]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-vect-loop-manip.c
2018-11-13 Richard Biener <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / tree-vect-loop-manip.c
CommitLineData
48e1416a 1/* Vectorizer Specific Loop Manipulations
8e8f6434 2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
48e1416a 3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
fb85abff 4 and Ira Rosen <irar@il.ibm.com>
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22#include "config.h"
23#include "system.h"
24#include "coretypes.h"
9ef16211 25#include "backend.h"
b20a8bb4 26#include "tree.h"
9ef16211 27#include "gimple.h"
7c29e30e 28#include "cfghooks.h"
29#include "tree-pass.h"
9ef16211 30#include "ssa.h"
9ef16211 31#include "fold-const.h"
94ea8568 32#include "cfganal.h"
a8783bee 33#include "gimplify.h"
dcf1a1ec 34#include "gimple-iterator.h"
e795d6e1 35#include "gimplify-me.h"
073c1fd5 36#include "tree-cfg.h"
05d9c18a 37#include "tree-ssa-loop-manip.h"
073c1fd5 38#include "tree-into-ssa.h"
69ee5dbb 39#include "tree-ssa.h"
fb85abff 40#include "cfgloop.h"
fb85abff 41#include "tree-scalar-evolution.h"
42#include "tree-vectorizer.h"
12117f39 43#include "tree-ssa-loop-ivopts.h"
cde959e7 44#include "gimple-fold.h"
60b29a7e 45#include "tree-ssa-loop-niter.h"
46#include "internal-fn.h"
47#include "stor-layout.h"
48#include "optabs-query.h"
49#include "vec-perm-indices.h"
fb85abff 50
51/*************************************************************************
52 Simple Loop Peeling Utilities
53
54 Utilities to support loop peeling for vectorization purposes.
55 *************************************************************************/
56
57
58/* Renames the use *OP_P. */
59
60static void
61rename_use_op (use_operand_p op_p)
62{
63 tree new_name;
64
65 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
66 return;
67
68 new_name = get_current_def (USE_FROM_PTR (op_p));
69
70 /* Something defined outside of the loop. */
71 if (!new_name)
72 return;
73
74 /* An ordinary ssa name defined in the loop. */
75
76 SET_USE (op_p, new_name);
77}
78
79
ccd0a9f9 80/* Renames the variables in basic block BB. Allow renaming of PHI arguments
5ee742c4 81 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
82 true. */
fb85abff 83
c9b2c569 84static void
5ee742c4 85rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
fb85abff 86{
42acab1c 87 gimple *stmt;
fb85abff 88 use_operand_p use_p;
89 ssa_op_iter iter;
90 edge e;
91 edge_iterator ei;
92 struct loop *loop = bb->loop_father;
5ee742c4 93 struct loop *outer_loop = NULL;
94
95 if (rename_from_outer_loop)
96 {
97 gcc_assert (loop);
98 outer_loop = loop_outer (loop);
99 }
fb85abff 100
1a91d914 101 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
102 gsi_next (&gsi))
fb85abff 103 {
104 stmt = gsi_stmt (gsi);
105 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
106 rename_use_op (use_p);
107 }
108
c9b2c569 109 FOR_EACH_EDGE (e, ei, bb->preds)
fb85abff 110 {
ccd0a9f9 111 if (!flow_bb_inside_loop_p (loop, e->src))
112 {
113 if (!rename_from_outer_loop)
114 continue;
115 if (e->src != outer_loop->header)
116 {
117 if (outer_loop->inner->next)
118 {
119 /* If outer_loop has 2 inner loops, allow there to
120 be an extra basic block which decides which of the
121 two loops to use using LOOP_VECTORIZED. */
122 if (!single_pred_p (e->src)
123 || single_pred (e->src) != outer_loop->header)
124 continue;
125 }
ccd0a9f9 126 }
127 }
1a91d914 128 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
129 gsi_next (&gsi))
130 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
fb85abff 131 }
132}
133
134
6dc50383 135struct adjust_info
b123eaab 136{
137 tree from, to;
138 basic_block bb;
6dc50383 139};
b123eaab 140
b123eaab 141/* A stack of values to be adjusted in debug stmts. We have to
142 process them LIFO, so that the closest substitution applies. If we
143 processed them FIFO, without the stack, we might substitute uses
144 with a PHI DEF that would soon become non-dominant, and when we got
145 to the suitable one, it wouldn't have anything to substitute any
146 more. */
d70aebca 147static vec<adjust_info, va_heap> adjust_vec;
b123eaab 148
149/* Adjust any debug stmts that referenced AI->from values to use the
150 loop-closed AI->to, if the references are dominated by AI->bb and
151 not by the definition of AI->from. */
152
153static void
154adjust_debug_stmts_now (adjust_info *ai)
155{
156 basic_block bbphi = ai->bb;
157 tree orig_def = ai->from;
158 tree new_def = ai->to;
159 imm_use_iterator imm_iter;
42acab1c 160 gimple *stmt;
b123eaab 161 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
162
163 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
164
165 /* Adjust any debug stmts that held onto non-loop-closed
166 references. */
167 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
168 {
169 use_operand_p use_p;
170 basic_block bbuse;
171
172 if (!is_gimple_debug (stmt))
173 continue;
174
175 gcc_assert (gimple_debug_bind_p (stmt));
176
177 bbuse = gimple_bb (stmt);
178
179 if ((bbuse == bbphi
180 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
181 && !(bbuse == bbdef
182 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
183 {
184 if (new_def)
185 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
186 SET_USE (use_p, new_def);
187 else
188 {
189 gimple_debug_bind_reset_value (stmt);
190 update_stmt (stmt);
191 }
192 }
193 }
194}
195
196/* Adjust debug stmts as scheduled before. */
197
198static void
199adjust_vec_debug_stmts (void)
200{
c64f38bf 201 if (!MAY_HAVE_DEBUG_BIND_STMTS)
b123eaab 202 return;
203
f1f41a6c 204 gcc_assert (adjust_vec.exists ());
b123eaab 205
f1f41a6c 206 while (!adjust_vec.is_empty ())
b123eaab 207 {
f1f41a6c 208 adjust_debug_stmts_now (&adjust_vec.last ());
209 adjust_vec.pop ();
b123eaab 210 }
b123eaab 211}
212
213/* Adjust any debug stmts that referenced FROM values to use the
214 loop-closed TO, if the references are dominated by BB and not by
215 the definition of FROM. If adjust_vec is non-NULL, adjustments
216 will be postponed until adjust_vec_debug_stmts is called. */
217
218static void
219adjust_debug_stmts (tree from, tree to, basic_block bb)
220{
221 adjust_info ai;
222
c64f38bf 223 if (MAY_HAVE_DEBUG_BIND_STMTS
0087edc6 224 && TREE_CODE (from) == SSA_NAME
2510e5cd 225 && ! SSA_NAME_IS_DEFAULT_DEF (from)
0087edc6 226 && ! virtual_operand_p (from))
b123eaab 227 {
228 ai.from = from;
229 ai.to = to;
230 ai.bb = bb;
231
f1f41a6c 232 if (adjust_vec.exists ())
233 adjust_vec.safe_push (ai);
b123eaab 234 else
235 adjust_debug_stmts_now (&ai);
236 }
237}
238
239/* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
240 to adjust any debug stmts that referenced the old phi arg,
241 presumably non-loop-closed references left over from other
242 transformations. */
243
244static void
42acab1c 245adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
b123eaab 246{
247 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
248
249 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
250
c64f38bf 251 if (MAY_HAVE_DEBUG_BIND_STMTS)
b123eaab 252 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
253 gimple_bb (update_phi));
254}
255
60b29a7e 256/* Define one loop mask MASK from loop LOOP. INIT_MASK is the value that
257 the mask should have during the first iteration and NEXT_MASK is the
258 value that it should have on subsequent iterations. */
cde959e7 259
60b29a7e 260static void
261vect_set_loop_mask (struct loop *loop, tree mask, tree init_mask,
262 tree next_mask)
263{
264 gphi *phi = create_phi_node (mask, loop->header);
265 add_phi_arg (phi, init_mask, loop_preheader_edge (loop), UNKNOWN_LOCATION);
266 add_phi_arg (phi, next_mask, loop_latch_edge (loop), UNKNOWN_LOCATION);
267}
cde959e7 268
60b29a7e 269/* Add SEQ to the end of LOOP's preheader block. */
fb85abff 270
60b29a7e 271static void
272add_preheader_seq (struct loop *loop, gimple_seq seq)
273{
274 if (seq)
275 {
276 edge pe = loop_preheader_edge (loop);
277 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
278 gcc_assert (!new_bb);
279 }
280}
fb85abff 281
60b29a7e 282/* Add SEQ to the beginning of LOOP's header block. */
283
284static void
285add_header_seq (struct loop *loop, gimple_seq seq)
286{
287 if (seq)
288 {
289 gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
290 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
291 }
292}
293
294/* Return true if the target can interleave elements of two vectors.
295 OFFSET is 0 if the first half of the vectors should be interleaved
296 or 1 if the second half should. When returning true, store the
297 associated permutation in INDICES. */
298
299static bool
300interleave_supported_p (vec_perm_indices *indices, tree vectype,
301 unsigned int offset)
302{
303 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
304 poly_uint64 base = exact_div (nelts, 2) * offset;
305 vec_perm_builder sel (nelts, 2, 3);
306 for (unsigned int i = 0; i < 3; ++i)
307 {
308 sel.quick_push (base + i);
309 sel.quick_push (base + i + nelts);
310 }
311 indices->new_vector (sel, 2, nelts);
312 return can_vec_perm_const_p (TYPE_MODE (vectype), *indices);
313}
314
315/* Try to use permutes to define the masks in DEST_RGM using the masks
316 in SRC_RGM, given that the former has twice as many masks as the
317 latter. Return true on success, adding any new statements to SEQ. */
318
319static bool
320vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_masks *dest_rgm,
321 rgroup_masks *src_rgm)
322{
323 tree src_masktype = src_rgm->mask_type;
324 tree dest_masktype = dest_rgm->mask_type;
325 machine_mode src_mode = TYPE_MODE (src_masktype);
326 if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
327 && optab_handler (vec_unpacku_hi_optab, src_mode) != CODE_FOR_nothing
328 && optab_handler (vec_unpacku_lo_optab, src_mode) != CODE_FOR_nothing)
329 {
330 /* Unpacking the source masks gives at least as many mask bits as
331 we need. We can then VIEW_CONVERT any excess bits away. */
332 tree unpack_masktype = vect_halve_mask_nunits (src_masktype);
333 for (unsigned int i = 0; i < dest_rgm->masks.length (); ++i)
334 {
335 tree src = src_rgm->masks[i / 2];
336 tree dest = dest_rgm->masks[i];
88e81b08 337 tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
338 ? VEC_UNPACK_HI_EXPR
60b29a7e 339 : VEC_UNPACK_LO_EXPR);
340 gassign *stmt;
341 if (dest_masktype == unpack_masktype)
342 stmt = gimple_build_assign (dest, code, src);
343 else
344 {
345 tree temp = make_ssa_name (unpack_masktype);
346 stmt = gimple_build_assign (temp, code, src);
347 gimple_seq_add_stmt (seq, stmt);
348 stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
349 build1 (VIEW_CONVERT_EXPR,
350 dest_masktype, temp));
351 }
352 gimple_seq_add_stmt (seq, stmt);
353 }
354 return true;
355 }
356 vec_perm_indices indices[2];
357 if (dest_masktype == src_masktype
358 && interleave_supported_p (&indices[0], src_masktype, 0)
359 && interleave_supported_p (&indices[1], src_masktype, 1))
360 {
361 /* The destination requires twice as many mask bits as the source, so
362 we can use interleaving permutes to double up the number of bits. */
363 tree masks[2];
364 for (unsigned int i = 0; i < 2; ++i)
365 masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
366 for (unsigned int i = 0; i < dest_rgm->masks.length (); ++i)
367 {
368 tree src = src_rgm->masks[i / 2];
369 tree dest = dest_rgm->masks[i];
370 gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
371 src, src, masks[i & 1]);
372 gimple_seq_add_stmt (seq, stmt);
373 }
374 return true;
375 }
376 return false;
377}
378
379/* Helper for vect_set_loop_condition_masked. Generate definitions for
380 all the masks in RGM and return a mask that is nonzero when the loop
381 needs to iterate. Add any new preheader statements to PREHEADER_SEQ.
382 Use LOOP_COND_GSI to insert code before the exit gcond.
383
384 RGM belongs to loop LOOP. The loop originally iterated NITERS
385 times and has been vectorized according to LOOP_VINFO. Each iteration
386 of the vectorized loop handles VF iterations of the scalar loop.
387
6753a4bf 388 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
389 starts with NITERS_SKIP dummy iterations of the scalar loop before
390 the real work starts. The mask elements for these dummy iterations
391 must be 0, to ensure that the extra iterations do not have an effect.
