]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-vrp.c
* MAINTAINERS: Update my email address.
[thirdparty/gcc.git] / gcc / tree-vrp.c
CommitLineData
0bca51f0 1/* Support routines for Value Range Propagation (VRP).
eeef0e45 2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
0bca51f0
DN
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9dcd6f09 9the Free Software Foundation; either version 3, or (at your option)
0bca51f0
DN
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
0bca51f0
DN
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "ggc.h"
26#include "flags.h"
27#include "tree.h"
28#include "basic-block.h"
29#include "tree-flow.h"
30#include "tree-pass.h"
31#include "tree-dump.h"
32#include "timevar.h"
33#include "diagnostic.h"
590b1f2d 34#include "toplev.h"
0c948c27 35#include "intl.h"
0bca51f0
DN
36#include "cfgloop.h"
37#include "tree-scalar-evolution.h"
38#include "tree-ssa-propagate.h"
39#include "tree-chrec.h"
40
41/* Set of SSA names found during the dominator traversal of a
227858d1
DN
42 sub-graph in find_assert_locations. */
43static sbitmap found_in_subgraph;
0bca51f0 44
0bca51f0
DN
45/* Local functions. */
46static int compare_values (tree val1, tree val2);
12df8a7e 47static int compare_values_warnv (tree val1, tree val2, bool *);
f255541f 48static void vrp_meet (value_range_t *, value_range_t *);
0c948c27 49static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
0bca51f0 50
227858d1
DN
51/* Location information for ASSERT_EXPRs. Each instance of this
52 structure describes an ASSERT_EXPR for an SSA name. Since a single
53 SSA name may have more than one assertion associated with it, these
54 locations are kept in a linked list attached to the corresponding
55 SSA name. */
56struct assert_locus_d
0bca51f0 57{
227858d1
DN
58 /* Basic block where the assertion would be inserted. */
59 basic_block bb;
60
61 /* Some assertions need to be inserted on an edge (e.g., assertions
62 generated by COND_EXPRs). In those cases, BB will be NULL. */
63 edge e;
64
65 /* Pointer to the statement that generated this assertion. */
66 block_stmt_iterator si;
67
68 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
69 enum tree_code comp_code;
70
71 /* Value being compared against. */
72 tree val;
73
74 /* Next node in the linked list. */
75 struct assert_locus_d *next;
76};
77
78typedef struct assert_locus_d *assert_locus_t;
79
80/* If bit I is present, it means that SSA name N_i has a list of
81 assertions that should be inserted in the IL. */
82static bitmap need_assert_for;
83
84/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
85 holds a list of ASSERT_LOCUS_T nodes that describe where
86 ASSERT_EXPRs for SSA name N_I should be inserted. */
87static assert_locus_t *asserts_for;
88
89/* Set of blocks visited in find_assert_locations. Used to avoid
90 visiting the same block more than once. */
91static sbitmap blocks_visited;
0bca51f0 92
227858d1
DN
93/* Value range array. After propagation, VR_VALUE[I] holds the range
94 of values that SSA name N_I may take. */
95static value_range_t **vr_value;
0bca51f0 96
fc6827fe
ILT
97/* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
98 number of executable edges we saw the last time we visited the
99 node. */
100static int *vr_phi_edge_counts;
101
0bca51f0 102
12df8a7e
ILT
103/* Return whether TYPE should use an overflow infinity distinct from
104 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
105 represent a signed overflow during VRP computations. An infinity
106 is distinct from a half-range, which will go from some number to
107 TYPE_{MIN,MAX}_VALUE. */
108
109static inline bool
58f9752a 110needs_overflow_infinity (const_tree type)
12df8a7e
ILT
111{
112 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
113}
114
115/* Return whether TYPE can support our overflow infinity
116 representation: we use the TREE_OVERFLOW flag, which only exists
117 for constants. If TYPE doesn't support this, we don't optimize
118 cases which would require signed overflow--we drop them to
119 VARYING. */
120
121static inline bool
58f9752a 122supports_overflow_infinity (const_tree type)
12df8a7e
ILT
123{
124#ifdef ENABLE_CHECKING
125 gcc_assert (needs_overflow_infinity (type));
126#endif
127 return (TYPE_MIN_VALUE (type) != NULL_TREE
128 && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
129 && TYPE_MAX_VALUE (type) != NULL_TREE
130 && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
131}
132
133/* VAL is the maximum or minimum value of a type. Return a
134 corresponding overflow infinity. */
135
136static inline tree
137make_overflow_infinity (tree val)
138{
139#ifdef ENABLE_CHECKING
140 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
141#endif
142 val = copy_node (val);
143 TREE_OVERFLOW (val) = 1;
144 return val;
145}
146
147/* Return a negative overflow infinity for TYPE. */
148
149static inline tree
150negative_overflow_infinity (tree type)
151{
152#ifdef ENABLE_CHECKING
153 gcc_assert (supports_overflow_infinity (type));
154#endif
155 return make_overflow_infinity (TYPE_MIN_VALUE (type));
156}
157
158/* Return a positive overflow infinity for TYPE. */
159
160static inline tree
161positive_overflow_infinity (tree type)
162{
163#ifdef ENABLE_CHECKING
164 gcc_assert (supports_overflow_infinity (type));
165#endif
166 return make_overflow_infinity (TYPE_MAX_VALUE (type));
167}
168
169/* Return whether VAL is a negative overflow infinity. */
170
171static inline bool
58f9752a 172is_negative_overflow_infinity (const_tree val)
12df8a7e
ILT
173{
174 return (needs_overflow_infinity (TREE_TYPE (val))
175 && CONSTANT_CLASS_P (val)
176 && TREE_OVERFLOW (val)
177 && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
178}
179
180/* Return whether VAL is a positive overflow infinity. */
181
182static inline bool
58f9752a 183is_positive_overflow_infinity (const_tree val)
12df8a7e
ILT
184{
185 return (needs_overflow_infinity (TREE_TYPE (val))
186 && CONSTANT_CLASS_P (val)
187 && TREE_OVERFLOW (val)
188 && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
189}
190
191/* Return whether VAL is a positive or negative overflow infinity. */
192
193static inline bool
58f9752a 194is_overflow_infinity (const_tree val)
12df8a7e
ILT
195{
196 return (needs_overflow_infinity (TREE_TYPE (val))
197 && CONSTANT_CLASS_P (val)
198 && TREE_OVERFLOW (val)
199 && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
200 || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
201}
202
b80cca7b
ILT
203/* If VAL is now an overflow infinity, return VAL. Otherwise, return
204 the same value with TREE_OVERFLOW clear. This can be used to avoid
205 confusing a regular value with an overflow value. */
206
207static inline tree
208avoid_overflow_infinity (tree val)
209{
210 if (!is_overflow_infinity (val))
211 return val;
212
213 if (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0))
214 return TYPE_MAX_VALUE (TREE_TYPE (val));
215 else
216 {
217#ifdef ENABLE_CHECKING
218 gcc_assert (operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
219#endif
220 return TYPE_MIN_VALUE (TREE_TYPE (val));
221 }
222}
223
12df8a7e 224
e1f28918
ILT
225/* Return whether VAL is equal to the maximum value of its type. This
226 will be true for a positive overflow infinity. We can't do a
227 simple equality comparison with TYPE_MAX_VALUE because C typedefs
228 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
229 to the integer constant with the same value in the type. */
230
231static inline bool
58f9752a 232vrp_val_is_max (const_tree val)
e1f28918
ILT
233{
234 tree type_max = TYPE_MAX_VALUE (TREE_TYPE (val));
235
236 return (val == type_max
237 || (type_max != NULL_TREE
238 && operand_equal_p (val, type_max, 0)));
239}
240
241/* Return whether VAL is equal to the minimum value of its type. This
242 will be true for a negative overflow infinity. */
243
244static inline bool
58f9752a 245vrp_val_is_min (const_tree val)
e1f28918
ILT
246{
247 tree type_min = TYPE_MIN_VALUE (TREE_TYPE (val));
248
249 return (val == type_min
250 || (type_min != NULL_TREE
251 && operand_equal_p (val, type_min, 0)));
252}
253
254
462508dd
DN
255/* Return true if ARG is marked with the nonnull attribute in the
256 current function signature. */
257
258static bool
58f9752a 259nonnull_arg_p (const_tree arg)
462508dd
DN
260{
261 tree t, attrs, fntype;
262 unsigned HOST_WIDE_INT arg_num;
263
264 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
265
7954dc21
AP
266 /* The static chain decl is always non null. */
267 if (arg == cfun->static_chain_decl)
268 return true;
269
462508dd
DN
270 fntype = TREE_TYPE (current_function_decl);
271 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
272
273 /* If "nonnull" wasn't specified, we know nothing about the argument. */
274 if (attrs == NULL_TREE)
275 return false;
276
277 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
278 if (TREE_VALUE (attrs) == NULL_TREE)
279 return true;
280
281 /* Get the position number for ARG in the function signature. */
282 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
283 t;
284 t = TREE_CHAIN (t), arg_num++)
285 {
286 if (t == arg)
287 break;
288 }
289
290 gcc_assert (t == arg);
291
292 /* Now see if ARG_NUM is mentioned in the nonnull list. */
293 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
294 {
295 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
296 return true;
297 }
298
299 return false;
300}
301
302
227858d1
DN
303/* Set value range VR to {T, MIN, MAX, EQUIV}. */
304
305static void
306set_value_range (value_range_t *vr, enum value_range_type t, tree min,
307 tree max, bitmap equiv)
0bca51f0
DN
308{
309#if defined ENABLE_CHECKING
227858d1 310 /* Check the validity of the range. */
0bca51f0
DN
311 if (t == VR_RANGE || t == VR_ANTI_RANGE)
312 {
313 int cmp;
314
315 gcc_assert (min && max);
316
317 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
e1f28918 318 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
0bca51f0
DN
319
320 cmp = compare_values (min, max);
321 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
8cf781f0
ILT
322
323 if (needs_overflow_infinity (TREE_TYPE (min)))
324 gcc_assert (!is_overflow_infinity (min)
325 || !is_overflow_infinity (max));
0bca51f0 326 }
0bca51f0 327
227858d1
DN
328 if (t == VR_UNDEFINED || t == VR_VARYING)
329 gcc_assert (min == NULL_TREE && max == NULL_TREE);
330
331 if (t == VR_UNDEFINED || t == VR_VARYING)
332 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
333#endif
0bca51f0
DN
334
335 vr->type = t;
336 vr->min = min;
337 vr->max = max;
227858d1
DN
338
339 /* Since updating the equivalence set involves deep copying the
340 bitmaps, only do it if absolutely necessary. */
f5052e29
RG
341 if (vr->equiv == NULL
342 && equiv != NULL)
227858d1
DN
343 vr->equiv = BITMAP_ALLOC (NULL);
344
345 if (equiv != vr->equiv)
346 {
347 if (equiv && !bitmap_empty_p (equiv))
348 bitmap_copy (vr->equiv, equiv);
349 else
350 bitmap_clear (vr->equiv);
351 }
0bca51f0
DN
352}
353
354
227858d1 355/* Copy value range FROM into value range TO. */
0bca51f0 356
227858d1
DN
357static inline void
358copy_value_range (value_range_t *to, value_range_t *from)
0bca51f0 359{
227858d1
DN
360 set_value_range (to, from->type, from->min, from->max, from->equiv);
361}
0bca51f0 362
12df8a7e
ILT
363
364/* Set value range VR to VR_VARYING. */
b16caf72
JL
365
366static inline void
12df8a7e 367set_value_range_to_varying (value_range_t *vr)
b16caf72 368{
12df8a7e
ILT
369 vr->type = VR_VARYING;
370 vr->min = vr->max = NULL_TREE;
371 if (vr->equiv)
372 bitmap_clear (vr->equiv);
373}
374
8cf781f0
ILT
375/* Set value range VR to a single value. This function is only called
376 with values we get from statements, and exists to clear the
377 TREE_OVERFLOW flag so that we don't think we have an overflow
378 infinity when we shouldn't. */
379
380static inline void
b60b4711 381set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
8cf781f0
ILT
382{
383 gcc_assert (is_gimple_min_invariant (val));
b80cca7b 384 val = avoid_overflow_infinity (val);
b60b4711 385 set_value_range (vr, VR_RANGE, val, val, equiv);
8cf781f0
ILT
386}
387
12df8a7e 388/* Set value range VR to a non-negative range of type TYPE.
