]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-vrp.c
re PR target/37170 (gcc.dg/weak/weak-1.c)
[thirdparty/gcc.git] / gcc / tree-vrp.c
CommitLineData
0bca51f0 1/* Support routines for Value Range Propagation (VRP).
fa10beec 2 Copyright (C) 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
0bca51f0
DN
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9dcd6f09 9the Free Software Foundation; either version 3, or (at your option)
0bca51f0
DN
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
0bca51f0
DN
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "ggc.h"
26#include "flags.h"
27#include "tree.h"
28#include "basic-block.h"
29#include "tree-flow.h"
30#include "tree-pass.h"
31#include "tree-dump.h"
32#include "timevar.h"
33#include "diagnostic.h"
590b1f2d 34#include "toplev.h"
0c948c27 35#include "intl.h"
0bca51f0
DN
36#include "cfgloop.h"
37#include "tree-scalar-evolution.h"
38#include "tree-ssa-propagate.h"
39#include "tree-chrec.h"
40
726a989a 41
c4ab2baa
RG
42/* Set of SSA names found live during the RPO traversal of the function
43 for still active basic-blocks. */
44static sbitmap *live;
45
46/* Return true if the SSA name NAME is live on the edge E. */
47
48static bool
49live_on_edge (edge e, tree name)
50{
51 return (live[e->dest->index]
52 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
53}
0bca51f0 54
0bca51f0
DN
55/* Local functions. */
56static int compare_values (tree val1, tree val2);
12df8a7e 57static int compare_values_warnv (tree val1, tree val2, bool *);
f255541f 58static void vrp_meet (value_range_t *, value_range_t *);
2d3cd5d5 59static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
6b99f156
JH
60 tree, tree, bool, bool *,
61 bool *);
0bca51f0 62
227858d1
DN
63/* Location information for ASSERT_EXPRs. Each instance of this
64 structure describes an ASSERT_EXPR for an SSA name. Since a single
65 SSA name may have more than one assertion associated with it, these
66 locations are kept in a linked list attached to the corresponding
67 SSA name. */
68struct assert_locus_d
0bca51f0 69{
227858d1
DN
70 /* Basic block where the assertion would be inserted. */
71 basic_block bb;
72
73 /* Some assertions need to be inserted on an edge (e.g., assertions
74 generated by COND_EXPRs). In those cases, BB will be NULL. */
75 edge e;
76
77 /* Pointer to the statement that generated this assertion. */
726a989a 78 gimple_stmt_iterator si;
227858d1
DN
79
80 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
81 enum tree_code comp_code;
82
83 /* Value being compared against. */
84 tree val;
85
2ab8dbf4
RG
86 /* Expression to compare. */
87 tree expr;
88
227858d1
DN
89 /* Next node in the linked list. */
90 struct assert_locus_d *next;
91};
92
93typedef struct assert_locus_d *assert_locus_t;
94
95/* If bit I is present, it means that SSA name N_i has a list of
96 assertions that should be inserted in the IL. */
97static bitmap need_assert_for;
98
99/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
100 holds a list of ASSERT_LOCUS_T nodes that describe where
101 ASSERT_EXPRs for SSA name N_I should be inserted. */
102static assert_locus_t *asserts_for;
103
227858d1
DN
104/* Value range array. After propagation, VR_VALUE[I] holds the range
105 of values that SSA name N_I may take. */
106static value_range_t **vr_value;
0bca51f0 107
fc6827fe
ILT
108/* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
109 number of executable edges we saw the last time we visited the
110 node. */
111static int *vr_phi_edge_counts;
112
b7814a18 113typedef struct {
726a989a 114 gimple stmt;
b7814a18
RG
115 tree vec;
116} switch_update;
117
118static VEC (edge, heap) *to_remove_edges;
119DEF_VEC_O(switch_update);
120DEF_VEC_ALLOC_O(switch_update, heap);
121static VEC (switch_update, heap) *to_update_switch_stmts;
122
0bca51f0 123
70b7b037
RG
124/* Return the maximum value for TYPEs base type. */
125
126static inline tree
127vrp_val_max (const_tree type)
128{
129 if (!INTEGRAL_TYPE_P (type))
130 return NULL_TREE;
131
132 /* For integer sub-types the values for the base type are relevant. */
133 if (TREE_TYPE (type))
134 type = TREE_TYPE (type);
135
136 return TYPE_MAX_VALUE (type);
137}
138
139/* Return the minimum value for TYPEs base type. */
140
141static inline tree
142vrp_val_min (const_tree type)
143{
144 if (!INTEGRAL_TYPE_P (type))
145 return NULL_TREE;
146
147 /* For integer sub-types the values for the base type are relevant. */
148 if (TREE_TYPE (type))
149 type = TREE_TYPE (type);
150
151 return TYPE_MIN_VALUE (type);
152}
153
154/* Return whether VAL is equal to the maximum value of its type. This
155 will be true for a positive overflow infinity. We can't do a
156 simple equality comparison with TYPE_MAX_VALUE because C typedefs
157 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
158 to the integer constant with the same value in the type. */
159
160static inline bool
161vrp_val_is_max (const_tree val)
162{
163 tree type_max = vrp_val_max (TREE_TYPE (val));
164 return (val == type_max
165 || (type_max != NULL_TREE
166 && operand_equal_p (val, type_max, 0)));
167}
168
169/* Return whether VAL is equal to the minimum value of its type. This
170 will be true for a negative overflow infinity. */
171
172static inline bool
173vrp_val_is_min (const_tree val)
174{
175 tree type_min = vrp_val_min (TREE_TYPE (val));
176 return (val == type_min
177 || (type_min != NULL_TREE
178 && operand_equal_p (val, type_min, 0)));
179}
180
181
12df8a7e
ILT
182/* Return whether TYPE should use an overflow infinity distinct from
183 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
184 represent a signed overflow during VRP computations. An infinity
185 is distinct from a half-range, which will go from some number to
186 TYPE_{MIN,MAX}_VALUE. */
187
188static inline bool
58f9752a 189needs_overflow_infinity (const_tree type)
12df8a7e 190{
2ab8dbf4
RG
191 return (INTEGRAL_TYPE_P (type)
192 && !TYPE_OVERFLOW_WRAPS (type)
193 /* Integer sub-types never overflow as they are never
194 operands of arithmetic operators. */
195 && !(TREE_TYPE (type) && TREE_TYPE (type) != type));
12df8a7e
ILT
196}
197
198/* Return whether TYPE can support our overflow infinity
199 representation: we use the TREE_OVERFLOW flag, which only exists
200 for constants. If TYPE doesn't support this, we don't optimize
201 cases which would require signed overflow--we drop them to
202 VARYING. */
203
204static inline bool
58f9752a 205supports_overflow_infinity (const_tree type)
12df8a7e 206{
70b7b037 207 tree min = vrp_val_min (type), max = vrp_val_max (type);
12df8a7e
ILT
208#ifdef ENABLE_CHECKING
209 gcc_assert (needs_overflow_infinity (type));
210#endif
70b7b037
RG
211 return (min != NULL_TREE
212 && CONSTANT_CLASS_P (min)
213 && max != NULL_TREE
214 && CONSTANT_CLASS_P (max));
12df8a7e
ILT
215}
216
217/* VAL is the maximum or minimum value of a type. Return a
218 corresponding overflow infinity. */
219
220static inline tree
221make_overflow_infinity (tree val)
222{
223#ifdef ENABLE_CHECKING
224 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
225#endif
226 val = copy_node (val);
227 TREE_OVERFLOW (val) = 1;
228 return val;
229}
230
231/* Return a negative overflow infinity for TYPE. */
232
233static inline tree
234negative_overflow_infinity (tree type)
235{
236#ifdef ENABLE_CHECKING
237 gcc_assert (supports_overflow_infinity (type));
238#endif
70b7b037 239 return make_overflow_infinity (vrp_val_min (type));
12df8a7e
ILT
240}
241
242/* Return a positive overflow infinity for TYPE. */
243
244static inline tree
245positive_overflow_infinity (tree type)
246{
247#ifdef ENABLE_CHECKING
248 gcc_assert (supports_overflow_infinity (type));
249#endif
70b7b037 250 return make_overflow_infinity (vrp_val_max (type));
12df8a7e
ILT
251}
252
253/* Return whether VAL is a negative overflow infinity. */
254
255static inline bool
58f9752a 256is_negative_overflow_infinity (const_tree val)
12df8a7e
ILT
257{
258 return (needs_overflow_infinity (TREE_TYPE (val))
259 && CONSTANT_CLASS_P (val)
260 && TREE_OVERFLOW (val)
70b7b037 261 && vrp_val_is_min (val));
12df8a7e
ILT
262}
263
264/* Return whether VAL is a positive overflow infinity. */
265
266static inline bool
58f9752a 267is_positive_overflow_infinity (const_tree val)
12df8a7e
ILT
268{
269 return (needs_overflow_infinity (TREE_TYPE (val))
270 && CONSTANT_CLASS_P (val)
271 && TREE_OVERFLOW (val)
70b7b037 272 && vrp_val_is_max (val));
12df8a7e
ILT
273}
274
275/* Return whether VAL is a positive or negative overflow infinity. */
276
277static inline bool
58f9752a 278is_overflow_infinity (const_tree val)
12df8a7e
ILT
279{
280 return (needs_overflow_infinity (TREE_TYPE (val))
281 && CONSTANT_CLASS_P (val)
282 && TREE_OVERFLOW (val)
70b7b037 283 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
12df8a7e
ILT
284}
285
726a989a
RB
286/* Return whether STMT has a constant rhs that is_overflow_infinity. */
287
288static inline bool
289stmt_overflow_infinity (gimple stmt)
290{
291 if (is_gimple_assign (stmt)
292 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
293 GIMPLE_SINGLE_RHS)
294 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
295 return false;
296}
297
b80cca7b
ILT
298/* If VAL is now an overflow infinity, return VAL. Otherwise, return
299 the same value with TREE_OVERFLOW clear. This can be used to avoid
300 confusing a regular value with an overflow value. */
301
302static inline tree
303avoid_overflow_infinity (tree val)
304{
305 if (!is_overflow_infinity (val))
306 return val;
307
70b7b037
RG
308 if (vrp_val_is_max (val))
309 return vrp_val_max (TREE_TYPE (val));
b80cca7b
ILT
310 else
311 {
312#ifdef ENABLE_CHECKING
70b7b037 313 gcc_assert (vrp_val_is_min (val));
b80cca7b 314#endif
70b7b037 315 return vrp_val_min (TREE_TYPE (val));
b80cca7b
ILT
316 }
317}
318
12df8a7e 319
462508dd
DN
320/* Return true if ARG is marked with the nonnull attribute in the
321 current function signature. */
322
323static bool
58f9752a 324nonnull_arg_p (const_tree arg)
462508dd
DN
325{
326 tree t, attrs, fntype;
327 unsigned HOST_WIDE_INT arg_num;
328
329 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
330
7954dc21
AP
331 /* The static chain decl is always non null. */
332 if (arg == cfun->static_chain_decl)
333 return true;
334
462508dd
DN
335 fntype = TREE_TYPE (current_function_decl);
336 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
337
338 /* If "nonnull" wasn't specified, we know nothing about the argument. */
339 if (attrs == NULL_TREE)
340 return false;
341
342 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
343 if (TREE_VALUE (attrs) == NULL_TREE)
344 return true;
345
346 /* Get the position number for ARG in the function signature. */
347 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
348 t;
349 t = TREE_CHAIN (t), arg_num++)
350 {
351 if (t == arg)
352 break;
353 }
354
355 gcc_assert (t == arg);
356
357 /* Now see if ARG_NUM is mentioned in the nonnull list. */
358 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
359 {
360 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
361 return true;
362 }
363
364 return false;
365}
366
367
2ab8dbf4
RG
368/* Set value range VR to VR_VARYING. */
369
370static inline void
371set_value_range_to_varying (value_range_t *vr)
372{
373 vr->type = VR_VARYING;
374 vr->min = vr->max = NULL_TREE;
375 if (vr->equiv)
376 bitmap_clear (vr->equiv);
377}
378
379
227858d1
DN
380/* Set value range VR to {T, MIN, MAX, EQUIV}. */
381
382static void
383set_value_range (value_range_t *vr, enum value_range_type t, tree min,
384 tree max, bitmap equiv)
0bca51f0
DN
385{
386#if defined ENABLE_CHECKING
227858d1 387 /* Check the validity of the range. */
0bca51f0
DN
388 if (t == VR_RANGE || t == VR_ANTI_RANGE)
389 {
390 int cmp;
391
392 gcc_assert (min && max);
393
394 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
e1f28918 395 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
0bca51f0
DN
396
397 cmp = compare_values (min, max);
398 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
8cf781f0
ILT
399
400 if (needs_overflow_infinity (TREE_TYPE (min)))
401 gcc_assert (!is_overflow_infinity (min)
402 || !is_overflow_infinity (max));
0bca51f0 403 }
0bca51f0 404
227858d1
DN
405 if (t == VR_UNDEFINED || t == VR_VARYING)
406 gcc_assert (min == NULL_TREE && max == NULL_TREE);
407
408 if (t == VR_UNDEFINED || t == VR_VARYING)
409 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
410#endif
0bca51f0
DN
411
412 vr->type = t;
413 vr->min = min;
414 vr->max = max;
227858d1
DN
415
416 /* Since updating the equivalence set involves deep copying the
417 bitmaps, only do it if absolutely necessary. */
f5052e29
RG
418 if (vr->equiv == NULL
419 && equiv != NULL)
227858d1
DN
420 vr->equiv = BITMAP_ALLOC (NULL);
421
422 if (equiv != vr->equiv)
423 {
424 if (equiv && !bitmap_empty_p (equiv))
425 bitmap_copy (vr->equiv, equiv);
426 else
427 bitmap_clear (vr->equiv);
428 }
0bca51f0
DN
429}
430
431
2ab8dbf4
RG
432/* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
433 This means adjusting T, MIN and MAX representing the case of a
434 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
435 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
436 In corner cases where MAX+1 or MIN-1 wraps this will fall back
437 to varying.
438 This routine exists to ease canonicalization in the case where we
439 extract ranges from var + CST op limit. */
0bca51f0 440
2ab8dbf4
RG
441static void
442set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
443 tree min, tree max, bitmap equiv)
0bca51f0 444{
70b7b037 445 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
2ab8dbf4
RG
446 if ((t != VR_RANGE
447 && t != VR_ANTI_RANGE)
448 || TREE_CODE (min) != INTEGER_CST
70b7b037 449 || TREE_CODE (max) != INTEGER_CST)
2ab8dbf4
RG
450 {
451 set_value_range (vr, t, min, max, equiv);
452 return;
453 }
12df8a7e 454
2ab8dbf4
RG
455 /* Wrong order for min and max, to swap them and the VR type we need
456 to adjust them. */
2ab8dbf4
RG
457 if (tree_int_cst_lt (max, min))
458 {
70b7b037
RG
459 tree one = build_int_cst (TREE_TYPE (min), 1);
460 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
461 max = int_const_binop (MINUS_EXPR, min, one, 0);
462 min = tmp;
463
464 /* There's one corner case, if we had [C+1, C] before we now have
465 that again. But this represents an empty value range, so drop
466 to varying in this case. */
467 if (tree_int_cst_lt (max, min))
468 {
469 set_value_range_to_varying (vr);
470 return;
471 }
472
473 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
474 }
475
476 /* Anti-ranges that can be represented as ranges should be so. */
477 if (t == VR_ANTI_RANGE)
478 {
479 bool is_min = vrp_val_is_min (min);
480 bool is_max = vrp_val_is_max (max);
481
482 if (is_min && is_max)
483 {
484 /* We cannot deal with empty ranges, drop to varying. */
485 set_value_range_to_varying (vr);
486 return;
487 }
488 else if (is_min
489 /* As a special exception preserve non-null ranges. */
490 && !(TYPE_UNSIGNED (TREE_TYPE (min))
491 && integer_zerop (max)))
492 {
493 tree one = build_int_cst (TREE_TYPE (max), 1);
494 min = int_const_binop (PLUS_EXPR, max, one, 0);
495 max = vrp_val_max (TREE_TYPE (max));
496 t = VR_RANGE;
497 }
498 else if (is_max)
499 {
500 tree one = build_int_cst (TREE_TYPE (min), 1);
501 max = int_const_binop (MINUS_EXPR, min, one, 0);
502 min = vrp_val_min (TREE_TYPE (min));
503 t = VR_RANGE;
504 }
2ab8dbf4
RG
505 }
506
2ab8dbf4
RG
507 set_value_range (vr, t, min, max, equiv);
508}
509
510/* Copy value range FROM into value range TO. */
b16caf72
JL
511
512static inline void
2ab8dbf4 513copy_value_range (value_range_t *to, value_range_t *from)
b16caf72 514{
2ab8dbf4 515 set_value_range (to, from->type, from->min, from->max, from->equiv);
12df8a7e
ILT
516}
517
8cf781f0
ILT
518/* Set value range VR to a single value. This function is only called
519 with values we get from statements, and exists to clear the
520 TREE_OVERFLOW flag so that we don't think we have an overflow
521 infinity when we shouldn't. */
522
523static inline void
b60b4711 524set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
8cf781f0
ILT
525{
526 gcc_assert (is_gimple_min_invariant (val));
b80cca7b 527 val = avoid_overflow_infinity (val);
b60b4711 528 set_value_range (vr, VR_RANGE, val, val, equiv);
8cf781f0
ILT
529}
530
12df8a7e 531/* Set value range VR to a non-negative range of type TYPE.
110abdbc 532 OVERFLOW_INFINITY indicates whether to use an overflow infinity
12df8a7e
ILT
533 rather than TYPE_MAX_VALUE; this should be true if we determine
534 that the range is nonnegative based on the assumption that signed
535 overflow does not occur. */
536
537static inline void
538set_value_range_to_nonnegative (value_range_t *vr, tree type,
539 bool overflow_infinity)
540{
541 tree zero;
542
543 if (overflow_infinity && !supports_overflow_infinity (type))
544 {
545 set_value_range_to_varying (vr);
546 return;
547 }
548
549 zero = build_int_cst (type, 0);
550 set_value_range (vr, VR_RANGE, zero,
551 (overflow_infinity
552 ? positive_overflow_infinity (type)
553 : TYPE_MAX_VALUE (type)),
554 vr->equiv);
b16caf72 555}
227858d1
DN
556
557/* Set value range VR to a non-NULL range of type TYPE. */
558
559static inline void
560set_value_range_to_nonnull (value_range_t *vr, tree type)
561{
562 tree zero = build_int_cst (type, 0);
563 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
564}
565
566
567/* Set value range VR to a NULL range of type TYPE. */
568
569static inline void
570set_value_range_to_null (value_range_t *vr, tree type)
571{
b60b4711 572 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
227858d1
DN
573}
574
575
31ab1cc9
RG
576/* Set value range VR to a range of a truthvalue of type TYPE. */
577
578static inline void
579set_value_range_to_truthvalue (value_range_t *vr, tree type)
580{
581 if (TYPE_PRECISION (type) == 1)
582 set_value_range_to_varying (vr);
583 else
584 set_value_range (vr, VR_RANGE,
585 build_int_cst (type, 0), build_int_cst (type, 1),
586 vr->equiv);
587}
588
589
227858d1
DN
590/* Set value range VR to VR_UNDEFINED. */
591
592static inline void
593set_value_range_to_undefined (value_range_t *vr)
594{
595 vr->type = VR_UNDEFINED;
596 vr->min = vr->max = NULL_TREE;
597 if (vr->equiv)
598 bitmap_clear (vr->equiv);
0bca51f0
DN
599}
600
601
b16caf72
JL
602/* Return value range information for VAR.
603
604 If we have no values ranges recorded (ie, VRP is not running), then
605 return NULL. Otherwise create an empty range if none existed for VAR. */
0bca51f0 606
227858d1 607static value_range_t *
58f9752a 608get_value_range (const_tree var)
0bca51f0 609{
227858d1 610 value_range_t *vr;
0bca51f0 611 tree sym;
227858d1 612 unsigned ver = SSA_NAME_VERSION (var);
0bca51f0 613
b16caf72
JL
614 /* If we have no recorded ranges, then return NULL. */
615 if (! vr_value)
616 return NULL;
617
227858d1 618 vr = vr_value[ver];
0bca51f0
DN
619 if (vr)
620 return vr;
621
622 /* Create a default value range. */
b9eae1a9 623 vr_value[ver] = vr = XCNEW (value_range_t);
0bca51f0 624
f5052e29
RG
625 /* Defer allocating the equivalence set. */
626 vr->equiv = NULL;
227858d1
DN
627
628 /* If VAR is a default definition, the variable can take any value
629 in VAR's type. */
0bca51f0 630 sym = SSA_NAME_VAR (var);
cfaab3a9 631 if (SSA_NAME_IS_DEFAULT_DEF (var))
462508dd
DN
632 {
633 /* Try to use the "nonnull" attribute to create ~[0, 0]
634 anti-ranges for pointers. Note that this is only valid with
635 default definitions of PARM_DECLs. */
636 if (TREE_CODE (sym) == PARM_DECL
637 && POINTER_TYPE_P (TREE_TYPE (sym))
638 && nonnull_arg_p (sym))
639 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
640 else
641 set_value_range_to_varying (vr);
642 }
0bca51f0
DN
643
644 return vr;
645}
646
1ce35d26
RG
647/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
648
649static inline bool
58f9752a 650vrp_operand_equal_p (const_tree val1, const_tree val2)
1ce35d26 651{
12df8a7e
ILT
652 if (val1 == val2)
653 return true;
654 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
655 return false;
656 if (is_overflow_infinity (val1))
657 return is_overflow_infinity (val2);
658 return true;
1ce35d26
RG
659}
660
661/* Return true, if the bitmaps B1 and B2 are equal. */
662
663static inline bool
22ea9ec0 664vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
1ce35d26
RG
665{
666 return (b1 == b2
667 || (b1 && b2
668 && bitmap_equal_p (b1, b2)));
669}
0bca51f0 670
227858d1
DN
671/* Update the value range and equivalence set for variable VAR to
672 NEW_VR. Return true if NEW_VR is different from VAR's previous
673 value.
674
675 NOTE: This function assumes that NEW_VR is a temporary value range
676 object created for the sole purpose of updating VAR's range. The
677 storage used by the equivalence set from NEW_VR will be freed by
678 this function. Do not call update_value_range when NEW_VR
679 is the range object associated with another SSA name. */
0bca51f0
DN
680
681static inline bool
58f9752a 682update_value_range (const_tree var, value_range_t *new_vr)
0bca51f0 683{
227858d1
DN
684 value_range_t *old_vr;
685 bool is_new;
686
687 /* Update the value range, if necessary. */
688 old_vr = get_value_range (var);
689 is_new = old_vr->type != new_vr->type
1ce35d26
RG
690 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
691 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
692 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
0bca51f0 693
227858d1
DN
694 if (is_new)
695 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
696 new_vr->equiv);
0bca51f0 697
227858d1 698 BITMAP_FREE (new_vr->equiv);
0bca51f0 699
227858d1
DN
700 return is_new;
701}
0bca51f0 702
0bca51f0 703
f5052e29
RG
704/* Add VAR and VAR's equivalence set to EQUIV. This is the central
705 point where equivalence processing can be turned on/off. */
0bca51f0 706
227858d1 707static void
58f9752a 708add_equivalence (bitmap *equiv, const_tree var)
227858d1
DN
709{
710 unsigned ver = SSA_NAME_VERSION (var);
711 value_range_t *vr = vr_value[ver];
0bca51f0 712
f5052e29
RG
713 if (*equiv == NULL)
714 *equiv = BITMAP_ALLOC (NULL);
715 bitmap_set_bit (*equiv, ver);
227858d1 716 if (vr && vr->equiv)
f5052e29 717 bitmap_ior_into (*equiv, vr->equiv);
0bca51f0
DN
718}
719
720
721/* Return true if VR is ~[0, 0]. */
722
723static inline bool
227858d1 724range_is_nonnull (value_range_t *vr)
0bca51f0
DN
725{
726 return vr->type == VR_ANTI_RANGE
727 && integer_zerop (vr->min)
728 && integer_zerop (vr->max);
729}
730
731
732/* Return true if VR is [0, 0]. */
733
734static inline bool
227858d1 735range_is_null (value_range_t *vr)
0bca51f0
DN
736{
737 return vr->type == VR_RANGE
738 && integer_zerop (vr->min)
739 && integer_zerop (vr->max);
740}
741
742
227858d1 743/* Return true if value range VR involves at least one symbol. */
0bca51f0 744
227858d1
DN
745static inline bool
746symbolic_range_p (value_range_t *vr)
0bca51f0 747{
227858d1
DN
748 return (!is_gimple_min_invariant (vr->min)
749 || !is_gimple_min_invariant (vr->max));
0bca51f0
DN
750}
751
110abdbc 752/* Return true if value range VR uses an overflow infinity. */
b16caf72 753
12df8a7e
ILT
754static inline bool
755overflow_infinity_range_p (value_range_t *vr)
b16caf72 756{
12df8a7e
ILT
757 return (vr->type == VR_RANGE
758 && (is_overflow_infinity (vr->min)
759 || is_overflow_infinity (vr->max)));
760}
6ac01510 761
0c948c27
ILT
762/* Return false if we can not make a valid comparison based on VR;
763 this will be the case if it uses an overflow infinity and overflow
764 is not undefined (i.e., -fno-strict-overflow is in effect).
765 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
766 uses an overflow infinity. */
767
768static bool
769usable_range_p (value_range_t *vr, bool *strict_overflow_p)
770{
771 gcc_assert (vr->type == VR_RANGE);
772 if (is_overflow_infinity (vr->min))
773 {
774 *strict_overflow_p = true;
775 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
776 return false;
777 }
778 if (is_overflow_infinity (vr->max))
779 {
780 *strict_overflow_p = true;
781 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
782 return false;
783 }
784 return true;
785}
786
787
12df8a7e
ILT
788/* Like tree_expr_nonnegative_warnv_p, but this function uses value
789 ranges obtained so far. */
790
791static bool
792vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
793{
39f8a3b0
RG
794 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
795 || (TREE_CODE (expr) == SSA_NAME
796 && ssa_name_nonnegative_p (expr)));
b16caf72 797}
0bca51f0 798
726a989a
RB
799/* Return true if the result of assignment STMT is know to be non-negative.
800 If the return value is based on the assumption that signed overflow is
801 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
802 *STRICT_OVERFLOW_P.*/
803
804static bool
805gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
806{
807 enum tree_code code = gimple_assign_rhs_code (stmt);
808 switch (get_gimple_rhs_class (code))
809 {
810 case GIMPLE_UNARY_RHS:
811 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
812 gimple_expr_type (stmt),
813 gimple_assign_rhs1 (stmt),
814 strict_overflow_p);
815 case GIMPLE_BINARY_RHS:
816 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
817 gimple_expr_type (stmt),
818 gimple_assign_rhs1 (stmt),
819 gimple_assign_rhs2 (stmt),
820 strict_overflow_p);
821 case GIMPLE_SINGLE_RHS:
822 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
823 strict_overflow_p);
824 case GIMPLE_INVALID_RHS:
825 gcc_unreachable ();
826 default:
827 gcc_unreachable ();
828 }
829}
830
831/* Return true if return value of call STMT is know to be non-negative.
832 If the return value is based on the assumption that signed overflow is
833 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
834 *STRICT_OVERFLOW_P.*/
835
836static bool
837gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
838{
839 tree arg0 = gimple_call_num_args (stmt) > 0 ?
840 gimple_call_arg (stmt, 0) : NULL_TREE;
841 tree arg1 = gimple_call_num_args (stmt) > 1 ?
842 gimple_call_arg (stmt, 1) : NULL_TREE;
843
844 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
845 gimple_call_fndecl (stmt),
846 arg0,
847 arg1,
848 strict_overflow_p);
849}
850
851/* Return true if STMT is know to to compute a non-negative value.
852 If the return value is based on the assumption that signed overflow is
853 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
854 *STRICT_OVERFLOW_P.*/
855
856static bool
857gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
858{
859 switch (gimple_code (stmt))
860 {
861 case GIMPLE_ASSIGN:
862 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
863 case GIMPLE_CALL:
864 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
865 default:
866 gcc_unreachable ();
867 }
868}
869
870/* Return true if the result of assignment STMT is know to be non-zero.
871 If the return value is based on the assumption that signed overflow is
872 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
873 *STRICT_OVERFLOW_P.*/
874
875static bool
876gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
877{
878 enum tree_code code = gimple_assign_rhs_code (stmt);
879 switch (get_gimple_rhs_class (code))
880 {
881 case GIMPLE_UNARY_RHS:
882 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
883 gimple_expr_type (stmt),
884 gimple_assign_rhs1 (stmt),
885 strict_overflow_p);
886 case GIMPLE_BINARY_RHS:
887 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
888 gimple_expr_type (stmt),
889 gimple_assign_rhs1 (stmt),
890 gimple_assign_rhs2 (stmt),
891 strict_overflow_p);
892 case GIMPLE_SINGLE_RHS:
893 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
894 strict_overflow_p);
895 case GIMPLE_INVALID_RHS:
896 gcc_unreachable ();
897 default:
898 gcc_unreachable ();
899 }
900}
901
902/* Return true if STMT is know to to compute a non-zero value.
903 If the return value is based on the assumption that signed overflow is
904 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
905 *STRICT_OVERFLOW_P.*/
906
907static bool
908gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
909{
910 switch (gimple_code (stmt))
911 {
912 case GIMPLE_ASSIGN:
913 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
914 case GIMPLE_CALL:
915 return gimple_alloca_call_p (stmt);
916 default:
917 gcc_unreachable ();
918 }
919}
920
12df8a7e 921/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
227858d1 922 obtained so far. */
0bca51f0 923
227858d1 924static bool
726a989a 925vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
0bca51f0 926{
726a989a 927 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
227858d1 928 return true;
0bca51f0 929
227858d1
DN
930 /* If we have an expression of the form &X->a, then the expression
931 is nonnull if X is nonnull. */
726a989a
RB
932 if (is_gimple_assign (stmt)
933 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
227858d1 934 {
726a989a 935 tree expr = gimple_assign_rhs1 (stmt);
227858d1 936 tree base = get_base_address (TREE_OPERAND (expr, 0));
0bca51f0 937
227858d1
DN
938 if (base != NULL_TREE
939 && TREE_CODE (base) == INDIRECT_REF
940 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
941 {
942 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
943 if (range_is_nonnull (vr))
944 return true;
945 }
946 }
b565d777 947
227858d1 948 return false;
b565d777
DN
949}
950
04dce5a4
ZD
951/* Returns true if EXPR is a valid value (as expected by compare_values) --
952 a gimple invariant, or SSA_NAME +- CST. */
953
954static bool
955valid_value_p (tree expr)
956{
957 if (TREE_CODE (expr) == SSA_NAME)
958 return true;
959
960 if (TREE_CODE (expr) == PLUS_EXPR
961 || TREE_CODE (expr) == MINUS_EXPR)
962 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
963 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
964
965 return is_gimple_min_invariant (expr);
966}
b565d777 967
6b3c76a9
JH
968/* Return
969 1 if VAL < VAL2
970 0 if !(VAL < VAL2)
971 -2 if those are incomparable. */
972static inline int
973operand_less_p (tree val, tree val2)
974{
6b3c76a9
JH
975 /* LT is folded faster than GE and others. Inline the common case. */
976 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
977 {
978 if (TYPE_UNSIGNED (TREE_TYPE (val)))
979 return INT_CST_LT_UNSIGNED (val, val2);
980 else
12df8a7e
ILT
981 {
982 if (INT_CST_LT (val, val2))
983 return 1;
984 }
6b3c76a9
JH
985 }
986 else
12df8a7e
ILT
987 {
988 tree tcmp;
989
c8539275
ILT
990 fold_defer_overflow_warnings ();
991
12df8a7e 992 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
c8539275
ILT
993
994 fold_undefer_and_ignore_overflow_warnings ();
995
bd03c084
RG
996 if (!tcmp
997 || TREE_CODE (tcmp) != INTEGER_CST)
12df8a7e
ILT
998 return -2;
999
1000 if (!integer_zerop (tcmp))
1001 return 1;
1002 }
1003
1004 /* val >= val2, not considering overflow infinity. */
1005 if (is_negative_overflow_infinity (val))
1006 return is_negative_overflow_infinity (val2) ? 0 : 1;
1007 else if (is_positive_overflow_infinity (val2))
1008 return is_positive_overflow_infinity (val) ? 0 : 1;
1009
1010 return 0;
6b3c76a9
JH
1011}
1012
0bca51f0
DN
1013/* Compare two values VAL1 and VAL2. Return
1014
1015 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1016 -1 if VAL1 < VAL2,
1017 0 if VAL1 == VAL2,
1018 +1 if VAL1 > VAL2, and
1019 +2 if VAL1 != VAL2
1020
1021 This is similar to tree_int_cst_compare but supports pointer values
12df8a7e
ILT
1022 and values that cannot be compared at compile time.
