]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-vect-patterns.c
[RS6000] Disparage altivec_mov gpr alternatives
[thirdparty/gcc.git] / gcc / tree-vect-patterns.c
CommitLineData
20f06221 1/* Analysis Utilities for Loop Vectorization.
818ab71a 2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
20f06221
DN
3 Contributed by Dorit Nuzman <dorit@il.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
20f06221
DN
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20f06221
DN
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
c7131fb2 24#include "backend.h"
957060b5 25#include "rtl.h"
20f06221 26#include "tree.h"
c7131fb2 27#include "gimple.h"
c7131fb2 28#include "ssa.h"
957060b5
AM
29#include "expmed.h"
30#include "optabs-tree.h"
31#include "insn-config.h"
32#include "recog.h" /* FIXME: for insn_data */
40e23961 33#include "fold-const.h"
d8a2d370 34#include "stor-layout.h"
2fb9a547 35#include "tree-eh.h"
45b0be94 36#include "gimplify.h"
5be5c238 37#include "gimple-iterator.h"
20f06221 38#include "cfgloop.h"
20f06221 39#include "tree-vectorizer.h"
7ee2468b 40#include "dumpfile.h"
9b2b7279 41#include "builtins.h"
b4e5bc47 42#include "internal-fn.h"
7a31e5ef 43#include "case-cfn-macros.h"
20f06221 44
20f06221 45/* Pattern recognition functions */
355fe088 46static gimple *vect_recog_widen_sum_pattern (vec<gimple *> *, tree *,
51312233 47 tree *);
355fe088 48static gimple *vect_recog_widen_mult_pattern (vec<gimple *> *, tree *,
51312233 49 tree *);
355fe088 50static gimple *vect_recog_dot_prod_pattern (vec<gimple *> *, tree *,
51312233 51 tree *);
355fe088 52static gimple *vect_recog_sad_pattern (vec<gimple *> *, tree *,
79d652a5 53 tree *);
355fe088
TS
54static gimple *vect_recog_pow_pattern (vec<gimple *> *, tree *, tree *);
55static gimple *vect_recog_over_widening_pattern (vec<gimple *> *, tree *,
1107f3ae 56 tree *);
355fe088 57static gimple *vect_recog_widen_shift_pattern (vec<gimple *> *,
36ba4aae 58 tree *, tree *);
355fe088
TS
59static gimple *vect_recog_rotate_pattern (vec<gimple *> *, tree *, tree *);
60static gimple *vect_recog_vector_vector_shift_pattern (vec<gimple *> *,
732a0ad3 61 tree *, tree *);
355fe088 62static gimple *vect_recog_divmod_pattern (vec<gimple *> *,
079c527f 63 tree *, tree *);
47486460 64
355fe088 65static gimple *vect_recog_mult_pattern (vec<gimple *> *,
47486460
VK
66 tree *, tree *);
67
355fe088 68static gimple *vect_recog_mixed_size_cond_pattern (vec<gimple *> *,
69d2aade 69 tree *, tree *);
355fe088 70static gimple *vect_recog_bool_pattern (vec<gimple *> *, tree *, tree *);
e6f5c25d 71static gimple *vect_recog_mask_conversion_pattern (vec<gimple *> *, tree *, tree *);
0bee0ef9
RB
72
73struct vect_recog_func
74{
75 vect_recog_func_ptr fn;
76 const char *name;
77};
5b723b68
RB
78
79/* Note that ordering matters - the first pattern matching on a stmt
80 is taken which means usually the more complex one needs to preceed
81 the less comples onex (widen_sum only after dot_prod or sad for example). */
0bee0ef9
RB
82static vect_recog_func vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
83 { vect_recog_widen_mult_pattern, "widen_mult" },
0bee0ef9
RB
84 { vect_recog_dot_prod_pattern, "dot_prod" },
85 { vect_recog_sad_pattern, "sad" },
5b723b68 86 { vect_recog_widen_sum_pattern, "widen_sum" },
0bee0ef9
RB
87 { vect_recog_pow_pattern, "pow" },
88 { vect_recog_widen_shift_pattern, "widen_shift" },
89 { vect_recog_over_widening_pattern, "over_widening" },
90 { vect_recog_rotate_pattern, "rotate" },
91 { vect_recog_vector_vector_shift_pattern, "vector_vector_shift" },
92 { vect_recog_divmod_pattern, "divmod" },
93 { vect_recog_mult_pattern, "mult" },
94 { vect_recog_mixed_size_cond_pattern, "mixed_size_cond" },
95 { vect_recog_bool_pattern, "bool" },
96 { vect_recog_mask_conversion_pattern, "mask_conversion" }
97};
20f06221 98
083481d8 99static inline void
355fe088 100append_pattern_def_seq (stmt_vec_info stmt_info, gimple *stmt)
083481d8 101{
a1a6c5b2
JJ
102 gimple_seq_add_stmt_without_update (&STMT_VINFO_PATTERN_DEF_SEQ (stmt_info),
103 stmt);
083481d8
JJ
104}
105
106static inline void
355fe088 107new_pattern_def_seq (stmt_vec_info stmt_info, gimple *stmt)
083481d8
JJ
108{
109 STMT_VINFO_PATTERN_DEF_SEQ (stmt_info) = NULL;
110 append_pattern_def_seq (stmt_info, stmt);
111}
112
f71cf56a
UW
113/* Check whether STMT2 is in the same loop or basic block as STMT1.
114 Which of the two applies depends on whether we're currently doing
115 loop-based or basic-block-based vectorization, as determined by
116 the vinfo_for_stmt for STMT1 (which must be defined).
117
118 If this returns true, vinfo_for_stmt for STMT2 is guaranteed
119 to be defined as well. */
120
121static bool
355fe088 122vect_same_loop_or_bb_p (gimple *stmt1, gimple *stmt2)
f71cf56a
UW
123{
124 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt1);
61d371eb 125 return vect_stmt_in_region_p (stmt_vinfo->vinfo, stmt2);
f71cf56a
UW
126}
127
9a7a4398
UW
128/* If the LHS of DEF_STMT has a single use, and that statement is
129 in the same loop or basic block, return it. */
130
355fe088
TS
131static gimple *
132vect_single_imm_use (gimple *def_stmt)
9a7a4398
UW
133{
134 tree lhs = gimple_assign_lhs (def_stmt);
135 use_operand_p use_p;
355fe088 136 gimple *use_stmt;
9a7a4398
UW
137
138 if (!single_imm_use (lhs, &use_p, &use_stmt))
139 return NULL;
140
141 if (!vect_same_loop_or_bb_p (def_stmt, use_stmt))
142 return NULL;
143
144 return use_stmt;
145}
146
bc4fb355 147/* Check whether NAME, an ssa-name used in USE_STMT,
79d652a5 148 is a result of a type promotion, such that:
20f06221 149 DEF_STMT: NAME = NOP (name0)
383d9c83
IR
150 If CHECK_SIGN is TRUE, check that either both types are signed or both are
151 unsigned. */
20f06221
DN
152
153static bool
355fe088
TS
154type_conversion_p (tree name, gimple *use_stmt, bool check_sign,
155 tree *orig_type, gimple **def_stmt, bool *promotion)
20f06221 156{
355fe088 157 gimple *dummy_gimple;
20f06221 158 stmt_vec_info stmt_vinfo;
20f06221
DN
159 tree type = TREE_TYPE (name);
160 tree oprnd0;
161 enum vect_def_type dt;
20f06221
DN
162
163 stmt_vinfo = vinfo_for_stmt (use_stmt);
81c40241 164 if (!vect_is_simple_use (name, stmt_vinfo->vinfo, def_stmt, &dt))
20f06221
DN
165 return false;
166
8644a673
IR
167 if (dt != vect_internal_def
168 && dt != vect_external_def && dt != vect_constant_def)
20f06221
DN
169 return false;
170
bc4fb355 171 if (!*def_stmt)
20f06221
DN
172 return false;
173
2a2b8f64
JJ
174 if (dt == vect_internal_def)
175 {
176 stmt_vec_info def_vinfo = vinfo_for_stmt (*def_stmt);
177 if (STMT_VINFO_IN_PATTERN_P (def_vinfo))
178 return false;
179 }
180
726a989a 181 if (!is_gimple_assign (*def_stmt))
20f06221
DN
182 return false;
183
bc4fb355 184 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (*def_stmt)))
20f06221
DN
185 return false;
186
726a989a 187 oprnd0 = gimple_assign_rhs1 (*def_stmt);
20f06221 188
bc4fb355
IR
189 *orig_type = TREE_TYPE (oprnd0);
190 if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*orig_type)
191 || ((TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*orig_type)) && check_sign))
192 return false;
193
194 if (TYPE_PRECISION (type) >= (TYPE_PRECISION (*orig_type) * 2))
195 *promotion = true;
bc4fb355 196 else
79d652a5 197 *promotion = false;
20f06221 198
81c40241 199 if (!vect_is_simple_use (oprnd0, stmt_vinfo->vinfo, &dummy_gimple, &dt))
20f06221
DN
200 return false;
201
20f06221
DN
202 return true;
203}
204
726a989a
RB
205/* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
206 is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
207
208static tree
355fe088 209vect_recog_temp_ssa_var (tree type, gimple *stmt)
726a989a 210{
83d5977e 211 return make_temp_ssa_name (type, stmt, "patt");
726a989a 212}
20f06221
DN
213
214/* Function vect_recog_dot_prod_pattern
215
216 Try to find the following pattern:
217
218 type x_t, y_t;
219 TYPE1 prod;
220 TYPE2 sum = init;
221 loop:
222 sum_0 = phi <init, sum_1>
223 S1 x_t = ...
224 S2 y_t = ...
225 S3 x_T = (TYPE1) x_t;
226 S4 y_T = (TYPE1) y_t;
227 S5 prod = x_T * y_T;
228 [S6 prod = (TYPE2) prod; #optional]
229 S7 sum_1 = prod + sum_0;
230
b8698a0f
L
231 where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
232 same size of 'TYPE1' or bigger. This is a special case of a reduction
20f06221 233 computation.
b8698a0f 234
20f06221
DN
235 Input:
236
51312233
IR
237 * STMTS: Contains a stmt from which the pattern search begins. In the
238 example, when this function is called with S7, the pattern {S3,S4,S5,S6,S7}
239 will be detected.
20f06221
DN
240
241 Output:
242
243 * TYPE_IN: The type of the input arguments to the pattern.
244
245 * TYPE_OUT: The type of the output of this pattern.
246
247 * Return value: A new stmt that will be used to replace the sequence of
248 stmts that constitute the pattern. In this case it will be:
249 WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
d29de1bf
DN
250
251 Note: The dot-prod idiom is a widening reduction pattern that is
252 vectorized without preserving all the intermediate results. It
253 produces only N/2 (widened) results (by summing up pairs of
254 intermediate results) rather than all N results. Therefore, we
255 cannot allow this pattern when we want to get all the results and in
256 the correct order (as is the case when this computation is in an
257 inner-loop nested in an outer-loop that us being vectorized). */
20f06221 258
355fe088
TS
259static gimple *
260vect_recog_dot_prod_pattern (vec<gimple *> *stmts, tree *type_in,
51312233 261 tree *type_out)
20f06221 262{
355fe088 263 gimple *stmt, *last_stmt = (*stmts)[0];
20f06221
DN
264 tree oprnd0, oprnd1;
265 tree oprnd00, oprnd01;
51312233 266 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
20f06221 267 tree type, half_type;
355fe088 268 gimple *pattern_stmt;
20f06221 269 tree prod_type;
d29de1bf 270 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
f5709183 271 struct loop *loop;
f471fe72 272 tree var;
bc4fb355 273 bool promotion;
20f06221 274
f5709183
IR
275 if (!loop_info)
276 return NULL;
277
278 loop = LOOP_VINFO_LOOP (loop_info);
279
328dc477
RB
280 /* We don't allow changing the order of the computation in the inner-loop
281 when doing outer-loop vectorization. */
282 if (loop && nested_in_vect_loop_p (loop, last_stmt))
283 return NULL;
284
51312233 285 if (!is_gimple_assign (last_stmt))
20f06221
DN
286 return NULL;
287
51312233 288 type = gimple_expr_type (last_stmt);
20f06221 289
b8698a0f 290 /* Look for the following pattern
20f06221
DN
291 DX = (TYPE1) X;
292 DY = (TYPE1) Y;
b8698a0f 293 DPROD = DX * DY;
20f06221
DN
294 DDPROD = (TYPE2) DPROD;
295 sum_1 = DDPROD + sum_0;
b8698a0f 296 In which
20f06221
DN
297 - DX is double the size of X
298 - DY is double the size of Y
299 - DX, DY, DPROD all have the same type
300 - sum is the same size of DPROD or bigger
301 - sum has been recognized as a reduction variable.
302
303 This is equivalent to:
304 DPROD = X w* Y; #widen mult
305 sum_1 = DPROD w+ sum_0; #widen summation
306 or
307 DPROD = X w* Y; #widen mult
308 sum_1 = DPROD + sum_0; #summation
309 */
310
311 /* Starting from LAST_STMT, follow the defs of its uses in search
312 of the above pattern. */
313
51312233 314 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
20f06221
DN
315 return NULL;
316
317 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
318 {
319 /* Has been detected as widening-summation? */
320
321 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
726a989a
RB
322 type = gimple_expr_type (stmt);
323 if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
20f06221 324 return NULL;
726a989a
RB
325 oprnd0 = gimple_assign_rhs1 (stmt);
326 oprnd1 = gimple_assign_rhs2 (stmt);
20f06221
DN
327 half_type = TREE_TYPE (oprnd0);
328 }
329 else
330 {
355fe088 331 gimple *def_stmt;
20f06221 332
b308d872
RB
333 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def
334 && ! STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_vinfo))
335 return NULL;
51312233
IR
336 oprnd0 = gimple_assign_rhs1 (last_stmt);
337 oprnd1 = gimple_assign_rhs2 (last_stmt);
9600efe1
MM
338 if (!types_compatible_p (TREE_TYPE (oprnd0), type)
339 || !types_compatible_p (TREE_TYPE (oprnd1), type))
20f06221 340 return NULL;
51312233 341 stmt = last_stmt;
20f06221 342
bc4fb355 343 if (type_conversion_p (oprnd0, stmt, true, &half_type, &def_stmt,
2a2b8f64
JJ
344 &promotion)
345 && promotion)
20f06221
DN
346 {
347 stmt = def_stmt;
726a989a 348 oprnd0 = gimple_assign_rhs1 (stmt);
20f06221
DN
349 }
350 else
351 half_type = type;
352 }
353
51312233 354 /* So far so good. Since last_stmt was detected as a (summation) reduction,
20f06221
DN
355 we know that oprnd1 is the reduction variable (defined by a loop-header
356 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
357 Left to check that oprnd0 is defined by a (widen_)mult_expr */
ba02d3bc
RG
358 if (TREE_CODE (oprnd0) != SSA_NAME)
359 return NULL;
20f06221
DN
360
361 prod_type = half_type;
362 stmt = SSA_NAME_DEF_STMT (oprnd0);
3cb35c12
CF
363
364 /* It could not be the dot_prod pattern if the stmt is outside the loop. */
75264e61 365 if (!gimple_bb (stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
3cb35c12
CF
366 return NULL;
367
b8698a0f 368 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
8665227f 369 inside the loop (in case we are analyzing an outer-loop). */
726a989a 370 if (!is_gimple_assign (stmt))
b8698a0f 371 return NULL;
20f06221
DN
372 stmt_vinfo = vinfo_for_stmt (stmt);
373 gcc_assert (stmt_vinfo);
8644a673 374 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
b3130586 375 return NULL;
726a989a 376 if (gimple_assign_rhs_code (stmt) != MULT_EXPR)
20f06221
DN
377 return NULL;
378 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
379 {
380 /* Has been detected as a widening multiplication? */
381
382 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
726a989a 383 if (gimple_assign_rhs_code (stmt) != WIDEN_MULT_EXPR)
20f06221
DN
384 return NULL;
385 stmt_vinfo = vinfo_for_stmt (stmt);
386 gcc_assert (stmt_vinfo);
8644a673 387 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_internal_def);
726a989a
RB
388 oprnd00 = gimple_assign_rhs1 (stmt);
389 oprnd01 = gimple_assign_rhs2 (stmt);
56f8faae
CH
390 STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (last_stmt))
391 = STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo);
20f06221
DN
392 }
393 else
394 {
395 tree half_type0, half_type1;
355fe088 396 gimple *def_stmt;
20f06221
DN
397 tree oprnd0, oprnd1;
398
726a989a
RB
399 oprnd0 = gimple_assign_rhs1 (stmt);
400 oprnd1 = gimple_assign_rhs2 (stmt);
9600efe1
MM
401 if (!types_compatible_p (TREE_TYPE (oprnd0), prod_type)
402 || !types_compatible_p (TREE_TYPE (oprnd1), prod_type))
20f06221 403 return NULL;
bc4fb355 404 if (!type_conversion_p (oprnd0, stmt, true, &half_type0, &def_stmt,
2a2b8f64
JJ
405 &promotion)
406 || !promotion)
20f06221 407 return NULL;
726a989a 408 oprnd00 = gimple_assign_rhs1 (def_stmt);
181f5f3e 409 if (!type_conversion_p (oprnd1, stmt, true, &half_type1, &def_stmt,
2a2b8f64
JJ
410 &promotion)
411 || !promotion)
20f06221 412 return NULL;
726a989a 413 oprnd01 = gimple_assign_rhs1 (def_stmt);
9600efe1 414 if (!types_compatible_p (half_type0, half_type1))
20f06221
DN
415 return NULL;
416 if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
417 return NULL;
418 }
419
420 half_type = TREE_TYPE (oprnd00);
421 *type_in = half_type;
422 *type_out = type;
b8698a0f 423
20f06221 424 /* Pattern detected. Create a stmt to be used to replace the pattern: */
726a989a 425 var = vect_recog_temp_ssa_var (type, NULL);
0d0e4a03
JJ
426 pattern_stmt = gimple_build_assign (var, DOT_PROD_EXPR,
427 oprnd00, oprnd01, oprnd1);
b8698a0f 428
73fbfcad 429 if (dump_enabled_p ())
20f06221 430 {
ccb3ad87 431 dump_printf_loc (MSG_NOTE, vect_location,
78c60e3d 432 "vect_recog_dot_prod_pattern: detected: ");
ccb3ad87 433 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
20f06221 434 }
d29de1bf 435
726a989a 436 return pattern_stmt;
20f06221 437}
b8698a0f 438
51312233 439
79d652a5
CH
440/* Function vect_recog_sad_pattern
441
442 Try to find the following Sum of Absolute Difference (SAD) pattern:
443
444 type x_t, y_t;
445 signed TYPE1 diff, abs_diff;
446 TYPE2 sum = init;
447 loop:
448 sum_0 = phi <init, sum_1>
449 S1 x_t = ...
450 S2 y_t = ...
451 S3 x_T = (TYPE1) x_t;
452 S4 y_T = (TYPE1) y_t;
453 S5 diff = x_T - y_T;
454 S6 abs_diff = ABS_EXPR <diff>;
455 [S7 abs_diff = (TYPE2) abs_diff; #optional]
456 S8 sum_1 = abs_diff + sum_0;
457
458 where 'TYPE1' is at least double the size of type 'type', and 'TYPE2' is the
459 same size of 'TYPE1' or bigger. This is a special case of a reduction
460 computation.
461
462 Input:
463
464 * STMTS: Contains a stmt from which the pattern search begins. In the
465 example, when this function is called with S8, the pattern
466 {S3,S4,S5,S6,S7,S8} will be detected.
467
468 Output:
469
470 * TYPE_IN: The type of the input arguments to the pattern.
471
472 * TYPE_OUT: The type of the output of this pattern.
473
474 * Return value: A new stmt that will be used to replace the sequence of
475 stmts that constitute the pattern. In this case it will be:
476 SAD_EXPR <x_t, y_t, sum_0>
477 */
478
355fe088
TS
479static gimple *
480vect_recog_sad_pattern (vec<gimple *> *stmts, tree *type_in,
79d652a5
CH
481 tree *type_out)
482{
355fe088 483 gimple *last_stmt = (*stmts)[0];
79d652a5
CH
484 tree sad_oprnd0, sad_oprnd1;
485 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
486 tree half_type;
487 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
488 struct loop *loop;
489 bool promotion;
490
491 if (!loop_info)
492 return NULL;
493
494 loop = LOOP_VINFO_LOOP (loop_info);
495
328dc477
RB
496 /* We don't allow changing the order of the computation in the inner-loop
497 when doing outer-loop vectorization. */
498 if (loop && nested_in_vect_loop_p (loop, last_stmt))
499 return NULL;
500
79d652a5
CH
501 if (!is_gimple_assign (last_stmt))
502 return NULL;
503
504 tree sum_type = gimple_expr_type (last_stmt);
505
506 /* Look for the following pattern
507 DX = (TYPE1) X;
508 DY = (TYPE1) Y;
509 DDIFF = DX - DY;
510 DAD = ABS_EXPR <DDIFF>;
511 DDPROD = (TYPE2) DPROD;
512 sum_1 = DAD + sum_0;
513 In which
514 - DX is at least double the size of X
515 - DY is at least double the size of Y
516 - DX, DY, DDIFF, DAD all have the same type
517 - sum is the same size of DAD or bigger
518 - sum has been recognized as a reduction variable.