392
60b29a7e 393 It is known that:
394
395 NITERS * RGM->max_nscalars_per_iter
396
397 does not overflow. However, MIGHT_WRAP_P says whether an induction
398 variable that starts at 0 and has step:
399
400 VF * RGM->max_nscalars_per_iter
401
402 might overflow before hitting a value above:
403
6753a4bf 404 (NITERS + NITERS_SKIP) * RGM->max_nscalars_per_iter
60b29a7e 405
406 This means that we cannot guarantee that such an induction variable
407 would ever hit a value that produces a set of all-false masks for RGM. */
408
409static tree
410vect_set_loop_masks_directly (struct loop *loop, loop_vec_info loop_vinfo,
411 gimple_seq *preheader_seq,
412 gimple_stmt_iterator loop_cond_gsi,
413 rgroup_masks *rgm, tree vf,
6753a4bf 414 tree niters, tree niters_skip,
415 bool might_wrap_p)
60b29a7e 416{
417 tree compare_type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
418 tree mask_type = rgm->mask_type;
419 unsigned int nscalars_per_iter = rgm->max_nscalars_per_iter;
420 poly_uint64 nscalars_per_mask = TYPE_VECTOR_SUBPARTS (mask_type);
421
422 /* Calculate the maximum number of scalar values that the rgroup
6753a4bf 423 handles in total, the number that it handles for each iteration
424 of the vector loop, and the number that it should skip during the
425 first iteration of the vector loop. */
60b29a7e 426 tree nscalars_total = niters;
427 tree nscalars_step = vf;
6753a4bf 428 tree nscalars_skip = niters_skip;
60b29a7e 429 if (nscalars_per_iter != 1)
430 {
431 /* We checked before choosing to use a fully-masked loop that these
432 multiplications don't overflow. */
433 tree factor = build_int_cst (compare_type, nscalars_per_iter);
434 nscalars_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
435 nscalars_total, factor);
436 nscalars_step = gimple_build (preheader_seq, MULT_EXPR, compare_type,
437 nscalars_step, factor);
6753a4bf 438 if (nscalars_skip)
439 nscalars_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
440 nscalars_skip, factor);
60b29a7e 441 }
442
443 /* Create an induction variable that counts the number of scalars
444 processed. */
445 tree index_before_incr, index_after_incr;
446 gimple_stmt_iterator incr_gsi;
447 bool insert_after;
448 tree zero_index = build_int_cst (compare_type, 0);
449 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
450 create_iv (zero_index, nscalars_step, NULL_TREE, loop, &incr_gsi,
451 insert_after, &index_before_incr, &index_after_incr);
452
6753a4bf 453 tree test_index, test_limit, first_limit;
60b29a7e 454 gimple_stmt_iterator *test_gsi;
455 if (might_wrap_p)
456 {
457 /* In principle the loop should stop iterating once the incremented
6753a4bf 458 IV reaches a value greater than or equal to:
459
460 NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP
461
462 However, there's no guarantee that this addition doesn't overflow
463 the comparison type, or that the IV hits a value above it before
464 wrapping around. We therefore adjust the limit down by one
465 IV step:
60b29a7e 466
6753a4bf 467 (NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP)
468 -[infinite-prec] NSCALARS_STEP
60b29a7e 469
470 and compare the IV against this limit _before_ incrementing it.
471 Since the comparison type is unsigned, we actually want the
472 subtraction to saturate at zero:
473
6753a4bf 474 (NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP)
475 -[sat] NSCALARS_STEP
476
477 And since NSCALARS_SKIP < NSCALARS_STEP, we can reassociate this as:
478
479 NSCALARS_TOTAL -[sat] (NSCALARS_STEP - NSCALARS_SKIP)
480
481 where the rightmost subtraction can be done directly in
482 COMPARE_TYPE. */
60b29a7e 483 test_index = index_before_incr;
6753a4bf 484 tree adjust = nscalars_step;
485 if (nscalars_skip)
486 adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
487 adjust, nscalars_skip);
60b29a7e 488 test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
6753a4bf 489 nscalars_total, adjust);
60b29a7e 490 test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
6753a4bf 491 test_limit, adjust);
60b29a7e 492 test_gsi = &incr_gsi;
6753a4bf 493
494 /* Get a safe limit for the first iteration. */
495 if (nscalars_skip)
496 {
497 /* The first vector iteration can handle at most NSCALARS_STEP
498 scalars. NSCALARS_STEP <= CONST_LIMIT, and adding
499 NSCALARS_SKIP to that cannot overflow. */
500 tree const_limit = build_int_cst (compare_type,
501 LOOP_VINFO_VECT_FACTOR (loop_vinfo)
502 * nscalars_per_iter);
503 first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
504 nscalars_total, const_limit);
505 first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
506 first_limit, nscalars_skip);
507 }
508 else
509 /* For the first iteration it doesn't matter whether the IV hits
510 a value above NSCALARS_TOTAL. That only matters for the latch
511 condition. */
512 first_limit = nscalars_total;
60b29a7e 513 }
514 else
515 {
516 /* Test the incremented IV, which will always hit a value above
517 the bound before wrapping. */
518 test_index = index_after_incr;
519 test_limit = nscalars_total;
6753a4bf 520 if (nscalars_skip)
521 test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
522 test_limit, nscalars_skip);
60b29a7e 523 test_gsi = &loop_cond_gsi;
6753a4bf 524
525 first_limit = test_limit;
60b29a7e 526 }
527
528 /* Provide a definition of each mask in the group. */
529 tree next_mask = NULL_TREE;
530 tree mask;
531 unsigned int i;
532 FOR_EACH_VEC_ELT_REVERSE (rgm->masks, i, mask)
533 {
534 /* Previous masks will cover BIAS scalars. This mask covers the
535 next batch. */
536 poly_uint64 bias = nscalars_per_mask * i;
537 tree bias_tree = build_int_cst (compare_type, bias);
538 gimple *tmp_stmt;
539
540 /* See whether the first iteration of the vector loop is known
541 to have a full mask. */
542 poly_uint64 const_limit;
543 bool first_iteration_full
6753a4bf 544 = (poly_int_tree_p (first_limit, &const_limit)
60b29a7e 545 && known_ge (const_limit, (i + 1) * nscalars_per_mask));
546
547 /* Rather than have a new IV that starts at BIAS and goes up to
548 TEST_LIMIT, prefer to use the same 0-based IV for each mask
549 and adjust the bound down by BIAS. */
550 tree this_test_limit = test_limit;
551 if (i != 0)
552 {
553 this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
554 compare_type, this_test_limit,
555 bias_tree);
556 this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
557 compare_type, this_test_limit,
558 bias_tree);
559 }
560
6753a4bf 561 /* Create the initial mask. First include all scalars that
562 are within the loop limit. */
60b29a7e 563 tree init_mask = NULL_TREE;
564 if (!first_iteration_full)
565 {
566 tree start, end;
6753a4bf 567 if (first_limit == test_limit)
60b29a7e 568 {
569 /* Use a natural test between zero (the initial IV value)
570 and the loop limit. The "else" block would be valid too,
571 but this choice can avoid the need to load BIAS_TREE into
572 a register. */
573 start = zero_index;
574 end = this_test_limit;
575 }
576 else
577 {
6753a4bf 578 /* FIRST_LIMIT is the maximum number of scalars handled by the
579 first iteration of the vector loop. Test the portion
580 associated with this mask. */
60b29a7e 581 start = bias_tree;
6753a4bf 582 end = first_limit;
60b29a7e 583 }
584
585 init_mask = make_temp_ssa_name (mask_type, NULL, "max_mask");
586 tmp_stmt = vect_gen_while (init_mask, start, end);
587 gimple_seq_add_stmt (preheader_seq, tmp_stmt);
588 }
589
6753a4bf 590 /* Now AND out the bits that are within the number of skipped
591 scalars. */
592 poly_uint64 const_skip;
593 if (nscalars_skip
594 && !(poly_int_tree_p (nscalars_skip, &const_skip)
595 && known_le (const_skip, bias)))
596 {
597 tree unskipped_mask = vect_gen_while_not (preheader_seq, mask_type,
598 bias_tree, nscalars_skip);
599 if (init_mask)
600 init_mask = gimple_build (preheader_seq, BIT_AND_EXPR, mask_type,
601 init_mask, unskipped_mask);
602 else
603 init_mask = unskipped_mask;
604 }
605
60b29a7e 606 if (!init_mask)
607 /* First iteration is full. */
608 init_mask = build_minus_one_cst (mask_type);
609
610 /* Get the mask value for the next iteration of the loop. */
611 next_mask = make_temp_ssa_name (mask_type, NULL, "next_mask");
612 gcall *call = vect_gen_while (next_mask, test_index, this_test_limit);
613 gsi_insert_before (test_gsi, call, GSI_SAME_STMT);
614
615 vect_set_loop_mask (loop, mask, init_mask, next_mask);
616 }
617 return next_mask;
618}
619
620/* Make LOOP iterate NITERS times using masking and WHILE_ULT calls.
621 LOOP_VINFO describes the vectorization of LOOP. NITERS is the
53771608 622 number of iterations of the original scalar loop that should be
623 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are
624 as for vect_set_loop_condition.
60b29a7e 625
626 Insert the branch-back condition before LOOP_COND_GSI and return the
627 final gcond. */
628
629static gcond *
630vect_set_loop_condition_masked (struct loop *loop, loop_vec_info loop_vinfo,
631 tree niters, tree final_iv,
632 bool niters_maybe_zero,
633 gimple_stmt_iterator loop_cond_gsi)
634{
635 gimple_seq preheader_seq = NULL;
636 gimple_seq header_seq = NULL;
637
638 tree compare_type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
639 unsigned int compare_precision = TYPE_PRECISION (compare_type);
640 unsigned HOST_WIDE_INT max_vf = vect_max_vf (loop_vinfo);
641 tree orig_niters = niters;
642
643 /* Type of the initial value of NITERS. */
644 tree ni_actual_type = TREE_TYPE (niters);
645 unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);
646
647 /* Convert NITERS to the same size as the compare. */
648 if (compare_precision > ni_actual_precision
649 && niters_maybe_zero)
650 {
651 /* We know that there is always at least one iteration, so if the
652 count is zero then it must have wrapped. Cope with this by
653 subtracting 1 before the conversion and adding 1 to the result. */
654 gcc_assert (TYPE_UNSIGNED (ni_actual_type));
655 niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
656 niters, build_minus_one_cst (ni_actual_type));
657 niters = gimple_convert (&preheader_seq, compare_type, niters);
658 niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
659 niters, build_one_cst (compare_type));
660 }
661 else
662 niters = gimple_convert (&preheader_seq, compare_type, niters);
663
6753a4bf 664 /* Convert skip_niters to the right type. */
665 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
666
60b29a7e 667 /* Now calculate the value that the induction variable must be able
668 to hit in order to ensure that we end the loop with an all-false mask.
669 This involves adding the maximum number of inactive trailing scalar
670 iterations. */
671 widest_int iv_limit;
672 bool known_max_iters = max_loop_iterations (loop, &iv_limit);
673 if (known_max_iters)
674 {
6753a4bf 675 if (niters_skip)
676 {
677 /* Add the maximum number of skipped iterations to the
678 maximum iteration count. */
679 if (TREE_CODE (niters_skip) == INTEGER_CST)
680 iv_limit += wi::to_widest (niters_skip);
681 else
682 iv_limit += max_vf - 1;
683 }
60b29a7e 684 /* IV_LIMIT is the maximum number of latch iterations, which is also
685 the maximum in-range IV value. Round this value down to the previous
686 vector alignment boundary and then add an extra full iteration. */
687 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
688 iv_limit = (iv_limit & -(int) known_alignment (vf)) + max_vf;
689 }
690
691 /* Get the vectorization factor in tree form. */
692 tree vf = build_int_cst (compare_type,
693 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
694
695 /* Iterate over all the rgroups and fill in their masks. We could use
696 the first mask from any rgroup for the loop condition; here we
697 arbitrarily pick the last. */
698 tree test_mask = NULL_TREE;
699 rgroup_masks *rgm;
700 unsigned int i;
701 vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
702 FOR_EACH_VEC_ELT (*masks, i, rgm)
703 if (!rgm->masks.is_empty ())
704 {
705 /* First try using permutes. This adds a single vector
706 instruction to the loop for each mask, but needs no extra
707 loop invariants or IVs. */
708 unsigned int nmasks = i + 1;
709 if ((nmasks & 1) == 0)
710 {
711 rgroup_masks *half_rgm = &(*masks)[nmasks / 2 - 1];
712 if (!half_rgm->masks.is_empty ()
713 && vect_maybe_permute_loop_masks (&header_seq, rgm, half_rgm))
714 continue;
715 }
716
717 /* See whether zero-based IV would ever generate all-false masks
718 before wrapping around. */
719 bool might_wrap_p
720 = (!known_max_iters
721 || (wi::min_precision (iv_limit * rgm->max_nscalars_per_iter,
722 UNSIGNED)
723 > compare_precision));
724
725 /* Set up all masks for this group. */
726 test_mask = vect_set_loop_masks_directly (loop, loop_vinfo,
727 &preheader_seq,
728 loop_cond_gsi, rgm, vf,
6753a4bf 729 niters, niters_skip,
730 might_wrap_p);
60b29a7e 731 }
732
733 /* Emit all accumulated statements. */
734 add_preheader_seq (loop, preheader_seq);
735 add_header_seq (loop, header_seq);
736
737 /* Get a boolean result that tells us whether to iterate. */
738 edge exit_edge = single_exit (loop);
739 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
740 tree zero_mask = build_zero_cst (TREE_TYPE (test_mask));
741 gcond *cond_stmt = gimple_build_cond (code, test_mask, zero_mask,
742 NULL_TREE, NULL_TREE);
743 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
744
745 /* The loop iterates (NITERS - 1) / VF + 1 times.
746 Subtract one from this to get the latch count. */
747 tree step = build_int_cst (compare_type,
748 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
749 tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
750 build_minus_one_cst (compare_type));
751 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
752 niters_minus_one, step);
753
754 if (final_iv)
755 {
756 gassign *assign = gimple_build_assign (final_iv, orig_niters);
757 gsi_insert_on_edge_immediate (single_exit (loop), assign);
758 }
759
760 return cond_stmt;
761}
762
763/* Like vect_set_loop_condition, but handle the case in which there
764 are no loop masks. */
765
766static gcond *
767vect_set_loop_condition_unmasked (struct loop *loop, tree niters,
768 tree step, tree final_iv,
769 bool niters_maybe_zero,
770 gimple_stmt_iterator loop_cond_gsi)
fb85abff 771{
772 tree indx_before_incr, indx_after_incr;
1a91d914 773 gcond *cond_stmt;
774 gcond *orig_cond;
cde959e7 775 edge pe = loop_preheader_edge (loop);
fb85abff 776 edge exit_edge = single_exit (loop);
fb85abff 777 gimple_stmt_iterator incr_gsi;
778 bool insert_after;
fb85abff 779 enum tree_code code;
cde959e7 780 tree niters_type = TREE_TYPE (niters);
fb85abff 781
782 orig_cond = get_loop_exit_condition (loop);
783 gcc_assert (orig_cond);
784 loop_cond_gsi = gsi_for_stmt (orig_cond);
785
cde959e7 786 tree init, limit;
787 if (!niters_maybe_zero && integer_onep (step))
788 {
789 /* In this case we can use a simple 0-based IV:
790
791 A:
792 x = 0;
793 do
794 {
795 ...