110abdbc 389 OVERFLOW_INFINITY indicates whether to use an overflow infinity
12df8a7e
ILT
390 rather than TYPE_MAX_VALUE; this should be true if we determine
391 that the range is nonnegative based on the assumption that signed
392 overflow does not occur. */
393
394static inline void
395set_value_range_to_nonnegative (value_range_t *vr, tree type,
396 bool overflow_infinity)
397{
398 tree zero;
399
400 if (overflow_infinity && !supports_overflow_infinity (type))
401 {
402 set_value_range_to_varying (vr);
403 return;
404 }
405
406 zero = build_int_cst (type, 0);
407 set_value_range (vr, VR_RANGE, zero,
408 (overflow_infinity
409 ? positive_overflow_infinity (type)
410 : TYPE_MAX_VALUE (type)),
411 vr->equiv);
b16caf72 412}
227858d1
DN
413
414/* Set value range VR to a non-NULL range of type TYPE. */
415
416static inline void
417set_value_range_to_nonnull (value_range_t *vr, tree type)
418{
419 tree zero = build_int_cst (type, 0);
420 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
421}
422
423
424/* Set value range VR to a NULL range of type TYPE. */
425
426static inline void
427set_value_range_to_null (value_range_t *vr, tree type)
428{
b60b4711 429 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
227858d1
DN
430}
431
432
31ab1cc9
RG
433/* Set value range VR to a range of a truthvalue of type TYPE. */
434
435static inline void
436set_value_range_to_truthvalue (value_range_t *vr, tree type)
437{
438 if (TYPE_PRECISION (type) == 1)
439 set_value_range_to_varying (vr);
440 else
441 set_value_range (vr, VR_RANGE,
442 build_int_cst (type, 0), build_int_cst (type, 1),
443 vr->equiv);
444}
445
446
227858d1
DN
447/* Set value range VR to VR_UNDEFINED. */
448
449static inline void
450set_value_range_to_undefined (value_range_t *vr)
451{
452 vr->type = VR_UNDEFINED;
453 vr->min = vr->max = NULL_TREE;
454 if (vr->equiv)
455 bitmap_clear (vr->equiv);
0bca51f0
DN
456}
457
458
b16caf72
JL
459/* Return value range information for VAR.
460
461 If we have no values ranges recorded (ie, VRP is not running), then
462 return NULL. Otherwise create an empty range if none existed for VAR. */
0bca51f0 463
227858d1 464static value_range_t *
58f9752a 465get_value_range (const_tree var)
0bca51f0 466{
227858d1 467 value_range_t *vr;
0bca51f0 468 tree sym;
227858d1 469 unsigned ver = SSA_NAME_VERSION (var);
0bca51f0 470
b16caf72
JL
471 /* If we have no recorded ranges, then return NULL. */
472 if (! vr_value)
473 return NULL;
474
227858d1 475 vr = vr_value[ver];
0bca51f0
DN
476 if (vr)
477 return vr;
478
479 /* Create a default value range. */
b9eae1a9 480 vr_value[ver] = vr = XCNEW (value_range_t);
0bca51f0 481
f5052e29
RG
482 /* Defer allocating the equivalence set. */
483 vr->equiv = NULL;
227858d1
DN
484
485 /* If VAR is a default definition, the variable can take any value
486 in VAR's type. */
0bca51f0 487 sym = SSA_NAME_VAR (var);
cfaab3a9 488 if (SSA_NAME_IS_DEFAULT_DEF (var))
462508dd
DN
489 {
490 /* Try to use the "nonnull" attribute to create ~[0, 0]
491 anti-ranges for pointers. Note that this is only valid with
492 default definitions of PARM_DECLs. */
493 if (TREE_CODE (sym) == PARM_DECL
494 && POINTER_TYPE_P (TREE_TYPE (sym))
495 && nonnull_arg_p (sym))
496 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
497 else
498 set_value_range_to_varying (vr);
499 }
0bca51f0
DN
500
501 return vr;
502}
503
1ce35d26
RG
504/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
505
506static inline bool
58f9752a 507vrp_operand_equal_p (const_tree val1, const_tree val2)
1ce35d26 508{
12df8a7e
ILT
509 if (val1 == val2)
510 return true;
511 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
512 return false;
513 if (is_overflow_infinity (val1))
514 return is_overflow_infinity (val2);
515 return true;
1ce35d26
RG
516}
517
518/* Return true, if the bitmaps B1 and B2 are equal. */
519
520static inline bool
22ea9ec0 521vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
1ce35d26
RG
522{
523 return (b1 == b2
524 || (b1 && b2
525 && bitmap_equal_p (b1, b2)));
526}
0bca51f0 527
227858d1
DN
528/* Update the value range and equivalence set for variable VAR to
529 NEW_VR. Return true if NEW_VR is different from VAR's previous
530 value.
531
532 NOTE: This function assumes that NEW_VR is a temporary value range
533 object created for the sole purpose of updating VAR's range. The
534 storage used by the equivalence set from NEW_VR will be freed by
535 this function. Do not call update_value_range when NEW_VR
536 is the range object associated with another SSA name. */
0bca51f0
DN
537
538static inline bool
58f9752a 539update_value_range (const_tree var, value_range_t *new_vr)
0bca51f0 540{
227858d1
DN
541 value_range_t *old_vr;
542 bool is_new;
543
544 /* Update the value range, if necessary. */
545 old_vr = get_value_range (var);
546 is_new = old_vr->type != new_vr->type
1ce35d26
RG
547 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
548 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
549 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
0bca51f0 550
227858d1
DN
551 if (is_new)
552 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
553 new_vr->equiv);
0bca51f0 554
227858d1 555 BITMAP_FREE (new_vr->equiv);
0bca51f0 556
227858d1
DN
557 return is_new;
558}
0bca51f0 559
0bca51f0 560
f5052e29
RG
561/* Add VAR and VAR's equivalence set to EQUIV. This is the central
562 point where equivalence processing can be turned on/off. */
0bca51f0 563
227858d1 564static void
58f9752a 565add_equivalence (bitmap *equiv, const_tree var)
227858d1
DN
566{
567 unsigned ver = SSA_NAME_VERSION (var);
568 value_range_t *vr = vr_value[ver];
0bca51f0 569
f5052e29
RG
570 if (*equiv == NULL)
571 *equiv = BITMAP_ALLOC (NULL);
572 bitmap_set_bit (*equiv, ver);
227858d1 573 if (vr && vr->equiv)
f5052e29 574 bitmap_ior_into (*equiv, vr->equiv);
0bca51f0
DN
575}
576
577
578/* Return true if VR is ~[0, 0]. */
579
580static inline bool
227858d1 581range_is_nonnull (value_range_t *vr)
0bca51f0
DN
582{
583 return vr->type == VR_ANTI_RANGE
584 && integer_zerop (vr->min)
585 && integer_zerop (vr->max);
586}
587
588
589/* Return true if VR is [0, 0]. */
590
591static inline bool
227858d1 592range_is_null (value_range_t *vr)
0bca51f0
DN
593{
594 return vr->type == VR_RANGE
595 && integer_zerop (vr->min)
596 && integer_zerop (vr->max);
597}
598
599
227858d1 600/* Return true if value range VR involves at least one symbol. */
0bca51f0 601
227858d1
DN
602static inline bool
603symbolic_range_p (value_range_t *vr)
0bca51f0 604{
227858d1
DN
605 return (!is_gimple_min_invariant (vr->min)
606 || !is_gimple_min_invariant (vr->max));
0bca51f0
DN
607}
608
110abdbc 609/* Return true if value range VR uses an overflow infinity. */
b16caf72 610
12df8a7e
ILT
611static inline bool
612overflow_infinity_range_p (value_range_t *vr)
b16caf72 613{
12df8a7e
ILT
614 return (vr->type == VR_RANGE
615 && (is_overflow_infinity (vr->min)
616 || is_overflow_infinity (vr->max)));
617}
6ac01510 618
0c948c27
ILT
619/* Return false if we can not make a valid comparison based on VR;
620 this will be the case if it uses an overflow infinity and overflow
621 is not undefined (i.e., -fno-strict-overflow is in effect).
