
ebfd146a
IR
2150
2151 prev = next;
e14c1050 2152 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
ebfd146a
IR
2153 continue;
2154 }
48df3fa6 2155
ebfd146a 2156 prev = next;
08940f33 2157 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
ebfd146a 2158
08940f33
RB
2159 /* All group members have the same STEP by construction. */
2160 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
ebfd146a 2161
ebfd146a
IR
2162 /* Check that the distance between two accesses is equal to the type
2163 size. Otherwise, we have gaps. */
2164 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2165 - TREE_INT_CST_LOW (prev_init)) / type_size;
2166 if (diff != 1)
2167 {
2168 /* FORNOW: SLP of accesses with gaps is not supported. */
2169 slp_impossible = true;
b0af49c4 2170 if (DR_IS_WRITE (data_ref))
ebfd146a 2171 {
73fbfcad 2172 if (dump_enabled_p ())
e645e942
TJ
2173 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2174 "interleaved store with gaps\n");
ebfd146a
IR
2175 return false;
2176 }
4da39468
IR
2177
2178 gaps += diff - 1;
ebfd146a
IR
2179 }
2180
48df3fa6
IR
2181 last_accessed_element += diff;
2182
ebfd146a 2183 /* Store the gap from the previous member of the group. If there is no
e14c1050
IR
2184 gap in the access, GROUP_GAP is always 1. */
2185 GROUP_GAP (vinfo_for_stmt (next)) = diff;
ebfd146a
IR
2186
2187 prev_init = DR_INIT (data_ref);
e14c1050 2188 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
ebfd146a
IR
2189 /* Count the number of data-refs in the chain. */
2190 count++;
2191 }
2192
2193 /* COUNT is the number of accesses found, we multiply it by the size of
2194 the type to get COUNT_IN_BYTES. */
2195 count_in_bytes = type_size * count;
2196
b8698a0f 2197 /* Check that the size of the interleaving (including gaps) is not
a70d6342 2198 greater than STEP. */
08940f33
RB
2199 if (dr_step != 0
2200 && absu_hwi (dr_step) < count_in_bytes + gaps * type_size)
ebfd146a 2201 {
73fbfcad 2202 if (dump_enabled_p ())
ebfd146a 2203 {
e645e942 2204 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
78c60e3d 2205 "interleaving size is greater than step for ");
e645e942
TJ
2206 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2207 DR_REF (dr));
2208 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
ebfd146a
IR
2209 }
2210 return false;
2211 }
2212
2213 /* Check that the size of the interleaving is equal to STEP for stores,
2214 i.e., that there are no gaps. */
08940f33
RB
2215 if (dr_step != 0
2216 && absu_hwi (dr_step) != count_in_bytes)
ebfd146a
IR
2217 {
2218 if (DR_IS_READ (dr))
2219 {
2220 slp_impossible = true;
2221 /* There is a gap after the last load in the group. This gap is a
0d0293ac
MM
2222 difference between the groupsize and the number of elements.
2223 When there is no gap, this difference should be 0. */
2224 GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - count;
ebfd146a
IR
2225 }
2226 else
2227 {
73fbfcad 2228 if (dump_enabled_p ())
e645e942
TJ
2229 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2230 "interleaved store with gaps\n");
ebfd146a
IR
2231 return false;
2232 }
2233 }
2234
2235 /* Check that STEP is a multiple of type size. */
08940f33
RB
2236 if (dr_step != 0
2237 && (dr_step % type_size) != 0)
ebfd146a 2238 {
73fbfcad 2239 if (dump_enabled_p ())
ebfd146a 2240 {
78c60e3d
SS
2241 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2242 "step is not a multiple of type size: step ");
2243 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, step);
2244 dump_printf (MSG_MISSED_OPTIMIZATION, " size ");
2245 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2246 TYPE_SIZE_UNIT (scalar_type));
e645e942 2247 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
ebfd146a
IR
2248 }
2249 return false;
2250 }
2251
0d0293ac
MM
2252 if (groupsize == 0)
2253 groupsize = count;
b8698a0f 2254
0d0293ac 2255 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
73fbfcad 2256 if (dump_enabled_p ())
e645e942
TJ
2257 dump_printf_loc (MSG_NOTE, vect_location,
2258 "Detected interleaving of size %d\n", (int)groupsize);
ebfd146a 2259
b8698a0f 2260 /* SLP: create an SLP data structure for every interleaving group of
ebfd146a 2261 stores for further analysis in vect_analyse_slp. */
b0af49c4 2262 if (DR_IS_WRITE (dr) && !slp_impossible)
a70d6342
IR
2263 {
2264 if (loop_vinfo)
9771b263 2265 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
a70d6342 2266 if (bb_vinfo)
9771b263 2267 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
a70d6342 2268 }
48df3fa6
IR
2269
2270 /* There is a gap in the end of the group. */
0d0293ac 2271 if (groupsize - last_accessed_element > 0 && loop_vinfo)
48df3fa6 2272 {
73fbfcad 2273 if (dump_enabled_p ())
78c60e3d 2274 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942
TJ
2275 "Data access with gaps requires scalar "
2276 "epilogue loop\n");
deaf836c
IR
2277 if (loop->inner)
2278 {
73fbfcad 2279 if (dump_enabled_p ())
e645e942
TJ
2280 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2281 "Peeling for outer loop is not supported\n");
deaf836c
IR
2282 return false;
2283 }
2284
2285 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
48df3fa6 2286 }
ebfd146a
IR
2287 }
2288
2289 return true;
2290}
2291
2292
2293/* Analyze the access pattern of the data-reference DR.
2294 In case of non-consecutive accesses call vect_analyze_group_access() to
0d0293ac 2295 analyze groups of accesses. */
ebfd146a
IR
2296
2297static bool
2298vect_analyze_data_ref_access (struct data_reference *dr)
2299{
2300 tree step = DR_STEP (dr);
2301 tree scalar_type = TREE_TYPE (DR_REF (dr));
2302 gimple stmt = DR_STMT (dr);
2303 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2304 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
a70d6342 2305 struct loop *loop = NULL;
ebfd146a 2306
a70d6342
IR
2307 if (loop_vinfo)
2308 loop = LOOP_VINFO_LOOP (loop_vinfo);
b8698a0f 2309
a70d6342 2310 if (loop_vinfo && !step)
ebfd146a 2311 {
73fbfcad 2312 if (dump_enabled_p ())
e645e942
TJ
2313 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2314 "bad data-ref access in loop\n");
ebfd146a
IR
2315 return false;
2316 }
2317
6e8dad05 2318 /* Allow invariant loads in not nested loops. */
319e6439 2319 if (loop_vinfo && integer_zerop (step))
39becbac
RG
2320 {
2321 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
6e8dad05
RB
2322 if (nested_in_vect_loop_p (loop, stmt))
2323 {
2324 if (dump_enabled_p ())
2325 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 2326 "zero step in inner loop of nest\n");
6e8dad05
RB
2327 return false;
2328 }
39becbac
RG
2329 return DR_IS_READ (dr);
2330 }
ebfd146a 2331
a70d6342 2332 if (loop && nested_in_vect_loop_p (loop, stmt))
ebfd146a
IR
2333 {
2334 /* Interleaved accesses are not yet supported within outer-loop
2335 vectorization for references in the inner-loop. */
e14c1050 2336 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
ebfd146a
IR
2337
2338 /* For the rest of the analysis we use the outer-loop step. */
2339 step = STMT_VINFO_DR_STEP (stmt_info);
319e6439 2340 if (integer_zerop (step))
ebfd146a 2341 {
73fbfcad 2342 if (dump_enabled_p ())
78c60e3d 2343 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 2344 "zero step in outer loop.\n");
ebfd146a 2345 if (DR_IS_READ (dr))
b8698a0f 2346 return true;
ebfd146a
IR
2347 else
2348 return false;
2349 }
2350 }
2351
2352 /* Consecutive? */
319e6439 2353 if (TREE_CODE (step) == INTEGER_CST)
ebfd146a 2354 {
319e6439
RG
2355 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2356 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2357 || (dr_step < 0
2358 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2359 {
2360 /* Mark that it is not interleaving. */
2361 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2362 return true;
2363 }
ebfd146a
IR
2364 }
2365
a70d6342 2366 if (loop && nested_in_vect_loop_p (loop, stmt))
ebfd146a 2367 {
73fbfcad 2368 if (dump_enabled_p ())
78c60e3d 2369 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 2370 "grouped access in outer loop.\n");
ebfd146a
IR
2371 return false;
2372 }
2373
319e6439
RG
2374 /* Assume this is a DR handled by non-constant strided load case. */
2375 if (TREE_CODE (step) != INTEGER_CST)
2376 return STMT_VINFO_STRIDE_LOAD_P (stmt_info);
2377
ebfd146a
IR
2378 /* Not consecutive access - check if it's a part of interleaving group. */
2379 return vect_analyze_group_access (dr);
2380}
2381
839c74bc
CH
2382
2383
2384/* A helper function used in the comparator function to sort data
2385 references. T1 and T2 are two data references to be compared.
2386 The function returns -1, 0, or 1. */
2387
2388static int
2389compare_tree (tree t1, tree t2)
2390{
2391 int i, cmp;
2392 enum tree_code code;
2393 char tclass;
2394
2395 if (t1 == t2)
2396 return 0;
2397 if (t1 == NULL)
2398 return -1;
2399 if (t2 == NULL)
2400 return 1;
2401
2402
2403 if (TREE_CODE (t1) != TREE_CODE (t2))
2404 return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
2405
2406 code = TREE_CODE (t1);
2407 switch (code)
2408 {
2409 /* For const values, we can just use hash values for comparisons. */
2410 case INTEGER_CST:
2411 case REAL_CST:
2412 case FIXED_CST:
2413 case STRING_CST:
2414 case COMPLEX_CST:
2415 case VECTOR_CST:
2416 {
2417 hashval_t h1 = iterative_hash_expr (t1, 0);
2418 hashval_t h2 = iterative_hash_expr (t2, 0);
2419 if (h1 != h2)
2420 return h1 < h2 ? -1 : 1;
2421 break;
2422 }
2423
2424 case SSA_NAME:
2425 cmp = compare_tree (SSA_NAME_VAR (t1), SSA_NAME_VAR (t2));
2426 if (cmp != 0)
2427 return cmp;
2428
2429 if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
2430 return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
2431 break;
2432
2433 default:
2434 tclass = TREE_CODE_CLASS (code);
2435
2436 /* For var-decl, we could compare their UIDs. */
2437 if (tclass == tcc_declaration)
2438 {
2439 if (DECL_UID (t1) != DECL_UID (t2))
2440 return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
2441 break;
2442 }
2443
2444 /* For expressions with operands, compare their operands recursively. */
2445 for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
2446 {
2447 cmp = compare_tree (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
2448 if (cmp != 0)
2449 return cmp;
2450 }
2451 }
2452
2453 return 0;
2454}
2455
2456
5abe1e05
RB
2457/* Compare two data-references DRA and DRB to group them into chunks
2458 suitable for grouping. */
2459
2460static int
2461dr_group_sort_cmp (const void *dra_, const void *drb_)
2462{
2463 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
2464 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
5abe1e05
RB
2465 int cmp;
2466
2467 /* Stabilize sort. */
2468 if (dra == drb)
2469 return 0;
2470
2471 /* Ordering of DRs according to base. */
2472 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0))
2473 {
839c74bc
CH
2474 cmp = compare_tree (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb));
2475 if (cmp != 0)
2476 return cmp;
5abe1e05
RB
2477 }
2478
2479 /* And according to DR_OFFSET. */
2480 if (!dr_equal_offsets_p (dra, drb))
2481 {
839c74bc
CH
2482 cmp = compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2483 if (cmp != 0)
2484 return cmp;
5abe1e05
RB
2485 }
2486
2487 /* Put reads before writes. */
2488 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2489 return DR_IS_READ (dra) ? -1 : 1;
2490
2491 /* Then sort after access size. */
2492 if (!operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2493 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))), 0))
2494 {
839c74bc
CH
2495 cmp = compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2496 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2497 if (cmp != 0)
2498 return cmp;
5abe1e05
RB
2499 }
2500
2501 /* And after step. */
2502 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2503 {
839c74bc
CH
2504 cmp = compare_tree (DR_STEP (dra), DR_STEP (drb));
2505 if (cmp != 0)
2506 return cmp;
5abe1e05
RB
2507 }
2508
2509 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
2510 cmp = tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb));
2511 if (cmp == 0)
2512 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
2513 return cmp;
2514}
ebfd146a
IR
2515
2516/* Function vect_analyze_data_ref_accesses.
2517
2518 Analyze the access pattern of all the data references in the loop.
2519
2520 FORNOW: the only access pattern that is considered vectorizable is a
2521 simple step 1 (consecutive) access.
2522
2523 FORNOW: handle only arrays and pointer accesses. */
2524
2525bool
a70d6342 2526vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
ebfd146a
IR
2527{
2528 unsigned int i;
9771b263 2529 vec<data_reference_p> datarefs;
ebfd146a
IR
2530 struct data_reference *dr;
2531
73fbfcad 2532 if (dump_enabled_p ())
78c60e3d 2533 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 2534 "=== vect_analyze_data_ref_accesses ===\n");
ebfd146a 2535
a70d6342
IR
2536 if (loop_vinfo)
2537 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2538 else
2539 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
2540
5abe1e05
RB
2541 if (datarefs.is_empty ())
2542 return true;
2543
2544 /* Sort the array of datarefs to make building the interleaving chains
3d54b29d
JJ
2545 linear. Don't modify the original vector's order, it is needed for
2546 determining what dependencies are reversed. */
2547 vec<data_reference_p> datarefs_copy = datarefs.copy ();
75509ba2 2548 datarefs_copy.qsort (dr_group_sort_cmp);
5abe1e05
RB
2549
2550 /* Build the interleaving chains. */
3d54b29d 2551 for (i = 0; i < datarefs_copy.length () - 1;)
5abe1e05 2552 {
3d54b29d 2553 data_reference_p dra = datarefs_copy[i];
5abe1e05
RB
2554 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2555 stmt_vec_info lastinfo = NULL;
3d54b29d 2556 for (i = i + 1; i < datarefs_copy.length (); ++i)
5abe1e05 2557 {
3d54b29d 2558 data_reference_p drb = datarefs_copy[i];
5abe1e05
RB
2559 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2560
2561 /* ??? Imperfect sorting (non-compatible types, non-modulo
2562 accesses, same accesses) can lead to a group to be artificially
2563 split here as we don't just skip over those. If it really
2564 matters we can push those to a worklist and re-iterate
2565 over them. The we can just skip ahead to the next DR here. */
2566
2567 /* Check that the data-refs have same first location (except init)
61331c48
JJ
2568 and they are both either store or load (not load and store,
2569 not masked loads or stores). */
5abe1e05
RB
2570 if (DR_IS_READ (dra) != DR_IS_READ (drb)
2571 || !operand_equal_p (DR_BASE_ADDRESS (dra),
2572 DR_BASE_ADDRESS (drb), 0)
61331c48
JJ
2573 || !dr_equal_offsets_p (dra, drb)
2574 || !gimple_assign_single_p (DR_STMT (dra))
2575 || !gimple_assign_single_p (DR_STMT (drb)))
5abe1e05
RB
2576 break;
2577
2578 /* Check that the data-refs have the same constant size and step. */
2579 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
2580 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
cc269bb6
RS
2581 if (!tree_fits_uhwi_p (sza)
2582 || !tree_fits_uhwi_p (szb)
5abe1e05 2583 || !tree_int_cst_equal (sza, szb)
9541ffee
RS
2584 || !tree_fits_shwi_p (DR_STEP (dra))
2585 || !tree_fits_shwi_p (DR_STEP (drb))
5abe1e05
RB
2586 || !tree_int_cst_equal (DR_STEP (dra), DR_STEP (drb)))
2587 break;
2588
2589 /* Do not place the same access in the interleaving chain twice. */
2590 if (tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb)) == 0)
2591 break;
2592
2593 /* Check the types are compatible.
