]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-vect-loop-manip.c
Merger of git branch "gimple-classes-v2-option-3"
[thirdparty/gcc.git] / gcc / tree-vect-loop-manip.c
CommitLineData
b8698a0f 1/* Vectorizer Specific Loop Manipulations
23a5b65a 2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
b8698a0f 3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
ebfd146a
IR
4 and Ira Rosen <irar@il.ibm.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
78c60e3d 25#include "dumpfile.h"
ebfd146a 26#include "tm.h"
ebfd146a 27#include "tree.h"
60393bbc
AM
28#include "predict.h"
29#include "vec.h"
30#include "hashtab.h"
31#include "hash-set.h"
32#include "machmode.h"
33#include "hard-reg-set.h"
34#include "input.h"
35#include "function.h"
36#include "dominance.h"
37#include "cfg.h"
38#include "cfganal.h"
ebfd146a 39#include "basic-block.h"
cf835838 40#include "gimple-pretty-print.h"
2fb9a547
AM
41#include "tree-ssa-alias.h"
42#include "internal-fn.h"
43#include "gimple-expr.h"
44#include "is-a.h"
18f429e2 45#include "gimple.h"
45b0be94 46#include "gimplify.h"
5be5c238 47#include "gimple-iterator.h"
18f429e2 48#include "gimplify-me.h"
442b4905
AM
49#include "gimple-ssa.h"
50#include "tree-cfg.h"
51#include "tree-phinodes.h"
52#include "ssa-iterators.h"
d8a2d370 53#include "stringpool.h"
442b4905 54#include "tree-ssanames.h"
e28030cf 55#include "tree-ssa-loop-manip.h"
442b4905 56#include "tree-into-ssa.h"
7a300452 57#include "tree-ssa.h"
7ee2468b 58#include "tree-pass.h"
ebfd146a 59#include "cfgloop.h"
718f9c0f 60#include "diagnostic-core.h"
ebfd146a
IR
61#include "tree-scalar-evolution.h"
62#include "tree-vectorizer.h"
63#include "langhooks.h"
64
65/*************************************************************************
66 Simple Loop Peeling Utilities
67
68 Utilities to support loop peeling for vectorization purposes.
69 *************************************************************************/
70
71
72/* Renames the use *OP_P. */
73
74static void
75rename_use_op (use_operand_p op_p)
76{
77 tree new_name;
78
79 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
80 return;
81
82 new_name = get_current_def (USE_FROM_PTR (op_p));
83
84 /* Something defined outside of the loop. */
85 if (!new_name)
86 return;
87
88 /* An ordinary ssa name defined in the loop. */
89
90 SET_USE (op_p, new_name);
91}
92
93
94/* Renames the variables in basic block BB. */
95
2cfc56b9 96static void
ebfd146a
IR
97rename_variables_in_bb (basic_block bb)
98{
ebfd146a
IR
99 gimple stmt;
100 use_operand_p use_p;
101 ssa_op_iter iter;
102 edge e;
103 edge_iterator ei;
104 struct loop *loop = bb->loop_father;
105
538dd0b7
DM
106 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
107 gsi_next (&gsi))
ebfd146a
IR
108 {
109 stmt = gsi_stmt (gsi);
110 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
111 rename_use_op (use_p);
112 }
113
2cfc56b9 114 FOR_EACH_EDGE (e, ei, bb->preds)
ebfd146a 115 {
2cfc56b9 116 if (!flow_bb_inside_loop_p (loop, e->src))
ebfd146a 117 continue;
538dd0b7
DM
118 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
119 gsi_next (&gsi))
120 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
ebfd146a
IR
121 }
122}
123
124
684f25f4
AO
125typedef struct
126{
127 tree from, to;
128 basic_block bb;
129} adjust_info;
130
684f25f4
AO
131/* A stack of values to be adjusted in debug stmts. We have to
132 process them LIFO, so that the closest substitution applies. If we
133 processed them FIFO, without the stack, we might substitute uses
134 with a PHI DEF that would soon become non-dominant, and when we got
135 to the suitable one, it wouldn't have anything to substitute any
136 more. */
ff4c81cc 137static vec<adjust_info, va_heap> adjust_vec;
684f25f4
AO
138
139/* Adjust any debug stmts that referenced AI->from values to use the
140 loop-closed AI->to, if the references are dominated by AI->bb and
141 not by the definition of AI->from. */
142
143static void
144adjust_debug_stmts_now (adjust_info *ai)
145{
146 basic_block bbphi = ai->bb;
147 tree orig_def = ai->from;
148 tree new_def = ai->to;
149 imm_use_iterator imm_iter;
150 gimple stmt;
151 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
152
153 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
154
155 /* Adjust any debug stmts that held onto non-loop-closed
156 references. */
157 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
158 {
159 use_operand_p use_p;
160 basic_block bbuse;
161
162 if (!is_gimple_debug (stmt))
163 continue;
164
165 gcc_assert (gimple_debug_bind_p (stmt));
166
167 bbuse = gimple_bb (stmt);
168
169 if ((bbuse == bbphi
170 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
171 && !(bbuse == bbdef
172 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
173 {
174 if (new_def)
175 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
176 SET_USE (use_p, new_def);
177 else
178 {
179 gimple_debug_bind_reset_value (stmt);
180 update_stmt (stmt);
181 }
182 }
183 }
184}
185
186/* Adjust debug stmts as scheduled before. */
187
188static void
189adjust_vec_debug_stmts (void)
190{
191 if (!MAY_HAVE_DEBUG_STMTS)
192 return;
193
9771b263 194 gcc_assert (adjust_vec.exists ());
684f25f4 195
9771b263 196 while (!adjust_vec.is_empty ())
684f25f4 197 {
9771b263
DN
198 adjust_debug_stmts_now (&adjust_vec.last ());
199 adjust_vec.pop ();
684f25f4
AO
200 }
201
9771b263 202 adjust_vec.release ();
684f25f4
AO
203}
204
205/* Adjust any debug stmts that referenced FROM values to use the
206 loop-closed TO, if the references are dominated by BB and not by
207 the definition of FROM. If adjust_vec is non-NULL, adjustments
208 will be postponed until adjust_vec_debug_stmts is called. */
209
210static void
211adjust_debug_stmts (tree from, tree to, basic_block bb)
212{
213 adjust_info ai;
214
a471762f
RG
215 if (MAY_HAVE_DEBUG_STMTS
216 && TREE_CODE (from) == SSA_NAME
a52ca739 217 && ! SSA_NAME_IS_DEFAULT_DEF (from)
a471762f 218 && ! virtual_operand_p (from))
684f25f4
AO
219 {
220 ai.from = from;
221 ai.to = to;
222 ai.bb = bb;
223
9771b263
DN
224 if (adjust_vec.exists ())
225 adjust_vec.safe_push (ai);
684f25f4
AO
226 else
227 adjust_debug_stmts_now (&ai);
228 }
229}
230
231/* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
232 to adjust any debug stmts that referenced the old phi arg,
233 presumably non-loop-closed references left over from other
234 transformations. */
235
236static void
237adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
238{
239 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
240
241 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
242
243 if (MAY_HAVE_DEBUG_STMTS)
244 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
245 gimple_bb (update_phi));
246}
247
ebfd146a 248
ebfd146a
IR
249/* Update PHI nodes for a guard of the LOOP.
250
251 Input:
252 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
253 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
254 originates from the guard-bb, skips LOOP and reaches the (unique) exit
255 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
256 We denote this bb NEW_MERGE_BB because before the guard code was added
257 it had a single predecessor (the LOOP header), and now it became a merge
258 point of two paths - the path that ends with the LOOP exit-edge, and
259 the path that ends with GUARD_EDGE.
260 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
261 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
262
263 ===> The CFG before the guard-code was added:
264 LOOP_header_bb:
265 loop_body
266 if (exit_loop) goto update_bb
267 else goto LOOP_header_bb
268 update_bb:
269
270 ==> The CFG after the guard-code was added:
271 guard_bb:
272 if (LOOP_guard_condition) goto new_merge_bb
273 else goto LOOP_header_bb
274 LOOP_header_bb:
275 loop_body
276 if (exit_loop_condition) goto new_merge_bb
277 else goto LOOP_header_bb
278 new_merge_bb:
279 goto update_bb
280 update_bb:
281
282 ==> The CFG after this function:
283 guard_bb:
284 if (LOOP_guard_condition) goto new_merge_bb
285 else goto LOOP_header_bb
286 LOOP_header_bb:
287 loop_body
288 if (exit_loop_condition) goto new_exit_bb
289 else goto LOOP_header_bb
290 new_exit_bb:
291 new_merge_bb:
292 goto update_bb
293 update_bb:
294
295 This function:
296 1. creates and updates the relevant phi nodes to account for the new
297 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
298 1.1. Create phi nodes at NEW_MERGE_BB.
299 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
300 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
301 2. preserves loop-closed-ssa-form by creating the required phi nodes
302 at the exit of LOOP (i.e, in NEW_EXIT_BB).
303
304 There are two flavors to this function:
305
306 slpeel_update_phi_nodes_for_guard1:
307 Here the guard controls whether we enter or skip LOOP, where LOOP is a
308 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
309 for variables that have phis in the loop header.
310
311 slpeel_update_phi_nodes_for_guard2:
312 Here the guard controls whether we enter or skip LOOP, where LOOP is an
313 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
314 for variables that have phis in the loop exit.
315
316 I.E., the overall structure is:
317
318 loop1_preheader_bb:
319 guard1 (goto loop1/merge1_bb)
320 loop1
321 loop1_exit_bb:
322 guard2 (goto merge1_bb/merge2_bb)
323 merge1_bb
324 loop2
325 loop2_exit_bb
326 merge2_bb
327 next_bb
328
329 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
330 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
331 that have phis in loop1->header).
332
333 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
334 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
335 that have phis in next_bb). It also adds some of these phis to
336 loop1_exit_bb.
337
338 slpeel_update_phi_nodes_for_guard1 is always called before
339 slpeel_update_phi_nodes_for_guard2. They are both needed in order
340 to create correct data-flow and loop-closed-ssa-form.
341
342 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
343 that change between iterations of a loop (and therefore have a phi-node
344 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
b8698a0f
L
345 phis for variables that are used out of the loop (and therefore have
346 loop-closed exit phis). Some variables may be both updated between
ebfd146a
IR
347 iterations and used after the loop. This is why in loop1_exit_bb we
348 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
349 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
350
351 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
352 an original loop. i.e., we have:
353
354 orig_loop
355 guard_bb (goto LOOP/new_merge)
356 new_loop <-- LOOP
357 new_exit
358 new_merge
359 next_bb
360
361 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
362 have:
363
364 new_loop
365 guard_bb (goto LOOP/new_merge)
366 orig_loop <-- LOOP
367 new_exit
368 new_merge
369 next_bb
370
371 The SSA names defined in the original loop have a current
372 reaching definition that that records the corresponding new
373 ssa-name used in the new duplicated loop copy.