519
520 This is equivalent to:
521 DDIFF = X w- Y; #widen sub
522 DAD = ABS_EXPR <DDIFF>;
523 sum_1 = DAD w+ sum_0; #widen summation
524 or
525 DDIFF = X w- Y; #widen sub
526 DAD = ABS_EXPR <DDIFF>;
527 sum_1 = DAD + sum_0; #summation
528 */
529
530 /* Starting from LAST_STMT, follow the defs of its uses in search
531 of the above pattern. */
532
533 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
534 return NULL;
535
536 tree plus_oprnd0, plus_oprnd1;
537
538 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
539 {
540 /* Has been detected as widening-summation? */
541
355fe088 542 gimple *stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
79d652a5
CH
543 sum_type = gimple_expr_type (stmt);
544 if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
545 return NULL;
546 plus_oprnd0 = gimple_assign_rhs1 (stmt);
547 plus_oprnd1 = gimple_assign_rhs2 (stmt);
548 half_type = TREE_TYPE (plus_oprnd0);
549 }
550 else
551 {
355fe088 552 gimple *def_stmt;
79d652a5 553
b308d872
RB
554 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def
555 && ! STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_vinfo))
556 return NULL;
79d652a5
CH
557 plus_oprnd0 = gimple_assign_rhs1 (last_stmt);
558 plus_oprnd1 = gimple_assign_rhs2 (last_stmt);
559 if (!types_compatible_p (TREE_TYPE (plus_oprnd0), sum_type)
560 || !types_compatible_p (TREE_TYPE (plus_oprnd1), sum_type))
561 return NULL;
562
563 /* The type conversion could be promotion, demotion,
564 or just signed -> unsigned. */
565 if (type_conversion_p (plus_oprnd0, last_stmt, false,
566 &half_type, &def_stmt, &promotion))
567 plus_oprnd0 = gimple_assign_rhs1 (def_stmt);
568 else
569 half_type = sum_type;
570 }
571
572 /* So far so good. Since last_stmt was detected as a (summation) reduction,
573 we know that plus_oprnd1 is the reduction variable (defined by a loop-header
574 phi), and plus_oprnd0 is an ssa-name defined by a stmt in the loop body.
575 Then check that plus_oprnd0 is defined by an abs_expr. */
576
577 if (TREE_CODE (plus_oprnd0) != SSA_NAME)
578 return NULL;
579
580 tree abs_type = half_type;
355fe088 581 gimple *abs_stmt = SSA_NAME_DEF_STMT (plus_oprnd0);
79d652a5
CH
582
583 /* It could not be the sad pattern if the abs_stmt is outside the loop. */
584 if (!gimple_bb (abs_stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (abs_stmt)))
585 return NULL;
586
587 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
588 inside the loop (in case we are analyzing an outer-loop). */
589 if (!is_gimple_assign (abs_stmt))
590 return NULL;
591
592 stmt_vec_info abs_stmt_vinfo = vinfo_for_stmt (abs_stmt);
593 gcc_assert (abs_stmt_vinfo);
594 if (STMT_VINFO_DEF_TYPE (abs_stmt_vinfo) != vect_internal_def)
595 return NULL;
596 if (gimple_assign_rhs_code (abs_stmt) != ABS_EXPR)
597 return NULL;
598
599 tree abs_oprnd = gimple_assign_rhs1 (abs_stmt);
600 if (!types_compatible_p (TREE_TYPE (abs_oprnd), abs_type))
601 return NULL;
602 if (TYPE_UNSIGNED (abs_type))
603 return NULL;
604
605 /* We then detect if the operand of abs_expr is defined by a minus_expr. */
606
607 if (TREE_CODE (abs_oprnd) != SSA_NAME)
608 return NULL;
609
355fe088 610 gimple *diff_stmt = SSA_NAME_DEF_STMT (abs_oprnd);
79d652a5
CH
611
612 /* It could not be the sad pattern if the diff_stmt is outside the loop. */
613 if (!gimple_bb (diff_stmt)
614 || !flow_bb_inside_loop_p (loop, gimple_bb (diff_stmt)))
615 return NULL;
616
617 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
618 inside the loop (in case we are analyzing an outer-loop). */
619 if (!is_gimple_assign (diff_stmt))
620 return NULL;
621
622 stmt_vec_info diff_stmt_vinfo = vinfo_for_stmt (diff_stmt);
623 gcc_assert (diff_stmt_vinfo);
624 if (STMT_VINFO_DEF_TYPE (diff_stmt_vinfo) != vect_internal_def)
625 return NULL;
626 if (gimple_assign_rhs_code (diff_stmt) != MINUS_EXPR)
627 return NULL;
628
629 tree half_type0, half_type1;
355fe088 630 gimple *def_stmt;
79d652a5
CH
631
632 tree minus_oprnd0 = gimple_assign_rhs1 (diff_stmt);
633 tree minus_oprnd1 = gimple_assign_rhs2 (diff_stmt);
634
635 if (!types_compatible_p (TREE_TYPE (minus_oprnd0), abs_type)
636 || !types_compatible_p (TREE_TYPE (minus_oprnd1), abs_type))
637 return NULL;
638 if (!type_conversion_p (minus_oprnd0, diff_stmt, false,
639 &half_type0, &def_stmt, &promotion)
640 || !promotion)
641 return NULL;
642 sad_oprnd0 = gimple_assign_rhs1 (def_stmt);
643
644 if (!type_conversion_p (minus_oprnd1, diff_stmt, false,
645 &half_type1, &def_stmt, &promotion)
646 || !promotion)
647 return NULL;
648 sad_oprnd1 = gimple_assign_rhs1 (def_stmt);
649
650 if (!types_compatible_p (half_type0, half_type1))
651 return NULL;
652 if (TYPE_PRECISION (abs_type) < TYPE_PRECISION (half_type0) * 2
653 || TYPE_PRECISION (sum_type) < TYPE_PRECISION (half_type0) * 2)
654 return NULL;
655
656 *type_in = TREE_TYPE (sad_oprnd0);
657 *type_out = sum_type;
658
659 /* Pattern detected. Create a stmt to be used to replace the pattern: */
660 tree var = vect_recog_temp_ssa_var (sum_type, NULL);
355fe088
TS
661 gimple *pattern_stmt = gimple_build_assign (var, SAD_EXPR, sad_oprnd0,
662 sad_oprnd1, plus_oprnd1);
79d652a5
CH
663
664 if (dump_enabled_p ())
665 {
666 dump_printf_loc (MSG_NOTE, vect_location,
667 "vect_recog_sad_pattern: detected: ");
668 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
79d652a5
CH
669 }
670
79d652a5
CH
671 return pattern_stmt;
672}
673
674
36ba4aae
IR
675/* Handle widening operation by a constant. At the moment we support MULT_EXPR
676 and LSHIFT_EXPR.
677
678 For MULT_EXPR we check that CONST_OPRND fits HALF_TYPE, and for LSHIFT_EXPR
679 we check that CONST_OPRND is less or equal to the size of HALF_TYPE.
51312233
IR
680
681 Otherwise, if the type of the result (TYPE) is at least 4 times bigger than
36ba4aae
IR
682 HALF_TYPE, and there is an intermediate type (2 times smaller than TYPE)
683 that satisfies the above restrictions, we can perform a widening opeartion
684 from the intermediate type to TYPE and replace a_T = (TYPE) a_t;
566d377a 685 with a_it = (interm_type) a_t; Store such operation in *WSTMT. */
51312233
IR
686
687static bool
355fe088 688vect_handle_widen_op_by_const (gimple *stmt, enum tree_code code,
36ba4aae 689 tree const_oprnd, tree *oprnd,
355fe088
TS
690 gimple **wstmt, tree type,
691 tree *half_type, gimple *def_stmt)
51312233 692{
83d5977e 693 tree new_type, new_oprnd;
51312233 694
36ba4aae
IR
695 if (code != MULT_EXPR && code != LSHIFT_EXPR)
696 return false;
697
698 if (((code == MULT_EXPR && int_fits_type_p (const_oprnd, *half_type))
699 || (code == LSHIFT_EXPR
700 && compare_tree_int (const_oprnd, TYPE_PRECISION (*half_type))
701 != 1))
702 && TYPE_PRECISION (type) == (TYPE_PRECISION (*half_type) * 2))
51312233
IR
703 {
704 /* CONST_OPRND is a constant of HALF_TYPE. */
705 *oprnd = gimple_assign_rhs1 (def_stmt);
706 return true;
707 }
708
f71cf56a
UW
709 if (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 4))
710 return false;
711
712 if (!vect_same_loop_or_bb_p (stmt, def_stmt))
51312233
IR
713 return false;
714
36ba4aae 715 /* TYPE is 4 times bigger than HALF_TYPE, try widening operation for
51312233
IR
716 a type 2 times bigger than HALF_TYPE. */
717 new_type = build_nonstandard_integer_type (TYPE_PRECISION (type) / 2,
718 TYPE_UNSIGNED (type));
36ba4aae
IR
719 if ((code == MULT_EXPR && !int_fits_type_p (const_oprnd, new_type))
720 || (code == LSHIFT_EXPR
721 && compare_tree_int (const_oprnd, TYPE_PRECISION (new_type)) == 1))
51312233
IR
722 return false;
723
566d377a
RB
724 /* Use NEW_TYPE for widening operation and create a_T = (NEW_TYPE) a_t; */
725 *oprnd = gimple_assign_rhs1 (def_stmt);
726 new_oprnd = make_ssa_name (new_type);
727 *wstmt = gimple_build_assign (new_oprnd, NOP_EXPR, *oprnd);
728 *oprnd = new_oprnd;
51312233
IR
729
730 *half_type = new_type;
731 return true;
732}
733
734
20f06221
DN
735/* Function vect_recog_widen_mult_pattern
736
737 Try to find the following pattern:
738
d367387c
CH
739 type1 a_t;
740 type2 b_t;
20f06221
DN
741 TYPE a_T, b_T, prod_T;
742
743 S1 a_t = ;
744 S2 b_t = ;
745 S3 a_T = (TYPE) a_t;
746 S4 b_T = (TYPE) b_t;
747 S5 prod_T = a_T * b_T;
748
d367387c 749 where type 'TYPE' is at least double the size of type 'type1' and 'type2'.
20f06221 750
d47657bd 751 Also detect unsigned cases:
383d9c83 752
d367387c
CH
753 unsigned type1 a_t;
754 unsigned type2 b_t;
383d9c83
IR
755 unsigned TYPE u_prod_T;
756 TYPE a_T, b_T, prod_T;
757
758 S1 a_t = ;
759 S2 b_t = ;
760 S3 a_T = (TYPE) a_t;
761 S4 b_T = (TYPE) b_t;
762 S5 prod_T = a_T * b_T;
763 S6 u_prod_T = (unsigned TYPE) prod_T;
764
765 and multiplication by constants:
766
767 type a_t;
768 TYPE a_T, prod_T;
769
770 S1 a_t = ;
771 S3 a_T = (TYPE) a_t;
772 S5 prod_T = a_T * CONST;
773
51312233
IR
774 A special case of multiplication by constants is when 'TYPE' is 4 times
775 bigger than 'type', but CONST fits an intermediate type 2 times smaller
776 than 'TYPE'. In that case we create an additional pattern stmt for S3
777 to create a variable of the intermediate type, and perform widen-mult
778 on the intermediate type as well:
779
780 type a_t;
781 interm_type a_it;
782 TYPE a_T, prod_T, prod_T';
783
784 S1 a_t = ;
785 S3 a_T = (TYPE) a_t;
786 '--> a_it = (interm_type) a_t;
787 S5 prod_T = a_T * CONST;
788 '--> prod_T' = a_it w* CONST;
20f06221 789
51312233
IR
790 Input/Output:
791
792 * STMTS: Contains a stmt from which the pattern search begins. In the
793 example, when this function is called with S5, the pattern {S3,S4,S5,(S6)}
794 is detected. In case of unsigned widen-mult, the original stmt (S5) is
795 replaced with S6 in STMTS. In case of multiplication by a constant
796 of an intermediate type (the last case above), STMTS also contains S3
797 (inserted before S5).
20f06221
DN
798
799 Output:
800
801 * TYPE_IN: The type of the input arguments to the pattern.
802
383d9c83 803 * TYPE_OUT: The type of the output of this pattern.
20f06221
DN
804
805 * Return value: A new stmt that will be used to replace the sequence of
383d9c83 806 stmts that constitute the pattern. In this case it will be:
20f06221 807 WIDEN_MULT <a_t, b_t>
d367387c
CH
808 If the result of WIDEN_MULT needs to be converted to a larger type, the
809 returned stmt will be this type conversion stmt.
20f06221
DN
810*/
811
355fe088
TS
812static gimple *
813vect_recog_widen_mult_pattern (vec<gimple *> *stmts,
51312233 814 tree *type_in, tree *type_out)
20f06221 815{
355fe088
TS
816 gimple *last_stmt = stmts->pop ();
817 gimple *def_stmt0, *def_stmt1;
89d67cca
DN
818 tree oprnd0, oprnd1;
819 tree type, half_type0, half_type1;
355fe088 820 gimple *new_stmt = NULL, *pattern_stmt = NULL;
d367387c 821 tree vectype, vecitype;
726a989a 822 tree var;
89d67cca 823 enum tree_code dummy_code;
5d593372 824 int dummy_int;
9771b263 825 vec<tree> dummy_vec;
36ba4aae 826 bool op1_ok;
bc4fb355 827 bool promotion;
89d67cca 828
51312233 829 if (!is_gimple_assign (last_stmt))
89d67cca
DN
830 return NULL;
831
51312233 832 type = gimple_expr_type (last_stmt);
89d67cca
DN
833
834 /* Starting from LAST_STMT, follow the defs of its uses in search
835 of the above pattern. */
836
51312233 837 if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
89d67cca
DN
838 return NULL;
839
51312233
IR
840 oprnd0 = gimple_assign_rhs1 (last_stmt);
841 oprnd1 = gimple_assign_rhs2 (last_stmt);
9600efe1
MM
842 if (!types_compatible_p (TREE_TYPE (oprnd0), type)
843 || !types_compatible_p (TREE_TYPE (oprnd1), type))
89d67cca
DN
844 return NULL;
845
383d9c83 846 /* Check argument 0. */
bc4fb355
IR
847 if (!type_conversion_p (oprnd0, last_stmt, false, &half_type0, &def_stmt0,
848 &promotion)
849 || !promotion)
850 return NULL;
383d9c83 851 /* Check argument 1. */
bc4fb355
IR
852 op1_ok = type_conversion_p (oprnd1, last_stmt, false, &half_type1,
853 &def_stmt1, &promotion);
89d67cca 854
bc4fb355 855 if (op1_ok && promotion)
383d9c83
IR
856 {
857 oprnd0 = gimple_assign_rhs1 (def_stmt0);
858 oprnd1 = gimple_assign_rhs1 (def_stmt1);
859 }
36ba4aae 860 else
383d9c83 861 {
51312233 862 if (TREE_CODE (oprnd1) == INTEGER_CST
383d9c83 863 && TREE_CODE (half_type0) == INTEGER_TYPE
36ba4aae 864 && vect_handle_widen_op_by_const (last_stmt, MULT_EXPR, oprnd1,
566d377a 865 &oprnd0, &new_stmt, type,
36ba4aae 866 &half_type0, def_stmt0))
bfdeda2c
JJ
867 {
868 half_type1 = half_type0;
869 oprnd1 = fold_convert (half_type1, oprnd1);
870 }
383d9c83
IR
871 else
872 return NULL;
873 }
874
d367387c
CH
875 /* If the two arguments have different sizes, convert the one with
876 the smaller type into the larger type. */
877 if (TYPE_PRECISION (half_type0) != TYPE_PRECISION (half_type1))
878 {
566d377a
RB
879 /* If we already used up the single-stmt slot give up. */
880 if (new_stmt)
881 return NULL;
882
d367387c 883 tree* oprnd = NULL;
355fe088 884 gimple *def_stmt = NULL;
d367387c
CH
885
886 if (TYPE_PRECISION (half_type0) < TYPE_PRECISION (half_type1))
887 {
888 def_stmt = def_stmt0;
889 half_type0 = half_type1;
890 oprnd = &oprnd0;
891 }
892 else
893 {
894 def_stmt = def_stmt1;
895 half_type1 = half_type0;
896 oprnd = &oprnd1;
897 }
898
2a2b8f64
JJ
899 tree old_oprnd = gimple_assign_rhs1 (def_stmt);
900 tree new_oprnd = make_ssa_name (half_type0);
901 new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, old_oprnd);
902 *oprnd = new_oprnd;
d367387c
CH
903 }
904
383d9c83
IR
905 /* Handle unsigned case. Look for
906 S6 u_prod_T = (unsigned TYPE) prod_T;
907 Use unsigned TYPE as the type for WIDEN_MULT_EXPR. */
908 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (half_type0))
909 {
355fe088 910 gimple *use_stmt;
9a7a4398 911 tree use_lhs;
383d9c83
IR
912 tree use_type;
913
914 if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (half_type1))
915 return NULL;
916
9a7a4398
UW
917 use_stmt = vect_single_imm_use (last_stmt);
918 if (!use_stmt || !is_gimple_assign (use_stmt)
625a9766 919 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
383d9c83
IR
920 return NULL;
921
922 use_lhs = gimple_assign_lhs (use_stmt);
923 use_type = TREE_TYPE (use_lhs);
924 if (!INTEGRAL_TYPE_P (use_type)
925 || (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (use_type))
926 || (TYPE_PRECISION (type) != TYPE_PRECISION (use_type)))
927 return NULL;
928
929 type = use_type;
51312233 930 last_stmt = use_stmt;
383d9c83 931 }
89d67cca 932
9600efe1 933 if (!types_compatible_p (half_type0, half_type1))
89d67cca
DN
934 return NULL;
935
d367387c
CH
936 /* If TYPE is more than twice larger than HALF_TYPE, we use WIDEN_MULT
937 to get an intermediate result of type ITYPE. In this case we need
938 to build a statement to convert this intermediate result to type TYPE. */
939 tree itype = type;
940 if (TYPE_PRECISION (type) > TYPE_PRECISION (half_type0) * 2)
941 itype = build_nonstandard_integer_type
942 (GET_MODE_BITSIZE (TYPE_MODE (half_type0)) * 2,
943 TYPE_UNSIGNED (type));
944
89d67cca 945 /* Pattern detected. */
73fbfcad 946 if (dump_enabled_p ())
ccb3ad87 947 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 948 "vect_recog_widen_mult_pattern: detected:\n");
89d67cca
DN
949
950 /* Check target support */
951 vectype = get_vectype_for_scalar_type (half_type0);
d367387c 952 vecitype = get_vectype_for_scalar_type (itype);
03d3e953 953 if (!vectype
d367387c 954 || !vecitype
51312233 955 || !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt,
d367387c 956 vecitype, vectype,
a86ec597
RH
957 &dummy_code, &dummy_code,
958 &dummy_int, &dummy_vec))
89d67cca
DN
959 return NULL;
960
961 *type_in = vectype;
d367387c 962 *type_out = get_vectype_for_scalar_type (type);
89d67cca
DN
963
964 /* Pattern supported. Create a stmt to be used to replace the pattern: */
d367387c 965 var = vect_recog_temp_ssa_var (itype, NULL);
0d0e4a03 966 pattern_stmt = gimple_build_assign (var, WIDEN_MULT_EXPR, oprnd0, oprnd1);
726a989a 967
d367387c 968 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
d367387c
CH
969 STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
970
971 /* If the original two operands have different sizes, we may need to convert
972 the smaller one into the larget type. If this is the case, at this point
973 the new stmt is already built. */
974 if (new_stmt)
975 {
976 append_pattern_def_seq (stmt_vinfo, new_stmt);
977 stmt_vec_info new_stmt_info
310213d4 978 = new_stmt_vec_info (new_stmt, stmt_vinfo->vinfo);
d367387c
CH
979 set_vinfo_for_stmt (new_stmt, new_stmt_info);
980 STMT_VINFO_VECTYPE (new_stmt_info) = vectype;
981 }
982
983 /* If ITYPE is not TYPE, we need to build a type convertion stmt to convert
984 the result of the widen-mult operation into type TYPE. */
985 if (itype != type)
986 {
987 append_pattern_def_seq (stmt_vinfo, pattern_stmt);
988 stmt_vec_info pattern_stmt_info
310213d4 989 = new_stmt_vec_info (pattern_stmt, stmt_vinfo->vinfo);
d367387c
CH
990 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
991 STMT_VINFO_VECTYPE (pattern_stmt_info) = vecitype;
0d0e4a03
JJ
992 pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
993 NOP_EXPR,
994 gimple_assign_lhs (pattern_stmt));
d367387c
CH
995 }
996
73fbfcad 997 if (dump_enabled_p ())
78c60e3d 998 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
726a989a 999
9771b263 1000 stmts->safe_push (last_stmt);
726a989a 1001 return pattern_stmt;
20f06221
DN
1002}
1003
1004
0b2229b0
RG
1005/* Function vect_recog_pow_pattern
1006
1007 Try to find the following pattern:
1008
1009 x = POW (y, N);
1010
1011 with POW being one of pow, powf, powi, powif and N being
1012 either 2 or 0.5.
1013
1014 Input:
1015
1016 * LAST_STMT: A stmt from which the pattern search begins.
1017
1018 Output:
1019
1020 * TYPE_IN: The type of the input arguments to the pattern.
1021
1022 * TYPE_OUT: The type of the output of this pattern.
1023
1024 * Return value: A new stmt that will be used to replace the sequence of
1025 stmts that constitute the pattern. In this case it will be:
726a989a 1026 x = x * x
0b2229b0 1027 or
726a989a 1028 x = sqrt (x)
0b2229b0
RG
1029*/
1030
355fe088
TS
1031static gimple *
1032vect_recog_pow_pattern (vec<gimple *> *stmts, tree *type_in,
51312233 1033 tree *type_out)
0b2229b0 1034{
355fe088 1035 gimple *last_stmt = (*stmts)[0];
7a31e5ef 1036 tree base, exp = NULL;
355fe088 1037 gimple *stmt;
726a989a 1038 tree var;
0b2229b0 1039
51312233 1040 if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
0b2229b0
RG
1041 return NULL;
1042
7a31e5ef 1043 switch (gimple_call_combined_fn (last_stmt))
0b2229b0 1044 {
7a31e5ef
RS
1045 CASE_CFN_POW:
1046 CASE_CFN_POWI:
51312233
IR
1047 base = gimple_call_arg (last_stmt, 0);
1048 exp = gimple_call_arg (last_stmt, 1);
0b2229b0
RG
1049 if (TREE_CODE (exp) != REAL_CST
1050 && TREE_CODE (exp) != INTEGER_CST)
726a989a 1051 return NULL;
0b2229b0
RG
1052 break;
1053
726a989a
RB
1054 default:
1055 return NULL;
0b2229b0
RG
1056 }
1057
1058 /* We now have a pow or powi builtin function call with a constant
1059 exponent. */
1060
0b2229b0
RG
1061 *type_out = NULL_TREE;
1062
1063 /* Catch squaring. */
9541ffee 1064 if ((tree_fits_shwi_p (exp)
9439e9a1 1065 && tree_to_shwi (exp) == 2)
0b2229b0 1066 || (TREE_CODE (exp) == REAL_CST
624d31fe 1067 && real_equal (&TREE_REAL_CST (exp), &dconst2)))
c6b1b49b
RG
1068 {
1069 *type_in = TREE_TYPE (base);
726a989a
RB
1070
1071 var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
0d0e4a03 1072 stmt = gimple_build_assign (var, MULT_EXPR, base, base);
726a989a 1073 return stmt;
c6b1b49b 1074 }
0b2229b0
RG
1075
1076 /* Catch square root. */
1077 if (TREE_CODE (exp) == REAL_CST
624d31fe 1078 && real_equal (&TREE_REAL_CST (exp), &dconsthalf))
0b2229b0 1079 {
c6b1b49b 1080 *type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
d95ab70a
RS
1081 if (*type_in
1082 && direct_internal_fn_supported_p (IFN_SQRT, *type_in,
1083 OPTIMIZE_FOR_SPEED))
c6b1b49b 1084 {
b4e5bc47
RS
1085 gcall *stmt = gimple_build_call_internal (IFN_SQRT, 1, base);
1086 var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
1087 gimple_call_set_lhs (stmt, var);
1088 return stmt;
c6b1b49b 1089 }
0b2229b0
RG
1090 }
1091
726a989a 1092 return NULL;
0b2229b0
RG
1093}
1094
1095
20f06221
DN
1096/* Function vect_recog_widen_sum_pattern
1097
1098 Try to find the following pattern:
1099
b8698a0f 1100 type x_t;
20f06221
DN
1101 TYPE x_T, sum = init;
1102 loop:
1103 sum_0 = phi <init, sum_1>
1104 S1 x_t = *p;
1105 S2 x_T = (TYPE) x_t;
1106 S3 sum_1 = x_T + sum_0;
1107
b8698a0f 1108 where type 'TYPE' is at least double the size of type 'type', i.e - we're
20f06221 1109 summing elements of type 'type' into an accumulator of type 'TYPE'. This is
917f1b7e 1110 a special case of a reduction computation.