622 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
623 uses an overflow infinity. */
624
625static bool
626usable_range_p (value_range_t *vr, bool *strict_overflow_p)
627{
628 gcc_assert (vr->type == VR_RANGE);
629 if (is_overflow_infinity (vr->min))
630 {
631 *strict_overflow_p = true;
632 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
633 return false;
634 }
635 if (is_overflow_infinity (vr->max))
636 {
637 *strict_overflow_p = true;
638 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
639 return false;
640 }
641 return true;
642}
643
644
12df8a7e
ILT
645/* Like tree_expr_nonnegative_warnv_p, but this function uses value
646 ranges obtained so far. */
647
648static bool
649vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
650{
651 return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
b16caf72 652}
0bca51f0 653
12df8a7e 654/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
227858d1 655 obtained so far. */
0bca51f0 656
227858d1 657static bool
12df8a7e 658vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
0bca51f0 659{
12df8a7e 660 if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
227858d1 661 return true;
0bca51f0 662
227858d1
DN
663 /* If we have an expression of the form &X->a, then the expression
664 is nonnull if X is nonnull. */
665 if (TREE_CODE (expr) == ADDR_EXPR)
666 {
667 tree base = get_base_address (TREE_OPERAND (expr, 0));
0bca51f0 668
227858d1
DN
669 if (base != NULL_TREE
670 && TREE_CODE (base) == INDIRECT_REF
671 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
672 {
673 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
674 if (range_is_nonnull (vr))
675 return true;
676 }
677 }
b565d777 678
227858d1 679 return false;
b565d777
DN
680}
681
04dce5a4
ZD
682/* Returns true if EXPR is a valid value (as expected by compare_values) --
683 a gimple invariant, or SSA_NAME +- CST. */
684
685static bool
686valid_value_p (tree expr)
687{
688 if (TREE_CODE (expr) == SSA_NAME)
689 return true;
690
691 if (TREE_CODE (expr) == PLUS_EXPR
692 || TREE_CODE (expr) == MINUS_EXPR)
693 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
694 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
695
696 return is_gimple_min_invariant (expr);
697}
b565d777 698
6b3c76a9
JH
699/* Return
700 1 if VAL < VAL2
701 0 if !(VAL < VAL2)
702 -2 if those are incomparable. */
703static inline int
704operand_less_p (tree val, tree val2)
705{
6b3c76a9
JH
706 /* LT is folded faster than GE and others. Inline the common case. */
707 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
708 {
709 if (TYPE_UNSIGNED (TREE_TYPE (val)))
710 return INT_CST_LT_UNSIGNED (val, val2);
711 else
12df8a7e
ILT
712 {
713 if (INT_CST_LT (val, val2))
714 return 1;
715 }
6b3c76a9
JH
716 }
717 else
12df8a7e
ILT
718 {
719 tree tcmp;
720
c8539275
ILT
721 fold_defer_overflow_warnings ();
722
12df8a7e 723 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
c8539275
ILT
724
725 fold_undefer_and_ignore_overflow_warnings ();
726
12df8a7e
ILT
727 if (!tcmp)
728 return -2;
729
730 if (!integer_zerop (tcmp))
731 return 1;
732 }
733
734 /* val >= val2, not considering overflow infinity. */
735 if (is_negative_overflow_infinity (val))
736 return is_negative_overflow_infinity (val2) ? 0 : 1;
737 else if (is_positive_overflow_infinity (val2))
738 return is_positive_overflow_infinity (val) ? 0 : 1;
739
740 return 0;
6b3c76a9
JH
741}
742
0bca51f0
DN
743/* Compare two values VAL1 and VAL2. Return
744
745 -2 if VAL1 and VAL2 cannot be compared at compile-time,
746 -1 if VAL1 < VAL2,
747 0 if VAL1 == VAL2,
748 +1 if VAL1 > VAL2, and
749 +2 if VAL1 != VAL2
750
751 This is similar to tree_int_cst_compare but supports pointer values
12df8a7e
ILT
752 and values that cannot be compared at compile time.
753
754 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
755 true if the return value is only valid if we assume that signed
756 overflow is undefined. */
0bca51f0
DN
757
758static int
12df8a7e 759compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
0bca51f0
DN
760{
761 if (val1 == val2)
762 return 0;
763
30abf793
KH
764 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
765 both integers. */
766 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
767 == POINTER_TYPE_P (TREE_TYPE (val2)));
5be014d5
AP
768 /* Convert the two values into the same type. This is needed because
769 sizetype causes sign extension even for unsigned types. */
770 val2 = fold_convert (TREE_TYPE (val1), val2);
771 STRIP_USELESS_TYPE_CONVERSION (val2);
30abf793 772
0bca51f0
DN
773 if ((TREE_CODE (val1) == SSA_NAME
774 || TREE_CODE (val1) == PLUS_EXPR
775 || TREE_CODE (val1) == MINUS_EXPR)
776 && (TREE_CODE (val2) == SSA_NAME
777 || TREE_CODE (val2) == PLUS_EXPR
778 || TREE_CODE (val2) == MINUS_EXPR))
779 {
780 tree n1, c1, n2, c2;
67ac6e63 781 enum tree_code code1, code2;
0bca51f0
DN
782
783 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
784 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
785 same name, return -2. */
786 if (TREE_CODE (val1) == SSA_NAME)
787 {
67ac6e63 788 code1 = SSA_NAME;
0bca51f0
DN
789 n1 = val1;
790 c1 = NULL_TREE;
791 }
792 else
793 {
67ac6e63 794 code1 = TREE_CODE (val1);
0bca51f0
DN
795 n1 = TREE_OPERAND (val1, 0);
796 c1 = TREE_OPERAND (val1, 1);
67ac6e63
RG
797 if (tree_int_cst_sgn (c1) == -1)
798 {
12df8a7e
ILT
799 if (is_negative_overflow_infinity (c1))
800 return -2;
67ac6e63
RG
801 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
802 if (!c1)
803 return -2;
804 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
805 }
0bca51f0
DN
806 }
807
808 if (TREE_CODE (val2) == SSA_NAME)
809 {
67ac6e63 810 code2 = SSA_NAME;
0bca51f0
DN
811 n2 = val2;
812 c2 = NULL_TREE;
813 }
814 else
815 {
67ac6e63 816 code2 = TREE_CODE (val2);
0bca51f0
DN
817 n2 = TREE_OPERAND (val2, 0);
818 c2 = TREE_OPERAND (val2, 1);
67ac6e63
RG
819 if (tree_int_cst_sgn (c2) == -1)
820 {
12df8a7e
ILT
821 if (is_negative_overflow_infinity (c2))
822 return -2;
67ac6e63
RG
823 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
824 if (!c2)
825 return -2;
826 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
827 }
0bca51f0
DN
828 }
829
830 /* Both values must use the same name. */
831 if (n1 != n2)
832 return -2;
833
67ac6e63
RG
834 if (code1 == SSA_NAME
835 && code2 == SSA_NAME)
836 /* NAME == NAME */
837 return 0;
838
839 /* If overflow is defined we cannot simplify more. */
eeef0e45 840 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
67ac6e63
RG
841 return -2;
842
3fe5bcaf
ILT
843 if (strict_overflow_p != NULL
844 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
845 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
12df8a7e
ILT
846 *strict_overflow_p = true;
847
67ac6e63 848 if (code1 == SSA_NAME)
0bca51f0 849 {
67ac6e63 850 if (code2 == PLUS_EXPR)
0bca51f0
DN
851 /* NAME < NAME + CST */
852 return -1;
67ac6e63 853 else if (code2 == MINUS_EXPR)
0bca51f0
DN
854 /* NAME > NAME - CST */
855 return 1;
856 }
67ac6e63 857 else if (code1 == PLUS_EXPR)
0bca51f0 858 {
67ac6e63 859 if (code2 == SSA_NAME)
0bca51f0
DN
860 /* NAME + CST > NAME */
861 return 1;
67ac6e63 862 else if (code2 == PLUS_EXPR)
0bca51f0 863 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
12df8a7e 864 return compare_values_warnv (c1, c2, strict_overflow_p);
67ac6e63 865 else if (code2 == MINUS_EXPR)
0bca51f0
DN
866 /* NAME + CST1 > NAME - CST2 */
867 return 1;
868 }
67ac6e63 869 else if (code1 == MINUS_EXPR)
0bca51f0 870 {
67ac6e63 871 if (code2 == SSA_NAME)
0bca51f0
DN
872 /* NAME - CST < NAME */
873 return -1;
67ac6e63 874 else if (code2 == PLUS_EXPR)
0bca51f0
DN
875 /* NAME - CST1 < NAME + CST2 */
876 return -1;
67ac6e63 877 else if (code2 == MINUS_EXPR)
0bca51f0
DN
878 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
879 C1 and C2 are swapped in the call to compare_values. */
12df8a7e 880 return compare_values_warnv (c2, c1, strict_overflow_p);
0bca51f0
DN
881 }
882
883 gcc_unreachable ();
884 }
885
886 /* We cannot compare non-constants. */
887 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
888 return -2;
889
30abf793 890 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
87f2a9f5 891 {
12df8a7e
ILT
892 /* We cannot compare overflowed values, except for overflow
893 infinities. */
87f2a9f5 894 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
12df8a7e 895 {
0c948c27
ILT
896 if (strict_overflow_p != NULL)
897 *strict_overflow_p = true;
12df8a7e
ILT
898 if (is_negative_overflow_infinity (val1))
899 return is_negative_overflow_infinity (val2) ? 0 : -1;
900 else if (is_negative_overflow_infinity (val2))
901 return 1;
902 else if (is_positive_overflow_infinity (val1))
903 return is_positive_overflow_infinity (val2) ? 0 : 1;
904 else if (is_positive_overflow_infinity (val2))
905 return -1;
906 return -2;
907 }
87f2a9f5
RS
908
909 return tree_int_cst_compare (val1, val2);
910 }
0bca51f0
DN
911 else
912 {
913 tree t;
914
915 /* First see if VAL1 and VAL2 are not the same. */
916 if (val1 == val2 || operand_equal_p (val1, val2, 0))
917 return 0;
918
919 /* If VAL1 is a lower address than VAL2, return -1. */
6b3c76a9 920 if (operand_less_p (val1, val2) == 1)
0bca51f0
DN
921 return -1;
922
923 /* If VAL1 is a higher address than VAL2, return +1. */
6b3c76a9 924 if (operand_less_p (val2, val1) == 1)
0bca51f0
DN
925 return 1;
926
5daffcc7
JH
927 /* If VAL1 is different than VAL2, return +2.