374 */
375
376/* Function slpeel_update_phi_nodes_for_guard1
b8698a0f 377
ebfd146a
IR
378 Input:
379 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
380 - DEFS - a bitmap of ssa names to mark new names for which we recorded
b8698a0f
L
381 information.
382
ebfd146a
IR
383 In the context of the overall structure, we have:
384
b8698a0f 385 loop1_preheader_bb:
ebfd146a
IR
386 guard1 (goto loop1/merge1_bb)
387LOOP-> loop1
388 loop1_exit_bb:
389 guard2 (goto merge1_bb/merge2_bb)
390 merge1_bb
391 loop2
392 loop2_exit_bb
393 merge2_bb
394 next_bb
395
396 For each name updated between loop iterations (i.e - for each name that has
397 an entry (loop-header) phi in LOOP) we create a new phi in:
398 1. merge1_bb (to account for the edge from guard1)
399 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
400*/
401
402static void
403slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
c334023f 404 bool is_new_loop, basic_block *new_exit_bb)
ebfd146a 405{
538dd0b7
DM
406 gphi *orig_phi, *new_phi;
407 gphi *update_phi, *update_phi2;
ebfd146a
IR
408 tree guard_arg, loop_arg;
409 basic_block new_merge_bb = guard_edge->dest;
410 edge e = EDGE_SUCC (new_merge_bb, 0);
411 basic_block update_bb = e->dest;
412 basic_block orig_bb = loop->header;
413 edge new_exit_e;
414 tree current_new_name;
538dd0b7 415 gphi_iterator gsi_orig, gsi_update;
ebfd146a
IR
416
417 /* Create new bb between loop and new_merge_bb. */
418 *new_exit_bb = split_edge (single_exit (loop));
419
420 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
421
422 for (gsi_orig = gsi_start_phis (orig_bb),
423 gsi_update = gsi_start_phis (update_bb);
424 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
425 gsi_next (&gsi_orig), gsi_next (&gsi_update))
426 {
e20f6b4b 427 source_location loop_locus, guard_locus;
070ecdfd 428 tree new_res;
538dd0b7
DM
429 orig_phi = gsi_orig.phi ();
430 update_phi = gsi_update.phi ();
ebfd146a 431
ebfd146a
IR
432 /** 1. Handle new-merge-point phis **/
433
434 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
070ecdfd
RG
435 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
436 new_phi = create_phi_node (new_res, new_merge_bb);
ebfd146a
IR
437
438 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
439 of LOOP. Set the two phi args in NEW_PHI for these edges: */
440 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
b8698a0f
L
441 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
442 EDGE_SUCC (loop->latch,
f5045c96 443 0));
ebfd146a 444 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
b8698a0f
L
445 guard_locus
446 = gimple_phi_arg_location_from_edge (orig_phi,
f5045c96 447 loop_preheader_edge (loop));
ebfd146a 448
9e227d60
DC
449 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
450 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
ebfd146a
IR
451
452 /* 1.3. Update phi in successor block. */
453 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
454 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
684f25f4 455 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
ebfd146a
IR
456 update_phi2 = new_phi;
457
458
459 /** 2. Handle loop-closed-ssa-form phis **/
460
ea057359 461 if (virtual_operand_p (PHI_RESULT (orig_phi)))
ebfd146a
IR
462 continue;
463
464 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
070ecdfd
RG
465 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
466 new_phi = create_phi_node (new_res, *new_exit_bb);
ebfd146a
IR
467
468 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
9e227d60 469 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
ebfd146a
IR
470
471 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
472 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
684f25f4
AO
473 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
474 PHI_RESULT (new_phi));
ebfd146a
IR
475
476 /* 2.4. Record the newly created name with set_current_def.
477 We want to find a name such that
478 name = get_current_def (orig_loop_name)
479 and to set its current definition as follows:
480 set_current_def (name, new_phi_name)
481
482 If LOOP is a new loop then loop_arg is already the name we're
483 looking for. If LOOP is the original loop, then loop_arg is
484 the orig_loop_name and the relevant name is recorded in its
485 current reaching definition. */
486 if (is_new_loop)
487 current_new_name = loop_arg;
488 else
489 {
490 current_new_name = get_current_def (loop_arg);
491 /* current_def is not available only if the variable does not
492 change inside the loop, in which case we also don't care
493 about recording a current_def for it because we won't be
494 trying to create loop-exit-phis for it. */
495 if (!current_new_name)
496 continue;
497 }
39719c84
JJ
498 tree new_name = get_current_def (current_new_name);
499 /* Because of peeled_chrec optimization it is possible that we have
500 set this earlier. Verify the PHI has the same value. */
501 if (new_name)
502 {
503 gimple phi = SSA_NAME_DEF_STMT (new_name);
504 gcc_assert (gimple_code (phi) == GIMPLE_PHI
505 && gimple_bb (phi) == *new_exit_bb
506 && (PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop))
507 == loop_arg));
508 continue;
509 }
ebfd146a
IR
510
511 set_current_def (current_new_name, PHI_RESULT (new_phi));
ebfd146a
IR
512 }
513}
514
515
516/* Function slpeel_update_phi_nodes_for_guard2
517
518 Input:
519 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
520
521 In the context of the overall structure, we have:
522
b8698a0f 523 loop1_preheader_bb:
ebfd146a
IR
524 guard1 (goto loop1/merge1_bb)
525 loop1
b8698a0f 526 loop1_exit_bb:
ebfd146a
IR
527 guard2 (goto merge1_bb/merge2_bb)
528 merge1_bb
529LOOP-> loop2
530 loop2_exit_bb
531 merge2_bb
532 next_bb
533
534 For each name used out side the loop (i.e - for each name that has an exit
535 phi in next_bb) we create a new phi in:
b8698a0f 536 1. merge2_bb (to account for the edge from guard_bb)
ebfd146a
IR
537 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
538 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
539 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
540*/
541
542static void
543slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
544 bool is_new_loop, basic_block *new_exit_bb)
545{
538dd0b7
DM
546 gphi *orig_phi, *new_phi;
547 gphi *update_phi, *update_phi2;
ebfd146a
IR
548 tree guard_arg, loop_arg;
549 basic_block new_merge_bb = guard_edge->dest;
550 edge e = EDGE_SUCC (new_merge_bb, 0);
551 basic_block update_bb = e->dest;
552 edge new_exit_e;
553 tree orig_def, orig_def_new_name;
554 tree new_name, new_name2;
555 tree arg;
538dd0b7 556 gphi_iterator gsi;
ebfd146a
IR
557
558 /* Create new bb between loop and new_merge_bb. */
559 *new_exit_bb = split_edge (single_exit (loop));
560
561 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
562
563 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
564 {
070ecdfd 565 tree new_res;
538dd0b7 566 update_phi = gsi.phi ();
ebfd146a
IR
567 orig_phi = update_phi;
568 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
569 /* This loop-closed-phi actually doesn't represent a use
b8698a0f 570 out of the loop - the phi arg is a constant. */
ebfd146a
IR
571 if (TREE_CODE (orig_def) != SSA_NAME)
572 continue;
573 orig_def_new_name = get_current_def (orig_def);
574 arg = NULL_TREE;
575
576 /** 1. Handle new-merge-point phis **/
577
578 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
070ecdfd
RG
579 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
580 new_phi = create_phi_node (new_res, new_merge_bb);
ebfd146a
IR
581
582 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
583 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
584 new_name = orig_def;
585 new_name2 = NULL_TREE;
586 if (orig_def_new_name)
587 {
588 new_name = orig_def_new_name;
589 /* Some variables have both loop-entry-phis and loop-exit-phis.
590 Such variables were given yet newer names by phis placed in
591 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
592 new_name2 = get_current_def (get_current_def (orig_name)). */
593 new_name2 = get_current_def (new_name);
594 }
b8698a0f 595
ebfd146a
IR
596 if (is_new_loop)
597 {
598 guard_arg = orig_def;
599 loop_arg = new_name;
600 }
601 else
602 {
603 guard_arg = new_name;
604 loop_arg = orig_def;
605 }
606 if (new_name2)
607 guard_arg = new_name2;
b8698a0f 608
9e227d60
DC
609 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
610 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
ebfd146a
IR
611
612 /* 1.3. Update phi in successor block. */
613 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
684f25f4 614 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
ebfd146a
IR
615 update_phi2 = new_phi;
616
617
618 /** 2. Handle loop-closed-ssa-form phis **/
619
620 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
070ecdfd
RG
621 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
622 new_phi = create_phi_node (new_res, *new_exit_bb);
ebfd146a
IR
623
624 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
9e227d60 625 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
ebfd146a
IR
626
627 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
628 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
684f25f4
AO
629 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
630 PHI_RESULT (new_phi));
ebfd146a
IR
631
632
633 /** 3. Handle loop-closed-ssa-form phis for first loop **/
634
635 /* 3.1. Find the relevant names that need an exit-phi in
636 GUARD_BB, i.e. names for which
637 slpeel_update_phi_nodes_for_guard1 had not already created a
638 phi node. This is the case for names that are used outside
639 the loop (and therefore need an exit phi) but are not updated
640 across loop iterations (and therefore don't have a
641 loop-header-phi).
642
643 slpeel_update_phi_nodes_for_guard1 is responsible for
644 creating loop-exit phis in GUARD_BB for names that have a
645 loop-header-phi. When such a phi is created we also record
646 the new name in its current definition. If this new name
647 exists, then guard_arg was set to this new name (see 1.2
648 above). Therefore, if guard_arg is not this new name, this
649 is an indication that an exit-phi in GUARD_BB was not yet
650 created, so we take care of it here. */
651 if (guard_arg == new_name2)
652 continue;
653 arg = guard_arg;
654
655 /* 3.2. Generate new phi node in GUARD_BB: */
070ecdfd
RG
656 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
657 new_phi = create_phi_node (new_res, guard_edge->src);
ebfd146a
IR
658
659 /* 3.3. GUARD_BB has one incoming edge: */
660 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
b8698a0f 661 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
9e227d60 662 UNKNOWN_LOCATION);
ebfd146a
IR
663
664 /* 3.4. Update phi in successor of GUARD_BB: */
665 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
666 == guard_arg);
684f25f4
AO
667 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
668 PHI_RESULT (new_phi));
ebfd146a
IR
669 }
670}
671
672
673/* Make the LOOP iterate NITERS times. This is done by adding a new IV
674 that starts at zero, increases by one and its limit is NITERS.