1023
1024 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1025 true if the return value is only valid if we assume that signed
1026 overflow is undefined. */
0bca51f0
DN
1027
1028static int
12df8a7e 1029compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
0bca51f0
DN
1030{
1031 if (val1 == val2)
1032 return 0;
1033
30abf793
KH
1034 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1035 both integers. */
1036 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1037 == POINTER_TYPE_P (TREE_TYPE (val2)));
5be014d5
AP
1038 /* Convert the two values into the same type. This is needed because
1039 sizetype causes sign extension even for unsigned types. */
1040 val2 = fold_convert (TREE_TYPE (val1), val2);
1041 STRIP_USELESS_TYPE_CONVERSION (val2);
30abf793 1042
0bca51f0
DN
1043 if ((TREE_CODE (val1) == SSA_NAME
1044 || TREE_CODE (val1) == PLUS_EXPR
1045 || TREE_CODE (val1) == MINUS_EXPR)
1046 && (TREE_CODE (val2) == SSA_NAME
1047 || TREE_CODE (val2) == PLUS_EXPR
1048 || TREE_CODE (val2) == MINUS_EXPR))
1049 {
1050 tree n1, c1, n2, c2;
67ac6e63 1051 enum tree_code code1, code2;
0bca51f0
DN
1052
1053 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1054 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1055 same name, return -2. */
1056 if (TREE_CODE (val1) == SSA_NAME)
1057 {
67ac6e63 1058 code1 = SSA_NAME;
0bca51f0
DN
1059 n1 = val1;
1060 c1 = NULL_TREE;
1061 }
1062 else
1063 {
67ac6e63 1064 code1 = TREE_CODE (val1);
0bca51f0
DN
1065 n1 = TREE_OPERAND (val1, 0);
1066 c1 = TREE_OPERAND (val1, 1);
67ac6e63
RG
1067 if (tree_int_cst_sgn (c1) == -1)
1068 {
12df8a7e
ILT
1069 if (is_negative_overflow_infinity (c1))
1070 return -2;
67ac6e63
RG
1071 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1072 if (!c1)
1073 return -2;
1074 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1075 }
0bca51f0
DN
1076 }
1077
1078 if (TREE_CODE (val2) == SSA_NAME)
1079 {
67ac6e63 1080 code2 = SSA_NAME;
0bca51f0
DN
1081 n2 = val2;
1082 c2 = NULL_TREE;
1083 }
1084 else
1085 {
67ac6e63 1086 code2 = TREE_CODE (val2);
0bca51f0
DN
1087 n2 = TREE_OPERAND (val2, 0);
1088 c2 = TREE_OPERAND (val2, 1);
67ac6e63
RG
1089 if (tree_int_cst_sgn (c2) == -1)
1090 {
12df8a7e
ILT
1091 if (is_negative_overflow_infinity (c2))
1092 return -2;
67ac6e63
RG
1093 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1094 if (!c2)
1095 return -2;
1096 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1097 }
0bca51f0
DN
1098 }
1099
1100 /* Both values must use the same name. */
1101 if (n1 != n2)
1102 return -2;
1103
67ac6e63
RG
1104 if (code1 == SSA_NAME
1105 && code2 == SSA_NAME)
1106 /* NAME == NAME */
1107 return 0;
1108
1109 /* If overflow is defined we cannot simplify more. */
eeef0e45 1110 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
67ac6e63
RG
1111 return -2;
1112
3fe5bcaf
ILT
1113 if (strict_overflow_p != NULL
1114 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1115 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
12df8a7e
ILT
1116 *strict_overflow_p = true;
1117
67ac6e63 1118 if (code1 == SSA_NAME)
0bca51f0 1119 {
67ac6e63 1120 if (code2 == PLUS_EXPR)
0bca51f0
DN
1121 /* NAME < NAME + CST */
1122 return -1;
67ac6e63 1123 else if (code2 == MINUS_EXPR)
0bca51f0
DN
1124 /* NAME > NAME - CST */
1125 return 1;
1126 }
67ac6e63 1127 else if (code1 == PLUS_EXPR)
0bca51f0 1128 {
67ac6e63 1129 if (code2 == SSA_NAME)
0bca51f0
DN
1130 /* NAME + CST > NAME */
1131 return 1;
67ac6e63 1132 else if (code2 == PLUS_EXPR)
0bca51f0 1133 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
12df8a7e 1134 return compare_values_warnv (c1, c2, strict_overflow_p);
67ac6e63 1135 else if (code2 == MINUS_EXPR)
0bca51f0
DN
1136 /* NAME + CST1 > NAME - CST2 */
1137 return 1;
1138 }
67ac6e63 1139 else if (code1 == MINUS_EXPR)
0bca51f0 1140 {
67ac6e63 1141 if (code2 == SSA_NAME)
0bca51f0
DN
1142 /* NAME - CST < NAME */
1143 return -1;
67ac6e63 1144 else if (code2 == PLUS_EXPR)
0bca51f0
DN
1145 /* NAME - CST1 < NAME + CST2 */
1146 return -1;
67ac6e63 1147 else if (code2 == MINUS_EXPR)
0bca51f0
DN
1148 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1149 C1 and C2 are swapped in the call to compare_values. */
12df8a7e 1150 return compare_values_warnv (c2, c1, strict_overflow_p);
0bca51f0
DN
1151 }
1152
1153 gcc_unreachable ();
1154 }
1155
1156 /* We cannot compare non-constants. */
1157 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1158 return -2;
1159
30abf793 1160 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
87f2a9f5 1161 {
12df8a7e
ILT
1162 /* We cannot compare overflowed values, except for overflow
1163 infinities. */
87f2a9f5 1164 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
12df8a7e 1165 {
0c948c27
ILT
1166 if (strict_overflow_p != NULL)
1167 *strict_overflow_p = true;
12df8a7e
ILT
1168 if (is_negative_overflow_infinity (val1))
1169 return is_negative_overflow_infinity (val2) ? 0 : -1;
1170 else if (is_negative_overflow_infinity (val2))
1171 return 1;
1172 else if (is_positive_overflow_infinity (val1))
1173 return is_positive_overflow_infinity (val2) ? 0 : 1;
1174 else if (is_positive_overflow_infinity (val2))
1175 return -1;
1176 return -2;
1177 }
87f2a9f5
RS
1178
1179 return tree_int_cst_compare (val1, val2);
1180 }
0bca51f0
DN
1181 else
1182 {
1183 tree t;
1184
1185 /* First see if VAL1 and VAL2 are not the same. */
1186 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1187 return 0;
1188
1189 /* If VAL1 is a lower address than VAL2, return -1. */
6b3c76a9 1190 if (operand_less_p (val1, val2) == 1)
0bca51f0
DN
1191 return -1;
1192
1193 /* If VAL1 is a higher address than VAL2, return +1. */
6b3c76a9 1194 if (operand_less_p (val2, val1) == 1)
0bca51f0
DN
1195 return 1;
1196
5daffcc7
JH
1197 /* If VAL1 is different than VAL2, return +2.
1198 For integer constants we either have already returned -1 or 1
2e226e66
KH
1199 or they are equivalent. We still might succeed in proving
1200 something about non-trivial operands. */
5daffcc7
JH
1201 if (TREE_CODE (val1) != INTEGER_CST
1202 || TREE_CODE (val2) != INTEGER_CST)
1203 {
1204 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
bd03c084 1205 if (t && integer_onep (t))
5daffcc7
JH
1206 return 2;
1207 }
0bca51f0
DN
1208
1209 return -2;
1210 }
1211}
1212
0c948c27
ILT
1213/* Compare values like compare_values_warnv, but treat comparisons of
1214 nonconstants which rely on undefined overflow as incomparable. */
12df8a7e
ILT
1215
1216static int
1217compare_values (tree val1, tree val2)
1218{
1219 bool sop;
1220 int ret;
1221
1222 sop = false;
1223 ret = compare_values_warnv (val1, val2, &sop);
0c948c27
ILT
1224 if (sop
1225 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
12df8a7e
ILT
1226 ret = -2;
1227 return ret;
1228}
1229
0bca51f0
DN
1230
1231/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1232 0 if VAL is not inside VR,
c83033e7
DN
1233 -2 if we cannot tell either way.
1234
1235 FIXME, the current semantics of this functions are a bit quirky
1236 when taken in the context of VRP. In here we do not care
1237 about VR's type. If VR is the anti-range ~[3, 5] the call
1238 value_inside_range (4, VR) will return 1.
1239
1240 This is counter-intuitive in a strict sense, but the callers
1241 currently expect this. They are calling the function
1242 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1243 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1244 themselves.
1245
1246 This also applies to value_ranges_intersect_p and
1247 range_includes_zero_p. The semantics of VR_RANGE and
1248 VR_ANTI_RANGE should be encoded here, but that also means
6b3c76a9
JH
1249 adapting the users of these functions to the new semantics.
1250
1251 Benchmark compile/20001226-1.c compilation time after changing this
1252 function. */
0bca51f0
DN
1253
1254static inline int
6b3c76a9 1255value_inside_range (tree val, value_range_t * vr)
0bca51f0 1256{
6b3c76a9 1257 int cmp1, cmp2;
0bca51f0 1258
6b3c76a9
JH
1259 cmp1 = operand_less_p (val, vr->min);
1260 if (cmp1 == -2)
0bca51f0 1261 return -2;
6b3c76a9
JH
1262 if (cmp1 == 1)
1263 return 0;
0bca51f0 1264
6b3c76a9
JH
1265 cmp2 = operand_less_p (vr->max, val);
1266 if (cmp2 == -2)
0bca51f0
DN
1267 return -2;
1268
6b3c76a9 1269 return !cmp2;
0bca51f0
DN
1270}
1271
1272
1273/* Return true if value ranges VR0 and VR1 have a non-empty
6b3c76a9
JH
1274 intersection.
1275
1276 Benchmark compile/20001226-1.c compilation time after changing this
1277 function.
1278 */
0bca51f0
DN
1279
1280static inline bool
227858d1 1281value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
0bca51f0 1282{
5daffcc7
JH
1283 /* The value ranges do not intersect if the maximum of the first range is
1284 less than the minimum of the second range or vice versa.
1285 When those relations are unknown, we can't do any better. */
1286 if (operand_less_p (vr0->max, vr1->min) != 0)
1287 return false;
1288 if (operand_less_p (vr1->max, vr0->min) != 0)
1289 return false;
1290 return true;
0bca51f0
DN
1291}
1292
1293
c83033e7
DN
1294/* Return true if VR includes the value zero, false otherwise. FIXME,
1295 currently this will return false for an anti-range like ~[-4, 3].
1296 This will be wrong when the semantics of value_inside_range are
1297 modified (currently the users of this function expect these
1298 semantics). */
227858d1
DN
1299
1300static inline bool
1301range_includes_zero_p (value_range_t *vr)
1302{
1303 tree zero;
1304
1305 gcc_assert (vr->type != VR_UNDEFINED
1306 && vr->type != VR_VARYING
1307 && !symbolic_range_p (vr));
1308
1309 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1310 return (value_inside_range (zero, vr) == 1);
1311}
1312
b16caf72
JL
1313/* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1314 false otherwise or if no value range information is available. */
1315
1316bool
58f9752a 1317ssa_name_nonnegative_p (const_tree t)
b16caf72
JL
1318{
1319 value_range_t *vr = get_value_range (t);
1320
1321 if (!vr)
1322 return false;
1323
1324 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1325 which would return a useful value should be encoded as a VR_RANGE. */
1326 if (vr->type == VR_RANGE)
1327 {
1328 int result = compare_values (vr->min, integer_zero_node);
1329
1330 return (result == 0 || result == 1);
1331 }
1332 return false;
1333}
1334
1335/* Return true if T, an SSA_NAME, is known to be nonzero. Return
1336 false otherwise or if no value range information is available. */
1337
1338bool
58f9752a 1339ssa_name_nonzero_p (const_tree t)
b16caf72
JL
1340{
1341 value_range_t *vr = get_value_range (t);
1342
1343 if (!vr)
1344 return false;
1345
1346 /* A VR_RANGE which does not include zero is a nonzero value. */
1347 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1348 return ! range_includes_zero_p (vr);
1349
1350 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1351 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1352 return range_includes_zero_p (vr);
1353
1354 return false;
1355}
1356
73019a42
RG
1357/* If OP has a value range with a single constant value return that,
1358 otherwise return NULL_TREE. This returns OP itself if OP is a
1359 constant. */
1360
1361static tree
1362op_with_constant_singleton_value_range (tree op)
1363{
1364 value_range_t *vr;
1365
1366 if (is_gimple_min_invariant (op))
1367 return op;
1368
1369 if (TREE_CODE (op) != SSA_NAME)
1370 return NULL_TREE;
1371
1372 vr = get_value_range (op);
1373 if (vr->type == VR_RANGE
1374 && operand_equal_p (vr->min, vr->max, 0)
1375 && is_gimple_min_invariant (vr->min))
1376 return vr->min;
1377
1378 return NULL_TREE;
1379}
1380
227858d1 1381
0bca51f0
DN
1382/* Extract value range information from an ASSERT_EXPR EXPR and store
1383 it in *VR_P. */
1384
1385static void
227858d1 1386extract_range_from_assert (value_range_t *vr_p, tree expr)
0bca51f0 1387{
227858d1
DN
1388 tree var, cond, limit, min, max, type;
1389 value_range_t *var_vr, *limit_vr;
b565d777 1390 enum tree_code cond_code;
0bca51f0
DN
1391
1392 var = ASSERT_EXPR_VAR (expr);
1393 cond = ASSERT_EXPR_COND (expr);
1394
7da4bf7d 1395 gcc_assert (COMPARISON_CLASS_P (cond));
0bca51f0
DN
1396
1397 /* Find VAR in the ASSERT_EXPR conditional. */
2ab8dbf4
RG
1398 if (var == TREE_OPERAND (cond, 0)
1399 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1400 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
227858d1
DN
1401 {
1402 /* If the predicate is of the form VAR COMP LIMIT, then we just
1403 take LIMIT from the RHS and use the same comparison code. */
227858d1 1404 cond_code = TREE_CODE (cond);
2ab8dbf4
RG
1405 limit = TREE_OPERAND (cond, 1);
1406 cond = TREE_OPERAND (cond, 0);
227858d1
DN
1407 }
1408 else
1409 {
1410 /* If the predicate is of the form LIMIT COMP VAR, then we need
1411 to flip around the comparison code to create the proper range
1412 for VAR. */
09b2f9e8 1413 cond_code = swap_tree_comparison (TREE_CODE (cond));
2ab8dbf4
RG
1414 limit = TREE_OPERAND (cond, 0);
1415 cond = TREE_OPERAND (cond, 1);
227858d1 1416 }
0bca51f0 1417
b80cca7b
ILT
1418 limit = avoid_overflow_infinity (limit);
1419
227858d1 1420 type = TREE_TYPE (limit);
0bca51f0
DN
1421 gcc_assert (limit != var);
1422
227858d1
DN
1423 /* For pointer arithmetic, we only keep track of pointer equality
1424 and inequality. */
1425 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
0bca51f0 1426 {
b565d777 1427 set_value_range_to_varying (vr_p);
0bca51f0
DN
1428 return;
1429 }
1430
227858d1
DN
1431 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1432 try to use LIMIT's range to avoid creating symbolic ranges
1433 unnecessarily. */
1434 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1435
1436 /* LIMIT's range is only interesting if it has any useful information. */
1437 if (limit_vr
1438 && (limit_vr->type == VR_UNDEFINED
1439 || limit_vr->type == VR_VARYING
1440 || symbolic_range_p (limit_vr)))
1441 limit_vr = NULL;
1442
db3d5328
DN
1443 /* Initially, the new range has the same set of equivalences of
1444 VAR's range. This will be revised before returning the final
1445 value. Since assertions may be chained via mutually exclusive
1446 predicates, we will need to trim the set of equivalences before
1447 we are done. */
227858d1 1448 gcc_assert (vr_p->equiv == NULL);
f5052e29 1449 add_equivalence (&vr_p->equiv, var);
227858d1
DN
1450
1451 /* Extract a new range based on the asserted comparison for VAR and
1452 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1453 will only use it for equality comparisons (EQ_EXPR). For any
1454 other kind of assertion, we cannot derive a range from LIMIT's
1455 anti-range that can be used to describe the new range. For
1456 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1457 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1458 no single range for x_2 that could describe LE_EXPR, so we might
2ab8dbf4
RG
1459 as well build the range [b_4, +INF] for it.
1460 One special case we handle is extracting a range from a
1461 range test encoded as (unsigned)var + CST <= limit. */
1462 if (TREE_CODE (cond) == NOP_EXPR
1463 || TREE_CODE (cond) == PLUS_EXPR)
1464 {
2ab8dbf4
RG
1465 if (TREE_CODE (cond) == PLUS_EXPR)
1466 {
70b7b037
RG
1467 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1468 TREE_OPERAND (cond, 1));
1469 max = int_const_binop (PLUS_EXPR, limit, min, 0);
2ab8dbf4
RG
1470 cond = TREE_OPERAND (cond, 0);
1471 }
1472 else
70b7b037
RG
1473 {
1474 min = build_int_cst (TREE_TYPE (var), 0);
1475 max = limit;
1476 }
2ab8dbf4 1477
70b7b037
RG
1478 /* Make sure to not set TREE_OVERFLOW on the final type
1479 conversion. We are willingly interpreting large positive
1480 unsigned values as negative singed values here. */
1481 min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
1482 TREE_INT_CST_HIGH (min), 0, false);
1483 max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
1484 TREE_INT_CST_HIGH (max), 0, false);
2ab8dbf4
RG
1485
1486 /* We can transform a max, min range to an anti-range or
1487 vice-versa. Use set_and_canonicalize_value_range which does
1488 this for us. */
1489 if (cond_code == LE_EXPR)
1490 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1491 min, max, vr_p->equiv);
1492 else if (cond_code == GT_EXPR)
1493 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1494 min, max, vr_p->equiv);
1495 else
1496 gcc_unreachable ();
1497 }
1498 else if (cond_code == EQ_EXPR)
227858d1
DN
1499 {
1500 enum value_range_type range_type;
1501
1502 if (limit_vr)
1503 {
1504 range_type = limit_vr->type;
1505 min = limit_vr->min;
1506 max = limit_vr->max;
1507 }
1508 else
1509 {
1510 range_type = VR_RANGE;
1511 min = limit;
1512 max = limit;
1513 }
1514
1515 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1516
1517 /* When asserting the equality VAR == LIMIT and LIMIT is another
1518 SSA name, the new range will also inherit the equivalence set
1519 from LIMIT. */
1520 if (TREE_CODE (limit) == SSA_NAME)
f5052e29 1521 add_equivalence (&vr_p->equiv, limit);
227858d1
DN
1522 }
1523 else if (cond_code == NE_EXPR)
1524 {
1525 /* As described above, when LIMIT's range is an anti-range and
1526 this assertion is an inequality (NE_EXPR), then we cannot
1527 derive anything from the anti-range. For instance, if
1528 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1529 not imply that VAR's range is [0, 0]. So, in the case of
1530 anti-ranges, we just assert the inequality using LIMIT and
fde5c44c
JM
1531 not its anti-range.
1532
1533 If LIMIT_VR is a range, we can only use it to build a new
1534 anti-range if LIMIT_VR is a single-valued range. For
1535 instance, if LIMIT_VR is [0, 1], the predicate
1536 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1537 Rather, it means that for value 0 VAR should be ~[0, 0]
1538 and for value 1, VAR should be ~[1, 1]. We cannot
1539 represent these ranges.
1540
1541 The only situation in which we can build a valid
1542 anti-range is when LIMIT_VR is a single-valued range
1543 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1544 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1545 if (limit_vr
1546 && limit_vr->type == VR_RANGE
1547 && compare_values (limit_vr->min, limit_vr->max) == 0)
227858d1 1548 {
fde5c44c
JM
1549 min = limit_vr->min;
1550 max = limit_vr->max;
227858d1
DN
1551 }
1552 else
1553 {
fde5c44c
JM
1554 /* In any other case, we cannot use LIMIT's range to build a
1555 valid anti-range. */
1556 min = max = limit;
227858d1
DN
1557 }
1558
1559 /* If MIN and MAX cover the whole range for their type, then
1560 just use the original LIMIT. */
1561 if (INTEGRAL_TYPE_P (type)
e1f28918
ILT
1562 && vrp_val_is_min (min)
1563 && vrp_val_is_max (max))
227858d1
DN
1564 min = max = limit;
1565
1566 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1567 }
1568 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
0bca51f0 1569 {
227858d1
DN
1570 min = TYPE_MIN_VALUE (type);
1571
1572 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1573 max = limit;
1574 else
1575 {
1576 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1577 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1578 LT_EXPR. */
1579 max = limit_vr->max;
1580 }
1581
9d6eefd5
EB
1582 /* If the maximum value forces us to be out of bounds, simply punt.
1583 It would be pointless to try and do anything more since this
1584 all should be optimized away above us. */
7343ff45
ILT
1585 if ((cond_code == LT_EXPR
1586 && compare_values (max, min) == 0)
1587 || is_overflow_infinity (max))
9d6eefd5
EB
1588 set_value_range_to_varying (vr_p);
1589 else
227858d1 1590 {
9d6eefd5 1591 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
7343ff45 1592 if (cond_code == LT_EXPR)
9d6eefd5
EB
1593 {
1594 tree one = build_int_cst (type, 1);
1595 max = fold_build2 (MINUS_EXPR, type, max, one);
3fe5bcaf
ILT
1596 if (EXPR_P (max))
1597 TREE_NO_WARNING (max) = 1;
9d6eefd5 1598 }
227858d1 1599
9d6eefd5
EB
1600 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1601 }
0bca51f0 1602 }
227858d1 1603 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
0bca51f0 1604 {
227858d1
DN
1605 max = TYPE_MAX_VALUE (type);
1606
1607 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1608 min = limit;
1609 else
1610 {
1611 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1612 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1613 GT_EXPR. */
1614 min = limit_vr->min;
1615 }
1616
9d6eefd5
EB
1617 /* If the minimum value forces us to be out of bounds, simply punt.
1618 It would be pointless to try and do anything more since this
1619 all should be optimized away above us. */
7343ff45
ILT
1620 if ((cond_code == GT_EXPR
1621 && compare_values (min, max) == 0)
1622 || is_overflow_infinity (min))
9d6eefd5
EB
1623 set_value_range_to_varying (vr_p);
1624 else
227858d1 1625 {
9d6eefd5 1626 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
7343ff45 1627 if (cond_code == GT_EXPR)
9d6eefd5
EB
1628 {
1629 tree one = build_int_cst (type, 1);
1630 min = fold_build2 (PLUS_EXPR, type, min, one);
3fe5bcaf
ILT
1631 if (EXPR_P (min))
1632 TREE_NO_WARNING (min) = 1;
9d6eefd5 1633 }
227858d1 1634
9d6eefd5
EB
1635 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1636 }
0bca51f0
DN
1637 }
1638 else
1639 gcc_unreachable ();
1640
012a7a78
DN
1641 /* If VAR already had a known range, it may happen that the new
1642 range we have computed and VAR's range are not compatible. For
1643 instance,
1644
1645 if (p_5 == NULL)
1646 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1647 x_7 = p_6->fld;
1648 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1649
1650 While the above comes from a faulty program, it will cause an ICE
1651 later because p_8 and p_6 will have incompatible ranges and at
1652 the same time will be considered equivalent. A similar situation
1653 would arise from
1654
1655 if (i_5 > 10)
1656 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1657 if (i_5 < 5)
1658 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1659
1660 Again i_6 and i_7 will have incompatible ranges. It would be
1661 pointless to try and do anything with i_7's range because
1662 anything dominated by 'if (i_5 < 5)' will be optimized away.
1663 Note, due to the wa in which simulation proceeds, the statement
1664 i_7 = ASSERT_EXPR <...> we would never be visited because the
c83eecad 1665 conditional 'if (i_5 < 5)' always evaluates to false. However,
012a7a78
DN
1666 this extra check does not hurt and may protect against future
1667 changes to VRP that may get into a situation similar to the
1668 NULL pointer dereference example.
1669
1670 Note that these compatibility tests are only needed when dealing
1671 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1672 are both anti-ranges, they will always be compatible, because two
1673 anti-ranges will always have a non-empty intersection. */
1674
0bca51f0 1675 var_vr = get_value_range (var);
0bca51f0 1676
012a7a78
DN
1677 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1678 ranges or anti-ranges. */
1679 if (vr_p->type == VR_VARYING
1680 || vr_p->type == VR_UNDEFINED
1681 || var_vr->type == VR_VARYING
1682 || var_vr->type == VR_UNDEFINED
1683 || symbolic_range_p (vr_p)
1684 || symbolic_range_p (var_vr))
96644aba 1685 return;
012a7a78
DN
1686
1687 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1688 {
1689 /* If the two ranges have a non-empty intersection, we can
1690 refine the resulting range. Since the assert expression
1691 creates an equivalency and at the same time it asserts a
1692 predicate, we can take the intersection of the two ranges to
1693 get better precision. */
1694 if (value_ranges_intersect_p (var_vr, vr_p))
1695 {
1696 /* Use the larger of the two minimums. */
1697 if (compare_values (vr_p->min, var_vr->min) == -1)
1698 min = var_vr->min;
1699 else
1700 min = vr_p->min;
1701
1702 /* Use the smaller of the two maximums. */
1703 if (compare_values (vr_p->max, var_vr->max) == 1)
1704 max = var_vr->max;
1705 else
1706 max = vr_p->max;
1707
1708 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1709 }
0bca51f0 1710 else
012a7a78
DN
1711 {
1712 /* The two ranges do not intersect, set the new range to
1713 VARYING, because we will not be able to do anything
1714 meaningful with it. */
1715 set_value_range_to_varying (vr_p);
1716 }
1717 }
1718 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1719 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1720 {
1721 /* A range and an anti-range will cancel each other only if
1722 their ends are the same. For instance, in the example above,
1723 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1724 so VR_P should be set to VR_VARYING. */
1725 if (compare_values (var_vr->min, vr_p->min) == 0
1726 && compare_values (var_vr->max, vr_p->max) == 0)
1727 set_value_range_to_varying (vr_p);
307d19fe
JL
1728 else
1729 {
1730 tree min, max, anti_min, anti_max, real_min, real_max;
b881887e 1731 int cmp;
307d19fe
JL
1732
1733 /* We want to compute the logical AND of the two ranges;
1734 there are three cases to consider.
1735
1736
c0220ea4 1737 1. The VR_ANTI_RANGE range is completely within the
307d19fe
JL
1738 VR_RANGE and the endpoints of the ranges are
1739 different. In that case the resulting range
4f67dfcf
JL
1740 should be whichever range is more precise.
1741 Typically that will be the VR_RANGE.
307d19fe
JL
1742
1743 2. The VR_ANTI_RANGE is completely disjoint from
1744 the VR_RANGE. In this case the resulting range
1745 should be the VR_RANGE.
1746
1747 3. There is some overlap between the VR_ANTI_RANGE
1748 and the VR_RANGE.
1749
1750 3a. If the high limit of the VR_ANTI_RANGE resides
1751 within the VR_RANGE, then the result is a new
1752 VR_RANGE starting at the high limit of the
fa10beec 1753 VR_ANTI_RANGE + 1 and extending to the
307d19fe
JL
1754 high limit of the original VR_RANGE.
1755
1756 3b. If the low limit of the VR_ANTI_RANGE resides
1757 within the VR_RANGE, then the result is a new
1758 VR_RANGE starting at the low limit of the original
1759 VR_RANGE and extending to the low limit of the
1760 VR_ANTI_RANGE - 1. */
1761 if (vr_p->type == VR_ANTI_RANGE)
1762 {
1763 anti_min = vr_p->min;
1764 anti_max = vr_p->max;
1765 real_min = var_vr->min;
1766 real_max = var_vr->max;
1767 }
1768 else
1769 {
1770 anti_min = var_vr->min;
1771 anti_max = var_vr->max;
1772 real_min = vr_p->min;
1773 real_max = vr_p->max;
1774 }
1775
1776
1777 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1778 not including any endpoints. */
1779 if (compare_values (anti_max, real_max) == -1
1780 && compare_values (anti_min, real_min) == 1)
1781 {
70b7b037
RG
1782 /* If the range is covering the whole valid range of
1783 the type keep the anti-range. */
1784 if (!vrp_val_is_min (real_min)
1785 || !vrp_val_is_max (real_max))
1786 set_value_range (vr_p, VR_RANGE, real_min,
1787 real_max, vr_p->equiv);
307d19fe
JL
1788 }
1789 /* Case 2, VR_ANTI_RANGE completely disjoint from
1790 VR_RANGE. */
1791 else if (compare_values (anti_min, real_max) == 1
1792 || compare_values (anti_max, real_min) == -1)
1793 {
1794 set_value_range (vr_p, VR_RANGE, real_min,
1795 real_max, vr_p->equiv);
1796 }
1797 /* Case 3a, the anti-range extends into the low
1798 part of the real range. Thus creating a new
917f1b7e 1799 low for the real range. */
b881887e
RG
1800 else if (((cmp = compare_values (anti_max, real_min)) == 1
1801 || cmp == 0)
307d19fe
JL
1802 && compare_values (anti_max, real_max) == -1)
1803 {
12df8a7e
ILT
1804 gcc_assert (!is_positive_overflow_infinity (anti_max));
1805 if (needs_overflow_infinity (TREE_TYPE (anti_max))
e1f28918 1806 && vrp_val_is_max (anti_max))
12df8a7e
ILT
1807 {
1808 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1809 {
1810 set_value_range_to_varying (vr_p);
1811 return;
1812 }
1813 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1814 }
42289977 1815 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
12df8a7e
ILT
1816 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1817 anti_max,
1818 build_int_cst (TREE_TYPE (var_vr->min), 1));
42289977
RG
1819 else
1820 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1821 anti_max, size_int (1));
307d19fe
JL
1822 max = real_max;
1823 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1824 }
1825 /* Case 3b, the anti-range extends into the high
1826 part of the real range. Thus creating a new
917f1b7e 1827 higher for the real range. */
307d19fe 1828 else if (compare_values (anti_min, real_min) == 1
b881887e
RG
1829 && ((cmp = compare_values (anti_min, real_max)) == -1
1830 || cmp == 0))
307d19fe 1831 {
12df8a7e
ILT
1832 gcc_assert (!is_negative_overflow_infinity (anti_min));
1833 if (needs_overflow_infinity (TREE_TYPE (anti_min))
e1f28918 1834 && vrp_val_is_min (anti_min))
12df8a7e
ILT
1835 {
1836 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1837 {
1838 set_value_range_to_varying (vr_p);
1839 return;
1840 }
1841 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1842 }
5be014d5 1843 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
12df8a7e
ILT
1844 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1845 anti_min,
1846 build_int_cst (TREE_TYPE (var_vr->min), 1));
5be014d5
AP
1847 else
1848 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1849 anti_min,
1850 size_int (-1));
307d19fe
JL
1851 min = real_min;
1852 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1853 }
1854 }
0bca51f0
DN
1855 }
1856}
1857
1858
1859/* Extract range information from SSA name VAR and store it in VR. If
1860 VAR has an interesting range, use it. Otherwise, create the
1861 range [VAR, VAR] and return it. This is useful in situations where
1862 we may have conditionals testing values of VARYING names. For
1863 instance,
1864
1865 x_3 = y_5;
1866 if (x_3 > y_5)
1867 ...