20f06221
DN
1111
1112 Input:
1113
1114 * LAST_STMT: A stmt from which the pattern search begins. In the example,
1115 when this function is called with S3, the pattern {S2,S3} will be detected.
b8698a0f 1116
20f06221 1117 Output:
b8698a0f 1118
20f06221
DN
1119 * TYPE_IN: The type of the input arguments to the pattern.
1120
1121 * TYPE_OUT: The type of the output of this pattern.
1122
1123 * Return value: A new stmt that will be used to replace the sequence of
1124 stmts that constitute the pattern. In this case it will be:
1125 WIDEN_SUM <x_t, sum_0>
d29de1bf 1126
b8698a0f 1127 Note: The widening-sum idiom is a widening reduction pattern that is
d29de1bf 1128 vectorized without preserving all the intermediate results. It
b8698a0f
L
1129 produces only N/2 (widened) results (by summing up pairs of
1130 intermediate results) rather than all N results. Therefore, we
1131 cannot allow this pattern when we want to get all the results and in
1132 the correct order (as is the case when this computation is in an
d29de1bf 1133 inner-loop nested in an outer-loop that us being vectorized). */
20f06221 1134
355fe088
TS
1135static gimple *
1136vect_recog_widen_sum_pattern (vec<gimple *> *stmts, tree *type_in,
51312233 1137 tree *type_out)
20f06221 1138{
355fe088 1139 gimple *stmt, *last_stmt = (*stmts)[0];
20f06221 1140 tree oprnd0, oprnd1;
51312233 1141 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
20f06221 1142 tree type, half_type;
355fe088 1143 gimple *pattern_stmt;
d29de1bf 1144 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
f5709183 1145 struct loop *loop;
726a989a 1146 tree var;
bc4fb355 1147 bool promotion;
20f06221 1148
f5709183
IR
1149 if (!loop_info)
1150 return NULL;
1151
1152 loop = LOOP_VINFO_LOOP (loop_info);
1153
328dc477
RB
1154 /* We don't allow changing the order of the computation in the inner-loop
1155 when doing outer-loop vectorization. */
1156 if (loop && nested_in_vect_loop_p (loop, last_stmt))
1157 return NULL;
1158
51312233 1159 if (!is_gimple_assign (last_stmt))
20f06221
DN
1160 return NULL;
1161
51312233 1162 type = gimple_expr_type (last_stmt);
20f06221
DN
1163
1164 /* Look for the following pattern
1165 DX = (TYPE) X;
1166 sum_1 = DX + sum_0;
1167 In which DX is at least double the size of X, and sum_1 has been
1168 recognized as a reduction variable.
1169 */
1170
1171 /* Starting from LAST_STMT, follow the defs of its uses in search
1172 of the above pattern. */
1173
51312233 1174 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
20f06221
DN
1175 return NULL;
1176
b308d872
RB
1177 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def
1178 && ! STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_vinfo))
1179 return NULL;
1180
51312233
IR
1181 oprnd0 = gimple_assign_rhs1 (last_stmt);
1182 oprnd1 = gimple_assign_rhs2 (last_stmt);
9600efe1
MM
1183 if (!types_compatible_p (TREE_TYPE (oprnd0), type)
1184 || !types_compatible_p (TREE_TYPE (oprnd1), type))
20f06221
DN
1185 return NULL;
1186
51312233 1187 /* So far so good. Since last_stmt was detected as a (summation) reduction,
20f06221
DN
1188 we know that oprnd1 is the reduction variable (defined by a loop-header
1189 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
1190 Left to check that oprnd0 is defined by a cast from type 'type' to type
1191 'TYPE'. */
1192
bc4fb355
IR
1193 if (!type_conversion_p (oprnd0, last_stmt, true, &half_type, &stmt,
1194 &promotion)
1195 || !promotion)
1196 return NULL;
20f06221 1197
726a989a 1198 oprnd0 = gimple_assign_rhs1 (stmt);
20f06221
DN
1199 *type_in = half_type;
1200 *type_out = type;
1201
1202 /* Pattern detected. Create a stmt to be used to replace the pattern: */
726a989a 1203 var = vect_recog_temp_ssa_var (type, NULL);
0d0e4a03 1204 pattern_stmt = gimple_build_assign (var, WIDEN_SUM_EXPR, oprnd0, oprnd1);
726a989a 1205
73fbfcad 1206 if (dump_enabled_p ())
20f06221 1207 {
ccb3ad87 1208 dump_printf_loc (MSG_NOTE, vect_location,
78c60e3d 1209 "vect_recog_widen_sum_pattern: detected: ");
ccb3ad87 1210 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
20f06221 1211 }
d29de1bf 1212
726a989a 1213 return pattern_stmt;
20f06221
DN
1214}
1215
1216
1107f3ae
IR
1217/* Return TRUE if the operation in STMT can be performed on a smaller type.
1218
1219 Input:
1220 STMT - a statement to check.
1221 DEF - we support operations with two operands, one of which is constant.
1222 The other operand can be defined by a demotion operation, or by a
1223 previous statement in a sequence of over-promoted operations. In the
1224 later case DEF is used to replace that operand. (It is defined by a
1225 pattern statement we created for the previous statement in the
1226 sequence).
1227
1228 Input/output:
1229 NEW_TYPE - Output: a smaller type that we are trying to use. Input: if not
1230 NULL, it's the type of DEF.
1231 STMTS - additional pattern statements. If a pattern statement (type
1232 conversion) is created in this function, its original statement is
1233 added to STMTS.
1234
1235 Output:
1236 OP0, OP1 - if the operation fits a smaller type, OP0 and OP1 are the new
1237 operands to use in the new pattern statement for STMT (will be created
1238 in vect_recog_over_widening_pattern ()).
1239 NEW_DEF_STMT - in case DEF has to be promoted, we create two pattern
1240 statements for STMT: the first one is a type promotion and the second
1241 one is the operation itself. We return the type promotion statement
363477c0 1242 in NEW_DEF_STMT and further store it in STMT_VINFO_PATTERN_DEF_SEQ of
1107f3ae
IR
1243 the second pattern statement. */
1244
1245static bool
355fe088
TS
1246vect_operation_fits_smaller_type (gimple *stmt, tree def, tree *new_type,
1247 tree *op0, tree *op1, gimple **new_def_stmt,
1248 vec<gimple *> *stmts)
1107f3ae
IR
1249{
1250 enum tree_code code;
1251 tree const_oprnd, oprnd;
83d5977e 1252 tree interm_type = NULL_TREE, half_type, new_oprnd, type;
355fe088 1253 gimple *def_stmt, *new_stmt;
1107f3ae 1254 bool first = false;
bc4fb355 1255 bool promotion;
f5709183 1256
d6e1acf6
JJ
1257 *op0 = NULL_TREE;
1258 *op1 = NULL_TREE;
1107f3ae
IR
1259 *new_def_stmt = NULL;
1260
1261 if (!is_gimple_assign (stmt))
1262 return false;
1263
1264 code = gimple_assign_rhs_code (stmt);
1265 if (code != LSHIFT_EXPR && code != RSHIFT_EXPR
1266 && code != BIT_IOR_EXPR && code != BIT_XOR_EXPR && code != BIT_AND_EXPR)
1267 return false;
1268
1269 oprnd = gimple_assign_rhs1 (stmt);
1270 const_oprnd = gimple_assign_rhs2 (stmt);
1271 type = gimple_expr_type (stmt);
1272
1273 if (TREE_CODE (oprnd) != SSA_NAME
1274 || TREE_CODE (const_oprnd) != INTEGER_CST)
1275 return false;
1276
9ef7adc0
RG
1277 /* If oprnd has other uses besides that in stmt we cannot mark it
1278 as being part of a pattern only. */
1279 if (!has_single_use (oprnd))
1280 return false;
1281
1107f3ae
IR
1282 /* If we are in the middle of a sequence, we use DEF from a previous
1283 statement. Otherwise, OPRND has to be a result of type promotion. */
1284 if (*new_type)
1285 {
1286 half_type = *new_type;
1287 oprnd = def;
1288 }
1289 else
1290 {
1291 first = true;
bc4fb355 1292 if (!type_conversion_p (oprnd, stmt, false, &half_type, &def_stmt,
f71cf56a
UW
1293 &promotion)
1294 || !promotion
1295 || !vect_same_loop_or_bb_p (stmt, def_stmt))
1107f3ae
IR
1296 return false;
1297 }
1298
1299 /* Can we perform the operation on a smaller type? */
1300 switch (code)
1301 {
1302 case BIT_IOR_EXPR:
1303 case BIT_XOR_EXPR:
1304 case BIT_AND_EXPR:
1305 if (!int_fits_type_p (const_oprnd, half_type))
1306 {
1307 /* HALF_TYPE is not enough. Try a bigger type if possible. */
1308 if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
1309 return false;
1310
1311 interm_type = build_nonstandard_integer_type (
1312 TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
1313 if (!int_fits_type_p (const_oprnd, interm_type))
1314 return false;
1315 }
1316
1317 break;
1318
1319 case LSHIFT_EXPR:
1320 /* Try intermediate type - HALF_TYPE is not enough for sure. */
1321 if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
1322 return false;
1323
1324 /* Check that HALF_TYPE size + shift amount <= INTERM_TYPE size.
1325 (e.g., if the original value was char, the shift amount is at most 8
1326 if we want to use short). */
1327 if (compare_tree_int (const_oprnd, TYPE_PRECISION (half_type)) == 1)
1328 return false;
1329
1330 interm_type = build_nonstandard_integer_type (
1331 TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
1332
1333 if (!vect_supportable_shift (code, interm_type))
1334 return false;
1335
1336 break;
1337
1338 case RSHIFT_EXPR:
1339 if (vect_supportable_shift (code, half_type))
1340 break;
1341
1342 /* Try intermediate type - HALF_TYPE is not supported. */
1343 if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4))
1344 return false;
1345
1346 interm_type = build_nonstandard_integer_type (
1347 TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type));
1348
1349 if (!vect_supportable_shift (code, interm_type))
1350 return false;
1351
1352 break;
1353
1354 default:
1355 gcc_unreachable ();
1356 }
1357
1358 /* There are four possible cases:
1359 1. OPRND is defined by a type promotion (in that case FIRST is TRUE, it's
1360 the first statement in the sequence)
1361 a. The original, HALF_TYPE, is not enough - we replace the promotion
1362 from HALF_TYPE to TYPE with a promotion to INTERM_TYPE.
1363 b. HALF_TYPE is sufficient, OPRND is set as the RHS of the original
1364 promotion.
1365 2. OPRND is defined by a pattern statement we created.
1366 a. Its type is not sufficient for the operation, we create a new stmt:
1367 a type conversion for OPRND from HALF_TYPE to INTERM_TYPE. We store
1368 this statement in NEW_DEF_STMT, and it is later put in
363477c0 1369 STMT_VINFO_PATTERN_DEF_SEQ of the pattern statement for STMT.
1107f3ae
IR
1370 b. OPRND is good to use in the new statement. */
1371 if (first)
1372 {
1373 if (interm_type)
1374 {
1375 /* Replace the original type conversion HALF_TYPE->TYPE with
1376 HALF_TYPE->INTERM_TYPE. */
1377 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)))
1378 {
1379 new_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
1380 /* Check if the already created pattern stmt is what we need. */
1381 if (!is_gimple_assign (new_stmt)
625a9766 1382 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (new_stmt))
1107f3ae
IR
1383 || TREE_TYPE (gimple_assign_lhs (new_stmt)) != interm_type)
1384 return false;
1385
9771b263 1386 stmts->safe_push (def_stmt);
1107f3ae
IR
1387 oprnd = gimple_assign_lhs (new_stmt);
1388 }
1389 else
1390 {
1391 /* Create NEW_OPRND = (INTERM_TYPE) OPRND. */
1392 oprnd = gimple_assign_rhs1 (def_stmt);
b731b390 1393 new_oprnd = make_ssa_name (interm_type);
0d0e4a03 1394 new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd);
1107f3ae 1395 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)) = new_stmt;
9771b263 1396 stmts->safe_push (def_stmt);
1107f3ae
IR
1397 oprnd = new_oprnd;
1398 }
1399 }
1400 else
1401 {
1402 /* Retrieve the operand before the type promotion. */
1403 oprnd = gimple_assign_rhs1 (def_stmt);
1404 }
1405 }
1406 else
1407 {
1408 if (interm_type)
1409 {
1410 /* Create a type conversion HALF_TYPE->INTERM_TYPE. */
b731b390 1411 new_oprnd = make_ssa_name (interm_type);
0d0e4a03 1412 new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd);
1107f3ae
IR
1413 oprnd = new_oprnd;
1414 *new_def_stmt = new_stmt;
1415 }
1416
1417 /* Otherwise, OPRND is already set. */
1418 }
1419
1420 if (interm_type)
1421 *new_type = interm_type;
1422 else
1423 *new_type = half_type;
1424
1425 *op0 = oprnd;
1426 *op1 = fold_convert (*new_type, const_oprnd);
1427
1428 return true;
1429}
1430
1431
1432/* Try to find a statement or a sequence of statements that can be performed
1433 on a smaller type:
1434
1435 type x_t;
1436 TYPE x_T, res0_T, res1_T;
1437 loop:
1438 S1 x_t = *p;
1439 S2 x_T = (TYPE) x_t;
1440 S3 res0_T = op (x_T, C0);
1441 S4 res1_T = op (res0_T, C1);
1442 S5 ... = () res1_T; - type demotion
1443
1444 where type 'TYPE' is at least double the size of type 'type', C0 and C1 are
1445 constants.
1446 Check if S3 and S4 can be done on a smaller type than 'TYPE', it can either
1447 be 'type' or some intermediate type. For now, we expect S5 to be a type
71c92d17 1448 demotion operation. We also check that S3 and S4 have only one use. */
1107f3ae 1449
355fe088
TS
1450static gimple *
1451vect_recog_over_widening_pattern (vec<gimple *> *stmts,
1107f3ae
IR
1452 tree *type_in, tree *type_out)
1453{
355fe088
TS
1454 gimple *stmt = stmts->pop ();
1455 gimple *pattern_stmt = NULL, *new_def_stmt, *prev_stmt = NULL,
1456 *use_stmt = NULL;
9a7a4398 1457 tree op0, op1, vectype = NULL_TREE, use_lhs, use_type;
83d5977e 1458 tree var = NULL_TREE, new_type = NULL_TREE, new_oprnd;
1107f3ae 1459 bool first;
b2a1a74d 1460 tree type = NULL;
1107f3ae
IR
1461
1462 first = true;
1463 while (1)
1464 {
1465 if (!vinfo_for_stmt (stmt)
1466 || STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt)))
1467 return NULL;
1468
1469 new_def_stmt = NULL;
1470 if (!vect_operation_fits_smaller_type (stmt, var, &new_type,
1471 &op0, &op1, &new_def_stmt,
1472 stmts))
1473 {
1474 if (first)
1475 return NULL;
1476 else
1477 break;
1478 }
1479
1480 /* STMT can be performed on a smaller type. Check its uses. */
9a7a4398
UW
1481 use_stmt = vect_single_imm_use (stmt);
1482 if (!use_stmt || !is_gimple_assign (use_stmt))
1107f3ae
IR
1483 return NULL;
1484
1485 /* Create pattern statement for STMT. */
1486 vectype = get_vectype_for_scalar_type (new_type);
1487 if (!vectype)
1488 return NULL;
1489
1490 /* We want to collect all the statements for which we create pattern
1491 statetments, except for the case when the last statement in the
1492 sequence doesn't have a corresponding pattern statement. In such
1493 case we associate the last pattern statement with the last statement
36ba4aae 1494 in the sequence. Therefore, we only add the original statement to
1107f3ae
IR
1495 the list if we know that it is not the last. */
1496 if (prev_stmt)
9771b263 1497 stmts->safe_push (prev_stmt);
1107f3ae
IR
1498
1499 var = vect_recog_temp_ssa_var (new_type, NULL);
62371b92 1500 pattern_stmt
0d0e4a03 1501 = gimple_build_assign (var, gimple_assign_rhs_code (stmt), op0, op1);
1107f3ae 1502 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt)) = pattern_stmt;
083481d8 1503 new_pattern_def_seq (vinfo_for_stmt (stmt), new_def_stmt);
1107f3ae 1504
73fbfcad 1505 if (dump_enabled_p ())
1107f3ae 1506 {
ccb3ad87 1507 dump_printf_loc (MSG_NOTE, vect_location,
78c60e3d 1508 "created pattern stmt: ");
ccb3ad87 1509 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
1107f3ae
IR
1510 }
1511
b2a1a74d 1512 type = gimple_expr_type (stmt);
1107f3ae
IR
1513 prev_stmt = stmt;
1514 stmt = use_stmt;
1515
1516 first = false;
1517 }
1518
1519 /* We got a sequence. We expect it to end with a type demotion operation.
1520 Otherwise, we quit (for now). There are three possible cases: the
1521 conversion is to NEW_TYPE (we don't do anything), the conversion is to
1522 a type bigger than NEW_TYPE and/or the signedness of USE_TYPE and
1523 NEW_TYPE differs (we create a new conversion statement). */
1524 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)))
1525 {
1526 use_lhs = gimple_assign_lhs (use_stmt);
1527 use_type = TREE_TYPE (use_lhs);
82db3d43 1528 /* Support only type demotion or signedess change. */
1107f3ae 1529 if (!INTEGRAL_TYPE_P (use_type)
82db3d43 1530 || TYPE_PRECISION (type) <= TYPE_PRECISION (use_type))
1107f3ae
IR
1531 return NULL;
1532
82db3d43
IR
1533 /* Check that NEW_TYPE is not bigger than the conversion result. */
1534 if (TYPE_PRECISION (new_type) > TYPE_PRECISION (use_type))
1535 return NULL;
1536
1107f3ae
IR
1537 if (TYPE_UNSIGNED (new_type) != TYPE_UNSIGNED (use_type)
1538 || TYPE_PRECISION (new_type) != TYPE_PRECISION (use_type))
1539 {
1540 /* Create NEW_TYPE->USE_TYPE conversion. */
b731b390 1541 new_oprnd = make_ssa_name (use_type);
0d0e4a03 1542 pattern_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, var);
1107f3ae
IR
1543 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) = pattern_stmt;
1544
1545 *type_in = get_vectype_for_scalar_type (new_type);
1546 *type_out = get_vectype_for_scalar_type (use_type);
1547
1548 /* We created a pattern statement for the last statement in the
1549 sequence, so we don't need to associate it with the pattern
1550 statement created for PREV_STMT. Therefore, we add PREV_STMT
1551 to the list in order to mark it later in vect_pattern_recog_1. */
1552 if (prev_stmt)
9771b263 1553 stmts->safe_push (prev_stmt);
1107f3ae
IR
1554 }
1555 else
1556 {
1557 if (prev_stmt)
363477c0
JJ
1558 STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (use_stmt))
1559 = STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (prev_stmt));
1107f3ae
IR
1560
1561 *type_in = vectype;
1562 *type_out = NULL_TREE;
1563 }
1564
9771b263 1565 stmts->safe_push (use_stmt);
1107f3ae
IR
1566 }
1567 else
1568 /* TODO: support general case, create a conversion to the correct type. */
1569 return NULL;
1570
1571 /* Pattern detected. */
73fbfcad 1572 if (dump_enabled_p ())
1107f3ae 1573 {
ccb3ad87 1574 dump_printf_loc (MSG_NOTE, vect_location,
78c60e3d 1575 "vect_recog_over_widening_pattern: detected: ");
ccb3ad87 1576 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
1107f3ae
IR
1577 }
1578
1579 return pattern_stmt;
1580}
1581
36ba4aae
IR
1582/* Detect widening shift pattern:
1583
1584 type a_t;
1585 TYPE a_T, res_T;
1586
1587 S1 a_t = ;
1588 S2 a_T = (TYPE) a_t;
1589 S3 res_T = a_T << CONST;
1590
1591 where type 'TYPE' is at least double the size of type 'type'.
1592
33018845
UW
1593 Also detect cases where the shift result is immediately converted
1594 to another type 'result_type' that is no larger in size than 'TYPE'.