675
676 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
677
678void
679slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
680{
681 tree indx_before_incr, indx_after_incr;
538dd0b7
DM
682 gcond *cond_stmt;
683 gcond *orig_cond;
ebfd146a
IR
684 edge exit_edge = single_exit (loop);
685 gimple_stmt_iterator loop_cond_gsi;
686 gimple_stmt_iterator incr_gsi;
687 bool insert_after;
688 tree init = build_int_cst (TREE_TYPE (niters), 0);
689 tree step = build_int_cst (TREE_TYPE (niters), 1);
b05e0233 690 source_location loop_loc;
ebfd146a
IR
691 enum tree_code code;
692
693 orig_cond = get_loop_exit_condition (loop);
694 gcc_assert (orig_cond);
695 loop_cond_gsi = gsi_for_stmt (orig_cond);
696
697 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
698 create_iv (init, step, NULL_TREE, loop,
699 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
700
701 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
702 true, NULL_TREE, true,
703 GSI_SAME_STMT);
704 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
705 true, GSI_SAME_STMT);
706
707 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
708 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
709 NULL_TREE);
710
711 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
712
713 /* Remove old loop exit test: */
714 gsi_remove (&loop_cond_gsi, true);
6f723d33 715 free_stmt_vec_info (orig_cond);
ebfd146a
IR
716
717 loop_loc = find_loop_location (loop);
73fbfcad 718 if (dump_enabled_p ())
ebfd146a 719 {
b05e0233
RB
720 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
721 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
722 LOCATION_LINE (loop_loc));
78c60e3d 723 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
e645e942 724 dump_printf (MSG_NOTE, "\n");
ebfd146a 725 }
ebfd146a
IR
726 loop->nb_iterations = niters;
727}
728
5ce9450f
JJ
729/* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
730 For all PHI arguments in FROM->dest and TO->dest from those
731 edges ensure that TO->dest PHI arguments have current_def
732 to that in from. */
733
734static void
735slpeel_duplicate_current_defs_from_edges (edge from, edge to)
736{
737 gimple_stmt_iterator gsi_from, gsi_to;
738
739 for (gsi_from = gsi_start_phis (from->dest),
740 gsi_to = gsi_start_phis (to->dest);
741 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);
742 gsi_next (&gsi_from), gsi_next (&gsi_to))
743 {
744 gimple from_phi = gsi_stmt (gsi_from);
745 gimple to_phi = gsi_stmt (gsi_to);
746 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
747 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
748 if (TREE_CODE (from_arg) == SSA_NAME
749 && TREE_CODE (to_arg) == SSA_NAME
750 && get_current_def (to_arg) == NULL_TREE)
751 set_current_def (to_arg, get_current_def (from_arg));
752 }
753}
754
ebfd146a 755
b8698a0f 756/* Given LOOP this function generates a new copy of it and puts it
5ce9450f
JJ
757 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
758 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
759 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
760 entry or exit of LOOP. */
ebfd146a
IR
761
762struct loop *
5ce9450f
JJ
763slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
764 struct loop *scalar_loop, edge e)
ebfd146a
IR
765{
766 struct loop *new_loop;
767 basic_block *new_bbs, *bbs;
768 bool at_exit;
769 bool was_imm_dom;
b8698a0f 770 basic_block exit_dest;
ebfd146a 771 edge exit, new_exit;
ebfd146a 772
2cfc56b9
RB
773 exit = single_exit (loop);
774 at_exit = (e == exit);
ebfd146a
IR
775 if (!at_exit && e != loop_preheader_edge (loop))
776 return NULL;
777
5ce9450f
JJ
778 if (scalar_loop == NULL)
779 scalar_loop = loop;
780
781 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
782 get_loop_body_with_size (scalar_loop, bbs, scalar_loop->num_nodes);
ebfd146a
IR
783
784 /* Check whether duplication is possible. */
5ce9450f 785 if (!can_copy_bbs_p (bbs, scalar_loop->num_nodes))
ebfd146a
IR
786 {
787 free (bbs);
788 return NULL;
789 }
790
791 /* Generate new loop structure. */
5ce9450f
JJ
792 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
793 duplicate_subloops (scalar_loop, new_loop);
ebfd146a 794
2cfc56b9 795 exit_dest = exit->dest;
b8698a0f
L
796 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
797 exit_dest) == loop->header ?
ebfd146a
IR
798 true : false);
799
2cfc56b9
RB
800 /* Also copy the pre-header, this avoids jumping through hoops to
801 duplicate the loop entry PHI arguments. Create an empty
802 pre-header unconditionally for this. */
5ce9450f 803 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
2cfc56b9 804 edge entry_e = single_pred_edge (preheader);
5ce9450f
JJ
805 bbs[scalar_loop->num_nodes] = preheader;
806 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
ebfd146a 807
5ce9450f
JJ
808 exit = single_exit (scalar_loop);
809 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
ebfd146a 810 &exit, 1, &new_exit, NULL,
f14540b6 811 e->src, true);
5ce9450f
JJ
812 exit = single_exit (loop);
813 basic_block new_preheader = new_bbs[scalar_loop->num_nodes];
ebfd146a 814
5ce9450f
JJ
815 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
816
817 if (scalar_loop != loop)
818 {
819 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
820 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
821 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
822 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
823 header) to have current_def set, so copy them over. */
824 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
825 exit);
826 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
827 0),
828 EDGE_SUCC (loop->latch, 0));
829 }
b8698a0f 830
ebfd146a
IR
831 if (at_exit) /* Add the loop copy at exit. */
832 {
5ce9450f
JJ
833 if (scalar_loop != loop)
834 {
538dd0b7 835 gphi_iterator gsi;
5ce9450f
JJ
836 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
837
838 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
839 gsi_next (&gsi))
840 {
538dd0b7 841 gphi *phi = gsi.phi ();
5ce9450f
JJ
842 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
843 location_t orig_locus
844 = gimple_phi_arg_location_from_edge (phi, e);
845
846 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
847 }
848 }
2cfc56b9
RB
849 redirect_edge_and_branch_force (e, new_preheader);
850 flush_pending_stmts (e);
851 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
ebfd146a 852 if (was_imm_dom)
5ce9450f 853 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
2cfc56b9
RB
854
855 /* And remove the non-necessary forwarder again. Keep the other
856 one so we have a proper pre-header for the loop at the exit edge. */
5ce9450f
JJ
857 redirect_edge_pred (single_succ_edge (preheader),
858 single_pred (preheader));
2cfc56b9 859 delete_basic_block (preheader);
5ce9450f
JJ
860 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
861 loop_preheader_edge (scalar_loop)->src);
ebfd146a
IR
862 }
863 else /* Add the copy at entry. */
864 {
5ce9450f
JJ
865 if (scalar_loop != loop)
866 {
867 /* Remove the non-necessary forwarder of scalar_loop again. */
868 redirect_edge_pred (single_succ_edge (preheader),
869 single_pred (preheader));
870 delete_basic_block (preheader);
871 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
872 loop_preheader_edge (scalar_loop)->src);
873 preheader = split_edge (loop_preheader_edge (loop));
874 entry_e = single_pred_edge (preheader);
875 }
876
2cfc56b9
RB
877 redirect_edge_and_branch_force (entry_e, new_preheader);
878 flush_pending_stmts (entry_e);
879 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
880
881 redirect_edge_and_branch_force (new_exit, preheader);
882 flush_pending_stmts (new_exit);
883 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
884
885 /* And remove the non-necessary forwarder again. Keep the other
886 one so we have a proper pre-header for the loop at the exit edge. */
5ce9450f
JJ
887 redirect_edge_pred (single_succ_edge (new_preheader),
888 single_pred (new_preheader));
2cfc56b9
RB
889 delete_basic_block (new_preheader);
890 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
891 loop_preheader_edge (new_loop)->src);
ebfd146a
IR
892 }
893
5ce9450f 894 for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
2cfc56b9
RB
895 rename_variables_in_bb (new_bbs[i]);
896
5ce9450f
JJ
897 if (scalar_loop != loop)
898 {
899 /* Update new_loop->header PHIs, so that on the preheader
900 edge they are the ones from loop rather than scalar_loop. */
538dd0b7 901 gphi_iterator gsi_orig, gsi_new;
5ce9450f
JJ
902 edge orig_e = loop_preheader_edge (loop);
903 edge new_e = loop_preheader_edge (new_loop);
904
905 for (gsi_orig = gsi_start_phis (loop->header),
906 gsi_new = gsi_start_phis (new_loop->header);
907 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
908 gsi_next (&gsi_orig), gsi_next (&gsi_new))
909 {
538dd0b7
DM
910 gphi *orig_phi = gsi_orig.phi ();
911 gphi *new_phi = gsi_new.phi ();
5ce9450f
JJ
912 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
913 location_t orig_locus
914 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
915
916 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
917 }
918 }
919
ebfd146a
IR
920 free (new_bbs);
921 free (bbs);
922
2cfc56b9
RB
923#ifdef ENABLE_CHECKING
924 verify_dominators (CDI_DOMINATORS);
925#endif
926
ebfd146a
IR
927 return new_loop;
928}
929
930
931/* Given the condition statement COND, put it as the last statement
932 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
b8698a0f 933 Assumes that this is the single exit of the guarded loop.
86290011 934 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
ebfd146a
IR
935
936static edge
86290011
RG
937slpeel_add_loop_guard (basic_block guard_bb, tree cond,
938 gimple_seq cond_expr_stmt_list,
e78410bf
JH
939 basic_block exit_bb, basic_block dom_bb,
940 int probability)
ebfd146a
IR
941{
942 gimple_stmt_iterator gsi;
943 edge new_e, enter_e;
538dd0b7 944 gcond *cond_stmt;
ebfd146a
IR
945 gimple_seq gimplify_stmt_list = NULL;
946
947 enter_e = EDGE_SUCC (guard_bb, 0);
948 enter_e->flags &= ~EDGE_FALLTHRU;
949 enter_e->flags |= EDGE_FALSE_VALUE;
950 gsi = gsi_last_bb (guard_bb);
951
f7a06a98
RG
952 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
953 NULL_TREE);
86290011
RG
954 if (gimplify_stmt_list)
955 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
f7a06a98 956 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
86290011
RG
957 if (cond_expr_stmt_list)
958 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
ebfd146a
IR
959
960 gsi = gsi_last_bb (guard_bb);
961 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
962
963 /* Add new edge to connect guard block to the merge/loop-exit block. */
964 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
e78410bf
JH
965
966 new_e->count = guard_bb->count;
967 new_e->probability = probability;
968 new_e->count = apply_probability (enter_e->count, probability);
969 enter_e->count -= new_e->count;
970 enter_e->probability = inverse_probability (probability);
ebfd146a
IR
971 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
972 return new_e;
973}
974
975
976/* This function verifies that the following restrictions apply to LOOP:
977 (1) it is innermost
978 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
979 (3) it is single entry, single exit
980 (4) its exit condition is the last stmt in the header
981 (5) E is the entry/exit edge of LOOP.
982 */
983
984bool
985slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
986{
987 edge exit_e = single_exit (loop);
988 edge entry_e = loop_preheader_edge (loop);
538dd0b7 989 gcond *orig_cond = get_loop_exit_condition (loop);
ebfd146a
IR
990 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
991
ebfd146a
IR
992 if (loop->inner
993 /* All loops have an outer scope; the only case loop->outer is NULL is for
994 the function itself. */
995 || !loop_outer (loop)
996 || loop->num_nodes != 2
997 || !empty_block_p (loop->latch)
998 || !single_exit (loop)
999 /* Verify that new loop exit condition can be trivially modified. */
1000 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1001 || (e != exit_e && e != entry_e))
1002 return false;
1003
1004 return true;
1005}
1006
1007#ifdef ENABLE_CHECKING
1008static void
1009slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1010 struct loop *second_loop)
1011{
1012 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1013 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1014 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1015
1016 /* A guard that controls whether the second_loop is to be executed or skipped
1017 is placed in first_loop->exit. first_loop->exit therefore has two
1018 successors - one is the preheader of second_loop, and the other is a bb
1019 after second_loop.