796 x += 1;
797 }
798 while (x < NITERS); */
799 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
800 init = build_zero_cst (niters_type);
801 limit = niters;
802 }
803 else
804 {
805 /* The following works for all values of NITERS except 0:
806
807 B:
808 x = 0;
809 do
810 {
811 ...
812 x += STEP;
813 }
814 while (x <= NITERS - STEP);
815
816 so that the loop continues to iterate if x + STEP - 1 < NITERS
817 but stops if x + STEP - 1 >= NITERS.
818
819 However, if NITERS is zero, x never hits a value above NITERS - STEP
820 before wrapping around. There are two obvious ways of dealing with
821 this:
822
823 - start at STEP - 1 and compare x before incrementing it
824 - start at -1 and compare x after incrementing it
825
826 The latter is simpler and is what we use. The loop in this case
827 looks like:
828
829 C:
830 x = -1;
831 do
832 {
833 ...
834 x += STEP;
835 }
836 while (x < NITERS - STEP);
837
838 In both cases the loop limit is NITERS - STEP. */
839 gimple_seq seq = NULL;
840 limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
841 limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
842 if (seq)
843 {
844 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
845 gcc_assert (!new_bb);
846 }
847 if (niters_maybe_zero)
848 {
849 /* Case C. */
850 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
851 init = build_all_ones_cst (niters_type);
852 }
853 else
854 {
855 /* Case B. */
856 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
857 init = build_zero_cst (niters_type);
858 }
859 }
860
fb85abff 861 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
862 create_iv (init, step, NULL_TREE, loop,
863 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
fb85abff 864 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
865 true, NULL_TREE, true,
866 GSI_SAME_STMT);
cde959e7 867 limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
fb85abff 868 true, GSI_SAME_STMT);
869
cde959e7 870 cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
fb85abff 871 NULL_TREE);
872
873 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
874
56c0f85a 875 /* Record the number of latch iterations. */
cde959e7 876 if (limit == niters)
877 /* Case A: the loop iterates NITERS times. Subtract one to get the
878 latch count. */
879 loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
880 build_int_cst (niters_type, 1));
881 else
882 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
883 Subtract one from this to get the latch count. */
884 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
885 limit, step);
886
887 if (final_iv)
888 {
889 gassign *assign = gimple_build_assign (final_iv, MINUS_EXPR,
890 indx_after_incr, init);
891 gsi_insert_on_edge_immediate (single_exit (loop), assign);
892 }
60b29a7e 893
894 return cond_stmt;
895}
896
897/* If we're using fully-masked loops, make LOOP iterate:
898
899 N == (NITERS - 1) / STEP + 1
900
901 times. When NITERS is zero, this is equivalent to making the loop
902 execute (1 << M) / STEP times, where M is the precision of NITERS.
903 NITERS_MAYBE_ZERO is true if this last case might occur.
904
905 If we're not using fully-masked loops, make LOOP iterate:
906
907 N == (NITERS - STEP) / STEP + 1
908
909 times, where NITERS is known to be outside the range [1, STEP - 1].
910 This is equivalent to making the loop execute NITERS / STEP times
911 when NITERS is nonzero and (1 << M) / STEP times otherwise.
912 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
913
914 If FINAL_IV is nonnull, it is an SSA name that should be set to
915 N * STEP on exit from the loop.
916
917 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
918
919void
920vect_set_loop_condition (struct loop *loop, loop_vec_info loop_vinfo,
921 tree niters, tree step, tree final_iv,
922 bool niters_maybe_zero)
923{
924 gcond *cond_stmt;
925 gcond *orig_cond = get_loop_exit_condition (loop);
926 gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);
927
928 if (loop_vinfo && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
929 cond_stmt = vect_set_loop_condition_masked (loop, loop_vinfo, niters,
930 final_iv, niters_maybe_zero,
931 loop_cond_gsi);
932 else
933 cond_stmt = vect_set_loop_condition_unmasked (loop, niters, step,
934 final_iv, niters_maybe_zero,
935 loop_cond_gsi);
936
937 /* Remove old loop exit test. */
f525c1af 938 stmt_vec_info orig_cond_info;
939 if (loop_vinfo
940 && (orig_cond_info = loop_vinfo->lookup_stmt (orig_cond)))
941 loop_vinfo->remove_stmt (orig_cond_info);
942 else
943 gsi_remove (&loop_cond_gsi, true);
60b29a7e 944
945 if (dump_enabled_p ())
a4e972e3 946 dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: %G",
947 cond_stmt);
fb85abff 948}
949
c71d3c24 950/* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
951 For all PHI arguments in FROM->dest and TO->dest from those
952 edges ensure that TO->dest PHI arguments have current_def
953 to that in from. */
954
955static void
956slpeel_duplicate_current_defs_from_edges (edge from, edge to)
957{
958 gimple_stmt_iterator gsi_from, gsi_to;
959
960 for (gsi_from = gsi_start_phis (from->dest),
961 gsi_to = gsi_start_phis (to->dest);
e87502d6 962 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
c71d3c24 963 {
42acab1c 964 gimple *from_phi = gsi_stmt (gsi_from);
965 gimple *to_phi = gsi_stmt (gsi_to);
c71d3c24 966 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
e3243c77 967 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
968 if (virtual_operand_p (from_arg))
969 {
e87502d6 970 gsi_next (&gsi_from);
971 continue;
972 }
e3243c77 973 if (virtual_operand_p (to_arg))
974 {
e87502d6 975 gsi_next (&gsi_to);
976 continue;
977 }
e3243c77 978 if (TREE_CODE (from_arg) != SSA_NAME)
979 gcc_assert (operand_equal_p (from_arg, to_arg, 0));
68675984 980 else if (TREE_CODE (to_arg) == SSA_NAME
981 && from_arg != to_arg)
e3243c77 982 {
983 if (get_current_def (to_arg) == NULL_TREE)
6bae816f 984 {
985 gcc_assert (types_compatible_p (TREE_TYPE (to_arg),
986 TREE_TYPE (get_current_def
987 (from_arg))));
988 set_current_def (to_arg, get_current_def (from_arg));
989 }
e3243c77 990 }
e87502d6 991 gsi_next (&gsi_from);
992 gsi_next (&gsi_to);
c71d3c24 993 }
e3243c77 994
995 gphi *from_phi = get_virtual_phi (from->dest);
996 gphi *to_phi = get_virtual_phi (to->dest);
997 if (from_phi)
998 set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi, to),
999 get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi, from)));
c71d3c24 1000}
1001
fb85abff 1002
48e1416a 1003/* Given LOOP this function generates a new copy of it and puts it
c71d3c24 1004 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
1005 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
1006 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
1007 entry or exit of LOOP. */
fb85abff 1008
1009struct loop *
c71d3c24 1010slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
1011 struct loop *scalar_loop, edge e)
fb85abff 1012{
1013 struct loop *new_loop;
8a61cfb8 1014 basic_block *new_bbs, *bbs, *pbbs;
fb85abff 1015 bool at_exit;
1016 bool was_imm_dom;
48e1416a 1017 basic_block exit_dest;
fb85abff 1018 edge exit, new_exit;
5ee742c4 1019 bool duplicate_outer_loop = false;
fb85abff 1020
c9b2c569 1021 exit = single_exit (loop);
1022 at_exit = (e == exit);
fb85abff 1023 if (!at_exit && e != loop_preheader_edge (loop))
1024 return NULL;
1025
c71d3c24 1026 if (scalar_loop == NULL)
1027 scalar_loop = loop;
1028
1029 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
8a61cfb8 1030 pbbs = bbs + 1;
1031 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
5ee742c4 1032 /* Allow duplication of outer loops. */
1033 if (scalar_loop->inner)
1034 duplicate_outer_loop = true;
fb85abff 1035 /* Check whether duplication is possible. */
8a61cfb8 1036 if (!can_copy_bbs_p (pbbs, scalar_loop->num_nodes))
fb85abff 1037 {
1038 free (bbs);
1039 return NULL;
1040 }
1041
1042 /* Generate new loop structure. */
c71d3c24 1043 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
1044 duplicate_subloops (scalar_loop, new_loop);
fb85abff 1045
c9b2c569 1046 exit_dest = exit->dest;
48e1416a 1047 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
1048 exit_dest) == loop->header ?
fb85abff 1049 true : false);
1050
c9b2c569 1051 /* Also copy the pre-header, this avoids jumping through hoops to
1052 duplicate the loop entry PHI arguments. Create an empty
1053 pre-header unconditionally for this. */
c71d3c24 1054 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
c9b2c569 1055 edge entry_e = single_pred_edge (preheader);
8a61cfb8 1056 bbs[0] = preheader;
c71d3c24 1057 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
fb85abff 1058
c71d3c24 1059 exit = single_exit (scalar_loop);
1060 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
fb85abff 1061 &exit, 1, &new_exit, NULL,
8a61cfb8 1062 at_exit ? loop->latch : e->src, true);
c71d3c24 1063 exit = single_exit (loop);
8a61cfb8 1064 basic_block new_preheader = new_bbs[0];
fb85abff 1065
c71d3c24 1066 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
fb85abff 1067
c71d3c24 1068 if (scalar_loop != loop)
1069 {
1070 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
1071 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
1072 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
1073 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
1074 header) to have current_def set, so copy them over. */
1075 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
1076 exit);
1077 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
1078 0),
1079 EDGE_SUCC (loop->latch, 0));
1080 }
48e1416a 1081
fb85abff 1082 if (at_exit) /* Add the loop copy at exit. */
1083 {
c71d3c24 1084 if (scalar_loop != loop)
1085 {
1a91d914 1086 gphi_iterator gsi;
c71d3c24 1087 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
1088
1089 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
1090 gsi_next (&gsi))
1091 {
1a91d914 1092 gphi *phi = gsi.phi ();
c71d3c24 1093 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
1094 location_t orig_locus
1095 = gimple_phi_arg_location_from_edge (phi, e);
1096
1097 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
1098 }
1099 }
c9b2c569 1100 redirect_edge_and_branch_force (e, new_preheader);
1101 flush_pending_stmts (e);
1102 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
5ee742c4 1103 if (was_imm_dom || duplicate_outer_loop)
c71d3c24 1104 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
c9b2c569 1105
1106 /* And remove the non-necessary forwarder again. Keep the other
1107 one so we have a proper pre-header for the loop at the exit edge. */
c71d3c24 1108 redirect_edge_pred (single_succ_edge (preheader),
1109 single_pred (preheader));
c9b2c569 1110 delete_basic_block (preheader);
c71d3c24 1111 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1112 loop_preheader_edge (scalar_loop)->src);
fb85abff 1113 }
1114 else /* Add the copy at entry. */
1115 {
c71d3c24 1116 if (scalar_loop != loop)
1117 {
1118 /* Remove the non-necessary forwarder of scalar_loop again. */
1119 redirect_edge_pred (single_succ_edge (preheader),
1120 single_pred (preheader));
1121 delete_basic_block (preheader);
1122 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1123 loop_preheader_edge (scalar_loop)->src);
1124 preheader = split_edge (loop_preheader_edge (loop));
1125 entry_e = single_pred_edge (preheader);
1126 }
1127
c9b2c569 1128 redirect_edge_and_branch_force (entry_e, new_preheader);
1129 flush_pending_stmts (entry_e);
1130 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
1131
1132 redirect_edge_and_branch_force (new_exit, preheader);
1133 flush_pending_stmts (new_exit);
1134 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
1135
1136 /* And remove the non-necessary forwarder again. Keep the other
1137 one so we have a proper pre-header for the loop at the exit edge. */
c71d3c24 1138 redirect_edge_pred (single_succ_edge (new_preheader),
1139 single_pred (new_preheader));
c9b2c569 1140 delete_basic_block (new_preheader);
1141 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
1142 loop_preheader_edge (new_loop)->src);
fb85abff 1143 }
1144
6e429c5c 1145 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1146 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
5ee742c4 1147 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
c9b2c569 1148
c71d3c24 1149 if (scalar_loop != loop)
1150 {
1151 /* Update new_loop->header PHIs, so that on the preheader
1152 edge they are the ones from loop rather than scalar_loop. */
1a91d914 1153 gphi_iterator gsi_orig, gsi_new;
c71d3c24 1154 edge orig_e = loop_preheader_edge (loop);
1155 edge new_e = loop_preheader_edge (new_loop);
1156
1157 for (gsi_orig = gsi_start_phis (loop->header),
1158 gsi_new = gsi_start_phis (new_loop->header);
1159 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
1160 gsi_next (&gsi_orig), gsi_next (&gsi_new))
1161 {
1a91d914 1162 gphi *orig_phi = gsi_orig.phi ();
1163 gphi *new_phi = gsi_new.phi ();
c71d3c24 1164 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
1165 location_t orig_locus
1166 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
1167
1168 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
1169 }
1170 }
1171
fb85abff 1172 free (new_bbs);
1173 free (bbs);
1174
382ecba7 1175 checking_verify_dominators (CDI_DOMINATORS);
c9b2c569 1176
fb85abff 1177 return new_loop;
1178}
1179
1180
6c6a3430 1181/* Given the condition expression COND, put it as the last statement of
1182 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1183 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
15492f79 1184 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1185 new edge as irreducible if IRREDUCIBLE_P is true. */
fb85abff 1186
1187static edge
23a3430d 1188slpeel_add_loop_guard (basic_block guard_bb, tree cond,
6c6a3430 1189 basic_block guard_to, basic_block dom_bb,
720cfc43 1190 profile_probability probability, bool irreducible_p)
fb85abff 1191{
1192 gimple_stmt_iterator gsi;
1193 edge new_e, enter_e;
1a91d914 1194 gcond *cond_stmt;
fb85abff 1195 gimple_seq gimplify_stmt_list = NULL;
1196
1197 enter_e = EDGE_SUCC (guard_bb, 0);
1198 enter_e->flags &= ~EDGE_FALLTHRU;
1199 enter_e->flags |= EDGE_FALSE_VALUE;
1200 gsi = gsi_last_bb (guard_bb);
1201
87ae3989 1202 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
1203 NULL_TREE);
23a3430d 1204 if (gimplify_stmt_list)
6c6a3430 1205 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
fb85abff 1206
6c6a3430 1207 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
fb85abff 1208 gsi = gsi_last_bb (guard_bb);
1209 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1210
1211 /* Add new edge to connect guard block to the merge/loop-exit block. */
6c6a3430 1212 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
877584e4 1213
877584e4 1214 new_e->probability = probability;
15492f79 1215 if (irreducible_p)
1216 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1217
720cfc43 1218 enter_e->probability = probability.invert ();
6c6a3430 1219 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
a62a4a78 1220
1221 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1222 if (enter_e->dest->loop_father->header == enter_e->dest)
1223 split_edge (enter_e);
1224
fb85abff 1225 return new_e;
1226}
1227
1228
1229/* This function verifies that the following restrictions apply to LOOP:
5ee742c4 1230 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1231 for innermost loop and 5 basic blocks for outer-loop.