1868
1869 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1870 always false. */
1871
1872static void
227858d1 1873extract_range_from_ssa_name (value_range_t *vr, tree var)
0bca51f0 1874{
227858d1 1875 value_range_t *var_vr = get_value_range (var);
0bca51f0
DN
1876
1877 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
227858d1 1878 copy_value_range (vr, var_vr);
0bca51f0 1879 else
227858d1
DN
1880 set_value_range (vr, VR_RANGE, var, var, NULL);
1881
f5052e29 1882 add_equivalence (&vr->equiv, var);
0bca51f0
DN
1883}
1884
1885
9983270b
DN
1886/* Wrapper around int_const_binop. If the operation overflows and we
1887 are not using wrapping arithmetic, then adjust the result to be
12df8a7e
ILT
1888 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1889 NULL_TREE if we need to use an overflow infinity representation but
1890 the type does not support it. */
9983270b 1891
12df8a7e 1892static tree
9983270b
DN
1893vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1894{
1895 tree res;
1896
377d569b 1897 res = int_const_binop (code, val1, val2, 0);
9983270b
DN
1898
1899 /* If we are not using wrapping arithmetic, operate symbolically
1900 on -INF and +INF. */
eeef0e45 1901 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
b17775ab
JM
1902 {
1903 int checkz = compare_values (res, val1);
26ef4301 1904 bool overflow = false;
b17775ab 1905
7dc32197 1906 /* Ensure that res = val1 [+*] val2 >= val1
b17775ab 1907 or that res = val1 - val2 <= val1. */
26ef4301 1908 if ((code == PLUS_EXPR
7dc32197
DN
1909 && !(checkz == 1 || checkz == 0))
1910 || (code == MINUS_EXPR
1911 && !(checkz == 0 || checkz == -1)))
26ef4301
JL
1912 {
1913 overflow = true;
1914 }
1915 /* Checking for multiplication overflow is done by dividing the
1916 output of the multiplication by the first input of the
1917 multiplication. If the result of that division operation is
1918 not equal to the second input of the multiplication, then the
1919 multiplication overflowed. */
1920 else if (code == MULT_EXPR && !integer_zerop (val1))
1921 {
1922 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
3ea0e1e4 1923 res,
26ef4301
JL
1924 val1, 0);
1925 int check = compare_values (tmp, val2);
1926
1927 if (check != 0)
1928 overflow = true;
1929 }
1930
1931 if (overflow)
b17775ab
JM
1932 {
1933 res = copy_node (res);
1934 TREE_OVERFLOW (res) = 1;
1935 }
26ef4301 1936
b17775ab 1937 }
12df8a7e
ILT
1938 else if ((TREE_OVERFLOW (res)
1939 && !TREE_OVERFLOW (val1)
1940 && !TREE_OVERFLOW (val2))
1941 || is_overflow_infinity (val1)
1942 || is_overflow_infinity (val2))
9983270b 1943 {
7dc32197
DN
1944 /* If the operation overflowed but neither VAL1 nor VAL2 are
1945 overflown, return -INF or +INF depending on the operation
1946 and the combination of signs of the operands. */
9983270b
DN
1947 int sgn1 = tree_int_cst_sgn (val1);
1948 int sgn2 = tree_int_cst_sgn (val2);
1949
12df8a7e
ILT
1950 if (needs_overflow_infinity (TREE_TYPE (res))
1951 && !supports_overflow_infinity (TREE_TYPE (res)))
1952 return NULL_TREE;
1953
d7419dec
ILT
1954 /* We have to punt on adding infinities of different signs,
1955 since we can't tell what the sign of the result should be.
1956 Likewise for subtracting infinities of the same sign. */
1957 if (((code == PLUS_EXPR && sgn1 != sgn2)
1958 || (code == MINUS_EXPR && sgn1 == sgn2))
12df8a7e
ILT
1959 && is_overflow_infinity (val1)
1960 && is_overflow_infinity (val2))
1961 return NULL_TREE;
1962
d7419dec
ILT
1963 /* Don't try to handle division or shifting of infinities. */
1964 if ((code == TRUNC_DIV_EXPR
1965 || code == FLOOR_DIV_EXPR
1966 || code == CEIL_DIV_EXPR
1967 || code == EXACT_DIV_EXPR
1968 || code == ROUND_DIV_EXPR
1969 || code == RSHIFT_EXPR)
1970 && (is_overflow_infinity (val1)
1971 || is_overflow_infinity (val2)))
1972 return NULL_TREE;
1973
0d22e81f
EB
1974 /* Notice that we only need to handle the restricted set of
1975 operations handled by extract_range_from_binary_expr.
1976 Among them, only multiplication, addition and subtraction
1977 can yield overflow without overflown operands because we
1978 are working with integral types only... except in the
1979 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1980 for division too. */
1981
1982 /* For multiplication, the sign of the overflow is given
1983 by the comparison of the signs of the operands. */
1984 if ((code == MULT_EXPR && sgn1 == sgn2)
1985 /* For addition, the operands must be of the same sign
1986 to yield an overflow. Its sign is therefore that
d7419dec
ILT
1987 of one of the operands, for example the first. For
1988 infinite operands X + -INF is negative, not positive. */
1989 || (code == PLUS_EXPR
1990 && (sgn1 >= 0
1991 ? !is_negative_overflow_infinity (val2)
1992 : is_positive_overflow_infinity (val2)))
12df8a7e
ILT
1993 /* For subtraction, non-infinite operands must be of
1994 different signs to yield an overflow. Its sign is
1995 therefore that of the first operand or the opposite of
1996 that of the second operand. A first operand of 0 counts
1997 as positive here, for the corner case 0 - (-INF), which
1998 overflows, but must yield +INF. For infinite operands 0
1999 - INF is negative, not positive. */
2000 || (code == MINUS_EXPR
2001 && (sgn1 >= 0
2002 ? !is_positive_overflow_infinity (val2)
2003 : is_negative_overflow_infinity (val2)))
13338552
RG
2004 /* We only get in here with positive shift count, so the
2005 overflow direction is the same as the sign of val1.
2006 Actually rshift does not overflow at all, but we only
2007 handle the case of shifting overflowed -INF and +INF. */
2008 || (code == RSHIFT_EXPR
2009 && sgn1 >= 0)
0d22e81f
EB
2010 /* For division, the only case is -INF / -1 = +INF. */
2011 || code == TRUNC_DIV_EXPR
2012 || code == FLOOR_DIV_EXPR
2013 || code == CEIL_DIV_EXPR
2014 || code == EXACT_DIV_EXPR
2015 || code == ROUND_DIV_EXPR)
12df8a7e
ILT
2016 return (needs_overflow_infinity (TREE_TYPE (res))
2017 ? positive_overflow_infinity (TREE_TYPE (res))
2018 : TYPE_MAX_VALUE (TREE_TYPE (res)));
9983270b 2019 else
12df8a7e
ILT
2020 return (needs_overflow_infinity (TREE_TYPE (res))
2021 ? negative_overflow_infinity (TREE_TYPE (res))
2022 : TYPE_MIN_VALUE (TREE_TYPE (res)));
9983270b
DN
2023 }
2024
2025 return res;
2026}
2027
2028
0bca51f0
DN
2029/* Extract range information from a binary expression EXPR based on
2030 the ranges of each of its operands and the expression code. */
2031
2032static void
2d3cd5d5
RAE
2033extract_range_from_binary_expr (value_range_t *vr,
2034 enum tree_code code,
2035 tree expr_type, tree op0, tree op1)
0bca51f0 2036{
4e2d94a9 2037 enum value_range_type type;
2d3cd5d5 2038 tree min, max;
0bca51f0 2039 int cmp;
227858d1
DN
2040 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2041 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
0bca51f0
DN
2042
2043 /* Not all binary expressions can be applied to ranges in a
2044 meaningful way. Handle only arithmetic operations. */
2045 if (code != PLUS_EXPR
2046 && code != MINUS_EXPR
5be014d5 2047 && code != POINTER_PLUS_EXPR
0bca51f0
DN
2048 && code != MULT_EXPR
2049 && code != TRUNC_DIV_EXPR
2050 && code != FLOOR_DIV_EXPR
2051 && code != CEIL_DIV_EXPR
2052 && code != EXACT_DIV_EXPR
2053 && code != ROUND_DIV_EXPR
6569e716 2054 && code != RSHIFT_EXPR
0bca51f0 2055 && code != MIN_EXPR
227858d1 2056 && code != MAX_EXPR
29c8f8c2 2057 && code != BIT_AND_EXPR
30821654 2058 && code != BIT_IOR_EXPR
227858d1 2059 && code != TRUTH_AND_EXPR
74290e83 2060 && code != TRUTH_OR_EXPR)
0bca51f0 2061 {
73019a42 2062 /* We can still do constant propagation here. */
a4b93060
RG
2063 tree const_op0 = op_with_constant_singleton_value_range (op0);
2064 tree const_op1 = op_with_constant_singleton_value_range (op1);
2065 if (const_op0 || const_op1)
73019a42 2066 {
a4b93060
RG
2067 tree tem = fold_binary (code, expr_type,
2068 const_op0 ? const_op0 : op0,
2069 const_op1 ? const_op1 : op1);
08298a8c
RG
2070 if (tem
2071 && is_gimple_min_invariant (tem)
73019a42
RG
2072 && !is_overflow_infinity (tem))
2073 {
2074 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2075 return;
2076 }
2077 }
b565d777 2078 set_value_range_to_varying (vr);
0bca51f0
DN
2079 return;
2080 }
2081
2082 /* Get value ranges for each operand. For constant operands, create
2083 a new value range with the operand to simplify processing. */
0bca51f0
DN
2084 if (TREE_CODE (op0) == SSA_NAME)
2085 vr0 = *(get_value_range (op0));
227858d1 2086 else if (is_gimple_min_invariant (op0))
b60b4711 2087 set_value_range_to_value (&vr0, op0, NULL);
0bca51f0 2088 else
227858d1 2089 set_value_range_to_varying (&vr0);
0bca51f0 2090
0bca51f0
DN
2091 if (TREE_CODE (op1) == SSA_NAME)
2092 vr1 = *(get_value_range (op1));
227858d1 2093 else if (is_gimple_min_invariant (op1))
b60b4711 2094 set_value_range_to_value (&vr1, op1, NULL);
0bca51f0 2095 else
227858d1 2096 set_value_range_to_varying (&vr1);
0bca51f0
DN
2097
2098 /* If either range is UNDEFINED, so is the result. */
2099 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2100 {
227858d1 2101 set_value_range_to_undefined (vr);
0bca51f0
DN
2102 return;
2103 }
2104
4e2d94a9
KH
2105 /* The type of the resulting value range defaults to VR0.TYPE. */
2106 type = vr0.type;
2107
227858d1 2108 /* Refuse to operate on VARYING ranges, ranges of different kinds
29c8f8c2
KH
2109 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2110 because we may be able to derive a useful range even if one of
2111 the operands is VR_VARYING or symbolic range. TODO, we may be
2112 able to derive anti-ranges in some cases. */
2113 if (code != BIT_AND_EXPR
9b61327b
KH
2114 && code != TRUTH_AND_EXPR
2115 && code != TRUTH_OR_EXPR
29c8f8c2
KH
2116 && (vr0.type == VR_VARYING
2117 || vr1.type == VR_VARYING
2118 || vr0.type != vr1.type
2119 || symbolic_range_p (&vr0)
2120 || symbolic_range_p (&vr1)))
0bca51f0 2121 {
b565d777 2122 set_value_range_to_varying (vr);
0bca51f0
DN
2123 return;
2124 }
2125
2126 /* Now evaluate the expression to determine the new range. */
2d3cd5d5 2127 if (POINTER_TYPE_P (expr_type)
0bca51f0
DN
2128 || POINTER_TYPE_P (TREE_TYPE (op0))
2129 || POINTER_TYPE_P (TREE_TYPE (op1)))
2130 {
5be014d5 2131 if (code == MIN_EXPR || code == MAX_EXPR)
e57f2b41 2132 {
5be014d5
AP
2133 /* For MIN/MAX expressions with pointers, we only care about
2134 nullness, if both are non null, then the result is nonnull.
2135 If both are null, then the result is null. Otherwise they
2136 are varying. */
2137 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2d3cd5d5 2138 set_value_range_to_nonnull (vr, expr_type);
e57f2b41 2139 else if (range_is_null (&vr0) && range_is_null (&vr1))
2d3cd5d5 2140 set_value_range_to_null (vr, expr_type);
e57f2b41
KH
2141 else
2142 set_value_range_to_varying (vr);
5be014d5
AP
2143
2144 return;
e57f2b41 2145 }
5be014d5
AP
2146 gcc_assert (code == POINTER_PLUS_EXPR);
2147 /* For pointer types, we are really only interested in asserting
2148 whether the expression evaluates to non-NULL. */
2149 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2d3cd5d5 2150 set_value_range_to_nonnull (vr, expr_type);
5be014d5 2151 else if (range_is_null (&vr0) && range_is_null (&vr1))
2d3cd5d5 2152 set_value_range_to_null (vr, expr_type);
0bca51f0 2153 else
5be014d5 2154 set_value_range_to_varying (vr);
0bca51f0
DN
2155
2156 return;
2157 }
2158
2159 /* For integer ranges, apply the operation to each end of the
2160 range and see what we end up with. */
2893f753 2161 if (code == TRUTH_AND_EXPR
74290e83 2162 || code == TRUTH_OR_EXPR)
227858d1 2163 {
9b61327b
KH
2164 /* If one of the operands is zero, we know that the whole
2165 expression evaluates zero. */
2166 if (code == TRUTH_AND_EXPR
2167 && ((vr0.type == VR_RANGE
2168 && integer_zerop (vr0.min)
2169 && integer_zerop (vr0.max))
2170 || (vr1.type == VR_RANGE
2171 && integer_zerop (vr1.min)
2172 && integer_zerop (vr1.max))))
2173 {
2174 type = VR_RANGE;
2d3cd5d5 2175 min = max = build_int_cst (expr_type, 0);
9b61327b
KH
2176 }
2177 /* If one of the operands is one, we know that the whole
2178 expression evaluates one. */
2179 else if (code == TRUTH_OR_EXPR
2180 && ((vr0.type == VR_RANGE
2181 && integer_onep (vr0.min)
2182 && integer_onep (vr0.max))
2183 || (vr1.type == VR_RANGE
2184 && integer_onep (vr1.min)
2185 && integer_onep (vr1.max))))
2186 {
2187 type = VR_RANGE;
2d3cd5d5 2188 min = max = build_int_cst (expr_type, 1);
9b61327b
KH
2189 }
2190 else if (vr0.type != VR_VARYING
2191 && vr1.type != VR_VARYING
2192 && vr0.type == vr1.type
2193 && !symbolic_range_p (&vr0)
12df8a7e
ILT
2194 && !overflow_infinity_range_p (&vr0)
2195 && !symbolic_range_p (&vr1)
2196 && !overflow_infinity_range_p (&vr1))
9b61327b
KH
2197 {
2198 /* Boolean expressions cannot be folded with int_const_binop. */
2d3cd5d5
RAE
2199 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2200 max = fold_binary (code, expr_type, vr0.max, vr1.max);
9b61327b
KH
2201 }
2202 else
2203 {
31ab1cc9 2204 /* The result of a TRUTH_*_EXPR is always true or false. */
2d3cd5d5 2205 set_value_range_to_truthvalue (vr, expr_type);
9b61327b
KH
2206 return;
2207 }
227858d1
DN
2208 }
2209 else if (code == PLUS_EXPR
227858d1
DN
2210 || code == MIN_EXPR
2211 || code == MAX_EXPR)
0bca51f0 2212 {
567fb660
KH
2213 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2214 VR_VARYING. It would take more effort to compute a precise
2215 range for such a case. For example, if we have op0 == 1 and
2216 op1 == -1 with their ranges both being ~[0,0], we would have
2217 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2218 Note that we are guaranteed to have vr0.type == vr1.type at
2219 this point. */
2220 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2221 {
2222 set_value_range_to_varying (vr);
2223 return;
2224 }
2225
0bca51f0
DN
2226 /* For operations that make the resulting range directly
2227 proportional to the original ranges, apply the operation to
2228 the same end of each range. */
9983270b
DN
2229 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2230 max = vrp_int_const_binop (code, vr0.max, vr1.max);
0bca51f0 2231 }
9983270b
DN
2232 else if (code == MULT_EXPR
2233 || code == TRUNC_DIV_EXPR
227858d1
DN
2234 || code == FLOOR_DIV_EXPR
2235 || code == CEIL_DIV_EXPR
2236 || code == EXACT_DIV_EXPR
6569e716
RG
2237 || code == ROUND_DIV_EXPR
2238 || code == RSHIFT_EXPR)
0bca51f0 2239 {
9983270b
DN
2240 tree val[4];
2241 size_t i;
12df8a7e 2242 bool sop;
9983270b 2243
567fb660
KH
2244 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2245 drop to VR_VARYING. It would take more effort to compute a
2246 precise range for such a case. For example, if we have
2247 op0 == 65536 and op1 == 65536 with their ranges both being
2248 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2249 we cannot claim that the product is in ~[0,0]. Note that we
2250 are guaranteed to have vr0.type == vr1.type at this
2251 point. */
2252 if (code == MULT_EXPR
2253 && vr0.type == VR_ANTI_RANGE
eeef0e45 2254 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
567fb660
KH
2255 {
2256 set_value_range_to_varying (vr);
2257 return;
2258 }
2259
af33044f
RH
2260 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2261 then drop to VR_VARYING. Outside of this range we get undefined
7fa7289d 2262 behavior from the shift operation. We cannot even trust
af33044f
RH
2263 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2264 shifts, and the operation at the tree level may be widened. */
2265 if (code == RSHIFT_EXPR)
13338552 2266 {
af33044f
RH
2267 if (vr1.type == VR_ANTI_RANGE
2268 || !vrp_expr_computes_nonnegative (op1, &sop)
2269 || (operand_less_p
2270 (build_int_cst (TREE_TYPE (vr1.max),
2d3cd5d5 2271 TYPE_PRECISION (expr_type) - 1),
af33044f
RH
2272 vr1.max) != 0))
2273 {
2274 set_value_range_to_varying (vr);
2275 return;
2276 }
13338552
RG
2277 }
2278
9983270b
DN
2279 /* Multiplications and divisions are a bit tricky to handle,
2280 depending on the mix of signs we have in the two ranges, we
2281 need to operate on different values to get the minimum and
2282 maximum values for the new range. One approach is to figure
2283 out all the variations of range combinations and do the
2284 operations.
2285
2286 However, this involves several calls to compare_values and it
2287 is pretty convoluted. It's simpler to do the 4 operations
2288 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2289 MAX1) and then figure the smallest and largest values to form
2290 the new range. */
2291
2292 /* Divisions by zero result in a VARYING value. */
af33044f
RH
2293 else if (code != MULT_EXPR
2294 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
227858d1
DN
2295 {
2296 set_value_range_to_varying (vr);
2297 return;
2298 }
fda05890 2299
9983270b 2300 /* Compute the 4 cross operations. */
12df8a7e 2301 sop = false;
9983270b 2302 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
12df8a7e
ILT
2303 if (val[0] == NULL_TREE)
2304 sop = true;
2305
2306 if (vr1.max == vr1.min)
2307 val[1] = NULL_TREE;
2308 else
2309 {
2310 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2311 if (val[1] == NULL_TREE)
2312 sop = true;
2313 }
9983270b 2314
12df8a7e
ILT
2315 if (vr0.max == vr0.min)
2316 val[2] = NULL_TREE;
2317 else
2318 {
2319 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2320 if (val[2] == NULL_TREE)
2321 sop = true;
2322 }
9983270b 2323
12df8a7e
ILT
2324 if (vr0.min == vr0.max || vr1.min == vr1.max)
2325 val[3] = NULL_TREE;
2326 else
2327 {
2328 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2329 if (val[3] == NULL_TREE)
2330 sop = true;
2331 }
9983270b 2332
12df8a7e
ILT
2333 if (sop)
2334 {
2335 set_value_range_to_varying (vr);
2336 return;
2337 }
9983270b
DN
2338
2339 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2340 of VAL[i]. */
2341 min = val[0];
2342 max = val[0];
2343 for (i = 1; i < 4; i++)
227858d1 2344 {
12df8a7e
ILT
2345 if (!is_gimple_min_invariant (min)
2346 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2347 || !is_gimple_min_invariant (max)
2348 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
9983270b
DN
2349 break;
2350
2351 if (val[i])
227858d1 2352 {
12df8a7e
ILT
2353 if (!is_gimple_min_invariant (val[i])
2354 || (TREE_OVERFLOW (val[i])
2355 && !is_overflow_infinity (val[i])))
9983270b
DN
2356 {
2357 /* If we found an overflowed value, set MIN and MAX
2358 to it so that we set the resulting range to
2359 VARYING. */
2360 min = max = val[i];
2361 break;
2362 }
2363
2364 if (compare_values (val[i], min) == -1)
2365 min = val[i];
2366
2367 if (compare_values (val[i], max) == 1)
2368 max = val[i];
227858d1
DN
2369 }
2370 }
2371 }
2372 else if (code == MINUS_EXPR)
2373 {
567fb660
KH
2374 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2375 VR_VARYING. It would take more effort to compute a precise
2376 range for such a case. For example, if we have op0 == 1 and
2377 op1 == 1 with their ranges both being ~[0,0], we would have
2378 op0 - op1 == 0, so we cannot claim that the difference is in
2379 ~[0,0]. Note that we are guaranteed to have
2380 vr0.type == vr1.type at this point. */
2381 if (vr0.type == VR_ANTI_RANGE)
2382 {
2383 set_value_range_to_varying (vr);
2384 return;
2385 }
2386
227858d1
DN
2387 /* For MINUS_EXPR, apply the operation to the opposite ends of
2388 each range. */
9983270b
DN
2389 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2390 max = vrp_int_const_binop (code, vr0.max, vr1.min);
227858d1 2391 }
29c8f8c2
KH
2392 else if (code == BIT_AND_EXPR)
2393 {
2394 if (vr0.type == VR_RANGE
2395 && vr0.min == vr0.max
12df8a7e
ILT
2396 && TREE_CODE (vr0.max) == INTEGER_CST
2397 && !TREE_OVERFLOW (vr0.max)
2398 && tree_int_cst_sgn (vr0.max) >= 0)
29c8f8c2 2399 {
2d3cd5d5 2400 min = build_int_cst (expr_type, 0);
29c8f8c2
KH
2401 max = vr0.max;
2402 }
2403 else if (vr1.type == VR_RANGE
12df8a7e
ILT
2404 && vr1.min == vr1.max
2405 && TREE_CODE (vr1.max) == INTEGER_CST
2406 && !TREE_OVERFLOW (vr1.max)
2407 && tree_int_cst_sgn (vr1.max) >= 0)
29c8f8c2 2408 {
4e2d94a9 2409 type = VR_RANGE;
2d3cd5d5 2410 min = build_int_cst (expr_type, 0);
29c8f8c2
KH
2411 max = vr1.max;
2412 }
2413 else
2414 {
2415 set_value_range_to_varying (vr);
2416 return;
2417 }
2418 }
30821654
PB
2419 else if (code == BIT_IOR_EXPR)
2420 {
2421 if (vr0.type == VR_RANGE
2422 && vr1.type == VR_RANGE
2423 && TREE_CODE (vr0.min) == INTEGER_CST
2424 && TREE_CODE (vr1.min) == INTEGER_CST
2425 && TREE_CODE (vr0.max) == INTEGER_CST
2426 && TREE_CODE (vr1.max) == INTEGER_CST
2427 && tree_int_cst_sgn (vr0.min) >= 0
2428 && tree_int_cst_sgn (vr1.min) >= 0)
2429 {
2430 double_int vr0_max = tree_to_double_int (vr0.max);
2431 double_int vr1_max = tree_to_double_int (vr1.max);
2432 double_int ior_max;
2433
2434 /* Set all bits to the right of the most significant one to 1.
2435 For example, [0, 4] | [4, 4] = [4, 7]. */
2436 ior_max.low = vr0_max.low | vr1_max.low;
2437 ior_max.high = vr0_max.high | vr1_max.high;
2438 if (ior_max.high != 0)
2439 {
2440 ior_max.low = ~0u;
2441 ior_max.high |= ((HOST_WIDE_INT) 1
2442 << floor_log2 (ior_max.high)) - 1;
2443 }
2444 else
2445 ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
2446 << floor_log2 (ior_max.low)) - 1;
2447
2448 /* Both of these endpoints are conservative. */
2449 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2450 max = double_int_to_tree (expr_type, ior_max);
2451 }
2452 else
2453 {
2454 set_value_range_to_varying (vr);
2455 return;
2456 }
2457 }
227858d1
DN
2458 else
2459 gcc_unreachable ();
fda05890 2460
9983270b 2461 /* If either MIN or MAX overflowed, then set the resulting range to
12df8a7e
ILT
2462 VARYING. But we do accept an overflow infinity
2463 representation. */
2464 if (min == NULL_TREE
2465 || !is_gimple_min_invariant (min)
2466 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2467 || max == NULL_TREE
2468 || !is_gimple_min_invariant (max)
2469 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2470 {
2471 set_value_range_to_varying (vr);
2472 return;
2473 }
2474
fa633851
ILT
2475 /* We punt if:
2476 1) [-INF, +INF]
2477 2) [-INF, +-INF(OVF)]
2478 3) [+-INF(OVF), +INF]
2479 4) [+-INF(OVF), +-INF(OVF)]