2594 ??? We don't distinguish this during sorting. */
2595 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
2596 TREE_TYPE (DR_REF (drb))))
2597 break;
2598
2599 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
2600 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
2601 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
2602 gcc_assert (init_a < init_b);
2603
2604 /* If init_b == init_a + the size of the type * k, we have an
2605 interleaving, and DRA is accessed before DRB. */
eb1ce453 2606 HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
5abe1e05
RB
2607 if ((init_b - init_a) % type_size_a != 0)
2608 break;
2609
2610 /* The step (if not zero) is greater than the difference between
2611 data-refs' inits. This splits groups into suitable sizes. */
eb1ce453 2612 HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
5abe1e05
RB
2613 if (step != 0 && step <= (init_b - init_a))
2614 break;
2615
2616 if (dump_enabled_p ())
2617 {
2618 dump_printf_loc (MSG_NOTE, vect_location,
2619 "Detected interleaving ");
2620 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2621 dump_printf (MSG_NOTE, " and ");
2622 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
e645e942 2623 dump_printf (MSG_NOTE, "\n");
5abe1e05
RB
2624 }
2625
2626 /* Link the found element into the group list. */
2627 if (!GROUP_FIRST_ELEMENT (stmtinfo_a))
2628 {
2629 GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra);
2630 lastinfo = stmtinfo_a;
2631 }
2632 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra);
2633 GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb);
2634 lastinfo = stmtinfo_b;
2635 }
2636 }
2637
3d54b29d 2638 FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
4b5caab7
IR
2639 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
2640 && !vect_analyze_data_ref_access (dr))
ebfd146a 2641 {
73fbfcad 2642 if (dump_enabled_p ())
e645e942
TJ
2643 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2644 "not vectorized: complicated access pattern.\n");
4b5caab7
IR
2645
2646 if (bb_vinfo)
2647 {
2648 /* Mark the statement as not vectorizable. */
2649 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2650 continue;
2651 }
2652 else
3d54b29d
JJ
2653 {
2654 datarefs_copy.release ();
2655 return false;
2656 }
ebfd146a
IR
2657 }
2658
3d54b29d 2659 datarefs_copy.release ();
ebfd146a
IR
2660 return true;
2661}
2662
a05a89fa 2663
93bdc3ed 2664/* Operator == between two dr_with_seg_len objects.
a05a89fa
CH
2665
2666 This equality operator is used to make sure two data refs
2667 are the same one so that we will consider to combine the
2668 aliasing checks of those two pairs of data dependent data
2669 refs. */
2670
2671static bool
93bdc3ed
CH
2672operator == (const dr_with_seg_len& d1,
2673 const dr_with_seg_len& d2)
a05a89fa 2674{
93bdc3ed
CH
2675 return operand_equal_p (DR_BASE_ADDRESS (d1.dr),
2676 DR_BASE_ADDRESS (d2.dr), 0)
2677 && compare_tree (d1.offset, d2.offset) == 0
2678 && compare_tree (d1.seg_len, d2.seg_len) == 0;
a05a89fa
CH
2679}
2680
93bdc3ed 2681/* Function comp_dr_with_seg_len_pair.
a05a89fa 2682
93bdc3ed 2683 Comparison function for sorting objects of dr_with_seg_len_pair_t
a05a89fa
CH
2684 so that we can combine aliasing checks in one scan. */
2685
2686static int
93bdc3ed 2687comp_dr_with_seg_len_pair (const void *p1_, const void *p2_)
a05a89fa 2688{
93bdc3ed
CH
2689 const dr_with_seg_len_pair_t* p1 = (const dr_with_seg_len_pair_t *) p1_;
2690 const dr_with_seg_len_pair_t* p2 = (const dr_with_seg_len_pair_t *) p2_;
2691
2692 const dr_with_seg_len &p11 = p1->first,
2693 &p12 = p1->second,
2694 &p21 = p2->first,
2695 &p22 = p2->second;
2696
2697 /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
2698 if a and c have the same basic address snd step, and b and d have the same
2699 address and step. Therefore, if any a&c or b&d don't have the same address
2700 and step, we don't care the order of those two pairs after sorting. */
2701 int comp_res;
2702
2703 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p11.dr),
2704 DR_BASE_ADDRESS (p21.dr))) != 0)
a05a89fa 2705 return comp_res;
93bdc3ed
CH
2706 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p12.dr),
2707 DR_BASE_ADDRESS (p22.dr))) != 0)
2708 return comp_res;
2709 if ((comp_res = compare_tree (DR_STEP (p11.dr), DR_STEP (p21.dr))) != 0)
2710 return comp_res;
2711 if ((comp_res = compare_tree (DR_STEP (p12.dr), DR_STEP (p22.dr))) != 0)
2712 return comp_res;
2713 if ((comp_res = compare_tree (p11.offset, p21.offset)) != 0)
2714 return comp_res;
2715 if ((comp_res = compare_tree (p12.offset, p22.offset)) != 0)
a05a89fa 2716 return comp_res;
a05a89fa
CH
2717
2718 return 0;
2719}
2720
a05a89fa
CH
2721/* Function vect_vfa_segment_size.
2722
2723 Create an expression that computes the size of segment
2724 that will be accessed for a data reference. The functions takes into
2725 account that realignment loads may access one more vector.
2726
2727 Input:
2728 DR: The data reference.
2729 LENGTH_FACTOR: segment length to consider.
2730
2731 Return an expression whose value is the size of segment which will be
2732 accessed by DR. */
2733
2734static tree
2735vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2736{
2737 tree segment_length;
2738
2739 if (integer_zerop (DR_STEP (dr)))
2740 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2741 else
2742 segment_length = size_binop (MULT_EXPR,
93bdc3ed
CH
2743 fold_convert (sizetype, DR_STEP (dr)),
2744 fold_convert (sizetype, length_factor));
a05a89fa
CH
2745
2746 if (vect_supportable_dr_alignment (dr, false)
93bdc3ed 2747 == dr_explicit_realign_optimized)
a05a89fa
CH
2748 {
2749 tree vector_size = TYPE_SIZE_UNIT
2750 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2751
2752 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2753 }
2754 return segment_length;
2755}
2756
ebfd146a
IR
2757/* Function vect_prune_runtime_alias_test_list.
2758
2759 Prune a list of ddrs to be tested at run-time by versioning for alias.
a05a89fa 2760 Merge several alias checks into one if possible.
ebfd146a
IR
2761 Return FALSE if resulting list of ddrs is longer then allowed by
2762 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
2763
2764bool
2765vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
2766{
a05a89fa 2767 vec<ddr_p> may_alias_ddrs =
ebfd146a 2768 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
93bdc3ed 2769 vec<dr_with_seg_len_pair_t>& comp_alias_ddrs =
a05a89fa
CH
2770 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2771 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2772 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2773
2774 ddr_p ddr;
2775 unsigned int i;
2776 tree length_factor;
ebfd146a 2777
73fbfcad 2778 if (dump_enabled_p ())
78c60e3d 2779 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 2780 "=== vect_prune_runtime_alias_test_list ===\n");
ebfd146a 2781
a05a89fa
CH
2782 if (may_alias_ddrs.is_empty ())
2783 return true;
2784
2785 /* Basically, for each pair of dependent data refs store_ptr_0
2786 and load_ptr_0, we create an expression:
2787
2788 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2789 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2790
2791 for aliasing checks. However, in some cases we can decrease
2792 the number of checks by combining two checks into one. For
2793 example, suppose we have another pair of data refs store_ptr_0
2794 and load_ptr_1, and if the following condition is satisfied:
2795
2796 load_ptr_0 < load_ptr_1 &&
2797 load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
2798
2799 (this condition means, in each iteration of vectorized loop,
2800 the accessed memory of store_ptr_0 cannot be between the memory
2801 of load_ptr_0 and load_ptr_1.)
2802
2803 we then can use only the following expression to finish the
2804 alising checks between store_ptr_0 & load_ptr_0 and
2805 store_ptr_0 & load_ptr_1:
2806
2807 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2808 || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
2809
2810 Note that we only consider that load_ptr_0 and load_ptr_1 have the
2811 same basic address. */
2812
2813 comp_alias_ddrs.create (may_alias_ddrs.length ());
2814
2815 /* First, we collect all data ref pairs for aliasing checks. */
2816 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
ebfd146a 2817 {
a05a89fa
CH
2818 struct data_reference *dr_a, *dr_b;
2819 gimple dr_group_first_a, dr_group_first_b;
2820 tree segment_length_a, segment_length_b;
2821 gimple stmt_a, stmt_b;
2822
2823 dr_a = DDR_A (ddr);
2824 stmt_a = DR_STMT (DDR_A (ddr));
2825 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2826 if (dr_group_first_a)
2827 {
2828 stmt_a = dr_group_first_a;
2829 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2830 }
ebfd146a 2831
a05a89fa
CH
2832 dr_b = DDR_B (ddr);
2833 stmt_b = DR_STMT (DDR_B (ddr));
2834 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2835 if (dr_group_first_b)
2836 {
2837 stmt_b = dr_group_first_b;
2838 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2839 }
ebfd146a 2840
a05a89fa
CH
2841 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2842 length_factor = scalar_loop_iters;
2843 else
2844 length_factor = size_int (vect_factor);
2845 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2846 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2847
93bdc3ed
CH
2848 dr_with_seg_len_pair_t dr_with_seg_len_pair
2849 (dr_with_seg_len (dr_a, segment_length_a),
2850 dr_with_seg_len (dr_b, segment_length_b));
2851
2852 if (compare_tree (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b)) > 0)
9310366b 2853 std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
a05a89fa
CH
2854
2855 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
2856 }
2857
2858 /* Second, we sort the collected data ref pairs so that we can scan
2859 them once to combine all possible aliasing checks. */
93bdc3ed 2860 comp_alias_ddrs.qsort (comp_dr_with_seg_len_pair);
ebfd146a 2861
a05a89fa
CH
2862 /* Third, we scan the sorted dr pairs and check if we can combine
2863 alias checks of two neighbouring dr pairs. */
2864 for (size_t i = 1; i < comp_alias_ddrs.length (); ++i)
2865 {
2866 /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
93bdc3ed
CH
2867 dr_with_seg_len *dr_a1 = &comp_alias_ddrs[i-1].first,
2868 *dr_b1 = &comp_alias_ddrs[i-1].second,
2869 *dr_a2 = &comp_alias_ddrs[i].first,
2870 *dr_b2 = &comp_alias_ddrs[i].second;
a05a89fa
CH
2871
2872 /* Remove duplicate data ref pairs. */
2873 if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
2874 {
2875 if (dump_enabled_p ())
ebfd146a 2876 {
a05a89fa
CH
2877 dump_printf_loc (MSG_NOTE, vect_location,
2878 "found equal ranges ");
2879 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2880 DR_REF (dr_a1->dr));
2881 dump_printf (MSG_NOTE, ", ");
2882 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2883 DR_REF (dr_b1->dr));
2884 dump_printf (MSG_NOTE, " and ");
2885 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2886 DR_REF (dr_a2->dr));
2887 dump_printf (MSG_NOTE, ", ");
2888 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2889 DR_REF (dr_b2->dr));
2890 dump_printf (MSG_NOTE, "\n");
ebfd146a 2891 }
a05a89fa
CH
2892
2893 comp_alias_ddrs.ordered_remove (i--);
2894 continue;
ebfd146a 2895 }
b8698a0f 2896
a05a89fa
CH
2897 if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
2898 {
2899 /* We consider the case that DR_B1 and DR_B2 are same memrefs,
2900 and DR_A1 and DR_A2 are two consecutive memrefs. */
2901 if (*dr_a1 == *dr_a2)
2902 {
9310366b
UB
2903 std::swap (dr_a1, dr_b1);
2904 std::swap (dr_a2, dr_b2);
a05a89fa
CH
2905 }
2906
93bdc3ed
CH
2907 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
2908 DR_BASE_ADDRESS (dr_a2->dr),
2909 0)
9541ffee
RS
2910 || !tree_fits_shwi_p (dr_a1->offset)
2911 || !tree_fits_shwi_p (dr_a2->offset))
a05a89fa
CH
2912 continue;
2913
eb1ce453
KZ
2914 HOST_WIDE_INT diff = (tree_to_shwi (dr_a2->offset)
2915 - tree_to_shwi (dr_a1->offset));
a05a89fa
CH
2916
2917
2918 /* Now we check if the following condition is satisfied:
2919
2920 DIFF - SEGMENT_LENGTH_A < SEGMENT_LENGTH_B
2921
2922 where DIFF = DR_A2->OFFSET - DR_A1->OFFSET. However,
2923 SEGMENT_LENGTH_A or SEGMENT_LENGTH_B may not be constant so we
2924 have to make a best estimation. We can get the minimum value
2925 of SEGMENT_LENGTH_B as a constant, represented by MIN_SEG_LEN_B,
2926 then either of the following two conditions can guarantee the
2927 one above:
2928
2929 1: DIFF <= MIN_SEG_LEN_B
2930 2: DIFF - SEGMENT_LENGTH_A < MIN_SEG_LEN_B
2931
2932 */
2933
807e902e
KZ
2934 HOST_WIDE_INT min_seg_len_b = (tree_fits_shwi_p (dr_b1->seg_len)
2935 ? tree_to_shwi (dr_b1->seg_len)
2936 : vect_factor);
a05a89fa
CH
2937
2938 if (diff <= min_seg_len_b
807e902e
KZ
2939 || (tree_fits_shwi_p (dr_a1->seg_len)
2940 && diff - tree_to_shwi (dr_a1->seg_len) < min_seg_len_b))
a05a89fa 2941 {
d55d9ed0
RB
2942 if (dump_enabled_p ())
2943 {
2944 dump_printf_loc (MSG_NOTE, vect_location,
2945 "merging ranges for ");
2946 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2947 DR_REF (dr_a1->dr));
2948 dump_printf (MSG_NOTE, ", ");
2949 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2950 DR_REF (dr_b1->dr));
2951 dump_printf (MSG_NOTE, " and ");
2952 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2953 DR_REF (dr_a2->dr));
2954 dump_printf (MSG_NOTE, ", ");
2955 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2956 DR_REF (dr_b2->dr));
2957 dump_printf (MSG_NOTE, "\n");
2958 }
2959
a05a89fa
CH
2960 dr_a1->seg_len = size_binop (PLUS_EXPR,
2961 dr_a2->seg_len, size_int (diff));
2962 comp_alias_ddrs.ordered_remove (i--);
2963 }
2964 }
ebfd146a
IR
2965 }
2966
d55d9ed0
RB
2967 dump_printf_loc (MSG_NOTE, vect_location,
2968 "improved number of alias checks from %d to %d\n",
2969 may_alias_ddrs.length (), comp_alias_ddrs.length ());
a05a89fa
CH
2970 if ((int) comp_alias_ddrs.length () >
2971 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
d55d9ed0 2972 return false;
ebfd146a
IR
2973
2974 return true;
2975}
2976
aec7ae7d
JJ
2977/* Check whether a non-affine read in stmt is suitable for gather load
2978 and if so, return a builtin decl for that operation. */
2979
2980tree
2981vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
2982 tree *offp, int *scalep)
2983{
2984 HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
2985 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2986 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2987 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2988 tree offtype = NULL_TREE;
2989 tree decl, base, off;
ef4bddc2 2990 machine_mode pmode;
aec7ae7d
JJ
2991 int punsignedp, pvolatilep;
2992
5ce9450f
JJ
2993 base = DR_REF (dr);
2994 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
2995 see if we can use the def stmt of the address. */
2996 if (is_gimple_call (stmt)
2997 && gimple_call_internal_p (stmt)
2998 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
2999 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
3000 && TREE_CODE (base) == MEM_REF
3001 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
3002 && integer_zerop (TREE_OPERAND (base, 1))
3003 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
3004 {
3005 gimple def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
3006 if (is_gimple_assign (def_stmt)
3007 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
3008 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
3009 }
3010
aec7ae7d
JJ
3011 /* The gather builtins need address of the form
3012 loop_invariant + vector * {1, 2, 4, 8}
3013 or
3014 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
3015 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
3016 of loop invariants/SSA_NAMEs defined in the loop, with casts,
3017 multiplications and additions in it. To get a vector, we need
3018 a single SSA_NAME that will be defined in the loop and will
3019 contain everything that is not loop invariant and that can be
3020 vectorized. The following code attempts to find such a preexistng
3021 SSA_NAME OFF and put the loop invariants into a tree BASE
3022 that can be gimplified before the loop. */
5ce9450f 3023 base = get_inner_reference (base, &pbitsize, &pbitpos, &off,
b3ecff82 3024 &pmode, &punsignedp, &pvolatilep, false);
aec7ae7d
JJ
3025 gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
3026
3027 if (TREE_CODE (base) == MEM_REF)
3028 {
3029 if (!integer_zerop (TREE_OPERAND (base, 1)))
3030 {
3031 if (off == NULL_TREE)
3032 {
807e902e
KZ
3033 offset_int moff = mem_ref_offset (base);
3034 off = wide_int_to_tree (sizetype, moff);
aec7ae7d
JJ
3035 }
3036 else
3037 off = size_binop (PLUS_EXPR, off,
3038 fold_convert (sizetype, TREE_OPERAND (base, 1)));
3039 }
3040 base = TREE_OPERAND (base, 0);
3041 }
3042 else
3043 base = build_fold_addr_expr (base);
3044
3045 if (off == NULL_TREE)
3046 off = size_zero_node;
3047
3048 /* If base is not loop invariant, either off is 0, then we start with just
3049 the constant offset in the loop invariant BASE and continue with base
3050 as OFF, otherwise give up.