1232 (2) it is single entry, single exit
1233 (3) its exit condition is the last stmt in the header
1234 (4) E is the entry/exit edge of LOOP.
fb85abff 1235 */
1236
1237bool
1238slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
1239{
1240 edge exit_e = single_exit (loop);
1241 edge entry_e = loop_preheader_edge (loop);
1a91d914 1242 gcond *orig_cond = get_loop_exit_condition (loop);
fb85abff 1243 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
5ee742c4 1244 unsigned int num_bb = loop->inner? 5 : 2;
fb85abff 1245
51eb70a9 1246 /* All loops have an outer scope; the only case loop->outer is NULL is for
1247 the function itself. */
1248 if (!loop_outer (loop)
5ee742c4 1249 || loop->num_nodes != num_bb
fb85abff 1250 || !empty_block_p (loop->latch)
1251 || !single_exit (loop)
1252 /* Verify that new loop exit condition can be trivially modified. */
1253 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1254 || (e != exit_e && e != entry_e))
1255 return false;
1256
1257 return true;
1258}
1259
6c6a3430 1260/* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1261 in the exit bb and rename all the uses after the loop. This simplifies
1262 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1263 (but normally loop closed SSA form doesn't require virtual PHIs to be
1264 in the same form). Doing this early simplifies the checking what
1265 uses should be renamed. */
fb85abff 1266
1267static void
6c6a3430 1268create_lcssa_for_virtual_phi (struct loop *loop)
fb85abff 1269{
1a91d914 1270 gphi_iterator gsi;
fb85abff 1271 edge exit_e = single_exit (loop);
48e1416a 1272
38091110 1273 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
7c782c9b 1274 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
38091110 1275 {
1a91d914 1276 gphi *phi = gsi.phi ();
38091110 1277 for (gsi = gsi_start_phis (exit_e->dest);
1278 !gsi_end_p (gsi); gsi_next (&gsi))
7c782c9b 1279 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
38091110 1280 break;
1281 if (gsi_end_p (gsi))
1282 {
f9e245b2 1283 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
1a91d914 1284 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
38091110 1285 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1286 imm_use_iterator imm_iter;
42acab1c 1287 gimple *stmt;
38091110 1288 use_operand_p use_p;
1289
6c99cfac 1290 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_vop)
1291 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vop);
60d535d2 1292 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
38091110 1293 gimple_phi_set_result (new_phi, new_vop);
1294 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
480233e7 1295 if (stmt != new_phi
1296 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
38091110 1297 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1298 SET_USE (use_p, new_vop);
1299 }
1300 break;
1301 }
fb85abff 1302
fb85abff 1303}
1304
1305/* Function vect_get_loop_location.
1306
1307 Extract the location of the loop in the source code.
1308 If the loop is not well formed for vectorization, an estimated
1309 location is calculated.
1310 Return the loop location if succeed and NULL if not. */
1311
c309657f 1312dump_user_location_t
fb85abff 1313find_loop_location (struct loop *loop)
1314{
42acab1c 1315 gimple *stmt = NULL;
fb85abff 1316 basic_block bb;
1317 gimple_stmt_iterator si;
1318
1319 if (!loop)
c309657f 1320 return dump_user_location_t ();
fb85abff 1321
1322 stmt = get_loop_exit_condition (loop);
1323
b2d978a6 1324 if (stmt
1325 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
c309657f 1326 return stmt;
fb85abff 1327
1328 /* If we got here the loop is probably not "well formed",
1329 try to estimate the loop location */
1330
1331 if (!loop->header)
c309657f 1332 return dump_user_location_t ();
fb85abff 1333
1334 bb = loop->header;
1335
1336 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1337 {
1338 stmt = gsi_stmt (si);
b2d978a6 1339 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
c309657f 1340 return stmt;
fb85abff 1341 }
1342
c309657f 1343 return dump_user_location_t ();
fb85abff 1344}
1345
e068828a 1346/* Return true if the phi described by STMT_INFO defines an IV of the
1347 loop to be vectorized. */
6c6a3430 1348
1349static bool
e068828a 1350iv_phi_p (stmt_vec_info stmt_info)
6c6a3430 1351{
e068828a 1352 gphi *phi = as_a <gphi *> (stmt_info->stmt);
6c6a3430 1353 if (virtual_operand_p (PHI_RESULT (phi)))
1354 return false;
1355
6c6a3430 1356 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1357 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
1358 return false;
1359
1360 return true;
1361}
fb85abff 1362
fb85abff 1363/* Function vect_can_advance_ivs_p
1364
48e1416a 1365 In case the number of iterations that LOOP iterates is unknown at compile
1366 time, an epilog loop will be generated, and the loop induction variables
1367 (IVs) will be "advanced" to the value they are supposed to take just before
fb85abff 1368 the epilog loop. Here we check that the access function of the loop IVs
1369 and the expression that represents the loop bound are simple enough.
1370 These restrictions will be relaxed in the future. */
1371
48e1416a 1372bool
fb85abff 1373vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1374{
1375 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1376 basic_block bb = loop->header;
1a91d914 1377 gphi_iterator gsi;
fb85abff 1378
1379 /* Analyze phi functions of the loop header. */
1380
6d8fb6cf 1381 if (dump_enabled_p ())
78bb46f5 1382 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
fb85abff 1383 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1384 {
fb85abff 1385 tree evolution_part;
1386
6c6a3430 1387 gphi *phi = gsi.phi ();
1c2fef9a 1388 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
6d8fb6cf 1389 if (dump_enabled_p ())
a4e972e3 1390 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G",
1391 phi_info->stmt);
fb85abff 1392
1393 /* Skip virtual phi's. The data dependences that are associated with
6c6a3430 1394 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
fb85abff 1395
6c6a3430 1396 Skip reduction phis. */
e068828a 1397 if (!iv_phi_p (phi_info))
fb85abff 1398 {
6d8fb6cf 1399 if (dump_enabled_p ())
6c6a3430 1400 dump_printf_loc (MSG_NOTE, vect_location,
1401 "reduc or virtual phi. skip.\n");
fb85abff 1402 continue;
1403 }
1404
fb85abff 1405 /* Analyze the evolution function. */
1406
1c2fef9a 1407 evolution_part = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
fb85abff 1408 if (evolution_part == NULL_TREE)
1409 {
6d8fb6cf 1410 if (dump_enabled_p ())
2cd0995e 1411 dump_printf (MSG_MISSED_OPTIMIZATION,
78bb46f5 1412 "No access function or evolution.\n");
fb85abff 1413 return false;
1414 }
48e1416a 1415
12117f39 1416 /* FORNOW: We do not transform initial conditions of IVs
1417 which evolution functions are not invariants in the loop. */
1418
1419 if (!expr_invariant_in_loop_p (loop, evolution_part))
1420 {
1421 if (dump_enabled_p ())
1422 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1423 "evolution not invariant in loop.\n");
1424 return false;
1425 }
1426
48e1416a 1427 /* FORNOW: We do not transform initial conditions of IVs
fb85abff 1428 which evolution functions are a polynomial of degree >= 2. */
1429
1430 if (tree_is_chrec (evolution_part))
12117f39 1431 {
1432 if (dump_enabled_p ())
1433 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1434 "evolution is chrec.\n");
1435 return false;
1436 }
fb85abff 1437 }
1438
1439 return true;
1440}
1441
1442
1443/* Function vect_update_ivs_after_vectorizer.
1444
1445 "Advance" the induction variables of LOOP to the value they should take
1446 after the execution of LOOP. This is currently necessary because the
1447 vectorizer does not handle induction variables that are used after the
1448 loop. Such a situation occurs when the last iterations of LOOP are
1449 peeled, because:
1450 1. We introduced new uses after LOOP for IVs that were not originally used
1451 after LOOP: the IVs of LOOP are now used by an epilog loop.
1452 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1453 times, whereas the loop IVs should be bumped N times.
1454
1455 Input:
1456 - LOOP - a loop that is going to be vectorized. The last few iterations
1457 of LOOP were peeled.
1458 - NITERS - the number of iterations that LOOP executes (before it is
1459 vectorized). i.e, the number of times the ivs should be bumped.
1460 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1461 coming out from LOOP on which there are uses of the LOOP ivs
1462 (this is the path from LOOP->exit to epilog_loop->preheader).
1463
1464 The new definitions of the ivs are placed in LOOP->exit.
1465 The phi args associated with the edge UPDATE_E in the bb
1466 UPDATE_E->dest are updated accordingly.
1467
1468 Assumption 1: Like the rest of the vectorizer, this function assumes
1469 a single loop exit that has a single predecessor.
1470
1471 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1472 organized in the same order.
1473
1474 Assumption 3: The access function of the ivs is simple enough (see
1475 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1476
1477 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
48e1416a 1478 coming out of LOOP on which the ivs of LOOP are used (this is the path
fb85abff 1479 that leads to the epilog loop; other paths skip the epilog loop). This
1480 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1481 needs to have its phis updated.
1482 */
1483
1484static void
6c6a3430 1485vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
1486 tree niters, edge update_e)
fb85abff 1487{
1a91d914 1488 gphi_iterator gsi, gsi1;
6c6a3430 1489 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
fb85abff 1490 basic_block update_bb = update_e->dest;
6c6a3430 1491 basic_block exit_bb = single_exit (loop)->dest;
fb85abff 1492
1493 /* Make sure there exists a single-predecessor exit bb: */
1494 gcc_assert (single_pred_p (exit_bb));
6c6a3430 1495 gcc_assert (single_succ_edge (exit_bb) == update_e);
fb85abff 1496
1497 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1498 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1499 gsi_next (&gsi), gsi_next (&gsi1))
1500 {
fb85abff 1501 tree init_expr;
1efcacec 1502 tree step_expr, off;
1503 tree type;
fb85abff 1504 tree var, ni, ni_name;
1505 gimple_stmt_iterator last_gsi;
1506
6c6a3430 1507 gphi *phi = gsi.phi ();
1508 gphi *phi1 = gsi1.phi ();
1c2fef9a 1509 stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
6d8fb6cf 1510 if (dump_enabled_p ())
a4e972e3 1511 dump_printf_loc (MSG_NOTE, vect_location,
1512 "vect_update_ivs_after_vectorizer: phi: %G", phi);
fb85abff 1513
6c6a3430 1514 /* Skip reduction and virtual phis. */
e068828a 1515 if (!iv_phi_p (phi_info))
fb85abff 1516 {
6d8fb6cf 1517 if (dump_enabled_p ())
6c6a3430 1518 dump_printf_loc (MSG_NOTE, vect_location,
1519 "reduc or virtual phi. skip.\n");
fb85abff 1520 continue;
1521 }
1522
86faead7 1523 type = TREE_TYPE (gimple_phi_result (phi));
1c2fef9a 1524 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
86faead7 1525 step_expr = unshare_expr (step_expr);
48e1416a 1526
fb85abff 1527 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1528 of degree >= 2 or exponential. */
86faead7 1529 gcc_assert (!tree_is_chrec (step_expr));
fb85abff 1530
86faead7 1531 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
fb85abff 1532
1efcacec 1533 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1534 fold_convert (TREE_TYPE (step_expr), niters),
1535 step_expr);
86faead7 1536 if (POINTER_TYPE_P (type))
2cc66f2a 1537 ni = fold_build_pointer_plus (init_expr, off);
fb85abff 1538 else
86faead7 1539 ni = fold_build2 (PLUS_EXPR, type,
1540 init_expr, fold_convert (type, off));
fb85abff 1541
86faead7 1542 var = create_tmp_var (type, "tmp");
fb85abff 1543
1544 last_gsi = gsi_last_bb (exit_bb);
6c6a3430 1545 gimple_seq new_stmts = NULL;
1546 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
1547 /* Exit_bb shouldn't be empty. */
1548 if (!gsi_end_p (last_gsi))
1549 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
1550 else
1551 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
48e1416a 1552
fb85abff 1553 /* Fix phi expressions in the successor bb. */
b123eaab 1554 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
fb85abff 1555 }
1556}
1557
6753a4bf 1558/* Return a gimple value containing the misalignment (measured in vector
1559 elements) for the loop described by LOOP_VINFO, i.e. how many elements
1560 it is away from a perfectly aligned address. Add any new statements
1561 to SEQ. */
1562
1563static tree
1564get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
1565{
ec5bf0fb 1566 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
abc9513d 1567 stmt_vec_info stmt_info = dr_info->stmt;
6753a4bf 1568 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1569
abc9513d 1570 unsigned int target_align = DR_TARGET_ALIGNMENT (dr_info);
6753a4bf 1571 gcc_assert (target_align != 0);
1572
abc9513d 1573 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
1574 size_zero_node) < 0;
6753a4bf 1575 tree offset = (negative
1576 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1)
1577 : size_zero_node);
0219dc42 1578 tree start_addr = vect_create_addr_base_for_vector_ref (stmt_info, seq,
6753a4bf 1579 offset);
1580 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1581 tree target_align_minus_1 = build_int_cst (type, target_align - 1);
1582 HOST_WIDE_INT elem_size
1583 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1584 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1585
1586 /* Create: misalign_in_bytes = addr & (target_align - 1). */
1587 tree int_start_addr = fold_convert (type, start_addr);
1588 tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
1589 target_align_minus_1);
1590
1591 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
1592 tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
1593 elem_size_log);
1594
1595 return misalign_in_elems;
1596}
1597
6c6a3430 1598/* Function vect_gen_prolog_loop_niters
97fe80a6 1599
6c6a3430 1600 Generate the number of iterations which should be peeled as prolog for the
1601 loop represented by LOOP_VINFO. It is calculated as the misalignment of
1602 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
1603 As a result, after the execution of this loop, the data reference DR will
1604 refer to an aligned location. The following computation is generated:
fb85abff 1605
1606 If the misalignment of DR is known at compile time:
1607 addr_mis = int mis = DR_MISALIGNMENT (dr);
1608 Else, compute address misalignment in bytes:
6753a4bf 1609 addr_mis = addr & (target_align - 1)
fb85abff 1610
6c6a3430 1611 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
fb85abff 1612
1613 (elem_size = element type size; an element is the scalar element whose type
1614 is the inner type of the vectype)
1615
6c6a3430 1616 The computations will be emitted at the end of BB. We also compute and
82112bf2 1617 store upper bound (included) of the result in BOUND.