1595 In those cases we perform a widen-shift that directly results in
1596 'result_type', to avoid a possible over-widening situation:
36ba4aae 1597
33018845 1598 type a_t;
36ba4aae 1599 TYPE a_T, res_T;
33018845 1600 result_type res_result;
36ba4aae
IR
1601
1602 S1 a_t = ;
1603 S2 a_T = (TYPE) a_t;
1604 S3 res_T = a_T << CONST;
33018845
UW
1605 S4 res_result = (result_type) res_T;
1606 '--> res_result' = a_t w<< CONST;
36ba4aae
IR
1607
1608 And a case when 'TYPE' is 4 times bigger than 'type'. In that case we
1609 create an additional pattern stmt for S2 to create a variable of an
1610 intermediate type, and perform widen-shift on the intermediate type:
1611
1612 type a_t;
1613 interm_type a_it;
1614 TYPE a_T, res_T, res_T';
1615
1616 S1 a_t = ;
1617 S2 a_T = (TYPE) a_t;
1618 '--> a_it = (interm_type) a_t;
1619 S3 res_T = a_T << CONST;
1620 '--> res_T' = a_it <<* CONST;
1621
1622 Input/Output:
1623
1624 * STMTS: Contains a stmt from which the pattern search begins.
1625 In case of unsigned widen-shift, the original stmt (S3) is replaced with S4
1626 in STMTS. When an intermediate type is used and a pattern statement is
1627 created for S2, we also put S2 here (before S3).
1628
1629 Output:
1630
1631 * TYPE_IN: The type of the input arguments to the pattern.
1632
1633 * TYPE_OUT: The type of the output of this pattern.
1634
1635 * Return value: A new stmt that will be used to replace the sequence of
1636 stmts that constitute the pattern. In this case it will be:
1637 WIDEN_LSHIFT_EXPR <a_t, CONST>. */
1638
355fe088
TS
1639static gimple *
1640vect_recog_widen_shift_pattern (vec<gimple *> *stmts,
36ba4aae
IR
1641 tree *type_in, tree *type_out)
1642{
355fe088
TS
1643 gimple *last_stmt = stmts->pop ();
1644 gimple *def_stmt0;
36ba4aae
IR
1645 tree oprnd0, oprnd1;
1646 tree type, half_type0;
355fe088 1647 gimple *pattern_stmt;
36ba4aae 1648 tree vectype, vectype_out = NULL_TREE;
36ba4aae
IR
1649 tree var;
1650 enum tree_code dummy_code;
1651 int dummy_int;
9771b263 1652 vec<tree> dummy_vec;
355fe088 1653 gimple *use_stmt;
bc4fb355 1654 bool promotion;
36ba4aae
IR
1655
1656 if (!is_gimple_assign (last_stmt) || !vinfo_for_stmt (last_stmt))
1657 return NULL;
1658
36ba4aae 1659 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (last_stmt)))
33018845 1660 return NULL;
36ba4aae
IR
1661
1662 if (gimple_assign_rhs_code (last_stmt) != LSHIFT_EXPR)
1663 return NULL;
1664
1665 oprnd0 = gimple_assign_rhs1 (last_stmt);
1666 oprnd1 = gimple_assign_rhs2 (last_stmt);
1667 if (TREE_CODE (oprnd0) != SSA_NAME || TREE_CODE (oprnd1) != INTEGER_CST)
1668 return NULL;
1669
1670 /* Check operand 0: it has to be defined by a type promotion. */
bc4fb355 1671 if (!type_conversion_p (oprnd0, last_stmt, false, &half_type0, &def_stmt0,
566d377a 1672 &promotion)
bc4fb355
IR
1673 || !promotion)
1674 return NULL;
36ba4aae
IR
1675
1676 /* Check operand 1: has to be positive. We check that it fits the type
1677 in vect_handle_widen_op_by_const (). */
1678 if (tree_int_cst_compare (oprnd1, size_zero_node) <= 0)
1679 return NULL;
1680
1681 oprnd0 = gimple_assign_rhs1 (def_stmt0);
1682 type = gimple_expr_type (last_stmt);
1683
33018845
UW
1684 /* Check for subsequent conversion to another type. */
1685 use_stmt = vect_single_imm_use (last_stmt);
1686 if (use_stmt && is_gimple_assign (use_stmt)
1687 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))
1688 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1689 {
1690 tree use_lhs = gimple_assign_lhs (use_stmt);
1691 tree use_type = TREE_TYPE (use_lhs);
1692
1693 if (INTEGRAL_TYPE_P (use_type)
1694 && TYPE_PRECISION (use_type) <= TYPE_PRECISION (type))
1695 {
1696 last_stmt = use_stmt;
1697 type = use_type;
1698 }
1699 }
1700
36ba4aae 1701 /* Check if this a widening operation. */
355fe088 1702 gimple *wstmt = NULL;
36ba4aae 1703 if (!vect_handle_widen_op_by_const (last_stmt, LSHIFT_EXPR, oprnd1,
566d377a 1704 &oprnd0, &wstmt,
36ba4aae
IR
1705 type, &half_type0, def_stmt0))
1706 return NULL;
1707
36ba4aae 1708 /* Pattern detected. */
73fbfcad 1709 if (dump_enabled_p ())
ccb3ad87 1710 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 1711 "vect_recog_widen_shift_pattern: detected:\n");
36ba4aae
IR
1712
1713 /* Check target support. */
1714 vectype = get_vectype_for_scalar_type (half_type0);
1715 vectype_out = get_vectype_for_scalar_type (type);
1716
1717 if (!vectype
1718 || !vectype_out
1719 || !supportable_widening_operation (WIDEN_LSHIFT_EXPR, last_stmt,
1720 vectype_out, vectype,
a86ec597
RH
1721 &dummy_code, &dummy_code,
1722 &dummy_int, &dummy_vec))
36ba4aae
IR
1723 return NULL;
1724
1725 *type_in = vectype;
1726 *type_out = vectype_out;
1727
1728 /* Pattern supported. Create a stmt to be used to replace the pattern. */
1729 var = vect_recog_temp_ssa_var (type, NULL);
1730 pattern_stmt =
0d0e4a03 1731 gimple_build_assign (var, WIDEN_LSHIFT_EXPR, oprnd0, oprnd1);
566d377a
RB
1732 if (wstmt)
1733 {
1734 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
566d377a
RB
1735 new_pattern_def_seq (stmt_vinfo, wstmt);
1736 stmt_vec_info new_stmt_info
310213d4 1737 = new_stmt_vec_info (wstmt, stmt_vinfo->vinfo);
566d377a
RB
1738 set_vinfo_for_stmt (wstmt, new_stmt_info);
1739 STMT_VINFO_VECTYPE (new_stmt_info) = vectype;
1740 }
36ba4aae 1741
73fbfcad 1742 if (dump_enabled_p ())
78c60e3d 1743 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
7e9a3abb
JJ
1744
1745 stmts->safe_push (last_stmt);
1746 return pattern_stmt;
1747}
1748
1749/* Detect a rotate pattern wouldn't be otherwise vectorized:
1750
1751 type a_t, b_t, c_t;
1752
1753 S0 a_t = b_t r<< c_t;
1754
1755 Input/Output:
1756
1757 * STMTS: Contains a stmt from which the pattern search begins,
1758 i.e. the shift/rotate stmt. The original stmt (S0) is replaced
1759 with a sequence:
1760
1761 S1 d_t = -c_t;
1762 S2 e_t = d_t & (B - 1);
1763 S3 f_t = b_t << c_t;
1764 S4 g_t = b_t >> e_t;
1765 S0 a_t = f_t | g_t;
1766
1767 where B is element bitsize of type.
1768
1769 Output:
1770
1771 * TYPE_IN: The type of the input arguments to the pattern.
1772
1773 * TYPE_OUT: The type of the output of this pattern.
1774
1775 * Return value: A new stmt that will be used to replace the rotate
1776 S0 stmt. */
1777
355fe088
TS
1778static gimple *
1779vect_recog_rotate_pattern (vec<gimple *> *stmts, tree *type_in, tree *type_out)
7e9a3abb 1780{
355fe088 1781 gimple *last_stmt = stmts->pop ();
7e9a3abb 1782 tree oprnd0, oprnd1, lhs, var, var1, var2, vectype, type, stype, def, def2;
355fe088 1783 gimple *pattern_stmt, *def_stmt;
7e9a3abb
JJ
1784 enum tree_code rhs_code;
1785 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
310213d4 1786 vec_info *vinfo = stmt_vinfo->vinfo;
7e9a3abb
JJ
1787 enum vect_def_type dt;
1788 optab optab1, optab2;
68119618 1789 edge ext_def = NULL;
7e9a3abb
JJ
1790
1791 if (!is_gimple_assign (last_stmt))
1792 return NULL;
1793
1794 rhs_code = gimple_assign_rhs_code (last_stmt);
1795 switch (rhs_code)
1796 {
1797 case LROTATE_EXPR:
1798 case RROTATE_EXPR:
1799 break;
1800 default:
1801 return NULL;
1802 }
1803
1804 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
1805 return NULL;
1806
1807 lhs = gimple_assign_lhs (last_stmt);
1808 oprnd0 = gimple_assign_rhs1 (last_stmt);
1809 type = TREE_TYPE (oprnd0);
1810 oprnd1 = gimple_assign_rhs2 (last_stmt);
1811 if (TREE_CODE (oprnd0) != SSA_NAME
1812 || TYPE_PRECISION (TREE_TYPE (lhs)) != TYPE_PRECISION (type)
1813 || !INTEGRAL_TYPE_P (type)
1814 || !TYPE_UNSIGNED (type))
1815 return NULL;
1816
81c40241 1817 if (!vect_is_simple_use (oprnd1, vinfo, &def_stmt, &dt))
7e9a3abb
JJ
1818 return NULL;
1819
1820 if (dt != vect_internal_def
1821 && dt != vect_constant_def
1822 && dt != vect_external_def)
1823 return NULL;
1824
1825 vectype = get_vectype_for_scalar_type (type);
1826 if (vectype == NULL_TREE)
1827 return NULL;
1828
1829 /* If vector/vector or vector/scalar rotate is supported by the target,
1830 don't do anything here. */
1831 optab1 = optab_for_tree_code (rhs_code, vectype, optab_vector);
1832 if (optab1
1833 && optab_handler (optab1, TYPE_MODE (vectype)) != CODE_FOR_nothing)
1834 return NULL;
1835
310213d4 1836 if (is_a <bb_vec_info> (vinfo) || dt != vect_internal_def)
7e9a3abb
JJ
1837 {
1838 optab2 = optab_for_tree_code (rhs_code, vectype, optab_scalar);
1839 if (optab2
1840 && optab_handler (optab2, TYPE_MODE (vectype)) != CODE_FOR_nothing)
1841 return NULL;
1842 }
1843
1844 /* If vector/vector or vector/scalar shifts aren't supported by the target,
1845 don't do anything here either. */
1846 optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_vector);
1847 optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_vector);
1848 if (!optab1
1849 || optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
1850 || !optab2
1851 || optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
1852 {
310213d4 1853 if (! is_a <bb_vec_info> (vinfo) && dt == vect_internal_def)
7e9a3abb
JJ
1854 return NULL;
1855 optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_scalar);
1856 optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_scalar);
1857 if (!optab1
1858 || optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing
1859 || !optab2
1860 || optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing)
1861 return NULL;
1862 }
1863
1864 *type_in = vectype;
1865 *type_out = vectype;
1866 if (*type_in == NULL_TREE)
1867 return NULL;
1868
68119618
JJ
1869 if (dt == vect_external_def
1870 && TREE_CODE (oprnd1) == SSA_NAME
310213d4 1871 && is_a <loop_vec_info> (vinfo))
68119618 1872 {
310213d4 1873 struct loop *loop = as_a <loop_vec_info> (vinfo)->loop;
68119618
JJ
1874 ext_def = loop_preheader_edge (loop);
1875 if (!SSA_NAME_IS_DEFAULT_DEF (oprnd1))
1876 {
1877 basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (oprnd1));
1878 if (bb == NULL
1879 || !dominated_by_p (CDI_DOMINATORS, ext_def->dest, bb))
1880 ext_def = NULL;
1881 }
1882 }
1883
7e9a3abb
JJ
1884 def = NULL_TREE;
1885 if (TREE_CODE (oprnd1) == INTEGER_CST
1886 || TYPE_MODE (TREE_TYPE (oprnd1)) == TYPE_MODE (type))
1887 def = oprnd1;
1888 else if (def_stmt && gimple_assign_cast_p (def_stmt))
1889 {
1890 tree rhs1 = gimple_assign_rhs1 (def_stmt);
1891 if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (type)
1892 && TYPE_PRECISION (TREE_TYPE (rhs1))
1893 == TYPE_PRECISION (type))
1894 def = rhs1;
1895 }
1896
1897 STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
1898 if (def == NULL_TREE)
1899 {
1900 def = vect_recog_temp_ssa_var (type, NULL);
0d0e4a03 1901 def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
68119618
JJ
1902 if (ext_def)
1903 {
1904 basic_block new_bb
1905 = gsi_insert_on_edge_immediate (ext_def, def_stmt);
1906 gcc_assert (!new_bb);
1907 }
1908 else
1909 append_pattern_def_seq (stmt_vinfo, def_stmt);
7e9a3abb
JJ
1910 }
1911 stype = TREE_TYPE (def);
1912
1913 if (TREE_CODE (def) == INTEGER_CST)
1914 {
cc269bb6 1915 if (!tree_fits_uhwi_p (def)
7d362f6c 1916 || tree_to_uhwi (def) >= GET_MODE_PRECISION (TYPE_MODE (type))
7e9a3abb
JJ
1917 || integer_zerop (def))
1918 return NULL;
1919 def2 = build_int_cst (stype,
1920 GET_MODE_PRECISION (TYPE_MODE (type))
ae7e9ddd 1921 - tree_to_uhwi (def));
7e9a3abb
JJ
1922 }
1923 else
1924 {
1925 tree vecstype = get_vectype_for_scalar_type (stype);
1926 stmt_vec_info def_stmt_vinfo;
1927
1928 if (vecstype == NULL_TREE)
1929 return NULL;
1930 def2 = vect_recog_temp_ssa_var (stype, NULL);
0d0e4a03 1931 def_stmt = gimple_build_assign (def2, NEGATE_EXPR, def);
68119618
JJ
1932 if (ext_def)
1933 {
1934 basic_block new_bb
1935 = gsi_insert_on_edge_immediate (ext_def, def_stmt);
1936 gcc_assert (!new_bb);
1937 }
1938 else
1939 {
310213d4 1940 def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
68119618
JJ
1941 set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
1942 STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecstype;
1943 append_pattern_def_seq (stmt_vinfo, def_stmt);
1944 }
7e9a3abb
JJ
1945
1946 def2 = vect_recog_temp_ssa_var (stype, NULL);
1947 tree mask
1948 = build_int_cst (stype, GET_MODE_PRECISION (TYPE_MODE (stype)) - 1);
0d0e4a03
JJ
1949 def_stmt = gimple_build_assign (def2, BIT_AND_EXPR,
1950 gimple_assign_lhs (def_stmt), mask);
68119618
JJ
1951 if (ext_def)
1952 {
1953 basic_block new_bb
1954 = gsi_insert_on_edge_immediate (ext_def, def_stmt);
1955 gcc_assert (!new_bb);
1956 }
1957 else
1958 {
310213d4 1959 def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
68119618
JJ
1960 set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
1961 STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecstype;
1962 append_pattern_def_seq (stmt_vinfo, def_stmt);
1963 }
7e9a3abb
JJ
1964 }
1965
1966 var1 = vect_recog_temp_ssa_var (type, NULL);
0d0e4a03
JJ
1967 def_stmt = gimple_build_assign (var1, rhs_code == LROTATE_EXPR
1968 ? LSHIFT_EXPR : RSHIFT_EXPR,
1969 oprnd0, def);
7e9a3abb
JJ
1970 append_pattern_def_seq (stmt_vinfo, def_stmt);
1971
1972 var2 = vect_recog_temp_ssa_var (type, NULL);
0d0e4a03
JJ
1973 def_stmt = gimple_build_assign (var2, rhs_code == LROTATE_EXPR
1974 ? RSHIFT_EXPR : LSHIFT_EXPR,
1975 oprnd0, def2);
7e9a3abb
JJ
1976 append_pattern_def_seq (stmt_vinfo, def_stmt);
1977
1978 /* Pattern detected. */
1979 if (dump_enabled_p ())
1980 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 1981 "vect_recog_rotate_pattern: detected:\n");
7e9a3abb
JJ
1982
1983 /* Pattern supported. Create a stmt to be used to replace the pattern. */
1984 var = vect_recog_temp_ssa_var (type, NULL);
0d0e4a03 1985 pattern_stmt = gimple_build_assign (var, BIT_IOR_EXPR, var1, var2);
7e9a3abb
JJ
1986
1987 if (dump_enabled_p ())
1988 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
36ba4aae 1989
9771b263 1990 stmts->safe_push (last_stmt);
36ba4aae
IR
1991 return pattern_stmt;
1992}
1107f3ae 1993
732a0ad3
JJ
1994/* Detect a vector by vector shift pattern that wouldn't be otherwise
1995 vectorized:
1996
1997 type a_t;
1998 TYPE b_T, res_T;
1999
2000 S1 a_t = ;
2001 S2 b_T = ;
2002 S3 res_T = b_T op a_t;
2003
2004 where type 'TYPE' is a type with different size than 'type',
2005 and op is <<, >> or rotate.
2006
2007 Also detect cases:
2008
2009 type a_t;
2010 TYPE b_T, c_T, res_T;
2011
2012 S0 c_T = ;
2013 S1 a_t = (type) c_T;
2014 S2 b_T = ;
2015 S3 res_T = b_T op a_t;
2016
2017 Input/Output:
2018
2019 * STMTS: Contains a stmt from which the pattern search begins,
2020 i.e. the shift/rotate stmt. The original stmt (S3) is replaced
2021 with a shift/rotate which has same type on both operands, in the
2022 second case just b_T op c_T, in the first case with added cast
363477c0 2023 from a_t to c_T in STMT_VINFO_PATTERN_DEF_SEQ.
732a0ad3
JJ
2024
2025 Output:
2026
2027 * TYPE_IN: The type of the input arguments to the pattern.
2028
2029 * TYPE_OUT: The type of the output of this pattern.
2030
2031 * Return value: A new stmt that will be used to replace the shift/rotate
2032 S3 stmt. */
2033
355fe088
TS
2034static gimple *
2035vect_recog_vector_vector_shift_pattern (vec<gimple *> *stmts,
732a0ad3
JJ
2036 tree *type_in, tree *type_out)
2037{
355fe088 2038 gimple *last_stmt = stmts->pop ();
732a0ad3 2039 tree oprnd0, oprnd1, lhs, var;
355fe088 2040 gimple *pattern_stmt, *def_stmt;
732a0ad3
JJ
2041 enum tree_code rhs_code;
2042 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
310213d4 2043 vec_info *vinfo = stmt_vinfo->vinfo;
732a0ad3 2044 enum vect_def_type dt;
732a0ad3
JJ
2045
2046 if (!is_gimple_assign (last_stmt))
2047 return NULL;
2048
2049 rhs_code = gimple_assign_rhs_code (last_stmt);
2050 switch (rhs_code)
2051 {
2052 case LSHIFT_EXPR:
2053 case RSHIFT_EXPR:
2054 case LROTATE_EXPR:
2055 case RROTATE_EXPR:
2056 break;
2057 default:
2058 return NULL;
2059 }
2060
2061 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
2062 return NULL;
2063
2064 lhs = gimple_assign_lhs (last_stmt);
2065 oprnd0 = gimple_assign_rhs1 (last_stmt);
2066 oprnd1 = gimple_assign_rhs2 (last_stmt);
2067 if (TREE_CODE (oprnd0) != SSA_NAME
2068 || TREE_CODE (oprnd1) != SSA_NAME
2069 || TYPE_MODE (TREE_TYPE (oprnd0)) == TYPE_MODE (TREE_TYPE (oprnd1))
2070 || TYPE_PRECISION (TREE_TYPE (oprnd1))
2071 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (oprnd1)))
2072 || TYPE_PRECISION (TREE_TYPE (lhs))
2073 != TYPE_PRECISION (TREE_TYPE (oprnd0)))
2074 return NULL;
2075
81c40241 2076 if (!vect_is_simple_use (oprnd1, vinfo, &def_stmt, &dt))
732a0ad3
JJ
2077 return NULL;
2078
2079 if (dt != vect_internal_def)
2080 return NULL;
2081
2082 *type_in = get_vectype_for_scalar_type (TREE_TYPE (oprnd0));
2083 *type_out = *type_in;
2084 if (*type_in == NULL_TREE)
2085 return NULL;
2086
81c40241 2087 tree def = NULL_TREE;
97ecdb46
JJ
2088 stmt_vec_info def_vinfo = vinfo_for_stmt (def_stmt);
2089 if (!STMT_VINFO_IN_PATTERN_P (def_vinfo) && gimple_assign_cast_p (def_stmt))
732a0ad3
JJ
2090 {
2091 tree rhs1 = gimple_assign_rhs1 (def_stmt);
2092 if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (TREE_TYPE (oprnd0))
2093 && TYPE_PRECISION (TREE_TYPE (rhs1))
2094 == TYPE_PRECISION (TREE_TYPE (oprnd0)))
0179520a
JJ
2095 {
2096 if (TYPE_PRECISION (TREE_TYPE (oprnd1))
2097 >= TYPE_PRECISION (TREE_TYPE (rhs1)))
2098 def = rhs1;
2099 else
2100 {
2101 tree mask
2102 = build_low_bits_mask (TREE_TYPE (rhs1),
2103 TYPE_PRECISION (TREE_TYPE (oprnd1)));
2104 def = vect_recog_temp_ssa_var (TREE_TYPE (rhs1), NULL);
2105 def_stmt = gimple_build_assign (def, BIT_AND_EXPR, rhs1, mask);
2106 new_pattern_def_seq (stmt_vinfo, def_stmt);
2107 }
2108 }
732a0ad3
JJ
2109 }
2110
2111 if (def == NULL_TREE)
2112 {
2113 def = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
0d0e4a03 2114 def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1);
083481d8 2115 new_pattern_def_seq (stmt_vinfo, def_stmt);
732a0ad3
JJ
2116 }
2117
2118 /* Pattern detected. */
73fbfcad 2119 if (dump_enabled_p ())
ccb3ad87 2120 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 2121 "vect_recog_vector_vector_shift_pattern: detected:\n");
732a0ad3
JJ
2122
2123 /* Pattern supported. Create a stmt to be used to replace the pattern. */
2124 var = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL);
0d0e4a03 2125 pattern_stmt = gimple_build_assign (var, rhs_code, oprnd0, def);
732a0ad3 2126
73fbfcad 2127 if (dump_enabled_p ())
78c60e3d 2128 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0);
732a0ad3 2129
9771b263 2130 stmts->safe_push (last_stmt);
732a0ad3
JJ
2131 return pattern_stmt;
2132}
2133
47486460
VK
2134/* Detect multiplication by constant which are postive or negatives of power 2,
2135 and convert them to shift patterns.