3051 We could handle that case by gimplifying the addition of base + off
3052 into some SSA_NAME and use that as off, but for now punt. */
3053 if (!expr_invariant_in_loop_p (loop, base))
3054 {
3055 if (!integer_zerop (off))
3056 return NULL_TREE;
3057 off = base;
3058 base = size_int (pbitpos / BITS_PER_UNIT);
3059 }
3060 /* Otherwise put base + constant offset into the loop invariant BASE
3061 and continue with OFF. */
3062 else
3063 {
3064 base = fold_convert (sizetype, base);
3065 base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
3066 }
3067
3068 /* OFF at this point may be either a SSA_NAME or some tree expression
3069 from get_inner_reference. Try to peel off loop invariants from it
3070 into BASE as long as possible. */
3071 STRIP_NOPS (off);
3072 while (offtype == NULL_TREE)
3073 {
3074 enum tree_code code;
3075 tree op0, op1, add = NULL_TREE;
3076
3077 if (TREE_CODE (off) == SSA_NAME)
3078 {
3079 gimple def_stmt = SSA_NAME_DEF_STMT (off);
3080
3081 if (expr_invariant_in_loop_p (loop, off))
3082 return NULL_TREE;
3083
3084 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
3085 break;
3086
3087 op0 = gimple_assign_rhs1 (def_stmt);
3088 code = gimple_assign_rhs_code (def_stmt);
3089 op1 = gimple_assign_rhs2 (def_stmt);
3090 }
3091 else
3092 {
3093 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
3094 return NULL_TREE;
3095 code = TREE_CODE (off);
3096 extract_ops_from_tree (off, &code, &op0, &op1);
3097 }
3098 switch (code)
3099 {
3100 case POINTER_PLUS_EXPR:
3101 case PLUS_EXPR:
3102 if (expr_invariant_in_loop_p (loop, op0))
3103 {
3104 add = op0;
3105 off = op1;
3106 do_add:
3107 add = fold_convert (sizetype, add);
3108 if (scale != 1)
3109 add = size_binop (MULT_EXPR, add, size_int (scale));
3110 base = size_binop (PLUS_EXPR, base, add);
3111 continue;
3112 }
3113 if (expr_invariant_in_loop_p (loop, op1))
3114 {
3115 add = op1;
3116 off = op0;
3117 goto do_add;
3118 }
3119 break;
3120 case MINUS_EXPR:
3121 if (expr_invariant_in_loop_p (loop, op1))
3122 {
3123 add = fold_convert (sizetype, op1);
3124 add = size_binop (MINUS_EXPR, size_zero_node, add);
3125 off = op0;
3126 goto do_add;
3127 }
3128 break;
3129 case MULT_EXPR:
9541ffee 3130 if (scale == 1 && tree_fits_shwi_p (op1))
aec7ae7d 3131 {
9439e9a1 3132 scale = tree_to_shwi (op1);
aec7ae7d
JJ
3133 off = op0;
3134 continue;
3135 }
3136 break;
3137 case SSA_NAME:
3138 off = op0;
3139 continue;
3140 CASE_CONVERT:
3141 if (!POINTER_TYPE_P (TREE_TYPE (op0))
3142 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
3143 break;
3144 if (TYPE_PRECISION (TREE_TYPE (op0))
3145 == TYPE_PRECISION (TREE_TYPE (off)))
3146 {
3147 off = op0;
3148 continue;
3149 }
3150 if (TYPE_PRECISION (TREE_TYPE (op0))
3151 < TYPE_PRECISION (TREE_TYPE (off)))
3152 {
3153 off = op0;
3154 offtype = TREE_TYPE (off);
3155 STRIP_NOPS (off);
3156 continue;
3157 }
3158 break;
3159 default:
3160 break;
3161 }
3162 break;
3163 }
3164
3165 /* If at the end OFF still isn't a SSA_NAME or isn't
3166 defined in the loop, punt. */
3167 if (TREE_CODE (off) != SSA_NAME
3168 || expr_invariant_in_loop_p (loop, off))
3169 return NULL_TREE;
3170
3171 if (offtype == NULL_TREE)
3172 offtype = TREE_TYPE (off);
3173
3174 decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
3175 offtype, scale);
3176 if (decl == NULL_TREE)
3177 return NULL_TREE;
3178
3179 if (basep)
3180 *basep = base;
3181 if (offp)
3182 *offp = off;
3183 if (scalep)
3184 *scalep = scale;
3185 return decl;
3186}
3187
ebfd146a
IR
3188/* Function vect_analyze_data_refs.
3189
a70d6342 3190 Find all the data references in the loop or basic block.
ebfd146a
IR
3191
3192 The general structure of the analysis of data refs in the vectorizer is as
3193 follows:
b8698a0f 3194 1- vect_analyze_data_refs(loop/bb): call
a70d6342
IR
3195 compute_data_dependences_for_loop/bb to find and analyze all data-refs
3196 in the loop/bb and their dependences.
ebfd146a
IR
3197 2- vect_analyze_dependences(): apply dependence testing using ddrs.
3198 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
3199 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
3200
3201*/
3202
3203bool
777e1f09
RG
3204vect_analyze_data_refs (loop_vec_info loop_vinfo,
3205 bb_vec_info bb_vinfo,
1428105c 3206 int *min_vf, unsigned *n_stmts)
ebfd146a 3207{
a70d6342
IR
3208 struct loop *loop = NULL;
3209 basic_block bb = NULL;
ebfd146a 3210 unsigned int i;
9771b263 3211 vec<data_reference_p> datarefs;
ebfd146a
IR
3212 struct data_reference *dr;
3213 tree scalar_type;
3214
73fbfcad 3215 if (dump_enabled_p ())
78c60e3d
SS
3216 dump_printf_loc (MSG_NOTE, vect_location,
3217 "=== vect_analyze_data_refs ===\n");
b8698a0f 3218
a70d6342
IR
3219 if (loop_vinfo)
3220 {
0136f8f0
AH
3221 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
3222
a70d6342 3223 loop = LOOP_VINFO_LOOP (loop_vinfo);
0136f8f0
AH
3224 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
3225 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
22a8be9e 3226 {
73fbfcad 3227 if (dump_enabled_p ())
e645e942
TJ
3228 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3229 "not vectorized: loop contains function calls"
3230 " or data references that cannot be analyzed\n");
22a8be9e
SP
3231 return false;
3232 }
3233
0136f8f0
AH
3234 for (i = 0; i < loop->num_nodes; i++)
3235 {
3236 gimple_stmt_iterator gsi;
3237
3238 for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
3239 {
3240 gimple stmt = gsi_stmt (gsi);
1428105c
RB
3241 if (is_gimple_debug (stmt))
3242 continue;
3243 ++*n_stmts;
0136f8f0
AH
3244 if (!find_data_references_in_stmt (loop, stmt, &datarefs))
3245 {
3246 if (is_gimple_call (stmt) && loop->safelen)
3247 {
3248 tree fndecl = gimple_call_fndecl (stmt), op;
3249 if (fndecl != NULL_TREE)
3250 {
d52f5295 3251 struct cgraph_node *node = cgraph_node::get (fndecl);
0136f8f0
AH
3252 if (node != NULL && node->simd_clones != NULL)
3253 {
3254 unsigned int j, n = gimple_call_num_args (stmt);
3255 for (j = 0; j < n; j++)
3256 {
3257 op = gimple_call_arg (stmt, j);
3258 if (DECL_P (op)
3259 || (REFERENCE_CLASS_P (op)
3260 && get_base_address (op)))
3261 break;
3262 }
3263 op = gimple_call_lhs (stmt);
3264 /* Ignore #pragma omp declare simd functions
3265 if they don't have data references in the
3266 call stmt itself. */
3267 if (j == n
3268 && !(op
3269 && (DECL_P (op)
3270 || (REFERENCE_CLASS_P (op)
3271 && get_base_address (op)))))
3272 continue;
3273 }
3274 }
3275 }
3276 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3277 if (dump_enabled_p ())
3278 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3279 "not vectorized: loop contains function "
3280 "calls or data references that cannot "
3281 "be analyzed\n");
3282 return false;
3283 }
3284 }
3285 }
3286
3287 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
a70d6342
IR
3288 }
3289 else
3290 {
1aedeafe
RG
3291 gimple_stmt_iterator gsi;
3292
a70d6342 3293 bb = BB_VINFO_BB (bb_vinfo);
1aedeafe
RG
3294 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3295 {
3296 gimple stmt = gsi_stmt (gsi);
1428105c
RB
3297 if (is_gimple_debug (stmt))
3298 continue;
3299 ++*n_stmts;
1aedeafe
RG
3300 if (!find_data_references_in_stmt (NULL, stmt,
3301 &BB_VINFO_DATAREFS (bb_vinfo)))
3302 {
3303 /* Mark the rest of the basic-block as unvectorizable. */
3304 for (; !gsi_end_p (gsi); gsi_next (&gsi))
d4d5e146
RG
3305 {
3306 stmt = gsi_stmt (gsi);
3307 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)) = false;
3308 }
1aedeafe
RG
3309 break;
3310 }
3311 }
22a8be9e 3312
a70d6342
IR
3313 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
3314 }
ebfd146a 3315
ff802fa1
IR
3316 /* Go through the data-refs, check that the analysis succeeded. Update
3317 pointer from stmt_vec_info struct to DR and vectype. */
ebfd146a 3318
9771b263 3319 FOR_EACH_VEC_ELT (datarefs, i, dr)
ebfd146a
IR
3320 {
3321 gimple stmt;
3322 stmt_vec_info stmt_info;
b8698a0f 3323 tree base, offset, init;
aec7ae7d 3324 bool gather = false;
74bf76ed 3325 bool simd_lane_access = false;
777e1f09 3326 int vf;
b8698a0f 3327
fbd7e877 3328again:
ebfd146a
IR
3329 if (!dr || !DR_REF (dr))
3330 {
73fbfcad 3331 if (dump_enabled_p ())
78c60e3d 3332 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942 3333 "not vectorized: unhandled data-ref\n");
ebfd146a
IR
3334 return false;
3335 }
3336
3337 stmt = DR_STMT (dr);
3338 stmt_info = vinfo_for_stmt (stmt);
3339
fbd7e877
RB
3340 /* Discard clobbers from the dataref vector. We will remove
3341 clobber stmts during vectorization. */
3342 if (gimple_clobber_p (stmt))
3343 {
d3ef8c53 3344 free_data_ref (dr);
fbd7e877
RB
3345 if (i == datarefs.length () - 1)
3346 {
3347 datarefs.pop ();
3348 break;
3349 }
41475e96
JJ
3350 datarefs.ordered_remove (i);
3351 dr = datarefs[i];
fbd7e877
RB
3352 goto again;
3353 }
3354
ebfd146a
IR
3355 /* Check that analysis of the data-ref succeeded. */
3356 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
aec7ae7d 3357 || !DR_STEP (dr))
ebfd146a 3358 {
74bf76ed
JJ
3359 bool maybe_gather
3360 = DR_IS_READ (dr)
aec7ae7d 3361 && !TREE_THIS_VOLATILE (DR_REF (dr))
74bf76ed
JJ
3362 && targetm.vectorize.builtin_gather != NULL;
3363 bool maybe_simd_lane_access
3364 = loop_vinfo && loop->simduid;
3365
3366 /* If target supports vector gather loads, or if this might be
3367 a SIMD lane access, see if they can't be used. */
3368 if (loop_vinfo
3369 && (maybe_gather || maybe_simd_lane_access)
aec7ae7d
JJ
3370 && !nested_in_vect_loop_p (loop, stmt))
3371 {
3372 struct data_reference *newdr
3373 = create_data_ref (NULL, loop_containing_stmt (stmt),
3374 DR_REF (dr), stmt, true);
3375 gcc_assert (newdr != NULL && DR_REF (newdr));
3376 if (DR_BASE_ADDRESS (newdr)
3377 && DR_OFFSET (newdr)
3378 && DR_INIT (newdr)
3379 && DR_STEP (newdr)
3380 && integer_zerop (DR_STEP (newdr)))
3381 {
74bf76ed
JJ
3382 if (maybe_simd_lane_access)
3383 {
3384 tree off = DR_OFFSET (newdr);
3385 STRIP_NOPS (off);
3386 if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
3387 && TREE_CODE (off) == MULT_EXPR
cc269bb6 3388 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
74bf76ed
JJ
3389 {
3390 tree step = TREE_OPERAND (off, 1);
3391 off = TREE_OPERAND (off, 0);
3392 STRIP_NOPS (off);
3393 if (CONVERT_EXPR_P (off)
3394 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
3395 0)))
3396 < TYPE_PRECISION (TREE_TYPE (off)))
3397 off = TREE_OPERAND (off, 0);
3398 if (TREE_CODE (off) == SSA_NAME)
3399 {
3400 gimple def = SSA_NAME_DEF_STMT (off);
3401 tree reft = TREE_TYPE (DR_REF (newdr));
cd4447e2
JJ
3402 if (is_gimple_call (def)
3403 && gimple_call_internal_p (def)
3404 && (gimple_call_internal_fn (def)
3405 == IFN_GOMP_SIMD_LANE))
74bf76ed
JJ
3406 {
3407 tree arg = gimple_call_arg (def, 0);
3408 gcc_assert (TREE_CODE (arg) == SSA_NAME);
3409 arg = SSA_NAME_VAR (arg);
3410 if (arg == loop->simduid
3411 /* For now. */
3412 && tree_int_cst_equal
3413 (TYPE_SIZE_UNIT (reft),
3414 step))
3415 {
3416 DR_OFFSET (newdr) = ssize_int (0);
3417 DR_STEP (newdr) = step;
995a1b4a
JJ
3418 DR_ALIGNED_TO (newdr)
3419 = size_int (BIGGEST_ALIGNMENT);
74bf76ed
JJ
3420 dr = newdr;
3421 simd_lane_access = true;
3422 }
3423 }
3424 }
3425 }
3426 }
3427 if (!simd_lane_access && maybe_gather)
3428 {
3429 dr = newdr;
3430 gather = true;
3431 }
aec7ae7d 3432 }
74bf76ed 3433 if (!gather && !simd_lane_access)
aec7ae7d
JJ
3434 free_data_ref (newdr);
3435 }
4b5caab7 3436
74bf76ed 3437 if (!gather && !simd_lane_access)
aec7ae7d 3438 {
73fbfcad 3439 if (dump_enabled_p ())
aec7ae7d 3440 {
e645e942 3441 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
78c60e3d
SS
3442 "not vectorized: data ref analysis "
3443 "failed ");
3444 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
e645e942 3445 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
aec7ae7d 3446 }
ba65ae42 3447
aec7ae7d 3448 if (bb_vinfo)
fcac74a1 3449 break;
aec7ae7d
JJ
3450
3451 return false;
3452 }
ebfd146a
IR
3453 }
3454
3455 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
3456 {
73fbfcad 3457 if (dump_enabled_p ())
78c60e3d
SS
3458 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3459 "not vectorized: base addr of dr is a "
e645e942 3460 "constant\n");
ba65ae42
IR
3461
3462 if (bb_vinfo)
fcac74a1 3463 break;
ba65ae42 3464
74bf76ed 3465 if (gather || simd_lane_access)
aec7ae7d
JJ
3466 free_data_ref (dr);
3467 return false;
ebfd146a
IR
3468 }
3469
8f7de592
IR
3470 if (TREE_THIS_VOLATILE (DR_REF (dr)))
3471 {
73fbfcad 3472 if (dump_enabled_p ())
8f7de592 3473 {
78c60e3d
SS
3474 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3475 "not vectorized: volatile type ");
3476 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
e645e942 3477 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
8f7de592 3478 }
ba65ae42
IR
3479
3480 if (bb_vinfo)
fcac74a1 3481 break;
ba65ae42 3482
8f7de592
IR
3483 return false;
3484 }
3485
822ba6d7 3486 if (stmt_can_throw_internal (stmt))
5a2c1986 3487 {
73fbfcad 3488 if (dump_enabled_p ())
5a2c1986 3489 {
78c60e3d
SS
3490 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3491 "not vectorized: statement can throw an "
3492 "exception ");
3493 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
e645e942 3494 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
5a2c1986 3495 }
ba65ae42
IR
3496
3497 if (bb_vinfo)
fcac74a1 3498 break;
ba65ae42 3499
74bf76ed 3500 if (gather || simd_lane_access)
aec7ae7d 3501 free_data_ref (dr);
5a2c1986
IR
3502 return false;
3503 }
3504
508ef0c6
RG
3505 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
3506 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
3507 {
73fbfcad 3508 if (dump_enabled_p ())
508ef0c6 3509 {
78c60e3d
SS
3510 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3511 "not vectorized: statement is bitfield "
3512 "access ");
3513 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
e645e942 3514 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
508ef0c6
RG
3515 }
3516
3517 if (bb_vinfo)
fcac74a1 3518 break;
508ef0c6 3519
74bf76ed 3520 if (gather || simd_lane_access)
508ef0c6
RG
3521 free_data_ref (dr);
3522 return false;
3523 }
3524
3525 base = unshare_expr (DR_BASE_ADDRESS (dr));
3526 offset = unshare_expr (DR_OFFSET (dr));
3527 init = unshare_expr (DR_INIT (dr));
3528
5ce9450f
JJ
3529 if (is_gimple_call (stmt)
3530 && (!gimple_call_internal_p (stmt)
3531 || (gimple_call_internal_fn (stmt) != IFN_MASK_LOAD
3532 && gimple_call_internal_fn (stmt) != IFN_MASK_STORE)))
9c239085 3533 {
73fbfcad 3534 if (dump_enabled_p ())
9c239085 3535 {
78c60e3d 3536 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942 3537 "not vectorized: dr in a call ");
78c60e3d 3538 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
e645e942 3539 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
9c239085
JJ
3540 }
3541
3542 if (bb_vinfo)
fcac74a1 3543 break;
9c239085 3544
74bf76ed 3545 if (gather || simd_lane_access)
9c239085
JJ
3546 free_data_ref (dr);
3547 return false;
3548 }
3549
ebfd146a 3550 /* Update DR field in stmt_vec_info struct. */
ebfd146a
IR
3551
3552 /* If the dataref is in an inner-loop of the loop that is considered for
3553 for vectorization, we also want to analyze the access relative to
b8698a0f 3554 the outer-loop (DR contains information only relative to the
ebfd146a
IR
3555 inner-most enclosing loop). We do that by building a reference to the
3556 first location accessed by the inner-loop, and analyze it relative to
b8698a0f
L
3557 the outer-loop. */
3558 if (loop && nested_in_vect_loop_p (loop, stmt))
ebfd146a
IR
3559 {
3560 tree outer_step, outer_base, outer_init;
3561 HOST_WIDE_INT pbitsize, pbitpos;
3562 tree poffset;
ef4bddc2 3563 machine_mode pmode;
ebfd146a
IR
3564 int punsignedp, pvolatilep;
3565 affine_iv base_iv, offset_iv;
3566 tree dinit;
3567
b8698a0f 3568 /* Build a reference to the first location accessed by the
ff802fa1 3569 inner-loop: *(BASE+INIT). (The first location is actually
ebfd146a
IR
3570 BASE+INIT+OFFSET, but we add OFFSET separately later). */
3571 tree inner_base = build_fold_indirect_ref
5d49b6a7 3572 (fold_build_pointer_plus (base, init));
ebfd146a 3573
73fbfcad 3574 if (dump_enabled_p ())
