]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-vect-loop-manip.c
re PR regression/53076 (gcc.dg/torture/builtin-explog-1.c, gcc.dg/torture/builtin...
[thirdparty/gcc.git] / gcc / tree-vect-loop-manip.c
CommitLineData
b8698a0f 1/* Vectorizer Specific Loop Manipulations
5d2eb24b 2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2012
7c028163 3 Free Software Foundation, Inc.
b8698a0f 4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
ebfd146a
IR
5 and Ira Rosen <irar@il.ibm.com>
6
7This file is part of GCC.
8
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
11Software Foundation; either version 3, or (at your option) any later
12version.
13
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
18
19You should have received a copy of the GNU General Public License
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
22
23#include "config.h"
24#include "system.h"
25#include "coretypes.h"
26#include "tm.h"
27#include "ggc.h"
28#include "tree.h"
29#include "basic-block.h"
cf835838
JM
30#include "tree-pretty-print.h"
31#include "gimple-pretty-print.h"
ebfd146a
IR
32#include "tree-flow.h"
33#include "tree-dump.h"
34#include "cfgloop.h"
35#include "cfglayout.h"
718f9c0f 36#include "diagnostic-core.h"
ebfd146a
IR
37#include "tree-scalar-evolution.h"
38#include "tree-vectorizer.h"
39#include "langhooks.h"
40
41/*************************************************************************
42 Simple Loop Peeling Utilities
43
44 Utilities to support loop peeling for vectorization purposes.
45 *************************************************************************/
46
47
48/* Renames the use *OP_P. */
49
50static void
51rename_use_op (use_operand_p op_p)
52{
53 tree new_name;
54
55 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
56 return;
57
58 new_name = get_current_def (USE_FROM_PTR (op_p));
59
60 /* Something defined outside of the loop. */
61 if (!new_name)
62 return;
63
64 /* An ordinary ssa name defined in the loop. */
65
66 SET_USE (op_p, new_name);
67}
68
69
70/* Renames the variables in basic block BB. */
71
72void
73rename_variables_in_bb (basic_block bb)
74{
75 gimple_stmt_iterator gsi;
76 gimple stmt;
77 use_operand_p use_p;
78 ssa_op_iter iter;
79 edge e;
80 edge_iterator ei;
81 struct loop *loop = bb->loop_father;
82
83 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
84 {
85 stmt = gsi_stmt (gsi);
86 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
87 rename_use_op (use_p);
88 }
89
90 FOR_EACH_EDGE (e, ei, bb->succs)
91 {
92 if (!flow_bb_inside_loop_p (loop, e->dest))
93 continue;
94 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
95 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
96 }
97}
98
99
100/* Renames variables in new generated LOOP. */
101
102void
103rename_variables_in_loop (struct loop *loop)
104{
105 unsigned i;
106 basic_block *bbs;
107
108 bbs = get_loop_body (loop);
109
110 for (i = 0; i < loop->num_nodes; i++)
111 rename_variables_in_bb (bbs[i]);
112
113 free (bbs);
114}
115
684f25f4
AO
116typedef struct
117{
118 tree from, to;
119 basic_block bb;
120} adjust_info;
121
122DEF_VEC_O(adjust_info);
123DEF_VEC_ALLOC_O_STACK(adjust_info);
124#define VEC_adjust_info_stack_alloc(alloc) VEC_stack_alloc (adjust_info, alloc)
125
126/* A stack of values to be adjusted in debug stmts. We have to
127 process them LIFO, so that the closest substitution applies. If we
128 processed them FIFO, without the stack, we might substitute uses
129 with a PHI DEF that would soon become non-dominant, and when we got
130 to the suitable one, it wouldn't have anything to substitute any
131 more. */
132static VEC(adjust_info, stack) *adjust_vec;
133
134/* Adjust any debug stmts that referenced AI->from values to use the
135 loop-closed AI->to, if the references are dominated by AI->bb and
136 not by the definition of AI->from. */
137
138static void
139adjust_debug_stmts_now (adjust_info *ai)
140{
141 basic_block bbphi = ai->bb;
142 tree orig_def = ai->from;
143 tree new_def = ai->to;
144 imm_use_iterator imm_iter;
145 gimple stmt;
146 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
147
148 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
149
150 /* Adjust any debug stmts that held onto non-loop-closed
151 references. */
152 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
153 {
154 use_operand_p use_p;
155 basic_block bbuse;
156
157 if (!is_gimple_debug (stmt))
158 continue;
159
160 gcc_assert (gimple_debug_bind_p (stmt));
161
162 bbuse = gimple_bb (stmt);
163
164 if ((bbuse == bbphi
165 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
166 && !(bbuse == bbdef
167 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
168 {
169 if (new_def)
170 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
171 SET_USE (use_p, new_def);
172 else
173 {
174 gimple_debug_bind_reset_value (stmt);
175 update_stmt (stmt);
176 }
177 }
178 }
179}
180
181/* Adjust debug stmts as scheduled before. */
182
183static void
184adjust_vec_debug_stmts (void)
185{
186 if (!MAY_HAVE_DEBUG_STMTS)
187 return;
188
189 gcc_assert (adjust_vec);
190
191 while (!VEC_empty (adjust_info, adjust_vec))
192 {
193 adjust_debug_stmts_now (VEC_last (adjust_info, adjust_vec));
194 VEC_pop (adjust_info, adjust_vec);
195 }
196
197 VEC_free (adjust_info, stack, adjust_vec);
198}
199
200/* Adjust any debug stmts that referenced FROM values to use the
201 loop-closed TO, if the references are dominated by BB and not by
202 the definition of FROM. If adjust_vec is non-NULL, adjustments
203 will be postponed until adjust_vec_debug_stmts is called. */
204
205static void
206adjust_debug_stmts (tree from, tree to, basic_block bb)
207{
208 adjust_info ai;
209
210 if (MAY_HAVE_DEBUG_STMTS && TREE_CODE (from) == SSA_NAME
211 && SSA_NAME_VAR (from) != gimple_vop (cfun))
212 {
213 ai.from = from;
214 ai.to = to;
215 ai.bb = bb;
216
217 if (adjust_vec)
218 VEC_safe_push (adjust_info, stack, adjust_vec, &ai);
219 else
220 adjust_debug_stmts_now (&ai);
221 }
222}
223
224/* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
225 to adjust any debug stmts that referenced the old phi arg,
226 presumably non-loop-closed references left over from other
227 transformations. */
228
229static void
230adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
231{
232 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
233
234 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
235
236 if (MAY_HAVE_DEBUG_STMTS)
237 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
238 gimple_bb (update_phi));
239}
240
ebfd146a
IR
241
242/* Update the PHI nodes of NEW_LOOP.
243
244 NEW_LOOP is a duplicate of ORIG_LOOP.
245 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
246 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
247 executes before it. */
248
249static void
250slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
251 struct loop *new_loop, bool after)
252{
253 tree new_ssa_name;
254 gimple phi_new, phi_orig;
255 tree def;
256 edge orig_loop_latch = loop_latch_edge (orig_loop);
257 edge orig_entry_e = loop_preheader_edge (orig_loop);
258 edge new_loop_exit_e = single_exit (new_loop);
259 edge new_loop_entry_e = loop_preheader_edge (new_loop);
260 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
261 gimple_stmt_iterator gsi_new, gsi_orig;
262
263 /*
264 step 1. For each loop-header-phi:
265 Add the first phi argument for the phi in NEW_LOOP
266 (the one associated with the entry of NEW_LOOP)
267
268 step 2. For each loop-header-phi:
269 Add the second phi argument for the phi in NEW_LOOP
270 (the one associated with the latch of NEW_LOOP)
271
272 step 3. Update the phis in the successor block of NEW_LOOP.
273
274 case 1: NEW_LOOP was placed before ORIG_LOOP:
275 The successor block of NEW_LOOP is the header of ORIG_LOOP.
276 Updating the phis in the successor block can therefore be done
277 along with the scanning of the loop header phis, because the
278 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
279 phi nodes, organized in the same order.
280
281 case 2: NEW_LOOP was placed after ORIG_LOOP:
b8698a0f 282 The successor block of NEW_LOOP is the original exit block of
ebfd146a
IR
283 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
284 We postpone updating these phis to a later stage (when
285 loop guards are added).
286 */
287
288
289 /* Scan the phis in the headers of the old and new loops
290 (they are organized in exactly the same order). */
291
292 for (gsi_new = gsi_start_phis (new_loop->header),
293 gsi_orig = gsi_start_phis (orig_loop->header);
294 !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
295 gsi_next (&gsi_new), gsi_next (&gsi_orig))
296 {
f5045c96 297 source_location locus;
ebfd146a
IR
298 phi_new = gsi_stmt (gsi_new);
299 phi_orig = gsi_stmt (gsi_orig);
300
301 /* step 1. */
302 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
f5045c96
AM
303 locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
304 add_phi_arg (phi_new, def, new_loop_entry_e, locus);
ebfd146a
IR
305
306 /* step 2. */
307 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
f5045c96 308 locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
ebfd146a
IR
309 if (TREE_CODE (def) != SSA_NAME)
310 continue;
311
312 new_ssa_name = get_current_def (def);
313 if (!new_ssa_name)
314 {
315 /* This only happens if there are no definitions
316 inside the loop. use the phi_result in this case. */
317 new_ssa_name = PHI_RESULT (phi_new);
318 }
319
320 /* An ordinary ssa name defined in the loop. */
f5045c96 321 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
ebfd146a 322
684f25f4
AO
323 /* Drop any debug references outside the loop, if they would
324 become ill-formed SSA. */
325 adjust_debug_stmts (def, NULL, single_exit (orig_loop)->dest);
326
ebfd146a
IR
327 /* step 3 (case 1). */
328 if (!after)
329 {
330 gcc_assert (new_loop_exit_e == orig_entry_e);
684f25f4 331 adjust_phi_and_debug_stmts (phi_orig, new_loop_exit_e, new_ssa_name);
ebfd146a
IR
332 }
333 }
334}
335
336
337/* Update PHI nodes for a guard of the LOOP.
338
339 Input:
340 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
341 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
342 originates from the guard-bb, skips LOOP and reaches the (unique) exit
343 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
344 We denote this bb NEW_MERGE_BB because before the guard code was added
345 it had a single predecessor (the LOOP header), and now it became a merge
346 point of two paths - the path that ends with the LOOP exit-edge, and
347 the path that ends with GUARD_EDGE.