2480 We learn nothing when we have INF and INF(OVF) on both sides.
2481 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2482 overflow. */
e1f28918
ILT
2483 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2484 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
227858d1 2485 {
9983270b
DN
2486 set_value_range_to_varying (vr);
2487 return;
fda05890
KH
2488 }
2489
227858d1
DN
2490 cmp = compare_values (min, max);
2491 if (cmp == -2 || cmp == 1)
2492 {
2493 /* If the new range has its limits swapped around (MIN > MAX),
2494 then the operation caused one of them to wrap around, mark
2495 the new range VARYING. */
2496 set_value_range_to_varying (vr);
2497 }
2498 else
4e2d94a9 2499 set_value_range (vr, type, min, max, NULL);
fda05890
KH
2500}
2501
2502
0bca51f0
DN
2503/* Extract range information from a unary expression EXPR based on
2504 the range of its operand and the expression code. */
2505
2506static void
2d3cd5d5
RAE
2507extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2508 tree type, tree op0)
0bca51f0 2509{
2d3cd5d5 2510 tree min, max;
0bca51f0 2511 int cmp;
227858d1
DN
2512 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2513
2514 /* Refuse to operate on certain unary expressions for which we
2515 cannot easily determine a resulting range. */
2516 if (code == FIX_TRUNC_EXPR
227858d1
DN
2517 || code == FLOAT_EXPR
2518 || code == BIT_NOT_EXPR
227858d1
DN
2519 || code == CONJ_EXPR)
2520 {
73019a42
RG
2521 /* We can still do constant propagation here. */
2522 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2523 {
2524 tree tem = fold_unary (code, type, op0);
08298a8c
RG
2525 if (tem
2526 && is_gimple_min_invariant (tem)
73019a42
RG
2527 && !is_overflow_infinity (tem))
2528 {
2529 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2530 return;
2531 }
2532 }
227858d1
DN
2533 set_value_range_to_varying (vr);
2534 return;
2535 }
0bca51f0
DN
2536
2537 /* Get value ranges for the operand. For constant operands, create
2538 a new value range with the operand to simplify processing. */
0bca51f0
DN
2539 if (TREE_CODE (op0) == SSA_NAME)
2540 vr0 = *(get_value_range (op0));
227858d1 2541 else if (is_gimple_min_invariant (op0))
b60b4711 2542 set_value_range_to_value (&vr0, op0, NULL);
0bca51f0 2543 else
227858d1 2544 set_value_range_to_varying (&vr0);
0bca51f0
DN
2545
2546 /* If VR0 is UNDEFINED, so is the result. */
2547 if (vr0.type == VR_UNDEFINED)
2548 {
227858d1 2549 set_value_range_to_undefined (vr);
0bca51f0
DN
2550 return;
2551 }
2552
a3b196e3
JL
2553 /* Refuse to operate on symbolic ranges, or if neither operand is
2554 a pointer or integral type. */
2555 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2556 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2557 || (vr0.type != VR_VARYING
2558 && symbolic_range_p (&vr0)))
0bca51f0 2559 {
b565d777 2560 set_value_range_to_varying (vr);
0bca51f0
DN
2561 return;
2562 }
2563
2564 /* If the expression involves pointers, we are only interested in
2565 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2d3cd5d5 2566 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
0bca51f0 2567 {
12df8a7e 2568 bool sop;
6ac01510 2569
12df8a7e
ILT
2570 sop = false;
2571 if (range_is_nonnull (&vr0)
2d3cd5d5 2572 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
12df8a7e 2573 && !sop))
2d3cd5d5 2574 set_value_range_to_nonnull (vr, type);
0bca51f0 2575 else if (range_is_null (&vr0))
2d3cd5d5 2576 set_value_range_to_null (vr, type);
0bca51f0 2577 else
b565d777 2578 set_value_range_to_varying (vr);
0bca51f0
DN
2579
2580 return;
2581 }
2582
2583 /* Handle unary expressions on integer ranges. */
1a87cf0c 2584 if (CONVERT_EXPR_CODE_P (code)
b47ee386
RG
2585 && INTEGRAL_TYPE_P (type)
2586 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
0bca51f0 2587 {
441e96b5 2588 tree inner_type = TREE_TYPE (op0);
2d3cd5d5 2589 tree outer_type = type;
441e96b5 2590
b47ee386
RG
2591 /* Always use base-types here. This is important for the
2592 correct signedness. */
2593 if (TREE_TYPE (inner_type))
2594 inner_type = TREE_TYPE (inner_type);
2595 if (TREE_TYPE (outer_type))
2596 outer_type = TREE_TYPE (outer_type);
2597
2598 /* If VR0 is varying and we increase the type precision, assume
2599 a full range for the following transformation. */
2600 if (vr0.type == VR_VARYING
2601 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2735e93e 2602 {
b47ee386
RG
2603 vr0.type = VR_RANGE;
2604 vr0.min = TYPE_MIN_VALUE (inner_type);
2605 vr0.max = TYPE_MAX_VALUE (inner_type);
2735e93e
JL
2606 }
2607
b47ee386
RG
2608 /* If VR0 is a constant range or anti-range and the conversion is
2609 not truncating we can convert the min and max values and
2610 canonicalize the resulting range. Otherwise we can do the
2611 conversion if the size of the range is less than what the
2612 precision of the target type can represent and the range is
2613 not an anti-range. */
2614 if ((vr0.type == VR_RANGE
2615 || vr0.type == VR_ANTI_RANGE)
2616 && TREE_CODE (vr0.min) == INTEGER_CST
2617 && TREE_CODE (vr0.max) == INTEGER_CST
2618 && !is_overflow_infinity (vr0.min)
2619 && !is_overflow_infinity (vr0.max)
2620 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2621 || (vr0.type == VR_RANGE
2622 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2623 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2624 size_int (TYPE_PRECISION (outer_type)), 0)))))
441e96b5 2625 {
b47ee386
RG
2626 tree new_min, new_max;
2627 new_min = force_fit_type_double (outer_type,
2628 TREE_INT_CST_LOW (vr0.min),
2629 TREE_INT_CST_HIGH (vr0.min), 0, 0);
2630 new_max = force_fit_type_double (outer_type,
2631 TREE_INT_CST_LOW (vr0.max),
2632 TREE_INT_CST_HIGH (vr0.max), 0, 0);
2633 set_and_canonicalize_value_range (vr, vr0.type,
2634 new_min, new_max, NULL);
441e96b5
DN
2635 return;
2636 }
b47ee386
RG
2637
2638 set_value_range_to_varying (vr);
2639 return;
0bca51f0
DN
2640 }
2641
a3b196e3
JL
2642 /* Conversion of a VR_VARYING value to a wider type can result
2643 in a usable range. So wait until after we've handled conversions
2644 before dropping the result to VR_VARYING if we had a source
2645 operand that is VR_VARYING. */
2646 if (vr0.type == VR_VARYING)
2647 {
2648 set_value_range_to_varying (vr);
2649 return;
2650 }
2651
0bca51f0
DN
2652 /* Apply the operation to each end of the range and see what we end
2653 up with. */
227858d1 2654 if (code == NEGATE_EXPR
2d3cd5d5 2655 && !TYPE_UNSIGNED (type))
227858d1 2656 {
96b2034b 2657 /* NEGATE_EXPR flips the range around. We need to treat
12df8a7e
ILT
2658 TYPE_MIN_VALUE specially. */
2659 if (is_positive_overflow_infinity (vr0.max))
2d3cd5d5 2660 min = negative_overflow_infinity (type);
12df8a7e 2661 else if (is_negative_overflow_infinity (vr0.max))
2d3cd5d5 2662 min = positive_overflow_infinity (type);
e1f28918 2663 else if (!vrp_val_is_min (vr0.max))
2d3cd5d5
RAE
2664 min = fold_unary_to_constant (code, type, vr0.max);
2665 else if (needs_overflow_infinity (type))
12df8a7e 2666 {
2d3cd5d5 2667 if (supports_overflow_infinity (type)
8cf781f0 2668 && !is_overflow_infinity (vr0.min)
e1f28918 2669 && !vrp_val_is_min (vr0.min))
2d3cd5d5 2670 min = positive_overflow_infinity (type);
12df8a7e
ILT
2671 else
2672 {
2673 set_value_range_to_varying (vr);
2674 return;
2675 }
2676 }
2677 else
2d3cd5d5 2678 min = TYPE_MIN_VALUE (type);
12df8a7e
ILT
2679
2680 if (is_positive_overflow_infinity (vr0.min))
2d3cd5d5 2681 max = negative_overflow_infinity (type);
12df8a7e 2682 else if (is_negative_overflow_infinity (vr0.min))
2d3cd5d5 2683 max = positive_overflow_infinity (type);
e1f28918 2684 else if (!vrp_val_is_min (vr0.min))
2d3cd5d5
RAE
2685 max = fold_unary_to_constant (code, type, vr0.min);
2686 else if (needs_overflow_infinity (type))
12df8a7e 2687 {
2d3cd5d5
RAE
2688 if (supports_overflow_infinity (type))
2689 max = positive_overflow_infinity (type);
12df8a7e
ILT
2690 else
2691 {
2692 set_value_range_to_varying (vr);
2693 return;
2694 }
2695 }
2696 else
2d3cd5d5 2697 max = TYPE_MIN_VALUE (type);
c1a70a3c
RS
2698 }
2699 else if (code == NEGATE_EXPR
2d3cd5d5 2700 && TYPE_UNSIGNED (type))
c1a70a3c
RS
2701 {
2702 if (!range_includes_zero_p (&vr0))
2703 {
2d3cd5d5
RAE
2704 max = fold_unary_to_constant (code, type, vr0.min);
2705 min = fold_unary_to_constant (code, type, vr0.max);
c1a70a3c
RS
2706 }
2707 else
2708 {
2709 if (range_is_null (&vr0))
2d3cd5d5 2710 set_value_range_to_null (vr, type);
c1a70a3c
RS
2711 else
2712 set_value_range_to_varying (vr);
2713 return;
2714 }
227858d1
DN
2715 }
2716 else if (code == ABS_EXPR
2d3cd5d5 2717 && !TYPE_UNSIGNED (type))
227858d1 2718 {
ff08cbee
JM
2719 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2720 useful range. */
2d3cd5d5 2721 if (!TYPE_OVERFLOW_UNDEFINED (type)
ff08cbee 2722 && ((vr0.type == VR_RANGE
e1f28918 2723 && vrp_val_is_min (vr0.min))
ff08cbee 2724 || (vr0.type == VR_ANTI_RANGE
e1f28918 2725 && !vrp_val_is_min (vr0.min)
ff08cbee
JM
2726 && !range_includes_zero_p (&vr0))))
2727 {
2728 set_value_range_to_varying (vr);
2729 return;
2730 }
2731
227858d1
DN
2732 /* ABS_EXPR may flip the range around, if the original range
2733 included negative values. */
12df8a7e 2734 if (is_overflow_infinity (vr0.min))
2d3cd5d5 2735 min = positive_overflow_infinity (type);
e1f28918 2736 else if (!vrp_val_is_min (vr0.min))
2d3cd5d5
RAE
2737 min = fold_unary_to_constant (code, type, vr0.min);
2738 else if (!needs_overflow_infinity (type))
2739 min = TYPE_MAX_VALUE (type);
2740 else if (supports_overflow_infinity (type))
2741 min = positive_overflow_infinity (type);
12df8a7e
ILT
2742 else
2743 {
2744 set_value_range_to_varying (vr);
2745 return;
2746 }
227858d1 2747
12df8a7e 2748 if (is_overflow_infinity (vr0.max))
2d3cd5d5 2749 max = positive_overflow_infinity (type);
e1f28918 2750 else if (!vrp_val_is_min (vr0.max))
2d3cd5d5
RAE
2751 max = fold_unary_to_constant (code, type, vr0.max);
2752 else if (!needs_overflow_infinity (type))
2753 max = TYPE_MAX_VALUE (type);
d3cbd7de
RG
2754 else if (supports_overflow_infinity (type)
2755 /* We shouldn't generate [+INF, +INF] as set_value_range
2756 doesn't like this and ICEs. */
2757 && !is_positive_overflow_infinity (min))
2d3cd5d5 2758 max = positive_overflow_infinity (type);
12df8a7e
ILT
2759 else
2760 {
2761 set_value_range_to_varying (vr);
2762 return;
2763 }
227858d1 2764
ff08cbee
JM
2765 cmp = compare_values (min, max);
2766
2767 /* If a VR_ANTI_RANGEs contains zero, then we have
2768 ~[-INF, min(MIN, MAX)]. */
2769 if (vr0.type == VR_ANTI_RANGE)
2770 {
2771 if (range_includes_zero_p (&vr0))
2772 {
ff08cbee
JM
2773 /* Take the lower of the two values. */
2774 if (cmp != 1)
2775 max = min;
2776
2777 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2778 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2779 flag_wrapv is set and the original anti-range doesn't include
2780 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2d3cd5d5 2781 if (TYPE_OVERFLOW_WRAPS (type))
12df8a7e 2782 {
2d3cd5d5 2783 tree type_min_value = TYPE_MIN_VALUE (type);
12df8a7e
ILT
2784
2785 min = (vr0.min != type_min_value
2786 ? int_const_binop (PLUS_EXPR, type_min_value,
2787 integer_one_node, 0)
2788 : type_min_value);
2789 }
2790 else
2791 {
2792 if (overflow_infinity_range_p (&vr0))
2d3cd5d5 2793 min = negative_overflow_infinity (type);
12df8a7e 2794 else
2d3cd5d5 2795 min = TYPE_MIN_VALUE (type);
12df8a7e 2796 }
ff08cbee
JM
2797 }
2798 else
2799 {
2800 /* All else has failed, so create the range [0, INF], even for
2801 flag_wrapv since TYPE_MIN_VALUE is in the original
2802 anti-range. */
2803 vr0.type = VR_RANGE;
2d3cd5d5
RAE
2804 min = build_int_cst (type, 0);
2805 if (needs_overflow_infinity (type))
12df8a7e 2806 {
2d3cd5d5
RAE
2807 if (supports_overflow_infinity (type))
2808 max = positive_overflow_infinity (type);
12df8a7e
ILT
2809 else
2810 {
2811 set_value_range_to_varying (vr);
2812 return;
2813 }
2814 }
2815 else
2d3cd5d5 2816 max = TYPE_MAX_VALUE (type);
ff08cbee
JM
2817 }
2818 }
2819
2820 /* If the range contains zero then we know that the minimum value in the
2821 range will be zero. */
2822 else if (range_includes_zero_p (&vr0))
2823 {
2824 if (cmp == 1)
2825 max = min;
2d3cd5d5 2826 min = build_int_cst (type, 0);
ff08cbee
JM
2827 }
2828 else
227858d1 2829 {
ff08cbee
JM
2830 /* If the range was reversed, swap MIN and MAX. */
2831 if (cmp == 1)
2832 {
2833 tree t = min;
2834 min = max;
2835 max = t;
2836 }
227858d1
DN
2837 }
2838 }
2839 else
2840 {
2841 /* Otherwise, operate on each end of the range. */
2d3cd5d5
RAE
2842 min = fold_unary_to_constant (code, type, vr0.min);
2843 max = fold_unary_to_constant (code, type, vr0.max);
12df8a7e 2844
2d3cd5d5 2845 if (needs_overflow_infinity (type))
12df8a7e
ILT
2846 {
2847 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
8cf781f0
ILT
2848
2849 /* If both sides have overflowed, we don't know
2850 anything. */
2851 if ((is_overflow_infinity (vr0.min)
2852 || TREE_OVERFLOW (min))
2853 && (is_overflow_infinity (vr0.max)
2854 || TREE_OVERFLOW (max)))
2855 {
2856 set_value_range_to_varying (vr);
2857 return;
2858 }
2859
12df8a7e
ILT
2860 if (is_overflow_infinity (vr0.min))
2861 min = vr0.min;
2862 else if (TREE_OVERFLOW (min))
2863 {
2d3cd5d5 2864 if (supports_overflow_infinity (type))
12df8a7e
ILT
2865 min = (tree_int_cst_sgn (min) >= 0
2866 ? positive_overflow_infinity (TREE_TYPE (min))
2867 : negative_overflow_infinity (TREE_TYPE (min)));
2868 else
2869 {
2870 set_value_range_to_varying (vr);
2871 return;
2872 }
2873 }
2874
2875 if (is_overflow_infinity (vr0.max))
2876 max = vr0.max;
2877 else if (TREE_OVERFLOW (max))
2878 {
2d3cd5d5 2879 if (supports_overflow_infinity (type))
12df8a7e
ILT
2880 max = (tree_int_cst_sgn (max) >= 0
2881 ? positive_overflow_infinity (TREE_TYPE (max))
2882 : negative_overflow_infinity (TREE_TYPE (max)));
2883 else
2884 {
2885 set_value_range_to_varying (vr);
2886 return;
2887 }
2888 }
2889 }
227858d1 2890 }
0bca51f0
DN
2891
2892 cmp = compare_values (min, max);
2893 if (cmp == -2 || cmp == 1)
2894 {
2895 /* If the new range has its limits swapped around (MIN > MAX),
2896 then the operation caused one of them to wrap around, mark
2897 the new range VARYING. */
b565d777 2898 set_value_range_to_varying (vr);
0bca51f0
DN
2899 }
2900 else
227858d1
DN
2901 set_value_range (vr, vr0.type, min, max, NULL);
2902}
2903
2904
f255541f
RC
2905/* Extract range information from a conditional expression EXPR based on
2906 the ranges of each of its operands and the expression code. */
2907
2908static void
2909extract_range_from_cond_expr (value_range_t *vr, tree expr)
2910{
2911 tree op0, op1;
2912 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2913 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2914
2915 /* Get value ranges for each operand. For constant operands, create
2916 a new value range with the operand to simplify processing. */
2917 op0 = COND_EXPR_THEN (expr);
2918 if (TREE_CODE (op0) == SSA_NAME)
2919 vr0 = *(get_value_range (op0));
2920 else if (is_gimple_min_invariant (op0))
b60b4711 2921 set_value_range_to_value (&vr0, op0, NULL);
f255541f
RC
2922 else
2923 set_value_range_to_varying (&vr0);
2924
2925 op1 = COND_EXPR_ELSE (expr);
2926 if (TREE_CODE (op1) == SSA_NAME)
2927 vr1 = *(get_value_range (op1));
2928 else if (is_gimple_min_invariant (op1))
b60b4711 2929 set_value_range_to_value (&vr1, op1, NULL);
f255541f
RC
2930 else
2931 set_value_range_to_varying (&vr1);
2932
2933 /* The resulting value range is the union of the operand ranges */
2934 vrp_meet (&vr0, &vr1);
2935 copy_value_range (vr, &vr0);
2936}
2937
2938
227858d1
DN
2939/* Extract range information from a comparison expression EXPR based
2940 on the range of its operand and the expression code. */
2941
2942static void
2d3cd5d5
RAE
2943extract_range_from_comparison (value_range_t *vr, enum tree_code code,
2944 tree type, tree op0, tree op1)
227858d1 2945{
12df8a7e 2946 bool sop = false;
726a989a
RB
2947 tree val;
2948
6b99f156
JH
2949 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
2950 NULL);
12df8a7e
ILT
2951
2952 /* A disadvantage of using a special infinity as an overflow
2953 representation is that we lose the ability to record overflow
2954 when we don't have an infinity. So we have to ignore a result
2955 which relies on overflow. */
2956
2957 if (val && !is_overflow_infinity (val) && !sop)
227858d1
DN
2958 {
2959 /* Since this expression was found on the RHS of an assignment,
2960 its type may be different from _Bool. Convert VAL to EXPR's
2961 type. */
2d3cd5d5 2962 val = fold_convert (type, val);
b60b4711
ILT
2963 if (is_gimple_min_invariant (val))
2964 set_value_range_to_value (vr, val, vr->equiv);
2965 else
2966 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
227858d1
DN
2967 }
2968 else
31ab1cc9 2969 /* The result of a comparison is always true or false. */
2d3cd5d5 2970 set_value_range_to_truthvalue (vr, type);
0bca51f0
DN
2971}
2972
726a989a
RB
2973/* Try to derive a nonnegative or nonzero range out of STMT relying
2974 primarily on generic routines in fold in conjunction with range data.
2975 Store the result in *VR */
0bca51f0 2976
726a989a
RB
2977static void
2978extract_range_basic (value_range_t *vr, gimple stmt)
2979{
2980 bool sop = false;
2981 tree type = gimple_expr_type (stmt);
2982
2983 if (INTEGRAL_TYPE_P (type)
2984 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
2985 set_value_range_to_nonnegative (vr, type,
2986 sop || stmt_overflow_infinity (stmt));
2987 else if (vrp_stmt_computes_nonzero (stmt, &sop)
2988 && !sop)
2989 set_value_range_to_nonnull (vr, type);
2990 else
2991 set_value_range_to_varying (vr);
2992}
2993
2994
2995/* Try to compute a useful range out of assignment STMT and store it
227858d1 2996 in *VR. */
0bca51f0
DN
2997
2998static void
726a989a 2999extract_range_from_assignment (value_range_t *vr, gimple stmt)
0bca51f0 3000{
726a989a 3001 enum tree_code code = gimple_assign_rhs_code (stmt);
0bca51f0
DN
3002
3003 if (code == ASSERT_EXPR)
726a989a 3004 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
0bca51f0 3005 else if (code == SSA_NAME)
726a989a 3006 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
227858d1 3007 else if (TREE_CODE_CLASS (code) == tcc_binary
227858d1
DN
3008 || code == TRUTH_AND_EXPR
3009 || code == TRUTH_OR_EXPR
3010 || code == TRUTH_XOR_EXPR)
726a989a
RB
3011 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3012 gimple_expr_type (stmt),
3013 gimple_assign_rhs1 (stmt),
3014 gimple_assign_rhs2 (stmt));
0bca51f0 3015 else if (TREE_CODE_CLASS (code) == tcc_unary)
726a989a
RB
3016 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3017 gimple_expr_type (stmt),
3018 gimple_assign_rhs1 (stmt));
f255541f 3019 else if (code == COND_EXPR)
726a989a 3020 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
227858d1 3021 else if (TREE_CODE_CLASS (code) == tcc_comparison)
726a989a
RB
3022 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3023 gimple_expr_type (stmt),
3024 gimple_assign_rhs1 (stmt),
3025 gimple_assign_rhs2 (stmt));
3026 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3027 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3028 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
0bca51f0 3029 else
b565d777 3030 set_value_range_to_varying (vr);
b16caf72 3031
b16caf72 3032 if (vr->type == VR_VARYING)
726a989a 3033 extract_range_basic (vr, stmt);
0bca51f0
DN
3034}
3035
1e8552eb 3036/* Given a range VR, a LOOP and a variable VAR, determine whether it
0bca51f0
DN
3037 would be profitable to adjust VR using scalar evolution information
3038 for VAR. If so, update VR with the new limits. */
3039
3040static void
726a989a
RB
3041adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3042 gimple stmt, tree var)
0bca51f0 3043{
20527215 3044 tree init, step, chrec, tmin, tmax, min, max, type;
d7f5de76 3045 enum ev_direction dir;
0bca51f0
DN
3046
3047 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3048 better opportunities than a regular range, but I'm not sure. */
3049 if (vr->type == VR_ANTI_RANGE)
3050 return;
3051
d7770457 3052 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
6f1c9cd0
SP
3053
3054 /* Like in PR19590, scev can return a constant function. */
3055 if (is_gimple_min_invariant (chrec))
3056 {
cdc64612 3057 set_value_range_to_value (vr, chrec, vr->equiv);
6f1c9cd0
SP
3058 return;
3059 }
3060
0bca51f0
DN
3061 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3062 return;
3063
d7770457
SP
3064 init = initial_condition_in_loop_num (chrec, loop->num);
3065 step = evolution_part_in_loop_num (chrec, loop->num);
0bca51f0
DN
3066
3067 /* If STEP is symbolic, we can't know whether INIT will be the
04dce5a4
ZD
3068 minimum or maximum value in the range. Also, unless INIT is
3069 a simple expression, compare_values and possibly other functions
3070 in tree-vrp won't be able to handle it. */
d7770457 3071 if (step == NULL_TREE
04dce5a4
ZD
3072 || !is_gimple_min_invariant (step)
3073 || !valid_value_p (init))
0bca51f0
DN
3074 return;
3075
d7f5de76
ZD
3076 dir = scev_direction (chrec);
3077 if (/* Do not adjust ranges if we do not know whether the iv increases
3078 or decreases, ... */
3079 dir == EV_DIR_UNKNOWN
3080 /* ... or if it may wrap. */
42fd6772 3081 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
d7f5de76 3082 true))
227858d1
DN
3083 return;
3084
12df8a7e
ILT
3085 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3086 negative_overflow_infinity and positive_overflow_infinity,
3087 because we have concluded that the loop probably does not
3088 wrap. */
3089
20527215
ZD
3090 type = TREE_TYPE (var);
3091 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3092 tmin = lower_bound_in_type (type, type);
3093 else
3094 tmin = TYPE_MIN_VALUE (type);
3095 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3096 tmax = upper_bound_in_type (type, type);
3097 else
3098 tmax = TYPE_MAX_VALUE (type);
3099
3100 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
0bca51f0 3101 {
20527215
ZD
3102 min = tmin;
3103 max = tmax;
3104
0bca51f0
DN
3105 /* For VARYING or UNDEFINED ranges, just about anything we get
3106 from scalar evolutions should be better. */
4f67dfcf 3107
d7f5de76 3108 if (dir == EV_DIR_DECREASES)
4f67dfcf 3109 max = init;
0bca51f0 3110 else
4f67dfcf
JL
3111 min = init;
3112
3113 /* If we would create an invalid range, then just assume we
3114 know absolutely nothing. This may be over-conservative,
20527215
ZD
3115 but it's clearly safe, and should happen only in unreachable
3116 parts of code, or for invalid programs. */
4f67dfcf
JL
3117 if (compare_values (min, max) == 1)
3118 return;
3119
3120 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
0bca51f0
DN
3121 }
3122 else if (vr->type == VR_RANGE)
3123 {
20527215
ZD
3124 min = vr->min;
3125 max = vr->max;
d5448566 3126
d7f5de76 3127 if (dir == EV_DIR_DECREASES)
0bca51f0 3128 {
d5448566
KH
3129 /* INIT is the maximum value. If INIT is lower than VR->MAX
3130 but no smaller than VR->MIN, set VR->MAX to INIT. */
3131 if (compare_values (init, max) == -1)
3132 {
3133 max = init;
3134
3135 /* If we just created an invalid range with the minimum
20527215
ZD
3136 greater than the maximum, we fail conservatively.
3137 This should happen only in unreachable
3138 parts of code, or for invalid programs. */
d5448566 3139 if (compare_values (min, max) == 1)
20527215 3140 return;
d5448566 3141 }
9a46cc16
ILT
3142
3143 /* According to the loop information, the variable does not
3144 overflow. If we think it does, probably because of an
3145 overflow due to arithmetic on a different INF value,
3146 reset now. */
3147 if (is_negative_overflow_infinity (min))
3148 min = tmin;
0bca51f0
DN
3149 }
3150 else
3151 {
3152 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
d5448566
KH
3153 if (compare_values (init, min) == 1)
3154 {
3155 min = init;
3156
20527215 3157 /* Again, avoid creating invalid range by failing. */
d5448566 3158 if (compare_values (min, max) == 1)
20527215 3159 return;
d5448566 3160 }
9a46cc16
ILT
3161
3162 if (is_positive_overflow_infinity (max))
3163 max = tmax;
0bca51f0 3164 }
d5448566 3165
227858d1 3166 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
0bca51f0
DN
3167 }
3168}
3169
9a46cc16
ILT
3170/* Return true if VAR may overflow at STMT. This checks any available
3171 loop information to see if we can determine that VAR does not
3172 overflow. */
3173
3174static bool
726a989a 3175vrp_var_may_overflow (tree var, gimple stmt)
9a46cc16
ILT
3176{
3177 struct loop *l;
3178 tree chrec, init, step;
3179
3180 if (current_loops == NULL)
3181 return true;
3182
3183 l = loop_containing_stmt (stmt);
3184 if (l == NULL)
3185 return true;
3186
3187 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3188 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3189 return true;
3190
3191 init = initial_condition_in_loop_num (chrec, l->num);
3192 step = evolution_part_in_loop_num (chrec, l->num);
3193
3194 if (step == NULL_TREE
3195 || !is_gimple_min_invariant (step)
3196 || !valid_value_p (init))
3197 return true;
3198
3199 /* If we get here, we know something useful about VAR based on the
3200 loop information. If it wraps, it may overflow. */
3201
3202 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3203 true))
3204 return true;
3205
3206 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3207 {
3208 print_generic_expr (dump_file, var, 0);
3209 fprintf (dump_file, ": loop information indicates does not overflow\n");
3210 }
3211
3212 return false;
3213}
3214
0bca51f0
DN
3215
3216/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3217
227858d1
DN
3218 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3219 all the values in the ranges.
0bca51f0
DN
3220
3221 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3222
227858d1 3223 - Return NULL_TREE if it is not always possible to determine the
12df8a7e
ILT
3224 value of the comparison.
3225
3226 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3227 overflow infinity was used in the test. */
227858d1 3228
0bca51f0
DN
3229
3230static tree
12df8a7e
ILT
3231compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3232 bool *strict_overflow_p)
0bca51f0
DN
3233{
3234 /* VARYING or UNDEFINED ranges cannot be compared. */
3235 if (vr0->type == VR_VARYING
3236 || vr0->type == VR_UNDEFINED
3237 || vr1->type == VR_VARYING
3238 || vr1->type == VR_UNDEFINED)
3239 return NULL_TREE;
3240
3241 /* Anti-ranges need to be handled separately. */
3242 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3243 {
3244 /* If both are anti-ranges, then we cannot compute any
3245 comparison. */
3246 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3247 return NULL_TREE;
3248
3249 /* These comparisons are never statically computable. */
3250 if (comp == GT_EXPR
3251 || comp == GE_EXPR
3252 || comp == LT_EXPR
3253 || comp == LE_EXPR)
3254 return NULL_TREE;
3255
3256 /* Equality can be computed only between a range and an
3257 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3258 if (vr0->type == VR_RANGE)
3259 {
3260 /* To simplify processing, make VR0 the anti-range. */
227858d1 3261 value_range_t *tmp = vr0;
0bca51f0
DN
3262 vr0 = vr1;
3263 vr1 = tmp;
3264 }
3265
3266 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3267
12df8a7e
ILT
3268 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3269 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
0bca51f0
DN
3270 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3271
3272 return NULL_TREE;
3273 }
3274
0c948c27
ILT
3275 if (!usable_range_p (vr0, strict_overflow_p)
3276 || !usable_range_p (vr1, strict_overflow_p))
3277 return NULL_TREE;
3278
0bca51f0
DN
3279 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3280 operands around and change the comparison code. */
3281 if (comp == GT_EXPR || comp == GE_EXPR)
3282 {
227858d1 3283 value_range_t *tmp;
0bca51f0
DN
3284 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3285 tmp = vr0;
3286 vr0 = vr1;
3287 vr1 = tmp;
3288 }
3289
3290 if (comp == EQ_EXPR)
3291 {
3292 /* Equality may only be computed if both ranges represent
3293 exactly one value. */
12df8a7e
ILT
3294 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3295 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
0bca51f0 3296 {
12df8a7e
ILT
3297 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3298 strict_overflow_p);
3299 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3300 strict_overflow_p);
0bca51f0
DN
3301 if (cmp_min == 0 && cmp_max == 0)
3302 return boolean_true_node;
3303 else if (cmp_min != -2 && cmp_max != -2)
3304 return boolean_false_node;
3305 }
7ab1122a 3306 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
12df8a7e
ILT
3307 else if (compare_values_warnv (vr0->min, vr1->max,
3308 strict_overflow_p) == 1
3309 || compare_values_warnv (vr1->min, vr0->max,
3310 strict_overflow_p) == 1)
7ab1122a 3311 return boolean_false_node;
0bca51f0
DN
3312
3313 return NULL_TREE;
3314 }
3315 else if (comp == NE_EXPR)
3316 {
3317 int cmp1, cmp2;
3318
3319 /* If VR0 is completely to the left or completely to the right
3320 of VR1, they are always different. Notice that we need to
3321 make sure that both comparisons yield similar results to
3322 avoid comparing values that cannot be compared at
3323 compile-time. */
12df8a7e
ILT
3324 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3325 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
0bca51f0
DN
3326 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3327 return boolean_true_node;
3328
3329 /* If VR0 and VR1 represent a single value and are identical,
3330 return false. */
12df8a7e
ILT
3331 else if (compare_values_warnv (vr0->min, vr0->max,
3332 strict_overflow_p) == 0
3333 && compare_values_warnv (vr1->min, vr1->max,
3334 strict_overflow_p) == 0
3335 && compare_values_warnv (vr0->min, vr1->min,
3336 strict_overflow_p) == 0
3337 && compare_values_warnv (vr0->max, vr1->max,
3338 strict_overflow_p) == 0)
0bca51f0
DN
3339 return boolean_false_node;
3340
3341 /* Otherwise, they may or may not be different. */
3342 else
3343 return NULL_TREE;
3344 }
3345 else if (comp == LT_EXPR || comp == LE_EXPR)
3346 {
3347 int tst;
3348
3349 /* If VR0 is to the left of VR1, return true. */
12df8a7e 3350 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
0bca51f0
DN
3351 if ((comp == LT_EXPR && tst == -1)
3352 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
12df8a7e
ILT
3353 {
3354 if (overflow_infinity_range_p (vr0)
3355 || overflow_infinity_range_p (vr1))
3356 *strict_overflow_p = true;
3357 return boolean_true_node;
3358 }
0bca51f0
DN
3359
3360 /* If VR0 is to the right of VR1, return false. */
12df8a7e 3361 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
0bca51f0
DN
3362 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3363 || (comp == LE_EXPR && tst == 1))
12df8a7e
ILT
3364 {
3365 if (overflow_infinity_range_p (vr0)
3366 || overflow_infinity_range_p (vr1))
3367 *strict_overflow_p = true;
3368 return boolean_false_node;
3369 }
0bca51f0
DN
3370
3371 /* Otherwise, we don't know. */
3372 return NULL_TREE;
3373 }
3374
3375 gcc_unreachable ();
3376}
3377
3378
3379/* Given a value range VR, a value VAL and a comparison code COMP, return
227858d1 3380 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
0bca51f0
DN
3381 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3382 always returns false. Return NULL_TREE if it is not always
12df8a7e
ILT
3383 possible to determine the value of the comparison. Also set
3384 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3385 infinity was used in the test. */
0bca51f0
DN
3386
3387static tree
12df8a7e
ILT
3388compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3389 bool *strict_overflow_p)
0bca51f0
DN
3390{
3391 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3392 return NULL_TREE;
3393
3394 /* Anti-ranges need to be handled separately. */
3395 if (vr->type == VR_ANTI_RANGE)
3396 {
3397 /* For anti-ranges, the only predicates that we can compute at
3398 compile time are equality and inequality. */
3399 if (comp == GT_EXPR
3400 || comp == GE_EXPR
3401 || comp == LT_EXPR
3402 || comp == LE_EXPR)
3403 return NULL_TREE;
3404
d2f3ffba
JM
3405 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3406 if (value_inside_range (val, vr) == 1)
0bca51f0
DN
3407 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3408
3409 return NULL_TREE;
3410 }
3411
0c948c27
ILT
3412 if (!usable_range_p (vr, strict_overflow_p))
3413 return NULL_TREE;
3414
0bca51f0
DN
3415 if (comp == EQ_EXPR)
3416 {
3417 /* EQ_EXPR may only be computed if VR represents exactly
3418 one value. */
12df8a7e 3419 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
0bca51f0 3420 {
12df8a7e 3421 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
0bca51f0
DN
3422 if (cmp == 0)
3423 return boolean_true_node;
3424 else if (cmp == -1 || cmp == 1 || cmp == 2)
3425 return boolean_false_node;
3426 }
12df8a7e
ILT
3427 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3428 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
5de2df7b 3429 return boolean_false_node;
0bca51f0
DN
3430
3431 return NULL_TREE;
3432 }
3433 else if (comp == NE_EXPR)
3434 {
3435 /* If VAL is not inside VR, then they are always different. */
12df8a7e
ILT
3436 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3437 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
0bca51f0
DN
3438 return boolean_true_node;
3439
3440 /* If VR represents exactly one value equal to VAL, then return
3441 false. */
12df8a7e
ILT
3442 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3443 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
0bca51f0
DN
3444 return boolean_false_node;
3445
3446 /* Otherwise, they may or may not be different. */
3447 return NULL_TREE;
3448 }
3449 else if (comp == LT_EXPR || comp == LE_EXPR)
3450 {
3451 int tst;
3452
3453 /* If VR is to the left of VAL, return true. */
12df8a7e 3454 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
0bca51f0
DN
3455 if ((comp == LT_EXPR && tst == -1)
3456 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
12df8a7e
ILT
3457 {
3458 if (overflow_infinity_range_p (vr))
3459 *strict_overflow_p = true;
3460 return boolean_true_node;
3461 }
0bca51f0
DN
3462
3463 /* If VR is to the right of VAL, return false. */
12df8a7e 3464 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
0bca51f0
DN