ebfd146a 3575 {
78c60e3d
SS
3576 dump_printf_loc (MSG_NOTE, vect_location,
3577 "analyze in outer-loop: ");
3578 dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
e645e942 3579 dump_printf (MSG_NOTE, "\n");
ebfd146a
IR
3580 }
3581
b8698a0f 3582 outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
b3ecff82 3583 &poffset, &pmode, &punsignedp, &pvolatilep, false);
ebfd146a
IR
3584 gcc_assert (outer_base != NULL_TREE);
3585
3586 if (pbitpos % BITS_PER_UNIT != 0)
3587 {
73fbfcad 3588 if (dump_enabled_p ())
78c60e3d
SS
3589 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3590 "failed: bit offset alignment.\n");
ebfd146a
IR
3591 return false;
3592 }
3593
3594 outer_base = build_fold_addr_expr (outer_base);
b8698a0f 3595 if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
ebfd146a
IR
3596 &base_iv, false))
3597 {
73fbfcad 3598 if (dump_enabled_p ())
e645e942 3599 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
78c60e3d 3600 "failed: evolution of base is not affine.\n");
ebfd146a
IR
3601 return false;
3602 }
3603
3604 if (offset)
3605 {
3606 if (poffset)
b8698a0f 3607 poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
ebfd146a
IR
3608 poffset);
3609 else
3610 poffset = offset;
3611 }
3612
3613 if (!poffset)
3614 {
3615 offset_iv.base = ssize_int (0);
3616 offset_iv.step = ssize_int (0);
3617 }
b8698a0f 3618 else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
ebfd146a
IR
3619 &offset_iv, false))
3620 {
73fbfcad 3621 if (dump_enabled_p ())
e645e942 3622 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
78c60e3d 3623 "evolution of offset is not affine.\n");
ebfd146a
IR
3624 return false;
3625 }
3626
3627 outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
3628 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
3629 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3630 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
3631 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3632
3633 outer_step = size_binop (PLUS_EXPR,
3634 fold_convert (ssizetype, base_iv.step),
3635 fold_convert (ssizetype, offset_iv.step));
3636
3637 STMT_VINFO_DR_STEP (stmt_info) = outer_step;
3638 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
b8698a0f 3639 STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
ebfd146a 3640 STMT_VINFO_DR_INIT (stmt_info) = outer_init;
b8698a0f 3641 STMT_VINFO_DR_OFFSET (stmt_info) =
ebfd146a 3642 fold_convert (ssizetype, offset_iv.base);
b8698a0f 3643 STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
ebfd146a
IR
3644 size_int (highest_pow2_factor (offset_iv.base));
3645
73fbfcad 3646 if (dump_enabled_p ())
ebfd146a 3647 {
78c60e3d
SS
3648 dump_printf_loc (MSG_NOTE, vect_location,
3649 "\touter base_address: ");
3650 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3651 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3652 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
3653 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3654 STMT_VINFO_DR_OFFSET (stmt_info));
3655 dump_printf (MSG_NOTE,
3656 "\n\touter constant offset from base address: ");
3657 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3658 STMT_VINFO_DR_INIT (stmt_info));
3659 dump_printf (MSG_NOTE, "\n\touter step: ");
3660 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3661 STMT_VINFO_DR_STEP (stmt_info));
3662 dump_printf (MSG_NOTE, "\n\touter aligned to: ");
3663 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3664 STMT_VINFO_DR_ALIGNED_TO (stmt_info));
e645e942 3665 dump_printf (MSG_NOTE, "\n");
ebfd146a
IR
3666 }
3667 }
3668
3669 if (STMT_VINFO_DATA_REF (stmt_info))
3670 {
73fbfcad 3671 if (dump_enabled_p ())
ebfd146a 3672 {
78c60e3d
SS
3673 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3674 "not vectorized: more than one data ref "
3675 "in stmt: ");
3676 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
e645e942 3677 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
ebfd146a 3678 }
ba65ae42
IR
3679
3680 if (bb_vinfo)
fcac74a1 3681 break;
ba65ae42 3682
74bf76ed 3683 if (gather || simd_lane_access)
aec7ae7d 3684 free_data_ref (dr);
ebfd146a
IR
3685 return false;
3686 }
8644a673 3687
ebfd146a 3688 STMT_VINFO_DATA_REF (stmt_info) = dr;
74bf76ed
JJ
3689 if (simd_lane_access)
3690 {
3691 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
d3ef8c53 3692 free_data_ref (datarefs[i]);
74bf76ed
JJ
3693 datarefs[i] = dr;
3694 }
b8698a0f 3695
ebfd146a
IR
3696 /* Set vectype for STMT. */
3697 scalar_type = TREE_TYPE (DR_REF (dr));
d3ef8c53
JJ
3698 STMT_VINFO_VECTYPE (stmt_info)
3699 = get_vectype_for_scalar_type (scalar_type);
b8698a0f 3700 if (!STMT_VINFO_VECTYPE (stmt_info))
ebfd146a 3701 {
73fbfcad 3702 if (dump_enabled_p ())
ebfd146a 3703 {
e645e942 3704 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
78c60e3d
SS
3705 "not vectorized: no vectype for stmt: ");
3706 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3707 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
3708 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
3709 scalar_type);
e645e942 3710 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
ebfd146a 3711 }
4b5caab7
IR
3712
3713 if (bb_vinfo)
fcac74a1 3714 break;
aec7ae7d 3715
74bf76ed 3716 if (gather || simd_lane_access)
aec7ae7d
JJ
3717 {
3718 STMT_VINFO_DATA_REF (stmt_info) = NULL;
d3ef8c53
JJ
3719 if (gather)
3720 free_data_ref (dr);
aec7ae7d
JJ
3721 }
3722 return false;
ebfd146a 3723 }
451dabda
RB
3724 else
3725 {
3726 if (dump_enabled_p ())
3727 {
3728 dump_printf_loc (MSG_NOTE, vect_location,
3729 "got vectype for stmt: ");
3730 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3731 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3732 STMT_VINFO_VECTYPE (stmt_info));
e645e942 3733 dump_printf (MSG_NOTE, "\n");
451dabda
RB
3734 }
3735 }
777e1f09
RG
3736
3737 /* Adjust the minimal vectorization factor according to the
3738 vector type. */
3739 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
3740 if (vf > *min_vf)
3741 *min_vf = vf;
aec7ae7d
JJ
3742
3743 if (gather)
3744 {
aec7ae7d 3745 tree off;
aec7ae7d 3746
7d75abc8
MM
3747 gather = 0 != vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
3748 if (gather
3749 && get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
3750 gather = false;
319e6439 3751 if (!gather)
aec7ae7d 3752 {
6f723d33
JJ
3753 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3754 free_data_ref (dr);
73fbfcad 3755 if (dump_enabled_p ())
aec7ae7d 3756 {
78c60e3d
SS
3757 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3758 "not vectorized: not suitable for gather "
3759 "load ");
3760 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
e645e942 3761 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
aec7ae7d
JJ
3762 }
3763 return false;
3764 }
3765
9771b263 3766 datarefs[i] = dr;
319e6439
RG
3767 STMT_VINFO_GATHER_P (stmt_info) = true;
3768 }
3769 else if (loop_vinfo
3770 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
3771 {
51a905b2
RB
3772 if (nested_in_vect_loop_p (loop, stmt)
3773 || !DR_IS_READ (dr))
319e6439 3774 {
73fbfcad 3775 if (dump_enabled_p ())
319e6439 3776 {
78c60e3d
SS
3777 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3778 "not vectorized: not suitable for strided "
3779 "load ");
3780 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
e645e942 3781 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
319e6439
RG
3782 }
3783 return false;
3784 }
3785 STMT_VINFO_STRIDE_LOAD_P (stmt_info) = true;
aec7ae7d 3786 }
ebfd146a 3787 }
b8698a0f 3788
fcac74a1
RB
3789 /* If we stopped analysis at the first dataref we could not analyze
3790 when trying to vectorize a basic-block mark the rest of the datarefs
3791 as not vectorizable and truncate the vector of datarefs. That
3792 avoids spending useless time in analyzing their dependence. */
3793 if (i != datarefs.length ())
3794 {
3795 gcc_assert (bb_vinfo != NULL);
3796 for (unsigned j = i; j < datarefs.length (); ++j)
3797 {
3798 data_reference_p dr = datarefs[j];
3799 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
3800 free_data_ref (dr);
3801 }
3802 datarefs.truncate (i);
3803 }
3804
ebfd146a
IR
3805 return true;
3806}
3807
3808
3809/* Function vect_get_new_vect_var.
3810
ff802fa1 3811 Returns a name for a new variable. The current naming scheme appends the
b8698a0f
L
3812 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3813 the name of vectorizer generated variables, and appends that to NAME if
ebfd146a
IR
3814 provided. */
3815
3816tree
3817vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
3818{
3819 const char *prefix;
3820 tree new_vect_var;
3821
3822 switch (var_kind)
3823 {
3824 case vect_simple_var:
451dabda 3825 prefix = "vect";
ebfd146a
IR
3826 break;
3827 case vect_scalar_var:
451dabda 3828 prefix = "stmp";
ebfd146a
IR
3829 break;
3830 case vect_pointer_var:
451dabda 3831 prefix = "vectp";
ebfd146a
IR
3832 break;
3833 default:
3834 gcc_unreachable ();
3835 }
3836
3837 if (name)
3838 {
451dabda 3839 char* tmp = concat (prefix, "_", name, NULL);
65876d24 3840 new_vect_var = create_tmp_reg (type, tmp);
ebfd146a
IR
3841 free (tmp);
3842 }
3843 else
65876d24 3844 new_vect_var = create_tmp_reg (type, prefix);
ebfd146a
IR
3845
3846 return new_vect_var;
3847}
3848
3849
3850/* Function vect_create_addr_base_for_vector_ref.
3851
3852 Create an expression that computes the address of the first memory location
3853 that will be accessed for a data reference.
3854
3855 Input:
3856 STMT: The statement containing the data reference.
3857 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
3858 OFFSET: Optional. If supplied, it is be added to the initial address.
3859 LOOP: Specify relative to which loop-nest should the address be computed.
3860 For example, when the dataref is in an inner-loop nested in an
3861 outer-loop that is now being vectorized, LOOP can be either the
ff802fa1 3862 outer-loop, or the inner-loop. The first memory location accessed
ebfd146a
IR
3863 by the following dataref ('in' points to short):
3864
3865 for (i=0; i<N; i++)
3866 for (j=0; j<M; j++)
3867 s += in[i+j]
3868
3869 is as follows:
3870 if LOOP=i_loop: &in (relative to i_loop)
3871 if LOOP=j_loop: &in+i*2B (relative to j_loop)
356bbc4c
JJ
3872 BYTE_OFFSET: Optional, defaulted to NULL. If supplied, it is added to the
3873 initial address. Unlike OFFSET, which is number of elements to
3874 be added, BYTE_OFFSET is measured in bytes.
ebfd146a
IR
3875
3876 Output:
b8698a0f 3877 1. Return an SSA_NAME whose value is the address of the memory location of
ebfd146a
IR
3878 the first vector of the data reference.
3879 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
3880 these statement(s) which define the returned SSA_NAME.
3881
3882 FORNOW: We are only handling array accesses with step 1. */
3883
3884tree
3885vect_create_addr_base_for_vector_ref (gimple stmt,
3886 gimple_seq *new_stmt_list,
3887 tree offset,
356bbc4c
JJ
3888 struct loop *loop,
3889 tree byte_offset)
ebfd146a
IR
3890{
3891 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3892 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4bdd44c4 3893 tree data_ref_base;
595c2679 3894 const char *base_name;
4bdd44c4 3895 tree addr_base;
ebfd146a
IR
3896 tree dest;
3897 gimple_seq seq = NULL;
4bdd44c4
RB
3898 tree base_offset;
3899 tree init;
8644a673 3900 tree vect_ptr_type;
ebfd146a 3901 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
a70d6342 3902 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
ebfd146a 3903
a70d6342 3904 if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
ebfd146a 3905 {
a70d6342 3906 struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
ebfd146a 3907
a70d6342 3908 gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
ebfd146a
IR
3909
3910 data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3911 base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
3912 init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
3913 }
4bdd44c4
RB
3914 else
3915 {
3916 data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
3917 base_offset = unshare_expr (DR_OFFSET (dr));
3918 init = unshare_expr (DR_INIT (dr));
3919 }
ebfd146a 3920
a70d6342 3921 if (loop_vinfo)
595c2679 3922 base_name = get_name (data_ref_base);
a70d6342
IR
3923 else
3924 {
3925 base_offset = ssize_int (0);
3926 init = ssize_int (0);
595c2679 3927 base_name = get_name (DR_REF (dr));
b8698a0f 3928 }
a70d6342 3929
ebfd146a
IR
3930 /* Create base_offset */
3931 base_offset = size_binop (PLUS_EXPR,
3932 fold_convert (sizetype, base_offset),
3933 fold_convert (sizetype, init));
ebfd146a
IR
3934
3935 if (offset)
3936 {
ebfd146a
IR
3937 offset = fold_build2 (MULT_EXPR, sizetype,
3938 fold_convert (sizetype, offset), step);
3939 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3940 base_offset, offset);
ebfd146a 3941 }
356bbc4c
JJ
3942 if (byte_offset)
3943 {
3944 byte_offset = fold_convert (sizetype, byte_offset);
3945 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3946 base_offset, byte_offset);
3947 }
ebfd146a
IR
3948
3949 /* base + base_offset */
a70d6342 3950 if (loop_vinfo)
5d49b6a7 3951 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
a70d6342
IR
3952 else
3953 {
70f34814
RG
3954 addr_base = build1 (ADDR_EXPR,
3955 build_pointer_type (TREE_TYPE (DR_REF (dr))),
3956 unshare_expr (DR_REF (dr)));
a70d6342 3957 }
b8698a0f 3958
ebfd146a 3959 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
4bdd44c4
RB
3960 addr_base = fold_convert (vect_ptr_type, addr_base);
3961 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
3962 addr_base = force_gimple_operand (addr_base, &seq, false, dest);
ebfd146a
IR
3963 gimple_seq_add_seq (new_stmt_list, seq);
3964
17fc049f 3965 if (DR_PTR_INFO (dr)
4bdd44c4 3966 && TREE_CODE (addr_base) == SSA_NAME)
128aaeed 3967 {
4bdd44c4 3968 duplicate_ssa_name_ptr_info (addr_base, DR_PTR_INFO (dr));
417dfefb
GW
3969 unsigned int align = TYPE_ALIGN_UNIT (STMT_VINFO_VECTYPE (stmt_info));
3970 int misalign = DR_MISALIGNMENT (dr);
3971 if (offset || byte_offset || (misalign == -1))
4bdd44c4 3972 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
417dfefb
GW
3973 else
3974 set_ptr_info_alignment (SSA_NAME_PTR_INFO (addr_base), align, misalign);
128aaeed 3975 }
17fc049f 3976
73fbfcad 3977 if (dump_enabled_p ())
ebfd146a 3978 {
78c60e3d 3979 dump_printf_loc (MSG_NOTE, vect_location, "created ");
4bdd44c4 3980 dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
e645e942 3981 dump_printf (MSG_NOTE, "\n");
ebfd146a 3982 }
8644a673 3983
4bdd44c4 3984 return addr_base;
ebfd146a
IR
3985}
3986
3987
3988/* Function vect_create_data_ref_ptr.
3989
920e8172
RS
3990 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
3991 location accessed in the loop by STMT, along with the def-use update
3992 chain to appropriately advance the pointer through the loop iterations.
3993 Also set aliasing information for the pointer. This pointer is used by
3994 the callers to this function to create a memory reference expression for
3995 vector load/store access.
ebfd146a
IR
3996
3997 Input:
3998 1. STMT: a stmt that references memory. Expected to be of the form
3999 GIMPLE_ASSIGN <name, data-ref> or
4000 GIMPLE_ASSIGN <data-ref, name>.
920e8172
RS
4001 2. AGGR_TYPE: the type of the reference, which should be either a vector
4002 or an array.
4003 3. AT_LOOP: the loop where the vector memref is to be created.
4004 4. OFFSET (optional): an offset to be added to the initial address accessed
ebfd146a 4005 by the data-ref in STMT.
920e8172
RS
4006 5. BSI: location where the new stmts are to be placed if there is no loop
4007 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
ebfd146a 4008 pointing to the initial address.
356bbc4c
JJ
4009 7. BYTE_OFFSET (optional, defaults to NULL): a byte offset to be added
4010 to the initial address accessed by the data-ref in STMT. This is
4011 similar to OFFSET, but OFFSET is counted in elements, while BYTE_OFFSET
4012 in bytes.
ebfd146a
IR
4013
4014 Output:
4015 1. Declare a new ptr to vector_type, and have it point to the base of the
4016 data reference (initial addressed accessed by the data reference).