348 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
349 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
350
351 ===> The CFG before the guard-code was added:
352 LOOP_header_bb:
353 loop_body
354 if (exit_loop) goto update_bb
355 else goto LOOP_header_bb
356 update_bb:
357
358 ==> The CFG after the guard-code was added:
359 guard_bb:
360 if (LOOP_guard_condition) goto new_merge_bb
361 else goto LOOP_header_bb
362 LOOP_header_bb:
363 loop_body
364 if (exit_loop_condition) goto new_merge_bb
365 else goto LOOP_header_bb
366 new_merge_bb:
367 goto update_bb
368 update_bb:
369
370 ==> The CFG after this function:
371 guard_bb:
372 if (LOOP_guard_condition) goto new_merge_bb
373 else goto LOOP_header_bb
374 LOOP_header_bb:
375 loop_body
376 if (exit_loop_condition) goto new_exit_bb
377 else goto LOOP_header_bb
378 new_exit_bb:
379 new_merge_bb:
380 goto update_bb
381 update_bb:
382
383 This function:
384 1. creates and updates the relevant phi nodes to account for the new
385 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
386 1.1. Create phi nodes at NEW_MERGE_BB.
387 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
388 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
389 2. preserves loop-closed-ssa-form by creating the required phi nodes
390 at the exit of LOOP (i.e, in NEW_EXIT_BB).
391
392 There are two flavors to this function:
393
394 slpeel_update_phi_nodes_for_guard1:
395 Here the guard controls whether we enter or skip LOOP, where LOOP is a
396 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
397 for variables that have phis in the loop header.
398
399 slpeel_update_phi_nodes_for_guard2:
400 Here the guard controls whether we enter or skip LOOP, where LOOP is an
401 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
402 for variables that have phis in the loop exit.
403
404 I.E., the overall structure is:
405
406 loop1_preheader_bb:
407 guard1 (goto loop1/merge1_bb)
408 loop1
409 loop1_exit_bb:
410 guard2 (goto merge1_bb/merge2_bb)
411 merge1_bb
412 loop2
413 loop2_exit_bb
414 merge2_bb
415 next_bb
416
417 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
418 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
419 that have phis in loop1->header).
420
421 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
422 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
423 that have phis in next_bb). It also adds some of these phis to
424 loop1_exit_bb.
425
426 slpeel_update_phi_nodes_for_guard1 is always called before
427 slpeel_update_phi_nodes_for_guard2. They are both needed in order
428 to create correct data-flow and loop-closed-ssa-form.
429
430 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
431 that change between iterations of a loop (and therefore have a phi-node
432 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
b8698a0f
L
433 phis for variables that are used out of the loop (and therefore have
434 loop-closed exit phis). Some variables may be both updated between
ebfd146a
IR
435 iterations and used after the loop. This is why in loop1_exit_bb we
436 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
437 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
438
439 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
440 an original loop. i.e., we have:
441
442 orig_loop
443 guard_bb (goto LOOP/new_merge)
444 new_loop <-- LOOP
445 new_exit
446 new_merge
447 next_bb
448
449 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
450 have:
451
452 new_loop
453 guard_bb (goto LOOP/new_merge)
454 orig_loop <-- LOOP
455 new_exit
456 new_merge
457 next_bb
458
459 The SSA names defined in the original loop have a current
460 reaching definition that that records the corresponding new
461 ssa-name used in the new duplicated loop copy.
462 */
463
464/* Function slpeel_update_phi_nodes_for_guard1
b8698a0f 465
ebfd146a
IR
466 Input:
467 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
468 - DEFS - a bitmap of ssa names to mark new names for which we recorded
b8698a0f
L
469 information.
470
ebfd146a
IR
471 In the context of the overall structure, we have:
472
b8698a0f 473 loop1_preheader_bb:
ebfd146a
IR
474 guard1 (goto loop1/merge1_bb)
475LOOP-> loop1
476 loop1_exit_bb:
477 guard2 (goto merge1_bb/merge2_bb)
478 merge1_bb
479 loop2
480 loop2_exit_bb
481 merge2_bb
482 next_bb
483
484 For each name updated between loop iterations (i.e - for each name that has
485 an entry (loop-header) phi in LOOP) we create a new phi in:
486 1. merge1_bb (to account for the edge from guard1)
487 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
488*/
489
490static void
491slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
492 bool is_new_loop, basic_block *new_exit_bb,
493 bitmap *defs)
494{
495 gimple orig_phi, new_phi;
496 gimple update_phi, update_phi2;
497 tree guard_arg, loop_arg;
498 basic_block new_merge_bb = guard_edge->dest;
499 edge e = EDGE_SUCC (new_merge_bb, 0);
500 basic_block update_bb = e->dest;
501 basic_block orig_bb = loop->header;
502 edge new_exit_e;
503 tree current_new_name;
ebfd146a
IR
504 gimple_stmt_iterator gsi_orig, gsi_update;
505
506 /* Create new bb between loop and new_merge_bb. */
507 *new_exit_bb = split_edge (single_exit (loop));
508
509 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
510
511 for (gsi_orig = gsi_start_phis (orig_bb),
512 gsi_update = gsi_start_phis (update_bb);
513 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
514 gsi_next (&gsi_orig), gsi_next (&gsi_update))
515 {
e20f6b4b 516 source_location loop_locus, guard_locus;
ebfd146a
IR
517 orig_phi = gsi_stmt (gsi_orig);
518 update_phi = gsi_stmt (gsi_update);
519
ebfd146a
IR
520 /** 1. Handle new-merge-point phis **/
521
522 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
523 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
524 new_merge_bb);
525
526 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
527 of LOOP. Set the two phi args in NEW_PHI for these edges: */
528 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
b8698a0f
L
529 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
530 EDGE_SUCC (loop->latch,
f5045c96 531 0));
ebfd146a 532 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
b8698a0f
L
533 guard_locus
534 = gimple_phi_arg_location_from_edge (orig_phi,
f5045c96 535 loop_preheader_edge (loop));
ebfd146a 536
f5045c96
AM
537 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
538 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
ebfd146a
IR
539
540 /* 1.3. Update phi in successor block. */
541 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
542 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
684f25f4 543 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
ebfd146a
IR
544 update_phi2 = new_phi;
545
546
547 /** 2. Handle loop-closed-ssa-form phis **/
548
549 if (!is_gimple_reg (PHI_RESULT (orig_phi)))
550 continue;
551
552 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
553 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
554 *new_exit_bb);
555
556 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
f5045c96 557 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
ebfd146a
IR
558
559 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
560 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
684f25f4
AO
561 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
562 PHI_RESULT (new_phi));
ebfd146a
IR
563
564 /* 2.4. Record the newly created name with set_current_def.
565 We want to find a name such that
566 name = get_current_def (orig_loop_name)
567 and to set its current definition as follows:
568 set_current_def (name, new_phi_name)
569
570 If LOOP is a new loop then loop_arg is already the name we're
571 looking for. If LOOP is the original loop, then loop_arg is
572 the orig_loop_name and the relevant name is recorded in its
573 current reaching definition. */
574 if (is_new_loop)
575 current_new_name = loop_arg;
576 else
577 {
578 current_new_name = get_current_def (loop_arg);
579 /* current_def is not available only if the variable does not
580 change inside the loop, in which case we also don't care
581 about recording a current_def for it because we won't be
582 trying to create loop-exit-phis for it. */
583 if (!current_new_name)
584 continue;
585 }
586 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
587
588 set_current_def (current_new_name, PHI_RESULT (new_phi));
589 bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
590 }
591}
592
593
594/* Function slpeel_update_phi_nodes_for_guard2
595
596 Input:
597 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
598
599 In the context of the overall structure, we have:
600
b8698a0f 601 loop1_preheader_bb:
ebfd146a
IR
602 guard1 (goto loop1/merge1_bb)
603 loop1
b8698a0f 604 loop1_exit_bb:
ebfd146a
IR
605 guard2 (goto merge1_bb/merge2_bb)
606 merge1_bb
607LOOP-> loop2
608 loop2_exit_bb
609 merge2_bb
610 next_bb
611
612 For each name used out side the loop (i.e - for each name that has an exit
613 phi in next_bb) we create a new phi in:
b8698a0f 614 1. merge2_bb (to account for the edge from guard_bb)
ebfd146a
IR
615 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
616 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
617 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
618*/
619
620static void
621slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
622 bool is_new_loop, basic_block *new_exit_bb)
623{
624 gimple orig_phi, new_phi;
625 gimple update_phi, update_phi2;
626 tree guard_arg, loop_arg;
627 basic_block new_merge_bb = guard_edge->dest;
628 edge e = EDGE_SUCC (new_merge_bb, 0);
629 basic_block update_bb = e->dest;
630 edge new_exit_e;
631 tree orig_def, orig_def_new_name;
632 tree new_name, new_name2;
633 tree arg;
634 gimple_stmt_iterator gsi;
635
636 /* Create new bb between loop and new_merge_bb. */
637 *new_exit_bb = split_edge (single_exit (loop));
638
639 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
640
641 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
642 {
643 update_phi = gsi_stmt (gsi);
644 orig_phi = update_phi;
645 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
646 /* This loop-closed-phi actually doesn't represent a use
b8698a0f 647 out of the loop - the phi arg is a constant. */
ebfd146a
IR
648 if (TREE_CODE (orig_def) != SSA_NAME)
649 continue;
650 orig_def_new_name = get_current_def (orig_def);
651 arg = NULL_TREE;
652
653 /** 1. Handle new-merge-point phis **/
654
655 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
656 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
657 new_merge_bb);
658
659 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
660 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
661 new_name = orig_def;
662 new_name2 = NULL_TREE;
663 if (orig_def_new_name)
664 {
665 new_name = orig_def_new_name;
666 /* Some variables have both loop-entry-phis and loop-exit-phis.
667 Such variables were given yet newer names by phis placed in
668 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
669 new_name2 = get_current_def (get_current_def (orig_name)). */
670 new_name2 = get_current_def (new_name);
671 }
b8698a0f 672
ebfd146a
IR
673 if (is_new_loop)
674 {
675 guard_arg = orig_def;
676 loop_arg = new_name;
677 }
678 else
679 {
680 guard_arg = new_name;
681 loop_arg = orig_def;
682 }
683 if (new_name2)
684 guard_arg = new_name2;
b8698a0f 685
f5045c96
AM
686 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
687 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
ebfd146a
IR
688
689 /* 1.3. Update phi in successor block. */
690 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
684f25f4 691 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
ebfd146a
IR
692 update_phi2 = new_phi;
693
694
695 /** 2. Handle loop-closed-ssa-form phis **/
696
697 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
698 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
699 *new_exit_bb);
700
701 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
f5045c96 702 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
ebfd146a
IR
703
704 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
705 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
684f25f4
AO
706 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
707 PHI_RESULT (new_phi));
ebfd146a
IR
708
709
710 /** 3. Handle loop-closed-ssa-form phis for first loop **/
711
712 /* 3.1. Find the relevant names that need an exit-phi in
713 GUARD_BB, i.e. names for which
714 slpeel_update_phi_nodes_for_guard1 had not already created a
715 phi node. This is the case for names that are used outside
716 the loop (and therefore need an exit phi) but are not updated
717 across loop iterations (and therefore don't have a
718 loop-header-phi).