6c6a3430 1618
fb85abff 1619 When the step of the data-ref in the loop is not 1 (as in interleaved data
1620 and SLP), the number of iterations of the prolog must be divided by the step
1621 (which is equal to the size of interleaved group).
1622
1623 The above formulas assume that VF == number of elements in the vector. This
1624 may not hold when there are multiple-types in the loop.
1625 In this case, for some data-references in the loop the VF does not represent
1626 the number of elements that fit in the vector. Therefore, instead of VF we
1627 use TYPE_VECTOR_SUBPARTS. */
1628
48e1416a 1629static tree
6c6a3430 1630vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
1631 basic_block bb, int *bound)
fb85abff 1632{
ec5bf0fb 1633 dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
fb85abff 1634 tree var;
6c6a3430 1635 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
1636 gimple_seq stmts = NULL, new_stmts = NULL;
fb85abff 1637 tree iters, iters_name;
abc9513d 1638 stmt_vec_info stmt_info = dr_info->stmt;
fb85abff 1639 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
abc9513d 1640 unsigned int target_align = DR_TARGET_ALIGNMENT (dr_info);
fb85abff 1641
313a5120 1642 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
fb85abff 1643 {
313a5120 1644 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
fb85abff 1645
6d8fb6cf 1646 if (dump_enabled_p ())
b055bc88 1647 dump_printf_loc (MSG_NOTE, vect_location,
78bb46f5 1648 "known peeling = %d.\n", npeel);
fb85abff 1649
0822b158 1650 iters = build_int_cst (niters_type, npeel);
82112bf2 1651 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
fb85abff 1652 }
1653 else
1654 {
6753a4bf 1655 tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
1656 tree type = TREE_TYPE (misalign_in_elems);
aec313e5 1657 HOST_WIDE_INT elem_size
1658 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
aec313e5 1659 HOST_WIDE_INT align_in_elems = target_align / elem_size;
1660 tree align_in_elems_minus_1 = build_int_cst (type, align_in_elems - 1);
1661 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
aec313e5 1662
1663 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
1664 & (align_in_elems - 1)). */
abc9513d 1665 bool negative = tree_int_cst_compare (DR_STEP (dr_info->dr),
1666 size_zero_node) < 0;
f1b8c740 1667 if (negative)
aec313e5 1668 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
1669 align_in_elems_tree);
f1b8c740 1670 else
aec313e5 1671 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
1672 misalign_in_elems);
1673 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
fb85abff 1674 iters = fold_convert (niters_type, iters);
aec313e5 1675 *bound = align_in_elems - 1;
fb85abff 1676 }
1677
6d8fb6cf 1678 if (dump_enabled_p ())
a4e972e3 1679 dump_printf_loc (MSG_NOTE, vect_location,
1680 "niters for prolog loop: %T\n", iters);
fb85abff 1681
1682 var = create_tmp_var (niters_type, "prolog_loop_niters");
6c6a3430 1683 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
fb85abff 1684
6c6a3430 1685 if (new_stmts)
1686 gimple_seq_add_seq (&stmts, new_stmts);
fb85abff 1687 if (stmts)
1688 {
6c6a3430 1689 gcc_assert (single_succ_p (bb));
1690 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1691 if (gsi_end_p (gsi))
1692 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1693 else
1694 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
fb85abff 1695 }
48e1416a 1696 return iters_name;
fb85abff 1697}
1698
1699
1700/* Function vect_update_init_of_dr
1701
6753a4bf 1702 If CODE is PLUS, the vector loop starts NITERS iterations after the
1703 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
1704 iterations before the scalar one (using masking to skip inactive
1705 elements). This function updates the information recorded in DR to
1706 account for the difference. Specifically, it updates the OFFSET
1707 field of DR. */
fb85abff 1708
1709static void
6753a4bf 1710vect_update_init_of_dr (struct data_reference *dr, tree niters, tree_code code)
fb85abff 1711{
1712 tree offset = DR_OFFSET (dr);
48e1416a 1713
fb85abff 1714 niters = fold_build2 (MULT_EXPR, sizetype,
1715 fold_convert (sizetype, niters),
1716 fold_convert (sizetype, DR_STEP (dr)));
6753a4bf 1717 offset = fold_build2 (code, sizetype,
87f9ffa4 1718 fold_convert (sizetype, offset), niters);
fb85abff 1719 DR_OFFSET (dr) = offset;
1720}
1721
1722
1723/* Function vect_update_inits_of_drs
1724
6753a4bf 1725 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
1726 CODE and NITERS are as for vect_update_inits_of_dr. */
fb85abff 1727
1728static void
6753a4bf 1729vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
1730 tree_code code)
fb85abff 1731{
1732 unsigned int i;
f1f41a6c 1733 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
fb85abff 1734 struct data_reference *dr;
6c6a3430 1735
88f6eb8f 1736 DUMP_VECT_SCOPE ("vect_update_inits_of_dr");
6c6a3430 1737
1738 /* Adjust niters to sizetype and insert stmts on loop preheader edge. */
1739 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
1740 {
1741 gimple_seq seq;
1742 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1743 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
1744
1745 niters = fold_convert (sizetype, niters);
1746 niters = force_gimple_operand (niters, &seq, false, var);
1747 if (seq)
1748 {
1749 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1750 gcc_assert (!new_bb);
1751 }
1752 }
fb85abff 1753
f1f41a6c 1754 FOR_EACH_VEC_ELT (datarefs, i, dr)
fa681b45 1755 {
db72d3bf 1756 dr_vec_info *dr_info = loop_vinfo->lookup_dr (dr);
1757 if (!STMT_VINFO_GATHER_SCATTER_P (dr_info->stmt))
fa681b45 1758 vect_update_init_of_dr (dr, niters, code);
1759 }
fb85abff 1760}
1761
6753a4bf 1762/* For the information recorded in LOOP_VINFO prepare the loop for peeling
1763 by masking. This involves calculating the number of iterations to
1764 be peeled and then aligning all memory references appropriately. */
1765
1766void
1767vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
1768{
1769 tree misalign_in_elems;
1770 tree type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
1771
1772 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));
1773
1774 /* From the information recorded in LOOP_VINFO get the number of iterations
1775 that need to be skipped via masking. */
1776 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1777 {
1778 poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
1779 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1780 misalign_in_elems = build_int_cst (type, misalign);
1781 }
1782 else
1783 {
1784 gimple_seq seq1 = NULL, seq2 = NULL;
1785 misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
1786 misalign_in_elems = fold_convert (type, misalign_in_elems);
1787 misalign_in_elems = force_gimple_operand (misalign_in_elems,
1788 &seq2, true, NULL_TREE);
1789 gimple_seq_add_seq (&seq1, seq2);
1790 if (seq1)
1791 {
1792 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1793 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
1794 gcc_assert (!new_bb);
1795 }
1796 }
1797
1798 if (dump_enabled_p ())
a4e972e3 1799 dump_printf_loc (MSG_NOTE, vect_location,
1800 "misalignment for fully-masked loop: %T\n",
1801 misalign_in_elems);
6753a4bf 1802
1803 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;
1804
1805 vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
1806}
fb85abff 1807
6c6a3430 1808/* This function builds ni_name = number of iterations. Statements
3a815241 1809 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
1810 it to TRUE if new ssa_var is generated. */
6c6a3430 1811
1812tree
3a815241 1813vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
6c6a3430 1814{
1815 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1816 if (TREE_CODE (ni) == INTEGER_CST)
1817 return ni;
1818 else
1819 {
1820 tree ni_name, var;
1821 gimple_seq stmts = NULL;
1822 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1823
1824 var = create_tmp_var (TREE_TYPE (ni), "niters");
1825 ni_name = force_gimple_operand (ni, &stmts, false, var);
1826 if (stmts)
3a815241 1827 {
1828 gsi_insert_seq_on_edge_immediate (pe, stmts);
1829 if (new_var_p != NULL)
1830 *new_var_p = true;
1831 }
6c6a3430 1832
1833 return ni_name;
1834 }
1835}
1836
82112bf2 1837/* Calculate the number of iterations above which vectorized loop will be
1838 preferred than scalar loop. NITERS_PROLOG is the number of iterations
1839 of prolog loop. If it's integer const, the integer number is also passed
53771608 1840 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
1841 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
1842 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
1843 threshold below which the scalar (rather than vectorized) loop will be
1844 executed. This function stores the upper bound (inclusive) of the result
1845 in BOUND_SCALAR. */
6c6a3430 1846
1847static tree
1848vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
53771608 1849 int bound_prolog, poly_int64 bound_epilog, int th,
d75596cd 1850 poly_uint64 *bound_scalar,
1851 bool check_profitability)
6c6a3430 1852{
1853 tree type = TREE_TYPE (niters_prolog);
1854 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
53771608 1855 build_int_cst (type, bound_epilog));
6c6a3430 1856
53771608 1857 *bound_scalar = bound_prolog + bound_epilog;
6c6a3430 1858 if (check_profitability)
1859 {
82112bf2 1860 /* TH indicates the minimum niters of vectorized loop, while we
1861 compute the maximum niters of scalar loop. */
1862 th--;
6c6a3430 1863 /* Peeling for constant times. */
1864 if (int_niters_prolog >= 0)
1865 {
53771608 1866 *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
82112bf2 1867 return build_int_cst (type, *bound_scalar);
6c6a3430 1868 }
53771608 1869 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
1870 and BOUND_EPILOG are inclusive upper bounds. */
1871 if (known_ge (th, bound_prolog + bound_epilog))
6c6a3430 1872 {
82112bf2 1873 *bound_scalar = th;
6c6a3430 1874 return build_int_cst (type, th);
1875 }
d75596cd 1876 /* Need to do runtime comparison. */
53771608 1877 else if (maybe_gt (th, bound_epilog))
d75596cd 1878 {
1879 *bound_scalar = upper_bound (*bound_scalar, th);
1880 return fold_build2 (MAX_EXPR, type,
1881 build_int_cst (type, th), niters);
1882 }
6c6a3430 1883 }
1884 return niters;
1885}
1886
cde959e7 1887/* NITERS is the number of times that the original scalar loop executes
1888 after peeling. Work out the maximum number of iterations N that can
1889 be handled by the vectorized form of the loop and then either:
fb85abff 1890
cde959e7 1891 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
97fe80a6 1892
cde959e7 1893 niters_vector = N
1894
1895 b) set *STEP_VECTOR_PTR to one and generate:
1896
1897 niters_vector = N / vf
1898
1899 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
1900 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
1901 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
fb85abff 1902
1903void
6c6a3430 1904vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
cde959e7 1905 tree *niters_vector_ptr, tree *step_vector_ptr,
1906 bool niters_no_overflow)
fb85abff 1907{
6c6a3430 1908 tree ni_minus_gap, var;
cde959e7 1909 tree niters_vector, step_vector, type = TREE_TYPE (niters);
d75596cd 1910 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6c6a3430 1911 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
cde959e7 1912 tree log_vf = NULL_TREE;
6c6a3430 1913
1914 /* If epilogue loop is required because of data accesses with gaps, we
1915 subtract one iteration from the total number of iterations here for
1916 correct calculation of RATIO. */
1917 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1918 {
3a815241 1919 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
1920 build_one_cst (type));
6c6a3430 1921 if (!is_gimple_val (ni_minus_gap))
1922 {
3a815241 1923 var = create_tmp_var (type, "ni_gap");
6c6a3430 1924 gimple *stmts = NULL;
1925 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
1926 true, var);
1927 gsi_insert_seq_on_edge_immediate (pe, stmts);
1928 }
1929 }
1930 else
1931 ni_minus_gap = niters;
1932
d75596cd 1933 unsigned HOST_WIDE_INT const_vf;
60b29a7e 1934 if (vf.is_constant (&const_vf)
1935 && !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
cde959e7 1936 {
1937 /* Create: niters >> log2(vf) */
1938 /* If it's known that niters == number of latch executions + 1 doesn't
1939 overflow, we can generate niters >> log2(vf); otherwise we generate
1940 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
1941 will be at least one. */
d75596cd 1942 log_vf = build_int_cst (type, exact_log2 (const_vf));
cde959e7 1943 if (niters_no_overflow)
1944 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
1945 else
1946 niters_vector
1947 = fold_build2 (PLUS_EXPR, type,
1948 fold_build2 (RSHIFT_EXPR, type,
1949 fold_build2 (MINUS_EXPR, type,
1950 ni_minus_gap,
1951 build_int_cst (type, vf)),
1952 log_vf),
1953 build_int_cst (type, 1));
1954 step_vector = build_one_cst (type);
1955 }
6c6a3430 1956 else
cde959e7 1957 {
1958 niters_vector = ni_minus_gap;
1959 step_vector = build_int_cst (type, vf);
1960 }
6c6a3430 1961
1962 if (!is_gimple_val (niters_vector))
1963 {
3a815241 1964 var = create_tmp_var (type, "bnd");
1965 gimple_seq stmts = NULL;
6c6a3430 1966 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
1967 gsi_insert_seq_on_edge_immediate (pe, stmts);
3a815241 1968 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
1969 we set range information to make niters analyzer's life easier. */
cde959e7 1970 if (stmts != NULL && log_vf)
e3d0f65c 1971 set_range_info (niters_vector, VR_RANGE,
1972 wi::to_wide (build_int_cst (type, 1)),
1973 wi::to_wide (fold_build2 (RSHIFT_EXPR, type,
1974 TYPE_MAX_VALUE (type),
1975 log_vf)));
6c6a3430 1976 }
1977 *niters_vector_ptr = niters_vector;
cde959e7 1978 *step_vector_ptr = step_vector;
6c6a3430 1979
1980 return;
1981}
1982
1983/* Given NITERS_VECTOR which is the number of iterations for vectorized
1984 loop specified by LOOP_VINFO after vectorization, compute the number
1985 of iterations before vectorization (niters_vector * vf) and store it
1986 to NITERS_VECTOR_MULT_VF_PTR. */
1987
1988static void
1989vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
1990 tree niters_vector,
1991 tree *niters_vector_mult_vf_ptr)
1992{
d75596cd 1993 /* We should be using a step_vector of VF if VF is variable. */
1994 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
fb85abff 1995 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6c6a3430 1996 tree type = TREE_TYPE (niters_vector);
1997 tree log_vf = build_int_cst (type, exact_log2 (vf));
1998 basic_block exit_bb = single_exit (loop)->dest;
fb85abff 1999
6c6a3430 2000 gcc_assert (niters_vector_mult_vf_ptr != NULL);
2001 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
2002 niters_vector, log_vf);
2003 if (!is_gimple_val (niters_vector_mult_vf))
2004 {
2005 tree var = create_tmp_var (type, "niters_vector_mult_vf");
2006 gimple_seq stmts = NULL;
2007 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
2008 &stmts, true, var);
2009 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
2010 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2011 }
2012 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
2013}
2014
2015/* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
2016 from SECOND/FIRST and puts it at the original loop's preheader/exit
2017 edge, the two loops are arranged as below:
2018
2019 preheader_a:
2020 first_loop:
2021 header_a:
2022 i_1 = PHI<i_0, i_2>;
2023 ...