928 For integer constants we either have already returned -1 or 1
2e226e66
KH
929 or they are equivalent. We still might succeed in proving
930 something about non-trivial operands. */
5daffcc7
JH
931 if (TREE_CODE (val1) != INTEGER_CST
932 || TREE_CODE (val2) != INTEGER_CST)
933 {
934 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
935 if (t && tree_expr_nonzero_p (t))
936 return 2;
937 }
0bca51f0
DN
938
939 return -2;
940 }
941}
942
0c948c27
ILT
943/* Compare values like compare_values_warnv, but treat comparisons of
944 nonconstants which rely on undefined overflow as incomparable. */
12df8a7e
ILT
945
946static int
947compare_values (tree val1, tree val2)
948{
949 bool sop;
950 int ret;
951
952 sop = false;
953 ret = compare_values_warnv (val1, val2, &sop);
0c948c27
ILT
954 if (sop
955 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
12df8a7e
ILT
956 ret = -2;
957 return ret;
958}
959
0bca51f0
DN
960
961/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
962 0 if VAL is not inside VR,
c83033e7
DN
963 -2 if we cannot tell either way.
964
965 FIXME, the current semantics of this functions are a bit quirky
966 when taken in the context of VRP. In here we do not care
967 about VR's type. If VR is the anti-range ~[3, 5] the call
968 value_inside_range (4, VR) will return 1.
969
970 This is counter-intuitive in a strict sense, but the callers
971 currently expect this. They are calling the function
972 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
973 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
974 themselves.
975
976 This also applies to value_ranges_intersect_p and
977 range_includes_zero_p. The semantics of VR_RANGE and
978 VR_ANTI_RANGE should be encoded here, but that also means
6b3c76a9
JH
979 adapting the users of these functions to the new semantics.
980
981 Benchmark compile/20001226-1.c compilation time after changing this
982 function. */
0bca51f0
DN
983
984static inline int
6b3c76a9 985value_inside_range (tree val, value_range_t * vr)
0bca51f0 986{
6b3c76a9 987 int cmp1, cmp2;
0bca51f0 988
6b3c76a9
JH
989 cmp1 = operand_less_p (val, vr->min);
990 if (cmp1 == -2)
0bca51f0 991 return -2;
6b3c76a9
JH
992 if (cmp1 == 1)
993 return 0;
0bca51f0 994
6b3c76a9
JH
995 cmp2 = operand_less_p (vr->max, val);
996 if (cmp2 == -2)
0bca51f0
DN
997 return -2;
998
6b3c76a9 999 return !cmp2;
0bca51f0
DN
1000}
1001
1002
1003/* Return true if value ranges VR0 and VR1 have a non-empty
6b3c76a9
JH
1004 intersection.
1005
1006 Benchmark compile/20001226-1.c compilation time after changing this
1007 function.
1008 */
0bca51f0
DN
1009
1010static inline bool
227858d1 1011value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
0bca51f0 1012{
5daffcc7
JH
1013 /* The value ranges do not intersect if the maximum of the first range is
1014 less than the minimum of the second range or vice versa.
1015 When those relations are unknown, we can't do any better. */
1016 if (operand_less_p (vr0->max, vr1->min) != 0)
1017 return false;
1018 if (operand_less_p (vr1->max, vr0->min) != 0)
1019 return false;
1020 return true;
0bca51f0
DN
1021}
1022
1023
c83033e7
DN
1024/* Return true if VR includes the value zero, false otherwise. FIXME,
1025 currently this will return false for an anti-range like ~[-4, 3].
1026 This will be wrong when the semantics of value_inside_range are
1027 modified (currently the users of this function expect these
1028 semantics). */
227858d1
DN
1029
1030static inline bool
1031range_includes_zero_p (value_range_t *vr)
1032{
1033 tree zero;
1034
1035 gcc_assert (vr->type != VR_UNDEFINED
1036 && vr->type != VR_VARYING
1037 && !symbolic_range_p (vr));
1038
1039 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1040 return (value_inside_range (zero, vr) == 1);
1041}
1042
b16caf72
JL
1043/* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1044 false otherwise or if no value range information is available. */
1045
1046bool
58f9752a 1047ssa_name_nonnegative_p (const_tree t)
b16caf72
JL
1048{
1049 value_range_t *vr = get_value_range (t);
1050
1051 if (!vr)
1052 return false;
1053
1054 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1055 which would return a useful value should be encoded as a VR_RANGE. */
1056 if (vr->type == VR_RANGE)
1057 {
1058 int result = compare_values (vr->min, integer_zero_node);
1059
1060 return (result == 0 || result == 1);
1061 }
1062 return false;
1063}
1064
1065/* Return true if T, an SSA_NAME, is known to be nonzero. Return
1066 false otherwise or if no value range information is available. */
1067
1068bool
58f9752a 1069ssa_name_nonzero_p (const_tree t)
b16caf72
JL
1070{
1071 value_range_t *vr = get_value_range (t);
1072
1073 if (!vr)
1074 return false;
1075
1076 /* A VR_RANGE which does not include zero is a nonzero value. */
1077 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1078 return ! range_includes_zero_p (vr);
1079
1080 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1081 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1082 return range_includes_zero_p (vr);
1083
1084 return false;
1085}
1086
227858d1 1087
0bca51f0
DN
1088/* Extract value range information from an ASSERT_EXPR EXPR and store
1089 it in *VR_P. */
1090
1091static void
227858d1 1092extract_range_from_assert (value_range_t *vr_p, tree expr)
0bca51f0 1093{
227858d1
DN
1094 tree var, cond, limit, min, max, type;
1095 value_range_t *var_vr, *limit_vr;
b565d777 1096 enum tree_code cond_code;
0bca51f0
DN
1097
1098 var = ASSERT_EXPR_VAR (expr);
1099 cond = ASSERT_EXPR_COND (expr);
1100
7da4bf7d 1101 gcc_assert (COMPARISON_CLASS_P (cond));
0bca51f0
DN
1102
1103 /* Find VAR in the ASSERT_EXPR conditional. */
227858d1
DN
1104 if (var == TREE_OPERAND (cond, 0))
1105 {
1106 /* If the predicate is of the form VAR COMP LIMIT, then we just
1107 take LIMIT from the RHS and use the same comparison code. */
1108 limit = TREE_OPERAND (cond, 1);
1109 cond_code = TREE_CODE (cond);
1110 }
1111 else
1112 {
1113 /* If the predicate is of the form LIMIT COMP VAR, then we need
1114 to flip around the comparison code to create the proper range
1115 for VAR. */
1116 limit = TREE_OPERAND (cond, 0);
09b2f9e8 1117 cond_code = swap_tree_comparison (TREE_CODE (cond));
227858d1 1118 }
0bca51f0 1119
b80cca7b
ILT
1120 limit = avoid_overflow_infinity (limit);
1121
227858d1 1122 type = TREE_TYPE (limit);
0bca51f0
DN
1123 gcc_assert (limit != var);
1124
227858d1
DN
1125 /* For pointer arithmetic, we only keep track of pointer equality
1126 and inequality. */
1127 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
0bca51f0 1128 {
b565d777 1129 set_value_range_to_varying (vr_p);
0bca51f0
DN
1130 return;
1131 }
1132
227858d1
DN
1133 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1134 try to use LIMIT's range to avoid creating symbolic ranges
1135 unnecessarily. */
1136 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1137
1138 /* LIMIT's range is only interesting if it has any useful information. */
1139 if (limit_vr
1140 && (limit_vr->type == VR_UNDEFINED
1141 || limit_vr->type == VR_VARYING
1142 || symbolic_range_p (limit_vr)))
1143 limit_vr = NULL;
1144
db3d5328
DN
1145 /* Initially, the new range has the same set of equivalences of
1146 VAR's range. This will be revised before returning the final
1147 value. Since assertions may be chained via mutually exclusive
1148 predicates, we will need to trim the set of equivalences before
1149 we are done. */
227858d1 1150 gcc_assert (vr_p->equiv == NULL);
f5052e29 1151 add_equivalence (&vr_p->equiv, var);
227858d1
DN
1152
1153 /* Extract a new range based on the asserted comparison for VAR and
1154 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1155 will only use it for equality comparisons (EQ_EXPR). For any
1156 other kind of assertion, we cannot derive a range from LIMIT's
1157 anti-range that can be used to describe the new range. For
1158 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1159 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1160 no single range for x_2 that could describe LE_EXPR, so we might
1161 as well build the range [b_4, +INF] for it. */
1162 if (cond_code == EQ_EXPR)
1163 {
1164 enum value_range_type range_type;
1165
1166 if (limit_vr)
1167 {
1168 range_type = limit_vr->type;
1169 min = limit_vr->min;
1170 max = limit_vr->max;
1171 }
1172 else
1173 {
1174 range_type = VR_RANGE;
1175 min = limit;
1176 max = limit;
1177 }
1178
1179 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1180
1181 /* When asserting the equality VAR == LIMIT and LIMIT is another
1182 SSA name, the new range will also inherit the equivalence set
1183 from LIMIT. */
1184 if (TREE_CODE (limit) == SSA_NAME)
f5052e29 1185 add_equivalence (&vr_p->equiv, limit);
227858d1
DN
1186 }
1187 else if (cond_code == NE_EXPR)
1188 {
1189 /* As described above, when LIMIT's range is an anti-range and
1190 this assertion is an inequality (NE_EXPR), then we cannot
1191 derive anything from the anti-range. For instance, if
1192 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1193 not imply that VAR's range is [0, 0]. So, in the case of
1194 anti-ranges, we just assert the inequality using LIMIT and
fde5c44c
JM
1195 not its anti-range.
1196
1197 If LIMIT_VR is a range, we can only use it to build a new
1198 anti-range if LIMIT_VR is a single-valued range. For
1199 instance, if LIMIT_VR is [0, 1], the predicate
1200 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1201 Rather, it means that for value 0 VAR should be ~[0, 0]
1202 and for value 1, VAR should be ~[1, 1]. We cannot
1203 represent these ranges.