4017 For example, for vector of type V8HI, the following code is generated:
4018
920e8172
RS
4019 v8hi *ap;
4020 ap = (v8hi *)initial_address;
ebfd146a
IR
4021
4022 if OFFSET is not supplied:
4023 initial_address = &a[init];
4024 if OFFSET is supplied:
4025 initial_address = &a[init + OFFSET];
356bbc4c
JJ
4026 if BYTE_OFFSET is supplied:
4027 initial_address = &a[init] + BYTE_OFFSET;
ebfd146a
IR
4028
4029 Return the initial_address in INITIAL_ADDRESS.
4030
4031 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
b8698a0f 4032 update the pointer in each iteration of the loop.
ebfd146a
IR
4033
4034 Return the increment stmt that updates the pointer in PTR_INCR.
4035
b8698a0f 4036 3. Set INV_P to true if the access pattern of the data reference in the
ff802fa1 4037 vectorized loop is invariant. Set it to false otherwise.
ebfd146a
IR
4038
4039 4. Return the pointer. */
4040
4041tree
920e8172
RS
4042vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
4043 tree offset, tree *initial_address,
4044 gimple_stmt_iterator *gsi, gimple *ptr_incr,
356bbc4c 4045 bool only_init, bool *inv_p, tree byte_offset)
ebfd146a 4046{
595c2679 4047 const char *base_name;
ebfd146a
IR
4048 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4049 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
a70d6342
IR
4050 struct loop *loop = NULL;
4051 bool nested_in_vect_loop = false;
4052 struct loop *containing_loop = NULL;
920e8172
RS
4053 tree aggr_ptr_type;
4054 tree aggr_ptr;
ebfd146a
IR
4055 tree new_temp;
4056 gimple vec_stmt;
4057 gimple_seq new_stmt_list = NULL;
a70d6342 4058 edge pe = NULL;
ebfd146a 4059 basic_block new_bb;
920e8172 4060 tree aggr_ptr_init;
ebfd146a 4061 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
920e8172 4062 tree aptr;
ebfd146a
IR
4063 gimple_stmt_iterator incr_gsi;
4064 bool insert_after;
4065 tree indx_before_incr, indx_after_incr;
4066 gimple incr;
4067 tree step;
a70d6342 4068 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
b8698a0f 4069
920e8172
RS
4070 gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
4071 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4072
a70d6342
IR
4073 if (loop_vinfo)
4074 {
4075 loop = LOOP_VINFO_LOOP (loop_vinfo);
4076 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4077 containing_loop = (gimple_bb (stmt))->loop_father;
4078 pe = loop_preheader_edge (loop);
4079 }
4080 else
4081 {
4082 gcc_assert (bb_vinfo);
4083 only_init = true;
4084 *ptr_incr = NULL;
4085 }
b8698a0f 4086
ebfd146a
IR
4087 /* Check the step (evolution) of the load in LOOP, and record
4088 whether it's invariant. */
4089 if (nested_in_vect_loop)
4090 step = STMT_VINFO_DR_STEP (stmt_info);
4091 else
4092 step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
b8698a0f 4093
08940f33 4094 if (integer_zerop (step))
ebfd146a
IR
4095 *inv_p = true;
4096 else
4097 *inv_p = false;
4098
4099 /* Create an expression for the first address accessed by this load
b8698a0f 4100 in LOOP. */
595c2679 4101 base_name = get_name (DR_BASE_ADDRESS (dr));
ebfd146a 4102
73fbfcad 4103 if (dump_enabled_p ())
ebfd146a 4104 {
595c2679 4105 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
78c60e3d
SS
4106 dump_printf_loc (MSG_NOTE, vect_location,
4107 "create %s-pointer variable to type: ",
5806f481 4108 get_tree_code_name (TREE_CODE (aggr_type)));
78c60e3d 4109 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
595c2679 4110 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
78c60e3d 4111 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
38000232
MG
4112 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4113 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
595c2679 4114 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
78c60e3d 4115 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
595c2679 4116 else
78c60e3d 4117 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
595c2679 4118 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
e645e942 4119 dump_printf (MSG_NOTE, "\n");
ebfd146a
IR
4120 }
4121
4bdd44c4
RB
4122 /* (1) Create the new aggregate-pointer variable.
4123 Vector and array types inherit the alias set of their component
920e8172
RS
4124 type by default so we need to use a ref-all pointer if the data
4125 reference does not conflict with the created aggregated data
4126 reference because it is not addressable. */
4bdd44c4
RB
4127 bool need_ref_all = false;
4128 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
3f49ba3f 4129 get_alias_set (DR_REF (dr))))
4bdd44c4 4130 need_ref_all = true;
3f49ba3f 4131 /* Likewise for any of the data references in the stmt group. */
e14c1050 4132 else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
ebfd146a 4133 {
e14c1050 4134 gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
5006671f
RG
4135 do
4136 {
4bdd44c4
RB
4137 stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
4138 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
4139 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4140 get_alias_set (DR_REF (sdr))))
5006671f 4141 {
4bdd44c4 4142 need_ref_all = true;
5006671f
RG
4143 break;
4144 }
4bdd44c4 4145 orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo);
5006671f
RG
4146 }
4147 while (orig_stmt);
ebfd146a 4148 }
4bdd44c4
RB
4149 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
4150 need_ref_all);
4151 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
4152
ebfd146a 4153
ff802fa1
IR
4154 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
4155 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
4156 def-use update cycles for the pointer: one relative to the outer-loop
4157 (LOOP), which is what steps (3) and (4) below do. The other is relative
4158 to the inner-loop (which is the inner-most loop containing the dataref),
4159 and this is done be step (5) below.
ebfd146a 4160
ff802fa1
IR
4161 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
4162 inner-most loop, and so steps (3),(4) work the same, and step (5) is
4163 redundant. Steps (3),(4) create the following:
ebfd146a
IR
4164
4165 vp0 = &base_addr;
4166 LOOP: vp1 = phi(vp0,vp2)
b8698a0f 4167 ...
ebfd146a
IR
4168 ...
4169 vp2 = vp1 + step
4170 goto LOOP
b8698a0f 4171
ff802fa1
IR
4172 If there is an inner-loop nested in loop, then step (5) will also be
4173 applied, and an additional update in the inner-loop will be created:
ebfd146a
IR
4174
4175 vp0 = &base_addr;
4176 LOOP: vp1 = phi(vp0,vp2)
4177 ...
4178 inner: vp3 = phi(vp1,vp4)
4179 vp4 = vp3 + inner_step
4180 if () goto inner
4181 ...
4182 vp2 = vp1 + step
4183 if () goto LOOP */
4184
920e8172
RS
4185 /* (2) Calculate the initial address of the aggregate-pointer, and set
4186 the aggregate-pointer to point to it before the loop. */
ebfd146a 4187
356bbc4c 4188 /* Create: (&(base[init_val+offset]+byte_offset) in the loop preheader. */
ebfd146a
IR
4189
4190 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
356bbc4c 4191 offset, loop, byte_offset);
ebfd146a
IR
4192 if (new_stmt_list)
4193 {
a70d6342
IR
4194 if (pe)
4195 {
4196 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
4197 gcc_assert (!new_bb);
4198 }
4199 else
1b29f05e 4200 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
ebfd146a
IR
4201 }
4202
4203 *initial_address = new_temp;
4204
920e8172 4205 /* Create: p = (aggr_type *) initial_base */
17fc049f 4206 if (TREE_CODE (new_temp) != SSA_NAME
920e8172 4207 || !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
a70d6342 4208 {
920e8172
RS
4209 vec_stmt = gimple_build_assign (aggr_ptr,
4210 fold_convert (aggr_ptr_type, new_temp));
4211 aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
17fc049f
RG
4212 /* Copy the points-to information if it exists. */
4213 if (DR_PTR_INFO (dr))
920e8172
RS
4214 duplicate_ssa_name_ptr_info (aggr_ptr_init, DR_PTR_INFO (dr));
4215 gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
17fc049f
RG
4216 if (pe)
4217 {
4218 new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
4219 gcc_assert (!new_bb);
4220 }
4221 else
1b29f05e 4222 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
a70d6342
IR
4223 }
4224 else
920e8172 4225 aggr_ptr_init = new_temp;
ebfd146a 4226
920e8172 4227 /* (3) Handle the updating of the aggregate-pointer inside the loop.
ff802fa1
IR
4228 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
4229 inner-loop nested in LOOP (during outer-loop vectorization). */
ebfd146a 4230
a70d6342 4231 /* No update in loop is required. */
b8698a0f 4232 if (only_init && (!loop_vinfo || at_loop == loop))
920e8172 4233 aptr = aggr_ptr_init;
ebfd146a
IR
4234 else
4235 {
920e8172 4236 /* The step of the aggregate pointer is the type size. */
08940f33 4237 tree iv_step = TYPE_SIZE_UNIT (aggr_type);
b8698a0f 4238 /* One exception to the above is when the scalar step of the load in
ebfd146a
IR
4239 LOOP is zero. In this case the step here is also zero. */
4240 if (*inv_p)
08940f33
RB
4241 iv_step = size_zero_node;
4242 else if (tree_int_cst_sgn (step) == -1)
4243 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
ebfd146a
IR
4244
4245 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4246
920e8172 4247 create_iv (aggr_ptr_init,
08940f33 4248 fold_convert (aggr_ptr_type, iv_step),
920e8172 4249 aggr_ptr, loop, &incr_gsi, insert_after,
ebfd146a
IR
4250 &indx_before_incr, &indx_after_incr);
4251 incr = gsi_stmt (incr_gsi);
a70d6342 4252 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
ebfd146a
IR
4253
4254 /* Copy the points-to information if it exists. */
4255 if (DR_PTR_INFO (dr))
4256 {
4257 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
4258 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
4259 }
ebfd146a
IR
4260 if (ptr_incr)
4261 *ptr_incr = incr;
4262
920e8172 4263 aptr = indx_before_incr;
ebfd146a
IR
4264 }
4265
4266 if (!nested_in_vect_loop || only_init)
920e8172 4267 return aptr;
ebfd146a
IR
4268
4269
920e8172 4270 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
ff802fa1 4271 nested in LOOP, if exists. */
ebfd146a
IR
4272
4273 gcc_assert (nested_in_vect_loop);
4274 if (!only_init)
4275 {
4276 standard_iv_increment_position (containing_loop, &incr_gsi,
4277 &insert_after);
920e8172 4278 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
ebfd146a
IR
4279 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
4280 &indx_after_incr);
4281 incr = gsi_stmt (incr_gsi);
a70d6342 4282 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
ebfd146a
IR
4283
4284 /* Copy the points-to information if it exists. */
4285 if (DR_PTR_INFO (dr))
4286 {
4287 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
4288 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
4289 }
ebfd146a
IR
4290 if (ptr_incr)
4291 *ptr_incr = incr;
4292
b8698a0f 4293 return indx_before_incr;
ebfd146a
IR
4294 }
4295 else
4296 gcc_unreachable ();
4297}
4298
4299
4300/* Function bump_vector_ptr
4301
4302 Increment a pointer (to a vector type) by vector-size. If requested,
b8698a0f 4303 i.e. if PTR-INCR is given, then also connect the new increment stmt
ebfd146a
IR
4304 to the existing def-use update-chain of the pointer, by modifying
4305 the PTR_INCR as illustrated below:
4306
4307 The pointer def-use update-chain before this function:
4308 DATAREF_PTR = phi (p_0, p_2)
4309 ....
b8698a0f 4310 PTR_INCR: p_2 = DATAREF_PTR + step
ebfd146a
IR
4311
4312 The pointer def-use update-chain after this function:
4313 DATAREF_PTR = phi (p_0, p_2)
4314 ....
4315 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4316 ....
4317 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4318
4319 Input:
b8698a0f 4320 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
ebfd146a 4321 in the loop.
b8698a0f 4322 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
ebfd146a 4323 the loop. The increment amount across iterations is expected
b8698a0f 4324 to be vector_size.
ebfd146a
IR
4325 BSI - location where the new update stmt is to be placed.
4326 STMT - the original scalar memory-access stmt that is being vectorized.
4327 BUMP - optional. The offset by which to bump the pointer. If not given,
4328 the offset is assumed to be vector_size.
4329
4330 Output: Return NEW_DATAREF_PTR as illustrated above.
b8698a0f 4331
ebfd146a
IR
4332*/
4333
4334tree
4335bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
4336 gimple stmt, tree bump)
4337{
4338 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4339 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4340 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
ebfd146a
IR
4341 tree update = TYPE_SIZE_UNIT (vectype);
4342 gimple incr_stmt;
4343 ssa_op_iter iter;
4344 use_operand_p use_p;
4345 tree new_dataref_ptr;
4346
4347 if (bump)
4348 update = bump;
b8698a0f 4349
070ecdfd
RG
4350 new_dataref_ptr = copy_ssa_name (dataref_ptr, NULL);
4351 incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, new_dataref_ptr,
ebfd146a 4352 dataref_ptr, update);
ebfd146a
IR
4353 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4354
4355 /* Copy the points-to information if it exists. */
4356 if (DR_PTR_INFO (dr))
128aaeed
RB
4357 {
4358 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
644ffefd 4359 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
128aaeed 4360 }
ebfd146a
IR
4361
4362 if (!ptr_incr)
4363 return new_dataref_ptr;
4364
4365 /* Update the vector-pointer's cross-iteration increment. */
4366 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4367 {
4368 tree use = USE_FROM_PTR (use_p);
4369
4370 if (use == dataref_ptr)
4371 SET_USE (use_p, new_dataref_ptr);
4372 else
4373 gcc_assert (tree_int_cst_compare (use, update) == 0);
4374 }
4375
4376 return new_dataref_ptr;
4377}
4378
4379
4380/* Function vect_create_destination_var.
4381
4382 Create a new temporary of type VECTYPE. */
4383
4384tree
4385vect_create_destination_var (tree scalar_dest, tree vectype)
4386{
4387 tree vec_dest;
451dabda
RB
4388 const char *name;
4389 char *new_name;
ebfd146a
IR
4390 tree type;
4391 enum vect_var_kind kind;
4392
4393 kind = vectype ? vect_simple_var : vect_scalar_var;
4394 type = vectype ? vectype : TREE_TYPE (scalar_dest);
4395
4396 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
4397
451dabda
RB
4398 name = get_name (scalar_dest);
4399 if (name)
4400 asprintf (&new_name, "%s_%u", name, SSA_NAME_VERSION (scalar_dest));
4401 else
4402 asprintf (&new_name, "_%u", SSA_NAME_VERSION (scalar_dest));
ebfd146a 4403 vec_dest = vect_get_new_vect_var (type, kind, new_name);
451dabda 4404 free (new_name);
ebfd146a
IR
4405
4406 return vec_dest;
4407}
4408
0d0293ac 4409/* Function vect_grouped_store_supported.
ebfd146a 4410
e2c83630
RH
4411 Returns TRUE if interleave high and interleave low permutations
4412 are supported, and FALSE otherwise. */
ebfd146a
IR
4413
4414bool
0d0293ac 4415vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
ebfd146a 4416{
ef4bddc2 4417 machine_mode mode = TYPE_MODE (vectype);
b8698a0f 4418
e1377713
ES
4419 /* vect_permute_store_chain requires the group size to be equal to 3 or
4420 be a power of two. */
4421 if (count != 3 && exact_log2 (count) == -1)
b602d918 4422 {
73fbfcad 4423 if (dump_enabled_p ())
78c60e3d 4424 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e1377713
ES
4425 "the size of the group of accesses"
4426 " is not a power of 2 or not eqaul to 3\n");
b602d918
RS
4427 return false;
4428 }
4429
e2c83630 4430 /* Check that the permutation is supported. */
3fcc1b55
JJ
4431 if (VECTOR_MODE_P (mode))
4432 {
4433 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4434 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
e1377713
ES
4435
4436 if (count == 3)
3fcc1b55 4437 {
e1377713
ES
4438 unsigned int j0 = 0, j1 = 0, j2 = 0;
4439 unsigned int i, j;
4440
4441 for (j = 0; j < 3; j++)
4442 {
4443 int nelt0 = ((3 - j) * nelt) % 3;
4444 int nelt1 = ((3 - j) * nelt + 1) % 3;
4445 int nelt2 = ((3 - j) * nelt + 2) % 3;
4446 for (i = 0; i < nelt; i++)
4447 {
4448 if (3 * i + nelt0 < nelt)
4449 sel[3 * i + nelt0] = j0++;
4450 if (3 * i + nelt1 < nelt)
4451 sel[3 * i + nelt1] = nelt + j1++;
4452 if (3 * i + nelt2 < nelt)
4453 sel[3 * i + nelt2] = 0;
4454 }
4455 if (!can_vec_perm_p (mode, false, sel))
4456 {
4457 if (dump_enabled_p ())
4458 dump_printf (MSG_MISSED_OPTIMIZATION,
4459 "permutaion op not supported by target.\n");
4460 return false;
4461 }
4462
4463 for (i = 0; i < nelt; i++)
4464 {
4465 if (3 * i + nelt0 < nelt)
4466 sel[3 * i + nelt0] = 3 * i + nelt0;
4467 if (3 * i + nelt1 < nelt)
4468 sel[3 * i + nelt1] = 3 * i + nelt1;
4469 if (3 * i + nelt2 < nelt)
4470 sel[3 * i + nelt2] = nelt + j2++;
4471 }
4472 if (!can_vec_perm_p (mode, false, sel))
4473 {
4474 if (dump_enabled_p ())
4475 dump_printf (MSG_MISSED_OPTIMIZATION,
4476 "permutaion op not supported by target.\n");
4477 return false;
4478 }
4479 }
4480 return true;
3fcc1b55 4481 }
e1377713 4482 else
3fcc1b55 4483 {
e1377713
ES
4484 /* If length is not equal to 3 then only power of 2 is supported. */
4485 gcc_assert (exact_log2 (count) != -1);
4486
4487 for (i = 0; i < nelt / 2; i++)
4488 {
4489 sel[i * 2] = i;
4490 sel[i * 2 + 1] = i + nelt;
4491 }
4492 if (can_vec_perm_p (mode, false, sel))
4493 {
4494 for (i = 0; i < nelt; i++)
4495 sel[i] += nelt / 2;
4496 if (can_vec_perm_p (mode, false, sel))
4497 return true;
4498 }
3fcc1b55
JJ
4499 }
4500 }
ebfd146a 4501
73fbfcad 4502 if (dump_enabled_p ())
78c60e3d 4503 dump_printf (MSG_MISSED_OPTIMIZATION,
e1377713 4504 "permutaion op not supported by target.\n");
a6b3dfde 4505 return false;
ebfd146a
IR
4506}
4507
4508
272c6793
RS
4509/* Return TRUE if vec_store_lanes is available for COUNT vectors of
4510 type VECTYPE. */
4511
4512bool
4513vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4514{
4515 return vect_lanes_optab_supported_p ("vec_store_lanes",
4516 vec_store_lanes_optab,
4517 vectype, count);
4518}
4519
4520
ebfd146a
IR
4521/* Function vect_permute_store_chain.