719
720 slpeel_update_phi_nodes_for_guard1 is responsible for
721 creating loop-exit phis in GUARD_BB for names that have a
722 loop-header-phi. When such a phi is created we also record
723 the new name in its current definition. If this new name
724 exists, then guard_arg was set to this new name (see 1.2
725 above). Therefore, if guard_arg is not this new name, this
726 is an indication that an exit-phi in GUARD_BB was not yet
727 created, so we take care of it here. */
728 if (guard_arg == new_name2)
729 continue;
730 arg = guard_arg;
731
732 /* 3.2. Generate new phi node in GUARD_BB: */
733 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
734 guard_edge->src);
735
736 /* 3.3. GUARD_BB has one incoming edge: */
737 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
b8698a0f 738 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
f5045c96 739 UNKNOWN_LOCATION);
ebfd146a
IR
740
741 /* 3.4. Update phi in successor of GUARD_BB: */
742 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
743 == guard_arg);
684f25f4
AO
744 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
745 PHI_RESULT (new_phi));
ebfd146a
IR
746 }
747}
748
749
750/* Make the LOOP iterate NITERS times. This is done by adding a new IV
751 that starts at zero, increases by one and its limit is NITERS.
752
753 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
754
755void
756slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
757{
758 tree indx_before_incr, indx_after_incr;
759 gimple cond_stmt;
760 gimple orig_cond;
761 edge exit_edge = single_exit (loop);
762 gimple_stmt_iterator loop_cond_gsi;
763 gimple_stmt_iterator incr_gsi;
764 bool insert_after;
765 tree init = build_int_cst (TREE_TYPE (niters), 0);
766 tree step = build_int_cst (TREE_TYPE (niters), 1);
767 LOC loop_loc;
768 enum tree_code code;
769
770 orig_cond = get_loop_exit_condition (loop);
771 gcc_assert (orig_cond);
772 loop_cond_gsi = gsi_for_stmt (orig_cond);
773
774 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
775 create_iv (init, step, NULL_TREE, loop,
776 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
777
778 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
779 true, NULL_TREE, true,
780 GSI_SAME_STMT);
781 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
782 true, GSI_SAME_STMT);
783
784 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
785 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
786 NULL_TREE);
787
788 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
789
790 /* Remove old loop exit test: */
791 gsi_remove (&loop_cond_gsi, true);
792
793 loop_loc = find_loop_location (loop);
794 if (dump_file && (dump_flags & TDF_DETAILS))
795 {
796 if (loop_loc != UNKNOWN_LOC)
797 fprintf (dump_file, "\nloop at %s:%d: ",
798 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
799 print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
800 }
801
802 loop->nb_iterations = niters;
803}
804
805
b8698a0f 806/* Given LOOP this function generates a new copy of it and puts it
ebfd146a
IR
807 on E which is either the entry or exit of LOOP. */
808
809struct loop *
810slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
811{
812 struct loop *new_loop;
813 basic_block *new_bbs, *bbs;
814 bool at_exit;
815 bool was_imm_dom;
b8698a0f 816 basic_block exit_dest;
ebfd146a
IR
817 gimple phi;
818 tree phi_arg;
819 edge exit, new_exit;
820 gimple_stmt_iterator gsi;
821
b8698a0f 822 at_exit = (e == single_exit (loop));
ebfd146a
IR
823 if (!at_exit && e != loop_preheader_edge (loop))
824 return NULL;
825
826 bbs = get_loop_body (loop);
827
828 /* Check whether duplication is possible. */
829 if (!can_copy_bbs_p (bbs, loop->num_nodes))
830 {
831 free (bbs);
832 return NULL;
833 }
834
835 /* Generate new loop structure. */
836 new_loop = duplicate_loop (loop, loop_outer (loop));
837 if (!new_loop)
838 {
839 free (bbs);
840 return NULL;
841 }
842
843 exit_dest = single_exit (loop)->dest;
b8698a0f
L
844 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
845 exit_dest) == loop->header ?
ebfd146a
IR
846 true : false);
847
848 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
849
850 exit = single_exit (loop);
851 copy_bbs (bbs, loop->num_nodes, new_bbs,
852 &exit, 1, &new_exit, NULL,
853 e->src);
854
b8698a0f 855 /* Duplicating phi args at exit bbs as coming
ebfd146a
IR
856 also from exit of duplicated loop. */
857 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
858 {
859 phi = gsi_stmt (gsi);
860 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
861 if (phi_arg)
862 {
863 edge new_loop_exit_edge;
f5045c96 864 source_location locus;
ebfd146a 865
f5045c96 866 locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
ebfd146a
IR
867 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
868 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
869 else
870 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
b8698a0f
L
871
872 add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
ebfd146a 873 }
b8698a0f
L
874 }
875
ebfd146a
IR
876 if (at_exit) /* Add the loop copy at exit. */
877 {
878 redirect_edge_and_branch_force (e, new_loop->header);
879 PENDING_STMT (e) = NULL;
880 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
881 if (was_imm_dom)
882 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
883 }
884 else /* Add the copy at entry. */
885 {
886 edge new_exit_e;
887 edge entry_e = loop_preheader_edge (loop);
888 basic_block preheader = entry_e->src;
b8698a0f
L
889
890 if (!flow_bb_inside_loop_p (new_loop,
ebfd146a
IR
891 EDGE_SUCC (new_loop->header, 0)->dest))
892 new_exit_e = EDGE_SUCC (new_loop->header, 0);
893 else
b8698a0f 894 new_exit_e = EDGE_SUCC (new_loop->header, 1);
ebfd146a
IR
895
896 redirect_edge_and_branch_force (new_exit_e, loop->header);
897 PENDING_STMT (new_exit_e) = NULL;
898 set_immediate_dominator (CDI_DOMINATORS, loop->header,
899 new_exit_e->src);
900
b8698a0f 901 /* We have to add phi args to the loop->header here as coming
ebfd146a
IR
902 from new_exit_e edge. */
903 for (gsi = gsi_start_phis (loop->header);
904 !gsi_end_p (gsi);
905 gsi_next (&gsi))
906 {
907 phi = gsi_stmt (gsi);
908 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
909 if (phi_arg)
f5045c96 910 add_phi_arg (phi, phi_arg, new_exit_e,
b8698a0f
L
911 gimple_phi_arg_location_from_edge (phi, entry_e));
912 }
ebfd146a
IR
913
914 redirect_edge_and_branch_force (entry_e, new_loop->header);
915 PENDING_STMT (entry_e) = NULL;
916 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
917 }
918
919 free (new_bbs);
920 free (bbs);
921
922 return new_loop;
923}
924
925
926/* Given the condition statement COND, put it as the last statement
927 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
b8698a0f 928 Assumes that this is the single exit of the guarded loop.
86290011 929 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
ebfd146a
IR
930
931static edge
86290011
RG
932slpeel_add_loop_guard (basic_block guard_bb, tree cond,
933 gimple_seq cond_expr_stmt_list,
934 basic_block exit_bb, basic_block dom_bb)
ebfd146a
IR
935{
936 gimple_stmt_iterator gsi;
937 edge new_e, enter_e;
938 gimple cond_stmt;
939 gimple_seq gimplify_stmt_list = NULL;
940
941 enter_e = EDGE_SUCC (guard_bb, 0);
942 enter_e->flags &= ~EDGE_FALLTHRU;
943 enter_e->flags |= EDGE_FALSE_VALUE;
944 gsi = gsi_last_bb (guard_bb);
945
946 cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
86290011
RG
947 if (gimplify_stmt_list)
948 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
ebfd146a
IR
949 cond_stmt = gimple_build_cond (NE_EXPR,
950 cond, build_int_cst (TREE_TYPE (cond), 0),
951 NULL_TREE, NULL_TREE);
86290011
RG
952 if (cond_expr_stmt_list)
953 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
ebfd146a
IR
954
955 gsi = gsi_last_bb (guard_bb);
956 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
957
958 /* Add new edge to connect guard block to the merge/loop-exit block. */
959 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
960 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
961 return new_e;
962}
963
964
965/* This function verifies that the following restrictions apply to LOOP:
966 (1) it is innermost
967 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
968 (3) it is single entry, single exit
969 (4) its exit condition is the last stmt in the header
970 (5) E is the entry/exit edge of LOOP.
971 */
972
973bool
974slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
975{
976 edge exit_e = single_exit (loop);
977 edge entry_e = loop_preheader_edge (loop);
978 gimple orig_cond = get_loop_exit_condition (loop);
979 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
980
5006671f 981 if (need_ssa_update_p (cfun))
ebfd146a
IR
982 return false;
983
984 if (loop->inner
985 /* All loops have an outer scope; the only case loop->outer is NULL is for
986 the function itself. */
987 || !loop_outer (loop)
988 || loop->num_nodes != 2
989 || !empty_block_p (loop->latch)
990 || !single_exit (loop)
991 /* Verify that new loop exit condition can be trivially modified. */
992 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
993 || (e != exit_e && e != entry_e))
994 return false;
995
996 return true;
997}
998
999#ifdef ENABLE_CHECKING
1000static void
1001slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1002 struct loop *second_loop)
1003{
1004 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1005 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1006 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1007
1008 /* A guard that controls whether the second_loop is to be executed or skipped
1009 is placed in first_loop->exit. first_loop->exit therefore has two
1010 successors - one is the preheader of second_loop, and the other is a bb
1011 after second_loop.
1012 */
1013 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
b8698a0f 1014
ebfd146a
IR
1015 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1016 of second_loop. */
b8698a0f 1017
ebfd146a
IR
1018 /* The preheader of new_loop is expected to have two predecessors:
1019 first_loop->exit and the block that precedes first_loop. */
1020
b8698a0f 1021 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
ebfd146a
IR
1022 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1023 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1024 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1025 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
b8698a0f 1026
ebfd146a
IR
1027 /* Verify that the other successor of first_loop->exit is after the
1028 second_loop. */
1029 /* TODO */
1030}
1031#endif
1032
1033/* If the run time cost model check determines that vectorization is
1034 not profitable and hence scalar loop should be generated then set
1035 FIRST_NITERS to prologue peeled iterations. This will allow all the
1036 iterations to be executed in the prologue peeled scalar loop. */
1037
1038static void
1039set_prologue_iterations (basic_block bb_before_first_loop,
5d2eb24b 1040 tree *first_niters,
ebfd146a
IR
1041 struct loop *loop,
1042 unsigned int th)
1043{
1044 edge e;
1045 basic_block cond_bb, then_bb;
1046 tree var, prologue_after_cost_adjust_name;
1047 gimple_stmt_iterator gsi;
1048 gimple newphi;
1049 edge e_true, e_false, e_fallthru;
1050 gimple cond_stmt;
1051 gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
1052 tree cost_pre_condition = NULL_TREE;
b8698a0f 1053 tree scalar_loop_iters =
ebfd146a
IR
1054 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1055
1056 e = single_pred_edge (bb_before_first_loop);
1057 cond_bb = split_edge(e);
1058
1059 e = single_pred_edge (bb_before_first_loop);
1060 then_bb = split_edge(e);
1061 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1062
1063 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1064 EDGE_FALSE_VALUE);
1065 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1066
1067 e_true = EDGE_PRED (then_bb, 0);
1068 e_true->flags &= ~EDGE_FALLTHRU;
1069 e_true->flags |= EDGE_TRUE_VALUE;
1070
1071 e_fallthru = EDGE_SUCC (then_bb, 0);
1072
1073 cost_pre_condition =
b8698a0f 1074 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
ebfd146a
IR
1075 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1076 cost_pre_condition =
1077 force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
1078 true, NULL_TREE);
1079 cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
1080 build_int_cst (TREE_TYPE (cost_pre_condition),
1081 0), NULL_TREE, NULL_TREE);
1082
1083 gsi = gsi_last_bb (cond_bb);
1084 if (gimplify_stmt_list)
1085 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1086
1087 gsi = gsi_last_bb (cond_bb);
1088 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
b8698a0f 1089
ebfd146a
IR
1090 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1091 "prologue_after_cost_adjust");
1092 add_referenced_var (var);
b8698a0f 1093 prologue_after_cost_adjust_name =
ebfd146a
IR
1094 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1095
1096 gsi = gsi_last_bb (then_bb);
1097 if (stmts)
1098 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1099
1100 newphi = create_phi_node (var, bb_before_first_loop);
b8698a0f 1101 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
f5045c96 1102 UNKNOWN_LOCATION);
5d2eb24b 1103 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
ebfd146a 1104
5d2eb24b 1105 *first_niters = PHI_RESULT (newphi);
ebfd146a
IR
1106}
1107
ebfd146a
IR
1108/* Function slpeel_tree_peel_loop_to_edge.