3465 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3466 || (comp == LE_EXPR && tst == 1))
12df8a7e
ILT
3467 {
3468 if (overflow_infinity_range_p (vr))
3469 *strict_overflow_p = true;
3470 return boolean_false_node;
3471 }
0bca51f0
DN
3472
3473 /* Otherwise, we don't know. */
3474 return NULL_TREE;
3475 }
3476 else if (comp == GT_EXPR || comp == GE_EXPR)
3477 {
3478 int tst;
3479
3480 /* If VR is to the right of VAL, return true. */
12df8a7e 3481 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
0bca51f0
DN
3482 if ((comp == GT_EXPR && tst == 1)
3483 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
12df8a7e
ILT
3484 {
3485 if (overflow_infinity_range_p (vr))
3486 *strict_overflow_p = true;
3487 return boolean_true_node;
3488 }
0bca51f0
DN
3489
3490 /* If VR is to the left of VAL, return false. */
12df8a7e 3491 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
0bca51f0
DN
3492 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3493 || (comp == GE_EXPR && tst == -1))
12df8a7e
ILT
3494 {
3495 if (overflow_infinity_range_p (vr))
3496 *strict_overflow_p = true;
3497 return boolean_false_node;
3498 }
0bca51f0
DN
3499
3500 /* Otherwise, we don't know. */
3501 return NULL_TREE;
3502 }
3503
3504 gcc_unreachable ();
3505}
3506
3507
3508/* Debugging dumps. */
3509
227858d1
DN
3510void dump_value_range (FILE *, value_range_t *);
3511void debug_value_range (value_range_t *);
3512void dump_all_value_ranges (FILE *);
3513void debug_all_value_ranges (void);
3514void dump_vr_equiv (FILE *, bitmap);
3515void debug_vr_equiv (bitmap);
3516
3517
3518/* Dump value range VR to FILE. */
3519
0bca51f0 3520void
227858d1 3521dump_value_range (FILE *file, value_range_t *vr)
0bca51f0
DN
3522{
3523 if (vr == NULL)
3524 fprintf (file, "[]");
3525 else if (vr->type == VR_UNDEFINED)
3526 fprintf (file, "UNDEFINED");
3527 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3528 {
227858d1
DN
3529 tree type = TREE_TYPE (vr->min);
3530
0bca51f0 3531 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
227858d1 3532
e1f28918 3533 if (is_negative_overflow_infinity (vr->min))
12df8a7e 3534 fprintf (file, "-INF(OVF)");
e1f28918
ILT
3535 else if (INTEGRAL_TYPE_P (type)
3536 && !TYPE_UNSIGNED (type)
3537 && vrp_val_is_min (vr->min))
3538 fprintf (file, "-INF");
227858d1
DN
3539 else
3540 print_generic_expr (file, vr->min, 0);
3541
0bca51f0 3542 fprintf (file, ", ");
227858d1 3543
e1f28918 3544 if (is_positive_overflow_infinity (vr->max))
12df8a7e 3545 fprintf (file, "+INF(OVF)");
e1f28918
ILT
3546 else if (INTEGRAL_TYPE_P (type)
3547 && vrp_val_is_max (vr->max))
3548 fprintf (file, "+INF");
227858d1
DN
3549 else
3550 print_generic_expr (file, vr->max, 0);
3551
0bca51f0 3552 fprintf (file, "]");
227858d1
DN
3553
3554 if (vr->equiv)
3555 {
3556 bitmap_iterator bi;
3557 unsigned i, c = 0;
3558
3559 fprintf (file, " EQUIVALENCES: { ");
3560
3561 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3562 {
3563 print_generic_expr (file, ssa_name (i), 0);
3564 fprintf (file, " ");
3565 c++;
3566 }
3567
3568 fprintf (file, "} (%u elements)", c);
3569 }
0bca51f0
DN
3570 }
3571 else if (vr->type == VR_VARYING)
3572 fprintf (file, "VARYING");
3573 else
3574 fprintf (file, "INVALID RANGE");
3575}
3576
3577
3578/* Dump value range VR to stderr. */
3579
3580void
227858d1 3581debug_value_range (value_range_t *vr)
0bca51f0
DN
3582{
3583 dump_value_range (stderr, vr);
96644aba 3584 fprintf (stderr, "\n");
0bca51f0
DN
3585}
3586
3587
3588/* Dump value ranges of all SSA_NAMEs to FILE. */
3589
3590void
3591dump_all_value_ranges (FILE *file)
3592{
3593 size_t i;
3594
3595 for (i = 0; i < num_ssa_names; i++)
3596 {
227858d1 3597 if (vr_value[i])
0bca51f0 3598 {
227858d1 3599 print_generic_expr (file, ssa_name (i), 0);
0bca51f0 3600 fprintf (file, ": ");
227858d1 3601 dump_value_range (file, vr_value[i]);
0bca51f0
DN
3602 fprintf (file, "\n");
3603 }
3604 }
3605
3606 fprintf (file, "\n");
3607}
3608
3609
3610/* Dump all value ranges to stderr. */
3611
3612void
3613debug_all_value_ranges (void)
3614{
3615 dump_all_value_ranges (stderr);
3616}
3617
3618
0bca51f0
DN
3619/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3620 create a new SSA name N and return the assertion assignment
3621 'V = ASSERT_EXPR <V, V OP W>'. */
3622
726a989a 3623static gimple
0bca51f0
DN
3624build_assert_expr_for (tree cond, tree v)
3625{
726a989a
RB
3626 tree n;
3627 gimple assertion;
0bca51f0
DN
3628
3629 gcc_assert (TREE_CODE (v) == SSA_NAME);
726a989a 3630 n = duplicate_ssa_name (v, NULL);
0bca51f0 3631
7da4bf7d 3632 if (COMPARISON_CLASS_P (cond))
0bca51f0 3633 {
0d451405 3634 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
726a989a 3635 assertion = gimple_build_assign (n, a);
0bca51f0
DN
3636 }
3637 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3638 {
3639 /* Given !V, build the assignment N = false. */
3640 tree op0 = TREE_OPERAND (cond, 0);
3641 gcc_assert (op0 == v);
726a989a 3642 assertion = gimple_build_assign (n, boolean_false_node);
0bca51f0
DN
3643 }
3644 else if (TREE_CODE (cond) == SSA_NAME)
3645 {
3646 /* Given V, build the assignment N = true. */
3647 gcc_assert (v == cond);
726a989a 3648 assertion = gimple_build_assign (n, boolean_true_node);
0bca51f0
DN
3649 }
3650 else
3651 gcc_unreachable ();
3652
3653 SSA_NAME_DEF_STMT (n) = assertion;
3654
3655 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3656 operand of the ASSERT_EXPR. Register the new name and the old one
3657 in the replacement table so that we can fix the SSA web after
3658 adding all the ASSERT_EXPRs. */
3659 register_new_name_mapping (n, v);
3660
3661 return assertion;
3662}
3663
3664
3665/* Return false if EXPR is a predicate expression involving floating
3666 point values. */
3667
3668static inline bool
726a989a 3669fp_predicate (gimple stmt)
0bca51f0 3670{
726a989a
RB
3671 GIMPLE_CHECK (stmt, GIMPLE_COND);
3672
3673 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
0bca51f0
DN
3674}
3675
3676
227858d1
DN
3677/* If the range of values taken by OP can be inferred after STMT executes,
3678 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3679 describes the inferred range. Return true if a range could be
3680 inferred. */
0bca51f0 3681
227858d1 3682static bool
726a989a 3683infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
0bca51f0 3684{
227858d1
DN
3685 *val_p = NULL_TREE;
3686 *comp_code_p = ERROR_MARK;
3687
9fabf0d4
DN
3688 /* Do not attempt to infer anything in names that flow through
3689 abnormal edges. */
3690 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
227858d1
DN
3691 return false;
3692
3693 /* Similarly, don't infer anything from statements that may throw
3694 exceptions. */
726a989a 3695 if (stmt_could_throw_p (stmt))
227858d1 3696 return false;
9fabf0d4 3697
8c5285e1
DN
3698 /* If STMT is the last statement of a basic block with no
3699 successors, there is no point inferring anything about any of its
3700 operands. We would not be able to find a proper insertion point
3701 for the assertion, anyway. */
726a989a 3702 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
8c5285e1
DN
3703 return false;
3704
60c9ad46
JL
3705 /* We can only assume that a pointer dereference will yield
3706 non-NULL if -fdelete-null-pointer-checks is enabled. */
11522353
ILT
3707 if (flag_delete_null_pointer_checks
3708 && POINTER_TYPE_P (TREE_TYPE (op))
726a989a 3709 && gimple_code (stmt) != GIMPLE_ASM)
0bca51f0 3710 {
e9e0aa2c 3711 unsigned num_uses, num_loads, num_stores;
0bca51f0 3712
e9e0aa2c
DN
3713 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3714 if (num_loads + num_stores > 0)
0bca51f0 3715 {
227858d1
DN
3716 *val_p = build_int_cst (TREE_TYPE (op), 0);
3717 *comp_code_p = NE_EXPR;
3718 return true;
0bca51f0
DN
3719 }
3720 }
3721
227858d1 3722 return false;
0bca51f0
DN
3723}
3724
3725
227858d1
DN
3726void dump_asserts_for (FILE *, tree);
3727void debug_asserts_for (tree);
3728void dump_all_asserts (FILE *);
3729void debug_all_asserts (void);
3730
3731/* Dump all the registered assertions for NAME to FILE. */
3732
3733void
3734dump_asserts_for (FILE *file, tree name)
3735{
3736 assert_locus_t loc;
3737
3738 fprintf (file, "Assertions to be inserted for ");
3739 print_generic_expr (file, name, 0);
3740 fprintf (file, "\n");
3741
3742 loc = asserts_for[SSA_NAME_VERSION (name)];
3743 while (loc)
3744 {
3745 fprintf (file, "\t");
726a989a 3746 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
227858d1
DN
3747 fprintf (file, "\n\tBB #%d", loc->bb->index);
3748 if (loc->e)
3749 {
3750 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3751 loc->e->dest->index);
3752 dump_edge_info (file, loc->e, 0);
3753 }
3754 fprintf (file, "\n\tPREDICATE: ");
3755 print_generic_expr (file, name, 0);
3756 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3757 print_generic_expr (file, loc->val, 0);
3758 fprintf (file, "\n\n");
3759 loc = loc->next;
3760 }
3761
3762 fprintf (file, "\n");
3763}
3764
3765
3766/* Dump all the registered assertions for NAME to stderr. */
3767
3768void
3769debug_asserts_for (tree name)
3770{
3771 dump_asserts_for (stderr, name);
3772}
3773
3774
3775/* Dump all the registered assertions for all the names to FILE. */
3776
3777void
3778dump_all_asserts (FILE *file)
3779{
3780 unsigned i;
3781 bitmap_iterator bi;
3782
3783 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3784 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3785 dump_asserts_for (file, ssa_name (i));
3786 fprintf (file, "\n");
3787}
3788
3789
3790/* Dump all the registered assertions for all the names to stderr. */
3791
3792void
3793debug_all_asserts (void)
3794{
3795 dump_all_asserts (stderr);
3796}
3797
3798
3799/* If NAME doesn't have an ASSERT_EXPR registered for asserting
2ab8dbf4 3800 'EXPR COMP_CODE VAL' at a location that dominates block BB or
227858d1 3801 E->DEST, then register this location as a possible insertion point
2ab8dbf4 3802 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
227858d1
DN
3803
3804 BB, E and SI provide the exact insertion point for the new
3805 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3806 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3807 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3808 must not be NULL. */
3809
3810static void
2ab8dbf4 3811register_new_assert_for (tree name, tree expr,
227858d1
DN
3812 enum tree_code comp_code,
3813 tree val,
3814 basic_block bb,
3815 edge e,
726a989a 3816 gimple_stmt_iterator si)
227858d1
DN
3817{
3818 assert_locus_t n, loc, last_loc;
3819 bool found;
3820 basic_block dest_bb;
3821
3822#if defined ENABLE_CHECKING
3823 gcc_assert (bb == NULL || e == NULL);
3824
3825 if (e == NULL)
726a989a
RB
3826 gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
3827 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
227858d1
DN
3828#endif
3829
a1b969a0
RG
3830 /* Never build an assert comparing against an integer constant with
3831 TREE_OVERFLOW set. This confuses our undefined overflow warning
3832 machinery. */
3833 if (TREE_CODE (val) == INTEGER_CST
3834 && TREE_OVERFLOW (val))
3835 val = build_int_cst_wide (TREE_TYPE (val),
3836 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
3837
227858d1
DN
3838 /* The new assertion A will be inserted at BB or E. We need to
3839 determine if the new location is dominated by a previously
3840 registered location for A. If we are doing an edge insertion,
3841 assume that A will be inserted at E->DEST. Note that this is not
3842 necessarily true.
3843
3844 If E is a critical edge, it will be split. But even if E is
3845 split, the new block will dominate the same set of blocks that
3846 E->DEST dominates.
3847
3848 The reverse, however, is not true, blocks dominated by E->DEST
3849 will not be dominated by the new block created to split E. So,
3850 if the insertion location is on a critical edge, we will not use
3851 the new location to move another assertion previously registered
3852 at a block dominated by E->DEST. */
3853 dest_bb = (bb) ? bb : e->dest;
3854
3855 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3856 VAL at a block dominating DEST_BB, then we don't need to insert a new
3857 one. Similarly, if the same assertion already exists at a block
3858 dominated by DEST_BB and the new location is not on a critical
3859 edge, then update the existing location for the assertion (i.e.,
3860 move the assertion up in the dominance tree).
3861
3862 Note, this is implemented as a simple linked list because there
3863 should not be more than a handful of assertions registered per
3864 name. If this becomes a performance problem, a table hashed by
3865 COMP_CODE and VAL could be implemented. */
3866 loc = asserts_for[SSA_NAME_VERSION (name)];
3867 last_loc = loc;
3868 found = false;
3869 while (loc)
3870 {
3871 if (loc->comp_code == comp_code
3872 && (loc->val == val
2ab8dbf4
RG
3873 || operand_equal_p (loc->val, val, 0))
3874 && (loc->expr == expr
3875 || operand_equal_p (loc->expr, expr, 0)))
227858d1
DN
3876 {
3877 /* If the assertion NAME COMP_CODE VAL has already been
3878 registered at a basic block that dominates DEST_BB, then
3879 we don't need to insert the same assertion again. Note
3880 that we don't check strict dominance here to avoid
3881 replicating the same assertion inside the same basic
3882 block more than once (e.g., when a pointer is
3883 dereferenced several times inside a block).
3884
3885 An exception to this rule are edge insertions. If the
3886 new assertion is to be inserted on edge E, then it will
3887 dominate all the other insertions that we may want to
3888 insert in DEST_BB. So, if we are doing an edge
3889 insertion, don't do this dominance check. */
3890 if (e == NULL
3891 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3892 return;
3893
3894 /* Otherwise, if E is not a critical edge and DEST_BB
3895 dominates the existing location for the assertion, move
3896 the assertion up in the dominance tree by updating its
3897 location information. */
3898 if ((e == NULL || !EDGE_CRITICAL_P (e))
3899 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3900 {
3901 loc->bb = dest_bb;
3902 loc->e = e;
3903 loc->si = si;
3904 return;
3905 }
3906 }
3907
3908 /* Update the last node of the list and move to the next one. */
3909 last_loc = loc;
3910 loc = loc->next;
3911 }
3912
3913 /* If we didn't find an assertion already registered for
3914 NAME COMP_CODE VAL, add a new one at the end of the list of
3915 assertions associated with NAME. */
5ed6ace5 3916 n = XNEW (struct assert_locus_d);
227858d1
DN
3917 n->bb = dest_bb;
3918 n->e = e;
3919 n->si = si;
3920 n->comp_code = comp_code;
3921 n->val = val;
2ab8dbf4 3922 n->expr = expr;
227858d1
DN
3923 n->next = NULL;
3924
3925 if (last_loc)
3926 last_loc->next = n;
3927 else
3928 asserts_for[SSA_NAME_VERSION (name)] = n;
3929
3930 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3931}
3932
a26a02d7
RAE
3933/* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
3934 Extract a suitable test code and value and store them into *CODE_P and
3935 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
3936
3937 If no extraction was possible, return FALSE, otherwise return TRUE.
3938
3939 If INVERT is true, then we invert the result stored into *CODE_P. */
764a79ed
RAE
3940
3941static bool
3942extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
3943 tree cond_op0, tree cond_op1,
3944 bool invert, enum tree_code *code_p,
3945 tree *val_p)
3946{
3947 enum tree_code comp_code;
3948 tree val;
3949
3950 /* Otherwise, we have a comparison of the form NAME COMP VAL
3951 or VAL COMP NAME. */
3952 if (name == cond_op1)
3953 {
3954 /* If the predicate is of the form VAL COMP NAME, flip
3955 COMP around because we need to register NAME as the
3956 first operand in the predicate. */
3957 comp_code = swap_tree_comparison (cond_code);
3958 val = cond_op0;
3959 }
3960 else
3961 {
3962 /* The comparison is of the form NAME COMP VAL, so the
3963 comparison code remains unchanged. */
3964 comp_code = cond_code;
3965 val = cond_op1;
3966 }
3967
3968 /* Invert the comparison code as necessary. */
3969 if (invert)
3970 comp_code = invert_tree_comparison (comp_code, 0);
3971
3972 /* VRP does not handle float types. */
3973 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3974 return false;
3975
3976 /* Do not register always-false predicates.
3977 FIXME: this works around a limitation in fold() when dealing with
3978 enumerations. Given 'enum { N1, N2 } x;', fold will not
3979 fold 'if (x > N2)' to 'if (0)'. */
3980 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3981 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3982 {
3983 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3984 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3985
3986 if (comp_code == GT_EXPR
3987 && (!max
3988 || compare_values (val, max) == 0))
3989 return false;
3990
3991 if (comp_code == LT_EXPR
3992 && (!min
3993 || compare_values (val, min) == 0))
3994 return false;
3995 }
3996 *code_p = comp_code;
3997 *val_p = val;
3998 return true;
3999}
279f3eb5 4000
2ab8dbf4
RG
4001/* Try to register an edge assertion for SSA name NAME on edge E for
4002 the condition COND contributing to the conditional jump pointed to by BSI.
4003 Invert the condition COND if INVERT is true.
4004 Return true if an assertion for NAME could be registered. */
4005
4006static bool
726a989a 4007register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
a26a02d7
RAE
4008 enum tree_code cond_code,
4009 tree cond_op0, tree cond_op1, bool invert)
2ab8dbf4
RG
4010{
4011 tree val;
4012 enum tree_code comp_code;
4013 bool retval = false;
4014
a26a02d7
RAE
4015 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4016 cond_op0,
4017 cond_op1,
4018 invert, &comp_code, &val))
2ab8dbf4
RG
4019 return false;
4020
4021 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4022 reachable from E. */
c4ab2baa 4023 if (live_on_edge (e, name)
2ab8dbf4
RG
4024 && !has_single_use (name))
4025 {
4026 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4027 retval = true;
4028 }
4029
4030 /* In the case of NAME <= CST and NAME being defined as
4031 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4032 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4033 This catches range and anti-range tests. */
4034 if ((comp_code == LE_EXPR
4035 || comp_code == GT_EXPR)
4036 && TREE_CODE (val) == INTEGER_CST
4037 && TYPE_UNSIGNED (TREE_TYPE (val)))
4038 {
726a989a 4039 gimple def_stmt = SSA_NAME_DEF_STMT (name);
70b7b037 4040 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
2ab8dbf4
RG
4041
4042 /* Extract CST2 from the (optional) addition. */
726a989a
RB
4043 if (is_gimple_assign (def_stmt)
4044 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
2ab8dbf4 4045 {
726a989a
RB
4046 name2 = gimple_assign_rhs1 (def_stmt);
4047 cst2 = gimple_assign_rhs2 (def_stmt);
2ab8dbf4
RG
4048 if (TREE_CODE (name2) == SSA_NAME
4049 && TREE_CODE (cst2) == INTEGER_CST)
4050 def_stmt = SSA_NAME_DEF_STMT (name2);
4051 }
4052
70b7b037 4053 /* Extract NAME2 from the (optional) sign-changing cast. */
726a989a 4054 if (gimple_assign_cast_p (def_stmt))
70b7b037 4055 {
1a87cf0c 4056 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
726a989a
RB
4057 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4058 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4059 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4060 name3 = gimple_assign_rhs1 (def_stmt);
70b7b037 4061 }
2ab8dbf4 4062
70b7b037
RG
4063 /* If name3 is used later, create an ASSERT_EXPR for it. */
4064 if (name3 != NULL_TREE
4065 && TREE_CODE (name3) == SSA_NAME
2ab8dbf4
RG
4066 && (cst2 == NULL_TREE
4067 || TREE_CODE (cst2) == INTEGER_CST)
70b7b037 4068 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
c4ab2baa 4069 && live_on_edge (e, name3)
70b7b037
RG
4070 && !has_single_use (name3))
4071 {
4072 tree tmp;
4073
4074 /* Build an expression for the range test. */
4075 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4076 if (cst2 != NULL_TREE)
4077 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4078
4079 if (dump_file)
4080 {
4081 fprintf (dump_file, "Adding assert for ");
4082 print_generic_expr (dump_file, name3, 0);
4083 fprintf (dump_file, " from ");
4084 print_generic_expr (dump_file, tmp, 0);
4085 fprintf (dump_file, "\n");
4086 }
4087
4088 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4089
4090 retval = true;
4091 }
4092
4093 /* If name2 is used later, create an ASSERT_EXPR for it. */
4094 if (name2 != NULL_TREE
4095 && TREE_CODE (name2) == SSA_NAME
4096 && TREE_CODE (cst2) == INTEGER_CST
4097 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
c4ab2baa 4098 && live_on_edge (e, name2)
2ab8dbf4
RG
4099 && !has_single_use (name2))
4100 {
4101 tree tmp;
4102
4103 /* Build an expression for the range test. */
4104 tmp = name2;
4105 if (TREE_TYPE (name) != TREE_TYPE (name2))
4106 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4107 if (cst2 != NULL_TREE)
4108 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4109
4110 if (dump_file)
4111 {
4112 fprintf (dump_file, "Adding assert for ");
4113 print_generic_expr (dump_file, name2, 0);
4114 fprintf (dump_file, " from ");
4115 print_generic_expr (dump_file, tmp, 0);
4116 fprintf (dump_file, "\n");
4117 }
4118
4119 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4120
4121 retval = true;
4122 }
4123 }
4124
4125 return retval;
4126}
4127
279f3eb5
JL
4128/* OP is an operand of a truth value expression which is known to have
4129 a particular value. Register any asserts for OP and for any
4130 operands in OP's defining statement.
4131
4132 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4133 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4134
4135static bool
4136register_edge_assert_for_1 (tree op, enum tree_code code,
726a989a 4137 edge e, gimple_stmt_iterator bsi)
279f3eb5 4138{
34fc5065 4139 bool retval = false;
726a989a
RB
4140 gimple op_def;
4141 tree val;
a26a02d7 4142 enum tree_code rhs_code;
227858d1 4143
279f3eb5
JL
4144 /* We only care about SSA_NAMEs. */
4145 if (TREE_CODE (op) != SSA_NAME)
227858d1
DN
4146 return false;
4147
279f3eb5
JL
4148 /* We know that OP will have a zero or nonzero value. If OP is used
4149 more than once go ahead and register an assert for OP.
4150
4151 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4152 it will always be set for OP (because OP is used in a COND_EXPR in
4153 the subgraph). */
4154 if (!has_single_use (op))
4155 {
4156 val = build_int_cst (TREE_TYPE (op), 0);
2ab8dbf4 4157 register_new_assert_for (op, op, code, val, NULL, e, bsi);
279f3eb5
JL
4158 retval = true;
4159 }
4160
4161 /* Now look at how OP is set. If it's set from a comparison,
4162 a truth operation or some bit operations, then we may be able
4163 to register information about the operands of that assignment. */
4164 op_def = SSA_NAME_DEF_STMT (op);
726a989a 4165 if (gimple_code (op_def) != GIMPLE_ASSIGN)
279f3eb5
JL
4166 return retval;
4167
726a989a 4168 rhs_code = gimple_assign_rhs_code (op_def);
279f3eb5 4169
726a989a 4170 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
227858d1 4171 {
34fc5065 4172 bool invert = (code == EQ_EXPR ? true : false);
726a989a
RB
4173 tree op0 = gimple_assign_rhs1 (op_def);
4174 tree op1 = gimple_assign_rhs2 (op_def);
227858d1 4175
2ab8dbf4 4176 if (TREE_CODE (op0) == SSA_NAME)
a26a02d7
RAE
4177 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4178 invert);
2ab8dbf4 4179 if (TREE_CODE (op1) == SSA_NAME)
a26a02d7
RAE
4180 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4181 invert);
279f3eb5
JL
4182 }
4183 else if ((code == NE_EXPR
726a989a
RB
4184 && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
4185 || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
279f3eb5 4186 || (code == EQ_EXPR
726a989a
RB
4187 && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
4188 || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
279f3eb5
JL
4189 {
4190 /* Recurse on each operand. */
726a989a 4191 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
279f3eb5 4192 code, e, bsi);
726a989a 4193 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
279f3eb5
JL
4194 code, e, bsi);
4195 }
726a989a 4196 else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
279f3eb5 4197 {
34fc5065
RG
4198 /* Recurse, flipping CODE. */
4199 code = invert_tree_comparison (code, false);
726a989a 4200 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
34fc5065 4201 code, e, bsi);
279f3eb5 4202 }
726a989a 4203 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
279f3eb5 4204 {
34fc5065 4205 /* Recurse through the copy. */
726a989a
RB
4206 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4207 code, e, bsi);
279f3eb5 4208 }
1a87cf0c 4209 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
279f3eb5 4210 {
34fc5065 4211 /* Recurse through the type conversion. */
726a989a 4212 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
279f3eb5
JL
4213 code, e, bsi);
4214 }
227858d1 4215
279f3eb5
JL
4216 return retval;
4217}
da11c5d2 4218
279f3eb5
JL
4219/* Try to register an edge assertion for SSA name NAME on edge E for
4220 the condition COND contributing to the conditional jump pointed to by SI.
4221 Return true if an assertion for NAME could be registered. */
da11c5d2 4222
279f3eb5 4223static bool
726a989a 4224register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
a26a02d7
RAE
4225 enum tree_code cond_code, tree cond_op0,
4226 tree cond_op1)
279f3eb5
JL
4227{
4228 tree val;
4229 enum tree_code comp_code;
4230 bool retval = false;
4231 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4232
4233 /* Do not attempt to infer anything in names that flow through
4234 abnormal edges. */
4235 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4236 return false;
4237
a26a02d7
RAE
4238 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4239 cond_op0, cond_op1,
4240 is_else_edge,
4241 &comp_code, &val))
279f3eb5
JL
4242 return false;
4243
2ab8dbf4 4244 /* Register ASSERT_EXPRs for name. */
a26a02d7
RAE
4245 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4246 cond_op1, is_else_edge);
2ab8dbf4 4247
279f3eb5
JL
4248
4249 /* If COND is effectively an equality test of an SSA_NAME against
4250 the value zero or one, then we may be able to assert values
4251 for SSA_NAMEs which flow into COND. */
4252
4253 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4254 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
2f8e468b 4255 have nonzero value. */
279f3eb5
JL
4256 if (((comp_code == EQ_EXPR && integer_onep (val))
4257 || (comp_code == NE_EXPR && integer_zerop (val))))
4258 {
726a989a 4259 gimple def_stmt = SSA_NAME_DEF_STMT (name);
279f3eb5 4260
726a989a
RB
4261 if (is_gimple_assign (def_stmt)
4262 && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
4263 || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
279f3eb5 4264 {
726a989a
RB
4265 tree op0 = gimple_assign_rhs1 (def_stmt);
4266 tree op1 = gimple_assign_rhs2 (def_stmt);
279f3eb5
JL
4267 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4268 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
227858d1
DN
4269 }
4270 }
279f3eb5
JL
4271
4272 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4273 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4274 have zero value. */
4275 if (((comp_code == EQ_EXPR && integer_zerop (val))
4276 || (comp_code == NE_EXPR && integer_onep (val))))
227858d1 4277 {
726a989a 4278 gimple def_stmt = SSA_NAME_DEF_STMT (name);
279f3eb5 4279
726a989a
RB
4280 if (is_gimple_assign (def_stmt)
4281 && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
e09deb14
RG
4282 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4283 necessarily zero value. */
4284 || (comp_code == EQ_EXPR
726a989a 4285 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
279f3eb5 4286 {
726a989a
RB
4287 tree op0 = gimple_assign_rhs1 (def_stmt);
4288 tree op1 = gimple_assign_rhs2 (def_stmt);
279f3eb5
JL
4289 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4290 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4291 }
227858d1
DN
4292 }
4293
279f3eb5 4294 return retval;
227858d1
DN
4295}
4296
4297
227858d1 4298/* Determine whether the outgoing edges of BB should receive an
279f3eb5 4299 ASSERT_EXPR for each of the operands of BB's LAST statement.
9bb6aa43 4300 The last statement of BB must be a COND_EXPR.
227858d1
DN
4301
4302 If any of the sub-graphs rooted at BB have an interesting use of
4303 the predicate operands, an assert location node is added to the
4304 list of assertions for the corresponding operands. */
4305
4306static bool
726a989a 4307find_conditional_asserts (basic_block bb, gimple last)
227858d1
DN
4308{
4309 bool need_assert;
726a989a 4310 gimple_stmt_iterator bsi;
279f3eb5 4311 tree op;
227858d1
DN
4312 edge_iterator ei;
4313 edge e;
4314 ssa_op_iter iter;
4315
4316 need_assert = false;
726a989a 4317 bsi = gsi_for_stmt (last);
227858d1
DN
4318
4319 /* Look for uses of the operands in each of the sub-graphs
4320 rooted at BB. We need to check each of the outgoing edges
4321 separately, so that we know what kind of ASSERT_EXPR to
4322 insert. */
4323 FOR_EACH_EDGE (e, ei, bb->succs)
4324 {
4325 if (e->dest == bb)
4326 continue;
4327
227858d1
DN
4328 /* Register the necessary assertions for each operand in the
4329 conditional predicate. */
4330 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
a26a02d7 4331 {
726a989a
RB
4332 need_assert |= register_edge_assert_for (op, e, bsi,
4333 gimple_cond_code (last),
4334 gimple_cond_lhs (last),
4335 gimple_cond_rhs (last));
a26a02d7 4336 }
227858d1
DN
4337 }
4338
227858d1
DN
4339 return need_assert;
4340}
4341
9bb6aa43
RG
4342/* Compare two case labels sorting first by the destination label uid
4343 and then by the case value. */
4344
4345static int
4346compare_case_labels (const void *p1, const void *p2)
4347{
741ac903
KG
4348 const_tree const case1 = *(const_tree const*)p1;
4349 const_tree const case2 = *(const_tree const*)p2;
9bb6aa43
RG
4350 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4351 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4352
4353 if (uid1 < uid2)
4354 return -1;
4355 else if (uid1 == uid2)
4356 {
4357 /* Make sure the default label is first in a group. */
4358 if (!CASE_LOW (case1))
4359 return -1;
4360 else if (!CASE_LOW (case2))
4361 return 1;
4362 else
4363 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4364 }
4365 else
4366 return 1;
4367}
4368
4369/* Determine whether the outgoing edges of BB should receive an
4370 ASSERT_EXPR for each of the operands of BB's LAST statement.
4371 The last statement of BB must be a SWITCH_EXPR.
4372
4373 If any of the sub-graphs rooted at BB have an interesting use of
4374 the predicate operands, an assert location node is added to the
4375 list of assertions for the corresponding operands. */
4376
4377static bool
726a989a 4378find_switch_asserts (basic_block bb, gimple last)
9bb6aa43
RG
4379{
4380 bool need_assert;
726a989a 4381 gimple_stmt_iterator bsi;
a26a02d7 4382 tree op;
9bb6aa43 4383 edge e;
726a989a
RB
4384 tree vec2;
4385 size_t n = gimple_switch_num_labels(last);
109e637b 4386#if GCC_VERSION >= 4000
9bb6aa43 4387 unsigned int idx;
109e637b
JM
4388#else
4389 /* Work around GCC 3.4 bug (PR 37086). */
4390 volatile unsigned int idx;
4391#endif
9bb6aa43
RG
4392
4393 need_assert = false;
726a989a
RB
4394 bsi = gsi_for_stmt (last);
4395 op = gimple_switch_index (last);
9bb6aa43
RG
4396 if (TREE_CODE (op) != SSA_NAME)
4397 return false;
4398
4399 /* Build a vector of case labels sorted by destination label. */
4400 vec2 = make_tree_vec (n);
4401 for (idx = 0; idx < n; ++idx)
726a989a 4402 TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
9bb6aa43
RG
4403 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4404
4405 for (idx = 0; idx < n; ++idx)
4406 {
4407 tree min, max;
4408 tree cl = TREE_VEC_ELT (vec2, idx);
4409
4410 min = CASE_LOW (cl);
4411 max = CASE_HIGH (cl);
4412
4413 /* If there are multiple case labels with the same destination
4414 we need to combine them to a single value range for the edge. */
4415 if (idx + 1 < n
4416 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4417 {
4418 /* Skip labels until the last of the group. */
4419 do {
4420 ++idx;
4421 } while (idx < n
4422 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4423 --idx;
4424
4425 /* Pick up the maximum of the case label range. */
4426 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4427 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4428 else
4429 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4430 }
4431
4432 /* Nothing to do if the range includes the default label until we
4433 can register anti-ranges. */
4434 if (min == NULL_TREE)
4435 continue;
4436
4437 /* Find the edge to register the assert expr on. */
4438 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4439
9bb6aa43
RG
4440 /* Register the necessary assertions for the operand in the
4441 SWITCH_EXPR. */
a26a02d7
RAE
4442 need_assert |= register_edge_assert_for (op, e, bsi,
4443 max ? GE_EXPR : EQ_EXPR,
4444 op,
4445 fold_convert (TREE_TYPE (op),
4446 min));
9bb6aa43
RG
4447 if (max)
4448 {
a26a02d7
RAE
4449 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4450 op,
4451 fold_convert (TREE_TYPE (op),
4452 max));
9bb6aa43
RG
4453 }
4454 }
4455
9bb6aa43
RG
4456 return need_assert;
4457}
4458
227858d1
DN
4459
4460/* Traverse all the statements in block BB looking for statements that
4461 may generate useful assertions for the SSA names in their operand.
4462 If a statement produces a useful assertion A for name N_i, then the
4463 list of assertions already generated for N_i is scanned to
4464 determine if A is actually needed.
4465
4466 If N_i already had the assertion A at a location dominating the
4467 current location, then nothing needs to be done. Otherwise, the
4468 new location for A is recorded instead.
4469
4470 1- For every statement S in BB, all the variables used by S are
4471 added to bitmap FOUND_IN_SUBGRAPH.
4472
4473 2- If statement S uses an operand N in a way that exposes a known
4474 value range for N, then if N was not already generated by an
4475 ASSERT_EXPR, create a new assert location for N. For instance,
4476 if N is a pointer and the statement dereferences it, we can
4477 assume that N is not NULL.