2136
2137 Mult with constants that are postive power of two.
2138 type a_t;
2139 type b_t
2140 S1: b_t = a_t * n
2141
2142 or
2143
2144 Mult with constants that are negative power of two.
2145 S2: b_t = a_t * -n
2146
2147 Input/Output:
2148
2149 STMTS: Contains a stmt from which the pattern search begins,
2150 i.e. the mult stmt. Convert the mult operation to LSHIFT if
2151 constant operand is a power of 2.
2152 type a_t, b_t
2153 S1': b_t = a_t << log2 (n)
2154
2155 Convert the mult operation to LSHIFT and followed by a NEGATE
2156 if constant operand is a negative power of 2.
2157 type a_t, b_t, res_T;
2158 S2': b_t = a_t << log2 (n)
2159 S3': res_T = - (b_t)
2160
2161 Output:
2162
2163 * TYPE_IN: The type of the input arguments to the pattern.
2164
2165 * TYPE_OUT: The type of the output of this pattern.
2166
2167 * Return value: A new stmt that will be used to replace the multiplication
2168 S1 or S2 stmt. */
2169
355fe088
TS
2170static gimple *
2171vect_recog_mult_pattern (vec<gimple *> *stmts,
47486460
VK
2172 tree *type_in, tree *type_out)
2173{
355fe088 2174 gimple *last_stmt = stmts->pop ();
47486460 2175 tree oprnd0, oprnd1, vectype, itype;
355fe088 2176 gimple *pattern_stmt, *def_stmt;
47486460
VK
2177 optab optab;
2178 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
2179 int power2_val, power2_neg_val;
2180 tree shift;
2181
2182 if (!is_gimple_assign (last_stmt))
2183 return NULL;
2184
2185 if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
2186 return NULL;
2187
2188 oprnd0 = gimple_assign_rhs1 (last_stmt);
2189 oprnd1 = gimple_assign_rhs2 (last_stmt);
2190 itype = TREE_TYPE (oprnd0);
2191
2192 if (TREE_CODE (oprnd0) != SSA_NAME
2193 || TREE_CODE (oprnd1) != INTEGER_CST
2194 || !INTEGRAL_TYPE_P (itype)
2195 || TYPE_PRECISION (itype) != GET_MODE_PRECISION (TYPE_MODE (itype)))
2196 return NULL;
2197
2198 vectype = get_vectype_for_scalar_type (itype);
2199 if (vectype == NULL_TREE)
2200 return NULL;
2201
2202 /* If the target can handle vectorized multiplication natively,
2203 don't attempt to optimize this. */
2204 optab = optab_for_tree_code (MULT_EXPR, vectype, optab_default);
2205 if (optab != unknown_optab)
2206 {
2207 machine_mode vec_mode = TYPE_MODE (vectype);
2208 int icode = (int) optab_handler (optab, vec_mode);
2209 if (icode != CODE_FOR_nothing)
2210 return NULL;
2211 }
2212
2213 /* If target cannot handle vector left shift then we cannot
2214 optimize and bail out. */
2215 optab = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_vector);
2216 if (!optab
2217 || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
2218 return NULL;
2219
2220 power2_val = wi::exact_log2 (oprnd1);
2221 power2_neg_val = wi::exact_log2 (wi::neg (oprnd1));
2222
2223 /* Handle constant operands that are postive or negative powers of 2. */
2224 if (power2_val != -1)
2225 {
2226 shift = build_int_cst (itype, power2_val);
2227 pattern_stmt
2228 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2229 LSHIFT_EXPR, oprnd0, shift);
2230 }
2231 else if (power2_neg_val != -1)
2232 {
2233 /* If the target cannot handle vector NEGATE then we cannot
2234 do the optimization. */
2235 optab = optab_for_tree_code (NEGATE_EXPR, vectype, optab_vector);
2236 if (!optab
2237 || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
2238 return NULL;
2239
2240 shift = build_int_cst (itype, power2_neg_val);
2241 def_stmt
2242 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2243 LSHIFT_EXPR, oprnd0, shift);
2244 new_pattern_def_seq (stmt_vinfo, def_stmt);
2245 pattern_stmt
2246 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2247 NEGATE_EXPR, gimple_assign_lhs (def_stmt));
2248 }
2249 else
2250 return NULL;
2251
2252 /* Pattern detected. */
2253 if (dump_enabled_p ())
2254 dump_printf_loc (MSG_NOTE, vect_location,
2255 "vect_recog_mult_pattern: detected:\n");
2256
2257 if (dump_enabled_p ())
2258 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM,
2259 pattern_stmt,0);
2260
2261 stmts->safe_push (last_stmt);
2262 *type_in = vectype;
2263 *type_out = vectype;
2264
2265 return pattern_stmt;
2266}
2267
079c527f 2268/* Detect a signed division by a constant that wouldn't be
363477c0
JJ
2269 otherwise vectorized:
2270
2271 type a_t, b_t;
2272
2273 S1 a_t = b_t / N;
2274
079c527f 2275 where type 'type' is an integral type and N is a constant.
363477c0 2276
079c527f 2277 Similarly handle modulo by a constant:
363477c0
JJ
2278
2279 S4 a_t = b_t % N;
2280
2281 Input/Output:
2282
2283 * STMTS: Contains a stmt from which the pattern search begins,
079c527f
JJ
2284 i.e. the division stmt. S1 is replaced by if N is a power
2285 of two constant and type is signed:
363477c0
JJ
2286 S3 y_t = b_t < 0 ? N - 1 : 0;
2287 S2 x_t = b_t + y_t;
2288 S1' a_t = x_t >> log2 (N);
2289
079c527f
JJ
2290 S4 is replaced if N is a power of two constant and
2291 type is signed by (where *_T temporaries have unsigned type):
363477c0
JJ
2292 S9 y_T = b_t < 0 ? -1U : 0U;
2293 S8 z_T = y_T >> (sizeof (type_t) * CHAR_BIT - log2 (N));
2294 S7 z_t = (type) z_T;
2295 S6 w_t = b_t + z_t;
2296 S5 x_t = w_t & (N - 1);
2297 S4' a_t = x_t - z_t;
2298
2299 Output:
2300
2301 * TYPE_IN: The type of the input arguments to the pattern.
2302
2303 * TYPE_OUT: The type of the output of this pattern.
2304
2305 * Return value: A new stmt that will be used to replace the division
2306 S1 or modulo S4 stmt. */
2307
355fe088
TS
2308static gimple *
2309vect_recog_divmod_pattern (vec<gimple *> *stmts,
079c527f 2310 tree *type_in, tree *type_out)
363477c0 2311{
355fe088 2312 gimple *last_stmt = stmts->pop ();
5deb57cb 2313 tree oprnd0, oprnd1, vectype, itype, cond;
355fe088 2314 gimple *pattern_stmt, *def_stmt;
363477c0
JJ
2315 enum tree_code rhs_code;
2316 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
310213d4 2317 vec_info *vinfo = stmt_vinfo->vinfo;
363477c0 2318 optab optab;
00f07b86 2319 tree q;
079c527f 2320 int dummy_int, prec;
079c527f 2321 stmt_vec_info def_stmt_vinfo;
363477c0
JJ
2322
2323 if (!is_gimple_assign (last_stmt))
2324 return NULL;
2325
2326 rhs_code = gimple_assign_rhs_code (last_stmt);
2327 switch (rhs_code)
2328 {
2329 case TRUNC_DIV_EXPR:
2330 case TRUNC_MOD_EXPR:
2331 break;
2332 default:
2333 return NULL;
2334 }
2335
2336 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
2337 return NULL;
2338
2339 oprnd0 = gimple_assign_rhs1 (last_stmt);
2340 oprnd1 = gimple_assign_rhs2 (last_stmt);
2341 itype = TREE_TYPE (oprnd0);
2342 if (TREE_CODE (oprnd0) != SSA_NAME
2343 || TREE_CODE (oprnd1) != INTEGER_CST
2344 || TREE_CODE (itype) != INTEGER_TYPE
079c527f 2345 || TYPE_PRECISION (itype) != GET_MODE_PRECISION (TYPE_MODE (itype)))
363477c0
JJ
2346 return NULL;
2347
2348 vectype = get_vectype_for_scalar_type (itype);
2349 if (vectype == NULL_TREE)
2350 return NULL;
2351
2352 /* If the target can handle vectorized division or modulo natively,
2353 don't attempt to optimize this. */
2354 optab = optab_for_tree_code (rhs_code, vectype, optab_default);
2225b9f2 2355 if (optab != unknown_optab)
363477c0 2356 {
ef4bddc2 2357 machine_mode vec_mode = TYPE_MODE (vectype);
363477c0 2358 int icode = (int) optab_handler (optab, vec_mode);
e6d4f8f5 2359 if (icode != CODE_FOR_nothing)
363477c0
JJ
2360 return NULL;
2361 }
2362
079c527f
JJ
2363 prec = TYPE_PRECISION (itype);
2364 if (integer_pow2p (oprnd1))
363477c0 2365 {
079c527f
JJ
2366 if (TYPE_UNSIGNED (itype) || tree_int_cst_sgn (oprnd1) != 1)
2367 return NULL;
363477c0 2368
079c527f 2369 /* Pattern detected. */
73fbfcad 2370 if (dump_enabled_p ())
ccb3ad87 2371 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 2372 "vect_recog_divmod_pattern: detected:\n");
079c527f
JJ
2373
2374 cond = build2 (LT_EXPR, boolean_type_node, oprnd0,
2375 build_int_cst (itype, 0));
2376 if (rhs_code == TRUNC_DIV_EXPR)
2377 {
2378 tree var = vect_recog_temp_ssa_var (itype, NULL);
2379 tree shift;
2380 def_stmt
0d0e4a03
JJ
2381 = gimple_build_assign (var, COND_EXPR, cond,
2382 fold_build2 (MINUS_EXPR, itype, oprnd1,
2383 build_int_cst (itype, 1)),
2384 build_int_cst (itype, 0));
079c527f
JJ
2385 new_pattern_def_seq (stmt_vinfo, def_stmt);
2386 var = vect_recog_temp_ssa_var (itype, NULL);
2387 def_stmt
0d0e4a03
JJ
2388 = gimple_build_assign (var, PLUS_EXPR, oprnd0,
2389 gimple_assign_lhs (def_stmt));
079c527f
JJ
2390 append_pattern_def_seq (stmt_vinfo, def_stmt);
2391
2392 shift = build_int_cst (itype, tree_log2 (oprnd1));
2393 pattern_stmt
0d0e4a03
JJ
2394 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2395 RSHIFT_EXPR, var, shift);
079c527f
JJ
2396 }
2397 else
2398 {
2399 tree signmask;
2400 STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
2401 if (compare_tree_int (oprnd1, 2) == 0)
2402 {
2403 signmask = vect_recog_temp_ssa_var (itype, NULL);
0d0e4a03
JJ
2404 def_stmt = gimple_build_assign (signmask, COND_EXPR, cond,
2405 build_int_cst (itype, 1),
2406 build_int_cst (itype, 0));
079c527f
JJ
2407 append_pattern_def_seq (stmt_vinfo, def_stmt);
2408 }
2409 else
2410 {
2411 tree utype
2412 = build_nonstandard_integer_type (prec, 1);
2413 tree vecutype = get_vectype_for_scalar_type (utype);
2414 tree shift
2415 = build_int_cst (utype, GET_MODE_BITSIZE (TYPE_MODE (itype))
2416 - tree_log2 (oprnd1));
2417 tree var = vect_recog_temp_ssa_var (utype, NULL);
2418
0d0e4a03
JJ
2419 def_stmt = gimple_build_assign (var, COND_EXPR, cond,
2420 build_int_cst (utype, -1),
2421 build_int_cst (utype, 0));
310213d4 2422 def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
079c527f
JJ
2423 set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
2424 STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype;
2425 append_pattern_def_seq (stmt_vinfo, def_stmt);
2426 var = vect_recog_temp_ssa_var (utype, NULL);
0d0e4a03
JJ
2427 def_stmt = gimple_build_assign (var, RSHIFT_EXPR,
2428 gimple_assign_lhs (def_stmt),
2429 shift);
310213d4 2430 def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo);
079c527f
JJ
2431 set_vinfo_for_stmt (def_stmt, def_stmt_vinfo);
2432 STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype;
2433 append_pattern_def_seq (stmt_vinfo, def_stmt);
2434 signmask = vect_recog_temp_ssa_var (itype, NULL);
2435 def_stmt
0d0e4a03 2436 = gimple_build_assign (signmask, NOP_EXPR, var);
079c527f
JJ
2437 append_pattern_def_seq (stmt_vinfo, def_stmt);
2438 }
2439 def_stmt
0d0e4a03
JJ
2440 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2441 PLUS_EXPR, oprnd0, signmask);
079c527f
JJ
2442 append_pattern_def_seq (stmt_vinfo, def_stmt);
2443 def_stmt
0d0e4a03
JJ
2444 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2445 BIT_AND_EXPR, gimple_assign_lhs (def_stmt),
2446 fold_build2 (MINUS_EXPR, itype, oprnd1,
2447 build_int_cst (itype, 1)));
079c527f
JJ
2448 append_pattern_def_seq (stmt_vinfo, def_stmt);
2449
2450 pattern_stmt
0d0e4a03
JJ
2451 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2452 MINUS_EXPR, gimple_assign_lhs (def_stmt),
2453 signmask);
079c527f
JJ
2454 }
2455
73fbfcad 2456 if (dump_enabled_p ())
78c60e3d
SS
2457 dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt,
2458 0);
079c527f 2459
9771b263 2460 stmts->safe_push (last_stmt);
079c527f
JJ
2461
2462 *type_in = vectype;
2463 *type_out = vectype;
2464 return pattern_stmt;
363477c0 2465 }
079c527f 2466
6b58915b
RS
2467 if (prec > HOST_BITS_PER_WIDE_INT
2468 || integer_zerop (oprnd1))
079c527f
JJ
2469 return NULL;
2470
00f07b86
RH
2471 if (!can_mult_highpart_p (TYPE_MODE (vectype), TYPE_UNSIGNED (itype)))
2472 return NULL;
079c527f
JJ
2473
2474 STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL;
2475
2476 if (TYPE_UNSIGNED (itype))
363477c0 2477 {
079c527f
JJ
2478 unsigned HOST_WIDE_INT mh, ml;
2479 int pre_shift, post_shift;
6b58915b
RS
2480 unsigned HOST_WIDE_INT d = (TREE_INT_CST_LOW (oprnd1)
2481 & GET_MODE_MASK (TYPE_MODE (itype)));
5deb57cb 2482 tree t1, t2, t3, t4;
079c527f
JJ
2483
2484 if (d >= ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))
2485 /* FIXME: Can transform this into oprnd0 >= oprnd1 ? 1 : 0. */
2486 return NULL;
2487
2488 /* Find a suitable multiplier and right shift count
2489 instead of multiplying with D. */
2490 mh = choose_multiplier (d, prec, prec, &ml, &post_shift, &dummy_int);
2491
2492 /* If the suggested multiplier is more than SIZE bits, we can do better
2493 for even divisors, using an initial right shift. */
2494 if (mh != 0 && (d & 1) == 0)
363477c0 2495 {
079c527f
JJ
2496 pre_shift = floor_log2 (d & -d);
2497 mh = choose_multiplier (d >> pre_shift, prec, prec - pre_shift,
2498 &ml, &post_shift, &dummy_int);
2499 gcc_assert (!mh);
2500 }
2501 else
2502 pre_shift = 0;
2503
2504 if (mh != 0)
2505 {
2506 if (post_shift - 1 >= prec)
2507 return NULL;
2508
5deb57cb
JJ
2509 /* t1 = oprnd0 h* ml;
2510 t2 = oprnd0 - t1;
2511 t3 = t2 >> 1;
2512 t4 = t1 + t3;
2513 q = t4 >> (post_shift - 1); */
2514 t1 = vect_recog_temp_ssa_var (itype, NULL);
0d0e4a03
JJ
2515 def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
2516 build_int_cst (itype, ml));
079c527f 2517 append_pattern_def_seq (stmt_vinfo, def_stmt);
079c527f 2518
5deb57cb 2519 t2 = vect_recog_temp_ssa_var (itype, NULL);
079c527f 2520 def_stmt
0d0e4a03 2521 = gimple_build_assign (t2, MINUS_EXPR, oprnd0, t1);
083481d8 2522 append_pattern_def_seq (stmt_vinfo, def_stmt);
079c527f
JJ
2523
2524 t3 = vect_recog_temp_ssa_var (itype, NULL);
2525 def_stmt
0d0e4a03 2526 = gimple_build_assign (t3, RSHIFT_EXPR, t2, integer_one_node);
079c527f
JJ
2527 append_pattern_def_seq (stmt_vinfo, def_stmt);
2528
5deb57cb 2529 t4 = vect_recog_temp_ssa_var (itype, NULL);
079c527f 2530 def_stmt
0d0e4a03 2531 = gimple_build_assign (t4, PLUS_EXPR, t1, t3);
079c527f
JJ
2532
2533 if (post_shift != 1)
2534 {
2535 append_pattern_def_seq (stmt_vinfo, def_stmt);
2536
5deb57cb 2537 q = vect_recog_temp_ssa_var (itype, NULL);
079c527f 2538 pattern_stmt
0d0e4a03
JJ
2539 = gimple_build_assign (q, RSHIFT_EXPR, t4,
2540 build_int_cst (itype, post_shift - 1));
079c527f
JJ
2541 }
2542 else
2543 {
5deb57cb 2544 q = t4;
079c527f
JJ
2545 pattern_stmt = def_stmt;
2546 }
363477c0
JJ
2547 }
2548 else
2549 {
079c527f
JJ
2550 if (pre_shift >= prec || post_shift >= prec)
2551 return NULL;
2552
2553 /* t1 = oprnd0 >> pre_shift;
5deb57cb
JJ
2554 t2 = t1 h* ml;
2555 q = t2 >> post_shift; */
079c527f
JJ
2556 if (pre_shift)
2557 {
2558 t1 = vect_recog_temp_ssa_var (itype, NULL);
2559 def_stmt
0d0e4a03
JJ
2560 = gimple_build_assign (t1, RSHIFT_EXPR, oprnd0,
2561 build_int_cst (NULL, pre_shift));
079c527f
JJ
2562 append_pattern_def_seq (stmt_vinfo, def_stmt);
2563 }
2564 else
2565 t1 = oprnd0;
363477c0 2566
5deb57cb 2567 t2 = vect_recog_temp_ssa_var (itype, NULL);
0d0e4a03
JJ
2568 def_stmt = gimple_build_assign (t2, MULT_HIGHPART_EXPR, t1,
2569 build_int_cst (itype, ml));
079c527f 2570
5deb57cb
JJ
2571 if (post_shift)
2572 {
2573 append_pattern_def_seq (stmt_vinfo, def_stmt);
079c527f 2574
5deb57cb
JJ
2575 q = vect_recog_temp_ssa_var (itype, NULL);
2576 def_stmt
0d0e4a03
JJ
2577 = gimple_build_assign (q, RSHIFT_EXPR, t2,
2578 build_int_cst (itype, post_shift));
5deb57cb
JJ
2579 }
2580 else
2581 q = t2;
2582
2583 pattern_stmt = def_stmt;
079c527f
JJ
2584 }
2585 }
2586 else
2587 {
2588 unsigned HOST_WIDE_INT ml;
4ee4c52c 2589 int post_shift;
6b58915b 2590 HOST_WIDE_INT d = TREE_INT_CST_LOW (oprnd1);
079c527f
JJ
2591 unsigned HOST_WIDE_INT abs_d;
2592 bool add = false;
5deb57cb 2593 tree t1, t2, t3, t4;
079c527f
JJ
2594
2595 /* Give up for -1. */
2596 if (d == -1)
2597 return NULL;
2598
079c527f
JJ
2599 /* Since d might be INT_MIN, we have to cast to
2600 unsigned HOST_WIDE_INT before negating to avoid
2601 undefined signed overflow. */
2602 abs_d = (d >= 0
2603 ? (unsigned HOST_WIDE_INT) d
2604 : - (unsigned HOST_WIDE_INT) d);
2605
2606 /* n rem d = n rem -d */
2607 if (rhs_code == TRUNC_MOD_EXPR && d < 0)
2608 {
2609 d = abs_d;
2610 oprnd1 = build_int_cst (itype, abs_d);
2611 }
2612 else if (HOST_BITS_PER_WIDE_INT >= prec
2613 && abs_d == (unsigned HOST_WIDE_INT) 1 << (prec - 1))
2614 /* This case is not handled correctly below. */
2615 return NULL;
2616
4ee4c52c 2617 choose_multiplier (abs_d, prec, prec - 1, &ml, &post_shift, &dummy_int);
079c527f
JJ
2618 if (ml >= (unsigned HOST_WIDE_INT) 1 << (prec - 1))
2619 {
2620 add = true;
2621 ml |= (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
2622 }
2623 if (post_shift >= prec)
2624 return NULL;
2625
7abed779 2626 /* t1 = oprnd0 h* ml; */
5deb57cb 2627 t1 = vect_recog_temp_ssa_var (itype, NULL);
0d0e4a03
JJ
2628 def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0,
2629 build_int_cst (itype, ml));
079c527f
JJ
2630
2631 if (add)
2632 {
5deb57cb 2633 /* t2 = t1 + oprnd0; */
7abed779 2634 append_pattern_def_seq (stmt_vinfo, def_stmt);
5deb57cb 2635 t2 = vect_recog_temp_ssa_var (itype, NULL);
0d0e4a03 2636 def_stmt = gimple_build_assign (t2, PLUS_EXPR, t1, oprnd0);
079c527f
JJ
2637 }
2638 else
5deb57cb 2639 t2 = t1;
079c527f 2640
5deb57cb 2641 if (post_shift)
079c527f 2642 {
5deb57cb 2643 /* t3 = t2 >> post_shift; */
7abed779 2644 append_pattern_def_seq (stmt_vinfo, def_stmt);
5deb57cb 2645 t3 = vect_recog_temp_ssa_var (itype, NULL);
0d0e4a03
JJ
2646 def_stmt = gimple_build_assign (t3, RSHIFT_EXPR, t2,
2647 build_int_cst (itype, post_shift));
363477c0 2648 }
079c527f 2649 else
5deb57cb 2650 t3 = t2;
079c527f 2651
807e902e 2652 wide_int oprnd0_min, oprnd0_max;
7abed779
JJ
2653 int msb = 1;
2654 if (get_range_info (oprnd0, &oprnd0_min, &oprnd0_max) == VR_RANGE)
2655 {
807e902e 2656 if (!wi::neg_p (oprnd0_min, TYPE_SIGN (itype)))
7abed779 2657 msb = 0;
807e902e 2658 else if (wi::neg_p (oprnd0_max, TYPE_SIGN (itype)))
7abed779
JJ
2659 msb = -1;
2660 }
079c527f 2661
7abed779
JJ
2662 if (msb == 0 && d >= 0)
2663 {
2664 /* q = t3; */
2665 q = t3;
2666 pattern_stmt = def_stmt;
2667 }
2668 else
2669 {
2670 /* t4 = oprnd0 >> (prec - 1);
2671 or if we know from VRP that oprnd0 >= 0
2672 t4 = 0;
2673 or if we know from VRP that oprnd0 < 0
2674 t4 = -1; */
2675 append_pattern_def_seq (stmt_vinfo, def_stmt);
2676 t4 = vect_recog_temp_ssa_var (itype, NULL);
2677 if (msb != 1)
0d0e4a03
JJ
2678 def_stmt = gimple_build_assign (t4, INTEGER_CST,
2679 build_int_cst (itype, msb));
7abed779 2680 else
0d0e4a03
JJ
2681 def_stmt = gimple_build_assign (t4, RSHIFT_EXPR, oprnd0,
2682 build_int_cst (itype, prec - 1));
7abed779
JJ
2683 append_pattern_def_seq (stmt_vinfo, def_stmt);
2684
2685 /* q = t3 - t4; or q = t4 - t3; */
2686 q = vect_recog_temp_ssa_var (itype, NULL);
0d0e4a03
JJ
2687 pattern_stmt = gimple_build_assign (q, MINUS_EXPR, d < 0 ? t4 : t3,
2688 d < 0 ? t3 : t4);
7abed779 2689 }
079c527f
JJ
2690 }
2691
2692 if (rhs_code == TRUNC_MOD_EXPR)
2693 {
2694 tree r, t1;
2695
2696 /* We divided. Now finish by:
2697 t1 = q * oprnd1;
2698 r = oprnd0 - t1; */
2699 append_pattern_def_seq (stmt_vinfo, pattern_stmt);
2700
2701 t1 = vect_recog_temp_ssa_var (itype, NULL);
0d0e4a03 2702 def_stmt = gimple_build_assign (t1, MULT_EXPR, q, oprnd1);
083481d8 2703 append_pattern_def_seq (stmt_vinfo, def_stmt);
363477c0 2704
079c527f 2705 r = vect_recog_temp_ssa_var (itype, NULL);
0d0e4a03 2706 pattern_stmt = gimple_build_assign (r, MINUS_EXPR, oprnd0, t1);
363477c0
JJ
2707 }
2708
079c527f 2709 /* Pattern detected. */
73fbfcad 2710 if (dump_enabled_p ())
78c60e3d 2711 {
ccb3ad87 2712 dump_printf_loc (MSG_NOTE, vect_location,
78c60e3d 2713 "vect_recog_divmod_pattern: detected: ");
ccb3ad87 2714 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
78c60e3d 2715 }
363477c0 2716
9771b263 2717 stmts->safe_push (last_stmt);
363477c0
JJ
2718
2719 *type_in = vectype;
2720 *type_out = vectype;
2721 return pattern_stmt;
2722}
2723
69d2aade
JJ
2724/* Function vect_recog_mixed_size_cond_pattern
2725
2726 Try to find the following pattern:
2727
2728 type x_t, y_t;
2729 TYPE a_T, b_T, c_T;
2730 loop:
2731 S1 a_T = x_t CMP y_t ? b_T : c_T;
2732
2733 where type 'TYPE' is an integral type which has different size
bc4fb355 2734 from 'type'. b_T and c_T are either constants (and if 'TYPE' is wider
69d2aade 2735 than 'type', the constants need to fit into an integer type
bc4fb355 2736 with the same width as 'type') or results of conversion from 'type'.