1020 */
1021 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
b8698a0f 1022
ebfd146a
IR
1023 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1024 of second_loop. */
b8698a0f 1025
ebfd146a
IR
1026 /* The preheader of new_loop is expected to have two predecessors:
1027 first_loop->exit and the block that precedes first_loop. */
1028
b8698a0f 1029 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
ebfd146a
IR
1030 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1031 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1032 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1033 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
b8698a0f 1034
ebfd146a
IR
1035 /* Verify that the other successor of first_loop->exit is after the
1036 second_loop. */
1037 /* TODO */
1038}
1039#endif
1040
1041/* If the run time cost model check determines that vectorization is
1042 not profitable and hence scalar loop should be generated then set
1043 FIRST_NITERS to prologue peeled iterations. This will allow all the
1044 iterations to be executed in the prologue peeled scalar loop. */
1045
1046static void
1047set_prologue_iterations (basic_block bb_before_first_loop,
5d2eb24b 1048 tree *first_niters,
ebfd146a 1049 struct loop *loop,
e78410bf
JH
1050 unsigned int th,
1051 int probability)
ebfd146a
IR
1052{
1053 edge e;
1054 basic_block cond_bb, then_bb;
1055 tree var, prologue_after_cost_adjust_name;
1056 gimple_stmt_iterator gsi;
538dd0b7 1057 gphi *newphi;
ebfd146a 1058 edge e_true, e_false, e_fallthru;
538dd0b7 1059 gcond *cond_stmt;
f7a06a98 1060 gimple_seq stmts = NULL;
ebfd146a 1061 tree cost_pre_condition = NULL_TREE;
b8698a0f 1062 tree scalar_loop_iters =
ebfd146a
IR
1063 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1064
1065 e = single_pred_edge (bb_before_first_loop);
c3284718 1066 cond_bb = split_edge (e);
ebfd146a
IR
1067
1068 e = single_pred_edge (bb_before_first_loop);
c3284718 1069 then_bb = split_edge (e);
ebfd146a
IR
1070 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1071
1072 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1073 EDGE_FALSE_VALUE);
1074 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1075
1076 e_true = EDGE_PRED (then_bb, 0);
1077 e_true->flags &= ~EDGE_FALLTHRU;
1078 e_true->flags |= EDGE_TRUE_VALUE;
1079
e78410bf
JH
1080 e_true->probability = probability;
1081 e_false->probability = inverse_probability (probability);
1082 e_true->count = apply_probability (cond_bb->count, probability);
1083 e_false->count = cond_bb->count - e_true->count;
1084 then_bb->frequency = EDGE_FREQUENCY (e_true);
1085 then_bb->count = e_true->count;
1086
ebfd146a 1087 e_fallthru = EDGE_SUCC (then_bb, 0);
e78410bf 1088 e_fallthru->count = then_bb->count;
ebfd146a 1089
f7a06a98 1090 gsi = gsi_last_bb (cond_bb);
ebfd146a 1091 cost_pre_condition =
b8698a0f 1092 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
ebfd146a
IR
1093 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1094 cost_pre_condition =
f7a06a98
RG
1095 force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
1096 NULL_TREE, false, GSI_CONTINUE_LINKING);
1097 cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
1098 NULL_TREE, NULL_TREE);
ebfd146a 1099 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
b8698a0f 1100
ebfd146a
IR
1101 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1102 "prologue_after_cost_adjust");
b8698a0f 1103 prologue_after_cost_adjust_name =
ebfd146a
IR
1104 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1105
1106 gsi = gsi_last_bb (then_bb);
1107 if (stmts)
1108 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1109
1110 newphi = create_phi_node (var, bb_before_first_loop);
b8698a0f 1111 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
9e227d60
DC
1112 UNKNOWN_LOCATION);
1113 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
ebfd146a 1114
5d2eb24b 1115 *first_niters = PHI_RESULT (newphi);
ebfd146a
IR
1116}
1117
ebfd146a
IR
1118/* Function slpeel_tree_peel_loop_to_edge.
1119
1120 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1121 that is placed on the entry (exit) edge E of LOOP. After this transformation
1122 we have two loops one after the other - first-loop iterates FIRST_NITERS
1123 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
b8698a0f 1124 If the cost model indicates that it is profitable to emit a scalar
ebfd146a
IR
1125 loop instead of the vector one, then the prolog (epilog) loop will iterate
1126 for the entire unchanged scalar iterations of the loop.
1127
1128 Input:
1129 - LOOP: the loop to be peeled.
5ce9450f
JJ
1130 - SCALAR_LOOP: if non-NULL, the alternate loop from which basic blocks
1131 should be copied.
ebfd146a
IR
1132 - E: the exit or entry edge of LOOP.
1133 If it is the entry edge, we peel the first iterations of LOOP. In this
1134 case first-loop is LOOP, and second-loop is the newly created loop.
1135 If it is the exit edge, we peel the last iterations of LOOP. In this
1136 case, first-loop is the newly created loop, and second-loop is LOOP.
1137 - NITERS: the number of iterations that LOOP iterates.
1138 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1139 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1140 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1141 is false, the caller of this function may want to take care of this
1142 (this can be useful if we don't want new stmts added to first-loop).
1143 - TH: cost model profitability threshold of iterations for vectorization.
1144 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1145 during versioning and hence needs to occur during
b8698a0f 1146 prologue generation or whether cost model check
ebfd146a
IR
1147 has not occurred during prologue generation and hence
1148 needs to occur during epilogue generation.
e78410bf
JH
1149 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1150 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
b8698a0f 1151
ebfd146a
IR
1152
1153 Output:
1154 The function returns a pointer to the new loop-copy, or NULL if it failed
1155 to perform the transformation.
1156
1157 The function generates two if-then-else guards: one before the first loop,
1158 and the other before the second loop:
1159 The first guard is:
1160 if (FIRST_NITERS == 0) then skip the first loop,
1161 and go directly to the second loop.
1162 The second guard is:
1163 if (FIRST_NITERS == NITERS) then skip the second loop.
1164
86290011
RG
1165 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1166 then the generated condition is combined with COND_EXPR and the
1167 statements in COND_EXPR_STMT_LIST are emitted together with it.
1168
ebfd146a
IR
1169 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1170 FORNOW the resulting code will not be in loop-closed-ssa form.
1171*/
1172
5ce9450f
JJ
1173static struct loop *
1174slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loop *scalar_loop,
5d2eb24b 1175 edge e, tree *first_niters,
ebfd146a 1176 tree niters, bool update_first_loop_count,
86290011 1177 unsigned int th, bool check_profitability,
e78410bf
JH
1178 tree cond_expr, gimple_seq cond_expr_stmt_list,
1179 int bound1, int bound2)
ebfd146a
IR
1180{
1181 struct loop *new_loop = NULL, *first_loop, *second_loop;
1182 edge skip_e;
1183 tree pre_condition = NULL_TREE;
ebfd146a
IR
1184 basic_block bb_before_second_loop, bb_after_second_loop;
1185 basic_block bb_before_first_loop;
1186 basic_block bb_between_loops;
1187 basic_block new_exit_bb;
538dd0b7 1188 gphi_iterator gsi;
ebfd146a 1189 edge exit_e = single_exit (loop);
b05e0233 1190 source_location loop_loc;
e78410bf
JH
1191 /* There are many aspects to how likely the first loop is going to be executed.
1192 Without histogram we can't really do good job. Simply set it to
1193 2/3, so the first loop is not reordered to the end of function and
1194 the hot path through stays short. */
1195 int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1196 int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1197 int probability_of_second_loop;
b8698a0f 1198
ebfd146a
IR
1199 if (!slpeel_can_duplicate_loop_p (loop, e))
1200 return NULL;
b8698a0f 1201
141310ef
RB
1202 /* We might have a queued need to update virtual SSA form. As we
1203 delete the update SSA machinery below after doing a regular
1204 incremental SSA update during loop copying make sure we don't
1205 lose that fact.
1206 ??? Needing to update virtual SSA form by renaming is unfortunate
1207 but not all of the vectorizer code inserting new loads / stores
1208 properly assigns virtual operands to those statements. */
1209 update_ssa (TODO_update_ssa_only_virtuals);
1210
e20f6b4b
JJ
1211 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1212 in the exit bb and rename all the uses after the loop. This simplifies
1213 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1214 (but normally loop closed SSA form doesn't require virtual PHIs to be
1215 in the same form). Doing this early simplifies the checking what
1216 uses should be renamed. */
1217 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
ea057359 1218 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
e20f6b4b 1219 {
538dd0b7 1220 gphi *phi = gsi.phi ();
e20f6b4b
JJ
1221 for (gsi = gsi_start_phis (exit_e->dest);
1222 !gsi_end_p (gsi); gsi_next (&gsi))
ea057359 1223 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
e20f6b4b
JJ
1224 break;
1225 if (gsi_end_p (gsi))
1226 {
070ecdfd 1227 tree new_vop = copy_ssa_name (PHI_RESULT (phi), NULL);
538dd0b7 1228 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
e20f6b4b
JJ
1229 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1230 imm_use_iterator imm_iter;
1231 gimple stmt;
e20f6b4b
JJ
1232 use_operand_p use_p;
1233
9e227d60 1234 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
e20f6b4b
JJ
1235 gimple_phi_set_result (new_phi, new_vop);
1236 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1237 if (stmt != new_phi && gimple_bb (stmt) != loop->header)
1238 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1239 SET_USE (use_p, new_vop);
1240 }
1241 break;
1242 }
ebfd146a
IR
1243
1244 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1245 Resulting CFG would be:
1246
1247 first_loop:
1248 do {
1249 } while ...
1250
1251 second_loop:
1252 do {
1253 } while ...
1254
1255 orig_exit_bb:
1256 */
b8698a0f 1257
5ce9450f
JJ
1258 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop,
1259 e)))
ebfd146a
IR
1260 {
1261 loop_loc = find_loop_location (loop);
78c60e3d
SS
1262 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1263 "tree_duplicate_loop_to_edge_cfg failed.\n");
ebfd146a
IR
1264 return NULL;
1265 }
b8698a0f 1266
684f25f4
AO
1267 if (MAY_HAVE_DEBUG_STMTS)
1268 {
9771b263 1269 gcc_assert (!adjust_vec.exists ());
ff4c81cc 1270 adjust_vec.create (32);
684f25f4
AO
1271 }
1272
ebfd146a
IR
1273 if (e == exit_e)
1274 {
1275 /* NEW_LOOP was placed after LOOP. */
1276 first_loop = loop;
1277 second_loop = new_loop;
1278 }
1279 else
1280 {
1281 /* NEW_LOOP was placed before LOOP. */
1282 first_loop = new_loop;
1283 second_loop = loop;
1284 }
1285
ebfd146a
IR
1286 /* 2. Add the guard code in one of the following ways:
1287
1288 2.a Add the guard that controls whether the first loop is executed.