4478
4479 3- COND_EXPRs are a special case of #2. We can derive range
4480 information from the predicate but need to insert different
4481 ASSERT_EXPRs for each of the sub-graphs rooted at the
4482 conditional block. If the last statement of BB is a conditional
4483 expression of the form 'X op Y', then
4484
4485 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4486
4487 b) If the conditional is the only entry point to the sub-graph
4488 corresponding to the THEN_CLAUSE, recurse into it. On
4489 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4490 an ASSERT_EXPR is added for the corresponding variable.
4491
4492 c) Repeat step (b) on the ELSE_CLAUSE.
4493
4494 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4495
4496 For instance,
4497
4498 if (a == 9)
4499 b = a;
4500 else
4501 b = c + 1;
4502
4503 In this case, an assertion on the THEN clause is useful to
4504 determine that 'a' is always 9 on that edge. However, an assertion
4505 on the ELSE clause would be unnecessary.
4506
4507 4- If BB does not end in a conditional expression, then we recurse
4508 into BB's dominator children.
4509
4510 At the end of the recursive traversal, every SSA name will have a
4511 list of locations where ASSERT_EXPRs should be added. When a new
4512 location for name N is found, it is registered by calling
4513 register_new_assert_for. That function keeps track of all the
4514 registered assertions to prevent adding unnecessary assertions.
4515 For instance, if a pointer P_4 is dereferenced more than once in a
4516 dominator tree, only the location dominating all the dereference of
4517 P_4 will receive an ASSERT_EXPR.
4518
4519 If this function returns true, then it means that there are names
4520 for which we need to generate ASSERT_EXPRs. Those assertions are
9bb6aa43 4521 inserted by process_assert_insertions. */
227858d1
DN
4522
4523static bool
c4ab2baa 4524find_assert_locations_1 (basic_block bb, sbitmap live)
227858d1 4525{
726a989a
RB
4526 gimple_stmt_iterator si;
4527 gimple last;
4528 gimple phi;
227858d1 4529 bool need_assert;
227858d1
DN
4530
4531 need_assert = false;
c4ab2baa 4532 last = last_stmt (bb);
227858d1 4533
c4ab2baa
RG
4534 /* If BB's last statement is a conditional statement involving integer
4535 operands, determine if we need to add ASSERT_EXPRs. */
4536 if (last
4537 && gimple_code (last) == GIMPLE_COND
4538 && !fp_predicate (last)
4539 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4540 need_assert |= find_conditional_asserts (bb, last);
227858d1 4541
c4ab2baa
RG
4542 /* If BB's last statement is a switch statement involving integer
4543 operands, determine if we need to add ASSERT_EXPRs. */
4544 if (last
4545 && gimple_code (last) == GIMPLE_SWITCH
4546 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4547 need_assert |= find_switch_asserts (bb, last);
227858d1
DN
4548
4549 /* Traverse all the statements in BB marking used names and looking
4550 for statements that may infer assertions for their used operands. */
726a989a 4551 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
227858d1 4552 {
726a989a
RB
4553 gimple stmt;
4554 tree op;
227858d1
DN
4555 ssa_op_iter i;
4556
726a989a 4557 stmt = gsi_stmt (si);
227858d1
DN
4558
4559 /* See if we can derive an assertion for any of STMT's operands. */
4560 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4561 {
4562 tree value;
4563 enum tree_code comp_code;
4564
c4ab2baa
RG
4565 /* Mark OP in our live bitmap. */
4566 SET_BIT (live, SSA_NAME_VERSION (op));
227858d1 4567
227858d1
DN
4568 /* If OP is used in such a way that we can infer a value
4569 range for it, and we don't find a previous assertion for
4570 it, create a new assertion location node for OP. */
4571 if (infer_value_range (stmt, op, &comp_code, &value))
4572 {
917f1b7e 4573 /* If we are able to infer a nonzero value range for OP,
60c9ad46
JL
4574 then walk backwards through the use-def chain to see if OP
4575 was set via a typecast.
4576
4577 If so, then we can also infer a nonzero value range
4578 for the operand of the NOP_EXPR. */
4579 if (comp_code == NE_EXPR && integer_zerop (value))
4580 {
4581 tree t = op;
726a989a 4582 gimple def_stmt = SSA_NAME_DEF_STMT (t);
60c9ad46 4583
726a989a
RB
4584 while (is_gimple_assign (def_stmt)
4585 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
07beea0d 4586 && TREE_CODE
726a989a 4587 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
07beea0d 4588 && POINTER_TYPE_P
726a989a 4589 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
60c9ad46 4590 {
726a989a 4591 t = gimple_assign_rhs1 (def_stmt);
60c9ad46
JL
4592 def_stmt = SSA_NAME_DEF_STMT (t);
4593
4594 /* Note we want to register the assert for the
4595 operand of the NOP_EXPR after SI, not after the
4596 conversion. */
4597 if (! has_single_use (t))
4598 {
2ab8dbf4 4599 register_new_assert_for (t, t, comp_code, value,
60c9ad46
JL
4600 bb, NULL, si);
4601 need_assert = true;
4602 }
4603 }
4604 }
4605
4606 /* If OP is used only once, namely in this STMT, don't
4607 bother creating an ASSERT_EXPR for it. Such an
4608 ASSERT_EXPR would do nothing but increase compile time. */
4609 if (!has_single_use (op))
4610 {
2ab8dbf4
RG
4611 register_new_assert_for (op, op, comp_code, value,
4612 bb, NULL, si);
60c9ad46
JL
4613 need_assert = true;
4614 }
0bca51f0
DN
4615 }
4616 }
0bca51f0
DN
4617 }
4618
c4ab2baa
RG
4619 /* Traverse all PHI nodes in BB marking used operands. */
4620 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4621 {
4622 use_operand_p arg_p;
4623 ssa_op_iter i;
4624 phi = gsi_stmt (si);
9bb6aa43 4625
c4ab2baa
RG
4626 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4627 {
4628 tree arg = USE_FROM_PTR (arg_p);
4629 if (TREE_CODE (arg) == SSA_NAME)
4630 SET_BIT (live, SSA_NAME_VERSION (arg));
4631 }
4632 }
227858d1
DN
4633
4634 return need_assert;
4635}
4636
c4ab2baa
RG
4637/* Do an RPO walk over the function computing SSA name liveness
4638 on-the-fly and deciding on assert expressions to insert.
4639 Returns true if there are assert expressions to be inserted. */
4640
4641static bool
4642find_assert_locations (void)
4643{
4644 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4645 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4646 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4647 int rpo_cnt, i;
4648 bool need_asserts;
4649
4650 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4651 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4652 for (i = 0; i < rpo_cnt; ++i)
4653 bb_rpo[rpo[i]] = i;
4654
4655 need_asserts = false;
4656 for (i = rpo_cnt-1; i >= 0; --i)
4657 {
4658 basic_block bb = BASIC_BLOCK (rpo[i]);
4659 edge e;
4660 edge_iterator ei;
4661
4662 if (!live[rpo[i]])
4663 {
4664 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
4665 sbitmap_zero (live[rpo[i]]);
4666 }
4667
4668 /* Process BB and update the live information with uses in
4669 this block. */
4670 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
4671
4672 /* Merge liveness into the predecessor blocks and free it. */
4673 if (!sbitmap_empty_p (live[rpo[i]]))
4674 {
4675 int pred_rpo = i;
4676 FOR_EACH_EDGE (e, ei, bb->preds)
4677 {
4678 int pred = e->src->index;
4679 if (e->flags & EDGE_DFS_BACK)
4680 continue;
4681
4682 if (!live[pred])
4683 {
4684 live[pred] = sbitmap_alloc (num_ssa_names);
4685 sbitmap_zero (live[pred]);
4686 }
4687 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
4688
4689 if (bb_rpo[pred] < pred_rpo)
4690 pred_rpo = bb_rpo[pred];
4691 }
4692
4693 /* Record the RPO number of the last visited block that needs
4694 live information from this block. */
4695 last_rpo[rpo[i]] = pred_rpo;
4696 }
4697 else
4698 {
4699 sbitmap_free (live[rpo[i]]);
4700 live[rpo[i]] = NULL;
4701 }
4702
4703 /* We can free all successors live bitmaps if all their
4704 predecessors have been visited already. */
4705 FOR_EACH_EDGE (e, ei, bb->succs)
4706 if (last_rpo[e->dest->index] == i
4707 && live[e->dest->index])
4708 {
4709 sbitmap_free (live[e->dest->index]);
4710 live[e->dest->index] = NULL;
4711 }
4712 }
4713
4714 XDELETEVEC (rpo);
4715 XDELETEVEC (bb_rpo);
4716 XDELETEVEC (last_rpo);
4717 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
4718 if (live[i])
4719 sbitmap_free (live[i]);
4720 XDELETEVEC (live);
4721
4722 return need_asserts;
4723}
227858d1
DN
4724
4725/* Create an ASSERT_EXPR for NAME and insert it in the location
4726 indicated by LOC. Return true if we made any edge insertions. */
4727
4728static bool
4729process_assert_insertions_for (tree name, assert_locus_t loc)
4730{
4731 /* Build the comparison expression NAME_i COMP_CODE VAL. */
726a989a
RB
4732 gimple stmt;
4733 tree cond;
4734 gimple assert_stmt;
227858d1
DN
4735 edge_iterator ei;
4736 edge e;
4737
2ab8dbf4 4738 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
726a989a 4739 assert_stmt = build_assert_expr_for (cond, name);
227858d1 4740 if (loc->e)
0bca51f0 4741 {
227858d1
DN
4742 /* We have been asked to insert the assertion on an edge. This
4743 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4744#if defined ENABLE_CHECKING
726a989a
RB
4745 gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4746 || gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
227858d1 4747#endif
0bca51f0 4748
726a989a 4749 gsi_insert_on_edge (loc->e, assert_stmt);
227858d1
DN
4750 return true;
4751 }
9fabf0d4 4752
227858d1
DN
4753 /* Otherwise, we can insert right after LOC->SI iff the
4754 statement must not be the last statement in the block. */
726a989a 4755 stmt = gsi_stmt (loc->si);
227858d1
DN
4756 if (!stmt_ends_bb_p (stmt))
4757 {
726a989a 4758 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
227858d1
DN
4759 return false;
4760 }
9fabf0d4 4761
227858d1
DN
4762 /* If STMT must be the last statement in BB, we can only insert new
4763 assertions on the non-abnormal edge out of BB. Note that since
4764 STMT is not control flow, there may only be one non-abnormal edge
4765 out of BB. */
4766 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4767 if (!(e->flags & EDGE_ABNORMAL))
4768 {
726a989a 4769 gsi_insert_on_edge (e, assert_stmt);
227858d1
DN
4770 return true;
4771 }
0bca51f0 4772
227858d1
DN
4773 gcc_unreachable ();
4774}
0bca51f0 4775
0bca51f0 4776
227858d1
DN
4777/* Process all the insertions registered for every name N_i registered
4778 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4779 found in ASSERTS_FOR[i]. */
0bca51f0 4780
227858d1
DN
4781static void
4782process_assert_insertions (void)
4783{
4784 unsigned i;
4785 bitmap_iterator bi;
4786 bool update_edges_p = false;
4787 int num_asserts = 0;
0bca51f0 4788
227858d1
DN
4789 if (dump_file && (dump_flags & TDF_DETAILS))
4790 dump_all_asserts (dump_file);
60b4ccde 4791
227858d1
DN
4792 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4793 {
4794 assert_locus_t loc = asserts_for[i];
4795 gcc_assert (loc);
4796
4797 while (loc)
60b4ccde 4798 {
227858d1
DN
4799 assert_locus_t next = loc->next;
4800 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4801 free (loc);
4802 loc = next;
4803 num_asserts++;
60b4ccde 4804 }
0bca51f0 4805 }
0bca51f0 4806
227858d1 4807 if (update_edges_p)
726a989a 4808 gsi_commit_edge_inserts ();
0bca51f0 4809
01902653
RG
4810 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4811 num_asserts);
0bca51f0
DN
4812}
4813
4814
4815/* Traverse the flowgraph looking for conditional jumps to insert range
4816 expressions. These range expressions are meant to provide information
4817 to optimizations that need to reason in terms of value ranges. They
4818 will not be expanded into RTL. For instance, given:
4819
4820 x = ...
4821 y = ...
4822 if (x < y)
4823 y = x - 2;
4824 else
4825 x = y + 3;
4826
4827 this pass will transform the code into:
4828
4829 x = ...
4830 y = ...
4831 if (x < y)
4832 {
4833 x = ASSERT_EXPR <x, x < y>
4834 y = x - 2
4835 }
4836 else
4837 {
4838 y = ASSERT_EXPR <y, x <= y>
4839 x = y + 3
4840 }
4841
4842 The idea is that once copy and constant propagation have run, other
4843 optimizations will be able to determine what ranges of values can 'x'
4844 take in different paths of the code, simply by checking the reaching
4845 definition of 'x'. */
4846
4847static void
4848insert_range_assertions (void)
4849{
227858d1 4850 need_assert_for = BITMAP_ALLOC (NULL);
b9eae1a9 4851 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
0bca51f0
DN
4852
4853 calculate_dominance_info (CDI_DOMINATORS);
4854
c4ab2baa 4855 if (find_assert_locations ())
0bca51f0 4856 {
227858d1 4857 process_assert_insertions ();
0bca51f0
DN
4858 update_ssa (TODO_update_ssa_no_phi);
4859 }
4860
4861 if (dump_file && (dump_flags & TDF_DETAILS))
4862 {
4863 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4864 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4865 }
4866
227858d1
DN
4867 free (asserts_for);
4868 BITMAP_FREE (need_assert_for);
0bca51f0
DN
4869}
4870
590b1f2d
DM
4871/* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4872 and "struct" hacks. If VRP can determine that the
9f5ed61a 4873 array subscript is a constant, check if it is outside valid
590b1f2d
DM
4874 range. If the array subscript is a RANGE, warn if it is
4875 non-overlapping with valid range.
4876 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4877
4878static void
726a989a 4879check_array_ref (tree ref, const location_t *location, bool ignore_off_by_one)
590b1f2d
DM
4880{
4881 value_range_t* vr = NULL;
4882 tree low_sub, up_sub;
4883 tree low_bound, up_bound = array_ref_up_bound (ref);
4884
4885 low_sub = up_sub = TREE_OPERAND (ref, 1);
4886
88df9da1 4887 if (!up_bound || TREE_NO_WARNING (ref)
590b1f2d
DM
4888 || TREE_CODE (up_bound) != INTEGER_CST
4889 /* Can not check flexible arrays. */
4890 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4891 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4892 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4893 /* Accesses after the end of arrays of size 0 (gcc
4894 extension) and 1 are likely intentional ("struct
e4d35515
SB
4895 hack"). */
4896 || compare_tree_int (up_bound, 1) <= 0)
590b1f2d
DM
4897 return;
4898
4899 low_bound = array_ref_low_bound (ref);
4900
4901 if (TREE_CODE (low_sub) == SSA_NAME)
4902 {
4903 vr = get_value_range (low_sub);
4904 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4905 {
4906 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4907 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4908 }
4909 }
4910
4911 if (vr && vr->type == VR_ANTI_RANGE)
4912 {
4913 if (TREE_CODE (up_sub) == INTEGER_CST
4914 && tree_int_cst_lt (up_bound, up_sub)
4915 && TREE_CODE (low_sub) == INTEGER_CST
4916 && tree_int_cst_lt (low_sub, low_bound))
4917 {
4918 warning (OPT_Warray_bounds,
726a989a 4919 "%Harray subscript is outside array bounds", location);
590b1f2d
DM
4920 TREE_NO_WARNING (ref) = 1;
4921 }
4922 }
4923 else if (TREE_CODE (up_sub) == INTEGER_CST
4924 && tree_int_cst_lt (up_bound, up_sub)
4925 && !tree_int_cst_equal (up_bound, up_sub)
4926 && (!ignore_off_by_one
4927 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4928 up_bound,
4929 integer_one_node,
4930 0),
4931 up_sub)))
4932 {
4933 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
726a989a 4934 location);
590b1f2d
DM
4935 TREE_NO_WARNING (ref) = 1;
4936 }
4937 else if (TREE_CODE (low_sub) == INTEGER_CST
4938 && tree_int_cst_lt (low_sub, low_bound))
4939 {
4940 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
726a989a 4941 location);
590b1f2d
DM
4942 TREE_NO_WARNING (ref) = 1;
4943 }
4944}
4945
05fb69e4
DM
4946/* Searches if the expr T, located at LOCATION computes
4947 address of an ARRAY_REF, and call check_array_ref on it. */
4948
4949static void
726a989a 4950search_for_addr_array(tree t, const location_t *location)
05fb69e4
DM
4951{
4952 while (TREE_CODE (t) == SSA_NAME)
4953 {
726a989a
RB
4954 gimple g = SSA_NAME_DEF_STMT (t);
4955
4956 if (gimple_code (g) != GIMPLE_ASSIGN)
05fb69e4 4957 return;
726a989a
RB
4958
4959 if (get_gimple_rhs_class (gimple_assign_rhs_code (g)) !=
4960 GIMPLE_SINGLE_RHS)
4961 return;
4962
4963 t = gimple_assign_rhs1 (g);
05fb69e4
DM
4964 }
4965
4966
4967 /* We are only interested in addresses of ARRAY_REF's. */
4968 if (TREE_CODE (t) != ADDR_EXPR)
4969 return;
4970
4971 /* Check each ARRAY_REFs in the reference chain. */
4972 do
4973 {
4974 if (TREE_CODE (t) == ARRAY_REF)
4975 check_array_ref (t, location, true /*ignore_off_by_one*/);
4976
4977 t = TREE_OPERAND(t,0);
4978 }
4979 while (handled_component_p (t));
4980}
4981
590b1f2d
DM
4982/* walk_tree() callback that checks if *TP is
4983 an ARRAY_REF inside an ADDR_EXPR (in which an array
4984 subscript one outside the valid range is allowed). Call
4985 check_array_ref for each ARRAY_REF found. The location is
4986 passed in DATA. */
4987
4988static tree
4989check_array_bounds (tree *tp, int *walk_subtree, void *data)
4990{
4991 tree t = *tp;
726a989a
RB
4992 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4993 const location_t *location = (const location_t *) wi->info;
88df9da1 4994
590b1f2d
DM
4995 *walk_subtree = TRUE;
4996
4997 if (TREE_CODE (t) == ARRAY_REF)
4998 check_array_ref (t, location, false /*ignore_off_by_one*/);
1eb7b049 4999
05fb69e4
DM
5000 if (TREE_CODE (t) == INDIRECT_REF
5001 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5002 search_for_addr_array (TREE_OPERAND (t, 0), location);
590b1f2d 5003
05fb69e4
DM
5004 if (TREE_CODE (t) == ADDR_EXPR)
5005 *walk_subtree = FALSE;
5006
590b1f2d
DM
5007 return NULL_TREE;
5008}
5009
5010/* Walk over all statements of all reachable BBs and call check_array_bounds
5011 on them. */
5012
5013static void
5014check_all_array_refs (void)
5015{
5016 basic_block bb;
726a989a 5017 gimple_stmt_iterator si;
590b1f2d
DM
5018
5019 FOR_EACH_BB (bb)
5020 {
5021 /* Skip bb's that are clearly unreachable. */
5022 if (single_pred_p (bb))
5023 {
5024 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
726a989a 5025 gimple ls = NULL;
590b1f2d 5026
726a989a
RB
5027 if (!gsi_end_p (gsi_last_bb (pred_bb)))
5028 ls = gsi_stmt (gsi_last_bb (pred_bb));
590b1f2d 5029
726a989a
RB
5030 if (ls && gimple_code (ls) == GIMPLE_COND
5031 && ((gimple_cond_false_p (ls)
590b1f2d 5032 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
726a989a 5033 || (gimple_cond_true_p (ls)
590b1f2d
DM
5034 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
5035 continue;
5036 }
726a989a
RB
5037 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5038 {
5039 gimple stmt = gsi_stmt (si);
5040 const location_t *location = gimple_location_ptr (stmt);
5041 struct walk_stmt_info wi;
5042 if (!gimple_has_location (stmt))
5043 continue;
5044
5045 if (is_gimple_call (stmt))
5046 {
5047 size_t i;
5048 size_t n = gimple_call_num_args (stmt);
5049 for (i = 0; i < n; i++)
5050 {
5051 tree arg = gimple_call_arg (stmt, i);
5052 search_for_addr_array (arg, location);
5053 }
5054 }
5055 else
5056 {
5057 memset (&wi, 0, sizeof (wi));
5058 wi.info = CONST_CAST (void *, (const void *) location);
5059
5060 walk_gimple_op (gsi_stmt (si),
5061 check_array_bounds,
5062 &wi);
5063 }
5064 }
590b1f2d
DM
5065 }
5066}
0bca51f0 5067
94908762
JL
5068/* Convert range assertion expressions into the implied copies and
5069 copy propagate away the copies. Doing the trivial copy propagation
5070 here avoids the need to run the full copy propagation pass after
5071 VRP.
227858d1
DN
5072
5073 FIXME, this will eventually lead to copy propagation removing the
5074 names that had useful range information attached to them. For
5075 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5076 then N_i will have the range [3, +INF].
5077
5078 However, by converting the assertion into the implied copy
5079 operation N_i = N_j, we will then copy-propagate N_j into the uses
5080 of N_i and lose the range information. We may want to hold on to
5081 ASSERT_EXPRs a little while longer as the ranges could be used in
5082 things like jump threading.
5083
5084 The problem with keeping ASSERT_EXPRs around is that passes after
94908762
JL
5085 VRP need to handle them appropriately.
5086
5087 Another approach would be to make the range information a first
5088 class property of the SSA_NAME so that it can be queried from
5089 any pass. This is made somewhat more complex by the need for
5090 multiple ranges to be associated with one SSA_NAME. */
0bca51f0
DN
5091
5092static void
5093remove_range_assertions (void)
5094{
5095 basic_block bb;
726a989a 5096 gimple_stmt_iterator si;
0bca51f0 5097
94908762
JL
5098 /* Note that the BSI iterator bump happens at the bottom of the
5099 loop and no bump is necessary if we're removing the statement
5100 referenced by the current BSI. */
0bca51f0 5101 FOR_EACH_BB (bb)
726a989a 5102 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
0bca51f0 5103 {
726a989a
RB
5104 gimple stmt = gsi_stmt (si);
5105 gimple use_stmt;
0bca51f0 5106
726a989a
RB
5107 if (is_gimple_assign (stmt)
5108 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
0bca51f0 5109 {
726a989a
RB
5110 tree rhs = gimple_assign_rhs1 (stmt);
5111 tree var;
0bca51f0 5112 tree cond = fold (ASSERT_EXPR_COND (rhs));
94908762
JL
5113 use_operand_p use_p;
5114 imm_use_iterator iter;
5115
0bca51f0 5116 gcc_assert (cond != boolean_false_node);
94908762 5117
701b8964
ZD
5118 /* Propagate the RHS into every use of the LHS. */
5119 var = ASSERT_EXPR_VAR (rhs);
07beea0d 5120 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
726a989a 5121 gimple_assign_lhs (stmt))
6c00f606
AM
5122 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5123 {
5124 SET_USE (use_p, var);
5125 gcc_assert (TREE_CODE (var) == SSA_NAME);
5126 }
94908762
JL
5127
5128 /* And finally, remove the copy, it is not needed. */
726a989a 5129 gsi_remove (&si, true);
ca15e365 5130 release_defs (stmt);
0bca51f0 5131 }
94908762 5132 else
726a989a 5133 gsi_next (&si);
0bca51f0
DN
5134 }
5135}
5136
5137
5138/* Return true if STMT is interesting for VRP. */
5139
5140static bool
726a989a 5141stmt_interesting_for_vrp (gimple stmt)
0bca51f0 5142{
726a989a
RB
5143 if (gimple_code (stmt) == GIMPLE_PHI
5144 && is_gimple_reg (gimple_phi_result (stmt))
5145 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5146 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
0bca51f0 5147 return true;
726a989a 5148 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
0bca51f0 5149 {
726a989a 5150 tree lhs = gimple_get_lhs (stmt);
0bca51f0 5151
2bbec6d9
JL
5152 /* In general, assignments with virtual operands are not useful
5153 for deriving ranges, with the obvious exception of calls to
5154 builtin functions. */
726a989a 5155 if (lhs && TREE_CODE (lhs) == SSA_NAME
0bca51f0
DN
5156 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5157 || POINTER_TYPE_P (TREE_TYPE (lhs)))
726a989a
RB
5158 && ((is_gimple_call (stmt)
5159 && gimple_call_fndecl (stmt) != NULL_TREE
5160 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
2bbec6d9 5161 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
0bca51f0
DN
5162 return true;
5163 }
726a989a
RB
5164 else if (gimple_code (stmt) == GIMPLE_COND
5165 || gimple_code (stmt) == GIMPLE_SWITCH)
0bca51f0
DN
5166 return true;
5167
5168 return false;
5169}
5170
5171
87e71ff4 5172/* Initialize local data structures for VRP. */
0bca51f0 5173
227858d1 5174static void
0bca51f0
DN
5175vrp_initialize (void)
5176{
5177 basic_block bb;
0bca51f0 5178
b9eae1a9 5179 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
fc6827fe 5180 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
0bca51f0
DN
5181
5182 FOR_EACH_BB (bb)
5183 {
726a989a 5184 gimple_stmt_iterator si;
0bca51f0 5185
726a989a 5186 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
0bca51f0 5187 {
726a989a 5188 gimple phi = gsi_stmt (si);
0bca51f0
DN
5189 if (!stmt_interesting_for_vrp (phi))
5190 {
5191 tree lhs = PHI_RESULT (phi);
b565d777 5192 set_value_range_to_varying (get_value_range (lhs));
726a989a 5193 prop_set_simulate_again (phi, false);
0bca51f0
DN
5194 }
5195 else
726a989a 5196 prop_set_simulate_again (phi, true);
0bca51f0
DN
5197 }
5198
726a989a 5199 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
0bca51f0 5200 {
726a989a 5201 gimple stmt = gsi_stmt (si);
0bca51f0
DN
5202
5203 if (!stmt_interesting_for_vrp (stmt))
5204 {
5205 ssa_op_iter i;
5206 tree def;
5207 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
b565d777 5208 set_value_range_to_varying (get_value_range (def));
726a989a 5209 prop_set_simulate_again (stmt, false);
0bca51f0
DN
5210 }
5211 else
5212 {
726a989a 5213 prop_set_simulate_again (stmt, true);
0bca51f0
DN
5214 }
5215 }
5216 }
0bca51f0
DN
5217}
5218
5219
5220/* Visit assignment STMT. If it produces an interesting range, record
5221 the SSA name in *OUTPUT_P. */
5222
5223static enum ssa_prop_result
726a989a 5224vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
0bca51f0 5225{
726a989a 5226 tree def, lhs;
0bca51f0 5227 ssa_op_iter iter;
726a989a
RB
5228 enum gimple_code code = gimple_code (stmt);
5229 lhs = gimple_get_lhs (stmt);
0bca51f0
DN
5230
5231 /* We only keep track of ranges in integral and pointer types. */
5232 if (TREE_CODE (lhs) == SSA_NAME
e260a614
JL
5233 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5234 /* It is valid to have NULL MIN/MAX values on a type. See
5235 build_range_type. */
5236 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5237 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
0bca51f0
DN
5238 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5239 {
0bca51f0 5240 struct loop *l;
227858d1
DN
5241 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5242
726a989a
RB
5243 if (code == GIMPLE_CALL)
5244 extract_range_basic (&new_vr, stmt);
5245 else
5246 extract_range_from_assignment (&new_vr, stmt);
0bca51f0
DN
5247
5248 /* If STMT is inside a loop, we may be able to know something
5249 else about the range of LHS by examining scalar evolution
5250 information. */
d78f3f78 5251 if (current_loops && (l = loop_containing_stmt (stmt)))
1e8552eb 5252 adjust_range_with_scev (&new_vr, l, stmt, lhs);
0bca51f0 5253
227858d1 5254 if (update_value_range (lhs, &new_vr))
0bca51f0
DN
5255 {
5256 *output_p = lhs;
5257
5258 if (dump_file && (dump_flags & TDF_DETAILS))
5259 {
227858d1 5260 fprintf (dump_file, "Found new range for ");
0bca51f0 5261 print_generic_expr (dump_file, lhs, 0);
227858d1
DN
5262 fprintf (dump_file, ": ");
5263 dump_value_range (dump_file, &new_vr);
0bca51f0
DN
5264 fprintf (dump_file, "\n\n");
5265 }
5266
5267 if (new_vr.type == VR_VARYING)
5268 return SSA_PROP_VARYING;
5269
5270 return SSA_PROP_INTERESTING;
5271 }
5272
5273 return SSA_PROP_NOT_INTERESTING;
5274 }
5275
227858d1 5276 /* Every other statement produces no useful ranges. */
0bca51f0 5277 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
b565d777 5278 set_value_range_to_varying (get_value_range (def));
0bca51f0
DN
5279
5280 return SSA_PROP_VARYING;
5281}
5282
f5052e29 5283/* Helper that gets the value range of the SSA_NAME with version I
c80b4100 5284 or a symbolic range containing the SSA_NAME only if the value range
f5052e29
RG
5285 is varying or undefined. */
5286
5287static inline value_range_t
5288get_vr_for_comparison (int i)
5289{
5290 value_range_t vr = *(vr_value[i]);
5291
5292 /* If name N_i does not have a valid range, use N_i as its own
5293 range. This allows us to compare against names that may
5294 have N_i in their ranges. */
5295 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5296 {
5297 vr.type = VR_RANGE;
5298 vr.min = ssa_name (i);
5299 vr.max = ssa_name (i);
5300 }
5301
5302 return vr;
5303}
0bca51f0 5304
227858d1
DN
5305/* Compare all the value ranges for names equivalent to VAR with VAL
5306 using comparison code COMP. Return the same value returned by
12df8a7e
ILT
5307 compare_range_with_value, including the setting of
5308 *STRICT_OVERFLOW_P. */
227858d1
DN
5309
5310static tree
12df8a7e
ILT
5311compare_name_with_value (enum tree_code comp, tree var, tree val,
5312 bool *strict_overflow_p)
227858d1
DN
5313{
5314 bitmap_iterator bi;
5315 unsigned i;
5316 bitmap e;
5317 tree retval, t;
12df8a7e 5318 int used_strict_overflow;
f5052e29
RG
5319 bool sop;
5320 value_range_t equiv_vr;
227858d1
DN
5321
5322 /* Get the set of equivalences for VAR. */
5323 e = get_value_range (var)->equiv;
5324
12df8a7e
ILT
5325 /* Start at -1. Set it to 0 if we do a comparison without relying
5326 on overflow, or 1 if all comparisons rely on overflow. */
5327 used_strict_overflow = -1;
5328
f5052e29
RG
5329 /* Compare vars' value range with val. */
5330 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5331 sop = false;
5332 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
e07e405d
ILT
5333 if (retval)
5334 used_strict_overflow = sop ? 1 : 0;
227858d1 5335
f5052e29
RG
5336 /* If the equiv set is empty we have done all work we need to do. */
5337 if (e == NULL)
5338 {
5339 if (retval
5340 && used_strict_overflow > 0)
5341 *strict_overflow_p = true;
5342 return retval;
5343 }
227858d1 5344
f5052e29
RG
5345 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5346 {
5347 equiv_vr = get_vr_for_comparison (i);
12df8a7e
ILT
5348 sop = false;
5349 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
227858d1
DN
5350 if (t)
5351 {
96644aba
RG
5352 /* If we get different answers from different members
5353 of the equivalence set this check must be in a dead
5354 code region. Folding it to a trap representation
5355 would be correct here. For now just return don't-know. */
5356 if (retval != NULL
5357 && t != retval)
5358 {
5359 retval = NULL_TREE;
5360 break;
5361 }
227858d1 5362 retval = t;
12df8a7e
ILT
5363
5364 if (!sop)
5365 used_strict_overflow = 0;
5366 else if (used_strict_overflow < 0)
5367 used_strict_overflow = 1;
227858d1
DN
5368 }
5369 }
5370
f5052e29
RG
5371 if (retval
5372 && used_strict_overflow > 0)
5373 *strict_overflow_p = true;
227858d1 5374
f5052e29 5375 return retval;
227858d1
DN
5376}
5377
5378
5379/* Given a comparison code COMP and names N1 and N2, compare all the
8ab5f5c9 5380 ranges equivalent to N1 against all the ranges equivalent to N2
227858d1 5381 to determine the value of N1 COMP N2. Return the same value
12df8a7e
ILT
5382 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5383 whether we relied on an overflow infinity in the comparison. */
5384
0bca51f0
DN
5385
5386static tree
12df8a7e
ILT
5387compare_names (enum tree_code comp, tree n1, tree n2,
5388 bool *strict_overflow_p)
227858d1
DN
5389{
5390 tree t, retval;
5391 bitmap e1, e2;
5392 bitmap_iterator bi1, bi2;
5393 unsigned i1, i2;
12df8a7e 5394 int used_strict_overflow;
f5052e29
RG
5395 static bitmap_obstack *s_obstack = NULL;
5396 static bitmap s_e1 = NULL, s_e2 = NULL;
227858d1
DN
5397
5398 /* Compare the ranges of every name equivalent to N1 against the
5399 ranges of every name equivalent to N2. */
5400 e1 = get_value_range (n1)->equiv;
5401 e2 = get_value_range (n2)->equiv;
5402
f5052e29
RG
5403 /* Use the fake bitmaps if e1 or e2 are not available. */
5404 if (s_obstack == NULL)
5405 {
5406 s_obstack = XNEW (bitmap_obstack);
5407 bitmap_obstack_initialize (s_obstack);
5408 s_e1 = BITMAP_ALLOC (s_obstack);
5409 s_e2 = BITMAP_ALLOC (s_obstack);
5410 }
5411 if (e1 == NULL)
5412 e1 = s_e1;
5413 if (e2 == NULL)
5414 e2 = s_e2;
5415
227858d1
DN
5416 /* Add N1 and N2 to their own set of equivalences to avoid
5417 duplicating the body of the loop just to check N1 and N2
5418 ranges. */
5419 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5420 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5421
5422 /* If the equivalence sets have a common intersection, then the two
5423 names can be compared without checking their ranges. */
5424 if (bitmap_intersect_p (e1, e2))
5425 {
5426 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5427 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5428
5429 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5430 ? boolean_true_node
5431 : boolean_false_node;
5432 }
5433
12df8a7e
ILT
5434 /* Start at -1. Set it to 0 if we do a comparison without relying
5435 on overflow, or 1 if all comparisons rely on overflow. */
5436 used_strict_overflow = -1;
5437
227858d1
DN
5438 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5439 N2 to their own set of equivalences to avoid duplicating the body
5440 of the loop just to check N1 and N2 ranges. */
5441 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5442 {
f5052e29 5443 value_range_t vr1 = get_vr_for_comparison (i1);
227858d1
DN
5444
5445 t = retval = NULL_TREE;
5446 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5447 {
3b7bab4d 5448 bool sop = false;
12df8a7e 5449
f5052e29 5450 value_range_t vr2 = get_vr_for_comparison (i2);
227858d1 5451
12df8a7e 5452 t = compare_ranges (comp, &vr1, &vr2, &sop);
227858d1
DN
5453 if (t)
5454 {
96644aba
RG
5455 /* If we get different answers from different members
5456 of the equivalence set this check must be in a dead
5457 code region. Folding it to a trap representation
5458 would be correct here. For now just return don't-know. */
5459 if (retval != NULL
5460 && t != retval)
5461 {
5462 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5463 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5464 return NULL_TREE;
5465 }
227858d1 5466 retval = t;
12df8a7e
ILT
5467
5468 if (!sop)
5469 used_strict_overflow = 0;
5470 else if (used_strict_overflow < 0)
5471 used_strict_overflow = 1;
227858d1
DN
5472 }
5473 }
5474
5475 if (retval)
5476 {
5477 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5478 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
12df8a7e
ILT
5479 if (used_strict_overflow > 0)
5480 *strict_overflow_p = true;
227858d1
DN
5481 return retval;
5482 }
5483 }
5484
5485 /* None of the equivalent ranges are useful in computing this
5486 comparison. */
5487 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5488 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5489 return NULL_TREE;
5490}
5491
6b99f156
JH
5492/* Helper function for vrp_evaluate_conditional_warnv. */
5493
5494static tree
5495vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5496 tree op0, tree op1,
5497 bool * strict_overflow_p)
5498{
5499 value_range_t *vr0, *vr1;
5500
5501 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5502 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5503
5504 if (vr0 && vr1)
5505 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5506 else if (vr0 && vr1 == NULL)
5507 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5508 else if (vr0 == NULL && vr1)
5509 return (compare_range_with_value
5510 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5511 return NULL;
5512}
5513
2d3cd5d5
RAE
5514/* Helper function for vrp_evaluate_conditional_warnv. */
5515
5516static tree
5517vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5518 tree op1, bool use_equiv_p,
6b99f156 5519 bool *strict_overflow_p, bool *only_ranges)
2d3cd5d5 5520{
6b99f156
JH
5521 tree ret;
5522 if (only_ranges)
5523 *only_ranges = true;
5524
2d3cd5d5
RAE
5525 /* We only deal with integral and pointer types. */
5526 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5527 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5528 return NULL_TREE;
5529
5530 if (use_equiv_p)
5531 {
6b99f156
JH
5532 if (only_ranges
5533 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5534 (code, op0, op1, strict_overflow_p)))
5535 return ret;
5536 *only_ranges = false;
2d3cd5d5 5537 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
726a989a 5538 return compare_names (code, op0, op1, strict_overflow_p);
2d3cd5d5 5539 else if (TREE_CODE (op0) == SSA_NAME)
726a989a 5540 return compare_name_with_value (code, op0, op1, strict_overflow_p);
2d3cd5d5
RAE
5541 else if (TREE_CODE (op1) == SSA_NAME)
5542 return (compare_name_with_value
726a989a 5543 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
2d3cd5d5
RAE
5544 }
5545 else
6b99f156
JH
5546 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5547 strict_overflow_p);
2d3cd5d5
RAE
5548 return NULL_TREE;
5549}
227858d1 5550
e80d7580 5551/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
0c948c27
ILT
5552 information. Return NULL if the conditional can not be evaluated.