1204
1205 The only situation in which we can build a valid
1206 anti-range is when LIMIT_VR is a single-valued range
1207 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1208 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1209 if (limit_vr
1210 && limit_vr->type == VR_RANGE
1211 && compare_values (limit_vr->min, limit_vr->max) == 0)
227858d1 1212 {
fde5c44c
JM
1213 min = limit_vr->min;
1214 max = limit_vr->max;
227858d1
DN
1215 }
1216 else
1217 {
fde5c44c
JM
1218 /* In any other case, we cannot use LIMIT's range to build a
1219 valid anti-range. */
1220 min = max = limit;
227858d1
DN
1221 }
1222
1223 /* If MIN and MAX cover the whole range for their type, then
1224 just use the original LIMIT. */
1225 if (INTEGRAL_TYPE_P (type)
e1f28918
ILT
1226 && vrp_val_is_min (min)
1227 && vrp_val_is_max (max))
227858d1
DN
1228 min = max = limit;
1229
1230 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1231 }
1232 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
0bca51f0 1233 {
227858d1
DN
1234 min = TYPE_MIN_VALUE (type);
1235
1236 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1237 max = limit;
1238 else
1239 {
1240 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1241 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1242 LT_EXPR. */
1243 max = limit_vr->max;
1244 }
1245
9d6eefd5
EB
1246 /* If the maximum value forces us to be out of bounds, simply punt.
1247 It would be pointless to try and do anything more since this
1248 all should be optimized away above us. */
7343ff45
ILT
1249 if ((cond_code == LT_EXPR
1250 && compare_values (max, min) == 0)
1251 || is_overflow_infinity (max))
9d6eefd5
EB
1252 set_value_range_to_varying (vr_p);
1253 else
227858d1 1254 {
9d6eefd5 1255 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
7343ff45 1256 if (cond_code == LT_EXPR)
9d6eefd5
EB
1257 {
1258 tree one = build_int_cst (type, 1);
1259 max = fold_build2 (MINUS_EXPR, type, max, one);
3fe5bcaf
ILT
1260 if (EXPR_P (max))
1261 TREE_NO_WARNING (max) = 1;
9d6eefd5 1262 }
227858d1 1263
9d6eefd5
EB
1264 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1265 }
0bca51f0 1266 }
227858d1 1267 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
0bca51f0 1268 {
227858d1
DN
1269 max = TYPE_MAX_VALUE (type);
1270
1271 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1272 min = limit;
1273 else
1274 {
1275 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1276 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1277 GT_EXPR. */
1278 min = limit_vr->min;
1279 }
1280
9d6eefd5
EB
1281 /* If the minimum value forces us to be out of bounds, simply punt.
1282 It would be pointless to try and do anything more since this
1283 all should be optimized away above us. */
7343ff45
ILT
1284 if ((cond_code == GT_EXPR
1285 && compare_values (min, max) == 0)
1286 || is_overflow_infinity (min))
9d6eefd5
EB
1287 set_value_range_to_varying (vr_p);
1288 else
227858d1 1289 {
9d6eefd5 1290 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
7343ff45 1291 if (cond_code == GT_EXPR)
9d6eefd5
EB
1292 {
1293 tree one = build_int_cst (type, 1);
1294 min = fold_build2 (PLUS_EXPR, type, min, one);
3fe5bcaf
ILT
1295 if (EXPR_P (min))
1296 TREE_NO_WARNING (min) = 1;
9d6eefd5 1297 }
227858d1 1298
9d6eefd5
EB
1299 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1300 }
0bca51f0
DN
1301 }
1302 else
1303 gcc_unreachable ();
1304
012a7a78
DN
1305 /* If VAR already had a known range, it may happen that the new
1306 range we have computed and VAR's range are not compatible. For
1307 instance,
1308
1309 if (p_5 == NULL)
1310 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1311 x_7 = p_6->fld;
1312 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1313
1314 While the above comes from a faulty program, it will cause an ICE
1315 later because p_8 and p_6 will have incompatible ranges and at
1316 the same time will be considered equivalent. A similar situation
1317 would arise from
1318
1319 if (i_5 > 10)
1320 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1321 if (i_5 < 5)
1322 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1323
1324 Again i_6 and i_7 will have incompatible ranges. It would be
1325 pointless to try and do anything with i_7's range because
1326 anything dominated by 'if (i_5 < 5)' will be optimized away.
1327 Note, due to the wa in which simulation proceeds, the statement
1328 i_7 = ASSERT_EXPR <...> we would never be visited because the
c83eecad 1329 conditional 'if (i_5 < 5)' always evaluates to false. However,
012a7a78
DN
1330 this extra check does not hurt and may protect against future
1331 changes to VRP that may get into a situation similar to the
1332 NULL pointer dereference example.
1333
1334 Note that these compatibility tests are only needed when dealing
1335 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1336 are both anti-ranges, they will always be compatible, because two
1337 anti-ranges will always have a non-empty intersection. */
1338
0bca51f0 1339 var_vr = get_value_range (var);
0bca51f0 1340
012a7a78
DN
1341 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1342 ranges or anti-ranges. */
1343 if (vr_p->type == VR_VARYING
1344 || vr_p->type == VR_UNDEFINED
1345 || var_vr->type == VR_VARYING
1346 || var_vr->type == VR_UNDEFINED
1347 || symbolic_range_p (vr_p)
1348 || symbolic_range_p (var_vr))
96644aba 1349 return;
012a7a78
DN
1350
1351 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1352 {
1353 /* If the two ranges have a non-empty intersection, we can
1354 refine the resulting range. Since the assert expression
1355 creates an equivalency and at the same time it asserts a
1356 predicate, we can take the intersection of the two ranges to
1357 get better precision. */
1358 if (value_ranges_intersect_p (var_vr, vr_p))
1359 {
1360 /* Use the larger of the two minimums. */
1361 if (compare_values (vr_p->min, var_vr->min) == -1)
1362 min = var_vr->min;
1363 else
1364 min = vr_p->min;
1365
1366 /* Use the smaller of the two maximums. */
1367 if (compare_values (vr_p->max, var_vr->max) == 1)
1368 max = var_vr->max;
1369 else
1370 max = vr_p->max;
1371
1372 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1373 }
0bca51f0 1374 else
012a7a78
DN
1375 {
1376 /* The two ranges do not intersect, set the new range to
1377 VARYING, because we will not be able to do anything
1378 meaningful with it. */
1379 set_value_range_to_varying (vr_p);
1380 }
1381 }
1382 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1383 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1384 {
1385 /* A range and an anti-range will cancel each other only if
1386 their ends are the same. For instance, in the example above,
1387 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1388 so VR_P should be set to VR_VARYING. */
1389 if (compare_values (var_vr->min, vr_p->min) == 0
1390 && compare_values (var_vr->max, vr_p->max) == 0)
1391 set_value_range_to_varying (vr_p);
307d19fe
JL
1392 else
1393 {
1394 tree min, max, anti_min, anti_max, real_min, real_max;
b881887e 1395 int cmp;
307d19fe
JL
1396
1397 /* We want to compute the logical AND of the two ranges;
1398 there are three cases to consider.
1399
1400
c0220ea4 1401 1. The VR_ANTI_RANGE range is completely within the
307d19fe
JL
1402 VR_RANGE and the endpoints of the ranges are
1403 different. In that case the resulting range
4f67dfcf
JL
1404 should be whichever range is more precise.
1405 Typically that will be the VR_RANGE.
307d19fe
JL
1406
1407 2. The VR_ANTI_RANGE is completely disjoint from
1408 the VR_RANGE. In this case the resulting range
1409 should be the VR_RANGE.
1410
1411 3. There is some overlap between the VR_ANTI_RANGE
1412 and the VR_RANGE.
1413
1414 3a. If the high limit of the VR_ANTI_RANGE resides
1415 within the VR_RANGE, then the result is a new
1416 VR_RANGE starting at the high limit of the
1417 the VR_ANTI_RANGE + 1 and extending to the
1418 high limit of the original VR_RANGE.
1419
1420 3b. If the low limit of the VR_ANTI_RANGE resides
1421 within the VR_RANGE, then the result is a new
1422 VR_RANGE starting at the low limit of the original
1423 VR_RANGE and extending to the low limit of the
1424 VR_ANTI_RANGE - 1. */
1425 if (vr_p->type == VR_ANTI_RANGE)
1426 {
1427 anti_min = vr_p->min;
1428 anti_max = vr_p->max;
1429 real_min = var_vr->min;
1430 real_max = var_vr->max;
1431 }
1432 else
1433 {
1434 anti_min = var_vr->min;
1435 anti_max = var_vr->max;
1436 real_min = vr_p->min;
1437 real_max = vr_p->max;
1438 }
1439
1440
1441 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1442 not including any endpoints. */
1443 if (compare_values (anti_max, real_max) == -1
1444 && compare_values (anti_min, real_min) == 1)
1445 {
4f67dfcf
JL
1446 set_value_range (vr_p, VR_RANGE, real_min,
1447 real_max, vr_p->equiv);
307d19fe
JL
1448 }
1449 /* Case 2, VR_ANTI_RANGE completely disjoint from
1450 VR_RANGE. */
1451 else if (compare_values (anti_min, real_max) == 1
1452 || compare_values (anti_max, real_min) == -1)
1453 {
1454 set_value_range (vr_p, VR_RANGE, real_min,
1455 real_max, vr_p->equiv);
1456 }
1457 /* Case 3a, the anti-range extends into the low
1458 part of the real range. Thus creating a new
917f1b7e 1459 low for the real range. */
b881887e
RG
1460 else if (((cmp = compare_values (anti_max, real_min)) == 1
1461 || cmp == 0)
307d19fe
JL
1462 && compare_values (anti_max, real_max) == -1)
1463 {
12df8a7e
ILT
1464 gcc_assert (!is_positive_overflow_infinity (anti_max));
1465 if (needs_overflow_infinity (TREE_TYPE (anti_max))
e1f28918 1466 && vrp_val_is_max (anti_max))
12df8a7e
ILT
1467 {
1468 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1469 {
1470 set_value_range_to_varying (vr_p);
1471 return;
1472 }
1473 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1474 }
42289977 1475 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
12df8a7e
ILT
1476 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1477 anti_max,
1478 build_int_cst (TREE_TYPE (var_vr->min), 1));
42289977
RG
1479 else
1480 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1481 anti_max, size_int (1));
307d19fe
JL
1482 max = real_max;
1483 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1484 }
1485 /* Case 3b, the anti-range extends into the high
1486 part of the real range. Thus creating a new
917f1b7e 1487 higher for the real range. */
307d19fe 1488 else if (compare_values (anti_min, real_min) == 1
b881887e
RG
1489 && ((cmp = compare_values (anti_min, real_max)) == -1
1490 || cmp == 0))
307d19fe 1491 {
12df8a7e
ILT
1492 gcc_assert (!is_negative_overflow_infinity (anti_min));
1493 if (needs_overflow_infinity (TREE_TYPE (anti_min))
e1f28918 1494 && vrp_val_is_min (anti_min))
12df8a7e
ILT
1495 {
1496 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1497 {
1498 set_value_range_to_varying (vr_p);
1499 return;
1500 }
1501 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1502 }
5be014d5 1503 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
12df8a7e
ILT
1504 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1505 anti_min,
1506 build_int_cst (TREE_TYPE (var_vr->min), 1));
5be014d5
AP
1507 else
1508 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1509 anti_min,
1510 size_int (-1));
307d19fe
JL
1511 min = real_min;
1512 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1513 }
1514 }
0bca51f0
DN
1515 }
1516}
1517
1518
1519/* Extract range information from SSA name VAR and store it in VR. If
1520 VAR has an interesting range, use it. Otherwise, create the
1521 range [VAR, VAR] and return it. This is useful in situations where
1522 we may have conditionals testing values of VARYING names. For
1523 instance,
1524
1525 x_3 = y_5;
1526 if (x_3 > y_5)
1527 ...