4522
4523 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
e1377713
ES
4524 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
4525 the data correctly for the stores. Return the final references for stores
4526 in RESULT_CHAIN.
ebfd146a
IR
4527
4528 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
ff802fa1
IR
4529 The input is 4 vectors each containing 8 elements. We assign a number to
4530 each element, the input sequence is:
ebfd146a
IR
4531
4532 1st vec: 0 1 2 3 4 5 6 7
4533 2nd vec: 8 9 10 11 12 13 14 15
b8698a0f 4534 3rd vec: 16 17 18 19 20 21 22 23
ebfd146a
IR
4535 4th vec: 24 25 26 27 28 29 30 31
4536
4537 The output sequence should be:
4538
4539 1st vec: 0 8 16 24 1 9 17 25
4540 2nd vec: 2 10 18 26 3 11 19 27
4541 3rd vec: 4 12 20 28 5 13 21 30
4542 4th vec: 6 14 22 30 7 15 23 31
4543
4544 i.e., we interleave the contents of the four vectors in their order.
4545
ff802fa1 4546 We use interleave_high/low instructions to create such output. The input of
ebfd146a 4547 each interleave_high/low operation is two vectors:
b8698a0f
L
4548 1st vec 2nd vec
4549 0 1 2 3 4 5 6 7
4550 the even elements of the result vector are obtained left-to-right from the
ff802fa1 4551 high/low elements of the first vector. The odd elements of the result are
ebfd146a
IR
4552 obtained left-to-right from the high/low elements of the second vector.
4553 The output of interleave_high will be: 0 4 1 5
4554 and of interleave_low: 2 6 3 7
4555
b8698a0f 4556
ff802fa1 4557 The permutation is done in log LENGTH stages. In each stage interleave_high
b8698a0f
L
4558 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4559 where the first argument is taken from the first half of DR_CHAIN and the
4560 second argument from it's second half.
4561 In our example,
ebfd146a
IR
4562
4563 I1: interleave_high (1st vec, 3rd vec)
4564 I2: interleave_low (1st vec, 3rd vec)
4565 I3: interleave_high (2nd vec, 4th vec)
4566 I4: interleave_low (2nd vec, 4th vec)
4567
4568 The output for the first stage is:
4569
4570 I1: 0 16 1 17 2 18 3 19
4571 I2: 4 20 5 21 6 22 7 23
4572 I3: 8 24 9 25 10 26 11 27
4573 I4: 12 28 13 29 14 30 15 31
4574
4575 The output of the second stage, i.e. the final result is:
4576
4577 I1: 0 8 16 24 1 9 17 25
4578 I2: 2 10 18 26 3 11 19 27
4579 I3: 4 12 20 28 5 13 21 30
4580 I4: 6 14 22 30 7 15 23 31. */
b8698a0f 4581
b602d918 4582void
9771b263 4583vect_permute_store_chain (vec<tree> dr_chain,
b8698a0f 4584 unsigned int length,
ebfd146a
IR
4585 gimple stmt,
4586 gimple_stmt_iterator *gsi,
9771b263 4587 vec<tree> *result_chain)
ebfd146a 4588{
83d5977e 4589 tree vect1, vect2, high, low;
ebfd146a
IR
4590 gimple perm_stmt;
4591 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
3fcc1b55 4592 tree perm_mask_low, perm_mask_high;
e1377713
ES
4593 tree data_ref;
4594 tree perm3_mask_low, perm3_mask_high;
4595 unsigned int i, n, log_length = exact_log2 (length);
e2c83630 4596 unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
3fcc1b55 4597 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
b8698a0f 4598
b6b9227d
JJ
4599 result_chain->quick_grow (length);
4600 memcpy (result_chain->address (), dr_chain.address (),
4601 length * sizeof (tree));
ebfd146a 4602
e1377713 4603 if (length == 3)
3fcc1b55 4604 {
e1377713 4605 unsigned int j0 = 0, j1 = 0, j2 = 0;
e2c83630 4606
e1377713
ES
4607 for (j = 0; j < 3; j++)
4608 {
4609 int nelt0 = ((3 - j) * nelt) % 3;
4610 int nelt1 = ((3 - j) * nelt + 1) % 3;
4611 int nelt2 = ((3 - j) * nelt + 2) % 3;
3fcc1b55 4612
e1377713
ES
4613 for (i = 0; i < nelt; i++)
4614 {
4615 if (3 * i + nelt0 < nelt)
4616 sel[3 * i + nelt0] = j0++;
4617 if (3 * i + nelt1 < nelt)
4618 sel[3 * i + nelt1] = nelt + j1++;
4619 if (3 * i + nelt2 < nelt)
4620 sel[3 * i + nelt2] = 0;
4621 }
4622 perm3_mask_low = vect_gen_perm_mask (vectype, sel);
4623 gcc_assert (perm3_mask_low != NULL);
4624
4625 for (i = 0; i < nelt; i++)
4626 {
4627 if (3 * i + nelt0 < nelt)
4628 sel[3 * i + nelt0] = 3 * i + nelt0;
4629 if (3 * i + nelt1 < nelt)
4630 sel[3 * i + nelt1] = 3 * i + nelt1;
4631 if (3 * i + nelt2 < nelt)
4632 sel[3 * i + nelt2] = nelt + j2++;
4633 }
4634 perm3_mask_high = vect_gen_perm_mask (vectype, sel);
4635 gcc_assert (perm3_mask_high != NULL);
4636
4637 vect1 = dr_chain[0];
4638 vect2 = dr_chain[1];
ebfd146a
IR
4639
4640 /* Create interleaving stmt:
e1377713
ES
4641 low = VEC_PERM_EXPR <vect1, vect2,
4642 {j, nelt, *, j + 1, nelt + j + 1, *,
4643 j + 2, nelt + j + 2, *, ...}> */
4644 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
4645 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4646 vect1, vect2,
4647 perm3_mask_low);
ebfd146a 4648 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
ebfd146a 4649
e1377713
ES
4650 vect1 = data_ref;
4651 vect2 = dr_chain[2];
ebfd146a 4652 /* Create interleaving stmt:
e1377713
ES
4653 low = VEC_PERM_EXPR <vect1, vect2,
4654 {0, 1, nelt + j, 3, 4, nelt + j + 1,
4655 6, 7, nelt + j + 2, ...}> */
4656 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
4657 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4658 vect1, vect2,
4659 perm3_mask_high);
ebfd146a 4660 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
e1377713 4661 (*result_chain)[j] = data_ref;
ebfd146a 4662 }
e1377713
ES
4663 }
4664 else
4665 {
4666 /* If length is not equal to 3 then only power of 2 is supported. */
4667 gcc_assert (exact_log2 (length) != -1);
4668
4669 for (i = 0, n = nelt / 2; i < n; i++)
4670 {
4671 sel[i * 2] = i;
4672 sel[i * 2 + 1] = i + nelt;
4673 }
4674 perm_mask_high = vect_gen_perm_mask (vectype, sel);
4675 gcc_assert (perm_mask_high != NULL);
4676
4677 for (i = 0; i < nelt; i++)
4678 sel[i] += nelt / 2;
4679 perm_mask_low = vect_gen_perm_mask (vectype, sel);
4680 gcc_assert (perm_mask_low != NULL);
4681
4682 for (i = 0, n = log_length; i < n; i++)
4683 {
4684 for (j = 0; j < length/2; j++)
4685 {
4686 vect1 = dr_chain[j];
4687 vect2 = dr_chain[j+length/2];
4688
4689 /* Create interleaving stmt:
4690 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
4691 ...}> */
4692 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
4693 perm_stmt
4694 = gimple_build_assign_with_ops (VEC_PERM_EXPR, high,
4695 vect1, vect2, perm_mask_high);
4696 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4697 (*result_chain)[2*j] = high;
4698
4699 /* Create interleaving stmt:
4700 low = VEC_PERM_EXPR <vect1, vect2,
4701 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
4702 ...}> */
4703 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
4704 perm_stmt
4705 = gimple_build_assign_with_ops (VEC_PERM_EXPR, low,
4706 vect1, vect2, perm_mask_low);
4707 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4708 (*result_chain)[2*j+1] = low;
4709 }
4710 memcpy (dr_chain.address (), result_chain->address (),
4711 length * sizeof (tree));
4712 }
ebfd146a 4713 }
ebfd146a
IR
4714}
4715
4716/* Function vect_setup_realignment
b8698a0f 4717
ebfd146a
IR
4718 This function is called when vectorizing an unaligned load using
4719 the dr_explicit_realign[_optimized] scheme.
4720 This function generates the following code at the loop prolog:
4721
4722 p = initial_addr;
4723 x msq_init = *(floor(p)); # prolog load
b8698a0f 4724 realignment_token = call target_builtin;
ebfd146a
IR
4725 loop:
4726 x msq = phi (msq_init, ---)
4727
b8698a0f 4728 The stmts marked with x are generated only for the case of
ebfd146a
IR
4729 dr_explicit_realign_optimized.
4730
b8698a0f 4731 The code above sets up a new (vector) pointer, pointing to the first
ebfd146a
IR
4732 location accessed by STMT, and a "floor-aligned" load using that pointer.
4733 It also generates code to compute the "realignment-token" (if the relevant
4734 target hook was defined), and creates a phi-node at the loop-header bb
4735 whose arguments are the result of the prolog-load (created by this
4736 function) and the result of a load that takes place in the loop (to be
4737 created by the caller to this function).
4738
4739 For the case of dr_explicit_realign_optimized:
b8698a0f 4740 The caller to this function uses the phi-result (msq) to create the
ebfd146a
IR
4741 realignment code inside the loop, and sets up the missing phi argument,
4742 as follows:
b8698a0f 4743 loop:
ebfd146a
IR
4744 msq = phi (msq_init, lsq)
4745 lsq = *(floor(p')); # load in loop
4746 result = realign_load (msq, lsq, realignment_token);
4747
4748 For the case of dr_explicit_realign:
4749 loop:
4750 msq = *(floor(p)); # load in loop
4751 p' = p + (VS-1);
4752 lsq = *(floor(p')); # load in loop
4753 result = realign_load (msq, lsq, realignment_token);
4754
4755 Input:
4756 STMT - (scalar) load stmt to be vectorized. This load accesses
4757 a memory location that may be unaligned.
4758 BSI - place where new code is to be inserted.
4759 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
b8698a0f
L
4760 is used.
4761
ebfd146a
IR
4762 Output:
4763 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4764 target hook, if defined.
4765 Return value - the result of the loop-header phi node. */
4766
4767tree
4768vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
4769 tree *realignment_token,
4770 enum dr_alignment_support alignment_support_scheme,
4771 tree init_addr,
4772 struct loop **at_loop)
4773{
4774 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4775 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4776 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
20ede5c6 4777 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
69f11a13
IR
4778 struct loop *loop = NULL;
4779 edge pe = NULL;
ebfd146a
IR
4780 tree scalar_dest = gimple_assign_lhs (stmt);
4781 tree vec_dest;
4782 gimple inc;
4783 tree ptr;
4784 tree data_ref;
4785 gimple new_stmt;
4786 basic_block new_bb;
4787 tree msq_init = NULL_TREE;
4788 tree new_temp;
4789 gimple phi_stmt;
4790 tree msq = NULL_TREE;
4791 gimple_seq stmts = NULL;
4792 bool inv_p;
4793 bool compute_in_loop = false;
69f11a13 4794 bool nested_in_vect_loop = false;
ebfd146a 4795 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
69f11a13
IR
4796 struct loop *loop_for_initial_load = NULL;
4797
4798 if (loop_vinfo)
4799 {
4800 loop = LOOP_VINFO_LOOP (loop_vinfo);
4801 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4802 }
ebfd146a
IR
4803
4804 gcc_assert (alignment_support_scheme == dr_explicit_realign
4805 || alignment_support_scheme == dr_explicit_realign_optimized);
4806
4807 /* We need to generate three things:
4808 1. the misalignment computation
4809 2. the extra vector load (for the optimized realignment scheme).
4810 3. the phi node for the two vectors from which the realignment is
ff802fa1 4811 done (for the optimized realignment scheme). */
ebfd146a
IR
4812
4813 /* 1. Determine where to generate the misalignment computation.
4814
4815 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4816 calculation will be generated by this function, outside the loop (in the
4817 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4818 caller, inside the loop.
4819
4820 Background: If the misalignment remains fixed throughout the iterations of
4821 the loop, then both realignment schemes are applicable, and also the
4822 misalignment computation can be done outside LOOP. This is because we are
4823 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4824 are a multiple of VS (the Vector Size), and therefore the misalignment in
4825 different vectorized LOOP iterations is always the same.
4826 The problem arises only if the memory access is in an inner-loop nested
4827 inside LOOP, which is now being vectorized using outer-loop vectorization.
4828 This is the only case when the misalignment of the memory access may not
4829 remain fixed throughout the iterations of the inner-loop (as explained in
4830 detail in vect_supportable_dr_alignment). In this case, not only is the
4831 optimized realignment scheme not applicable, but also the misalignment
4832 computation (and generation of the realignment token that is passed to
4833 REALIGN_LOAD) have to be done inside the loop.
4834
4835 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4836 or not, which in turn determines if the misalignment is computed inside
4837 the inner-loop, or outside LOOP. */
4838
69f11a13 4839 if (init_addr != NULL_TREE || !loop_vinfo)
ebfd146a
IR
4840 {
4841 compute_in_loop = true;
4842 gcc_assert (alignment_support_scheme == dr_explicit_realign);
4843 }
4844
4845
4846 /* 2. Determine where to generate the extra vector load.
4847
4848 For the optimized realignment scheme, instead of generating two vector
4849 loads in each iteration, we generate a single extra vector load in the
4850 preheader of the loop, and in each iteration reuse the result of the
4851 vector load from the previous iteration. In case the memory access is in
4852 an inner-loop nested inside LOOP, which is now being vectorized using
4853 outer-loop vectorization, we need to determine whether this initial vector
4854 load should be generated at the preheader of the inner-loop, or can be
4855 generated at the preheader of LOOP. If the memory access has no evolution
4856 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4857 to be generated inside LOOP (in the preheader of the inner-loop). */
4858
4859 if (nested_in_vect_loop)
4860 {
4861 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
4862 bool invariant_in_outerloop =
4863 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
4864 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
4865 }
4866 else
4867 loop_for_initial_load = loop;
4868 if (at_loop)
4869 *at_loop = loop_for_initial_load;
4870
69f11a13
IR
4871 if (loop_for_initial_load)
4872 pe = loop_preheader_edge (loop_for_initial_load);
4873
ebfd146a
IR
4874 /* 3. For the case of the optimized realignment, create the first vector
4875 load at the loop preheader. */
4876
4877 if (alignment_support_scheme == dr_explicit_realign_optimized)
4878 {
4879 /* Create msq_init = *(floor(p1)) in the loop preheader */
4880
4881 gcc_assert (!compute_in_loop);
ebfd146a 4882 vec_dest = vect_create_destination_var (scalar_dest, vectype);
920e8172
RS
4883 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
4884 NULL_TREE, &init_addr, NULL, &inc,
4885 true, &inv_p);
070ecdfd 4886 new_temp = copy_ssa_name (ptr, NULL);
75421dcd 4887 new_stmt = gimple_build_assign_with_ops
070ecdfd 4888 (BIT_AND_EXPR, new_temp, ptr,
75421dcd
RG
4889 build_int_cst (TREE_TYPE (ptr),
4890 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
75421dcd
RG
4891 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4892 gcc_assert (!new_bb);
20ede5c6
RG
4893 data_ref
4894 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
4895 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
ebfd146a
IR
4896 new_stmt = gimple_build_assign (vec_dest, data_ref);
4897 new_temp = make_ssa_name (vec_dest, new_stmt);
4898 gimple_assign_set_lhs (new_stmt, new_temp);
69f11a13
IR
4899 if (pe)
4900 {
4901 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4902 gcc_assert (!new_bb);
4903 }
4904 else
4905 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4906
ebfd146a
IR
4907 msq_init = gimple_assign_lhs (new_stmt);
4908 }
4909
4910 /* 4. Create realignment token using a target builtin, if available.