2024 i_2 = i_1 + 1;
2025 if (cond_a)
2026 goto latch_a;
2027 else
2028 goto between_bb;
2029 latch_a:
2030 goto header_a;
2031
2032 between_bb:
2033 ;; i_x = PHI<i_2>; ;; LCSSA phi node to be created for FIRST,
2034
2035 second_loop:
2036 header_b:
2037 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
2038 or with i_2 if no LCSSA phi is created
2039 under condition of CREATE_LCSSA_FOR_IV_PHIS.
2040 ...
2041 i_4 = i_3 + 1;
2042 if (cond_b)
2043 goto latch_b;
2044 else
2045 goto exit_bb;
2046 latch_b:
2047 goto header_b;
2048
2049 exit_bb:
2050
2051 This function creates loop closed SSA for the first loop; update the
2052 second loop's PHI nodes by replacing argument on incoming edge with the
2053 result of newly created lcssa PHI nodes. IF CREATE_LCSSA_FOR_IV_PHIS
2054 is false, Loop closed ssa phis will only be created for non-iv phis for
2055 the first loop.
2056
2057 This function assumes exit bb of the first loop is preheader bb of the
2058 second loop, i.e, between_bb in the example code. With PHIs updated,
2059 the second loop will execute rest iterations of the first. */
fb85abff 2060
6c6a3430 2061static void
2062slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo,
2063 struct loop *first, struct loop *second,
2064 bool create_lcssa_for_iv_phis)
2065{
2066 gphi_iterator gsi_update, gsi_orig;
2067 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2068
2069 edge first_latch_e = EDGE_SUCC (first->latch, 0);
2070 edge second_preheader_e = loop_preheader_edge (second);
2071 basic_block between_bb = single_exit (first)->dest;
2072
2073 gcc_assert (between_bb == second_preheader_e->src);
2074 gcc_assert (single_pred_p (between_bb) && single_succ_p (between_bb));
2075 /* Either the first loop or the second is the loop to be vectorized. */
2076 gcc_assert (loop == first || loop == second);
2077
2078 for (gsi_orig = gsi_start_phis (first->header),
2079 gsi_update = gsi_start_phis (second->header);
2080 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2081 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2082 {
2083 gphi *orig_phi = gsi_orig.phi ();
2084 gphi *update_phi = gsi_update.phi ();
2085
2086 tree arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, first_latch_e);
2087 /* Generate lcssa PHI node for the first loop. */
2088 gphi *vect_phi = (loop == first) ? orig_phi : update_phi;
e068828a 2089 stmt_vec_info vect_phi_info = loop_vinfo->lookup_stmt (vect_phi);
2090 if (create_lcssa_for_iv_phis || !iv_phi_p (vect_phi_info))
6c6a3430 2091 {
2092 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2093 gphi *lcssa_phi = create_phi_node (new_res, between_bb);
2094 add_phi_arg (lcssa_phi, arg, single_exit (first), UNKNOWN_LOCATION);
2095 arg = new_res;
2096 }
2097
2098 /* Update PHI node in the second loop by replacing arg on the loop's
2099 incoming edge. */
2100 adjust_phi_and_debug_stmts (update_phi, second_preheader_e, arg);
2101 }
2102}
2103
2104/* Function slpeel_add_loop_guard adds guard skipping from the beginning
2105 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2106 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2107 appear like below:
2108
2109 guard_bb:
2110 if (cond)
2111 goto merge_bb;
2112 else
2113 goto skip_loop;
2114
2115 skip_loop:
2116 header_a:
2117 i_1 = PHI<i_0, i_2>;
2118 ...
2119 i_2 = i_1 + 1;
2120 if (cond_a)
2121 goto latch_a;
2122 else
2123 goto exit_a;
2124 latch_a:
2125 goto header_a;
2126
2127 exit_a:
2128 i_5 = PHI<i_2>;
2129
2130 merge_bb:
2131 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2132
2133 update_loop:
2134 header_b:
2135 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2136 ...
2137 i_4 = i_3 + 1;
2138 if (cond_b)
2139 goto latch_b;
2140 else
2141 goto exit_bb;
2142 latch_b:
2143 goto header_b;
2144
2145 exit_bb:
2146
2147 This function creates PHI nodes at merge_bb and replaces the use of i_5
2148 in the update_loop's PHI node with the result of new PHI result. */
2149
2150static void
2151slpeel_update_phi_nodes_for_guard1 (struct loop *skip_loop,
2152 struct loop *update_loop,
2153 edge guard_edge, edge merge_edge)
2154{
2155 source_location merge_loc, guard_loc;
2156 edge orig_e = loop_preheader_edge (skip_loop);
2157 edge update_e = loop_preheader_edge (update_loop);
2158 gphi_iterator gsi_orig, gsi_update;
2159
2160 for ((gsi_orig = gsi_start_phis (skip_loop->header),
2161 gsi_update = gsi_start_phis (update_loop->header));
2162 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2163 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2164 {
2165 gphi *orig_phi = gsi_orig.phi ();
2166 gphi *update_phi = gsi_update.phi ();
2167
2168 /* Generate new phi node at merge bb of the guard. */
2169 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2170 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
2171
2172 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2173 args in NEW_PHI for these edges. */
2174 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
2175 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
2176 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
2177 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
2178 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
2179 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
2180
2181 /* Update phi in UPDATE_PHI. */
2182 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
2183 }
2184}
2185
2186/* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
2187 this function searches for the corresponding lcssa phi node in exit
2188 bb of LOOP. If it is found, return the phi result; otherwise return
2189 NULL. */
2190
2191static tree
2192find_guard_arg (struct loop *loop, struct loop *epilog ATTRIBUTE_UNUSED,
2193 gphi *lcssa_phi)
2194{
2195 gphi_iterator gsi;
2196 edge e = single_exit (loop);
2197
2198 gcc_assert (single_pred_p (e->dest));
2199 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2200 {
2201 gphi *phi = gsi.phi ();
2202 if (operand_equal_p (PHI_ARG_DEF (phi, 0),
2203 PHI_ARG_DEF (lcssa_phi, 0), 0))
2204 return PHI_RESULT (phi);
2205 }
2206 return NULL_TREE;
2207}
2208
2209/* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
2210 from LOOP. Function slpeel_add_loop_guard adds guard skipping from a
2211 point between the two loops to the end of EPILOG. Edges GUARD_EDGE
2212 and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
2213 The CFG looks like:
2214
2215 loop:
2216 header_a:
2217 i_1 = PHI<i_0, i_2>;
2218 ...
2219 i_2 = i_1 + 1;
2220 if (cond_a)
2221 goto latch_a;
2222 else
2223 goto exit_a;
2224 latch_a:
2225 goto header_a;
2226
2227 exit_a:
2228
2229 guard_bb:
2230 if (cond)
2231 goto merge_bb;
2232 else
2233 goto epilog_loop;
2234
2235 ;; fall_through_bb
2236
2237 epilog_loop:
2238 header_b:
2239 i_3 = PHI<i_2, i_4>;
2240 ...
2241 i_4 = i_3 + 1;
2242 if (cond_b)
2243 goto latch_b;
2244 else
2245 goto merge_bb;
2246 latch_b:
2247 goto header_b;
2248
2249 merge_bb:
2250 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.
2251
2252 exit_bb:
2253 i_x = PHI<i_4>; ;Use of i_4 to be replaced with i_y in merge_bb.
2254
2255 For each name used out side EPILOG (i.e - for each name that has a lcssa
2256 phi in exit_bb) we create a new PHI in merge_bb. The new PHI has two
2257 args corresponding to GUARD_EDGE and MERGE_EDGE. Arg for MERGE_EDGE is
2258 the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
2259 by LOOP and is found in the exit bb of LOOP. Arg of the original PHI
2260 in exit_bb will also be updated. */
2261
2262static void
2263slpeel_update_phi_nodes_for_guard2 (struct loop *loop, struct loop *epilog,
2264 edge guard_edge, edge merge_edge)
2265{
2266 gphi_iterator gsi;
2267 basic_block merge_bb = guard_edge->dest;
2268
2269 gcc_assert (single_succ_p (merge_bb));
2270 edge e = single_succ_edge (merge_bb);
2271 basic_block exit_bb = e->dest;
2272 gcc_assert (single_pred_p (exit_bb));
2273 gcc_assert (single_pred (exit_bb) == single_exit (epilog)->dest);
2274
2275 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2276 {
2277 gphi *update_phi = gsi.phi ();
2278 tree old_arg = PHI_ARG_DEF (update_phi, 0);
2279 /* This loop-closed-phi actually doesn't represent a use out of the
2280 loop - the phi arg is a constant. */
2281 if (TREE_CODE (old_arg) != SSA_NAME)
2282 continue;
2283
2284 tree merge_arg = get_current_def (old_arg);
2285 if (!merge_arg)
2286 merge_arg = old_arg;
2287
2288 tree guard_arg = find_guard_arg (loop, epilog, update_phi);
2289 /* If the var is live after loop but not a reduction, we simply
2290 use the old arg. */
2291 if (!guard_arg)
2292 guard_arg = old_arg;
2293
2294 /* Create new phi node in MERGE_BB: */
2295 tree new_res = copy_ssa_name (PHI_RESULT (update_phi));
2296 gphi *merge_phi = create_phi_node (new_res, merge_bb);
2297
2298 /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
2299 the two PHI args in merge_phi for these edges. */
2300 add_phi_arg (merge_phi, merge_arg, merge_edge, UNKNOWN_LOCATION);
2301 add_phi_arg (merge_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
2302
2303 /* Update the original phi in exit_bb. */
2304 adjust_phi_and_debug_stmts (update_phi, e, new_res);
2305 }
2306}
2307
2308/* EPILOG loop is duplicated from the original loop for vectorizing,
2309 the arg of its loop closed ssa PHI needs to be updated. */
2310
2311static void
2312slpeel_update_phi_nodes_for_lcssa (struct loop *epilog)
2313{
2314 gphi_iterator gsi;
2315 basic_block exit_bb = single_exit (epilog)->dest;
2316
2317 gcc_assert (single_pred_p (exit_bb));
2318 edge e = EDGE_PRED (exit_bb, 0);
2319 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2320 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
2321}
2322
2323/* Function vect_do_peeling.
2324
2325 Input:
2326 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2327
2328 preheader:
2329 LOOP:
2330 header_bb:
2331 loop_body
2332 if (exit_loop_cond) goto exit_bb
2333 else goto header_bb
2334 exit_bb:
2335
2336 - NITERS: The number of iterations of the loop.
2337 - NITERSM1: The number of iterations of the loop's latch.
2338 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
2339 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
2340 CHECK_PROFITABILITY is true.
2341 Output:
cde959e7 2342 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
60b29a7e 2343 iterate after vectorization; see vect_set_loop_condition for details.
cde959e7 2344 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
2345 should be set to the number of scalar iterations handled by the
2346 vector loop. The SSA name is only used on exit from the loop.
6c6a3430 2347
2348 This function peels prolog and epilog from the loop, adds guards skipping
2349 PROLOG and EPILOG for various conditions. As a result, the changed CFG
2350 would look like:
2351
2352 guard_bb_1:
2353 if (prefer_scalar_loop) goto merge_bb_1
2354 else goto guard_bb_2
2355
2356 guard_bb_2:
2357 if (skip_prolog) goto merge_bb_2
2358 else goto prolog_preheader
2359
2360 prolog_preheader:
2361 PROLOG:
2362 prolog_header_bb:
2363 prolog_body
2364 if (exit_prolog_cond) goto prolog_exit_bb
2365 else goto prolog_header_bb
2366 prolog_exit_bb:
2367
2368 merge_bb_2:
2369
2370 vector_preheader:
2371 VECTOR LOOP:
2372 vector_header_bb:
2373 vector_body
2374 if (exit_vector_cond) goto vector_exit_bb
2375 else goto vector_header_bb
2376 vector_exit_bb:
2377
2378 guard_bb_3:
2379 if (skip_epilog) goto merge_bb_3
2380 else goto epilog_preheader
2381
2382 merge_bb_1:
2383
2384 epilog_preheader:
2385 EPILOG:
2386 epilog_header_bb:
2387 epilog_body
2388 if (exit_epilog_cond) goto merge_bb_3
2389 else goto epilog_header_bb
2390
2391 merge_bb_3:
2392
2393 Note this function peels prolog and epilog only if it's necessary,
2394 as well as guards.
5b631e09 2395 Returns created epilogue or NULL.