1109
1110 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1111 that is placed on the entry (exit) edge E of LOOP. After this transformation
1112 we have two loops one after the other - first-loop iterates FIRST_NITERS
1113 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
b8698a0f 1114 If the cost model indicates that it is profitable to emit a scalar
ebfd146a
IR
1115 loop instead of the vector one, then the prolog (epilog) loop will iterate
1116 for the entire unchanged scalar iterations of the loop.
1117
1118 Input:
1119 - LOOP: the loop to be peeled.
1120 - E: the exit or entry edge of LOOP.
1121 If it is the entry edge, we peel the first iterations of LOOP. In this
1122 case first-loop is LOOP, and second-loop is the newly created loop.
1123 If it is the exit edge, we peel the last iterations of LOOP. In this
1124 case, first-loop is the newly created loop, and second-loop is LOOP.
1125 - NITERS: the number of iterations that LOOP iterates.
1126 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1127 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1128 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1129 is false, the caller of this function may want to take care of this
1130 (this can be useful if we don't want new stmts added to first-loop).
1131 - TH: cost model profitability threshold of iterations for vectorization.
1132 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1133 during versioning and hence needs to occur during
b8698a0f 1134 prologue generation or whether cost model check
ebfd146a
IR
1135 has not occurred during prologue generation and hence
1136 needs to occur during epilogue generation.
b8698a0f 1137
ebfd146a
IR
1138
1139 Output:
1140 The function returns a pointer to the new loop-copy, or NULL if it failed
1141 to perform the transformation.
1142
1143 The function generates two if-then-else guards: one before the first loop,
1144 and the other before the second loop:
1145 The first guard is:
1146 if (FIRST_NITERS == 0) then skip the first loop,
1147 and go directly to the second loop.
1148 The second guard is:
1149 if (FIRST_NITERS == NITERS) then skip the second loop.
1150
86290011
RG
1151 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1152 then the generated condition is combined with COND_EXPR and the
1153 statements in COND_EXPR_STMT_LIST are emitted together with it.
1154
ebfd146a
IR
1155 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1156 FORNOW the resulting code will not be in loop-closed-ssa form.
1157*/
1158
1159static struct loop*
b8698a0f 1160slpeel_tree_peel_loop_to_edge (struct loop *loop,
5d2eb24b 1161 edge e, tree *first_niters,
ebfd146a 1162 tree niters, bool update_first_loop_count,
86290011
RG
1163 unsigned int th, bool check_profitability,
1164 tree cond_expr, gimple_seq cond_expr_stmt_list)
ebfd146a
IR
1165{
1166 struct loop *new_loop = NULL, *first_loop, *second_loop;
1167 edge skip_e;
1168 tree pre_condition = NULL_TREE;
1169 bitmap definitions;
1170 basic_block bb_before_second_loop, bb_after_second_loop;
1171 basic_block bb_before_first_loop;
1172 basic_block bb_between_loops;
1173 basic_block new_exit_bb;
e20f6b4b 1174 gimple_stmt_iterator gsi;
ebfd146a
IR
1175 edge exit_e = single_exit (loop);
1176 LOC loop_loc;
1177 tree cost_pre_condition = NULL_TREE;
b8698a0f 1178
ebfd146a
IR
1179 if (!slpeel_can_duplicate_loop_p (loop, e))
1180 return NULL;
b8698a0f 1181
ebfd146a 1182 /* We have to initialize cfg_hooks. Then, when calling
b8698a0f 1183 cfg_hooks->split_edge, the function tree_split_edge
ebfd146a
IR
1184 is actually called and, when calling cfg_hooks->duplicate_block,
1185 the function tree_duplicate_bb is called. */
1186 gimple_register_cfg_hooks ();
1187
e20f6b4b
JJ
1188 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1189 in the exit bb and rename all the uses after the loop. This simplifies
1190 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1191 (but normally loop closed SSA form doesn't require virtual PHIs to be
1192 in the same form). Doing this early simplifies the checking what
1193 uses should be renamed. */
1194 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1195 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1196 {
1197 gimple phi = gsi_stmt (gsi);
1198 for (gsi = gsi_start_phis (exit_e->dest);
1199 !gsi_end_p (gsi); gsi_next (&gsi))
1200 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1201 break;
1202 if (gsi_end_p (gsi))
1203 {
1204 gimple new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (phi)),
1205 exit_e->dest);
1206 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1207 imm_use_iterator imm_iter;
1208 gimple stmt;
1209 tree new_vop = make_ssa_name (SSA_NAME_VAR (PHI_RESULT (phi)),
1210 new_phi);
1211 use_operand_p use_p;
1212
1213 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1214 gimple_phi_set_result (new_phi, new_vop);
1215 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1216 if (stmt != new_phi && gimple_bb (stmt) != loop->header)
1217 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1218 SET_USE (use_p, new_vop);
1219 }
1220 break;
1221 }
ebfd146a
IR
1222
1223 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1224 Resulting CFG would be:
1225
1226 first_loop:
1227 do {
1228 } while ...
1229
1230 second_loop:
1231 do {
1232 } while ...
1233
1234 orig_exit_bb:
1235 */
b8698a0f 1236
ebfd146a
IR
1237 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1238 {
1239 loop_loc = find_loop_location (loop);
1240 if (dump_file && (dump_flags & TDF_DETAILS))
1241 {
1242 if (loop_loc != UNKNOWN_LOC)
1243 fprintf (dump_file, "\n%s:%d: note: ",
1244 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1245 fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1246 }
1247 return NULL;
1248 }
b8698a0f 1249
684f25f4
AO
1250 if (MAY_HAVE_DEBUG_STMTS)
1251 {
1252 gcc_assert (!adjust_vec);
1253 adjust_vec = VEC_alloc (adjust_info, stack, 32);
1254 }
1255
ebfd146a
IR
1256 if (e == exit_e)
1257 {
1258 /* NEW_LOOP was placed after LOOP. */
1259 first_loop = loop;
1260 second_loop = new_loop;
1261 }
1262 else
1263 {
1264 /* NEW_LOOP was placed before LOOP. */
1265 first_loop = new_loop;
1266 second_loop = loop;
1267 }
1268
1269 definitions = ssa_names_to_replace ();
1270 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1271 rename_variables_in_loop (new_loop);
1272
1273
1274 /* 2. Add the guard code in one of the following ways:
1275
1276 2.a Add the guard that controls whether the first loop is executed.
1277 This occurs when this function is invoked for prologue or epilogue
1278 generation and when the cost model check can be done at compile time.
1279
1280 Resulting CFG would be:
1281
1282 bb_before_first_loop:
1283 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1284 GOTO first-loop
1285
1286 first_loop:
1287 do {
1288 } while ...
1289
1290 bb_before_second_loop:
1291
1292 second_loop:
1293 do {
1294 } while ...
1295
1296 orig_exit_bb:
1297
1298 2.b Add the cost model check that allows the prologue
1299 to iterate for the entire unchanged scalar
1300 iterations of the loop in the event that the cost
1301 model indicates that the scalar loop is more
1302 profitable than the vector one. This occurs when
1303 this function is invoked for prologue generation
1304 and the cost model check needs to be done at run
1305 time.
1306
1307 Resulting CFG after prologue peeling would be:
1308
1309 if (scalar_loop_iterations <= th)
1310 FIRST_NITERS = scalar_loop_iterations
1311
1312 bb_before_first_loop:
1313 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1314 GOTO first-loop
1315
1316 first_loop:
1317 do {
1318 } while ...
1319
1320 bb_before_second_loop:
1321
1322 second_loop:
1323 do {
1324 } while ...
1325
1326 orig_exit_bb:
1327
1328 2.c Add the cost model check that allows the epilogue
1329 to iterate for the entire unchanged scalar
1330 iterations of the loop in the event that the cost
1331 model indicates that the scalar loop is more
1332 profitable than the vector one. This occurs when
1333 this function is invoked for epilogue generation
1334 and the cost model check needs to be done at run
86290011
RG
1335 time. This check is combined with any pre-existing
1336 check in COND_EXPR to avoid versioning.
ebfd146a
IR
1337
1338 Resulting CFG after prologue peeling would be:
1339
1340 bb_before_first_loop:
1341 if ((scalar_loop_iterations <= th)
1342 ||
1343 FIRST_NITERS == 0) GOTO bb_before_second_loop
1344 GOTO first-loop
1345
1346 first_loop:
1347 do {
1348 } while ...
1349
1350 bb_before_second_loop:
1351
1352 second_loop:
1353 do {
1354 } while ...