4911 It is done either inside the containing loop, or before LOOP (as
4912 determined above). */
4913
4914 if (targetm.vectorize.builtin_mask_for_load)
4915 {
4916 tree builtin_decl;
4917
4918 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
69f11a13 4919 if (!init_addr)
ebfd146a
IR
4920 {
4921 /* Generate the INIT_ADDR computation outside LOOP. */
4922 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
4923 NULL_TREE, loop);
69f11a13
IR
4924 if (loop)
4925 {
4926 pe = loop_preheader_edge (loop);
4927 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
4928 gcc_assert (!new_bb);
4929 }
4930 else
4931 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
ebfd146a
IR
4932 }
4933
4934 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
4935 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
4936 vec_dest =
4937 vect_create_destination_var (scalar_dest,
4938 gimple_call_return_type (new_stmt));
4939 new_temp = make_ssa_name (vec_dest, new_stmt);
4940 gimple_call_set_lhs (new_stmt, new_temp);
4941
4942 if (compute_in_loop)
4943 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4944 else
4945 {
4946 /* Generate the misalignment computation outside LOOP. */
4947 pe = loop_preheader_edge (loop);
4948 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4949 gcc_assert (!new_bb);
4950 }
4951
4952 *realignment_token = gimple_call_lhs (new_stmt);
4953
4954 /* The result of the CALL_EXPR to this builtin is determined from
4955 the value of the parameter and no global variables are touched
4956 which makes the builtin a "const" function. Requiring the
4957 builtin to have the "const" attribute makes it unnecessary
4958 to call mark_call_clobbered. */
4959 gcc_assert (TREE_READONLY (builtin_decl));
4960 }
4961
4962 if (alignment_support_scheme == dr_explicit_realign)
4963 return msq;
4964
4965 gcc_assert (!compute_in_loop);
4966 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
4967
4968
4969 /* 5. Create msq = phi <msq_init, lsq> in loop */
4970
4971 pe = loop_preheader_edge (containing_loop);
4972 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4973 msq = make_ssa_name (vec_dest, NULL);
4974 phi_stmt = create_phi_node (msq, containing_loop->header);
9e227d60 4975 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
ebfd146a
IR
4976
4977 return msq;
4978}
4979
4980
0d0293ac 4981/* Function vect_grouped_load_supported.
ebfd146a 4982
e2c83630 4983 Returns TRUE if even and odd permutations are supported,
ebfd146a
IR
4984 and FALSE otherwise. */
4985
4986bool
0d0293ac 4987vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
ebfd146a 4988{
ef4bddc2 4989 machine_mode mode = TYPE_MODE (vectype);
ebfd146a 4990
2c23db6d
ES
4991 /* vect_permute_load_chain requires the group size to be equal to 3 or
4992 be a power of two. */
4993 if (count != 3 && exact_log2 (count) == -1)
b602d918 4994 {
73fbfcad 4995 if (dump_enabled_p ())
78c60e3d 4996 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2c23db6d
ES
4997 "the size of the group of accesses"
4998 " is not a power of 2 or not equal to 3\n");
b602d918
RS
4999 return false;
5000 }
5001
e2c83630
RH
5002 /* Check that the permutation is supported. */
5003 if (VECTOR_MODE_P (mode))
5004 {
2c23db6d 5005 unsigned int i, j, nelt = GET_MODE_NUNITS (mode);
e2c83630 5006 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
ebfd146a 5007
2c23db6d 5008 if (count == 3)
e2c83630 5009 {
2c23db6d
ES
5010 unsigned int k;
5011 for (k = 0; k < 3; k++)
5012 {
5013 for (i = 0; i < nelt; i++)
5014 if (3 * i + k < 2 * nelt)
5015 sel[i] = 3 * i + k;
5016 else
5017 sel[i] = 0;
5018 if (!can_vec_perm_p (mode, false, sel))
5019 {
5020 if (dump_enabled_p ())
5021 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5022 "shuffle of 3 loads is not supported by"
5023 " target\n");
5024 return false;
5025 }
5026 for (i = 0, j = 0; i < nelt; i++)
5027 if (3 * i + k < 2 * nelt)
5028 sel[i] = i;
5029 else
5030 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5031 if (!can_vec_perm_p (mode, false, sel))
5032 {
5033 if (dump_enabled_p ())
5034 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5035 "shuffle of 3 loads is not supported by"
5036 " target\n");
5037 return false;
5038 }
5039 }
5040 return true;
5041 }
5042 else
5043 {
5044 /* If length is not equal to 3 then only power of 2 is supported. */
5045 gcc_assert (exact_log2 (count) != -1);
e2c83630 5046 for (i = 0; i < nelt; i++)
2c23db6d 5047 sel[i] = i * 2;
e2c83630 5048 if (can_vec_perm_p (mode, false, sel))
2c23db6d
ES
5049 {
5050 for (i = 0; i < nelt; i++)
5051 sel[i] = i * 2 + 1;
5052 if (can_vec_perm_p (mode, false, sel))
5053 return true;
5054 }
5055 }
e2c83630 5056 }
ebfd146a 5057
73fbfcad 5058 if (dump_enabled_p ())
78c60e3d 5059 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2c23db6d 5060 "extract even/odd not supported by target\n");
a6b3dfde 5061 return false;
ebfd146a
IR
5062}
5063
272c6793
RS
5064/* Return TRUE if vec_load_lanes is available for COUNT vectors of
5065 type VECTYPE. */
5066
5067bool
5068vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
5069{
5070 return vect_lanes_optab_supported_p ("vec_load_lanes",
5071 vec_load_lanes_optab,
5072 vectype, count);
5073}
ebfd146a
IR
5074
5075/* Function vect_permute_load_chain.
5076
5077 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
2c23db6d
ES
5078 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
5079 the input data correctly. Return the final references for loads in
5080 RESULT_CHAIN.
ebfd146a
IR
5081
5082 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5083 The input is 4 vectors each containing 8 elements. We assign a number to each
5084 element, the input sequence is:
5085
5086 1st vec: 0 1 2 3 4 5 6 7
5087 2nd vec: 8 9 10 11 12 13 14 15
b8698a0f 5088 3rd vec: 16 17 18 19 20 21 22 23
ebfd146a
IR
5089 4th vec: 24 25 26 27 28 29 30 31
5090
5091 The output sequence should be:
5092
5093 1st vec: 0 4 8 12 16 20 24 28
5094 2nd vec: 1 5 9 13 17 21 25 29
b8698a0f 5095 3rd vec: 2 6 10 14 18 22 26 30
ebfd146a
IR
5096 4th vec: 3 7 11 15 19 23 27 31
5097
5098 i.e., the first output vector should contain the first elements of each
5099 interleaving group, etc.
5100
ff802fa1
IR
5101 We use extract_even/odd instructions to create such output. The input of
5102 each extract_even/odd operation is two vectors
b8698a0f
L
5103 1st vec 2nd vec
5104 0 1 2 3 4 5 6 7
ebfd146a 5105
ff802fa1 5106 and the output is the vector of extracted even/odd elements. The output of
ebfd146a
IR
5107 extract_even will be: 0 2 4 6
5108 and of extract_odd: 1 3 5 7
5109
b8698a0f 5110
ff802fa1
IR
5111 The permutation is done in log LENGTH stages. In each stage extract_even
5112 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
5113 their order. In our example,
ebfd146a
IR
5114
5115 E1: extract_even (1st vec, 2nd vec)
5116 E2: extract_odd (1st vec, 2nd vec)
5117 E3: extract_even (3rd vec, 4th vec)
5118 E4: extract_odd (3rd vec, 4th vec)
5119
5120 The output for the first stage will be:
5121
5122 E1: 0 2 4 6 8 10 12 14
5123 E2: 1 3 5 7 9 11 13 15
b8698a0f 5124 E3: 16 18 20 22 24 26 28 30
ebfd146a
IR
5125 E4: 17 19 21 23 25 27 29 31
5126
5127 In order to proceed and create the correct sequence for the next stage (or
b8698a0f
L
5128 for the correct output, if the second stage is the last one, as in our
5129 example), we first put the output of extract_even operation and then the
ebfd146a
IR
5130 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
5131 The input for the second stage is:
5132
5133 1st vec (E1): 0 2 4 6 8 10 12 14
b8698a0f
L
5134 2nd vec (E3): 16 18 20 22 24 26 28 30
5135 3rd vec (E2): 1 3 5 7 9 11 13 15
ebfd146a
IR
5136 4th vec (E4): 17 19 21 23 25 27 29 31
5137
5138 The output of the second stage:
5139
5140 E1: 0 4 8 12 16 20 24 28
5141 E2: 2 6 10 14 18 22 26 30
5142 E3: 1 5 9 13 17 21 25 29
5143 E4: 3 7 11 15 19 23 27 31
5144
5145 And RESULT_CHAIN after reordering:
5146
5147 1st vec (E1): 0 4 8 12 16 20 24 28
5148 2nd vec (E3): 1 5 9 13 17 21 25 29
b8698a0f 5149 3rd vec (E2): 2 6 10 14 18 22 26 30
ebfd146a
IR
5150 4th vec (E4): 3 7 11 15 19 23 27 31. */
5151
b602d918 5152static void
9771b263 5153vect_permute_load_chain (vec<tree> dr_chain,
b8698a0f 5154 unsigned int length,
ebfd146a
IR
5155 gimple stmt,
5156 gimple_stmt_iterator *gsi,
9771b263 5157 vec<tree> *result_chain)
ebfd146a 5158{
83d5977e 5159 tree data_ref, first_vect, second_vect;
e2c83630 5160 tree perm_mask_even, perm_mask_odd;
2c23db6d 5161 tree perm3_mask_low, perm3_mask_high;
ebfd146a
IR
5162 gimple perm_stmt;
5163 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
e2c83630
RH
5164 unsigned int i, j, log_length = exact_log2 (length);
5165 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5166 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
ebfd146a 5167
3f292312
JJ
5168 result_chain->quick_grow (length);
5169 memcpy (result_chain->address (), dr_chain.address (),
5170 length * sizeof (tree));
e2c83630 5171
2c23db6d 5172 if (length == 3)
ebfd146a 5173 {
2c23db6d 5174 unsigned int k;
ebfd146a 5175
2c23db6d
ES
5176 for (k = 0; k < 3; k++)
5177 {
5178 for (i = 0; i < nelt; i++)
5179 if (3 * i + k < 2 * nelt)
5180 sel[i] = 3 * i + k;
5181 else
5182 sel[i] = 0;
5183 perm3_mask_low = vect_gen_perm_mask (vectype, sel);
5184 gcc_assert (perm3_mask_low != NULL);
5185
5186 for (i = 0, j = 0; i < nelt; i++)
5187 if (3 * i + k < 2 * nelt)
5188 sel[i] = i;
5189 else
5190 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5191
5192 perm3_mask_high = vect_gen_perm_mask (vectype, sel);
5193 gcc_assert (perm3_mask_high != NULL);
5194
5195 first_vect = dr_chain[0];
5196 second_vect = dr_chain[1];
5197
5198 /* Create interleaving stmt (low part of):
5199 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5200 ...}> */
f598c55c 5201 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
73804b12
RG
5202 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5203 first_vect, second_vect,
2c23db6d 5204 perm3_mask_low);
ebfd146a 5205 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
b8698a0f 5206
2c23db6d
ES
5207 /* Create interleaving stmt (high part of):
5208 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5209 ...}> */
5210 first_vect = data_ref;
5211 second_vect = dr_chain[2];
f598c55c 5212 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
73804b12
RG
5213 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5214 first_vect, second_vect,
2c23db6d 5215 perm3_mask_high);
ebfd146a 5216 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
2c23db6d 5217 (*result_chain)[k] = data_ref;
ebfd146a 5218 }
ebfd146a 5219 }
2c23db6d
ES
5220 else
5221 {
5222 /* If length is not equal to 3 then only power of 2 is supported. */
5223 gcc_assert (exact_log2 (length) != -1);
5224
5225 for (i = 0; i < nelt; ++i)
5226 sel[i] = i * 2;
5227 perm_mask_even = vect_gen_perm_mask (vectype, sel);
5228 gcc_assert (perm_mask_even != NULL);
5229
5230 for (i = 0; i < nelt; ++i)
5231 sel[i] = i * 2 + 1;
5232 perm_mask_odd = vect_gen_perm_mask (vectype, sel);
5233 gcc_assert (perm_mask_odd != NULL);
ebfd146a 5234
2c23db6d
ES
5235 for (i = 0; i < log_length; i++)
5236 {
5237 for (j = 0; j < length; j += 2)
5238 {
5239 first_vect = dr_chain[j];
5240 second_vect = dr_chain[j+1];
5241
5242 /* data_ref = permute_even (first_data_ref, second_data_ref); */
5243 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
5244 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5245 first_vect, second_vect,
5246 perm_mask_even);
5247 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5248 (*result_chain)[j/2] = data_ref;
5249
5250 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
5251 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
5252 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5253 first_vect, second_vect,
5254 perm_mask_odd);
5255 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5256 (*result_chain)[j/2+length/2] = data_ref;
5257 }
5258 memcpy (dr_chain.address (), result_chain->address (),
5259 length * sizeof (tree));
5260 }
5261 }
5262}
ebfd146a 5263
f7917029
ES
5264/* Function vect_shift_permute_load_chain.
5265
5266 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
5267 sequence of stmts to reorder the input data accordingly.
5268 Return the final references for loads in RESULT_CHAIN.
5269 Return true if successed, false otherwise.
5270
5271 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
5272 The input is 3 vectors each containing 8 elements. We assign a
5273 number to each element, the input sequence is:
5274
5275 1st vec: 0 1 2 3 4 5 6 7
5276 2nd vec: 8 9 10 11 12 13 14 15
5277 3rd vec: 16 17 18 19 20 21 22 23
5278
5279 The output sequence should be:
5280
5281 1st vec: 0 3 6 9 12 15 18 21
5282 2nd vec: 1 4 7 10 13 16 19 22
5283 3rd vec: 2 5 8 11 14 17 20 23
5284
5285 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
5286
5287 First we shuffle all 3 vectors to get correct elements order:
5288
5289 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
5290 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
5291 3rd vec: (16 19 22) (17 20 23) (18 21)
5292
5293 Next we unite and shift vector 3 times:
5294
5295 1st step:
5296 shift right by 6 the concatenation of:
5297 "1st vec" and "2nd vec"
5298 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
5299 "2nd vec" and "3rd vec"
5300 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
5301 "3rd vec" and "1st vec"
5302 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
5303 | New vectors |
5304
5305 So that now new vectors are:
5306
5307 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
5308 2nd vec: (10 13) (16 19 22) (17 20 23)
5309 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
5310
5311 2nd step:
5312 shift right by 5 the concatenation of:
5313 "1st vec" and "3rd vec"
5314 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
5315 "2nd vec" and "1st vec"
5316 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
5317 "3rd vec" and "2nd vec"
5318 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
5319 | New vectors |
5320
5321 So that now new vectors are:
5322
5323 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
5324 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
5325 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
5326
5327 3rd step:
5328 shift right by 5 the concatenation of:
5329 "1st vec" and "1st vec"
5330 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
5331 shift right by 3 the concatenation of:
5332 "2nd vec" and "2nd vec"
5333 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
5334 | New vectors |
5335
5336 So that now all vectors are READY:
5337 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
5338 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
5339 3rd vec: ( 1 4 7) (10 13) (16 19 22)
5340
5341 This algorithm is faster than one in vect_permute_load_chain if:
5342 1. "shift of a concatination" is faster than general permutation.
5343 This is usually so.
5344 2. The TARGET machine can't execute vector instructions in parallel.
5345 This is because each step of the algorithm depends on previous.
5346 The algorithm in vect_permute_load_chain is much more parallel.
5347
5348 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
5349*/
5350
5351static bool
5352vect_shift_permute_load_chain (vec<tree> dr_chain,
5353 unsigned int length,
5354 gimple stmt,
5355 gimple_stmt_iterator *gsi,
5356 vec<tree> *result_chain)
5357{
5358 tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
5359 tree perm2_mask1, perm2_mask2, perm3_mask;
5360 tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
5361 gimple perm_stmt;
5362
5363 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5364 unsigned int i;
5365 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5366 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5367 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5368 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5369
5370 result_chain->quick_grow (length);
5371 memcpy (result_chain->address (), dr_chain.address (),
5372 length * sizeof (tree));
5373
af4c011e 5374 if (exact_log2 (length) != -1 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 4)
f7917029 5375 {
af4c011e 5376 unsigned int j, log_length = exact_log2 (length);
f7917029
ES
5377 for (i = 0; i < nelt / 2; ++i)
5378 sel[i] = i * 2;
5379 for (i = 0; i < nelt / 2; ++i)
5380 sel[nelt / 2 + i] = i * 2 + 1;
5381 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5382 {
5383 if (dump_enabled_p ())
5384 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5385 "shuffle of 2 fields structure is not \
5386 supported by target\n");
5387 return false;
5388 }
5389 perm2_mask1 = vect_gen_perm_mask (vectype, sel);
5390 gcc_assert (perm2_mask1 != NULL);
5391
5392 for (i = 0; i < nelt / 2; ++i)
5393 sel[i] = i * 2 + 1;
5394 for (i = 0; i < nelt / 2; ++i)
5395 sel[nelt / 2 + i] = i * 2;
5396 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5397 {
5398 if (dump_enabled_p ())
5399 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5400 "shuffle of 2 fields structure is not \
5401 supported by target\n");
5402 return false;
5403 }
5404 perm2_mask2 = vect_gen_perm_mask (vectype, sel);
5405 gcc_assert (perm2_mask2 != NULL);
5406
5407 /* Generating permutation constant to shift all elements.
5408 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
5409 for (i = 0; i < nelt; i++)
5410 sel[i] = nelt / 2 + i;
5411 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5412 {
5413 if (dump_enabled_p ())
5414 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5415 "shift permutation is not supported by target\n");
5416 return false;
5417 }
5418 shift1_mask = vect_gen_perm_mask (vectype, sel);
5419 gcc_assert (shift1_mask != NULL);
5420
5421 /* Generating permutation constant to select vector from 2.