1289 This occurs when this function is invoked for prologue or epilogue
1290 generation and when the cost model check can be done at compile time.
1291
1292 Resulting CFG would be:
1293
1294 bb_before_first_loop:
1295 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1296 GOTO first-loop
1297
1298 first_loop:
1299 do {
1300 } while ...
1301
1302 bb_before_second_loop:
1303
1304 second_loop:
1305 do {
1306 } while ...
1307
1308 orig_exit_bb:
1309
1310 2.b Add the cost model check that allows the prologue
1311 to iterate for the entire unchanged scalar
1312 iterations of the loop in the event that the cost
1313 model indicates that the scalar loop is more
1314 profitable than the vector one. This occurs when
1315 this function is invoked for prologue generation
1316 and the cost model check needs to be done at run
1317 time.
1318
1319 Resulting CFG after prologue peeling would be:
1320
1321 if (scalar_loop_iterations <= th)
1322 FIRST_NITERS = scalar_loop_iterations
1323
1324 bb_before_first_loop:
1325 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1326 GOTO first-loop
1327
1328 first_loop:
1329 do {
1330 } while ...
1331
1332 bb_before_second_loop:
1333
1334 second_loop:
1335 do {
1336 } while ...
1337
1338 orig_exit_bb:
1339
1340 2.c Add the cost model check that allows the epilogue
1341 to iterate for the entire unchanged scalar
1342 iterations of the loop in the event that the cost
1343 model indicates that the scalar loop is more
1344 profitable than the vector one. This occurs when
1345 this function is invoked for epilogue generation
1346 and the cost model check needs to be done at run
86290011
RG
1347 time. This check is combined with any pre-existing
1348 check in COND_EXPR to avoid versioning.
ebfd146a
IR
1349
1350 Resulting CFG after prologue peeling would be:
1351
1352 bb_before_first_loop:
1353 if ((scalar_loop_iterations <= th)
1354 ||
1355 FIRST_NITERS == 0) GOTO bb_before_second_loop
1356 GOTO first-loop
1357
1358 first_loop:
1359 do {
1360 } while ...
1361
1362 bb_before_second_loop:
1363
1364 second_loop:
1365 do {
1366 } while ...
1367
1368 orig_exit_bb:
1369 */
1370
1371 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
2cfc56b9
RB
1372 /* Loop copying insterted a forwarder block for us here. */
1373 bb_before_second_loop = single_exit (first_loop)->dest;
ebfd146a 1374
e78410bf
JH
1375 probability_of_second_loop = (inverse_probability (first_guard_probability)
1376 + combine_probabilities (second_guard_probability,
1377 first_guard_probability));
1378 /* Theoretically preheader edge of first loop and exit edge should have
1379 same frequencies. Loop exit probablities are however easy to get wrong.
1380 It is safer to copy value from original loop entry. */
1381 bb_before_second_loop->frequency
8ddb5a29
TJ
1382 = combine_probabilities (bb_before_first_loop->frequency,
1383 probability_of_second_loop);
e78410bf
JH
1384 bb_before_second_loop->count
1385 = apply_probability (bb_before_first_loop->count,
1386 probability_of_second_loop);
1387 single_succ_edge (bb_before_second_loop)->count
1388 = bb_before_second_loop->count;
1389
ebfd146a
IR
1390 /* Epilogue peeling. */
1391 if (!update_first_loop_count)
1392 {
95b3eff3
RB
1393 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
1394 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
1395 unsigned limit = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1;
1396 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1397 limit = limit + 1;
1398 if (check_profitability
1399 && th > limit)
1400 limit = th;
ebfd146a 1401 pre_condition =
95b3eff3
RB
1402 fold_build2 (LT_EXPR, boolean_type_node, scalar_loop_iters,
1403 build_int_cst (TREE_TYPE (scalar_loop_iters), limit));
86290011
RG
1404 if (cond_expr)
1405 {
1406 pre_condition =
1407 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1408 pre_condition,
1409 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1410 cond_expr));
1411 }
ebfd146a
IR
1412 }
1413
b8698a0f 1414 /* Prologue peeling. */
ebfd146a
IR
1415 else
1416 {
1417 if (check_profitability)
1418 set_prologue_iterations (bb_before_first_loop, first_niters,
e78410bf 1419 loop, th, first_guard_probability);
ebfd146a
IR
1420
1421 pre_condition =
5d2eb24b
IR
1422 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1423 build_int_cst (TREE_TYPE (*first_niters), 0));
ebfd146a
IR
1424 }
1425
1426 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
86290011 1427 cond_expr_stmt_list,
e78410bf
JH
1428 bb_before_second_loop, bb_before_first_loop,
1429 inverse_probability (first_guard_probability));
1430 scale_loop_profile (first_loop, first_guard_probability,
1431 check_profitability && (int)th > bound1 ? th : bound1);
ebfd146a
IR
1432 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1433 first_loop == new_loop,
c334023f 1434 &new_exit_bb);
ebfd146a
IR
1435
1436
1437 /* 3. Add the guard that controls whether the second loop is executed.
1438 Resulting CFG would be:
1439
1440 bb_before_first_loop:
1441 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1442 GOTO first-loop
1443
1444 first_loop:
1445 do {
1446 } while ...
1447
1448 bb_between_loops:
1449 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1450 GOTO bb_before_second_loop
1451
1452 bb_before_second_loop:
1453
1454 second_loop:
1455 do {
1456 } while ...
1457
1458 bb_after_second_loop:
1459
1460 orig_exit_bb:
1461 */
1462
1463 bb_between_loops = new_exit_bb;
1464 bb_after_second_loop = split_edge (single_exit (second_loop));
1465
b8698a0f 1466 pre_condition =
5d2eb24b 1467 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
86290011 1468 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
e78410bf
JH
1469 bb_after_second_loop, bb_before_first_loop,
1470 inverse_probability (second_guard_probability));
1471 scale_loop_profile (second_loop, probability_of_second_loop, bound2);
ebfd146a
IR
1472 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1473 second_loop == new_loop, &new_exit_bb);
1474
1475 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1476 */
1477 if (update_first_loop_count)
5d2eb24b 1478 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
ebfd146a 1479
040d39ee
RG
1480 delete_update_ssa ();
1481
684f25f4
AO
1482 adjust_vec_debug_stmts ();
1483
ebfd146a
IR
1484 return new_loop;
1485}
1486
1487/* Function vect_get_loop_location.
1488
1489 Extract the location of the loop in the source code.
1490 If the loop is not well formed for vectorization, an estimated
1491 location is calculated.
1492 Return the loop location if succeed and NULL if not. */
1493
b05e0233 1494source_location
ebfd146a
IR
1495find_loop_location (struct loop *loop)
1496{
1497 gimple stmt = NULL;
1498 basic_block bb;
1499 gimple_stmt_iterator si;
1500
1501 if (!loop)
b05e0233 1502 return UNKNOWN_LOCATION;
ebfd146a
IR
1503
1504 stmt = get_loop_exit_condition (loop);
1505
502498d5
JJ
1506 if (stmt
1507 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
ebfd146a
IR
1508 return gimple_location (stmt);
1509
1510 /* If we got here the loop is probably not "well formed",
1511 try to estimate the loop location */
1512
1513 if (!loop->header)
b05e0233 1514 return UNKNOWN_LOCATION;
ebfd146a
IR
1515
1516 bb = loop->header;
1517
1518 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1519 {
1520 stmt = gsi_stmt (si);
502498d5 1521 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
ebfd146a
IR
1522 return gimple_location (stmt);
1523 }
1524
b05e0233 1525 return UNKNOWN_LOCATION;
ebfd146a
IR
1526}
1527
1528
ebfd146a
IR
1529/* Function vect_can_advance_ivs_p
1530
b8698a0f
L
1531 In case the number of iterations that LOOP iterates is unknown at compile
1532 time, an epilog loop will be generated, and the loop induction variables
1533 (IVs) will be "advanced" to the value they are supposed to take just before
ebfd146a
IR
1534 the epilog loop. Here we check that the access function of the loop IVs
1535 and the expression that represents the loop bound are simple enough.
1536 These restrictions will be relaxed in the future. */
1537
b8698a0f 1538bool
ebfd146a
IR
1539vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1540{
1541 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1542 basic_block bb = loop->header;
1543 gimple phi;
538dd0b7 1544 gphi_iterator gsi;
ebfd146a
IR
1545
1546 /* Analyze phi functions of the loop header. */
1547
73fbfcad 1548 if (dump_enabled_p ())
e645e942 1549 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
ebfd146a
IR
1550 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1551 {
ebfd146a
IR
1552 tree evolution_part;
1553
538dd0b7 1554 phi = gsi.phi ();
73fbfcad 1555 if (dump_enabled_p ())
ebfd146a 1556 {
78c60e3d
SS
1557 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1558 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
e645e942 1559 dump_printf (MSG_NOTE, "\n");
ebfd146a
IR
1560 }
1561
1562 /* Skip virtual phi's. The data dependences that are associated with
1563 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1564
ea057359 1565 if (virtual_operand_p (PHI_RESULT (phi)))
ebfd146a 1566 {
73fbfcad 1567 if (dump_enabled_p ())
78c60e3d 1568 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942 1569 "virtual phi. skip.\n");
ebfd146a
IR
1570 continue;
1571 }
1572
1573 /* Skip reduction phis. */
1574
1575 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1576 {
73fbfcad 1577 if (dump_enabled_p ())
78c60e3d 1578 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942 1579 "reduc phi. skip.\n");
ebfd146a
IR
1580 continue;
1581 }
1582
1583 /* Analyze the evolution function. */
1584
afb119be
RB
1585 evolution_part
1586 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
ebfd146a
IR
1587 if (evolution_part == NULL_TREE)
1588 {
73fbfcad 1589 if (dump_enabled_p ())
afb119be 1590 dump_printf (MSG_MISSED_OPTIMIZATION,
e645e942 1591 "No access function or evolution.\n");
ebfd146a
IR
1592 return false;
1593 }
b8698a0f
L
1594
1595 /* FORNOW: We do not transform initial conditions of IVs
ebfd146a
IR
1596 which evolution functions are a polynomial of degree >= 2. */
1597
1598 if (tree_is_chrec (evolution_part))
b8698a0f 1599 return false;
ebfd146a
IR
1600 }
1601
1602 return true;
1603}
1604
1605
1606/* Function vect_update_ivs_after_vectorizer.
1607
1608 "Advance" the induction variables of LOOP to the value they should take
1609 after the execution of LOOP. This is currently necessary because the
1610 vectorizer does not handle induction variables that are used after the
1611 loop. Such a situation occurs when the last iterations of LOOP are
1612 peeled, because:
1613 1. We introduced new uses after LOOP for IVs that were not originally used
1614 after LOOP: the IVs of LOOP are now used by an epilog loop.