1528
1529 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1530 always false. */
1531
1532static void
227858d1 1533extract_range_from_ssa_name (value_range_t *vr, tree var)
0bca51f0 1534{
227858d1 1535 value_range_t *var_vr = get_value_range (var);
0bca51f0
DN
1536
1537 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
227858d1 1538 copy_value_range (vr, var_vr);
0bca51f0 1539 else
227858d1
DN
1540 set_value_range (vr, VR_RANGE, var, var, NULL);
1541
f5052e29 1542 add_equivalence (&vr->equiv, var);
0bca51f0
DN
1543}
1544
1545
9983270b
DN
1546/* Wrapper around int_const_binop. If the operation overflows and we
1547 are not using wrapping arithmetic, then adjust the result to be
12df8a7e
ILT
1548 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1549 NULL_TREE if we need to use an overflow infinity representation but
1550 the type does not support it. */
9983270b 1551
12df8a7e 1552static tree
9983270b
DN
1553vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1554{
1555 tree res;
1556
377d569b 1557 res = int_const_binop (code, val1, val2, 0);
9983270b
DN
1558
1559 /* If we are not using wrapping arithmetic, operate symbolically
1560 on -INF and +INF. */
eeef0e45 1561 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
b17775ab
JM
1562 {
1563 int checkz = compare_values (res, val1);
26ef4301 1564 bool overflow = false;
b17775ab 1565
7dc32197 1566 /* Ensure that res = val1 [+*] val2 >= val1
b17775ab 1567 or that res = val1 - val2 <= val1. */
26ef4301 1568 if ((code == PLUS_EXPR
7dc32197
DN
1569 && !(checkz == 1 || checkz == 0))
1570 || (code == MINUS_EXPR
1571 && !(checkz == 0 || checkz == -1)))
26ef4301
JL
1572 {
1573 overflow = true;
1574 }
1575 /* Checking for multiplication overflow is done by dividing the
1576 output of the multiplication by the first input of the
1577 multiplication. If the result of that division operation is
1578 not equal to the second input of the multiplication, then the
1579 multiplication overflowed. */
1580 else if (code == MULT_EXPR && !integer_zerop (val1))
1581 {
1582 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
3ea0e1e4 1583 res,
26ef4301
JL
1584 val1, 0);
1585 int check = compare_values (tmp, val2);
1586
1587 if (check != 0)
1588 overflow = true;
1589 }
1590
1591 if (overflow)
b17775ab
JM
1592 {
1593 res = copy_node (res);
1594 TREE_OVERFLOW (res) = 1;
1595 }
26ef4301 1596
b17775ab 1597 }
12df8a7e
ILT
1598 else if ((TREE_OVERFLOW (res)
1599 && !TREE_OVERFLOW (val1)
1600 && !TREE_OVERFLOW (val2))
1601 || is_overflow_infinity (val1)
1602 || is_overflow_infinity (val2))
9983270b 1603 {
7dc32197
DN
1604 /* If the operation overflowed but neither VAL1 nor VAL2 are
1605 overflown, return -INF or +INF depending on the operation
1606 and the combination of signs of the operands. */
9983270b
DN
1607 int sgn1 = tree_int_cst_sgn (val1);
1608 int sgn2 = tree_int_cst_sgn (val2);
1609
12df8a7e
ILT
1610 if (needs_overflow_infinity (TREE_TYPE (res))
1611 && !supports_overflow_infinity (TREE_TYPE (res)))
1612 return NULL_TREE;
1613
d7419dec
ILT
1614 /* We have to punt on adding infinities of different signs,
1615 since we can't tell what the sign of the result should be.
1616 Likewise for subtracting infinities of the same sign. */
1617 if (((code == PLUS_EXPR && sgn1 != sgn2)
1618 || (code == MINUS_EXPR && sgn1 == sgn2))
12df8a7e
ILT
1619 && is_overflow_infinity (val1)
1620 && is_overflow_infinity (val2))
1621 return NULL_TREE;
1622
d7419dec
ILT
1623 /* Don't try to handle division or shifting of infinities. */
1624 if ((code == TRUNC_DIV_EXPR
1625 || code == FLOOR_DIV_EXPR
1626 || code == CEIL_DIV_EXPR
1627 || code == EXACT_DIV_EXPR
1628 || code == ROUND_DIV_EXPR
1629 || code == RSHIFT_EXPR)
1630 && (is_overflow_infinity (val1)
1631 || is_overflow_infinity (val2)))
1632 return NULL_TREE;
1633
0d22e81f
EB
1634 /* Notice that we only need to handle the restricted set of
1635 operations handled by extract_range_from_binary_expr.
1636 Among them, only multiplication, addition and subtraction
1637 can yield overflow without overflown operands because we
1638 are working with integral types only... except in the
1639 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1640 for division too. */
1641
1642 /* For multiplication, the sign of the overflow is given
1643 by the comparison of the signs of the operands. */
1644 if ((code == MULT_EXPR && sgn1 == sgn2)
1645 /* For addition, the operands must be of the same sign
1646 to yield an overflow. Its sign is therefore that
d7419dec
ILT
1647 of one of the operands, for example the first. For
1648 infinite operands X + -INF is negative, not positive. */
1649 || (code == PLUS_EXPR
1650 && (sgn1 >= 0
1651 ? !is_negative_overflow_infinity (val2)
1652 : is_positive_overflow_infinity (val2)))
12df8a7e
ILT
1653 /* For subtraction, non-infinite operands must be of
1654 different signs to yield an overflow. Its sign is
1655 therefore that of the first operand or the opposite of
1656 that of the second operand. A first operand of 0 counts
1657 as positive here, for the corner case 0 - (-INF), which
1658 overflows, but must yield +INF. For infinite operands 0
1659 - INF is negative, not positive. */
1660 || (code == MINUS_EXPR
1661 && (sgn1 >= 0
1662 ? !is_positive_overflow_infinity (val2)
1663 : is_negative_overflow_infinity (val2)))
13338552
RG
1664 /* We only get in here with positive shift count, so the
1665 overflow direction is the same as the sign of val1.
1666 Actually rshift does not overflow at all, but we only
1667 handle the case of shifting overflowed -INF and +INF. */
1668 || (code == RSHIFT_EXPR
1669 && sgn1 >= 0)
0d22e81f
EB
1670 /* For division, the only case is -INF / -1 = +INF. */
1671 || code == TRUNC_DIV_EXPR
1672 || code == FLOOR_DIV_EXPR
1673 || code == CEIL_DIV_EXPR
1674 || code == EXACT_DIV_EXPR
1675 || code == ROUND_DIV_EXPR)
12df8a7e
ILT
1676 return (needs_overflow_infinity (TREE_TYPE (res))
1677 ? positive_overflow_infinity (TREE_TYPE (res))
1678 : TYPE_MAX_VALUE (TREE_TYPE (res)));
9983270b 1679 else
12df8a7e
ILT
1680 return (needs_overflow_infinity (TREE_TYPE (res))
1681 ? negative_overflow_infinity (TREE_TYPE (res))
1682 : TYPE_MIN_VALUE (TREE_TYPE (res)));
9983270b
DN
1683 }
1684
1685 return res;
1686}
1687
1688
0bca51f0
DN
1689/* Extract range information from a binary expression EXPR based on
1690 the ranges of each of its operands and the expression code. */
1691
1692static void
227858d1 1693extract_range_from_binary_expr (value_range_t *vr, tree expr)
0bca51f0
DN
1694{
1695 enum tree_code code = TREE_CODE (expr);
4e2d94a9 1696 enum value_range_type type;
0bca51f0 1697 tree op0, op1, min, max;
0bca51f0 1698 int cmp;
227858d1
DN
1699 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1700 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
0bca51f0
DN
1701
1702 /* Not all binary expressions can be applied to ranges in a
1703 meaningful way. Handle only arithmetic operations. */
1704 if (code != PLUS_EXPR
1705 && code != MINUS_EXPR
5be014d5 1706 && code != POINTER_PLUS_EXPR
0bca51f0
DN
1707 && code != MULT_EXPR
1708 && code != TRUNC_DIV_EXPR
1709 && code != FLOOR_DIV_EXPR
1710 && code != CEIL_DIV_EXPR
1711 && code != EXACT_DIV_EXPR
1712 && code != ROUND_DIV_EXPR
6569e716 1713 && code != RSHIFT_EXPR
0bca51f0 1714 && code != MIN_EXPR
227858d1 1715 && code != MAX_EXPR
29c8f8c2 1716 && code != BIT_AND_EXPR
227858d1
DN
1717 && code != TRUTH_ANDIF_EXPR
1718 && code != TRUTH_ORIF_EXPR
1719 && code != TRUTH_AND_EXPR
74290e83 1720 && code != TRUTH_OR_EXPR)
0bca51f0 1721 {
b565d777 1722 set_value_range_to_varying (vr);
0bca51f0
DN
1723 return;
1724 }
1725
1726 /* Get value ranges for each operand. For constant operands, create
1727 a new value range with the operand to simplify processing. */
1728 op0 = TREE_OPERAND (expr, 0);
1729 if (TREE_CODE (op0) == SSA_NAME)
1730 vr0 = *(get_value_range (op0));
227858d1 1731 else if (is_gimple_min_invariant (op0))
b60b4711 1732 set_value_range_to_value (&vr0, op0, NULL);
0bca51f0 1733 else
227858d1 1734 set_value_range_to_varying (&vr0);
0bca51f0
DN
1735
1736 op1 = TREE_OPERAND (expr, 1);
1737 if (TREE_CODE (op1) == SSA_NAME)
1738 vr1 = *(get_value_range (op1));
227858d1 1739 else if (is_gimple_min_invariant (op1))
b60b4711 1740 set_value_range_to_value (&vr1, op1, NULL);
0bca51f0 1741 else
227858d1 1742 set_value_range_to_varying (&vr1);
0bca51f0
DN
1743
1744 /* If either range is UNDEFINED, so is the result. */
1745 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1746 {
227858d1 1747 set_value_range_to_undefined (vr);
0bca51f0
DN
1748 return;
1749 }
1750
4e2d94a9
KH
1751 /* The type of the resulting value range defaults to VR0.TYPE. */
1752 type = vr0.type;
1753
227858d1 1754 /* Refuse to operate on VARYING ranges, ranges of different kinds
29c8f8c2
KH
1755 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1756 because we may be able to derive a useful range even if one of
1757 the operands is VR_VARYING or symbolic range. TODO, we may be
1758 able to derive anti-ranges in some cases. */
1759 if (code != BIT_AND_EXPR
9b61327b
KH
1760 && code != TRUTH_AND_EXPR
1761 && code != TRUTH_OR_EXPR
29c8f8c2
KH
1762 && (vr0.type == VR_VARYING
1763 || vr1.type == VR_VARYING
1764 || vr0.type != vr1.type
1765 || symbolic_range_p (&vr0)
1766 || symbolic_range_p (&vr1)))
0bca51f0 1767 {
b565d777 1768 set_value_range_to_varying (vr);
0bca51f0
DN
1769 return;
1770 }
1771
1772 /* Now evaluate the expression to determine the new range. */
1773 if (POINTER_TYPE_P (TREE_TYPE (expr))
1774 || POINTER_TYPE_P (TREE_TYPE (op0))
1775 || POINTER_TYPE_P (TREE_TYPE (op1)))
1776 {
5be014d5 1777 if (code == MIN_EXPR || code == MAX_EXPR)
e57f2b41 1778 {
5be014d5
AP
1779 /* For MIN/MAX expressions with pointers, we only care about
1780 nullness, if both are non null, then the result is nonnull.