5422 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
5423 for (i = 0; i < nelt / 2; i++)
5424 sel[i] = i;
5425 for (i = nelt / 2; i < nelt; i++)
5426 sel[i] = nelt + i;
5427 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5428 {
5429 if (dump_enabled_p ())
5430 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5431 "select is not supported by target\n");
5432 return false;
5433 }
5434 select_mask = vect_gen_perm_mask (vectype, sel);
5435 gcc_assert (select_mask != NULL);
5436
af4c011e
ES
5437 for (i = 0; i < log_length; i++)
5438 {
5439 for (j = 0; j < length; j += 2)
5440 {
5441 first_vect = dr_chain[j];
5442 second_vect = dr_chain[j + 1];
5443
5444 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5445 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5446 first_vect, first_vect,
5447 perm2_mask1);
5448 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5449 vect[0] = data_ref;
5450
5451 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5452 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5453 second_vect, second_vect,
5454 perm2_mask2);
5455 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5456 vect[1] = data_ref;
f7917029 5457
af4c011e
ES
5458 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
5459 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5460 vect[0], vect[1],
5461 shift1_mask);
5462 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5463 (*result_chain)[j/2 + length/2] = data_ref;
5464
5465 data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
5466 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5467 vect[0], vect[1],
5468 select_mask);
5469 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5470 (*result_chain)[j/2] = data_ref;
5471 }
5472 memcpy (dr_chain.address (), result_chain->address (),
5473 length * sizeof (tree));
5474 }
f7917029
ES
5475 return true;
5476 }
5477 if (length == 3 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 2)
5478 {
5479 unsigned int k = 0, l = 0;
5480
5481 /* Generating permutation constant to get all elements in rigth order.
5482 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
5483 for (i = 0; i < nelt; i++)
5484 {
5485 if (3 * k + (l % 3) >= nelt)
5486 {
5487 k = 0;
5488 l += (3 - (nelt % 3));
5489 }
5490 sel[i] = 3 * k + (l % 3);
5491 k++;
5492 }
5493 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5494 {
5495 if (dump_enabled_p ())
5496 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5497 "shuffle of 3 fields structure is not \
5498 supported by target\n");
5499 return false;
5500 }
5501 perm3_mask = vect_gen_perm_mask (vectype, sel);
5502 gcc_assert (perm3_mask != NULL);
5503
5504 /* Generating permutation constant to shift all elements.
5505 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
5506 for (i = 0; i < nelt; i++)
5507 sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
5508 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5509 {
5510 if (dump_enabled_p ())
5511 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5512 "shift permutation is not supported by target\n");
5513 return false;
5514 }
5515 shift1_mask = vect_gen_perm_mask (vectype, sel);
5516 gcc_assert (shift1_mask != NULL);
5517
5518 /* Generating permutation constant to shift all elements.
5519 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5520 for (i = 0; i < nelt; i++)
5521 sel[i] = 2 * (nelt / 3) + 1 + i;
5522 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5523 {
5524 if (dump_enabled_p ())
5525 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5526 "shift permutation is not supported by target\n");
5527 return false;
5528 }
5529 shift2_mask = vect_gen_perm_mask (vectype, sel);
5530 gcc_assert (shift2_mask != NULL);
5531
5532 /* Generating permutation constant to shift all elements.
5533 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
5534 for (i = 0; i < nelt; i++)
5535 sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
5536 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5537 {
5538 if (dump_enabled_p ())
5539 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5540 "shift permutation is not supported by target\n");
5541 return false;
5542 }
5543 shift3_mask = vect_gen_perm_mask (vectype, sel);
5544 gcc_assert (shift3_mask != NULL);
5545
5546 /* Generating permutation constant to shift all elements.
5547 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5548 for (i = 0; i < nelt; i++)
5549 sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
5550 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5551 {
5552 if (dump_enabled_p ())
5553 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5554 "shift permutation is not supported by target\n");
5555 return false;
5556 }
5557 shift4_mask = vect_gen_perm_mask (vectype, sel);
5558 gcc_assert (shift4_mask != NULL);
5559
5560 for (k = 0; k < 3; k++)
5561 {
f598c55c 5562 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
f7917029
ES
5563 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5564 dr_chain[k], dr_chain[k],
5565 perm3_mask);
5566 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5567 vect[k] = data_ref;
5568 }
5569
5570 for (k = 0; k < 3; k++)
5571 {
5572 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
5573 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5574 vect[k % 3],
5575 vect[(k + 1) % 3],
5576 shift1_mask);
5577 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5578 vect_shift[k] = data_ref;
5579 }
5580
5581 for (k = 0; k < 3; k++)
5582 {
5583 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
5584 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5585 vect_shift[(4 - k) % 3],
5586 vect_shift[(3 - k) % 3],
5587 shift2_mask);
5588 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5589 vect[k] = data_ref;
5590 }
5591
5592 (*result_chain)[3 - (nelt % 3)] = vect[2];
5593
5594 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
5595 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5596 vect[0], vect[0],
5597 shift3_mask);
5598 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5599 (*result_chain)[nelt % 3] = data_ref;
5600
5601 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
5602 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5603 vect[1], vect[1],
5604 shift4_mask);
5605 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5606 (*result_chain)[0] = data_ref;
5607 return true;
5608 }
5609 return false;
5610}
5611
0d0293ac 5612/* Function vect_transform_grouped_load.
ebfd146a
IR
5613
5614 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
5615 to perform their permutation and ascribe the result vectorized statements to
5616 the scalar statements.
5617*/
5618
b602d918 5619void
9771b263 5620vect_transform_grouped_load (gimple stmt, vec<tree> dr_chain, int size,
ebfd146a
IR
5621 gimple_stmt_iterator *gsi)
5622{
ef4bddc2 5623 machine_mode mode;
6e1aa848 5624 vec<tree> result_chain = vNULL;
ebfd146a 5625
b8698a0f
L
5626 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
5627 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
ebfd146a 5628 vectors, that are ready for vector computation. */
9771b263 5629 result_chain.create (size);
f7917029
ES
5630
5631 /* If reassociation width for vector type is 2 or greater target machine can
5632 execute 2 or more vector instructions in parallel. Otherwise try to
5633 get chain for loads group using vect_shift_permute_load_chain. */
5634 mode = TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)));
5635 if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
5636 || !vect_shift_permute_load_chain (dr_chain, size, stmt,
5637 gsi, &result_chain))
5638 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
0d0293ac 5639 vect_record_grouped_load_vectors (stmt, result_chain);
9771b263 5640 result_chain.release ();
272c6793
RS
5641}
5642
0d0293ac 5643/* RESULT_CHAIN contains the output of a group of grouped loads that were
272c6793
RS
5644 generated as part of the vectorization of STMT. Assign the statement
5645 for each vector to the associated scalar statement. */
5646
5647void
9771b263 5648vect_record_grouped_load_vectors (gimple stmt, vec<tree> result_chain)
272c6793 5649{
e14c1050 5650 gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
272c6793
RS
5651 gimple next_stmt, new_stmt;
5652 unsigned int i, gap_count;
5653 tree tmp_data_ref;
ebfd146a 5654
b8698a0f
L
5655 /* Put a permuted data-ref in the VECTORIZED_STMT field.
5656 Since we scan the chain starting from it's first node, their order
ebfd146a
IR
5657 corresponds the order of data-refs in RESULT_CHAIN. */
5658 next_stmt = first_stmt;
5659 gap_count = 1;
9771b263 5660 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
ebfd146a
IR
5661 {
5662 if (!next_stmt)
5663 break;
5664
ff802fa1
IR
5665 /* Skip the gaps. Loads created for the gaps will be removed by dead
5666 code elimination pass later. No need to check for the first stmt in
ebfd146a 5667 the group, since it always exists.
e14c1050
IR
5668 GROUP_GAP is the number of steps in elements from the previous
5669 access (if there is no gap GROUP_GAP is 1). We skip loads that
ff802fa1 5670 correspond to the gaps. */
b8698a0f 5671 if (next_stmt != first_stmt
e14c1050 5672 && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
ebfd146a
IR
5673 {
5674 gap_count++;
5675 continue;
5676 }
5677
5678 while (next_stmt)
5679 {
5680 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
5681 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
5682 copies, and we put the new vector statement in the first available
5683 RELATED_STMT. */
5684 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
5685 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
5686 else
5687 {
e14c1050 5688 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
ebfd146a
IR
5689 {
5690 gimple prev_stmt =
5691 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
5692 gimple rel_stmt =
5693 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
5694 while (rel_stmt)
5695 {
5696 prev_stmt = rel_stmt;
b8698a0f 5697 rel_stmt =
ebfd146a
IR
5698 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
5699 }
5700
b8698a0f 5701 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
ebfd146a
IR
5702 new_stmt;
5703 }
5704 }
5705
e14c1050 5706 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
ebfd146a
IR
5707 gap_count = 1;
5708 /* If NEXT_STMT accesses the same DR as the previous statement,
5709 put the same TMP_DATA_REF as its vectorized statement; otherwise
5710 get the next data-ref from RESULT_CHAIN. */
e14c1050 5711 if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
ebfd146a
IR
5712 break;
5713 }
5714 }
ebfd146a
IR
5715}
5716
5717/* Function vect_force_dr_alignment_p.
5718
5719 Returns whether the alignment of a DECL can be forced to be aligned
5720 on ALIGNMENT bit boundary. */
5721
b8698a0f 5722bool
ebfd146a
IR
5723vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
5724{
5725 if (TREE_CODE (decl) != VAR_DECL)
5726 return false;
5727
6192fa79
JH
5728 /* With -fno-toplevel-reorder we may have already output the constant. */
5729 if (TREE_ASM_WRITTEN (decl))
5730 return false;
5731
5732 /* Constant pool entries may be shared and not properly merged by LTO. */
5733 if (DECL_IN_CONSTANT_POOL (decl))
5734 return false;
ebfd146a 5735
6ad386b7
JH
5736 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
5737 {
5738 symtab_node *snode;
5739
5740 /* We cannot change alignment of symbols that may bind to symbols
5741 in other translation unit that may contain a definition with lower
5742 alignment. */
5743 if (!decl_binds_to_current_def_p (decl))
5744 return false;
5745
5746 /* When compiling partition, be sure the symbol is not output by other
5747 partition. */
d52f5295 5748 snode = symtab_node::get (decl);
6ad386b7
JH
5749 if (flag_ltrans
5750 && (snode->in_other_partition
d52f5295 5751 || snode->get_partitioning_class () == SYMBOL_DUPLICATE))
6ad386b7
JH
5752 return false;
5753 }
ebfd146a 5754
f89dcfd8
RG
5755 /* Do not override the alignment as specified by the ABI when the used
5756 attribute is set. */
5757 if (DECL_PRESERVE_P (decl))
af4d0d91
RG
5758 return false;
5759
79e02217
JJ
5760 /* Do not override explicit alignment set by the user when an explicit
5761 section name is also used. This is a common idiom used by many
5762 software projects. */
24d047a3 5763 if (TREE_STATIC (decl)
f961457f 5764 && DECL_SECTION_NAME (decl) != NULL
d52f5295 5765 && !symtab_node::get (decl)->implicit_section)
79e02217
JJ
5766 return false;
5767
6ad386b7
JH
5768 /* If symbol is an alias, we need to check that target is OK. */
5769 if (TREE_STATIC (decl))
5770 {
d52f5295 5771 tree target = symtab_node::get (decl)->ultimate_alias_target ()->decl;
6ad386b7
JH
5772 if (target != decl)
5773 {
5774 if (DECL_PRESERVE_P (target))
5775 return false;
5776 decl = target;
5777 }
5778 }
5779
ebfd146a
IR
5780 if (TREE_STATIC (decl))
5781 return (alignment <= MAX_OFILE_ALIGNMENT);
5782 else
5783 return (alignment <= MAX_STACK_ALIGNMENT);
5784}
5785
ebfd146a 5786
720f5239
IR
5787/* Return whether the data reference DR is supported with respect to its
5788 alignment.
5789 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
5790 it is aligned, i.e., check if it is possible to vectorize it with different
ebfd146a
IR
5791 alignment. */
5792
5793enum dr_alignment_support
720f5239
IR
5794vect_supportable_dr_alignment (struct data_reference *dr,
5795 bool check_aligned_accesses)
ebfd146a
IR
5796{
5797 gimple stmt = DR_STMT (dr);
5798 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5799 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
ef4bddc2 5800 machine_mode mode = TYPE_MODE (vectype);
a70d6342
IR
5801 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5802 struct loop *vect_loop = NULL;
5803 bool nested_in_vect_loop = false;
ebfd146a 5804
720f5239 5805 if (aligned_access_p (dr) && !check_aligned_accesses)
ebfd146a
IR
5806 return dr_aligned;
5807
5ce9450f
JJ
5808 /* For now assume all conditional loads/stores support unaligned
5809 access without any special code. */
5810 if (is_gimple_call (stmt)
5811 && gimple_call_internal_p (stmt)
5812 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
5813 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
5814 return dr_unaligned_supported;
5815
69f11a13
IR
5816 if (loop_vinfo)
5817 {
5818 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
5819 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
5820 }
a70d6342 5821
ebfd146a
IR
5822 /* Possibly unaligned access. */
5823
5824 /* We can choose between using the implicit realignment scheme (generating
5825 a misaligned_move stmt) and the explicit realignment scheme (generating
ff802fa1
IR
5826 aligned loads with a REALIGN_LOAD). There are two variants to the
5827 explicit realignment scheme: optimized, and unoptimized.
ebfd146a
IR
5828 We can optimize the realignment only if the step between consecutive
5829 vector loads is equal to the vector size. Since the vector memory
5830 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
5831 is guaranteed that the misalignment amount remains the same throughout the
5832 execution of the vectorized loop. Therefore, we can create the
5833 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
5834 at the loop preheader.
5835
5836 However, in the case of outer-loop vectorization, when vectorizing a
5837 memory access in the inner-loop nested within the LOOP that is now being
5838 vectorized, while it is guaranteed that the misalignment of the
5839 vectorized memory access will remain the same in different outer-loop
5840 iterations, it is *not* guaranteed that is will remain the same throughout
5841 the execution of the inner-loop. This is because the inner-loop advances
5842 with the original scalar step (and not in steps of VS). If the inner-loop
5843 step happens to be a multiple of VS, then the misalignment remains fixed
5844 and we can use the optimized realignment scheme. For example:
5845
5846 for (i=0; i<N; i++)
5847 for (j=0; j<M; j++)
5848 s += a[i+j];
5849
5850 When vectorizing the i-loop in the above example, the step between
5851 consecutive vector loads is 1, and so the misalignment does not remain
5852 fixed across the execution of the inner-loop, and the realignment cannot
5853 be optimized (as illustrated in the following pseudo vectorized loop):
5854
5855 for (i=0; i<N; i+=4)
5856 for (j=0; j<M; j++){
5857 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
5858 // when j is {0,1,2,3,4,5,6,7,...} respectively.
5859 // (assuming that we start from an aligned address).
5860 }
5861
5862 We therefore have to use the unoptimized realignment scheme:
5863
5864 for (i=0; i<N; i+=4)
5865 for (j=k; j<M; j+=4)
5866 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
5867 // that the misalignment of the initial address is
5868 // 0).
5869
5870 The loop can then be vectorized as follows:
5871
5872 for (k=0; k<4; k++){
5873 rt = get_realignment_token (&vp[k]);
5874 for (i=0; i<N; i+=4){
5875 v1 = vp[i+k];
5876 for (j=k; j<M; j+=4){
5877 v2 = vp[i+j+VS-1];
5878 va = REALIGN_LOAD <v1,v2,rt>;
5879 vs += va;
5880 v1 = v2;
5881 }
5882 }
5883 } */
5884
5885 if (DR_IS_READ (dr))
5886 {
0601d0cf
RE
5887 bool is_packed = false;
5888 tree type = (TREE_TYPE (DR_REF (dr)));
5889
947131ba 5890 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
ebfd146a
IR
5891 && (!targetm.vectorize.builtin_mask_for_load
5892 || targetm.vectorize.builtin_mask_for_load ()))
5893 {
5894 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
69f11a13
IR
5895 if ((nested_in_vect_loop
5896 && (TREE_INT_CST_LOW (DR_STEP (dr))
5897 != GET_MODE_SIZE (TYPE_MODE (vectype))))
5898 || !loop_vinfo)
ebfd146a
IR
5899 return dr_explicit_realign;
5900 else
5901 return dr_explicit_realign_optimized;
5902 }
0601d0cf 5903 if (!known_alignment_for_access_p (dr))
4c9bcf89 5904 is_packed = not_size_aligned (DR_REF (dr));
b8698a0f 5905
afb119be
RB
5906 if ((TYPE_USER_ALIGN (type) && !is_packed)
5907 || targetm.vectorize.
5908 support_vector_misalignment (mode, type,
5909 DR_MISALIGNMENT (dr), is_packed))
ebfd146a
IR
5910 /* Can't software pipeline the loads, but can at least do them. */
5911 return dr_unaligned_supported;
5912 }
0601d0cf
RE
5913 else
5914 {
5915 bool is_packed = false;
5916 tree type = (TREE_TYPE (DR_REF (dr)));
ebfd146a 5917
0601d0cf 5918 if (!known_alignment_for_access_p (dr))
4c9bcf89 5919 is_packed = not_size_aligned (DR_REF (dr));
b8698a0f 5920
afb119be
RB
5921 if ((TYPE_USER_ALIGN (type) && !is_packed)
5922 || targetm.vectorize.
5923 support_vector_misalignment (mode, type,
5924 DR_MISALIGNMENT (dr), is_packed))
0601d0cf
RE
5925 return dr_unaligned_supported;
5926 }
b8698a0f 5927
ebfd146a
IR
5928 /* Unsupported. */
5929 return dr_unaligned_unsupported;
5930}