1355
1356 orig_exit_bb:
1357 */
1358
1359 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1360 bb_before_second_loop = split_edge (single_exit (first_loop));
1361
1362 /* Epilogue peeling. */
1363 if (!update_first_loop_count)
1364 {
1365 pre_condition =
5d2eb24b
IR
1366 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1367 build_int_cst (TREE_TYPE (*first_niters), 0));
ebfd146a
IR
1368 if (check_profitability)
1369 {
1370 tree scalar_loop_iters
1371 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1372 (loop_vec_info_for_loop (loop)));
b8698a0f
L
1373 cost_pre_condition =
1374 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
ebfd146a
IR
1375 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1376
1377 pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1378 cost_pre_condition, pre_condition);
1379 }
86290011
RG
1380 if (cond_expr)
1381 {
1382 pre_condition =
1383 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1384 pre_condition,
1385 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1386 cond_expr));
1387 }
ebfd146a
IR
1388 }
1389
b8698a0f 1390 /* Prologue peeling. */
ebfd146a
IR
1391 else
1392 {
1393 if (check_profitability)
1394 set_prologue_iterations (bb_before_first_loop, first_niters,
1395 loop, th);
1396
1397 pre_condition =
5d2eb24b
IR
1398 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1399 build_int_cst (TREE_TYPE (*first_niters), 0));
ebfd146a
IR
1400 }
1401
1402 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
86290011 1403 cond_expr_stmt_list,
ebfd146a
IR
1404 bb_before_second_loop, bb_before_first_loop);
1405 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1406 first_loop == new_loop,
1407 &new_exit_bb, &definitions);
1408
1409
1410 /* 3. Add the guard that controls whether the second loop is executed.
1411 Resulting CFG would be:
1412
1413 bb_before_first_loop:
1414 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1415 GOTO first-loop
1416
1417 first_loop:
1418 do {
1419 } while ...
1420
1421 bb_between_loops:
1422 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1423 GOTO bb_before_second_loop
1424
1425 bb_before_second_loop:
1426
1427 second_loop:
1428 do {
1429 } while ...
1430
1431 bb_after_second_loop:
1432
1433 orig_exit_bb:
1434 */
1435
1436 bb_between_loops = new_exit_bb;
1437 bb_after_second_loop = split_edge (single_exit (second_loop));
1438
b8698a0f 1439 pre_condition =
5d2eb24b 1440 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
86290011 1441 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
ebfd146a
IR
1442 bb_after_second_loop, bb_before_first_loop);
1443 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1444 second_loop == new_loop, &new_exit_bb);
1445
1446 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1447 */
1448 if (update_first_loop_count)
5d2eb24b 1449 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
ebfd146a 1450
040d39ee
RG
1451 BITMAP_FREE (definitions);
1452 delete_update_ssa ();
1453
684f25f4
AO
1454 adjust_vec_debug_stmts ();
1455
ebfd146a
IR
1456 return new_loop;
1457}
1458
1459/* Function vect_get_loop_location.
1460
1461 Extract the location of the loop in the source code.
1462 If the loop is not well formed for vectorization, an estimated
1463 location is calculated.
1464 Return the loop location if succeed and NULL if not. */
1465
1466LOC
1467find_loop_location (struct loop *loop)
1468{
1469 gimple stmt = NULL;
1470 basic_block bb;
1471 gimple_stmt_iterator si;
1472
1473 if (!loop)
1474 return UNKNOWN_LOC;
1475
1476 stmt = get_loop_exit_condition (loop);
1477
1478 if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
1479 return gimple_location (stmt);
1480
1481 /* If we got here the loop is probably not "well formed",
1482 try to estimate the loop location */
1483
1484 if (!loop->header)
1485 return UNKNOWN_LOC;
1486
1487 bb = loop->header;
1488
1489 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1490 {
1491 stmt = gsi_stmt (si);
1492 if (gimple_location (stmt) != UNKNOWN_LOC)
1493 return gimple_location (stmt);
1494 }
1495
1496 return UNKNOWN_LOC;
1497}
1498
1499
1500/* This function builds ni_name = number of iterations loop executes
86290011
RG
1501 on the loop preheader. If SEQ is given the stmt is instead emitted
1502 there. */
ebfd146a
IR
1503
1504static tree
86290011 1505vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
ebfd146a
IR
1506{
1507 tree ni_name, var;
1508 gimple_seq stmts = NULL;
1509 edge pe;
1510 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1511 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1512
1513 var = create_tmp_var (TREE_TYPE (ni), "niters");
1514 add_referenced_var (var);
1515 ni_name = force_gimple_operand (ni, &stmts, false, var);
1516
1517 pe = loop_preheader_edge (loop);
1518 if (stmts)
1519 {
86290011
RG
1520 if (seq)
1521 gimple_seq_add_seq (&seq, stmts);
1522 else
1523 {
1524 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1525 gcc_assert (!new_bb);
1526 }
ebfd146a
IR
1527 }
1528
1529 return ni_name;
1530}
1531
1532
1533/* This function generates the following statements:
1534
1535 ni_name = number of iterations loop executes
1536 ratio = ni_name / vf
1537 ratio_mult_vf_name = ratio * vf
1538
86290011
RG
1539 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1540 if that is non-NULL. */
ebfd146a 1541
b8698a0f
L
1542static void
1543vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
ebfd146a 1544 tree *ni_name_ptr,
b8698a0f 1545 tree *ratio_mult_vf_name_ptr,
86290011
RG
1546 tree *ratio_name_ptr,
1547 gimple_seq cond_expr_stmt_list)
ebfd146a
IR
1548{
1549
1550 edge pe;
1551 basic_block new_bb;
1552 gimple_seq stmts;
48df3fa6 1553 tree ni_name, ni_minus_gap_name;
ebfd146a
IR
1554 tree var;
1555 tree ratio_name;
1556 tree ratio_mult_vf_name;
1557 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1558 tree ni = LOOP_VINFO_NITERS (loop_vinfo);
1559 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1560 tree log_vf;
1561
1562 pe = loop_preheader_edge (loop);
1563
b8698a0f 1564 /* Generate temporary variable that contains
ebfd146a
IR
1565 number of iterations loop executes. */
1566
86290011 1567 ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
ebfd146a
IR
1568 log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
1569
48df3fa6
IR
1570 /* If epilogue loop is required because of data accesses with gaps, we
1571 subtract one iteration from the total number of iterations here for
1572 correct calculation of RATIO. */
1573 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1574 {
1575 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
1576 ni_name,
1577 build_one_cst (TREE_TYPE (ni_name)));
1578 if (!is_gimple_val (ni_minus_gap_name))
1579 {
1580 var = create_tmp_var (TREE_TYPE (ni), "ni_gap");
1581 add_referenced_var (var);
1582
1583 stmts = NULL;
1584 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
1585 true, var);
1586 if (cond_expr_stmt_list)
1587 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1588 else
1589 {
1590 pe = loop_preheader_edge (loop);
1591 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1592 gcc_assert (!new_bb);
1593 }
1594 }
1595 }
1596 else
1597 ni_minus_gap_name = ni_name;
1598
ebfd146a
IR
1599 /* Create: ratio = ni >> log2(vf) */
1600
48df3fa6
IR
1601 ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_minus_gap_name),
1602 ni_minus_gap_name, log_vf);
ebfd146a
IR
1603 if (!is_gimple_val (ratio_name))
1604 {
1605 var = create_tmp_var (TREE_TYPE (ni), "bnd");
1606 add_referenced_var (var);
1607
1608 stmts = NULL;
1609 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
86290011
RG
1610 if (cond_expr_stmt_list)
1611 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1612 else
1613 {
1614 pe = loop_preheader_edge (loop);
1615 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1616 gcc_assert (!new_bb);
1617 }
ebfd146a 1618 }
b8698a0f 1619
ebfd146a
IR
1620 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1621
1622 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
1623 ratio_name, log_vf);
1624 if (!is_gimple_val (ratio_mult_vf_name))
1625 {
1626 var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
1627 add_referenced_var (var);
1628
1629 stmts = NULL;
1630 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
1631 true, var);
86290011
RG
1632 if (cond_expr_stmt_list)
1633 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1634 else
1635 {
1636 pe = loop_preheader_edge (loop);
1637 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1638 gcc_assert (!new_bb);
1639 }
ebfd146a
IR
1640 }
1641
1642 *ni_name_ptr = ni_name;
1643 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
1644 *ratio_name_ptr = ratio_name;
b8698a0f
L
1645
1646 return;
ebfd146a
IR
1647}
1648
1649/* Function vect_can_advance_ivs_p
1650
b8698a0f
L
1651 In case the number of iterations that LOOP iterates is unknown at compile
1652 time, an epilog loop will be generated, and the loop induction variables
1653 (IVs) will be "advanced" to the value they are supposed to take just before
ebfd146a
IR
1654 the epilog loop. Here we check that the access function of the loop IVs
1655 and the expression that represents the loop bound are simple enough.
1656 These restrictions will be relaxed in the future. */
1657
b8698a0f 1658bool
ebfd146a
IR
1659vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1660{
1661 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1662 basic_block bb = loop->header;
1663 gimple phi;
1664 gimple_stmt_iterator gsi;
1665
1666 /* Analyze phi functions of the loop header. */
1667
1668 if (vect_print_dump_info (REPORT_DETAILS))
1669 fprintf (vect_dump, "vect_can_advance_ivs_p:");
1670
1671 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1672 {
1673 tree access_fn = NULL;
1674 tree evolution_part;
1675
1676 phi = gsi_stmt (gsi);
1677 if (vect_print_dump_info (REPORT_DETAILS))
1678 {
1679 fprintf (vect_dump, "Analyze phi: ");
1680 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1681 }
1682
1683 /* Skip virtual phi's. The data dependences that are associated with
1684 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1685
1686 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1687 {
1688 if (vect_print_dump_info (REPORT_DETAILS))
1689 fprintf (vect_dump, "virtual phi. skip.");
1690 continue;
1691 }
1692
1693 /* Skip reduction phis. */
1694
1695 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1696 {
1697 if (vect_print_dump_info (REPORT_DETAILS))
1698 fprintf (vect_dump, "reduc phi. skip.");
1699 continue;
1700 }
1701
1702 /* Analyze the evolution function. */
1703
1704 access_fn = instantiate_parameters
1705 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1706
1707 if (!access_fn)
1708 {
1709 if (vect_print_dump_info (REPORT_DETAILS))
1710 fprintf (vect_dump, "No Access function.");
1711 return false;
1712 }
1713
1714 if (vect_print_dump_info (REPORT_DETAILS))
1715 {
1716 fprintf (vect_dump, "Access function of PHI: ");
1717 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
1718 }
1719
1720 evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
b8698a0f 1721
ebfd146a
IR
1722 if (evolution_part == NULL_TREE)
1723 {
1724 if (vect_print_dump_info (REPORT_DETAILS))
1725 fprintf (vect_dump, "No evolution.");
1726 return false;
1727 }
b8698a0f
L
1728
1729 /* FORNOW: We do not transform initial conditions of IVs
ebfd146a
IR
1730 which evolution functions are a polynomial of degree >= 2. */
1731
1732 if (tree_is_chrec (evolution_part))
b8698a0f 1733 return false;
ebfd146a
IR
1734 }
1735
1736 return true;
1737}
1738
1739
1740/* Function vect_update_ivs_after_vectorizer.
1741
1742 "Advance" the induction variables of LOOP to the value they should take
1743 after the execution of LOOP. This is currently necessary because the
1744 vectorizer does not handle induction variables that are used after the
1745 loop. Such a situation occurs when the last iterations of LOOP are
1746 peeled, because:
1747 1. We introduced new uses after LOOP for IVs that were not originally used
1748 after LOOP: the IVs of LOOP are now used by an epilog loop.