69d2aade
JJ
2737
2738 Input:
2739
2740 * LAST_STMT: A stmt from which the pattern search begins.
2741
2742 Output:
2743
2744 * TYPE_IN: The type of the input arguments to the pattern.
2745
2746 * TYPE_OUT: The type of the output of this pattern.
2747
2748 * Return value: A new stmt that will be used to replace the pattern.
2749 Additionally a def_stmt is added.
2750
2751 a_it = x_t CMP y_t ? b_it : c_it;
2752 a_T = (TYPE) a_it; */
2753
355fe088
TS
2754static gimple *
2755vect_recog_mixed_size_cond_pattern (vec<gimple *> *stmts, tree *type_in,
69d2aade
JJ
2756 tree *type_out)
2757{
355fe088 2758 gimple *last_stmt = (*stmts)[0];
69d2aade
JJ
2759 tree cond_expr, then_clause, else_clause;
2760 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt), def_stmt_info;
bc4fb355 2761 tree type, vectype, comp_vectype, itype = NULL_TREE, vecitype;
355fe088 2762 gimple *pattern_stmt, *def_stmt;
310213d4 2763 vec_info *vinfo = stmt_vinfo->vinfo;
bc4fb355 2764 tree orig_type0 = NULL_TREE, orig_type1 = NULL_TREE;
355fe088 2765 gimple *def_stmt0 = NULL, *def_stmt1 = NULL;
bc4fb355
IR
2766 bool promotion;
2767 tree comp_scalar_type;
69d2aade
JJ
2768
2769 if (!is_gimple_assign (last_stmt)
2770 || gimple_assign_rhs_code (last_stmt) != COND_EXPR
2771 || STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
2772 return NULL;
2773
2774 cond_expr = gimple_assign_rhs1 (last_stmt);
2775 then_clause = gimple_assign_rhs2 (last_stmt);
2776 else_clause = gimple_assign_rhs3 (last_stmt);
2777
87aab9b2
JJ
2778 if (!COMPARISON_CLASS_P (cond_expr))
2779 return NULL;
2780
bc4fb355
IR
2781 comp_scalar_type = TREE_TYPE (TREE_OPERAND (cond_expr, 0));
2782 comp_vectype = get_vectype_for_scalar_type (comp_scalar_type);
87aab9b2 2783 if (comp_vectype == NULL_TREE)
69d2aade
JJ
2784 return NULL;
2785
2786 type = gimple_expr_type (last_stmt);
bc4fb355
IR
2787 if (types_compatible_p (type, comp_scalar_type)
2788 || ((TREE_CODE (then_clause) != INTEGER_CST
2789 || TREE_CODE (else_clause) != INTEGER_CST)
2790 && !INTEGRAL_TYPE_P (comp_scalar_type))
2791 || !INTEGRAL_TYPE_P (type))
2792 return NULL;
2793
2794 if ((TREE_CODE (then_clause) != INTEGER_CST
2795 && !type_conversion_p (then_clause, last_stmt, false, &orig_type0,
2796 &def_stmt0, &promotion))
2797 || (TREE_CODE (else_clause) != INTEGER_CST
2798 && !type_conversion_p (else_clause, last_stmt, false, &orig_type1,
2799 &def_stmt1, &promotion)))
2800 return NULL;
2801
2802 if (orig_type0 && orig_type1
2803 && !types_compatible_p (orig_type0, orig_type1))
2804 return NULL;
2805
2806 if (orig_type0)
2807 {
2808 if (!types_compatible_p (orig_type0, comp_scalar_type))
2809 return NULL;
2810 then_clause = gimple_assign_rhs1 (def_stmt0);
2811 itype = orig_type0;
2812 }
2813
2814 if (orig_type1)
2815 {
2816 if (!types_compatible_p (orig_type1, comp_scalar_type))
2817 return NULL;
2818 else_clause = gimple_assign_rhs1 (def_stmt1);
2819 itype = orig_type1;
2820 }
2821
69d2aade 2822
6c825cd4
DS
2823 HOST_WIDE_INT cmp_mode_size
2824 = GET_MODE_UNIT_BITSIZE (TYPE_MODE (comp_vectype));
2825
2826 if (GET_MODE_BITSIZE (TYPE_MODE (type)) == cmp_mode_size)
69d2aade
JJ
2827 return NULL;
2828
2829 vectype = get_vectype_for_scalar_type (type);
2830 if (vectype == NULL_TREE)
2831 return NULL;
2832
2833 if (expand_vec_cond_expr_p (vectype, comp_vectype))
2834 return NULL;
2835
bc4fb355 2836 if (itype == NULL_TREE)
6c825cd4 2837 itype = build_nonstandard_integer_type (cmp_mode_size,
bc4fb355
IR
2838 TYPE_UNSIGNED (type));
2839
69d2aade 2840 if (itype == NULL_TREE
6c825cd4 2841 || GET_MODE_BITSIZE (TYPE_MODE (itype)) != cmp_mode_size)
69d2aade
JJ
2842 return NULL;
2843
2844 vecitype = get_vectype_for_scalar_type (itype);
2845 if (vecitype == NULL_TREE)
2846 return NULL;
2847
2848 if (!expand_vec_cond_expr_p (vecitype, comp_vectype))
2849 return NULL;
2850
6c825cd4 2851 if (GET_MODE_BITSIZE (TYPE_MODE (type)) > cmp_mode_size)
69d2aade 2852 {
bc4fb355
IR
2853 if ((TREE_CODE (then_clause) == INTEGER_CST
2854 && !int_fits_type_p (then_clause, itype))
2855 || (TREE_CODE (else_clause) == INTEGER_CST
2856 && !int_fits_type_p (else_clause, itype)))
69d2aade
JJ
2857 return NULL;
2858 }
2859
0d0e4a03
JJ
2860 def_stmt = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
2861 COND_EXPR, unshare_expr (cond_expr),
2862 fold_convert (itype, then_clause),
2863 fold_convert (itype, else_clause));
2864 pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
2865 NOP_EXPR, gimple_assign_lhs (def_stmt));
69d2aade 2866
083481d8 2867 new_pattern_def_seq (stmt_vinfo, def_stmt);
310213d4 2868 def_stmt_info = new_stmt_vec_info (def_stmt, vinfo);
69d2aade
JJ
2869 set_vinfo_for_stmt (def_stmt, def_stmt_info);
2870 STMT_VINFO_VECTYPE (def_stmt_info) = vecitype;
2871 *type_in = vecitype;
2872 *type_out = vectype;
2873
73fbfcad 2874 if (dump_enabled_p ())
ccb3ad87 2875 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 2876 "vect_recog_mixed_size_cond_pattern: detected:\n");
f5709183 2877
69d2aade
JJ
2878 return pattern_stmt;
2879}
2880
2881
71c92d17 2882/* Helper function of vect_recog_bool_pattern. Called recursively, return
42fd8198
IE
2883 true if bool VAR can and should be optimized that way. Assume it shouldn't
2884 in case it's a result of a comparison which can be directly vectorized into
fa2c9034
RB
2885 a vector comparison. Fills in STMTS with all stmts visited during the
2886 walk. */
71c92d17
JJ
2887
2888static bool
fa2c9034 2889check_bool_pattern (tree var, vec_info *vinfo, hash_set<gimple *> &stmts)
71c92d17 2890{
355fe088 2891 gimple *def_stmt;
71c92d17 2892 enum vect_def_type dt;
81c40241 2893 tree rhs1;
71c92d17
JJ
2894 enum tree_code rhs_code;
2895
81c40241 2896 if (!vect_is_simple_use (var, vinfo, &def_stmt, &dt))
71c92d17
JJ
2897 return false;
2898
2899 if (dt != vect_internal_def)
2900 return false;
2901
2902 if (!is_gimple_assign (def_stmt))
2903 return false;
2904
fa2c9034
RB
2905 if (stmts.contains (def_stmt))
2906 return true;
71c92d17
JJ
2907
2908 rhs1 = gimple_assign_rhs1 (def_stmt);
2909 rhs_code = gimple_assign_rhs_code (def_stmt);
2910 switch (rhs_code)
2911 {
2912 case SSA_NAME:
fa2c9034
RB
2913 if (! check_bool_pattern (rhs1, vinfo, stmts))
2914 return false;
2915 break;
71c92d17
JJ
2916
2917 CASE_CONVERT:
2918 if ((TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2919 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2920 && TREE_CODE (TREE_TYPE (rhs1)) != BOOLEAN_TYPE)
2921 return false;
fa2c9034
RB
2922 if (! check_bool_pattern (rhs1, vinfo, stmts))
2923 return false;
2924 break;
71c92d17
JJ
2925
2926 case BIT_NOT_EXPR:
fa2c9034
RB
2927 if (! check_bool_pattern (rhs1, vinfo, stmts))
2928 return false;
2929 break;
71c92d17
JJ
2930
2931 case BIT_AND_EXPR:
2932 case BIT_IOR_EXPR:
2933 case BIT_XOR_EXPR:
fa2c9034
RB
2934 if (! check_bool_pattern (rhs1, vinfo, stmts)
2935 || ! check_bool_pattern (gimple_assign_rhs2 (def_stmt), vinfo, stmts))
71c92d17 2936 return false;
fa2c9034 2937 break;
71c92d17
JJ
2938
2939 default:
2940 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
2941 {
fa2c9034 2942 tree vecitype, comp_vectype;
71c92d17 2943
2f326699
JJ
2944 /* If the comparison can throw, then is_gimple_condexpr will be
2945 false and we can't make a COND_EXPR/VEC_COND_EXPR out of it. */
2946 if (stmt_could_throw_p (def_stmt))
2947 return false;
2948
71c92d17
JJ
2949 comp_vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
2950 if (comp_vectype == NULL_TREE)
2951 return false;
2952
fa2c9034 2953 tree mask_type = get_mask_type_for_scalar_type (TREE_TYPE (rhs1));
42fd8198
IE
2954 if (mask_type
2955 && expand_vec_cmp_expr_p (comp_vectype, mask_type))
2956 return false;
2957
71c92d17
JJ
2958 if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE)
2959 {
ef4bddc2 2960 machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
71c92d17 2961 tree itype
ab0ef706 2962 = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
71c92d17
JJ
2963 vecitype = get_vectype_for_scalar_type (itype);
2964 if (vecitype == NULL_TREE)
2965 return false;
2966 }
2967 else
2968 vecitype = comp_vectype;
fa2c9034
RB
2969 if (! expand_vec_cond_expr_p (vecitype, comp_vectype))
2970 return false;
71c92d17 2971 }
fa2c9034
RB
2972 else
2973 return false;
2974 break;
71c92d17 2975 }
fa2c9034
RB
2976
2977 bool res = stmts.add (def_stmt);
2978 /* We can't end up recursing when just visiting SSA defs but not PHIs. */
2979 gcc_assert (!res);
2980
2981 return true;
71c92d17
JJ
2982}
2983
2984
2985/* Helper function of adjust_bool_pattern. Add a cast to TYPE to a previous
fa2c9034
RB
2986 stmt (SSA_NAME_DEF_STMT of VAR) adding a cast to STMT_INFOs
2987 pattern sequence. */
71c92d17
JJ
2988
2989static tree
fa2c9034 2990adjust_bool_pattern_cast (tree type, tree var, stmt_vec_info stmt_info)
71c92d17 2991{
fa2c9034
RB
2992 gimple *cast_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL),
2993 NOP_EXPR, var);
2994 stmt_vec_info patt_vinfo = new_stmt_vec_info (cast_stmt, stmt_info->vinfo);
2995 set_vinfo_for_stmt (cast_stmt, patt_vinfo);
2996 STMT_VINFO_VECTYPE (patt_vinfo) = get_vectype_for_scalar_type (type);
2997 append_pattern_def_seq (stmt_info, cast_stmt);
71c92d17
JJ
2998 return gimple_assign_lhs (cast_stmt);
2999}
3000
fa2c9034
RB
3001/* Helper function of vect_recog_bool_pattern. Do the actual transformations.
3002 VAR is an SSA_NAME that should be transformed from bool to a wider integer
3003 type, OUT_TYPE is the desired final integer type of the whole pattern.
3004 STMT_INFO is the info of the pattern root and is where pattern stmts should
3005 be associated with. DEFS is a map of pattern defs. */
71c92d17 3006
fa2c9034
RB
3007static void
3008adjust_bool_pattern (tree var, tree out_type,
3009 stmt_vec_info stmt_info, hash_map <tree, tree> &defs)
71c92d17 3010{
355fe088 3011 gimple *stmt = SSA_NAME_DEF_STMT (var);
71c92d17
JJ
3012 enum tree_code rhs_code, def_rhs_code;
3013 tree itype, cond_expr, rhs1, rhs2, irhs1, irhs2;
3014 location_t loc;
355fe088 3015 gimple *pattern_stmt, *def_stmt;
fa2c9034 3016 tree trueval = NULL_TREE;
71c92d17
JJ
3017
3018 rhs1 = gimple_assign_rhs1 (stmt);
3019 rhs2 = gimple_assign_rhs2 (stmt);
3020 rhs_code = gimple_assign_rhs_code (stmt);
3021 loc = gimple_location (stmt);
3022 switch (rhs_code)
3023 {
3024 case SSA_NAME:
3025 CASE_CONVERT:
fa2c9034 3026 irhs1 = *defs.get (rhs1);
71c92d17
JJ
3027 itype = TREE_TYPE (irhs1);
3028 pattern_stmt
0d0e4a03
JJ
3029 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3030 SSA_NAME, irhs1);
71c92d17
JJ
3031 break;
3032
3033 case BIT_NOT_EXPR:
fa2c9034 3034 irhs1 = *defs.get (rhs1);
71c92d17
JJ
3035 itype = TREE_TYPE (irhs1);
3036 pattern_stmt
0d0e4a03
JJ
3037 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3038 BIT_XOR_EXPR, irhs1, build_int_cst (itype, 1));
71c92d17
JJ
3039 break;
3040
3041 case BIT_AND_EXPR:
3042 /* Try to optimize x = y & (a < b ? 1 : 0); into
3043 x = (a < b ? y : 0);
3044
3045 E.g. for:
3046 bool a_b, b_b, c_b;
3047 TYPE d_T;
3048
3049 S1 a_b = x1 CMP1 y1;
3050 S2 b_b = x2 CMP2 y2;
3051 S3 c_b = a_b & b_b;
3052 S4 d_T = (TYPE) c_b;
3053
3054 we would normally emit:
3055
3056 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3057 S2' b_T = x2 CMP2 y2 ? 1 : 0;
3058 S3' c_T = a_T & b_T;
3059 S4' d_T = c_T;
3060
3061 but we can save one stmt by using the
3062 result of one of the COND_EXPRs in the other COND_EXPR and leave
3063 BIT_AND_EXPR stmt out:
3064
3065 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3066 S3' c_T = x2 CMP2 y2 ? a_T : 0;
3067 S4' f_T = c_T;
3068
3069 At least when VEC_COND_EXPR is implemented using masks
3070 cond ? 1 : 0 is as expensive as cond ? var : 0, in both cases it
3071 computes the comparison masks and ands it, in one case with
3072 all ones vector, in the other case with a vector register.