1615 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1616 times, whereas the loop IVs should be bumped N times.
1617
1618 Input:
1619 - LOOP - a loop that is going to be vectorized. The last few iterations
1620 of LOOP were peeled.
1621 - NITERS - the number of iterations that LOOP executes (before it is
1622 vectorized). i.e, the number of times the ivs should be bumped.
1623 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1624 coming out from LOOP on which there are uses of the LOOP ivs
1625 (this is the path from LOOP->exit to epilog_loop->preheader).
1626
1627 The new definitions of the ivs are placed in LOOP->exit.
1628 The phi args associated with the edge UPDATE_E in the bb
1629 UPDATE_E->dest are updated accordingly.
1630
1631 Assumption 1: Like the rest of the vectorizer, this function assumes
1632 a single loop exit that has a single predecessor.
1633
1634 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1635 organized in the same order.
1636
1637 Assumption 3: The access function of the ivs is simple enough (see
1638 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1639
1640 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
b8698a0f 1641 coming out of LOOP on which the ivs of LOOP are used (this is the path
ebfd146a
IR
1642 that leads to the epilog loop; other paths skip the epilog loop). This
1643 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1644 needs to have its phis updated.
1645 */
1646
1647static void
b8698a0f 1648vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
ebfd146a
IR
1649 edge update_e)
1650{
1651 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1652 basic_block exit_bb = single_exit (loop)->dest;
538dd0b7
DM
1653 gphi *phi, *phi1;
1654 gphi_iterator gsi, gsi1;
ebfd146a
IR
1655 basic_block update_bb = update_e->dest;
1656
47c32082 1657 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
ebfd146a
IR
1658
1659 /* Make sure there exists a single-predecessor exit bb: */
1660 gcc_assert (single_pred_p (exit_bb));
1661
1662 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1663 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1664 gsi_next (&gsi), gsi_next (&gsi1))
1665 {
ebfd146a 1666 tree init_expr;
550918ca
RG
1667 tree step_expr, off;
1668 tree type;
ebfd146a
IR
1669 tree var, ni, ni_name;
1670 gimple_stmt_iterator last_gsi;
0ac168a1 1671 stmt_vec_info stmt_info;
ebfd146a 1672
538dd0b7
DM
1673 phi = gsi.phi ();
1674 phi1 = gsi1.phi ();
73fbfcad 1675 if (dump_enabled_p ())
ebfd146a 1676 {
78c60e3d
SS
1677 dump_printf_loc (MSG_NOTE, vect_location,
1678 "vect_update_ivs_after_vectorizer: phi: ");
1679 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
e645e942 1680 dump_printf (MSG_NOTE, "\n");
ebfd146a
IR
1681 }
1682
1683 /* Skip virtual phi's. */
ea057359 1684 if (virtual_operand_p (PHI_RESULT (phi)))
ebfd146a 1685 {
73fbfcad 1686 if (dump_enabled_p ())
78c60e3d 1687 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942 1688 "virtual phi. skip.\n");
ebfd146a
IR
1689 continue;
1690 }
1691
1692 /* Skip reduction phis. */
0ac168a1
RG
1693 stmt_info = vinfo_for_stmt (phi);
1694 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
b8698a0f 1695 {
73fbfcad 1696 if (dump_enabled_p ())
78c60e3d 1697 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
e645e942 1698 "reduc phi. skip.\n");
ebfd146a 1699 continue;
b8698a0f 1700 }
ebfd146a 1701
0ac168a1
RG
1702 type = TREE_TYPE (gimple_phi_result (phi));
1703 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1704 step_expr = unshare_expr (step_expr);
b8698a0f 1705
ebfd146a
IR
1706 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1707 of degree >= 2 or exponential. */
0ac168a1 1708 gcc_assert (!tree_is_chrec (step_expr));
ebfd146a 1709
0ac168a1 1710 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
ebfd146a 1711
550918ca
RG
1712 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1713 fold_convert (TREE_TYPE (step_expr), niters),
1714 step_expr);
0ac168a1 1715 if (POINTER_TYPE_P (type))
5d49b6a7 1716 ni = fold_build_pointer_plus (init_expr, off);
ebfd146a 1717 else
0ac168a1
RG
1718 ni = fold_build2 (PLUS_EXPR, type,
1719 init_expr, fold_convert (type, off));
ebfd146a 1720
0ac168a1 1721 var = create_tmp_var (type, "tmp");
ebfd146a
IR
1722
1723 last_gsi = gsi_last_bb (exit_bb);
1724 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1725 true, GSI_SAME_STMT);
b8698a0f 1726
ebfd146a 1727 /* Fix phi expressions in the successor bb. */
684f25f4 1728 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
ebfd146a
IR
1729 }
1730}
1731
ebfd146a
IR
1732/* Function vect_do_peeling_for_loop_bound
1733
1734 Peel the last iterations of the loop represented by LOOP_VINFO.
b8698a0f 1735 The peeled iterations form a new epilog loop. Given that the loop now
ebfd146a
IR
1736 iterates NITERS times, the new epilog loop iterates
1737 NITERS % VECTORIZATION_FACTOR times.
b8698a0f
L
1738
1739 The original loop will later be made to iterate
86290011
RG
1740 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1741
1742 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1743 test. */
ebfd146a 1744
b8698a0f 1745void
f3c92486
RB
1746vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo,
1747 tree ni_name, tree ratio_mult_vf_name,
368117e8 1748 unsigned int th, bool check_profitability)
ebfd146a 1749{
ebfd146a 1750 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5ce9450f 1751 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
ebfd146a
IR
1752 struct loop *new_loop;
1753 edge update_e;
1754 basic_block preheader;
1755 int loop_num;
d68d56b5 1756 int max_iter;
368117e8
RG
1757 tree cond_expr = NULL_TREE;
1758 gimple_seq cond_expr_stmt_list = NULL;
ebfd146a 1759
73fbfcad 1760 if (dump_enabled_p ())
ccb3ad87 1761 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 1762 "=== vect_do_peeling_for_loop_bound ===\n");
ebfd146a
IR
1763
1764 initialize_original_copy_tables ();
1765
b8698a0f 1766 loop_num = loop->num;
ebfd146a 1767
5ce9450f
JJ
1768 new_loop
1769 = slpeel_tree_peel_loop_to_edge (loop, scalar_loop, single_exit (loop),
1770 &ratio_mult_vf_name, ni_name, false,
1771 th, check_profitability,
1772 cond_expr, cond_expr_stmt_list,
1773 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
ebfd146a
IR
1774 gcc_assert (new_loop);
1775 gcc_assert (loop_num == loop->num);
1776#ifdef ENABLE_CHECKING
1777 slpeel_verify_cfg_after_peeling (loop, new_loop);
1778#endif
1779
1780 /* A guard that controls whether the new_loop is to be executed or skipped
1781 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1782 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1783 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1784 is on the path where the LOOP IVs are used and need to be updated. */
1785
1786 preheader = loop_preheader_edge (new_loop)->src;
1787 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1788 update_e = EDGE_PRED (preheader, 0);
1789 else
1790 update_e = EDGE_PRED (preheader, 1);
1791
b8698a0f 1792 /* Update IVs of original loop as if they were advanced
ebfd146a 1793 by ratio_mult_vf_name steps. */
b8698a0f 1794 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
ebfd146a 1795
22458c5a
JH
1796 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1797 and this means N-2 loopback edge executions.
1798
1799 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1800 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1801 max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1802 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
1803 : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
368117e8 1804 if (check_profitability)
22458c5a 1805 max_iter = MAX (max_iter, (int) th - 1);
807e902e 1806 record_niter_bound (new_loop, max_iter, false, true);
ccb3ad87 1807 dump_printf (MSG_NOTE,
78c60e3d
SS
1808 "Setting upper bound of nb iterations for epilogue "
1809 "loop to %d\n", max_iter);
7d5a99f4 1810
ebfd146a
IR
1811 /* After peeling we have to reset scalar evolution analyzer. */
1812 scev_reset ();
1813
1814 free_original_copy_tables ();
1815}
1816
1817
1818/* Function vect_gen_niters_for_prolog_loop
1819
1820 Set the number of iterations for the loop represented by LOOP_VINFO
1821 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1822 and the misalignment of DR - the data reference recorded in
b8698a0f 1823 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
ebfd146a
IR
1824 this loop, the data reference DR will refer to an aligned location.
1825
1826 The following computation is generated:
1827
1828 If the misalignment of DR is known at compile time:
1829 addr_mis = int mis = DR_MISALIGNMENT (dr);
1830 Else, compute address misalignment in bytes:
5aea1e76 1831 addr_mis = addr & (vectype_align - 1)
ebfd146a
IR
1832
1833 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1834
1835 (elem_size = element type size; an element is the scalar element whose type
1836 is the inner type of the vectype)
1837
1838 When the step of the data-ref in the loop is not 1 (as in interleaved data
1839 and SLP), the number of iterations of the prolog must be divided by the step
1840 (which is equal to the size of interleaved group).
1841
1842 The above formulas assume that VF == number of elements in the vector. This
1843 may not hold when there are multiple-types in the loop.