1781 If both are null, then the result is null. Otherwise they
1782 are varying. */
1783 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
e57f2b41
KH
1784 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1785 else if (range_is_null (&vr0) && range_is_null (&vr1))
1786 set_value_range_to_null (vr, TREE_TYPE (expr));
1787 else
1788 set_value_range_to_varying (vr);
5be014d5
AP
1789
1790 return;
e57f2b41 1791 }
5be014d5
AP
1792 gcc_assert (code == POINTER_PLUS_EXPR);
1793 /* For pointer types, we are really only interested in asserting
1794 whether the expression evaluates to non-NULL. */
1795 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1796 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1797 else if (range_is_null (&vr0) && range_is_null (&vr1))
1798 set_value_range_to_null (vr, TREE_TYPE (expr));
0bca51f0 1799 else
5be014d5 1800 set_value_range_to_varying (vr);
0bca51f0
DN
1801
1802 return;
1803 }
1804
1805 /* For integer ranges, apply the operation to each end of the
1806 range and see what we end up with. */
227858d1
DN
1807 if (code == TRUTH_ANDIF_EXPR
1808 || code == TRUTH_ORIF_EXPR
1809 || code == TRUTH_AND_EXPR
74290e83 1810 || code == TRUTH_OR_EXPR)
227858d1 1811 {
9b61327b
KH
1812 /* If one of the operands is zero, we know that the whole
1813 expression evaluates zero. */
1814 if (code == TRUTH_AND_EXPR
1815 && ((vr0.type == VR_RANGE
1816 && integer_zerop (vr0.min)
1817 && integer_zerop (vr0.max))
1818 || (vr1.type == VR_RANGE
1819 && integer_zerop (vr1.min)
1820 && integer_zerop (vr1.max))))
1821 {
1822 type = VR_RANGE;
1823 min = max = build_int_cst (TREE_TYPE (expr), 0);
1824 }
1825 /* If one of the operands is one, we know that the whole
1826 expression evaluates one. */
1827 else if (code == TRUTH_OR_EXPR
1828 && ((vr0.type == VR_RANGE
1829 && integer_onep (vr0.min)
1830 && integer_onep (vr0.max))
1831 || (vr1.type == VR_RANGE
1832 && integer_onep (vr1.min)
1833 && integer_onep (vr1.max))))
1834 {
1835 type = VR_RANGE;
1836 min = max = build_int_cst (TREE_TYPE (expr), 1);
1837 }
1838 else if (vr0.type != VR_VARYING
1839 && vr1.type != VR_VARYING
1840 && vr0.type == vr1.type
1841 && !symbolic_range_p (&vr0)
12df8a7e
ILT
1842 && !overflow_infinity_range_p (&vr0)
1843 && !symbolic_range_p (&vr1)
1844 && !overflow_infinity_range_p (&vr1))
9b61327b
KH
1845 {
1846 /* Boolean expressions cannot be folded with int_const_binop. */
1847 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1848 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1849 }
1850 else
1851 {
31ab1cc9
RG
1852 /* The result of a TRUTH_*_EXPR is always true or false. */
1853 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
9b61327b
KH
1854 return;
1855 }
227858d1
DN
1856 }
1857 else if (code == PLUS_EXPR
227858d1
DN
1858 || code == MIN_EXPR
1859 || code == MAX_EXPR)
0bca51f0 1860 {
567fb660
KH
1861 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1862 VR_VARYING. It would take more effort to compute a precise
1863 range for such a case. For example, if we have op0 == 1 and
1864 op1 == -1 with their ranges both being ~[0,0], we would have
1865 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1866 Note that we are guaranteed to have vr0.type == vr1.type at
1867 this point. */
1868 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1869 {
1870 set_value_range_to_varying (vr);
1871 return;
1872 }
1873
0bca51f0
DN
1874 /* For operations that make the resulting range directly
1875 proportional to the original ranges, apply the operation to
1876 the same end of each range. */
9983270b
DN
1877 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1878 max = vrp_int_const_binop (code, vr0.max, vr1.max);
0bca51f0 1879 }
9983270b
DN
1880 else if (code == MULT_EXPR
1881 || code == TRUNC_DIV_EXPR
227858d1
DN
1882 || code == FLOOR_DIV_EXPR
1883 || code == CEIL_DIV_EXPR
1884 || code == EXACT_DIV_EXPR
6569e716
RG
1885 || code == ROUND_DIV_EXPR
1886 || code == RSHIFT_EXPR)
0bca51f0 1887 {
9983270b
DN
1888 tree val[4];
1889 size_t i;
12df8a7e 1890 bool sop;
9983270b 1891
567fb660
KH
1892 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1893 drop to VR_VARYING. It would take more effort to compute a
1894 precise range for such a case. For example, if we have
1895 op0 == 65536 and op1 == 65536 with their ranges both being
1896 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1897 we cannot claim that the product is in ~[0,0]. Note that we
1898 are guaranteed to have vr0.type == vr1.type at this
1899 point. */
1900 if (code == MULT_EXPR
1901 && vr0.type == VR_ANTI_RANGE
eeef0e45 1902 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
567fb660
KH
1903 {
1904 set_value_range_to_varying (vr);
1905 return;
1906 }
1907
af33044f
RH
1908 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
1909 then drop to VR_VARYING. Outside of this range we get undefined
7fa7289d 1910 behavior from the shift operation. We cannot even trust
af33044f
RH
1911 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
1912 shifts, and the operation at the tree level may be widened. */
1913 if (code == RSHIFT_EXPR)
13338552 1914 {
af33044f
RH
1915 if (vr1.type == VR_ANTI_RANGE
1916 || !vrp_expr_computes_nonnegative (op1, &sop)
1917 || (operand_less_p
1918 (build_int_cst (TREE_TYPE (vr1.max),
1919 TYPE_PRECISION (TREE_TYPE (expr)) - 1),
1920 vr1.max) != 0))
1921 {
1922 set_value_range_to_varying (vr);
1923 return;
1924 }
13338552
RG
1925 }
1926
9983270b
DN
1927 /* Multiplications and divisions are a bit tricky to handle,
1928 depending on the mix of signs we have in the two ranges, we
1929 need to operate on different values to get the minimum and
1930 maximum values for the new range. One approach is to figure
1931 out all the variations of range combinations and do the
1932 operations.