6c6a3430 2396
2397 TODO: Guard for prefer_scalar_loop should be emitted along with
2398 versioning conditions if loop versioning is needed. */
2399
5b631e09 2400
2401struct loop *
6c6a3430 2402vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
cde959e7 2403 tree *niters_vector, tree *step_vector,
2404 tree *niters_vector_mult_vf_var, int th,
2405 bool check_profitability, bool niters_no_overflow)
6c6a3430 2406{
2407 edge e, guard_e;
2408 tree type = TREE_TYPE (niters), guard_cond;
2409 basic_block guard_bb, guard_to;
720cfc43 2410 profile_probability prob_prolog, prob_vector, prob_epilog;
d75596cd 2411 int estimated_vf;
6753a4bf 2412 int prolog_peeling = 0;
2413 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
2414 prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
53771608 2415
2416 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2417 poly_uint64 bound_epilog = 0;
2418 if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
2419 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2420 bound_epilog += vf - 1;
2421 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2422 bound_epilog += 1;
2423 bool epilog_peeling = maybe_ne (bound_epilog, 0U);
2424 poly_uint64 bound_scalar = bound_epilog;
6c6a3430 2425
2426 if (!prolog_peeling && !epilog_peeling)
5b631e09 2427 return NULL;
6c6a3430 2428
720cfc43 2429 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
d75596cd 2430 estimated_vf = vect_vf_for_cost (loop_vinfo);
2431 if (estimated_vf == 2)
2432 estimated_vf = 3;
720cfc43 2433 prob_prolog = prob_epilog = profile_probability::guessed_always ()
d75596cd 2434 .apply_scale (estimated_vf - 1, estimated_vf);
6c6a3430 2435
5b631e09 2436 struct loop *prolog, *epilog = NULL, *loop = LOOP_VINFO_LOOP (loop_vinfo);
6c6a3430 2437 struct loop *first_loop = loop;
15492f79 2438 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
6c6a3430 2439 create_lcssa_for_virtual_phi (loop);
2440 update_ssa (TODO_update_ssa_only_virtuals);
2441
c64f38bf 2442 if (MAY_HAVE_DEBUG_BIND_STMTS)
6c6a3430 2443 {
2444 gcc_assert (!adjust_vec.exists ());
2445 adjust_vec.create (32);
2446 }
fb85abff 2447 initialize_original_copy_tables ();
2448
53771608 2449 /* Record the anchor bb at which the guard should be placed if the scalar
2450 loop might be preferred. */
2451 basic_block anchor = loop_preheader_edge (loop)->src;
2452
2453 /* Generate the number of iterations for the prolog loop. We do this here
2454 so that we can also get the upper bound on the number of iterations. */
2455 tree niters_prolog;
2456 int bound_prolog = 0;
2457 if (prolog_peeling)
2458 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
2459 &bound_prolog);
2460 else
2461 niters_prolog = build_int_cst (type, 0);
2462
6c6a3430 2463 /* Prolog loop may be skipped. */
2464 bool skip_prolog = (prolog_peeling != 0);
32236f80 2465 /* Skip to epilog if scalar loop may be preferred. It's only needed
2466 when we peel for epilog loop and when it hasn't been checked with
2467 loop versioning. */
53771608 2468 bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2469 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
2470 bound_prolog + bound_epilog)
2471 : !LOOP_REQUIRES_VERSIONING (loop_vinfo));
6c6a3430 2472 /* Epilog loop must be executed if the number of iterations for epilog
2473 loop is known at compile time, otherwise we need to add a check at
2474 the end of vector loop and skip to the end of epilog loop. */
2475 bool skip_epilog = (prolog_peeling < 0
d75596cd 2476 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2477 || !vf.is_constant ());
6c6a3430 2478 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
2479 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2480 skip_epilog = false;
2481
6c6a3430 2482 if (skip_vector)
c214c858 2483 {
2484 split_edge (loop_preheader_edge (loop));
2485
2486 /* Due to the order in which we peel prolog and epilog, we first
2487 propagate probability to the whole loop. The purpose is to
2488 avoid adjusting probabilities of both prolog and vector loops
2489 separately. Note in this case, the probability of epilog loop
2490 needs to be scaled back later. */
2491 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
720cfc43 2492 if (prob_vector.initialized_p ())
d75596cd 2493 {
2494 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
2495 scale_loop_profile (loop, prob_vector, 0);
2496 }
c214c858 2497 }
6c6a3430 2498
c309657f 2499 dump_user_location_t loop_loc = find_loop_location (loop);
6c6a3430 2500 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2501 if (prolog_peeling)
2f630015 2502 {
6c6a3430 2503 e = loop_preheader_edge (loop);
2504 if (!slpeel_can_duplicate_loop_p (loop, e))
2f630015 2505 {
6c6a3430 2506 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2507 "loop can't be duplicated to preheader edge.\n");
2508 gcc_unreachable ();
2509 }
2510 /* Peel prolog and put it on preheader edge of loop. */
2511 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
2512 if (!prolog)
2513 {
2514 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2515 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2516 gcc_unreachable ();
2517 }
2518 slpeel_update_phi_nodes_for_loops (loop_vinfo, prolog, loop, true);
2519 first_loop = prolog;
2520 reset_original_copy_tables ();
2521
53771608 2522 /* Update the number of iterations for prolog loop. */
cde959e7 2523 tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
60b29a7e 2524 vect_set_loop_condition (prolog, NULL, niters_prolog,
2525 step_prolog, NULL_TREE, false);
6c6a3430 2526
2527 /* Skip the prolog loop. */
2528 if (skip_prolog)
2529 {
2530 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
2531 niters_prolog, build_int_cst (type, 0));
2532 guard_bb = loop_preheader_edge (prolog)->src;
c214c858 2533 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
6c6a3430 2534 guard_to = split_edge (loop_preheader_edge (loop));
2535 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2536 guard_to, guard_bb,
720cfc43 2537 prob_prolog.invert (),
15492f79 2538 irred_flag);
6c6a3430 2539 e = EDGE_PRED (guard_to, 0);
2540 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2541 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
c214c858 2542
ca69b069 2543 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
2544 scale_loop_profile (prolog, prob_prolog, bound_prolog);
6c6a3430 2545 }
2546 /* Update init address of DRs. */
6753a4bf 2547 vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
6c6a3430 2548 /* Update niters for vector loop. */
2549 LOOP_VINFO_NITERS (loop_vinfo)
2550 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
2551 LOOP_VINFO_NITERSM1 (loop_vinfo)
2552 = fold_build2 (MINUS_EXPR, type,
2553 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
3a815241 2554 bool new_var_p = false;
2555 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
2556 /* It's guaranteed that vector loop bound before vectorization is at
2557 least VF, so set range information for newly generated var. */
2558 if (new_var_p)
2559 set_range_info (niters, VR_RANGE,
e3d0f65c 2560 wi::to_wide (build_int_cst (type, vf)),
2561 wi::to_wide (TYPE_MAX_VALUE (type)));
6c6a3430 2562
82112bf2 2563 /* Prolog iterates at most bound_prolog times, latch iterates at
2564 most bound_prolog - 1 times. */
2565 record_niter_bound (prolog, bound_prolog - 1, false, true);
6c6a3430 2566 delete_update_ssa ();
2567 adjust_vec_debug_stmts ();
2568 scev_reset ();
2f630015 2569 }
2570
6c6a3430 2571 if (epilog_peeling)
2572 {
2573 e = single_exit (loop);
2574 if (!slpeel_can_duplicate_loop_p (loop, e))
2575 {
2576 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2577 "loop can't be duplicated to exit edge.\n");
2578 gcc_unreachable ();
2579 }
2580 /* Peel epilog and put it on exit edge of loop. */
2581 epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
2582 if (!epilog)
2583 {
2584 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2585 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2586 gcc_unreachable ();
2587 }
2588 slpeel_update_phi_nodes_for_loops (loop_vinfo, loop, epilog, false);
2589
2590 /* Scalar version loop may be preferred. In this case, add guard
2591 and skip to epilog. Note this only happens when the number of
2592 iterations of loop is unknown at compile time, otherwise this
2593 won't be vectorized. */
2594 if (skip_vector)
2595 {
82112bf2 2596 /* Additional epilogue iteration is peeled if gap exists. */
6c6a3430 2597 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
53771608 2598 bound_prolog, bound_epilog,
82112bf2 2599 th, &bound_scalar,
6c6a3430 2600 check_profitability);
82112bf2 2601 /* Build guard against NITERSM1 since NITERS may overflow. */
2602 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
6c6a3430 2603 guard_bb = anchor;
2604 guard_to = split_edge (loop_preheader_edge (epilog));
2605 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2606 guard_to, guard_bb,
720cfc43 2607 prob_vector.invert (),
15492f79 2608 irred_flag);
6c6a3430 2609 e = EDGE_PRED (guard_to, 0);
2610 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2611 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
c214c858 2612
2613 /* Simply propagate profile info from guard_bb to guard_to which is
2614 a merge point of control flow. */
c214c858 2615 guard_to->count = guard_bb->count;
dcc86e2d 2616
ca69b069 2617 /* Scale probability of epilog loop back.
2618 FIXME: We should avoid scaling down and back up. Profile may
2619 get lost if we scale down to 0. */
12b55cc8 2620 basic_block *bbs = get_loop_body (epilog);
dcc86e2d 2621 for (unsigned int i = 0; i < epilog->num_nodes; i++)
2622 bbs[i]->count = bbs[i]->count.apply_scale
2623 (bbs[i]->count,
2624 bbs[i]->count.apply_probability
2625 (prob_vector));
ca69b069 2626 free (bbs);
6c6a3430 2627 }
fb85abff 2628
c214c858 2629 basic_block bb_before_epilog = loop_preheader_edge (epilog)->src;
6c6a3430 2630 tree niters_vector_mult_vf;
2631 /* If loop is peeled for non-zero constant times, now niters refers to
2632 orig_niters - prolog_peeling, it won't overflow even the orig_niters
2633 overflows. */
2634 niters_no_overflow |= (prolog_peeling > 0);
2635 vect_gen_vector_loop_niters (loop_vinfo, niters,
cde959e7 2636 niters_vector, step_vector,
2637 niters_no_overflow);
2638 if (!integer_onep (*step_vector))
2639 {
2640 /* On exit from the loop we will have an easy way of calcalating
2641 NITERS_VECTOR / STEP * STEP. Install a dummy definition
2642 until then. */
2643 niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
2644 SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
2645 *niters_vector_mult_vf_var = niters_vector_mult_vf;
2646 }
2647 else
2648 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
2649 &niters_vector_mult_vf);
6c6a3430 2650 /* Update IVs of original loop as if they were advanced by
2651 niters_vector_mult_vf steps. */
2652 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
2653 edge update_e = skip_vector ? e : loop_preheader_edge (epilog);
2654 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
2655 update_e);
2656
2657 if (skip_epilog)
2658 {
2659 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
2660 niters, niters_vector_mult_vf);
2661 guard_bb = single_exit (loop)->dest;
2662 guard_to = split_edge (single_exit (epilog));
2663 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
2664 skip_vector ? anchor : guard_bb,
720cfc43 2665 prob_epilog.invert (),
15492f79 2666 irred_flag);
6c6a3430 2667 slpeel_update_phi_nodes_for_guard2 (loop, epilog, guard_e,
2668 single_exit (epilog));
c214c858 2669 /* Only need to handle basic block before epilog loop if it's not
2670 the guard_bb, which is the case when skip_vector is true. */
2671 if (guard_bb != bb_before_epilog)
2672 {
720cfc43 2673 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
c214c858 2674
ca69b069 2675 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
c214c858 2676 }
d75596cd 2677 scale_loop_profile (epilog, prob_epilog, 0);
6c6a3430 2678 }
2679 else
2680 slpeel_update_phi_nodes_for_lcssa (epilog);
fb85abff 2681
53771608 2682 unsigned HOST_WIDE_INT bound;
2683 if (bound_scalar.is_constant (&bound))
d75596cd 2684 {
53771608 2685 gcc_assert (bound != 0);
2686 /* -1 to convert loop iterations to latch iterations. */
2687 record_niter_bound (epilog, bound - 1, false, true);
d75596cd 2688 }
6c6a3430 2689
2690 delete_update_ssa ();
2691 adjust_vec_debug_stmts ();
2692 scev_reset ();
2693 }
2694 adjust_vec.release ();
fb85abff 2695 free_original_copy_tables ();
5b631e09 2696
2697 return epilog;
fb85abff 2698}
2699
d5e80d93 2700/* Function vect_create_cond_for_niters_checks.
2701
2702 Create a conditional expression that represents the run-time checks for
f9936b7c 2703 loop's niter. The loop is guaranteed to terminate if the run-time
d5e80d93 2704 checks hold.
2705
2706 Input:
2707 COND_EXPR - input conditional expression. New conditions will be chained
2708 with logical AND operation. If it is NULL, then the function
2709 is used to return the number of alias checks.
2710 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2711 to be checked.
2712
2713 Output:
2714 COND_EXPR - conditional expression.
2715
2716 The returned COND_EXPR is the conditional expression to be used in the
2717 if statement that controls which version of the loop gets executed at
2718 runtime. */
2719
2720static void
2721vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
2722{
2723 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
2724
2725 if (*cond_expr)
2726 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2727 *cond_expr, part_cond_expr);
2728 else
2729 *cond_expr = part_cond_expr;
2730}
fb85abff 2731
f68a7726 2732/* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
2733 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
2734
2735static void
2736chain_cond_expr (tree *cond_expr, tree part_cond_expr)
2737{
2738 if (*cond_expr)
2739 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2740 *cond_expr, part_cond_expr);
2741 else
2742 *cond_expr = part_cond_expr;
2743}
2744
fb85abff 2745/* Function vect_create_cond_for_align_checks.
2746
2747 Create a conditional expression that represents the alignment checks for
2748 all of data references (array element references) whose alignment must be
2749 checked at runtime.
2750
2751 Input:
2752 COND_EXPR - input conditional expression. New conditions will be chained
2753 with logical AND operation.
2754 LOOP_VINFO - two fields of the loop information are used.
2755 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2756 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2757
2758 Output:
2759 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2760 expression.
2761 The returned value is the conditional expression to be used in the if
2762 statement that controls which version of the loop gets executed at runtime.
2763
2764 The algorithm makes two assumptions:
2765 1) The number of bytes "n" in a vector is a power of 2.