1749 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1750 times, whereas the loop IVs should be bumped N times.
1751
1752 Input:
1753 - LOOP - a loop that is going to be vectorized. The last few iterations
1754 of LOOP were peeled.
1755 - NITERS - the number of iterations that LOOP executes (before it is
1756 vectorized). i.e, the number of times the ivs should be bumped.
1757 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1758 coming out from LOOP on which there are uses of the LOOP ivs
1759 (this is the path from LOOP->exit to epilog_loop->preheader).
1760
1761 The new definitions of the ivs are placed in LOOP->exit.
1762 The phi args associated with the edge UPDATE_E in the bb
1763 UPDATE_E->dest are updated accordingly.
1764
1765 Assumption 1: Like the rest of the vectorizer, this function assumes
1766 a single loop exit that has a single predecessor.
1767
1768 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1769 organized in the same order.
1770
1771 Assumption 3: The access function of the ivs is simple enough (see
1772 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1773
1774 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
b8698a0f 1775 coming out of LOOP on which the ivs of LOOP are used (this is the path
ebfd146a
IR
1776 that leads to the epilog loop; other paths skip the epilog loop). This
1777 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1778 needs to have its phis updated.
1779 */
1780
1781static void
b8698a0f 1782vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
ebfd146a
IR
1783 edge update_e)
1784{
1785 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1786 basic_block exit_bb = single_exit (loop)->dest;
1787 gimple phi, phi1;
1788 gimple_stmt_iterator gsi, gsi1;
1789 basic_block update_bb = update_e->dest;
1790
1791 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1792
1793 /* Make sure there exists a single-predecessor exit bb: */
1794 gcc_assert (single_pred_p (exit_bb));
1795
1796 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1797 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1798 gsi_next (&gsi), gsi_next (&gsi1))
1799 {
ebfd146a 1800 tree init_expr;
550918ca
RG
1801 tree step_expr, off;
1802 tree type;
ebfd146a
IR
1803 tree var, ni, ni_name;
1804 gimple_stmt_iterator last_gsi;
0ac168a1 1805 stmt_vec_info stmt_info;
ebfd146a
IR
1806
1807 phi = gsi_stmt (gsi);
1808 phi1 = gsi_stmt (gsi1);
1809 if (vect_print_dump_info (REPORT_DETAILS))
1810 {
1811 fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
1812 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1813 }
1814
1815 /* Skip virtual phi's. */
1816 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1817 {
1818 if (vect_print_dump_info (REPORT_DETAILS))
1819 fprintf (vect_dump, "virtual phi. skip.");
1820 continue;
1821 }
1822
1823 /* Skip reduction phis. */
0ac168a1
RG
1824 stmt_info = vinfo_for_stmt (phi);
1825 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
b8698a0f 1826 {
ebfd146a
IR
1827 if (vect_print_dump_info (REPORT_DETAILS))
1828 fprintf (vect_dump, "reduc phi. skip.");
1829 continue;
b8698a0f 1830 }
ebfd146a 1831
0ac168a1
RG
1832 type = TREE_TYPE (gimple_phi_result (phi));
1833 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1834 step_expr = unshare_expr (step_expr);
b8698a0f 1835
ebfd146a
IR
1836 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1837 of degree >= 2 or exponential. */
0ac168a1 1838 gcc_assert (!tree_is_chrec (step_expr));
ebfd146a 1839
0ac168a1 1840 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
ebfd146a 1841
550918ca
RG
1842 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1843 fold_convert (TREE_TYPE (step_expr), niters),
1844 step_expr);
0ac168a1 1845 if (POINTER_TYPE_P (type))
5d49b6a7 1846 ni = fold_build_pointer_plus (init_expr, off);
ebfd146a 1847 else
0ac168a1
RG
1848 ni = fold_build2 (PLUS_EXPR, type,
1849 init_expr, fold_convert (type, off));
ebfd146a 1850
0ac168a1 1851 var = create_tmp_var (type, "tmp");
ebfd146a
IR
1852 add_referenced_var (var);
1853
1854 last_gsi = gsi_last_bb (exit_bb);
1855 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1856 true, GSI_SAME_STMT);
b8698a0f 1857
ebfd146a 1858 /* Fix phi expressions in the successor bb. */
684f25f4 1859 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
ebfd146a
IR
1860 }
1861}
1862
1863/* Return the more conservative threshold between the
1864 min_profitable_iters returned by the cost model and the user
1865 specified threshold, if provided. */
1866
1867static unsigned int
1868conservative_cost_threshold (loop_vec_info loop_vinfo,
1869 int min_profitable_iters)
1870{
1871 unsigned int th;
1872 int min_scalar_loop_bound;
1873
1874 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1875 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
1876
1877 /* Use the cost model only if it is more conservative than user specified
1878 threshold. */
1879 th = (unsigned) min_scalar_loop_bound;
1880 if (min_profitable_iters
1881 && (!min_scalar_loop_bound
1882 || min_profitable_iters > min_scalar_loop_bound))
1883 th = (unsigned) min_profitable_iters;
1884
1885 if (th && vect_print_dump_info (REPORT_COST))
e9dbe7bb 1886 fprintf (vect_dump, "Profitability threshold is %u loop iterations.", th);
ebfd146a
IR
1887
1888 return th;
1889}
1890
1891/* Function vect_do_peeling_for_loop_bound
1892
1893 Peel the last iterations of the loop represented by LOOP_VINFO.
b8698a0f 1894 The peeled iterations form a new epilog loop. Given that the loop now
ebfd146a
IR
1895 iterates NITERS times, the new epilog loop iterates
1896 NITERS % VECTORIZATION_FACTOR times.
b8698a0f
L
1897
1898 The original loop will later be made to iterate
86290011
RG
1899 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1900
1901 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1902 test. */
ebfd146a 1903
b8698a0f 1904void
86290011
RG
1905vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
1906 tree cond_expr, gimple_seq cond_expr_stmt_list)
ebfd146a
IR
1907{
1908 tree ni_name, ratio_mult_vf_name;
1909 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1910 struct loop *new_loop;
1911 edge update_e;
1912 basic_block preheader;
1913 int loop_num;
1914 bool check_profitability = false;
1915 unsigned int th = 0;
1916 int min_profitable_iters;
1917
1918 if (vect_print_dump_info (REPORT_DETAILS))
1919 fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
1920
1921 initialize_original_copy_tables ();
1922
1923 /* Generate the following variables on the preheader of original loop:
b8698a0f 1924
ebfd146a
IR
1925 ni_name = number of iteration the original loop executes
1926 ratio = ni_name / vf
1927 ratio_mult_vf_name = ratio * vf */
1928 vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
86290011
RG
1929 &ratio_mult_vf_name, ratio,
1930 cond_expr_stmt_list);
ebfd146a 1931
b8698a0f 1932 loop_num = loop->num;
ebfd146a 1933
b8698a0f 1934 /* If cost model check not done during versioning and
ebfd146a 1935 peeling for alignment. */
e9dbe7bb
IR
1936 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
1937 && !LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
86290011
RG
1938 && !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo)
1939 && !cond_expr)
ebfd146a
IR
1940 {
1941 check_profitability = true;
1942
1943 /* Get profitability threshold for vectorized loop. */
1944 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
1945
b8698a0f 1946 th = conservative_cost_threshold (loop_vinfo,
ebfd146a
IR
1947 min_profitable_iters);
1948 }
1949
1950 new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
5d2eb24b 1951 &ratio_mult_vf_name, ni_name, false,
86290011
RG
1952 th, check_profitability,
1953 cond_expr, cond_expr_stmt_list);
ebfd146a
IR
1954 gcc_assert (new_loop);
1955 gcc_assert (loop_num == loop->num);
1956#ifdef ENABLE_CHECKING
1957 slpeel_verify_cfg_after_peeling (loop, new_loop);
1958#endif
1959
1960 /* A guard that controls whether the new_loop is to be executed or skipped
1961 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1962 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1963 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1964 is on the path where the LOOP IVs are used and need to be updated. */
1965
1966 preheader = loop_preheader_edge (new_loop)->src;
1967 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1968 update_e = EDGE_PRED (preheader, 0);
1969 else
1970 update_e = EDGE_PRED (preheader, 1);
1971
b8698a0f 1972 /* Update IVs of original loop as if they were advanced
ebfd146a 1973 by ratio_mult_vf_name steps. */
b8698a0f 1974 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
ebfd146a
IR
1975
1976 /* After peeling we have to reset scalar evolution analyzer. */
1977 scev_reset ();
1978
1979 free_original_copy_tables ();
1980}
1981
1982
1983/* Function vect_gen_niters_for_prolog_loop
1984
1985 Set the number of iterations for the loop represented by LOOP_VINFO
1986 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1987 and the misalignment of DR - the data reference recorded in
b8698a0f 1988 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
ebfd146a
IR
1989 this loop, the data reference DR will refer to an aligned location.
1990
1991 The following computation is generated:
1992
1993 If the misalignment of DR is known at compile time:
1994 addr_mis = int mis = DR_MISALIGNMENT (dr);
1995 Else, compute address misalignment in bytes:
1996 addr_mis = addr & (vectype_size - 1)
1997
1998 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1999
2000 (elem_size = element type size; an element is the scalar element whose type
2001 is the inner type of the vectype)
2002
2003 When the step of the data-ref in the loop is not 1 (as in interleaved data
2004 and SLP), the number of iterations of the prolog must be divided by the step
2005 (which is equal to the size of interleaved group).
2006
2007 The above formulas assume that VF == number of elements in the vector. This
2008 may not hold when there are multiple-types in the loop.