1844 In this case, for some data-references in the loop the VF does not represent
1845 the number of elements that fit in the vector. Therefore, instead of VF we
1846 use TYPE_VECTOR_SUBPARTS. */
1847
b8698a0f 1848static tree
e78410bf 1849vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
ebfd146a
IR
1850{
1851 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1852 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1853 tree var;
1854 gimple_seq stmts;
1855 tree iters, iters_name;
1856 edge pe;
1857 basic_block new_bb;
1858 gimple dr_stmt = DR_STMT (dr);
1859 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1860 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1861 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
1862 tree niters_type = TREE_TYPE (loop_niters);
ebfd146a
IR
1863 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1864
b8698a0f 1865 pe = loop_preheader_edge (loop);
ebfd146a 1866
15e693cc 1867 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
ebfd146a 1868 {
15e693cc 1869 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
ebfd146a 1870
73fbfcad 1871 if (dump_enabled_p ())
ccb3ad87 1872 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 1873 "known peeling = %d.\n", npeel);
ebfd146a 1874
720f5239 1875 iters = build_int_cst (niters_type, npeel);
15e693cc 1876 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
ebfd146a
IR
1877 }
1878 else
1879 {
1880 gimple_seq new_stmts = NULL;
d8ba5b19
RG
1881 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1882 tree offset = negative
1883 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
b8698a0f 1884 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
d8ba5b19 1885 &new_stmts, offset, loop);
96f9265a 1886 tree type = unsigned_type_for (TREE_TYPE (start_addr));
5aea1e76
UW
1887 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
1888 HOST_WIDE_INT elem_size =
1889 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1890 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
ebfd146a
IR
1891 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
1892 tree nelements_tree = build_int_cst (type, nelements);
1893 tree byte_misalign;
1894 tree elem_misalign;
1895
1896 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
1897 gcc_assert (!new_bb);
b8698a0f 1898
5aea1e76 1899 /* Create: byte_misalign = addr & (vectype_align - 1) */
b8698a0f 1900 byte_misalign =
720f5239 1901 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
5aea1e76 1902 vectype_align_minus_1);
b8698a0f 1903
ebfd146a
IR
1904 /* Create: elem_misalign = byte_misalign / element_size */
1905 elem_misalign =
1906 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1907
1908 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
d8ba5b19
RG
1909 if (negative)
1910 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1911 else
1912 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
ebfd146a
IR
1913 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1914 iters = fold_convert (niters_type, iters);
e78410bf 1915 *bound = nelements;
ebfd146a
IR
1916 }
1917
1918 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1919 /* If the loop bound is known at compile time we already verified that it is
1920 greater than vf; since the misalignment ('iters') is at most vf, there's
1921 no need to generate the MIN_EXPR in this case. */
1922 if (TREE_CODE (loop_niters) != INTEGER_CST)
1923 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
1924
73fbfcad 1925 if (dump_enabled_p ())
ebfd146a 1926 {
ccb3ad87 1927 dump_printf_loc (MSG_NOTE, vect_location,
78c60e3d 1928 "niters for prolog loop: ");
ccb3ad87 1929 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
e645e942 1930 dump_printf (MSG_NOTE, "\n");
ebfd146a
IR
1931 }
1932
1933 var = create_tmp_var (niters_type, "prolog_loop_niters");
ebfd146a
IR
1934 stmts = NULL;
1935 iters_name = force_gimple_operand (iters, &stmts, false, var);
1936
1937 /* Insert stmt on loop preheader edge. */
1938 if (stmts)
1939 {
1940 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1941 gcc_assert (!new_bb);
1942 }
1943
b8698a0f 1944 return iters_name;
ebfd146a
IR
1945}
1946
1947
1948/* Function vect_update_init_of_dr
1949
1950 NITERS iterations were peeled from LOOP. DR represents a data reference
1951 in LOOP. This function updates the information recorded in DR to
b8698a0f 1952 account for the fact that the first NITERS iterations had already been
ebfd146a
IR
1953 executed. Specifically, it updates the OFFSET field of DR. */
1954
1955static void
1956vect_update_init_of_dr (struct data_reference *dr, tree niters)
1957{
1958 tree offset = DR_OFFSET (dr);
b8698a0f 1959
ebfd146a
IR
1960 niters = fold_build2 (MULT_EXPR, sizetype,
1961 fold_convert (sizetype, niters),
1962 fold_convert (sizetype, DR_STEP (dr)));
587aa063
RG
1963 offset = fold_build2 (PLUS_EXPR, sizetype,
1964 fold_convert (sizetype, offset), niters);
ebfd146a
IR
1965 DR_OFFSET (dr) = offset;
1966}
1967
1968
1969/* Function vect_update_inits_of_drs
1970
b8698a0f
L
1971 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1972 This function updates the information recorded for the data references in
1973 the loop to account for the fact that the first NITERS iterations had
ebfd146a
IR
1974 already been executed. Specifically, it updates the initial_condition of
1975 the access_function of all the data_references in the loop. */
1976
1977static void
1978vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1979{
1980 unsigned int i;
9771b263 1981 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
ebfd146a 1982 struct data_reference *dr;
78c60e3d 1983
73fbfcad 1984 if (dump_enabled_p ())
ccb3ad87 1985 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 1986 "=== vect_update_inits_of_dr ===\n");
ebfd146a 1987
9771b263 1988 FOR_EACH_VEC_ELT (datarefs, i, dr)
ebfd146a
IR
1989 vect_update_init_of_dr (dr, niters);
1990}
1991
1992
1993/* Function vect_do_peeling_for_alignment
1994
1995 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
1996 'niters' is set to the misalignment of one of the data references in the
1997 loop, thereby forcing it to refer to an aligned location at the beginning
1998 of the execution of this loop. The data reference for which we are
1999 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2000
2001void
f3c92486 2002vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, tree ni_name,
368117e8 2003 unsigned int th, bool check_profitability)
ebfd146a
IR
2004{
2005 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5ce9450f 2006 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
f3c92486 2007 tree niters_of_prolog_loop;
b61b1f17 2008 tree wide_prolog_niters;
ebfd146a 2009 struct loop *new_loop;
03fd03d5 2010 int max_iter;
e78410bf 2011 int bound = 0;
ebfd146a 2012
73fbfcad 2013 if (dump_enabled_p ())
9cc1fb4b
XDL
2014 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2015 "loop peeled for vectorization to enhance"
2016 " alignment\n");
ebfd146a
IR
2017
2018 initialize_original_copy_tables ();
2019
f3c92486
RB
2020 gimple_seq stmts = NULL;
2021 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
5d2eb24b 2022 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
e78410bf
JH
2023 ni_name,
2024 &bound);
ebfd146a 2025
ebfd146a
IR
2026 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2027 new_loop =
5ce9450f
JJ
2028 slpeel_tree_peel_loop_to_edge (loop, scalar_loop,
2029 loop_preheader_edge (loop),
5d2eb24b 2030 &niters_of_prolog_loop, ni_name, true,
e78410bf 2031 th, check_profitability, NULL_TREE, NULL,
5ce9450f 2032 bound, 0);
ebfd146a
IR
2033
2034 gcc_assert (new_loop);
2035#ifdef ENABLE_CHECKING
2036 slpeel_verify_cfg_after_peeling (new_loop, loop);
2037#endif
22458c5a
JH
2038 /* For vectorization factor N, we need to copy at most N-1 values
2039 for alignment and this means N-2 loopback edge executions. */
2040 max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
368117e8 2041 if (check_profitability)
22458c5a 2042 max_iter = MAX (max_iter, (int) th - 1);
807e902e 2043 record_niter_bound (new_loop, max_iter, false, true);
ccb3ad87 2044 dump_printf (MSG_NOTE,
78c60e3d
SS
2045 "Setting upper bound of nb iterations for prologue "
2046 "loop to %d\n", max_iter);
ebfd146a
IR
2047
2048 /* Update number of times loop executes. */
ebfd146a 2049 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
15e693cc 2050 TREE_TYPE (ni_name), ni_name, niters_of_prolog_loop);
95b3eff3
RB
2051 LOOP_VINFO_NITERSM1 (loop_vinfo) = fold_build2 (MINUS_EXPR,
2052 TREE_TYPE (ni_name),
2053 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_of_prolog_loop);
ebfd146a 2054
5d2eb24b
IR
2055 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2056 wide_prolog_niters = niters_of_prolog_loop;
2057 else
2058 {
2059 gimple_seq seq = NULL;
2060 edge pe = loop_preheader_edge (loop);
2061 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2062 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
5d2eb24b
IR
2063 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2064 var);
2065 if (seq)
2066 {
2067 /* Insert stmt on loop preheader edge. */
2068 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2069 gcc_assert (!new_bb);
2070 }
2071 }
2072
ebfd146a 2073 /* Update the init conditions of the access functions of all data refs. */
b61b1f17 2074 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
ebfd146a
IR
2075
2076 /* After peeling we have to reset scalar evolution analyzer. */
2077 scev_reset ();
2078
2079 free_original_copy_tables ();
2080}
2081
2082
2083/* Function vect_create_cond_for_align_checks.
2084
2085 Create a conditional expression that represents the alignment checks for
2086 all of data references (array element references) whose alignment must be
2087 checked at runtime.
2088
2089 Input:
2090 COND_EXPR - input conditional expression. New conditions will be chained
2091 with logical AND operation.
2092 LOOP_VINFO - two fields of the loop information are used.
2093 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2094 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2095
2096 Output:
2097 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2098 expression.
2099 The returned value is the conditional expression to be used in the if
2100 statement that controls which version of the loop gets executed at runtime.
2101
2102 The algorithm makes two assumptions:
2103 1) The number of bytes "n" in a vector is a power of 2.
2104 2) An address "a" is aligned if a%n is zero and that this
2105 test can be done as a&(n-1) == 0. For example, for 16
2106 byte vectors the test is a&0xf == 0. */
2107
2108static void
2109vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2110 tree *cond_expr,
2111 gimple_seq *cond_expr_stmt_list)
2112{
2113 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
9771b263 2114 vec<gimple> may_misalign_stmts
ebfd146a
IR
2115 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2116 gimple ref_stmt;
2117 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2118 tree mask_cst;
2119 unsigned int i;
ebfd146a
IR
2120 tree int_ptrsize_type;
2121 char tmp_name[20];
2122 tree or_tmp_name = NULL_TREE;
83d5977e 2123 tree and_tmp_name;
ebfd146a
IR
2124 gimple and_stmt;
2125 tree ptrsize_zero;
2126 tree part_cond_expr;
2127
2128 /* Check that mask is one less than a power of 2, i.e., mask is
2129 all zeros followed by all ones. */
2130 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2131
96f9265a 2132 int_ptrsize_type = signed_type_for (ptr_type_node);
ebfd146a
IR
2133
2134 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2135 of the first vector of the i'th data reference. */
2136
9771b263 2137 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
ebfd146a
IR
2138 {
2139 gimple_seq new_stmt_list = NULL;
2140 tree addr_base;
83d5977e
RG
2141 tree addr_tmp_name;
2142 tree new_or_tmp_name;
ebfd146a 2143 gimple addr_stmt, or_stmt;
d8ba5b19
RG
2144 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2145 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2146 bool negative = tree_int_cst_compare
2147 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2148 tree offset = negative
2149 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
ebfd146a
IR
2150
2151 /* create: addr_tmp = (int)(address_of_first_vector) */
2152 addr_base =
2153 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
d8ba5b19 2154 offset, loop);
ebfd146a
IR
2155 if (new_stmt_list != NULL)
2156 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2157
83d5977e
RG
2158 sprintf (tmp_name, "addr2int%d", i);
2159 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
ebfd146a 2160 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
00d66391 2161 addr_base);
ebfd146a
IR
2162 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2163
2164 /* The addresses are OR together. */
2165
2166 if (or_tmp_name != NULL_TREE)
2167 {
2168 /* create: or_tmp = or_tmp | addr_tmp */
83d5977e
RG
2169 sprintf (tmp_name, "orptrs%d", i);
2170 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
ebfd146a
IR
2171 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2172 new_or_tmp_name,
2173 or_tmp_name, addr_tmp_name);
ebfd146a
IR
2174 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2175 or_tmp_name = new_or_tmp_name;
2176 }
2177 else
2178 or_tmp_name = addr_tmp_name;
2179
2180 } /* end for i */
2181
2182 mask_cst = build_int_cst (int_ptrsize_type, mask);
2183
2184 /* create: and_tmp = or_tmp & mask */
83d5977e 2185 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
ebfd146a
IR
2186
2187 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2188 or_tmp_name, mask_cst);
ebfd146a
IR
2189 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2190
2191 /* Make and_tmp the left operand of the conditional test against zero.