5553 The ranges of all the names equivalent with the operands in COND
5554 will be used when trying to compute the value. If the result is
5555 based on undefined signed overflow, issue a warning if
5556 appropriate. */
5557
5558tree
726a989a 5559vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
0c948c27
ILT
5560{
5561 bool sop;
5562 tree ret;
6b99f156 5563 bool only_ranges;
0c948c27
ILT
5564
5565 sop = false;
6b99f156
JH
5566 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5567 &only_ranges);
0c948c27
ILT
5568
5569 if (ret && sop)
5570 {
5571 enum warn_strict_overflow_code wc;
5572 const char* warnmsg;
5573
5574 if (is_gimple_min_invariant (ret))
5575 {
5576 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5577 warnmsg = G_("assuming signed overflow does not occur when "
5578 "simplifying conditional to constant");
5579 }
5580 else
5581 {
5582 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5583 warnmsg = G_("assuming signed overflow does not occur when "
5584 "simplifying conditional");
5585 }
5586
5587 if (issue_strict_overflow_warning (wc))
5588 {
726a989a 5589 location_t location;
0c948c27 5590
726a989a
RB
5591 if (!gimple_has_location (stmt))
5592 location = input_location;
0c948c27 5593 else
726a989a
RB
5594 location = gimple_location (stmt);
5595 warning (OPT_Wstrict_overflow, "%H%s", &location, warnmsg);
0c948c27
ILT
5596 }
5597 }
5598
faebccf9 5599 if (warn_type_limits
6b99f156 5600 && ret && only_ranges
e80d7580
RAE
5601 && TREE_CODE_CLASS (code) == tcc_comparison
5602 && TREE_CODE (op0) == SSA_NAME)
faebccf9
DN
5603 {
5604 /* If the comparison is being folded and the operand on the LHS
5605 is being compared against a constant value that is outside of
5606 the natural range of OP0's type, then the predicate will
5607 always fold regardless of the value of OP0. If -Wtype-limits
5608 was specified, emit a warning. */
5609 const char *warnmsg = NULL;
faebccf9
DN
5610 tree type = TREE_TYPE (op0);
5611 value_range_t *vr0 = get_value_range (op0);
5612
5613 if (vr0->type != VR_VARYING
5614 && INTEGRAL_TYPE_P (type)
5615 && vrp_val_is_min (vr0->min)
5616 && vrp_val_is_max (vr0->max)
5617 && is_gimple_min_invariant (op1))
5618 {
5619 if (integer_zerop (ret))
5620 warnmsg = G_("comparison always false due to limited range of "
5621 "data type");
5622 else
5623 warnmsg = G_("comparison always true due to limited range of "
5624 "data type");
5625 }
5626
5627 if (warnmsg)
5628 {
726a989a 5629 location_t location;
faebccf9 5630
726a989a
RB
5631 if (!gimple_has_location (stmt))
5632 location = input_location;
faebccf9 5633 else
726a989a 5634 location = gimple_location (stmt);
faebccf9 5635
726a989a 5636 warning (OPT_Wtype_limits, "%H%s", &location, warnmsg);
faebccf9
DN
5637 }
5638 }
5639
0c948c27
ILT
5640 return ret;
5641}
5642
0bca51f0
DN
5643
5644/* Visit conditional statement STMT. If we can determine which edge
5645 will be taken out of STMT's basic block, record it in
5646 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5647 SSA_PROP_VARYING. */
5648
5649static enum ssa_prop_result
726a989a 5650vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
0bca51f0 5651{
726a989a 5652 tree val;
12df8a7e 5653 bool sop;
0bca51f0
DN
5654
5655 *taken_edge_p = NULL;
0bca51f0
DN
5656
5657 if (dump_file && (dump_flags & TDF_DETAILS))
5658 {
5659 tree use;
5660 ssa_op_iter i;
5661
5662 fprintf (dump_file, "\nVisiting conditional with predicate: ");
726a989a 5663 print_gimple_stmt (dump_file, stmt, 0, 0);
0bca51f0
DN
5664 fprintf (dump_file, "\nWith known ranges\n");
5665
5666 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5667 {
5668 fprintf (dump_file, "\t");
5669 print_generic_expr (dump_file, use, 0);
5670 fprintf (dump_file, ": ");
227858d1 5671 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
0bca51f0
DN
5672 }
5673
5674 fprintf (dump_file, "\n");
5675 }
5676
5677 /* Compute the value of the predicate COND by checking the known
227858d1
DN
5678 ranges of each of its operands.
5679
5680 Note that we cannot evaluate all the equivalent ranges here
5681 because those ranges may not yet be final and with the current
5682 propagation strategy, we cannot determine when the value ranges
5683 of the names in the equivalence set have changed.
5684
5685 For instance, given the following code fragment
5686
5687 i_5 = PHI <8, i_13>
5688 ...
5689 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5690 if (i_14 == 1)
5691 ...
5692
5693 Assume that on the first visit to i_14, i_5 has the temporary
5694 range [8, 8] because the second argument to the PHI function is
5695 not yet executable. We derive the range ~[0, 0] for i_14 and the
5696 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5697 the first time, since i_14 is equivalent to the range [8, 8], we
5698 determine that the predicate is always false.
5699
5700 On the next round of propagation, i_13 is determined to be
5701 VARYING, which causes i_5 to drop down to VARYING. So, another
5702 visit to i_14 is scheduled. In this second visit, we compute the
5703 exact same range and equivalence set for i_14, namely ~[0, 0] and
5704 { i_5 }. But we did not have the previous range for i_5
5705 registered, so vrp_visit_assignment thinks that the range for
5706 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5707 is not visited again, which stops propagation from visiting
5708 statements in the THEN clause of that if().
5709
5710 To properly fix this we would need to keep the previous range
5711 value for the names in the equivalence set. This way we would've
5712 discovered that from one visit to the other i_5 changed from
5713 range [8, 8] to VR_VARYING.
5714
5715 However, fixing this apparent limitation may not be worth the
5716 additional checking. Testing on several code bases (GCC, DLV,
5717 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5718 4 more predicates folded in SPEC. */
12df8a7e 5719 sop = false;
e80d7580 5720
726a989a
RB
5721 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
5722 gimple_cond_lhs (stmt),
5723 gimple_cond_rhs (stmt),
6b99f156 5724 false, &sop, NULL);
0bca51f0 5725 if (val)
12df8a7e
ILT
5726 {
5727 if (!sop)
726a989a 5728 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
12df8a7e
ILT
5729 else
5730 {
5731 if (dump_file && (dump_flags & TDF_DETAILS))
5732 fprintf (dump_file,
5733 "\nIgnoring predicate evaluation because "
5734 "it assumes that signed overflow is undefined");
5735 val = NULL_TREE;
5736 }
5737 }
0bca51f0
DN
5738
5739 if (dump_file && (dump_flags & TDF_DETAILS))
5740 {
5741 fprintf (dump_file, "\nPredicate evaluates to: ");
5742 if (val == NULL_TREE)
5743 fprintf (dump_file, "DON'T KNOW\n");
5744 else
5745 print_generic_stmt (dump_file, val, 0);
5746 }
5747
5748 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5749}
5750
b7d8d447
RAE
5751/* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5752 that includes the value VAL. The search is restricted to the range
726a989a 5753 [START_IDX, n - 1] where n is the size of VEC.
0bca51f0 5754
b7d8d447
RAE
5755 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5756 returned.
5757
5758 If there is no CASE_LABEL for VAL and the is one that is larger than VAL,
5759 it is placed in IDX and false is returned.
5760
726a989a 5761 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
b7d8d447 5762 returned. */
8aea0bf0
RG
5763
5764static bool
726a989a 5765find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
8aea0bf0 5766{
726a989a 5767 size_t n = gimple_switch_num_labels (stmt);
b7d8d447
RAE
5768 size_t low, high;
5769
5770 /* Find case label for minimum of the value range or the next one.
5771 At each iteration we are searching in [low, high - 1]. */
8aea0bf0 5772
726a989a 5773 for (low = start_idx, high = n; high != low; )
8aea0bf0
RG
5774 {
5775 tree t;
5776 int cmp;
726a989a 5777 /* Note that i != high, so we never ask for n. */
b7d8d447 5778 size_t i = (high + low) / 2;
726a989a 5779 t = gimple_switch_label (stmt, i);
8aea0bf0
RG
5780
5781 /* Cache the result of comparing CASE_LOW and val. */
5782 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5783
b7d8d447
RAE
5784 if (cmp == 0)
5785 {
5786 /* Ranges cannot be empty. */
5787 *idx = i;
5788 return true;
5789 }
5790 else if (cmp > 0)
8aea0bf0
RG
5791 high = i;
5792 else
b7d8d447
RAE
5793 {
5794 low = i + 1;
5795 if (CASE_HIGH (t) != NULL
5796 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
8aea0bf0
RG
5797 {
5798 *idx = i;
5799 return true;
5800 }
5801 }
5802 }
5803
b7d8d447 5804 *idx = high;
8aea0bf0
RG
5805 return false;
5806}
5807
b7d8d447
RAE
5808/* Searches the case label vector VEC for the range of CASE_LABELs that is used
5809 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5810 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5811 then MAX_IDX < MIN_IDX.
5812 Returns true if the default label is not needed. */
5813
5814static bool
726a989a
RB
5815find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
5816 size_t *max_idx)
b7d8d447
RAE
5817{
5818 size_t i, j;
726a989a
RB
5819 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5820 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
b7d8d447
RAE
5821
5822 if (i == j
5823 && min_take_default
5824 && max_take_default)
5825 {
5826 /* Only the default case label reached.
5827 Return an empty range. */
5828 *min_idx = 1;
5829 *max_idx = 0;
5830 return false;
5831 }
5832 else
5833 {
5834 bool take_default = min_take_default || max_take_default;
5835 tree low, high;
5836 size_t k;
5837
5838 if (max_take_default)
5839 j--;
5840
5841 /* If the case label range is continuous, we do not need
5842 the default case label. Verify that. */
726a989a
RB
5843 high = CASE_LOW (gimple_switch_label (stmt, i));
5844 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5845 high = CASE_HIGH (gimple_switch_label (stmt, i));
b7d8d447
RAE
5846 for (k = i + 1; k <= j; ++k)
5847 {
726a989a 5848 low = CASE_LOW (gimple_switch_label (stmt, k));
b7d8d447
RAE
5849 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
5850 {
5851 take_default = true;
5852 break;
5853 }
5854 high = low;
726a989a
RB
5855 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5856 high = CASE_HIGH (gimple_switch_label (stmt, k));
b7d8d447
RAE
5857 }
5858
5859 *min_idx = i;
5860 *max_idx = j;
5861 return !take_default;
5862 }
5863}
5864
8aea0bf0
RG
5865/* Visit switch statement STMT. If we can determine which edge
5866 will be taken out of STMT's basic block, record it in
5867 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5868 SSA_PROP_VARYING. */
5869
5870static enum ssa_prop_result
726a989a 5871vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
8aea0bf0
RG
5872{
5873 tree op, val;
5874 value_range_t *vr;
5875 size_t i = 0, j = 0, n;
b7d8d447 5876 bool take_default;
8aea0bf0
RG
5877
5878 *taken_edge_p = NULL;
726a989a 5879 op = gimple_switch_index (stmt);
8aea0bf0
RG
5880 if (TREE_CODE (op) != SSA_NAME)
5881 return SSA_PROP_VARYING;
5882
5883 vr = get_value_range (op);
5884 if (dump_file && (dump_flags & TDF_DETAILS))
5885 {
5886 fprintf (dump_file, "\nVisiting switch expression with operand ");
5887 print_generic_expr (dump_file, op, 0);
5888 fprintf (dump_file, " with known range ");
5889 dump_value_range (dump_file, vr);
5890 fprintf (dump_file, "\n");
5891 }
5892
5893 if (vr->type != VR_RANGE
5894 || symbolic_range_p (vr))
5895 return SSA_PROP_VARYING;
5896
5897 /* Find the single edge that is taken from the switch expression. */
726a989a 5898 n = gimple_switch_num_labels (stmt);
8aea0bf0 5899
726a989a 5900 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
8aea0bf0 5901
b7d8d447
RAE
5902 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
5903 label */
8aea0bf0 5904 if (j < i)
b7d8d447
RAE
5905 {
5906 gcc_assert (take_default);
726a989a 5907 val = gimple_switch_default_label (stmt);
b7d8d447 5908 }
8aea0bf0
RG
5909 else
5910 {
b7d8d447
RAE
5911 /* Check if labels with index i to j and maybe the default label
5912 are all reaching the same label. */
5913
726a989a 5914 val = gimple_switch_label (stmt, i);
b7d8d447 5915 if (take_default
726a989a
RB
5916 && CASE_LABEL (gimple_switch_default_label (stmt))
5917 != CASE_LABEL (val))
8aea0bf0
RG
5918 {
5919 if (dump_file && (dump_flags & TDF_DETAILS))
5920 fprintf (dump_file, " not a single destination for this "
5921 "range\n");
5922 return SSA_PROP_VARYING;
5923 }
5924 for (++i; i <= j; ++i)
5925 {
726a989a 5926 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
8aea0bf0
RG
5927 {
5928 if (dump_file && (dump_flags & TDF_DETAILS))
5929 fprintf (dump_file, " not a single destination for this "
5930 "range\n");
5931 return SSA_PROP_VARYING;
5932 }
5933 }
5934 }
5935
726a989a 5936 *taken_edge_p = find_edge (gimple_bb (stmt),
8aea0bf0
RG
5937 label_to_block (CASE_LABEL (val)));
5938
5939 if (dump_file && (dump_flags & TDF_DETAILS))
5940 {
5941 fprintf (dump_file, " will take edge to ");
5942 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
5943 }
5944
5945 return SSA_PROP_INTERESTING;
5946}
5947
5948
0bca51f0
DN
5949/* Evaluate statement STMT. If the statement produces a useful range,
5950 return SSA_PROP_INTERESTING and record the SSA name with the
5951 interesting range into *OUTPUT_P.
5952
5953 If STMT is a conditional branch and we can determine its truth
5954 value, the taken edge is recorded in *TAKEN_EDGE_P.
5955
5956 If STMT produces a varying value, return SSA_PROP_VARYING. */
5957
5958static enum ssa_prop_result
726a989a 5959vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
0bca51f0
DN
5960{
5961 tree def;
5962 ssa_op_iter iter;
0bca51f0
DN
5963
5964 if (dump_file && (dump_flags & TDF_DETAILS))
5965 {
5966 fprintf (dump_file, "\nVisiting statement:\n");
726a989a 5967 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
0bca51f0
DN
5968 fprintf (dump_file, "\n");
5969 }
5970
726a989a 5971 if (is_gimple_assign (stmt) || is_gimple_call (stmt))
2bbec6d9 5972 {
2bbec6d9
JL
5973 /* In general, assignments with virtual operands are not useful
5974 for deriving ranges, with the obvious exception of calls to
5975 builtin functions. */
726a989a
RB
5976
5977 if ((is_gimple_call (stmt)
5978 && gimple_call_fndecl (stmt) != NULL_TREE
5979 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
2bbec6d9 5980 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
726a989a 5981 return vrp_visit_assignment_or_call (stmt, output_p);
2bbec6d9 5982 }
726a989a 5983 else if (gimple_code (stmt) == GIMPLE_COND)
0bca51f0 5984 return vrp_visit_cond_stmt (stmt, taken_edge_p);
726a989a 5985 else if (gimple_code (stmt) == GIMPLE_SWITCH)
8aea0bf0 5986 return vrp_visit_switch_stmt (stmt, taken_edge_p);
0bca51f0
DN
5987
5988 /* All other statements produce nothing of interest for VRP, so mark
5989 their outputs varying and prevent further simulation. */
5990 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
b565d777 5991 set_value_range_to_varying (get_value_range (def));
0bca51f0
DN
5992
5993 return SSA_PROP_VARYING;
5994}
5995
5996
5997/* Meet operation for value ranges. Given two value ranges VR0 and
32c8bce7
DS
5998 VR1, store in VR0 a range that contains both VR0 and VR1. This
5999 may not be the smallest possible such range. */
0bca51f0
DN
6000
6001static void
227858d1 6002vrp_meet (value_range_t *vr0, value_range_t *vr1)
0bca51f0
DN
6003{
6004 if (vr0->type == VR_UNDEFINED)
6005 {
227858d1 6006 copy_value_range (vr0, vr1);
0bca51f0
DN
6007 return;
6008 }
6009
6010 if (vr1->type == VR_UNDEFINED)
6011 {
6012 /* Nothing to do. VR0 already has the resulting range. */
6013 return;
6014 }
6015
6016 if (vr0->type == VR_VARYING)
6017 {
6018 /* Nothing to do. VR0 already has the resulting range. */
6019 return;
6020 }
6021
6022 if (vr1->type == VR_VARYING)
0bca51f0 6023 {
b565d777 6024 set_value_range_to_varying (vr0);
0bca51f0
DN
6025 return;
6026 }
6027
6028 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6029 {
32c8bce7
DS
6030 int cmp;
6031 tree min, max;
6032
6033 /* Compute the convex hull of the ranges. The lower limit of
6034 the new range is the minimum of the two ranges. If they
6035 cannot be compared, then give up. */
6036 cmp = compare_values (vr0->min, vr1->min);
6037 if (cmp == 0 || cmp == 1)
6038 min = vr1->min;
6039 else if (cmp == -1)
6040 min = vr0->min;
6041 else
6042 goto give_up;
6043
6044 /* Similarly, the upper limit of the new range is the maximum
6045 of the two ranges. If they cannot be compared, then
6046 give up. */
6047 cmp = compare_values (vr0->max, vr1->max);
6048 if (cmp == 0 || cmp == -1)
6049 max = vr1->max;
6050 else if (cmp == 1)
6051 max = vr0->max;
6052 else
6053 goto give_up;
0bca51f0 6054
8cf781f0
ILT
6055 /* Check for useless ranges. */
6056 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
e1f28918
ILT
6057 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6058 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
8cf781f0
ILT
6059 goto give_up;
6060
32c8bce7
DS
6061 /* The resulting set of equivalences is the intersection of
6062 the two sets. */
6063 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6064 bitmap_and_into (vr0->equiv, vr1->equiv);
6065 else if (vr0->equiv && !vr1->equiv)
6066 bitmap_clear (vr0->equiv);
227858d1 6067
32c8bce7 6068 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
0bca51f0
DN
6069 }
6070 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6071 {
32c8bce7
DS
6072 /* Two anti-ranges meet only if their complements intersect.
6073 Only handle the case of identical ranges. */
0bca51f0
DN
6074 if (compare_values (vr0->min, vr1->min) == 0
6075 && compare_values (vr0->max, vr1->max) == 0
6076 && compare_values (vr0->min, vr0->max) == 0)
227858d1 6077 {
8ab5f5c9 6078 /* The resulting set of equivalences is the intersection of
227858d1
DN
6079 the two sets. */
6080 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6081 bitmap_and_into (vr0->equiv, vr1->equiv);
880031e1
JL
6082 else if (vr0->equiv && !vr1->equiv)
6083 bitmap_clear (vr0->equiv);
227858d1 6084 }
0bca51f0 6085 else
32c8bce7 6086 goto give_up;
0bca51f0
DN
6087 }
6088 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6089 {
32c8bce7
DS
6090 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6091 only handle the case where the ranges have an empty intersection.