2766 2) An address "a" is aligned if a%n is zero and that this
2767 test can be done as a&(n-1) == 0. For example, for 16
2768 byte vectors the test is a&0xf == 0. */
2769
2770static void
2771vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2772 tree *cond_expr,
2773 gimple_seq *cond_expr_stmt_list)
2774{
ab98e625 2775 vec<stmt_vec_info> may_misalign_stmts
fb85abff 2776 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
ab98e625 2777 stmt_vec_info stmt_info;
fb85abff 2778 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2779 tree mask_cst;
2780 unsigned int i;
fb85abff 2781 tree int_ptrsize_type;
2782 char tmp_name[20];
2783 tree or_tmp_name = NULL_TREE;
03d37e4e 2784 tree and_tmp_name;
42acab1c 2785 gimple *and_stmt;
fb85abff 2786 tree ptrsize_zero;
2787 tree part_cond_expr;
2788
2789 /* Check that mask is one less than a power of 2, i.e., mask is
2790 all zeros followed by all ones. */
2791 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2792
3cea8318 2793 int_ptrsize_type = signed_type_for (ptr_type_node);
fb85abff 2794
2795 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2796 of the first vector of the i'th data reference. */
2797
ab98e625 2798 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt_info)
fb85abff 2799 {
2800 gimple_seq new_stmt_list = NULL;
2801 tree addr_base;
03d37e4e 2802 tree addr_tmp_name;
2803 tree new_or_tmp_name;
42acab1c 2804 gimple *addr_stmt, *or_stmt;
ab98e625 2805 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
f1b8c740 2806 bool negative = tree_int_cst_compare
ab98e625 2807 (DR_STEP (STMT_VINFO_DATA_REF (stmt_info)), size_zero_node) < 0;
f1b8c740 2808 tree offset = negative
80b8a97a 2809 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
fb85abff 2810
2811 /* create: addr_tmp = (int)(address_of_first_vector) */
2812 addr_base =
ab98e625 2813 vect_create_addr_base_for_vector_ref (stmt_info, &new_stmt_list,
9e879814 2814 offset);
fb85abff 2815 if (new_stmt_list != NULL)
2816 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2817
03d37e4e 2818 sprintf (tmp_name, "addr2int%d", i);
2819 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
e9cf809e 2820 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
fb85abff 2821 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2822
2823 /* The addresses are OR together. */
2824
2825 if (or_tmp_name != NULL_TREE)
2826 {
2827 /* create: or_tmp = or_tmp | addr_tmp */
03d37e4e 2828 sprintf (tmp_name, "orptrs%d", i);
2829 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
e9cf809e 2830 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2831 or_tmp_name, addr_tmp_name);
fb85abff 2832 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2833 or_tmp_name = new_or_tmp_name;
2834 }
2835 else
2836 or_tmp_name = addr_tmp_name;
2837
2838 } /* end for i */
2839
2840 mask_cst = build_int_cst (int_ptrsize_type, mask);
2841
2842 /* create: and_tmp = or_tmp & mask */
03d37e4e 2843 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
fb85abff 2844
e9cf809e 2845 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2846 or_tmp_name, mask_cst);
fb85abff 2847 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2848
2849 /* Make and_tmp the left operand of the conditional test against zero.
2850 if and_tmp has a nonzero bit then some address is unaligned. */
2851 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2852 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2853 and_tmp_name, ptrsize_zero);
f68a7726 2854 chain_cond_expr (cond_expr, part_cond_expr);
2855}
2856
2857/* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
2858 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
2859 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
2860 and this new condition are true. Treat a null *COND_EXPR as "true". */
2861
2862static void
2863vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
2864{
2865 vec<vec_object_pair> pairs = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
2866 unsigned int i;
2867 vec_object_pair *pair;
2868 FOR_EACH_VEC_ELT (pairs, i, pair)
2869 {
2870 tree addr1 = build_fold_addr_expr (pair->first);
2871 tree addr2 = build_fold_addr_expr (pair->second);
2872 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
2873 addr1, addr2);
2874 chain_cond_expr (cond_expr, part_cond_expr);
2875 }
fb85abff 2876}
2877
e85b4a5e 2878/* Create an expression that is true when all lower-bound conditions for
2879 the vectorized loop are met. Chain this condition with *COND_EXPR. */
2880
2881static void
2882vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
2883{
2884 vec<vec_lower_bound> lower_bounds = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
2885 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
2886 {
2887 tree expr = lower_bounds[i].expr;
2888 tree type = unsigned_type_for (TREE_TYPE (expr));
2889 expr = fold_convert (type, expr);
2890 poly_uint64 bound = lower_bounds[i].min_value;
2891 if (!lower_bounds[i].unsigned_p)
2892 {
2893 expr = fold_build2 (PLUS_EXPR, type, expr,
2894 build_int_cstu (type, bound - 1));
2895 bound += bound - 1;
2896 }
2897 tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
2898 build_int_cstu (type, bound));
2899 chain_cond_expr (cond_expr, part_cond_expr);
2900 }
2901}
2902
fb85abff 2903/* Function vect_create_cond_for_alias_checks.
2904
2905 Create a conditional expression that represents the run-time checks for
2906 overlapping of address ranges represented by a list of data references
2907 relations passed as input.
2908
2909 Input:
2910 COND_EXPR - input conditional expression. New conditions will be chained
8a7b0f48 2911 with logical AND operation. If it is NULL, then the function
2912 is used to return the number of alias checks.
fb85abff 2913 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2914 to be checked.
2915
2916 Output:
2917 COND_EXPR - conditional expression.
fb85abff 2918
8a7b0f48 2919 The returned COND_EXPR is the conditional expression to be used in the if
fb85abff 2920 statement that controls which version of the loop gets executed at runtime.
2921*/
2922
8a7b0f48 2923void
90d4c4af 2924vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
fb85abff 2925{
43d14b66 2926 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
8a7b0f48 2927 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
fb85abff 2928
8a7b0f48 2929 if (comp_alias_ddrs.is_empty ())
fb85abff 2930 return;
2931
49ce332c 2932 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
2933 &comp_alias_ddrs, cond_expr);
6d8fb6cf 2934 if (dump_enabled_p ())
b055bc88 2935 dump_printf_loc (MSG_NOTE, vect_location,
7bd765d4 2936 "created %u versioning for alias checks.\n",
8a7b0f48 2937 comp_alias_ddrs.length ());
fb85abff 2938}
2939
2940
2941/* Function vect_loop_versioning.
48e1416a 2942
fb85abff 2943 If the loop has data references that may or may not be aligned or/and
2944 has data reference relations whose independence was not proven then
2945 two versions of the loop need to be generated, one which is vectorized
2946 and one which isn't. A test is then generated to control which of the
2947 loops is executed. The test checks for the alignment of all of the
2948 data references that may or may not be aligned. An additional
2949 sequence of runtime tests is generated for each pairs of DDRs whose
48e1416a 2950 independence was not proven. The vectorized version of loop is
2951 executed only if both alias and alignment tests are passed.
2952
fb85abff 2953 The test generated to check which version of loop is executed
48e1416a 2954 is modified to also check for profitability as indicated by the
97fe80a6 2955 cost model threshold TH.
23a3430d 2956
2957 The versioning precondition(s) are placed in *COND_EXPR and
2afdcbed 2958 *COND_EXPR_STMT_LIST. */
fb85abff 2959
2960void
e7430948 2961vect_loop_versioning (loop_vec_info loop_vinfo,
7456a7ea 2962 unsigned int th, bool check_profitability,
2963 poly_uint64 versioning_threshold)
fb85abff 2964{
d5e80d93 2965 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
c71d3c24 2966 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
fb85abff 2967 basic_block condition_bb;
1a91d914 2968 gphi_iterator gsi;
2969 gimple_stmt_iterator cond_exp_gsi;
fb85abff 2970 basic_block merge_bb;
2971 basic_block new_exit_bb;
2972 edge new_exit_e, e;
1a91d914 2973 gphi *orig_phi, *new_phi;
e7430948 2974 tree cond_expr = NULL_TREE;
2afdcbed 2975 gimple_seq cond_expr_stmt_list = NULL;
fb85abff 2976 tree arg;
ca69b069 2977 profile_probability prob = profile_probability::likely ();
fb85abff 2978 gimple_seq gimplify_stmt_list = NULL;
b622227e 2979 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
6ee2edad 2980 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2981 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
d5e80d93 2982 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
fb85abff 2983
e7430948 2984 if (check_profitability)
ba12948e 2985 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
d5e80d93 2986 build_int_cst (TREE_TYPE (scalar_loop_iters),
b622227e 2987 th - 1));
7456a7ea 2988 if (maybe_ne (versioning_threshold, 0U))
2989 {
2990 tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
2991 build_int_cst (TREE_TYPE (scalar_loop_iters),
2992 versioning_threshold - 1));
2993 if (cond_expr)
2994 cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
2995 expr, cond_expr);
2996 else
2997 cond_expr = expr;
2998 }
d5e80d93 2999
3000 if (version_niter)
3001 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
3002
3003 if (cond_expr)
3004 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
3005 is_gimple_condexpr, NULL_TREE);
fb85abff 3006
6ee2edad 3007 if (version_align)
2afdcbed 3008 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
3009 &cond_expr_stmt_list);
fb85abff 3010
6ee2edad 3011 if (version_alias)
f68a7726 3012 {
3013 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
e85b4a5e 3014 vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
f68a7726 3015 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
3016 }
23a3430d 3017
f404501a 3018 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3019 &gimplify_stmt_list,
2afdcbed 3020 is_gimple_condexpr, NULL_TREE);
3021 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
fb85abff 3022
3023 initialize_original_copy_tables ();
c71d3c24 3024 if (scalar_loop)
3025 {
3026 edge scalar_e;
3027 basic_block preheader, scalar_preheader;
3028
3029 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
3030 scale LOOP's frequencies instead. */
b6863ffa 3031 nloop = loop_version (scalar_loop, cond_expr, &condition_bb,
ca69b069 3032 prob, prob.invert (), prob, prob.invert (), true);
3033 scale_loop_frequencies (loop, prob);
c71d3c24 3034 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
3035 while we need to move it above LOOP's preheader. */
3036 e = loop_preheader_edge (loop);
3037 scalar_e = loop_preheader_edge (scalar_loop);
57abb697 3038 /* The vector loop preheader might not be empty, since new
3039 invariants could have been created while analyzing the loop. */
3040 gcc_assert (single_pred_p (e->src));
c71d3c24 3041 gcc_assert (empty_block_p (scalar_e->src)
3042 && single_pred_p (scalar_e->src));
3043 gcc_assert (single_pred_p (condition_bb));
3044 preheader = e->src;
3045 scalar_preheader = scalar_e->src;
3046 scalar_e = find_edge (condition_bb, scalar_preheader);
3047 e = single_pred_edge (preheader);
3048 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
3049 scalar_preheader);
3050 redirect_edge_and_branch_force (scalar_e, preheader);
3051 redirect_edge_and_branch_force (e, condition_bb);
3052 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
3053 single_pred (condition_bb));
3054 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
3055 single_pred (scalar_preheader));
3056 set_immediate_dominator (CDI_DOMINATORS, preheader,
3057 condition_bb);
3058 }
3059 else
d5e80d93 3060 nloop = loop_version (loop, cond_expr, &condition_bb,
ca69b069 3061 prob, prob.invert (), prob, prob.invert (), true);
d5e80d93 3062
3063 if (version_niter)
3064 {
3065 /* The versioned loop could be infinite, we need to clear existing
3066 niter information which is copied from the original loop. */
3067 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
3068 vect_free_loop_info_assumptions (nloop);
3069 /* And set constraint LOOP_C_INFINITE for niter analyzer. */
3070 loop_constraint_set (loop, LOOP_C_INFINITE);
3071 }
6ee2edad 3072
c309657f 3073 if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION
6ee2edad 3074 && dump_enabled_p ())
3075 {
3076 if (version_alias)
9ddd8fa7 3077 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
3078 vect_location,
6ee2edad 3079 "loop versioned for vectorization because of "
3080 "possible aliasing\n");
3081 if (version_align)
9ddd8fa7 3082 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | MSG_PRIORITY_USER_FACING,
3083 vect_location,
6ee2edad 3084 "loop versioned for vectorization to enhance "
3085 "alignment\n");
3086
3087 }
9af5ce0c 3088 free_original_copy_tables ();
fb85abff 3089
48e1416a 3090 /* Loop versioning violates an assumption we try to maintain during
fb85abff 3091 vectorization - that the loop exit block has a single predecessor.
3092 After versioning, the exit block of both loop versions is the same
3093 basic block (i.e. it has two predecessors). Just in order to simplify
3094 following transformations in the vectorizer, we fix this situation
3095 here by adding a new (empty) block on the exit-edge of the loop,
c71d3c24 3096 with the proper loop-exit phis to maintain loop-closed-form.
3097 If loop versioning wasn't done from loop, but scalar_loop instead,
3098 merge_bb will have already just a single successor. */
48e1416a 3099
fb85abff 3100 merge_bb = single_exit (loop)->dest;
c71d3c24 3101 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
fb85abff 3102 {
c71d3c24 3103 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
3104 new_exit_bb = split_edge (single_exit (loop));
3105 new_exit_e = single_exit (loop);
3106 e = EDGE_SUCC (new_exit_bb, 0);
3107
3108 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
3109 {
3110 tree new_res;
1a91d914 3111 orig_phi = gsi.phi ();
f9e245b2 3112 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
c71d3c24 3113 new_phi = create_phi_node (new_res, new_exit_bb);
3114 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
3115 add_phi_arg (new_phi, arg, new_exit_e,
3116 gimple_phi_arg_location_from_edge (orig_phi, e));
3117 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
3118 }
48e1416a 3119 }
fb85abff 3120
3121 /* End loop-exit-fixes after versioning. */
3122
2afdcbed 3123 if (cond_expr_stmt_list)
fb85abff 3124 {
3125 cond_exp_gsi = gsi_last_bb (condition_bb);
2afdcbed 3126 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
23a3430d 3127 GSI_SAME_STMT);
fb85abff 3128 }
95e19962 3129 update_ssa (TODO_update_ssa);
fb85abff 3130}