3073 Don't do this for BIT_IOR_EXPR, because cond ? 1 : var; is
3074 often more expensive. */
3075 def_stmt = SSA_NAME_DEF_STMT (rhs2);
3076 def_rhs_code = gimple_assign_rhs_code (def_stmt);
3077 if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
3078 {
fa2c9034 3079 irhs1 = *defs.get (rhs1);
71c92d17 3080 tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
71c92d17
JJ
3081 if (TYPE_PRECISION (TREE_TYPE (irhs1))
3082 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (def_rhs1))))
3083 {
fa2c9034
RB
3084 rhs_code = def_rhs_code;
3085 rhs1 = def_rhs1;
3086 rhs2 = gimple_assign_rhs2 (def_stmt);
3087 trueval = irhs1;
3088 goto do_compare;
71c92d17
JJ
3089 }
3090 else
fa2c9034 3091 irhs2 = *defs.get (rhs2);
71c92d17
JJ
3092 goto and_ior_xor;
3093 }
3094 def_stmt = SSA_NAME_DEF_STMT (rhs1);
3095 def_rhs_code = gimple_assign_rhs_code (def_stmt);
3096 if (TREE_CODE_CLASS (def_rhs_code) == tcc_comparison)
3097 {
fa2c9034 3098 irhs2 = *defs.get (rhs2);
71c92d17 3099 tree def_rhs1 = gimple_assign_rhs1 (def_stmt);
71c92d17
JJ
3100 if (TYPE_PRECISION (TREE_TYPE (irhs2))
3101 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (def_rhs1))))
3102 {
fa2c9034
RB
3103 rhs_code = def_rhs_code;
3104 rhs1 = def_rhs1;
3105 rhs2 = gimple_assign_rhs2 (def_stmt);
3106 trueval = irhs2;
3107 goto do_compare;
71c92d17
JJ
3108 }
3109 else
fa2c9034 3110 irhs1 = *defs.get (rhs1);
71c92d17
JJ
3111 goto and_ior_xor;
3112 }
3113 /* FALLTHRU */
3114 case BIT_IOR_EXPR:
3115 case BIT_XOR_EXPR:
fa2c9034
RB
3116 irhs1 = *defs.get (rhs1);
3117 irhs2 = *defs.get (rhs2);
71c92d17
JJ
3118 and_ior_xor:
3119 if (TYPE_PRECISION (TREE_TYPE (irhs1))
3120 != TYPE_PRECISION (TREE_TYPE (irhs2)))
3121 {
3122 int prec1 = TYPE_PRECISION (TREE_TYPE (irhs1));
3123 int prec2 = TYPE_PRECISION (TREE_TYPE (irhs2));
3124 int out_prec = TYPE_PRECISION (out_type);
3125 if (absu_hwi (out_prec - prec1) < absu_hwi (out_prec - prec2))
fa2c9034
RB
3126 irhs2 = adjust_bool_pattern_cast (TREE_TYPE (irhs1), irhs2,
3127 stmt_info);
71c92d17 3128 else if (absu_hwi (out_prec - prec1) > absu_hwi (out_prec - prec2))
fa2c9034
RB
3129 irhs1 = adjust_bool_pattern_cast (TREE_TYPE (irhs2), irhs1,
3130 stmt_info);
71c92d17
JJ
3131 else
3132 {
fa2c9034
RB
3133 irhs1 = adjust_bool_pattern_cast (out_type, irhs1, stmt_info);
3134 irhs2 = adjust_bool_pattern_cast (out_type, irhs2, stmt_info);
71c92d17
JJ
3135 }
3136 }
3137 itype = TREE_TYPE (irhs1);
3138 pattern_stmt
0d0e4a03
JJ
3139 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3140 rhs_code, irhs1, irhs2);
71c92d17
JJ
3141 break;
3142
3143 default:
fa2c9034 3144 do_compare:
71c92d17
JJ
3145 gcc_assert (TREE_CODE_CLASS (rhs_code) == tcc_comparison);
3146 if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE
e6a21dd2
JJ
3147 || !TYPE_UNSIGNED (TREE_TYPE (rhs1))
3148 || (TYPE_PRECISION (TREE_TYPE (rhs1))
3149 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1)))))
71c92d17 3150 {
ef4bddc2 3151 machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
71c92d17 3152 itype
ab0ef706 3153 = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
71c92d17
JJ
3154 }
3155 else
3156 itype = TREE_TYPE (rhs1);
3157 cond_expr = build2_loc (loc, rhs_code, itype, rhs1, rhs2);
3158 if (trueval == NULL_TREE)
3159 trueval = build_int_cst (itype, 1);
3160 else
3161 gcc_checking_assert (useless_type_conversion_p (itype,
3162 TREE_TYPE (trueval)));
3163 pattern_stmt
0d0e4a03
JJ
3164 = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL),
3165 COND_EXPR, cond_expr, trueval,
3166 build_int_cst (itype, 0));
71c92d17
JJ
3167 break;
3168 }
3169
71c92d17 3170 gimple_set_location (pattern_stmt, loc);
fa2c9034
RB
3171 /* ??? Why does vect_mark_pattern_stmts set the vector type on all
3172 pattern def seq stmts instead of just letting auto-detection do
3173 its work? */
3174 stmt_vec_info patt_vinfo = new_stmt_vec_info (pattern_stmt, stmt_info->vinfo);
3175 set_vinfo_for_stmt (pattern_stmt, patt_vinfo);
3176 STMT_VINFO_VECTYPE (patt_vinfo) = get_vectype_for_scalar_type (itype);
3177 append_pattern_def_seq (stmt_info, pattern_stmt);
3178 defs.put (var, gimple_assign_lhs (pattern_stmt));
3179}
3180
3181/* Comparison function to qsort a vector of gimple stmts after UID. */
3182
3183static int
3184sort_after_uid (const void *p1, const void *p2)
3185{
3186 const gimple *stmt1 = *(const gimple * const *)p1;
3187 const gimple *stmt2 = *(const gimple * const *)p2;
3188 return gimple_uid (stmt1) - gimple_uid (stmt2);
71c92d17
JJ
3189}
3190
fa2c9034
RB
3191/* Create pattern stmts for all stmts participating in the bool pattern
3192 specified by BOOL_STMT_SET and its root STMT with the desired type
3193 OUT_TYPE. Return the def of the pattern root. */
3194
3195static tree
3196adjust_bool_stmts (hash_set <gimple *> &bool_stmt_set,
3197 tree out_type, gimple *stmt)
3198{
3199 /* Gather original stmts in the bool pattern in their order of appearance
3200 in the IL. */
3201 auto_vec<gimple *> bool_stmts (bool_stmt_set.elements ());
3202 for (hash_set <gimple *>::iterator i = bool_stmt_set.begin ();
3203 i != bool_stmt_set.end (); ++i)
3204 bool_stmts.quick_push (*i);
3205 bool_stmts.qsort (sort_after_uid);
3206
3207 /* Now process them in that order, producing pattern stmts. */
3208 hash_map <tree, tree> defs;
3209 for (unsigned i = 0; i < bool_stmts.length (); ++i)
3210 adjust_bool_pattern (gimple_assign_lhs (bool_stmts[i]),
3211 out_type, vinfo_for_stmt (stmt), defs);
3212
3213 /* Pop the last pattern seq stmt and install it as pattern root for STMT. */
3214 gimple *pattern_stmt
3215 = gimple_seq_last_stmt (STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (stmt)));
3216 return gimple_assign_lhs (pattern_stmt);
3217}
71c92d17 3218
42fd8198
IE
3219/* Return the proper type for converting bool VAR into
3220 an integer value or NULL_TREE if no such type exists.
3221 The type is chosen so that converted value has the
3222 same number of elements as VAR's vector type. */
3223
3224static tree
3225search_type_for_mask (tree var, vec_info *vinfo)
3226{
3227 gimple *def_stmt;
3228 enum vect_def_type dt;
3229 tree rhs1;
3230 enum tree_code rhs_code;
e6f5c25d 3231 tree res = NULL_TREE, res2;
42fd8198
IE
3232
3233 if (TREE_CODE (var) != SSA_NAME)
3234 return NULL_TREE;
3235
3236 if ((TYPE_PRECISION (TREE_TYPE (var)) != 1
3237 || !TYPE_UNSIGNED (TREE_TYPE (var)))
3238 && TREE_CODE (TREE_TYPE (var)) != BOOLEAN_TYPE)
3239 return NULL_TREE;
3240
3241 if (!vect_is_simple_use (var, vinfo, &def_stmt, &dt))
3242 return NULL_TREE;
3243
3244 if (dt != vect_internal_def)
3245 return NULL_TREE;
3246
3247 if (!is_gimple_assign (def_stmt))
3248 return NULL_TREE;
3249
3250 rhs_code = gimple_assign_rhs_code (def_stmt);
3251 rhs1 = gimple_assign_rhs1 (def_stmt);
3252
3253 switch (rhs_code)
3254 {
3255 case SSA_NAME:
3256 case BIT_NOT_EXPR:
3257 CASE_CONVERT:
3258 res = search_type_for_mask (rhs1, vinfo);
3259 break;
3260
3261 case BIT_AND_EXPR:
3262 case BIT_IOR_EXPR:
3263 case BIT_XOR_EXPR:
e6f5c25d
IE
3264 res = search_type_for_mask (rhs1, vinfo);
3265 res2 = search_type_for_mask (gimple_assign_rhs2 (def_stmt), vinfo);
3266 if (!res || (res2 && TYPE_PRECISION (res) > TYPE_PRECISION (res2)))
3267 res = res2;
42fd8198
IE
3268 break;
3269
3270 default:
3271 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
3272 {
e6f5c25d
IE
3273 tree comp_vectype, mask_type;
3274
af3cdd34
IE
3275 if (TREE_CODE (TREE_TYPE (rhs1)) == BOOLEAN_TYPE)
3276 {
3277 res = search_type_for_mask (rhs1, vinfo);
3278 res2 = search_type_for_mask (gimple_assign_rhs2 (def_stmt), vinfo);
3279 if (!res || (res2 && TYPE_PRECISION (res) > TYPE_PRECISION (res2)))
3280 res = res2;
3281 break;
3282 }
3283
e6f5c25d
IE
3284 comp_vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
3285 if (comp_vectype == NULL_TREE)
3286 return NULL_TREE;
3287
3288 mask_type = get_mask_type_for_scalar_type (TREE_TYPE (rhs1));
3289 if (!mask_type
3290 || !expand_vec_cmp_expr_p (comp_vectype, mask_type))
3291 return NULL_TREE;
3292
42fd8198
IE
3293 if (TREE_CODE (TREE_TYPE (rhs1)) != INTEGER_TYPE
3294 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
3295 {
3296 machine_mode mode = TYPE_MODE (TREE_TYPE (rhs1));
3297 res = build_nonstandard_integer_type (GET_MODE_BITSIZE (mode), 1);
3298 }
3299 else
3300 res = TREE_TYPE (rhs1);
3301 }
3302 }
3303
3304 return res;
3305}
3306
3307
71c92d17
JJ
3308/* Function vect_recog_bool_pattern
3309
3310 Try to find pattern like following:
3311
3312 bool a_b, b_b, c_b, d_b, e_b;
3313 TYPE f_T;
3314 loop:
3315 S1 a_b = x1 CMP1 y1;
3316 S2 b_b = x2 CMP2 y2;
3317 S3 c_b = a_b & b_b;
3318 S4 d_b = x3 CMP3 y3;
3319 S5 e_b = c_b | d_b;
3320 S6 f_T = (TYPE) e_b;
3321
52264dbf
RB
3322 where type 'TYPE' is an integral type. Or a similar pattern
3323 ending in
3324
3325 S6 f_Y = e_b ? r_Y : s_Y;
3326
3327 as results from if-conversion of a complex condition.
71c92d17
JJ
3328
3329 Input:
3330
3331 * LAST_STMT: A stmt at the end from which the pattern
3332 search begins, i.e. cast of a bool to
3333 an integer type.
3334
3335 Output:
3336
3337 * TYPE_IN: The type of the input arguments to the pattern.
3338
3339 * TYPE_OUT: The type of the output of this pattern.
3340
3341 * Return value: A new stmt that will be used to replace the pattern.
3342
3343 Assuming size of TYPE is the same as size of all comparisons
3344 (otherwise some casts would be added where needed), the above
3345 sequence we create related pattern stmts:
3346 S1' a_T = x1 CMP1 y1 ? 1 : 0;
3347 S3' c_T = x2 CMP2 y2 ? a_T : 0;
3348 S4' d_T = x3 CMP3 y3 ? 1 : 0;
3349 S5' e_T = c_T | d_T;
3350 S6' f_T = e_T;
3351
3352 Instead of the above S3' we could emit:
3353 S2' b_T = x2 CMP2 y2 ? 1 : 0;
3354 S3' c_T = a_T | b_T;
3355 but the above is more efficient. */
3356
355fe088
TS
3357static gimple *
3358vect_recog_bool_pattern (vec<gimple *> *stmts, tree *type_in,
71c92d17
JJ
3359 tree *type_out)
3360{
355fe088 3361 gimple *last_stmt = stmts->pop ();
71c92d17
JJ
3362 enum tree_code rhs_code;
3363 tree var, lhs, rhs, vectype;
3364 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
42fd8198 3365 stmt_vec_info new_stmt_info;
310213d4 3366 vec_info *vinfo = stmt_vinfo->vinfo;
355fe088 3367 gimple *pattern_stmt;
71c92d17
JJ
3368
3369 if (!is_gimple_assign (last_stmt))
3370 return NULL;
3371
3372 var = gimple_assign_rhs1 (last_stmt);
3373 lhs = gimple_assign_lhs (last_stmt);
3374
3375 if ((TYPE_PRECISION (TREE_TYPE (var)) != 1
3376 || !TYPE_UNSIGNED (TREE_TYPE (var)))
3377 && TREE_CODE (TREE_TYPE (var)) != BOOLEAN_TYPE)
3378 return NULL;
3379
fa2c9034
RB
3380 hash_set<gimple *> bool_stmts;
3381
71c92d17
JJ
3382 rhs_code = gimple_assign_rhs_code (last_stmt);
3383 if (CONVERT_EXPR_CODE_P (rhs_code))
3384 {
78048b1c
JJ
3385 if (TREE_CODE (TREE_TYPE (lhs)) != INTEGER_TYPE
3386 || TYPE_PRECISION (TREE_TYPE (lhs)) == 1)
71c92d17
JJ
3387 return NULL;
3388 vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3389 if (vectype == NULL_TREE)
3390 return NULL;
3391
fa2c9034 3392 if (check_bool_pattern (var, vinfo, bool_stmts))
42fd8198 3393 {
fa2c9034 3394 rhs = adjust_bool_stmts (bool_stmts, TREE_TYPE (lhs), last_stmt);
42fd8198
IE
3395 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3396 if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3397 pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
3398 else
3399 pattern_stmt
3400 = gimple_build_assign (lhs, NOP_EXPR, rhs);
3401 }
71c92d17 3402 else
42fd8198
IE
3403 {
3404 tree type = search_type_for_mask (var, vinfo);
a414c77f 3405 tree cst0, cst1, tmp;
42fd8198
IE
3406
3407 if (!type)
3408 return NULL;
3409
3410 /* We may directly use cond with narrowed type to avoid
3411 multiple cond exprs with following result packing and
3412 perform single cond with packed mask instead. In case
3413 of widening we better make cond first and then extract
3414 results. */
3415 if (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (lhs)))
3416 type = TREE_TYPE (lhs);
3417
3418 cst0 = build_int_cst (type, 0);
3419 cst1 = build_int_cst (type, 1);
3420 tmp = vect_recog_temp_ssa_var (type, NULL);
a414c77f 3421 pattern_stmt = gimple_build_assign (tmp, COND_EXPR, var, cst1, cst0);
42fd8198
IE
3422
3423 if (!useless_type_conversion_p (type, TREE_TYPE (lhs)))
3424 {
3425 tree new_vectype = get_vectype_for_scalar_type (type);
3426 new_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
3427 set_vinfo_for_stmt (pattern_stmt, new_stmt_info);
3428 STMT_VINFO_VECTYPE (new_stmt_info) = new_vectype;
3429 new_pattern_def_seq (stmt_vinfo, pattern_stmt);
3430
3431 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3432 pattern_stmt = gimple_build_assign (lhs, CONVERT_EXPR, tmp);
3433 }
3434 }
3435
71c92d17
JJ
3436 *type_out = vectype;
3437 *type_in = vectype;
9771b263 3438 stmts->safe_push (last_stmt);
73fbfcad 3439 if (dump_enabled_p ())
ccb3ad87 3440 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 3441 "vect_recog_bool_pattern: detected:\n");
f5709183 3442
52264dbf
RB
3443 return pattern_stmt;
3444 }
3445 else if (rhs_code == COND_EXPR
3446 && TREE_CODE (var) == SSA_NAME)
3447 {
3448 vectype = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3449 if (vectype == NULL_TREE)
3450 return NULL;
3451
3452 /* Build a scalar type for the boolean result that when
3453 vectorized matches the vector type of the result in
3454 size and number of elements. */
3455 unsigned prec
3456 = wi::udiv_trunc (TYPE_SIZE (vectype),
3457 TYPE_VECTOR_SUBPARTS (vectype)).to_uhwi ();
3458 tree type
3459 = build_nonstandard_integer_type (prec,
3460 TYPE_UNSIGNED (TREE_TYPE (var)));
3461 if (get_vectype_for_scalar_type (type) == NULL_TREE)
3462 return NULL;
3463
fa2c9034 3464 if (!check_bool_pattern (var, vinfo, bool_stmts))
a414c77f
IE
3465 return NULL;
3466
fa2c9034 3467 rhs = adjust_bool_stmts (bool_stmts, type, last_stmt);
52264dbf 3468
52264dbf
RB
3469 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3470 pattern_stmt
a414c77f
IE
3471 = gimple_build_assign (lhs, COND_EXPR,
3472 build2 (NE_EXPR, boolean_type_node,
3473 rhs, build_int_cst (type, 0)),
0d0e4a03
JJ
3474 gimple_assign_rhs2 (last_stmt),
3475 gimple_assign_rhs3 (last_stmt));
52264dbf
RB
3476 *type_out = vectype;
3477 *type_in = vectype;
3478 stmts->safe_push (last_stmt);
3479 if (dump_enabled_p ())
3480 dump_printf_loc (MSG_NOTE, vect_location,
3481 "vect_recog_bool_pattern: detected:\n");
3482
71c92d17
JJ
3483 return pattern_stmt;
3484 }
ab0ef706
JJ
3485 else if (rhs_code == SSA_NAME
3486 && STMT_VINFO_DATA_REF (stmt_vinfo))
3487 {
3488 stmt_vec_info pattern_stmt_info;
3489 vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
3490 gcc_assert (vectype != NULL_TREE);
78336739
JJ
3491 if (!VECTOR_MODE_P (TYPE_MODE (vectype)))
3492 return NULL;
ab0ef706 3493
fa2c9034
RB
3494 if (check_bool_pattern (var, vinfo, bool_stmts))
3495 rhs = adjust_bool_stmts (bool_stmts, TREE_TYPE (vectype), last_stmt);
42fd8198
IE
3496 else
3497 {
3498 tree type = search_type_for_mask (var, vinfo);
a414c77f 3499 tree cst0, cst1, new_vectype;
42fd8198
IE
3500
3501 if (!type)
3502 return NULL;
3503
3504 if (TYPE_MODE (type) == TYPE_MODE (TREE_TYPE (vectype)))
3505 type = TREE_TYPE (vectype);
3506
3507 cst0 = build_int_cst (type, 0);
3508 cst1 = build_int_cst (type, 1);
3509 new_vectype = get_vectype_for_scalar_type (type);
3510
3511 rhs = vect_recog_temp_ssa_var (type, NULL);
a414c77f 3512 pattern_stmt = gimple_build_assign (rhs, COND_EXPR, var, cst1, cst0);
42fd8198
IE
3513
3514 pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
3515 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
3516 STMT_VINFO_VECTYPE (pattern_stmt_info) = new_vectype;
3517 append_pattern_def_seq (stmt_vinfo, pattern_stmt);
3518 }
3519
ab0ef706
JJ
3520 lhs = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vectype), lhs);
3521 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3522 {
3523 tree rhs2 = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
355fe088 3524 gimple *cast_stmt = gimple_build_assign (rhs2, NOP_EXPR, rhs);
42fd8198 3525 append_pattern_def_seq (stmt_vinfo, cast_stmt);
ab0ef706
JJ
3526 rhs = rhs2;
3527 }
0d0e4a03 3528 pattern_stmt = gimple_build_assign (lhs, SSA_NAME, rhs);
310213d4 3529 pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
ab0ef706
JJ
3530 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
3531 STMT_VINFO_DATA_REF (pattern_stmt_info)
3532 = STMT_VINFO_DATA_REF (stmt_vinfo);
3533 STMT_VINFO_DR_BASE_ADDRESS (pattern_stmt_info)
3534 = STMT_VINFO_DR_BASE_ADDRESS (stmt_vinfo);
3535 STMT_VINFO_DR_INIT (pattern_stmt_info) = STMT_VINFO_DR_INIT (stmt_vinfo);
3536 STMT_VINFO_DR_OFFSET (pattern_stmt_info)
3537 = STMT_VINFO_DR_OFFSET (stmt_vinfo);
3538 STMT_VINFO_DR_STEP (pattern_stmt_info) = STMT_VINFO_DR_STEP (stmt_vinfo);
3539 STMT_VINFO_DR_ALIGNED_TO (pattern_stmt_info)
3540 = STMT_VINFO_DR_ALIGNED_TO (stmt_vinfo);
78048b1c 3541 DR_STMT (STMT_VINFO_DATA_REF (stmt_vinfo)) = pattern_stmt;
ab0ef706
JJ
3542 *type_out = vectype;
3543 *type_in = vectype;
9771b263 3544 stmts->safe_push (last_stmt);
73fbfcad 3545 if (dump_enabled_p ())
ccb3ad87 3546 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 3547 "vect_recog_bool_pattern: detected:\n");
ab0ef706
JJ
3548 return pattern_stmt;
3549 }
71c92d17
JJ
3550 else
3551 return NULL;
3552}
3553
3554
e6f5c25d
IE
3555/* A helper for vect_recog_mask_conversion_pattern. Build
3556 conversion of MASK to a type suitable for masking VECTYPE.
3557 Built statement gets required vectype and is appended to
3558 a pattern sequence of STMT_VINFO.