2009 In this case, for some data-references in the loop the VF does not represent
2010 the number of elements that fit in the vector. Therefore, instead of VF we
2011 use TYPE_VECTOR_SUBPARTS. */
2012
b8698a0f 2013static tree
5d2eb24b 2014vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
ebfd146a
IR
2015{
2016 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2017 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2018 tree var;
2019 gimple_seq stmts;
2020 tree iters, iters_name;
2021 edge pe;
2022 basic_block new_bb;
2023 gimple dr_stmt = DR_STMT (dr);
2024 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
2025 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2026 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
2027 tree niters_type = TREE_TYPE (loop_niters);
ebfd146a
IR
2028 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
2029
b8698a0f 2030 pe = loop_preheader_edge (loop);
ebfd146a
IR
2031
2032 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2033 {
720f5239 2034 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
ebfd146a
IR
2035
2036 if (vect_print_dump_info (REPORT_DETAILS))
720f5239 2037 fprintf (vect_dump, "known peeling = %d.", npeel);
ebfd146a 2038
720f5239 2039 iters = build_int_cst (niters_type, npeel);
ebfd146a
IR
2040 }
2041 else
2042 {
2043 gimple_seq new_stmts = NULL;
d8ba5b19
RG
2044 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
2045 tree offset = negative
2046 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
b8698a0f 2047 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
d8ba5b19 2048 &new_stmts, offset, loop);
96f9265a 2049 tree type = unsigned_type_for (TREE_TYPE (start_addr));
ebfd146a
IR
2050 tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
2051 tree elem_size_log =
2052 build_int_cst (type, exact_log2 (vectype_align/nelements));
2053 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
2054 tree nelements_tree = build_int_cst (type, nelements);
2055 tree byte_misalign;
2056 tree elem_misalign;
2057
2058 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
2059 gcc_assert (!new_bb);
b8698a0f 2060
ebfd146a 2061 /* Create: byte_misalign = addr & (vectype_size - 1) */
b8698a0f 2062 byte_misalign =
720f5239
IR
2063 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
2064 vectype_size_minus_1);
b8698a0f 2065
ebfd146a
IR
2066 /* Create: elem_misalign = byte_misalign / element_size */
2067 elem_misalign =
2068 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
2069
2070 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
d8ba5b19
RG
2071 if (negative)
2072 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
2073 else
2074 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
ebfd146a
IR
2075 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
2076 iters = fold_convert (niters_type, iters);
2077 }
2078
2079 /* Create: prolog_loop_niters = min (iters, loop_niters) */
2080 /* If the loop bound is known at compile time we already verified that it is
2081 greater than vf; since the misalignment ('iters') is at most vf, there's
2082 no need to generate the MIN_EXPR in this case. */
2083 if (TREE_CODE (loop_niters) != INTEGER_CST)
2084 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
2085
2086 if (vect_print_dump_info (REPORT_DETAILS))
2087 {
2088 fprintf (vect_dump, "niters for prolog loop: ");
2089 print_generic_expr (vect_dump, iters, TDF_SLIM);
2090 }
2091
2092 var = create_tmp_var (niters_type, "prolog_loop_niters");
2093 add_referenced_var (var);
2094 stmts = NULL;
2095 iters_name = force_gimple_operand (iters, &stmts, false, var);
2096
2097 /* Insert stmt on loop preheader edge. */
2098 if (stmts)
2099 {
2100 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2101 gcc_assert (!new_bb);
2102 }
2103
b8698a0f 2104 return iters_name;
ebfd146a
IR
2105}
2106
2107
2108/* Function vect_update_init_of_dr
2109
2110 NITERS iterations were peeled from LOOP. DR represents a data reference
2111 in LOOP. This function updates the information recorded in DR to
b8698a0f 2112 account for the fact that the first NITERS iterations had already been
ebfd146a
IR
2113 executed. Specifically, it updates the OFFSET field of DR. */
2114
2115static void
2116vect_update_init_of_dr (struct data_reference *dr, tree niters)
2117{
2118 tree offset = DR_OFFSET (dr);
b8698a0f 2119
ebfd146a
IR
2120 niters = fold_build2 (MULT_EXPR, sizetype,
2121 fold_convert (sizetype, niters),
2122 fold_convert (sizetype, DR_STEP (dr)));
587aa063
RG
2123 offset = fold_build2 (PLUS_EXPR, sizetype,
2124 fold_convert (sizetype, offset), niters);
ebfd146a
IR
2125 DR_OFFSET (dr) = offset;
2126}
2127
2128
2129/* Function vect_update_inits_of_drs
2130
b8698a0f
L
2131 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
2132 This function updates the information recorded for the data references in
2133 the loop to account for the fact that the first NITERS iterations had
ebfd146a
IR
2134 already been executed. Specifically, it updates the initial_condition of
2135 the access_function of all the data_references in the loop. */
2136
2137static void
2138vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
2139{
2140 unsigned int i;
2141 VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2142 struct data_reference *dr;
2143
2144 if (vect_print_dump_info (REPORT_DETAILS))
2145 fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
2146
ac47786e 2147 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
ebfd146a
IR
2148 vect_update_init_of_dr (dr, niters);
2149}
2150
2151
2152/* Function vect_do_peeling_for_alignment
2153
2154 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2155 'niters' is set to the misalignment of one of the data references in the
2156 loop, thereby forcing it to refer to an aligned location at the beginning
2157 of the execution of this loop. The data reference for which we are
2158 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2159
2160void
2161vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
2162{
2163 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2164 tree niters_of_prolog_loop, ni_name;
2165 tree n_iters;
b61b1f17 2166 tree wide_prolog_niters;
ebfd146a 2167 struct loop *new_loop;
ebfd146a
IR
2168 unsigned int th = 0;
2169 int min_profitable_iters;
03fd03d5 2170 int max_iter;
ebfd146a
IR
2171
2172 if (vect_print_dump_info (REPORT_DETAILS))
2173 fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
2174
2175 initialize_original_copy_tables ();
2176
86290011 2177 ni_name = vect_build_loop_niters (loop_vinfo, NULL);
5d2eb24b
IR
2178 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2179 ni_name);
ebfd146a 2180
86290011
RG
2181 /* Get profitability threshold for vectorized loop. */
2182 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2183 th = conservative_cost_threshold (loop_vinfo,
2184 min_profitable_iters);
ebfd146a
IR
2185
2186 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2187 new_loop =
2188 slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
5d2eb24b 2189 &niters_of_prolog_loop, ni_name, true,
86290011 2190 th, true, NULL_TREE, NULL);
ebfd146a
IR
2191
2192 gcc_assert (new_loop);
2193#ifdef ENABLE_CHECKING
2194 slpeel_verify_cfg_after_peeling (new_loop, loop);
2195#endif
03fd03d5
RG
2196 max_iter = MAX (LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1, (int) th);
2197 record_niter_bound (new_loop, shwi_to_double_int (max_iter), false, true);
2198 if (dump_file && (dump_flags & TDF_DETAILS))
2199 fprintf (dump_file, "Setting upper bound of nb iterations for prologue "
2200 "loop to %d\n", max_iter);
ebfd146a
IR
2201
2202 /* Update number of times loop executes. */
2203 n_iters = LOOP_VINFO_NITERS (loop_vinfo);
2204 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2205 TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
2206
5d2eb24b
IR
2207 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2208 wide_prolog_niters = niters_of_prolog_loop;
2209 else
2210 {
2211 gimple_seq seq = NULL;
2212 edge pe = loop_preheader_edge (loop);
2213 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2214 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2215 add_referenced_var (var);
2216 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2217 var);
2218 if (seq)
2219 {
2220 /* Insert stmt on loop preheader edge. */
2221 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2222 gcc_assert (!new_bb);
2223 }
2224 }
2225
ebfd146a 2226 /* Update the init conditions of the access functions of all data refs. */
b61b1f17 2227 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
ebfd146a
IR
2228
2229 /* After peeling we have to reset scalar evolution analyzer. */
2230 scev_reset ();
2231
2232 free_original_copy_tables ();
2233}
2234
2235
2236/* Function vect_create_cond_for_align_checks.
2237
2238 Create a conditional expression that represents the alignment checks for
2239 all of data references (array element references) whose alignment must be
2240 checked at runtime.
2241
2242 Input:
2243 COND_EXPR - input conditional expression. New conditions will be chained
2244 with logical AND operation.
2245 LOOP_VINFO - two fields of the loop information are used.
2246 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2247 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2248
2249 Output:
2250 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2251 expression.
2252 The returned value is the conditional expression to be used in the if
2253 statement that controls which version of the loop gets executed at runtime.
2254
2255 The algorithm makes two assumptions:
2256 1) The number of bytes "n" in a vector is a power of 2.
2257 2) An address "a" is aligned if a%n is zero and that this
2258 test can be done as a&(n-1) == 0. For example, for 16
2259 byte vectors the test is a&0xf == 0. */
2260
2261static void
2262vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2263 tree *cond_expr,
2264 gimple_seq *cond_expr_stmt_list)
2265{
2266 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2267 VEC(gimple,heap) *may_misalign_stmts
2268 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2269 gimple ref_stmt;
2270 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2271 tree mask_cst;
2272 unsigned int i;
ebfd146a
IR
2273 tree int_ptrsize_type;
2274 char tmp_name[20];
2275 tree or_tmp_name = NULL_TREE;
2276 tree and_tmp, and_tmp_name;
2277 gimple and_stmt;
2278 tree ptrsize_zero;
2279 tree part_cond_expr;
2280
2281 /* Check that mask is one less than a power of 2, i.e., mask is
2282 all zeros followed by all ones. */
2283 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2284
96f9265a 2285 int_ptrsize_type = signed_type_for (ptr_type_node);
ebfd146a
IR
2286
2287 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2288 of the first vector of the i'th data reference. */
2289
ac47786e 2290 FOR_EACH_VEC_ELT (gimple, may_misalign_stmts, i, ref_stmt)
ebfd146a
IR
2291 {
2292 gimple_seq new_stmt_list = NULL;
2293 tree addr_base;
2294 tree addr_tmp, addr_tmp_name;
2295 tree or_tmp, new_or_tmp_name;
2296 gimple addr_stmt, or_stmt;
d8ba5b19
RG
2297 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2298 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2299 bool negative = tree_int_cst_compare
2300 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2301 tree offset = negative
2302 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
ebfd146a
IR
2303
2304 /* create: addr_tmp = (int)(address_of_first_vector) */
2305 addr_base =
2306 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
d8ba5b19 2307 offset, loop);
ebfd146a
IR
2308 if (new_stmt_list != NULL)
2309 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2310
2311 sprintf (tmp_name, "%s%d", "addr2int", i);
2312 addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2313 add_referenced_var (addr_tmp);
2314 addr_tmp_name = make_ssa_name (addr_tmp, NULL);
2315 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2316 addr_base, NULL_TREE);
2317 SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
2318 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2319
2320 /* The addresses are OR together. */
2321
2322 if (or_tmp_name != NULL_TREE)
2323 {
2324 /* create: or_tmp = or_tmp | addr_tmp */
2325 sprintf (tmp_name, "%s%d", "orptrs", i);
2326 or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2327 add_referenced_var (or_tmp);
2328 new_or_tmp_name = make_ssa_name (or_tmp, NULL);
2329 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2330 new_or_tmp_name,
2331 or_tmp_name, addr_tmp_name);
2332 SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
2333 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2334 or_tmp_name = new_or_tmp_name;
2335 }
2336 else
2337 or_tmp_name = addr_tmp_name;
2338
2339 } /* end for i */
2340
2341 mask_cst = build_int_cst (int_ptrsize_type, mask);
2342
2343 /* create: and_tmp = or_tmp & mask */
2344 and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
2345 add_referenced_var (and_tmp);
2346 and_tmp_name = make_ssa_name (and_tmp, NULL);
2347
2348 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2349 or_tmp_name, mask_cst);
2350 SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
2351 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2352
2353 /* Make and_tmp the left operand of the conditional test against zero.
2354 if and_tmp has a nonzero bit then some address is unaligned. */
2355 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2356 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2357 and_tmp_name, ptrsize_zero);
2358 if (*cond_expr)
2359 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2360 *cond_expr, part_cond_expr);
2361 else
2362 *cond_expr = part_cond_expr;
2363}
2364
2365
2366/* Function vect_vfa_segment_size.