6092 The result of the meet operation is the anti-range. */
227858d1
DN
6093 if (!symbolic_range_p (vr0)
6094 && !symbolic_range_p (vr1)
6095 && !value_ranges_intersect_p (vr0, vr1))
0bca51f0 6096 {
2d33a2ef
DN
6097 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6098 set. We need to compute the intersection of the two
6099 equivalence sets. */
0bca51f0 6100 if (vr1->type == VR_ANTI_RANGE)
2d33a2ef 6101 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
880031e1
JL
6102
6103 /* The resulting set of equivalences is the intersection of
6104 the two sets. */
6105 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6106 bitmap_and_into (vr0->equiv, vr1->equiv);
6107 else if (vr0->equiv && !vr1->equiv)
6108 bitmap_clear (vr0->equiv);
0bca51f0
DN
6109 }
6110 else
32c8bce7 6111 goto give_up;
0bca51f0
DN
6112 }
6113 else
6114 gcc_unreachable ();
227858d1
DN
6115
6116 return;
6117
32c8bce7
DS
6118give_up:
6119 /* Failed to find an efficient meet. Before giving up and setting
6120 the result to VARYING, see if we can at least derive a useful
6121 anti-range. FIXME, all this nonsense about distinguishing
b19bb8b0
DN
6122 anti-ranges from ranges is necessary because of the odd
6123 semantics of range_includes_zero_p and friends. */
227858d1 6124 if (!symbolic_range_p (vr0)
b19bb8b0
DN
6125 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6126 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
227858d1 6127 && !symbolic_range_p (vr1)
b19bb8b0
DN
6128 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6129 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
e82d7e60
DN
6130 {
6131 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6132
6133 /* Since this meet operation did not result from the meeting of
6134 two equivalent names, VR0 cannot have any equivalences. */
6135 if (vr0->equiv)
6136 bitmap_clear (vr0->equiv);
6137 }
227858d1
DN
6138 else
6139 set_value_range_to_varying (vr0);
0bca51f0
DN
6140}
6141
227858d1 6142
0bca51f0
DN
6143/* Visit all arguments for PHI node PHI that flow through executable
6144 edges. If a valid value range can be derived from all the incoming
6145 value ranges, set a new range for the LHS of PHI. */
6146
6147static enum ssa_prop_result
726a989a 6148vrp_visit_phi_node (gimple phi)
0bca51f0 6149{
726a989a 6150 size_t i;
0bca51f0 6151 tree lhs = PHI_RESULT (phi);
227858d1
DN
6152 value_range_t *lhs_vr = get_value_range (lhs);
6153 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
fc6827fe 6154 int edges, old_edges;
227858d1
DN
6155
6156 copy_value_range (&vr_result, lhs_vr);
0bca51f0
DN
6157
6158 if (dump_file && (dump_flags & TDF_DETAILS))
6159 {
6160 fprintf (dump_file, "\nVisiting PHI node: ");
726a989a 6161 print_gimple_stmt (dump_file, phi, 0, dump_flags);
0bca51f0
DN
6162 }
6163
fc6827fe 6164 edges = 0;
726a989a 6165 for (i = 0; i < gimple_phi_num_args (phi); i++)
0bca51f0 6166 {
726a989a 6167 edge e = gimple_phi_arg_edge (phi, i);
0bca51f0
DN
6168
6169 if (dump_file && (dump_flags & TDF_DETAILS))
6170 {
6171 fprintf (dump_file,
6172 "\n Argument #%d (%d -> %d %sexecutable)\n",
726a989a 6173 (int) i, e->src->index, e->dest->index,
0bca51f0
DN
6174 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6175 }
6176
6177 if (e->flags & EDGE_EXECUTABLE)
6178 {
6179 tree arg = PHI_ARG_DEF (phi, i);
227858d1 6180 value_range_t vr_arg;
0bca51f0 6181
fc6827fe
ILT
6182 ++edges;
6183
0bca51f0 6184 if (TREE_CODE (arg) == SSA_NAME)
31ab1cc9
RG
6185 {
6186 vr_arg = *(get_value_range (arg));
31ab1cc9 6187 }
0bca51f0
DN
6188 else
6189 {
8cf781f0
ILT
6190 if (is_overflow_infinity (arg))
6191 {
6192 arg = copy_node (arg);
6193 TREE_OVERFLOW (arg) = 0;
6194 }
6195
0bca51f0
DN
6196 vr_arg.type = VR_RANGE;
6197 vr_arg.min = arg;
6198 vr_arg.max = arg;
227858d1 6199 vr_arg.equiv = NULL;
0bca51f0
DN
6200 }
6201
6202 if (dump_file && (dump_flags & TDF_DETAILS))
6203 {
6204 fprintf (dump_file, "\t");
6205 print_generic_expr (dump_file, arg, dump_flags);
6206 fprintf (dump_file, "\n\tValue: ");
6207 dump_value_range (dump_file, &vr_arg);
6208 fprintf (dump_file, "\n");
6209 }
6210
6211 vrp_meet (&vr_result, &vr_arg);
6212
6213 if (vr_result.type == VR_VARYING)
6214 break;
6215 }
6216 }
6217
6218 if (vr_result.type == VR_VARYING)
227858d1 6219 goto varying;
0bca51f0 6220
fc6827fe
ILT
6221 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6222 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6223
0bca51f0
DN
6224 /* To prevent infinite iterations in the algorithm, derive ranges
6225 when the new value is slightly bigger or smaller than the
fc6827fe
ILT
6226 previous one. We don't do this if we have seen a new executable
6227 edge; this helps us avoid an overflow infinity for conditionals
6228 which are not in a loop. */
31ab1cc9 6229 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
fc6827fe 6230 && edges <= old_edges)
0bca51f0
DN
6231 {
6232 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
6233 {
6234 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6235 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6236
6237 /* If the new minimum is smaller or larger than the previous
6238 one, go all the way to -INF. In the first case, to avoid
6239 iterating millions of times to reach -INF, and in the
6240 other case to avoid infinite bouncing between different
6241 minimums. */
6242 if (cmp_min > 0 || cmp_min < 0)
12df8a7e
ILT
6243 {
6244 /* If we will end up with a (-INF, +INF) range, set it
6245 to VARYING. */
e1f28918 6246 if (vrp_val_is_max (vr_result.max))
12df8a7e
ILT
6247 goto varying;
6248
9a46cc16
ILT
6249 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6250 || !vrp_var_may_overflow (lhs, phi))
12df8a7e
ILT
6251 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6252 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6253 vr_result.min =
6254 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6255 else
6256 goto varying;
6257 }
0bca51f0
DN
6258
6259 /* Similarly, if the new maximum is smaller or larger than
6260 the previous one, go all the way to +INF. */
6261 if (cmp_max < 0 || cmp_max > 0)
12df8a7e
ILT
6262 {
6263 /* If we will end up with a (-INF, +INF) range, set it
6264 to VARYING. */
e1f28918 6265 if (vrp_val_is_min (vr_result.min))
12df8a7e
ILT
6266 goto varying;
6267
9a46cc16
ILT
6268 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6269 || !vrp_var_may_overflow (lhs, phi))
12df8a7e
ILT
6270 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6271 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6272 vr_result.max =
6273 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6274 else
6275 goto varying;
6276 }
0bca51f0
DN
6277 }
6278 }
6279
6280 /* If the new range is different than the previous value, keep
6281 iterating. */
227858d1 6282 if (update_value_range (lhs, &vr_result))
0bca51f0
DN
6283 return SSA_PROP_INTERESTING;
6284
6285 /* Nothing changed, don't add outgoing edges. */
6286 return SSA_PROP_NOT_INTERESTING;
227858d1
DN
6287
6288 /* No match found. Set the LHS to VARYING. */
6289varying:
6290 set_value_range_to_varying (lhs_vr);
6291 return SSA_PROP_VARYING;
0bca51f0
DN
6292}
6293
30821654
PB
6294/* Simplify boolean operations if the source is known
6295 to be already a boolean. */
6296static bool
6297simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6298{
6299 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6300 tree val = NULL;
6301 tree op0, op1;
6302 value_range_t *vr;
6303 bool sop = false;
6304 bool need_conversion;
6305
6306 op0 = gimple_assign_rhs1 (stmt);
30821654
PB
6307 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6308 {
61b70fcb
JJ
6309 if (TREE_CODE (op0) != SSA_NAME)
6310 return false;
6311 vr = get_value_range (op0);
6312
30821654
PB
6313 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6314 if (!val || !integer_onep (val))
6315 return false;
6316
6317 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6318 if (!val || !integer_onep (val))
6319 return false;
6320 }
6321
6322 if (rhs_code == TRUTH_NOT_EXPR)
6323 {
6324 rhs_code = NE_EXPR;
29442589 6325 op1 = build_int_cst (TREE_TYPE (op0), 1);
30821654 6326 }
30821654
PB
6327 else
6328 {
6329 op1 = gimple_assign_rhs2 (stmt);
6330
6331 /* Reduce number of cases to handle. */
6332 if (is_gimple_min_invariant (op1))
6333 {
6334 /* Exclude anything that should have been already folded. */
61b70fcb
JJ
6335 if (rhs_code != EQ_EXPR
6336 && rhs_code != NE_EXPR
6337 && rhs_code != TRUTH_XOR_EXPR)
6338 return false;
6339
6340 if (!integer_zerop (op1)
6341 && !integer_onep (op1)
6342 && !integer_all_onesp (op1))
6343 return false;
30821654
PB
6344
6345 /* Limit the number of cases we have to consider. */
6346 if (rhs_code == EQ_EXPR)
6347 {
6348 rhs_code = NE_EXPR;
6349 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6350 }
6351 }
6352 else
6353 {
6354 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6355 if (rhs_code == EQ_EXPR)
6356 return false;
6357
6358 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6359 {
6360 vr = get_value_range (op1);
6361 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6362 if (!val || !integer_onep (val))
6363 return false;
6364
6365 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6366 if (!val || !integer_onep (val))
6367 return false;
6368 }
6369 }
6370 }
6371
6372 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6373 {
6374 location_t location;
6375
6376 if (!gimple_has_location (stmt))
6377 location = input_location;
6378 else
6379 location = gimple_location (stmt);
6380
6381 if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
6382 warning_at (location, OPT_Wstrict_overflow,
6383 _("assuming signed overflow does not occur when "
6384 "simplifying && or || to & or |"));
6385 else
6386 warning_at (location, OPT_Wstrict_overflow,
6387 _("assuming signed overflow does not occur when "
6388 "simplifying ==, != or ! to identity or ^"));
6389 }
6390
6391 need_conversion =
6392 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6393 TREE_TYPE (op0));
6394
6395 switch (rhs_code)
6396 {
6397 case TRUTH_AND_EXPR:
6398 rhs_code = BIT_AND_EXPR;
6399 break;
6400 case TRUTH_OR_EXPR:
6401 rhs_code = BIT_IOR_EXPR;
6402 break;
6403 case TRUTH_XOR_EXPR:
6404 case NE_EXPR:
6405 if (integer_zerop (op1))
6406 {
6407 gimple_assign_set_rhs_with_ops (gsi,
6408 need_conversion ? NOP_EXPR : SSA_NAME,
6409 op0, NULL);
6410 update_stmt (gsi_stmt (*gsi));
6411 return true;
6412 }
6413
6414 rhs_code = BIT_XOR_EXPR;
6415 break;
6416 default:
6417 gcc_unreachable ();
6418 }
6419
6420 if (need_conversion)
6421 return false;
6422
6423 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6424 update_stmt (gsi_stmt (*gsi));
6425 return true;
6426}
6427
1a557723
JL
6428/* Simplify a division or modulo operator to a right shift or
6429 bitwise and if the first operand is unsigned or is greater
6430 than zero and the second operand is an exact power of two. */
a513fe88 6431
30821654 6432static bool
726a989a 6433simplify_div_or_mod_using_ranges (gimple stmt)
a513fe88 6434{
726a989a 6435 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
1a557723 6436 tree val = NULL;
726a989a
RB
6437 tree op0 = gimple_assign_rhs1 (stmt);
6438 tree op1 = gimple_assign_rhs2 (stmt);
6439 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
a513fe88 6440
726a989a 6441 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
1a557723
JL
6442 {
6443 val = integer_one_node;
6444 }
6445 else
6446 {
12df8a7e
ILT
6447 bool sop = false;
6448
737b0891 6449 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
0c948c27
ILT
6450
6451 if (val
6452 && sop
6453 && integer_onep (val)
6454 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6455 {
726a989a 6456 location_t location;
0c948c27 6457
726a989a
RB
6458 if (!gimple_has_location (stmt))
6459 location = input_location;
0c948c27 6460 else
726a989a 6461 location = gimple_location (stmt);
0c948c27
ILT
6462 warning (OPT_Wstrict_overflow,
6463 ("%Hassuming signed overflow does not occur when "
6464 "simplifying / or %% to >> or &"),
726a989a 6465 &location);
0c948c27 6466 }
1a557723
JL
6467 }
6468
6469 if (val && integer_onep (val))
a513fe88 6470 {
1a557723 6471 tree t;
a513fe88 6472
1a557723
JL
6473 if (rhs_code == TRUNC_DIV_EXPR)
6474 {
6475 t = build_int_cst (NULL_TREE, tree_log2 (op1));
726a989a
RB
6476 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6477 gimple_assign_set_rhs1 (stmt, op0);
6478 gimple_assign_set_rhs2 (stmt, t);
1a557723
JL
6479 }
6480 else
a513fe88 6481 {
1a557723
JL
6482 t = build_int_cst (TREE_TYPE (op1), 1);
6483 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6484 t = fold_convert (TREE_TYPE (op0), t);
726a989a
RB
6485
6486 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6487 gimple_assign_set_rhs1 (stmt, op0);
6488 gimple_assign_set_rhs2 (stmt, t);
1a557723
JL
6489 }
6490
1a557723 6491 update_stmt (stmt);
30821654 6492 return true;
1a557723 6493 }
30821654
PB
6494
6495 return false;
1a557723 6496}
a513fe88 6497
1a557723
JL
6498/* If the operand to an ABS_EXPR is >= 0, then eliminate the
6499 ABS_EXPR. If the operand is <= 0, then simplify the
6500 ABS_EXPR into a NEGATE_EXPR. */
6501
30821654 6502static bool
726a989a 6503simplify_abs_using_ranges (gimple stmt)
1a557723
JL
6504{
6505 tree val = NULL;
726a989a 6506 tree op = gimple_assign_rhs1 (stmt);
1a557723 6507 tree type = TREE_TYPE (op);
726a989a 6508 value_range_t *vr = get_value_range (op);
1a557723
JL
6509
6510 if (TYPE_UNSIGNED (type))
6511 {
6512 val = integer_zero_node;
6513 }
6514 else if (vr)
6515 {
12df8a7e
ILT
6516 bool sop = false;
6517
6518 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
1a557723
JL
6519 if (!val)
6520 {
12df8a7e
ILT
6521 sop = false;
6522 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6523 &sop);
1a557723
JL
6524
6525 if (val)
a513fe88 6526 {
1a557723
JL
6527 if (integer_zerop (val))
6528 val = integer_one_node;
6529 else if (integer_onep (val))
6530 val = integer_zero_node;
6531 }
6532 }
a513fe88 6533
1a557723
JL
6534 if (val
6535 && (integer_onep (val) || integer_zerop (val)))
6536 {
0c948c27
ILT
6537 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6538 {
726a989a 6539 location_t location;
0c948c27 6540
726a989a
RB
6541 if (!gimple_has_location (stmt))
6542 location = input_location;
0c948c27 6543 else
726a989a 6544 location = gimple_location (stmt);
0c948c27
ILT
6545 warning (OPT_Wstrict_overflow,
6546 ("%Hassuming signed overflow does not occur when "
6547 "simplifying abs (X) to X or -X"),
726a989a 6548 &location);
0c948c27
ILT
6549 }
6550
726a989a 6551 gimple_assign_set_rhs1 (stmt, op);
1a557723 6552 if (integer_onep (val))
726a989a 6553 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
1a557723 6554 else
726a989a 6555 gimple_assign_set_rhs_code (stmt, SSA_NAME);
1a557723 6556 update_stmt (stmt);
30821654 6557 return true;
1a557723
JL
6558 }
6559 }
30821654
PB
6560
6561 return false;
1a557723
JL
6562}
6563
d579f20b
JL
6564/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6565 a known value range VR.
6566
6567 If there is one and only one value which will satisfy the
6568 conditional, then return that value. Else return NULL. */
6569
6570static tree
6571test_for_singularity (enum tree_code cond_code, tree op0,
6572 tree op1, value_range_t *vr)
6573{
6574 tree min = NULL;
6575 tree max = NULL;
6576
6577 /* Extract minimum/maximum values which satisfy the
6578 the conditional as it was written. */
6579 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
6580 {
12df8a7e
ILT
6581 /* This should not be negative infinity; there is no overflow
6582 here. */
d579f20b
JL
6583 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
6584
6585 max = op1;
12df8a7e 6586 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
d579f20b
JL
6587 {
6588 tree one = build_int_cst (TREE_TYPE (op0), 1);
a5ad7269 6589 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
3fe5bcaf
ILT
6590 if (EXPR_P (max))
6591 TREE_NO_WARNING (max) = 1;
d579f20b
JL
6592 }
6593 }
6594 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
6595 {
12df8a7e
ILT
6596 /* This should not be positive infinity; there is no overflow
6597 here. */
d579f20b
JL
6598 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
6599
6600 min = op1;
12df8a7e 6601 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
d579f20b
JL
6602 {
6603 tree one = build_int_cst (TREE_TYPE (op0), 1);
f9fe7aed 6604 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
3fe5bcaf
ILT
6605 if (EXPR_P (min))
6606 TREE_NO_WARNING (min) = 1;
d579f20b
JL
6607 }
6608 }
6609
6610 /* Now refine the minimum and maximum values using any
6611 value range information we have for op0. */
6612 if (min && max)
6613 {
6614 if (compare_values (vr->min, min) == -1)
6615 min = min;
6616 else
6617 min = vr->min;
6618 if (compare_values (vr->max, max) == 1)
6619 max = max;
6620 else
6621 max = vr->max;
6622
f9fe7aed
JL
6623 /* If the new min/max values have converged to a single value,
6624 then there is only one value which can satisfy the condition,
6625 return that value. */
6626 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
d579f20b
JL
6627 return min;
6628 }
6629 return NULL;
6630}
6631
1a557723
JL
6632/* Simplify a conditional using a relational operator to an equality
6633 test if the range information indicates only one value can satisfy
6634 the original conditional. */
6635
30821654 6636static bool
726a989a 6637simplify_cond_using_ranges (gimple stmt)
1a557723 6638{
726a989a
RB
6639 tree op0 = gimple_cond_lhs (stmt);
6640 tree op1 = gimple_cond_rhs (stmt);
6641 enum tree_code cond_code = gimple_cond_code (stmt);
1a557723
JL
6642
6643 if (cond_code != NE_EXPR
6644 && cond_code != EQ_EXPR
6645 && TREE_CODE (op0) == SSA_NAME
6646 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
6647 && is_gimple_min_invariant (op1))
6648 {
6649 value_range_t *vr = get_value_range (op0);
6650
6651 /* If we have range information for OP0, then we might be
6652 able to simplify this conditional. */
6653 if (vr->type == VR_RANGE)
6654 {
82d6e6fc 6655 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
1a557723 6656
82d6e6fc 6657 if (new_tree)
1a557723 6658 {
d579f20b 6659 if (dump_file)
1a557723 6660 {
d579f20b 6661 fprintf (dump_file, "Simplified relational ");
726a989a 6662 print_gimple_stmt (dump_file, stmt, 0, 0);
d579f20b 6663 fprintf (dump_file, " into ");
a513fe88
JL
6664 }
6665
726a989a
RB
6666 gimple_cond_set_code (stmt, EQ_EXPR);
6667 gimple_cond_set_lhs (stmt, op0);
82d6e6fc 6668 gimple_cond_set_rhs (stmt, new_tree);
726a989a 6669
d579f20b
JL
6670 update_stmt (stmt);
6671
6672 if (dump_file)
a513fe88 6673 {
726a989a 6674 print_gimple_stmt (dump_file, stmt, 0, 0);
d579f20b 6675 fprintf (dump_file, "\n");
a513fe88 6676 }
d579f20b 6677
30821654 6678 return true;
a513fe88
JL
6679 }
6680
d579f20b
JL
6681 /* Try again after inverting the condition. We only deal
6682 with integral types here, so no need to worry about
6683 issues with inverting FP comparisons. */
6684 cond_code = invert_tree_comparison (cond_code, false);
82d6e6fc 6685 new_tree = test_for_singularity (cond_code, op0, op1, vr);
d579f20b 6686
82d6e6fc 6687 if (new_tree)
1a557723 6688 {
d579f20b 6689 if (dump_file)
1a557723 6690 {
d579f20b 6691 fprintf (dump_file, "Simplified relational ");
726a989a 6692 print_gimple_stmt (dump_file, stmt, 0, 0);
d579f20b 6693 fprintf (dump_file, " into ");
1a557723 6694 }
d579f20b 6695
726a989a
RB
6696 gimple_cond_set_code (stmt, NE_EXPR);
6697 gimple_cond_set_lhs (stmt, op0);
82d6e6fc 6698 gimple_cond_set_rhs (stmt, new_tree);
726a989a 6699
d579f20b
JL
6700 update_stmt (stmt);
6701
6702 if (dump_file)
6703 {
726a989a 6704 print_gimple_stmt (dump_file, stmt, 0, 0);
d579f20b
JL
6705 fprintf (dump_file, "\n");
6706 }
d579f20b 6707
30821654 6708 return true;
1a557723 6709 }
a513fe88
JL
6710 }
6711 }
30821654
PB
6712
6713 return false;
a513fe88
JL
6714}
6715
b7814a18
RG
6716/* Simplify a switch statement using the value range of the switch
6717 argument. */
6718
30821654 6719static bool
726a989a 6720simplify_switch_using_ranges (gimple stmt)
b7814a18 6721{
726a989a 6722 tree op = gimple_switch_index (stmt);
b7814a18
RG
6723 value_range_t *vr;
6724 bool take_default;
6725 edge e;
6726 edge_iterator ei;
6727 size_t i = 0, j = 0, n, n2;
726a989a 6728 tree vec2;
b7814a18
RG
6729 switch_update su;
6730
6731 if (TREE_CODE (op) != SSA_NAME)
30821654 6732 return false;
b7814a18
RG
6733
6734 vr = get_value_range (op);
6735
6736 /* We can only handle integer ranges. */
6737 if (vr->type != VR_RANGE
6738 || symbolic_range_p (vr))
30821654 6739 return false;
b7814a18
RG
6740
6741 /* Find case label for min/max of the value range. */
726a989a
RB
6742 n = gimple_switch_num_labels (stmt);
6743 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
b7814a18
RG
6744
6745 /* Bail out if this is just all edges taken. */
726a989a
RB
6746 if (i == 1
6747 && j == n - 1
b7814a18 6748 && take_default)
30821654 6749 return false;
b7814a18
RG
6750
6751 /* Build a new vector of taken case labels. */
6752 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
726a989a 6753 n2 = 0;
b7814a18
RG
6754
6755 /* Add the default edge, if necessary. */
6756 if (take_default)
726a989a
RB
6757 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
6758
6759 for (; i <= j; ++i, ++n2)
6760 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
b7814a18
RG
6761
6762 /* Mark needed edges. */
6763 for (i = 0; i < n2; ++i)
6764 {
726a989a 6765 e = find_edge (gimple_bb (stmt),
b7814a18
RG
6766 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
6767 e->aux = (void *)-1;
6768 }
6769
6770 /* Queue not needed edges for later removal. */
726a989a 6771 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
b7814a18
RG
6772 {
6773 if (e->aux == (void *)-1)
6774 {
6775 e->aux = NULL;
6776 continue;
6777 }
6778
6779 if (dump_file && (dump_flags & TDF_DETAILS))
6780 {
6781 fprintf (dump_file, "removing unreachable case label\n");
6782 }
6783 VEC_safe_push (edge, heap, to_remove_edges, e);
6784 }
6785
6786 /* And queue an update for the stmt. */
6787 su.stmt = stmt;
6788 su.vec = vec2;
6789 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
30821654 6790 return false;
b7814a18
RG
6791}
6792
1a557723
JL
6793/* Simplify STMT using ranges if possible. */
6794
30821654
PB
6795bool
6796simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
1a557723 6797{
30821654 6798 gimple stmt = gsi_stmt (*gsi);
726a989a 6799 if (is_gimple_assign (stmt))
1a557723 6800 {
726a989a 6801 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
1a557723 6802
30821654
PB
6803 switch (rhs_code)
6804 {
6805 case EQ_EXPR:
6806 case NE_EXPR:
6807 case TRUTH_NOT_EXPR:
6808 case TRUTH_AND_EXPR:
6809 case TRUTH_OR_EXPR:
6810 case TRUTH_XOR_EXPR:
6811 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
6812 or identity if the RHS is zero or one, and the LHS are known
6813 to be boolean values. Transform all TRUTH_*_EXPR into
6814 BIT_*_EXPR if both arguments are known to be boolean values. */
6815 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6816 return simplify_truth_ops_using_ranges (gsi, stmt);
6817 break;
6818
1a557723
JL
6819 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
6820 and BIT_AND_EXPR respectively if the first operand is greater
6821 than zero and the second operand is an exact power of two. */
30821654
PB
6822 case TRUNC_DIV_EXPR:
6823 case TRUNC_MOD_EXPR:
6824 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6825 && integer_pow2p (gimple_assign_rhs2 (stmt)))
6826 return simplify_div_or_mod_using_ranges (stmt);
6827 break;
1a557723
JL
6828
6829 /* Transform ABS (X) into X or -X as appropriate. */
30821654
PB
6830 case ABS_EXPR:
6831 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
6832 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6833 return simplify_abs_using_ranges (stmt);
6834 break;
6835
6836 default:
6837 break;
6838 }
1a557723 6839 }
726a989a 6840 else if (gimple_code (stmt) == GIMPLE_COND)
30821654 6841 return simplify_cond_using_ranges (stmt);
726a989a 6842 else if (gimple_code (stmt) == GIMPLE_SWITCH)
30821654
PB
6843 return simplify_switch_using_ranges (stmt);
6844
6845 return false;
1a557723
JL
6846}
6847
2090d6a0
JL
6848/* Stack of dest,src equivalency pairs that need to be restored after
6849 each attempt to thread a block's incoming edge to an outgoing edge.
6850
6851 A NULL entry is used to mark the end of pairs which need to be
6852 restored. */
6853static VEC(tree,heap) *stack;
6854
0c948c27
ILT
6855/* A trivial wrapper so that we can present the generic jump threading
6856 code with a simple API for simplifying statements. STMT is the
6857 statement we want to simplify, WITHIN_STMT provides the location
6858 for any overflow warnings. */
6859
2090d6a0 6860static tree
726a989a 6861simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
2090d6a0
JL
6862{
6863 /* We only use VRP information to simplify conditionals. This is
6864 overly conservative, but it's unclear if doing more would be
6865 worth the compile time cost. */
726a989a 6866 if (gimple_code (stmt) != GIMPLE_COND)
2090d6a0
JL
6867 return NULL;
6868
726a989a
RB
6869 return vrp_evaluate_conditional (gimple_cond_code (stmt),
6870 gimple_cond_lhs (stmt),
6871 gimple_cond_rhs (stmt), within_stmt);
2090d6a0
JL
6872}
6873
6874/* Blocks which have more than one predecessor and more than
fa10beec 6875 one successor present jump threading opportunities, i.e.,
2090d6a0
JL
6876 when the block is reached from a specific predecessor, we
6877 may be able to determine which of the outgoing edges will
6878 be traversed. When this optimization applies, we are able
6879 to avoid conditionals at runtime and we may expose secondary
6880 optimization opportunities.
6881
6882 This routine is effectively a driver for the generic jump
6883 threading code. It basically just presents the generic code
6884 with edges that may be suitable for jump threading.
6885
6886 Unlike DOM, we do not iterate VRP if jump threading was successful.
6887 While iterating may expose new opportunities for VRP, it is expected
6888 those opportunities would be very limited and the compile time cost
6889 to expose those opportunities would be significant.
6890
6891 As jump threading opportunities are discovered, they are registered
6892 for later realization. */
6893
6894static void
6895identify_jump_threads (void)
6896{
6897 basic_block bb;
726a989a 6898 gimple dummy;
b7814a18
RG
6899 int i;
6900 edge e;
2090d6a0
JL
6901
6902 /* Ugh. When substituting values earlier in this pass we can
6903 wipe the dominance information. So rebuild the dominator
6904 information as we need it within the jump threading code. */
6905 calculate_dominance_info (CDI_DOMINATORS);
6906
6907 /* We do not allow VRP information to be used for jump threading
6908 across a back edge in the CFG. Otherwise it becomes too
6909 difficult to avoid eliminating loop exit tests. Of course
6910 EDGE_DFS_BACK is not accurate at this time so we have to
6911 recompute it. */
6912 mark_dfs_back_edges ();
6913
b7814a18
RG
6914 /* Do not thread across edges we are about to remove. Just marking
6915 them as EDGE_DFS_BACK will do. */
6916 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
6917 e->flags |= EDGE_DFS_BACK;
6918
2090d6a0
JL
6919 /* Allocate our unwinder stack to unwind any temporary equivalences
6920 that might be recorded. */
6921 stack = VEC_alloc (tree, heap, 20);
6922
6923 /* To avoid lots of silly node creation, we create a single
6924 conditional and just modify it in-place when attempting to
6925 thread jumps. */
726a989a
RB
6926 dummy = gimple_build_cond (EQ_EXPR,
6927 integer_zero_node, integer_zero_node,
6928 NULL, NULL);
2090d6a0
JL
6929
6930 /* Walk through all the blocks finding those which present a
6931 potential jump threading opportunity. We could set this up
6932 as a dominator walker and record data during the walk, but
6933 I doubt it's worth the effort for the classes of jump
6934 threading opportunities we are trying to identify at this
6935 point in compilation. */
6936 FOR_EACH_BB (bb)
6937 {
726a989a 6938 gimple last;
2090d6a0
JL
6939
6940 /* If the generic jump threading code does not find this block
6941 interesting, then there is nothing to do. */
6942 if (! potentially_threadable_block (bb))
6943 continue;
6944
6945 /* We only care about blocks ending in a COND_EXPR. While there
6946 may be some value in handling SWITCH_EXPR here, I doubt it's
6947 terribly important. */
726a989a
RB
6948 last = gsi_stmt (gsi_last_bb (bb));
6949 if (gimple_code (last) != GIMPLE_COND)
2090d6a0
JL
6950 continue;
6951
6952 /* We're basically looking for any kind of conditional with
6953 integral type arguments. */
726a989a
RB
6954 if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
6955 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
6956 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
6957 || is_gimple_min_invariant (gimple_cond_rhs (last)))
6958 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
2090d6a0
JL
6959 {
6960 edge_iterator ei;
2090d6a0
JL
6961
6962 /* We've got a block with multiple predecessors and multiple
6963 successors which also ends in a suitable conditional. For
6964 each predecessor, see if we can thread it to a specific
6965 successor. */
6966 FOR_EACH_EDGE (e, ei, bb->preds)
6967 {
6968 /* Do not thread across back edges or abnormal edges
6969 in the CFG. */
6970 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
6971 continue;
6972
726a989a 6973 thread_across_edge (dummy, e, true, &stack,
2090d6a0
JL
6974 simplify_stmt_for_jump_threading);
6975 }
6976 }
6977 }
6978
6979 /* We do not actually update the CFG or SSA graphs at this point as
6980 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6981 handle ASSERT_EXPRs gracefully. */
6982}
6983
6984/* We identified all the jump threading opportunities earlier, but could
6985 not transform the CFG at that time. This routine transforms the
6986 CFG and arranges for the dominator tree to be rebuilt if necessary.
6987
6988 Note the SSA graph update will occur during the normal TODO
6989 processing by the pass manager. */
6990static void
6991finalize_jump_threads (void)
6992{
b02b9b53 6993 thread_through_all_blocks (false);
2090d6a0
JL
6994 VEC_free (tree, heap, stack);
6995}
1a557723 6996
0bca51f0
DN
6997
6998/* Traverse all the blocks folding conditionals with known ranges. */
6999
7000static void
7001vrp_finalize (void)
7002{
227858d1
DN
7003 size_t i;
7004 prop_value_t *single_val_range;
7005 bool do_value_subst_p;
0bca51f0
DN
7006
7007 if (dump_file)
7008 {
7009 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7010 dump_all_value_ranges (dump_file);
7011 fprintf (dump_file, "\n");
7012 }
7013
227858d1
DN
7014 /* We may have ended with ranges that have exactly one value. Those
7015 values can be substituted as any other copy/const propagated
7016 value using substitute_and_fold. */
b9eae1a9 7017 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
227858d1
DN
7018
7019 do_value_subst_p = false;
7020 for (i = 0; i < num_ssa_names; i++)
7021 if (vr_value[i]
7022 && vr_value[i]->type == VR_RANGE
7023 && vr_value[i]->min == vr_value[i]->max)
7024 {
7025 single_val_range[i].value = vr_value[i]->min;
7026 do_value_subst_p = true;
7027 }
7028
7029 if (!do_value_subst_p)
0bca51f0 7030 {
227858d1
DN
7031 /* We found no single-valued ranges, don't waste time trying to
7032 do single value substitution in substitute_and_fold. */
7033 free (single_val_range);
7034 single_val_range = NULL;
0bca51f0
DN
7035 }
7036
227858d1
DN
7037 substitute_and_fold (single_val_range, true);
7038
590b1f2d 7039 if (warn_array_bounds)
62e5bf5d 7040 check_all_array_refs ();
590b1f2d 7041
2090d6a0
JL
7042 /* We must identify jump threading opportunities before we release
7043 the datastructures built by VRP. */
7044 identify_jump_threads ();
7045
227858d1
DN
7046 /* Free allocated memory. */
7047 for (i = 0; i < num_ssa_names; i++)
7048 if (vr_value[i])
7049 {
7050 BITMAP_FREE (vr_value[i]->equiv);
7051 free (vr_value[i]);
7052 }
7053
7054 free (single_val_range);
7055 free (vr_value);
fc6827fe 7056 free (vr_phi_edge_counts);
b16caf72
JL
7057
7058 /* So that we can distinguish between VRP data being available
7059 and not available. */
7060 vr_value = NULL;
fc6827fe 7061 vr_phi_edge_counts = NULL;
0bca51f0
DN
7062}
7063
7064
7065/* Main entry point to VRP (Value Range Propagation). This pass is
7066 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7067 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7068 Programming Language Design and Implementation, pp. 67-78, 1995.
7069 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7070
7071 This is essentially an SSA-CCP pass modified to deal with ranges
7072 instead of constants.
7073
227858d1
DN
7074 While propagating ranges, we may find that two or more SSA name
7075 have equivalent, though distinct ranges. For instance,
7076
7077 1 x_9 = p_3->a;
7078 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7079 3 if (p_4 == q_2)
7080 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7081 5 endif
7082 6 if (q_2)
7083
7084 In the code above, pointer p_5 has range [q_2, q_2], but from the
7085 code we can also determine that p_5 cannot be NULL and, if q_2 had
7086 a non-varying range, p_5's range should also be compatible with it.
7087
8ab5f5c9 7088 These equivalences are created by two expressions: ASSERT_EXPR and
227858d1
DN
7089 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7090 result of another assertion, then we can use the fact that p_5 and
7091 p_4 are equivalent when evaluating p_5's range.
7092
8ab5f5c9 7093 Together with value ranges, we also propagate these equivalences
227858d1
DN
7094 between names so that we can take advantage of information from
7095 multiple ranges when doing final replacement. Note that this
7096 equivalency relation is transitive but not symmetric.
7097
7098 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7099 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7100 in contexts where that assertion does not hold (e.g., in line 6).
7101
0bca51f0
DN
7102 TODO, the main difference between this pass and Patterson's is that
7103 we do not propagate edge probabilities. We only compute whether
7104 edges can be taken or not. That is, instead of having a spectrum
7105 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7106 DON'T KNOW. In the future, it may be worthwhile to propagate
7107 probabilities to aid branch prediction. */
7108
c2924966 7109static unsigned int
0bca51f0
DN
7110execute_vrp (void)
7111{
b7814a18
RG
7112 int i;
7113 edge e;
7114 switch_update *su;
7115
b02b9b53 7116 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
d51157de
ZD
7117 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7118 scev_initialize ();
b02b9b53
ZD
7119
7120 insert_range_assertions ();
0bca51f0 7121
b7814a18
RG
7122 to_remove_edges = VEC_alloc (edge, heap, 10);
7123 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7124
227858d1
DN
7125 vrp_initialize ();
7126 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7127 vrp_finalize ();
0bca51f0 7128
2090d6a0
JL
7129 /* ASSERT_EXPRs must be removed before finalizing jump threads
7130 as finalizing jump threads calls the CFG cleanup code which
7131 does not properly handle ASSERT_EXPRs. */
0bca51f0 7132 remove_range_assertions ();
59c02d8a
JL
7133
7134 /* If we exposed any new variables, go ahead and put them into
7135 SSA form now, before we handle jump threading. This simplifies
7136 interactions between rewriting of _DECL nodes into SSA form
7137 and rewriting SSA_NAME nodes into SSA form after block
7138 duplication and CFG manipulation. */
7139 update_ssa (TODO_update_ssa);
7140
2090d6a0 7141 finalize_jump_threads ();
0a4bf1d3
RG
7142
7143 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7144 CFG in a broken state and requires a cfg_cleanup run. */
7145 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7146 remove_edge (e);
7147 /* Update SWITCH_EXPR case label vector. */
7148 for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
726a989a
RB
7149 {
7150 size_t j;
7151 size_t n = TREE_VEC_LENGTH (su->vec);
256f88c6 7152 tree label;
726a989a
RB
7153 gimple_switch_set_num_labels (su->stmt, n);
7154 for (j = 0; j < n; j++)
7155 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
256f88c6
RG
7156 /* As we may have replaced the default label with a regular one
7157 make sure to make it a real default label again. This ensures
7158 optimal expansion. */
7159 label = gimple_switch_default_label (su->stmt);
7160 CASE_LOW (label) = NULL_TREE;
7161 CASE_HIGH (label) = NULL_TREE;
726a989a 7162 }
0a4bf1d3
RG
7163
7164 if (VEC_length (edge, to_remove_edges) > 0)
82893cba 7165 free_dominance_info (CDI_DOMINATORS);
0a4bf1d3
RG
7166
7167 VEC_free (edge, heap, to_remove_edges);
7168 VEC_free (switch_update, heap, to_update_switch_stmts);
7169
d51157de
ZD
7170 scev_finalize ();
7171 loop_optimizer_finalize ();
c2924966 7172 return 0;
0bca51f0
DN
7173}
7174
7175static bool
7176gate_vrp (void)
7177{
7178 return flag_tree_vrp != 0;
7179}
7180
8ddbbcae 7181struct gimple_opt_pass pass_vrp =
0bca51f0 7182{
8ddbbcae
JH
7183 {
7184 GIMPLE_PASS,
0bca51f0
DN
7185 "vrp", /* name */
7186 gate_vrp, /* gate */
7187 execute_vrp, /* execute */
7188 NULL, /* sub */
7189 NULL, /* next */
7190 0, /* static_pass_number */
7191 TV_TREE_VRP, /* tv_id */
7192 PROP_ssa | PROP_alias, /* properties_required */
7193 0, /* properties_provided */
ae07b463 7194 0, /* properties_destroyed */
0bca51f0
DN
7195 0, /* todo_flags_start */
7196 TODO_cleanup_cfg
7197 | TODO_ggc_collect
7198 | TODO_verify_ssa
7199 | TODO_dump_func
8ddbbcae
JH
7200 | TODO_update_ssa /* todo_flags_finish */
7201 }
0bca51f0 7202};