3559
3560 Return converted mask. */
3561
3562static tree
3563build_mask_conversion (tree mask, tree vectype, stmt_vec_info stmt_vinfo,
3564 vec_info *vinfo)
3565{
3566 gimple *stmt;
3567 tree masktype, tmp;
3568 stmt_vec_info new_stmt_info;
3569
3570 masktype = build_same_sized_truth_vector_type (vectype);
3571 tmp = vect_recog_temp_ssa_var (TREE_TYPE (masktype), NULL);
3572 stmt = gimple_build_assign (tmp, CONVERT_EXPR, mask);
3573 new_stmt_info = new_stmt_vec_info (stmt, vinfo);
3574 set_vinfo_for_stmt (stmt, new_stmt_info);
3575 STMT_VINFO_VECTYPE (new_stmt_info) = masktype;
3576 append_pattern_def_seq (stmt_vinfo, stmt);
3577
3578 return tmp;
3579}
3580
3581
3582/* Function vect_recog_mask_conversion_pattern
3583
3584 Try to find statements which require boolean type
3585 converison. Additional conversion statements are
3586 added to handle such cases. For example:
3587
3588 bool m_1, m_2, m_3;
3589 int i_4, i_5;
3590 double d_6, d_7;
3591 char c_1, c_2, c_3;
3592
3593 S1 m_1 = i_4 > i_5;
3594 S2 m_2 = d_6 < d_7;
3595 S3 m_3 = m_1 & m_2;
3596 S4 c_1 = m_3 ? c_2 : c_3;
3597
3598 Will be transformed into:
3599
3600 S1 m_1 = i_4 > i_5;
3601 S2 m_2 = d_6 < d_7;
3602 S3'' m_2' = (_Bool[bitsize=32])m_2
3603 S3' m_3' = m_1 & m_2';
3604 S4'' m_3'' = (_Bool[bitsize=8])m_3'
3605 S4' c_1' = m_3'' ? c_2 : c_3; */
3606
3607static gimple *
3608vect_recog_mask_conversion_pattern (vec<gimple *> *stmts, tree *type_in,
3609 tree *type_out)
3610{
3611 gimple *last_stmt = stmts->pop ();
3612 enum tree_code rhs_code;
310aba3b
ML
3613 tree lhs = NULL_TREE, rhs1, rhs2, tmp, rhs1_type, rhs2_type;
3614 tree vectype1, vectype2;
e6f5c25d
IE
3615 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
3616 stmt_vec_info pattern_stmt_info;
3617 vec_info *vinfo = stmt_vinfo->vinfo;
3618 gimple *pattern_stmt;
3619
3620 /* Check for MASK_LOAD ans MASK_STORE calls requiring mask conversion. */
3621 if (is_gimple_call (last_stmt)
3622 && gimple_call_internal_p (last_stmt)
3623 && (gimple_call_internal_fn (last_stmt) == IFN_MASK_STORE
3624 || gimple_call_internal_fn (last_stmt) == IFN_MASK_LOAD))
3625 {
3626 bool load = (gimple_call_internal_fn (last_stmt) == IFN_MASK_LOAD);
3627
3628 if (load)
3629 {
3630 lhs = gimple_call_lhs (last_stmt);
3631 vectype1 = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3632 }
3633 else
3634 {
3635 rhs2 = gimple_call_arg (last_stmt, 3);
3636 vectype1 = get_vectype_for_scalar_type (TREE_TYPE (rhs2));
3637 }
3638
3639 rhs1 = gimple_call_arg (last_stmt, 2);
3640 rhs1_type = search_type_for_mask (rhs1, vinfo);
3641 if (!rhs1_type)
3642 return NULL;
3643 vectype2 = get_mask_type_for_scalar_type (rhs1_type);
3644
3645 if (!vectype1 || !vectype2
3646 || TYPE_VECTOR_SUBPARTS (vectype1) == TYPE_VECTOR_SUBPARTS (vectype2))
3647 return NULL;
3648
3649 tmp = build_mask_conversion (rhs1, vectype1, stmt_vinfo, vinfo);
3650
3651 if (load)
3652 {
3653 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3654 pattern_stmt
3655 = gimple_build_call_internal (IFN_MASK_LOAD, 3,
3656 gimple_call_arg (last_stmt, 0),
3657 gimple_call_arg (last_stmt, 1),
3658 tmp);
3659 gimple_call_set_lhs (pattern_stmt, lhs);
3660 }
3661 else
3662 pattern_stmt
3663 = gimple_build_call_internal (IFN_MASK_STORE, 4,
3664 gimple_call_arg (last_stmt, 0),
3665 gimple_call_arg (last_stmt, 1),
3666 tmp,
3667 gimple_call_arg (last_stmt, 3));
3668
3669
3670 pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
3671 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
3672 STMT_VINFO_DATA_REF (pattern_stmt_info)
3673 = STMT_VINFO_DATA_REF (stmt_vinfo);
3674 STMT_VINFO_DR_BASE_ADDRESS (pattern_stmt_info)
3675 = STMT_VINFO_DR_BASE_ADDRESS (stmt_vinfo);
3676 STMT_VINFO_DR_INIT (pattern_stmt_info) = STMT_VINFO_DR_INIT (stmt_vinfo);
3677 STMT_VINFO_DR_OFFSET (pattern_stmt_info)
3678 = STMT_VINFO_DR_OFFSET (stmt_vinfo);
3679 STMT_VINFO_DR_STEP (pattern_stmt_info) = STMT_VINFO_DR_STEP (stmt_vinfo);
3680 STMT_VINFO_DR_ALIGNED_TO (pattern_stmt_info)
3681 = STMT_VINFO_DR_ALIGNED_TO (stmt_vinfo);
3682 DR_STMT (STMT_VINFO_DATA_REF (stmt_vinfo)) = pattern_stmt;
3683
3684 *type_out = vectype1;
3685 *type_in = vectype1;
3686 stmts->safe_push (last_stmt);
3687 if (dump_enabled_p ())
3688 dump_printf_loc (MSG_NOTE, vect_location,
3689 "vect_recog_mask_conversion_pattern: detected:\n");
3690
3691 return pattern_stmt;
3692 }
3693
3694 if (!is_gimple_assign (last_stmt))
3695 return NULL;
3696
3697 lhs = gimple_assign_lhs (last_stmt);
3698 rhs1 = gimple_assign_rhs1 (last_stmt);
3699 rhs_code = gimple_assign_rhs_code (last_stmt);
3700
3701 /* Check for cond expression requiring mask conversion. */
3702 if (rhs_code == COND_EXPR)
3703 {
3704 /* vect_recog_mixed_size_cond_pattern could apply.
3705 Do nothing then. */
3706 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
3707 return NULL;
3708
3709 vectype1 = get_vectype_for_scalar_type (TREE_TYPE (lhs));
3710
3711 if (TREE_CODE (rhs1) == SSA_NAME)
3712 {
3713 rhs1_type = search_type_for_mask (rhs1, vinfo);
3714 if (!rhs1_type)
3715 return NULL;
3716 }
dea60b59 3717 else if (COMPARISON_CLASS_P (rhs1))
e6f5c25d 3718 rhs1_type = TREE_TYPE (TREE_OPERAND (rhs1, 0));
dea60b59
JJ
3719 else
3720 return NULL;
e6f5c25d
IE
3721
3722 vectype2 = get_mask_type_for_scalar_type (rhs1_type);
3723
3724 if (!vectype1 || !vectype2
3725 || TYPE_VECTOR_SUBPARTS (vectype1) == TYPE_VECTOR_SUBPARTS (vectype2))
3726 return NULL;
3727
3728 /* If rhs1 is a comparison we need to move it into a
3729 separate statement. */
3730 if (TREE_CODE (rhs1) != SSA_NAME)
3731 {
3732 tmp = vect_recog_temp_ssa_var (TREE_TYPE (rhs1), NULL);
3733 pattern_stmt = gimple_build_assign (tmp, rhs1);
3734 rhs1 = tmp;
3735
3736 pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
3737 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
3738 STMT_VINFO_VECTYPE (pattern_stmt_info) = vectype2;
3739 append_pattern_def_seq (stmt_vinfo, pattern_stmt);
3740 }
3741
3742 tmp = build_mask_conversion (rhs1, vectype1, stmt_vinfo, vinfo);
3743
3744 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3745 pattern_stmt = gimple_build_assign (lhs, COND_EXPR, tmp,
3746 gimple_assign_rhs2 (last_stmt),
3747 gimple_assign_rhs3 (last_stmt));
3748
3749 *type_out = vectype1;
3750 *type_in = vectype1;
3751 stmts->safe_push (last_stmt);
3752 if (dump_enabled_p ())
3753 dump_printf_loc (MSG_NOTE, vect_location,
3754 "vect_recog_mask_conversion_pattern: detected:\n");
3755
3756 return pattern_stmt;
3757 }
3758
3759 /* Now check for binary boolean operations requiring conversion for
3760 one of operands. */
3761 if (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE)
3762 return NULL;
3763
3764 if (rhs_code != BIT_IOR_EXPR
3765 && rhs_code != BIT_XOR_EXPR
49e76ff1
IE
3766 && rhs_code != BIT_AND_EXPR
3767 && TREE_CODE_CLASS (rhs_code) != tcc_comparison)
e6f5c25d
IE
3768 return NULL;
3769
3770 rhs2 = gimple_assign_rhs2 (last_stmt);
3771
3772 rhs1_type = search_type_for_mask (rhs1, vinfo);
3773 rhs2_type = search_type_for_mask (rhs2, vinfo);
3774
3775 if (!rhs1_type || !rhs2_type
3776 || TYPE_PRECISION (rhs1_type) == TYPE_PRECISION (rhs2_type))
3777 return NULL;
3778
3779 if (TYPE_PRECISION (rhs1_type) < TYPE_PRECISION (rhs2_type))
3780 {
3781 vectype1 = get_mask_type_for_scalar_type (rhs1_type);
3782 if (!vectype1)
3783 return NULL;
3784 rhs2 = build_mask_conversion (rhs2, vectype1, stmt_vinfo, vinfo);
3785 }
3786 else
3787 {
3788 vectype1 = get_mask_type_for_scalar_type (rhs2_type);
3789 if (!vectype1)
3790 return NULL;
3791 rhs1 = build_mask_conversion (rhs1, vectype1, stmt_vinfo, vinfo);
3792 }
3793
3794 lhs = vect_recog_temp_ssa_var (TREE_TYPE (lhs), NULL);
3795 pattern_stmt = gimple_build_assign (lhs, rhs_code, rhs1, rhs2);
3796
3797 *type_out = vectype1;
3798 *type_in = vectype1;
3799 stmts->safe_push (last_stmt);
3800 if (dump_enabled_p ())
3801 dump_printf_loc (MSG_NOTE, vect_location,
3802 "vect_recog_mask_conversion_pattern: detected:\n");
3803
3804 return pattern_stmt;
3805}
3806
3807
1107f3ae
IR
3808/* Mark statements that are involved in a pattern. */
3809
3810static inline void
355fe088 3811vect_mark_pattern_stmts (gimple *orig_stmt, gimple *pattern_stmt,
1107f3ae
IR
3812 tree pattern_vectype)
3813{
3814 stmt_vec_info pattern_stmt_info, def_stmt_info;
3815 stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
310213d4 3816 vec_info *vinfo = orig_stmt_info->vinfo;
355fe088 3817 gimple *def_stmt;
1107f3ae 3818
1107f3ae 3819 pattern_stmt_info = vinfo_for_stmt (pattern_stmt);
ab0ef706
JJ
3820 if (pattern_stmt_info == NULL)
3821 {
310213d4 3822 pattern_stmt_info = new_stmt_vec_info (pattern_stmt, vinfo);
ab0ef706
JJ
3823 set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info);
3824 }
3825 gimple_set_bb (pattern_stmt, gimple_bb (orig_stmt));
1107f3ae
IR
3826
3827 STMT_VINFO_RELATED_STMT (pattern_stmt_info) = orig_stmt;
3828 STMT_VINFO_DEF_TYPE (pattern_stmt_info)
ab0ef706 3829 = STMT_VINFO_DEF_TYPE (orig_stmt_info);
1107f3ae
IR
3830 STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
3831 STMT_VINFO_IN_PATTERN_P (orig_stmt_info) = true;
3832 STMT_VINFO_RELATED_STMT (orig_stmt_info) = pattern_stmt;
363477c0
JJ
3833 STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info)
3834 = STMT_VINFO_PATTERN_DEF_SEQ (orig_stmt_info);
3835 if (STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info))
1107f3ae 3836 {
363477c0
JJ
3837 gimple_stmt_iterator si;
3838 for (si = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (pattern_stmt_info));
3839 !gsi_end_p (si); gsi_next (&si))
69d2aade 3840 {
363477c0
JJ
3841 def_stmt = gsi_stmt (si);
3842 def_stmt_info = vinfo_for_stmt (def_stmt);
3843 if (def_stmt_info == NULL)
3844 {
310213d4 3845 def_stmt_info = new_stmt_vec_info (def_stmt, vinfo);
363477c0
JJ
3846 set_vinfo_for_stmt (def_stmt, def_stmt_info);
3847 }
3848 gimple_set_bb (def_stmt, gimple_bb (orig_stmt));
3849 STMT_VINFO_RELATED_STMT (def_stmt_info) = orig_stmt;
56f8faae 3850 STMT_VINFO_DEF_TYPE (def_stmt_info) = vect_internal_def;
363477c0
JJ
3851 if (STMT_VINFO_VECTYPE (def_stmt_info) == NULL_TREE)
3852 STMT_VINFO_VECTYPE (def_stmt_info) = pattern_vectype;
69d2aade 3853 }
1107f3ae
IR
3854 }
3855}
3856
b8698a0f 3857/* Function vect_pattern_recog_1
20f06221
DN
3858
3859 Input:
3860 PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
3861 computation pattern.
3862 STMT: A stmt from which the pattern search should start.
3863
3864 If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
b8698a0f
L
3865 expression that computes the same functionality and can be used to
3866 replace the sequence of stmts that are involved in the pattern.
20f06221
DN
3867
3868 Output:
b8698a0f
L
3869 This function checks if the expression returned by PATTERN_RECOG_FUNC is
3870 supported in vector form by the target. We use 'TYPE_IN' to obtain the
3871 relevant vector type. If 'TYPE_IN' is already a vector type, then this
20f06221
DN
3872 indicates that target support had already been checked by PATTERN_RECOG_FUNC.
3873 If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
3874 to the available target pattern.
3875
b8698a0f 3876 This function also does some bookkeeping, as explained in the documentation
20f06221
DN
3877 for vect_recog_pattern. */
3878
0bee0ef9
RB
3879static bool
3880vect_pattern_recog_1 (vect_recog_func *recog_func,
92aea285 3881 gimple_stmt_iterator si,
355fe088 3882 vec<gimple *> *stmts_to_replace)
20f06221 3883{
355fe088 3884 gimple *stmt = gsi_stmt (si), *pattern_stmt;
383d9c83 3885 stmt_vec_info stmt_info;
383d9c83 3886 loop_vec_info loop_vinfo;
20f06221
DN
3887 tree pattern_vectype;
3888 tree type_in, type_out;
20f06221 3889 enum tree_code code;
b5aeb3bb 3890 int i;
355fe088 3891 gimple *next;
20f06221 3892
9771b263
DN
3893 stmts_to_replace->truncate (0);
3894 stmts_to_replace->quick_push (stmt);
0bee0ef9 3895 pattern_stmt = recog_func->fn (stmts_to_replace, &type_in, &type_out);
726a989a 3896 if (!pattern_stmt)
0bee0ef9 3897 return false;
b8698a0f 3898
9771b263 3899 stmt = stmts_to_replace->last ();
383d9c83
IR
3900 stmt_info = vinfo_for_stmt (stmt);
3901 loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3902
e6f5c25d
IE
3903 if (VECTOR_BOOLEAN_TYPE_P (type_in)
3904 || VECTOR_MODE_P (TYPE_MODE (type_in)))
b8698a0f
L
3905 {
3906 /* No need to check target support (already checked by the pattern
3907 recognition function). */
b690cc0f 3908 pattern_vectype = type_out ? type_out : type_in;
20f06221
DN
3909 }
3910 else
3911 {
ef4bddc2 3912 machine_mode vec_mode;
20f06221
DN
3913 enum insn_code icode;
3914 optab optab;
3915
3916 /* Check target support */
b690cc0f
RG
3917 type_in = get_vectype_for_scalar_type (type_in);
3918 if (!type_in)
0bee0ef9 3919 return false;
b690cc0f
RG
3920 if (type_out)
3921 type_out = get_vectype_for_scalar_type (type_out);
3922 else
3923 type_out = type_in;
15bbc165 3924 if (!type_out)
0bee0ef9 3925 return false;
b690cc0f 3926 pattern_vectype = type_out;
03d3e953 3927
726a989a
RB
3928 if (is_gimple_assign (pattern_stmt))
3929 code = gimple_assign_rhs_code (pattern_stmt);
3930 else
3931 {
3932 gcc_assert (is_gimple_call (pattern_stmt));
3933 code = CALL_EXPR;
3934 }
3935
b690cc0f
RG
3936 optab = optab_for_tree_code (code, type_in, optab_default);
3937 vec_mode = TYPE_MODE (type_in);
20f06221 3938 if (!optab
947131ba 3939 || (icode = optab_handler (optab, vec_mode)) == CODE_FOR_nothing
b690cc0f 3940 || (insn_data[icode].operand[0].mode != TYPE_MODE (type_out)))
0bee0ef9 3941 return false;
20f06221
DN
3942 }
3943
3944 /* Found a vectorizable pattern. */
73fbfcad 3945 if (dump_enabled_p ())
20f06221 3946 {
ccb3ad87 3947 dump_printf_loc (MSG_NOTE, vect_location,
0bee0ef9 3948 "%s pattern recognized: ", recog_func->name);
ccb3ad87 3949 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
20f06221 3950 }
b8698a0f 3951
726a989a 3952 /* Mark the stmts that are involved in the pattern. */
1107f3ae 3953 vect_mark_pattern_stmts (stmt, pattern_stmt, pattern_vectype);
20f06221 3954
b5aeb3bb
IR
3955 /* Patterns cannot be vectorized using SLP, because they change the order of
3956 computation. */
f5709183 3957 if (loop_vinfo)
9771b263 3958 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTIONS (loop_vinfo), i, next)
f5709183 3959 if (next == stmt)
9771b263 3960 LOOP_VINFO_REDUCTIONS (loop_vinfo).ordered_remove (i);
51312233 3961
1107f3ae
IR
3962 /* It is possible that additional pattern stmts are created and inserted in
3963 STMTS_TO_REPLACE. We create a stmt_info for each of them, and mark the
3964 relevant statements. */
9771b263
DN
3965 for (i = 0; stmts_to_replace->iterate (i, &stmt)
3966 && (unsigned) i < (stmts_to_replace->length () - 1);
51312233
IR
3967 i++)
3968 {
3969 stmt_info = vinfo_for_stmt (stmt);
3970 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
73fbfcad 3971 if (dump_enabled_p ())
51312233 3972 {
ccb3ad87 3973 dump_printf_loc (MSG_NOTE, vect_location,
78c60e3d 3974 "additional pattern stmt: ");
ccb3ad87 3975 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0);
51312233
IR
3976 }
3977
1107f3ae 3978 vect_mark_pattern_stmts (stmt, pattern_stmt, NULL_TREE);
51312233 3979 }
0bee0ef9
RB
3980
3981 return true;
20f06221
DN
3982}
3983
3984
3985/* Function vect_pattern_recog
3986
3987 Input:
3988 LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
3989 computation idioms.
3990
9d5e7640
IR
3991 Output - for each computation idiom that is detected we create a new stmt
3992 that provides the same functionality and that can be vectorized. We
20f06221
DN
3993 also record some information in the struct_stmt_info of the relevant
3994 stmts, as explained below:
3995
3996 At the entry to this function we have the following stmts, with the
3997 following initial value in the STMT_VINFO fields:
3998
3999 stmt in_pattern_p related_stmt vec_stmt
4000 S1: a_i = .... - - -
4001 S2: a_2 = ..use(a_i).. - - -
4002 S3: a_1 = ..use(a_2).. - - -
4003 S4: a_0 = ..use(a_1).. - - -
4004 S5: ... = ..use(a_0).. - - -
4005
4006 Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
9d5e7640
IR
4007 represented by a single stmt. We then:
4008 - create a new stmt S6 equivalent to the pattern (the stmt is not
4009 inserted into the code)
20f06221
DN
4010 - fill in the STMT_VINFO fields as follows:
4011
4012 in_pattern_p related_stmt vec_stmt
b8698a0f 4013 S1: a_i = .... - - -
20f06221
DN
4014 S2: a_2 = ..use(a_i).. - - -
4015 S3: a_1 = ..use(a_2).. - - -
20f06221 4016 S4: a_0 = ..use(a_1).. true S6 -
9d5e7640 4017 '---> S6: a_new = .... - S4 -
20f06221
DN
4018 S5: ... = ..use(a_0).. - - -
4019
4020 (the last stmt in the pattern (S4) and the new pattern stmt (S6) point
9d5e7640 4021 to each other through the RELATED_STMT field).
20f06221
DN
4022
4023 S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
4024 of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
4025 remain irrelevant unless used by stmts other than S4.
4026
4027 If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
9d5e7640 4028 (because they are marked as irrelevant). It will vectorize S6, and record
83197f37
IR
4029 a pointer to the new vector stmt VS6 from S6 (as usual).
4030 S4 will be skipped, and S5 will be vectorized as usual:
20f06221
DN
4031
4032 in_pattern_p related_stmt vec_stmt
4033 S1: a_i = .... - - -
4034 S2: a_2 = ..use(a_i).. - - -
4035 S3: a_1 = ..use(a_2).. - - -
4036 > VS6: va_new = .... - - -
20f06221 4037 S4: a_0 = ..use(a_1).. true S6 VS6
9d5e7640 4038 '---> S6: a_new = .... - S4 VS6
20f06221
DN
4039 > VS5: ... = ..vuse(va_new).. - - -
4040 S5: ... = ..use(a_0).. - - -
4041
9d5e7640 4042 DCE could then get rid of {S1,S2,S3,S4,S5} (if their defs are not used
20f06221
DN
4043 elsewhere), and we'll end up with:
4044
b8698a0f 4045 VS6: va_new = ....
83197f37
IR
4046 VS5: ... = ..vuse(va_new)..
4047
4048 In case of more than one pattern statements, e.g., widen-mult with
4049 intermediate type:
4050
4051 S1 a_t = ;
4052 S2 a_T = (TYPE) a_t;
4053 '--> S3: a_it = (interm_type) a_t;
4054 S4 prod_T = a_T * CONST;
4055 '--> S5: prod_T' = a_it w* CONST;
4056
4057 there may be other users of a_T outside the pattern. In that case S2 will
4058 be marked as relevant (as well as S3), and both S2 and S3 will be analyzed
4059 and vectorized. The vector stmt VS2 will be recorded in S2, and VS3 will
4060 be recorded in S3. */
20f06221
DN
4061
4062void
310213d4 4063vect_pattern_recog (vec_info *vinfo)
20f06221 4064{
f5709183 4065 struct loop *loop;
772e61e1 4066 basic_block *bbs;
f5709183 4067 unsigned int nbbs;
726a989a 4068 gimple_stmt_iterator si;
20f06221 4069 unsigned int i, j;
355fe088
TS
4070 auto_vec<gimple *, 1> stmts_to_replace;
4071 gimple *stmt;
20f06221 4072
73fbfcad 4073 if (dump_enabled_p ())
78c60e3d 4074 dump_printf_loc (MSG_NOTE, vect_location,
e645e942 4075 "=== vect_pattern_recog ===\n");
20f06221 4076
310213d4 4077 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
f5709183
IR
4078 {
4079 loop = LOOP_VINFO_LOOP (loop_vinfo);
4080 bbs = LOOP_VINFO_BBS (loop_vinfo);
4081 nbbs = loop->num_nodes;
61d371eb
RB
4082
4083 /* Scan through the loop stmts, applying the pattern recognition
4084 functions starting at each stmt visited: */
4085 for (i = 0; i < nbbs; i++)
4086 {
4087 basic_block bb = bbs[i];
4088 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4089 {
4090 /* Scan over all generic vect_recog_xxx_pattern functions. */
4091 for (j = 0; j < NUM_PATTERNS; j++)
0bee0ef9
RB
4092 if (vect_pattern_recog_1 (&vect_vect_recog_func_ptrs[j], si,
4093 &stmts_to_replace))
4094 break;
61d371eb
RB
4095 }
4096 }
f5709183
IR
4097 }
4098 else
4099 {
61d371eb
RB
4100 bb_vec_info bb_vinfo = as_a <bb_vec_info> (vinfo);
4101 for (si = bb_vinfo->region_begin;
4102 gsi_stmt (si) != gsi_stmt (bb_vinfo->region_end); gsi_next (&si))
4103 {
4104 if ((stmt = gsi_stmt (si))
f5709183
IR
4105 && vinfo_for_stmt (stmt)
4106 && !STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)))
61d371eb 4107 continue;
f5709183 4108
61d371eb
RB
4109 /* Scan over all generic vect_recog_xxx_pattern functions. */
4110 for (j = 0; j < NUM_PATTERNS; j++)
0bee0ef9
RB
4111 if (vect_pattern_recog_1 (&vect_vect_recog_func_ptrs[j], si,
4112 &stmts_to_replace))
4113 break;
61d371eb 4114 }
20f06221
DN
4115 }
4116}