2367
2368 Create an expression that computes the size of segment
2369 that will be accessed for a data reference. The functions takes into
2370 account that realignment loads may access one more vector.
2371
2372 Input:
2373 DR: The data reference.
208cb8cb 2374 LENGTH_FACTOR: segment length to consider.
ebfd146a
IR
2375
2376 Return an expression whose value is the size of segment which will be
2377 accessed by DR. */
2378
2379static tree
208cb8cb 2380vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
ebfd146a 2381{
e2a3a5f1 2382 tree segment_length;
338f655d
IR
2383
2384 if (!compare_tree_int (DR_STEP (dr), 0))
2385 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2386 else
2387 segment_length = size_binop (MULT_EXPR,
2388 fold_convert (sizetype, DR_STEP (dr)),
2389 fold_convert (sizetype, length_factor));
2390
720f5239
IR
2391 if (vect_supportable_dr_alignment (dr, false)
2392 == dr_explicit_realign_optimized)
ebfd146a
IR
2393 {
2394 tree vector_size = TYPE_SIZE_UNIT
2395 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2396
e2a3a5f1 2397 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
ebfd146a 2398 }
e2a3a5f1 2399 return segment_length;
ebfd146a
IR
2400}
2401
2402
2403/* Function vect_create_cond_for_alias_checks.
2404
2405 Create a conditional expression that represents the run-time checks for
2406 overlapping of address ranges represented by a list of data references
2407 relations passed as input.
2408
2409 Input:
2410 COND_EXPR - input conditional expression. New conditions will be chained
2411 with logical AND operation.
2412 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2413 to be checked.
2414
2415 Output:
2416 COND_EXPR - conditional expression.
2417 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2418 expression.
2419
2420
2421 The returned value is the conditional expression to be used in the if
2422 statement that controls which version of the loop gets executed at runtime.
2423*/
2424
2425static void
2426vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
2427 tree * cond_expr,
2428 gimple_seq * cond_expr_stmt_list)
2429{
2430 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2431 VEC (ddr_p, heap) * may_alias_ddrs =
2432 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
e2a3a5f1
RG
2433 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2434 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
ebfd146a
IR
2435
2436 ddr_p ddr;
2437 unsigned int i;
208cb8cb 2438 tree part_cond_expr, length_factor;
ebfd146a
IR
2439
2440 /* Create expression
36fc3799
RS
2441 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2442 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
b8698a0f 2443 &&
ebfd146a
IR
2444 ...
2445 &&
36fc3799
RS
2446 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2447 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
ebfd146a
IR
2448
2449 if (VEC_empty (ddr_p, may_alias_ddrs))
2450 return;
2451
ac47786e 2452 FOR_EACH_VEC_ELT (ddr_p, may_alias_ddrs, i, ddr)
ebfd146a
IR
2453 {
2454 struct data_reference *dr_a, *dr_b;
2455 gimple dr_group_first_a, dr_group_first_b;
2456 tree addr_base_a, addr_base_b;
2457 tree segment_length_a, segment_length_b;
2458 gimple stmt_a, stmt_b;
d8ba5b19 2459 tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
ebfd146a
IR
2460
2461 dr_a = DDR_A (ddr);
2462 stmt_a = DR_STMT (DDR_A (ddr));
e14c1050 2463 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
ebfd146a
IR
2464 if (dr_group_first_a)
2465 {
2466 stmt_a = dr_group_first_a;
2467 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2468 }
2469
2470 dr_b = DDR_B (ddr);
2471 stmt_b = DR_STMT (DDR_B (ddr));
e14c1050 2472 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
ebfd146a
IR
2473 if (dr_group_first_b)
2474 {
2475 stmt_b = dr_group_first_b;
2476 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2477 }
2478
2479 addr_base_a =
2480 vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
2481 NULL_TREE, loop);
2482 addr_base_b =
2483 vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
2484 NULL_TREE, loop);
2485
208cb8cb
RG
2486 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2487 length_factor = scalar_loop_iters;
2488 else
2489 length_factor = size_int (vect_factor);
2490 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2491 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
ebfd146a
IR
2492
2493 if (vect_print_dump_info (REPORT_DR_DETAILS))
2494 {
2495 fprintf (vect_dump,
2496 "create runtime check for data references ");
2497 print_generic_expr (vect_dump, DR_REF (dr_a), TDF_SLIM);
2498 fprintf (vect_dump, " and ");
2499 print_generic_expr (vect_dump, DR_REF (dr_b), TDF_SLIM);
2500 }
2501
d8ba5b19 2502 seg_a_min = addr_base_a;
5d49b6a7 2503 seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
d8ba5b19
RG
2504 if (tree_int_cst_compare (DR_STEP (dr_a), size_zero_node) < 0)
2505 seg_a_min = seg_a_max, seg_a_max = addr_base_a;
2506
2507 seg_b_min = addr_base_b;
5d49b6a7 2508 seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
d8ba5b19
RG
2509 if (tree_int_cst_compare (DR_STEP (dr_b), size_zero_node) < 0)
2510 seg_b_min = seg_b_max, seg_b_max = addr_base_b;
ebfd146a 2511
b8698a0f 2512 part_cond_expr =
ebfd146a 2513 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
36fc3799
RS
2514 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2515 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
b8698a0f 2516
ebfd146a
IR
2517 if (*cond_expr)
2518 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2519 *cond_expr, part_cond_expr);
2520 else
2521 *cond_expr = part_cond_expr;
2522 }
ebfd146a 2523
e9dbe7bb
IR
2524 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
2525 fprintf (vect_dump, "created %u versioning for alias checks.\n",
2526 VEC_length (ddr_p, may_alias_ddrs));
ebfd146a
IR
2527}
2528
2529
2530/* Function vect_loop_versioning.
b8698a0f 2531
ebfd146a
IR
2532 If the loop has data references that may or may not be aligned or/and
2533 has data reference relations whose independence was not proven then
2534 two versions of the loop need to be generated, one which is vectorized
2535 and one which isn't. A test is then generated to control which of the
2536 loops is executed. The test checks for the alignment of all of the
2537 data references that may or may not be aligned. An additional
2538 sequence of runtime tests is generated for each pairs of DDRs whose
b8698a0f
L
2539 independence was not proven. The vectorized version of loop is
2540 executed only if both alias and alignment tests are passed.
2541
ebfd146a 2542 The test generated to check which version of loop is executed
b8698a0f 2543 is modified to also check for profitability as indicated by the
86290011
RG
2544 cost model initially.
2545
2546 The versioning precondition(s) are placed in *COND_EXPR and
2547 *COND_EXPR_STMT_LIST. If DO_VERSIONING is true versioning is
2548 also performed, otherwise only the conditions are generated. */
ebfd146a
IR
2549
2550void
86290011
RG
2551vect_loop_versioning (loop_vec_info loop_vinfo, bool do_versioning,
2552 tree *cond_expr, gimple_seq *cond_expr_stmt_list)
ebfd146a
IR
2553{
2554 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
ebfd146a
IR
2555 basic_block condition_bb;
2556 gimple_stmt_iterator gsi, cond_exp_gsi;
2557 basic_block merge_bb;
2558 basic_block new_exit_bb;
2559 edge new_exit_e, e;
2560 gimple orig_phi, new_phi;
2561 tree arg;
2562 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2563 gimple_seq gimplify_stmt_list = NULL;
2564 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2565 int min_profitable_iters = 0;
2566 unsigned int th;
2567
2568 /* Get profitability threshold for vectorized loop. */
2569 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2570
2571 th = conservative_cost_threshold (loop_vinfo,
2572 min_profitable_iters);
2573
86290011 2574 *cond_expr =
b8698a0f 2575 fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
ebfd146a
IR
2576 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2577
86290011
RG
2578 *cond_expr = force_gimple_operand (*cond_expr, cond_expr_stmt_list,
2579 false, NULL_TREE);
ebfd146a 2580
e9dbe7bb 2581 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
86290011
RG
2582 vect_create_cond_for_align_checks (loop_vinfo, cond_expr,
2583 cond_expr_stmt_list);
ebfd146a 2584
e9dbe7bb 2585 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
86290011
RG
2586 vect_create_cond_for_alias_checks (loop_vinfo, cond_expr,
2587 cond_expr_stmt_list);
2588
2589 *cond_expr =
2590 fold_build2 (NE_EXPR, boolean_type_node, *cond_expr, integer_zero_node);
2591 *cond_expr =
2592 force_gimple_operand (*cond_expr, &gimplify_stmt_list, true, NULL_TREE);
2593 gimple_seq_add_seq (cond_expr_stmt_list, gimplify_stmt_list);
2594
2595 /* If we only needed the extra conditions and a new loop copy
2596 bail out here. */
2597 if (!do_versioning)
2598 return;
ebfd146a
IR
2599
2600 initialize_original_copy_tables ();
0f900dfa
JJ
2601 loop_version (loop, *cond_expr, &condition_bb,
2602 prob, prob, REG_BR_PROB_BASE - prob, true);
ebfd146a
IR
2603 free_original_copy_tables();
2604
b8698a0f 2605 /* Loop versioning violates an assumption we try to maintain during
ebfd146a
IR
2606 vectorization - that the loop exit block has a single predecessor.
2607 After versioning, the exit block of both loop versions is the same
2608 basic block (i.e. it has two predecessors). Just in order to simplify
2609 following transformations in the vectorizer, we fix this situation
2610 here by adding a new (empty) block on the exit-edge of the loop,
2611 with the proper loop-exit phis to maintain loop-closed-form. */
b8698a0f 2612
ebfd146a
IR
2613 merge_bb = single_exit (loop)->dest;
2614 gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
2615 new_exit_bb = split_edge (single_exit (loop));
2616 new_exit_e = single_exit (loop);
2617 e = EDGE_SUCC (new_exit_bb, 0);
2618
2619 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2620 {
2621 orig_phi = gsi_stmt (gsi);
2622 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
2623 new_exit_bb);
2624 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
b8698a0f 2625 add_phi_arg (new_phi, arg, new_exit_e,
f5045c96 2626 gimple_phi_arg_location_from_edge (orig_phi, e));
684f25f4 2627 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
b8698a0f 2628 }
ebfd146a
IR
2629
2630 /* End loop-exit-fixes after versioning. */
2631
2632 update_ssa (TODO_update_ssa);
86290011 2633 if (*cond_expr_stmt_list)
ebfd146a
IR
2634 {
2635 cond_exp_gsi = gsi_last_bb (condition_bb);
86290011
RG
2636 gsi_insert_seq_before (&cond_exp_gsi, *cond_expr_stmt_list,
2637 GSI_SAME_STMT);
2638 *cond_expr_stmt_list = NULL;
ebfd146a 2639 }
86290011 2640 *cond_expr = NULL_TREE;
ebfd146a
IR
2641}
2642