2192 if and_tmp has a nonzero bit then some address is unaligned. */
2193 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2194 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2195 and_tmp_name, ptrsize_zero);
2196 if (*cond_expr)
2197 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2198 *cond_expr, part_cond_expr);
2199 else
2200 *cond_expr = part_cond_expr;
2201}
2202
ebfd146a
IR
2203/* Function vect_create_cond_for_alias_checks.
2204
2205 Create a conditional expression that represents the run-time checks for
2206 overlapping of address ranges represented by a list of data references
2207 relations passed as input.
2208
2209 Input:
2210 COND_EXPR - input conditional expression. New conditions will be chained
a05a89fa
CH
2211 with logical AND operation. If it is NULL, then the function
2212 is used to return the number of alias checks.
ebfd146a
IR
2213 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2214 to be checked.
2215
2216 Output:
2217 COND_EXPR - conditional expression.
ebfd146a 2218
a05a89fa 2219 The returned COND_EXPR is the conditional expression to be used in the if
ebfd146a
IR
2220 statement that controls which version of the loop gets executed at runtime.
2221*/
2222
a05a89fa 2223void
4bdd44c4 2224vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
ebfd146a 2225{
93bdc3ed 2226 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
a05a89fa
CH
2227 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2228 tree part_cond_expr;
ebfd146a
IR
2229
2230 /* Create expression
36fc3799
RS
2231 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2232 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
b8698a0f 2233 &&
ebfd146a
IR
2234 ...
2235 &&
36fc3799
RS
2236 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2237 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
ebfd146a 2238
a05a89fa 2239 if (comp_alias_ddrs.is_empty ())
ebfd146a
IR
2240 return;
2241
a05a89fa 2242 for (size_t i = 0, s = comp_alias_ddrs.length (); i < s; ++i)
ebfd146a 2243 {
93bdc3ed
CH
2244 const dr_with_seg_len& dr_a = comp_alias_ddrs[i].first;
2245 const dr_with_seg_len& dr_b = comp_alias_ddrs[i].second;
a05a89fa
CH
2246 tree segment_length_a = dr_a.seg_len;
2247 tree segment_length_b = dr_b.seg_len;
ebfd146a 2248
a05a89fa 2249 tree addr_base_a
93bdc3ed 2250 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a.dr), dr_a.offset);
a05a89fa 2251 tree addr_base_b
93bdc3ed 2252 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b.dr), dr_b.offset);
ebfd146a 2253
73fbfcad 2254 if (dump_enabled_p ())
ebfd146a 2255 {
ccb3ad87 2256 dump_printf_loc (MSG_NOTE, vect_location,
a05a89fa
CH
2257 "create runtime check for data references ");
2258 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a.dr));
ccb3ad87 2259 dump_printf (MSG_NOTE, " and ");
a05a89fa
CH
2260 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b.dr));
2261 dump_printf (MSG_NOTE, "\n");
ebfd146a
IR
2262 }
2263
a05a89fa
CH
2264 tree seg_a_min = addr_base_a;
2265 tree seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
82d89471
BM
2266 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
2267 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
2268 [a, a+12) */
a05a89fa 2269 if (tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0)
82d89471
BM
2270 {
2271 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a.dr)));
2272 seg_a_min = fold_build_pointer_plus (seg_a_max, unit_size);
2273 seg_a_max = fold_build_pointer_plus (addr_base_a, unit_size);
2274 }
d8ba5b19 2275
a05a89fa
CH
2276 tree seg_b_min = addr_base_b;
2277 tree seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2278 if (tree_int_cst_compare (DR_STEP (dr_b.dr), size_zero_node) < 0)
82d89471
BM
2279 {
2280 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b.dr)));
2281 seg_b_min = fold_build_pointer_plus (seg_b_max, unit_size);
2282 seg_b_max = fold_build_pointer_plus (addr_base_b, unit_size);
2283 }
ebfd146a 2284
b8698a0f 2285 part_cond_expr =
ebfd146a 2286 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
36fc3799
RS
2287 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2288 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
b8698a0f 2289
ebfd146a
IR
2290 if (*cond_expr)
2291 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2292 *cond_expr, part_cond_expr);
2293 else
2294 *cond_expr = part_cond_expr;
2295 }
ebfd146a 2296
73fbfcad 2297 if (dump_enabled_p ())
ccb3ad87 2298 dump_printf_loc (MSG_NOTE, vect_location,
78c60e3d 2299 "created %u versioning for alias checks.\n",
a05a89fa
CH
2300 comp_alias_ddrs.length ());
2301
2302 comp_alias_ddrs.release ();
ebfd146a
IR
2303}
2304
2305
2306/* Function vect_loop_versioning.
b8698a0f 2307
ebfd146a
IR
2308 If the loop has data references that may or may not be aligned or/and
2309 has data reference relations whose independence was not proven then
2310 two versions of the loop need to be generated, one which is vectorized
2311 and one which isn't. A test is then generated to control which of the
2312 loops is executed. The test checks for the alignment of all of the
2313 data references that may or may not be aligned. An additional
2314 sequence of runtime tests is generated for each pairs of DDRs whose
b8698a0f
L
2315 independence was not proven. The vectorized version of loop is
2316 executed only if both alias and alignment tests are passed.
2317
ebfd146a 2318 The test generated to check which version of loop is executed
b8698a0f 2319 is modified to also check for profitability as indicated by the
86290011
RG
2320 cost model initially.
2321
2322 The versioning precondition(s) are placed in *COND_EXPR and
d68d56b5 2323 *COND_EXPR_STMT_LIST. */
ebfd146a
IR
2324
2325void
368117e8
RG
2326vect_loop_versioning (loop_vec_info loop_vinfo,
2327 unsigned int th, bool check_profitability)
ebfd146a
IR
2328{
2329 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5ce9450f 2330 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
ebfd146a 2331 basic_block condition_bb;
538dd0b7
DM
2332 gphi_iterator gsi;
2333 gimple_stmt_iterator cond_exp_gsi;
ebfd146a
IR
2334 basic_block merge_bb;
2335 basic_block new_exit_bb;
2336 edge new_exit_e, e;
538dd0b7 2337 gphi *orig_phi, *new_phi;
368117e8 2338 tree cond_expr = NULL_TREE;
d68d56b5 2339 gimple_seq cond_expr_stmt_list = NULL;
ebfd146a
IR
2340 tree arg;
2341 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2342 gimple_seq gimplify_stmt_list = NULL;
2343 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
9cc1fb4b
XDL
2344 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2345 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
ebfd146a 2346
368117e8
RG
2347 if (check_profitability)
2348 {
2349 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2350 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2351 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2352 is_gimple_condexpr, NULL_TREE);
2353 }
ebfd146a 2354
9cc1fb4b 2355 if (version_align)
d68d56b5
RG
2356 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2357 &cond_expr_stmt_list);
ebfd146a 2358
9cc1fb4b 2359 if (version_alias)
4bdd44c4 2360 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
86290011 2361
d68d56b5
RG
2362 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2363 is_gimple_condexpr, NULL_TREE);
2364 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
ebfd146a
IR
2365
2366 initialize_original_copy_tables ();
5ce9450f
JJ
2367 if (scalar_loop)
2368 {
2369 edge scalar_e;
2370 basic_block preheader, scalar_preheader;
2371
2372 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2373 scale LOOP's frequencies instead. */
2374 loop_version (scalar_loop, cond_expr, &condition_bb,
2375 prob, REG_BR_PROB_BASE, REG_BR_PROB_BASE - prob, true);
2376 scale_loop_frequencies (loop, prob, REG_BR_PROB_BASE);
2377 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2378 while we need to move it above LOOP's preheader. */
2379 e = loop_preheader_edge (loop);
2380 scalar_e = loop_preheader_edge (scalar_loop);
2381 gcc_assert (empty_block_p (e->src)
2382 && single_pred_p (e->src));
2383 gcc_assert (empty_block_p (scalar_e->src)
2384 && single_pred_p (scalar_e->src));
2385 gcc_assert (single_pred_p (condition_bb));
2386 preheader = e->src;
2387 scalar_preheader = scalar_e->src;
2388 scalar_e = find_edge (condition_bb, scalar_preheader);
2389 e = single_pred_edge (preheader);
2390 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2391 scalar_preheader);
2392 redirect_edge_and_branch_force (scalar_e, preheader);
2393 redirect_edge_and_branch_force (e, condition_bb);
2394 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2395 single_pred (condition_bb));
2396 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2397 single_pred (scalar_preheader));
2398 set_immediate_dominator (CDI_DOMINATORS, preheader,
2399 condition_bb);
2400 }
2401 else
2402 loop_version (loop, cond_expr, &condition_bb,
2403 prob, prob, REG_BR_PROB_BASE - prob, true);
9cc1fb4b 2404
b05e0233 2405 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
9cc1fb4b
XDL
2406 && dump_enabled_p ())
2407 {
2408 if (version_alias)
2409 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2410 "loop versioned for vectorization because of "
2411 "possible aliasing\n");
2412 if (version_align)
2413 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2414 "loop versioned for vectorization to enhance "
2415 "alignment\n");
2416
2417 }
c3284718 2418 free_original_copy_tables ();
ebfd146a 2419
b8698a0f 2420 /* Loop versioning violates an assumption we try to maintain during
ebfd146a
IR
2421 vectorization - that the loop exit block has a single predecessor.
2422 After versioning, the exit block of both loop versions is the same
2423 basic block (i.e. it has two predecessors). Just in order to simplify
2424 following transformations in the vectorizer, we fix this situation
2425 here by adding a new (empty) block on the exit-edge of the loop,
5ce9450f
JJ
2426 with the proper loop-exit phis to maintain loop-closed-form.
2427 If loop versioning wasn't done from loop, but scalar_loop instead,
2428 merge_bb will have already just a single successor. */
b8698a0f 2429
ebfd146a 2430 merge_bb = single_exit (loop)->dest;
5ce9450f 2431 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
ebfd146a 2432 {
5ce9450f
JJ
2433 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2434 new_exit_bb = split_edge (single_exit (loop));
2435 new_exit_e = single_exit (loop);
2436 e = EDGE_SUCC (new_exit_bb, 0);
2437
2438 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2439 {
2440 tree new_res;
538dd0b7 2441 orig_phi = gsi.phi ();
5ce9450f
JJ
2442 new_res = copy_ssa_name (PHI_RESULT (orig_phi), NULL);
2443 new_phi = create_phi_node (new_res, new_exit_bb);
2444 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2445 add_phi_arg (new_phi, arg, new_exit_e,
2446 gimple_phi_arg_location_from_edge (orig_phi, e));
2447 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2448 }
b8698a0f 2449 }
ebfd146a
IR
2450
2451 /* End loop-exit-fixes after versioning. */
2452
d68d56b5 2453 if (cond_expr_stmt_list)
ebfd146a
IR
2454 {
2455 cond_exp_gsi = gsi_last_bb (condition_bb);
d68d56b5 2456 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
86290011 2457 GSI_SAME_STMT);
ebfd146a 2458 }
90eb75f2 2459 update_ssa (TODO_update_ssa);
ebfd146a 2460}