1933
1934 However, this involves several calls to compare_values and it
1935 is pretty convoluted. It's simpler to do the 4 operations
1936 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1937 MAX1) and then figure the smallest and largest values to form
1938 the new range. */
1939
1940 /* Divisions by zero result in a VARYING value. */
af33044f
RH
1941 else if (code != MULT_EXPR
1942 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
227858d1
DN
1943 {
1944 set_value_range_to_varying (vr);
1945 return;
1946 }
fda05890 1947
9983270b 1948 /* Compute the 4 cross operations. */
12df8a7e 1949 sop = false;
9983270b 1950 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
12df8a7e
ILT
1951 if (val[0] == NULL_TREE)
1952 sop = true;
1953
1954 if (vr1.max == vr1.min)
1955 val[1] = NULL_TREE;
1956 else
1957 {
1958 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1959 if (val[1] == NULL_TREE)
1960 sop = true;
1961 }
9983270b 1962
12df8a7e
ILT
1963 if (vr0.max == vr0.min)
1964 val[2] = NULL_TREE;
1965 else
1966 {
1967 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1968 if (val[2] == NULL_TREE)
1969 sop = true;
1970 }
9983270b 1971
12df8a7e
ILT
1972 if (vr0.min == vr0.max || vr1.min == vr1.max)
1973 val[3] = NULL_TREE;
1974 else
1975 {
1976 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1977 if (val[3] == NULL_TREE)
1978 sop = true;
1979 }
9983270b 1980
12df8a7e
ILT
1981 if (sop)
1982 {
1983 set_value_range_to_varying (vr);
1984 return;
1985 }
9983270b
DN
1986
1987 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1988 of VAL[i]. */
1989 min = val[0];
1990 max = val[0];
1991 for (i = 1; i < 4; i++)
227858d1 1992 {
12df8a7e
ILT
1993 if (!is_gimple_min_invariant (min)
1994 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1995 || !is_gimple_min_invariant (max)
1996 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
9983270b
DN
1997 break;
1998
1999 if (val[i])
227858d1 2000 {
12df8a7e
ILT
2001 if (!is_gimple_min_invariant (val[i])
2002 || (TREE_OVERFLOW (val[i])
2003 && !is_overflow_infinity (val[i])))
9983270b
DN
2004 {
2005 /* If we found an overflowed value, set MIN and MAX
2006 to it so that we set the resulting range to
2007 VARYING. */
2008 min = max = val[i];
2009 break;
2010 }
2011
2012 if (compare_values (val[i], min) == -1)
2013 min = val[i];
2014
2015 if (compare_values (val[i], max) == 1)
2016 max = val[i];
227858d1
DN
2017 }
2018 }
2019 }
2020 else if (code == MINUS_EXPR)
2021 {
567fb660
KH
2022 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2023 VR_VARYING. It would take more effort to compute a precise
2024 range for such a case. For example, if we have op0 == 1 and
2025 op1 == 1 with their ranges both being ~[0,0], we would have
2026 op0 - op1 == 0, so we cannot claim that the difference is in
2027 ~[0,0]. Note that we are guaranteed to have
2028 vr0.type == vr1.type at this point. */
2029 if (vr0.type == VR_ANTI_RANGE)
2030 {
2031 set_value_range_to_varying (vr);
2032 return;
2033 }
2034
227858d1
DN
2035 /* For MINUS_EXPR, apply the operation to the opposite ends of
2036 each range. */
9983270b
DN
2037 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2038 max = vrp_int_const_binop (code, vr0.max, vr1.min);
227858d1 2039 }
29c8f8c2
KH
2040 else if (code == BIT_AND_EXPR)
2041 {
2042 if (vr0.type == VR_RANGE
2043 && vr0.min == vr0.max
12df8a7e
ILT
2044 && TREE_CODE (vr0.max) == INTEGER_CST
2045 && !TREE_OVERFLOW (vr0.max)
2046 && tree_int_cst_sgn (vr0.max) >= 0)
29c8f8c2 2047 {
dec2f881 2048 min = build_int_cst (TREE_TYPE (expr), 0);
29c8f8c2
KH
2049 max = vr0.max;
2050 }
2051 else if (vr1.type == VR_RANGE
12df8a7e
ILT
2052 && vr1.min == vr1.max
2053 && TREE_CODE (vr1.max) == INTEGER_CST
2054 && !TREE_OVERFLOW (vr1.max)
2055 && tree_int_cst_sgn (vr1.max) >= 0)
29c8f8c2 2056 {
4e2d94a9 2057 type = VR_RANGE;
dec2f881 2058 min = build_int_cst (TREE_TYPE (expr), 0);
29c8f8c2
KH
2059 max = vr1.max;
2060 }
2061 else
2062 {
2063 set_value_range_to_varying (vr);
2064 return;
2065 }
2066 }
227858d1
DN
2067 else
2068 gcc_unreachable ();
fda05890 2069
9983270b 2070 /* If either MIN or MAX overflowed, then set the resulting range to
12df8a7e
ILT
2071 VARYING. But we do accept an overflow infinity
2072 representation. */
2073 if (min == NULL_TREE
2074 || !is_gimple_min_invariant (min)
2075 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2076 || max == NULL_TREE
2077 || !is_gimple_min_invariant (max)
2078 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2079 {
2080 set_value_range_to_varying (vr);
2081 return;
2082 }
2083
fa633851
ILT
2084 /* We punt if:
2085 1) [-INF, +INF]
2086 2) [-INF, +-INF(OVF)]
2087 3) [+-INF(OVF), +INF]
2088 4) [+-INF(OVF), +-INF(OVF)]
2089 We learn nothing when we have INF and INF(OVF) on both sides.
2090 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2091 overflow. */
e1f28918
ILT
2092 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2093 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
227858d1 2094 {
9983270b
DN
2095 set_value_range_to_varying (vr);
2096 return;
fda05890
KH
2097 }
2098
227858d1
DN
2099 cmp = compare_values (min, max);
2100 if (cmp == -2 || cmp == 1)
2101 {
2102 /* If the new range has its limits swapped around (MIN > MAX),
2103 then the operation caused one of them to wrap around, mark
2104 the new range VARYING. */
2105 set_value_range_to_varying (vr);
2106 }
2107 else
4e2d94a9 2108 set_value_range (vr, type, min, max, NULL);
fda05890
KH
2109}
2110
2111
0bca51f0
DN
2112/* Extract range information from a unary expression EXPR based on
2113 the range of its operand and the expression code. */
2114
2115static void
227858d1 2116extract_range_from_unary_expr (value_range_t *vr, tree expr)
0bca51f0
DN
2117{
2118 enum tree_code code = TREE_CODE (expr);
2119 tree min, max, op0;
0bca51f0 2120 int cmp;
227858d1
DN
2121 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2122
2123 /* Refuse to operate on certain unary expressions for which we
2124 cannot easily determine a resulting range. */
2125 if (code == FIX_TRUNC_EXPR
227858d1
DN
2126 || code == FLOAT_EXPR
2127 || code == BIT_NOT_EXPR
2128 || code == NON_LVALUE_EXPR
2129 || code == CONJ_EXPR)
2130 {
2131 set_value_range_to_varying (vr);
2132 return;
2133 }
0bca51f0
DN
2134
2135 /* Get value ranges for the operand. For constant operands, create
2136 a new value range with the operand to simplify processing. */
2137 op0 = TREE_OPERAND (expr, 0);
2138 if (TREE_CODE (op0) == SSA_NAME)
2139 vr0 = *(get_value_range (op0));
227858d1 2140 else if (is_gimple_min_invariant (op0))
b60b4711 2141 set_value_range_to_value (&vr0, op0, NULL);
0bca51f0 2142 else
227858d1 2143 set_value_range_to_varying (&vr0);
0bca51f0
DN
2144
2145 /* If VR0 is UNDEFINED, so is the result. */
2146 if (vr0.type == VR_UNDEFINED)
2147 {
227858d1 2148 set_value_range_to_undefined (vr);
0bca51f0
DN
2149 return;
2150 }
2151
a3b196e3
JL
2152 /* Refuse to operate on symbolic ranges, or if neither operand is
2153 a pointer or integral type. */
2154 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2155 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2156 || (vr0.type != VR_VARYING
2157 && symbolic_range_p (&vr0)))
0bca51f0 2158 {
b565d777 2159 set_value_range_to_varying (vr);
0bca51f0
DN
2160 return;
2161 }
2162
2163 /* If the expression involves pointers, we are only interested in
2164 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2165 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2166 {
12df8a7e 2167 bool sop;
6ac01510 2168
12df8a7e
ILT
2169 sop = false;
2170 if (range_is_nonnull (&vr0)
2171 || (tree_expr_nonzero_warnv_p (expr, &sop)
2172 && !sop))
0bca51f0
DN
2173 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2174 else if (range_is_null (&vr0))
2175 set_value_range_to_null (vr, TREE_TYPE (expr));
2176 else
b565d777 2177 set_value_range_to_varying (vr);
0bca51f0
DN
2178
2179 return;
2180 }
2181
2182 /* Handle unary expressions on integer ranges. */
441e96b5 2183 if (code == NOP_EXPR || code == CONVERT_EXPR)
0bca51f0 2184 {
441e96b5
DN
2185 tree inner_type = TREE_TYPE (op0);
2186 tree outer_type = TREE_TYPE (expr);
2187
2735e93e
JL
2188 /* If VR0 represents a simple range, then try to convert
2189 the min and max values for the range to the same type
2190 as OUTER_TYPE. If the results compare equal to VR0's
2191 min and max values and the new min is still less than
2192 or equal to the new max, then we can safely use the newly
2193 computed range for EXPR. This allows us to compute
2194 accurate ranges through many casts. */
12df8a7e
ILT
2195 if ((vr0.type == VR_RANGE
2196 && !overflow_infinity_range_p (&vr0))
a3b196e3
JL
2197 || (vr0.type == VR_VARYING
2198 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2735e93e 2199 {
a3b196e3
JL
2200 tree new_min, new_max, orig_min, orig_max;
2201
2202 /* Convert the input operand min/max to OUTER_TYPE. If
2203 the input has no range information, then use the min/max
2204 for the input's type. */
2205 if (vr0.type == VR_RANGE)
2206 {
2207 orig_min = vr0.min;
2208 orig_max = vr0.max;
2209 }
2210 else
2211 {
2212 orig_min = TYPE_MIN_VALUE (inner_type);
2213 orig_max = TYPE_MAX_VALUE (inner_type);
2214 }
2735e93e 2215
a3b196e3
JL
2216 new_min = fold_convert (outer_type, orig_min);
2217 new_max = fold_convert (outer_type, orig_max);
2735e93e
JL
2218
2219 /* Verify the new min/max values are gimple values and
75c40d56 2220 that they compare equal to the original input's
a3b196e3 2221 min/max values. */
2735e93e
JL
2222 if (is_gimple_val (new_min)
2223 && is_gimple_val (new_max)
a3b196e3
JL
2224 && tree_int_cst_equal (new_min, orig_min)
2225 && tree_int_cst_equal (new_max, orig_max)
9c4ed267
ILT
2226 && (!is_overflow_infinity (new_min)
2227 || !is_overflow_infinity (new_max))
b881887e
RG
2228 && (cmp = compare_values (new_min, new_max)) <= 0
2229 && cmp >= -1)
2735e93e
JL
2230 {
2231 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2232 return;
2233 }
2234 }
2235
0bca51f0
DN
2236 /* When converting types of different sizes, set the result to
2237 VARYING. Things like sign extensions and precision loss may
2238 change the range. For instance, if x_3 is of type 'long long
2239 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2240 is impossible to know at compile time whether y_5 will be
2241 ~[0, 0]. */
441e96b5
DN
2242 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2243 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2244 {
2245 set_value_range_to_varying (vr);
2246 return;
2247 }
0bca51f0
DN
2248 }
2249
a3b196e3
JL
2250 /* Conversion of a VR_VARYING value to a wider type can result
2251 in a usable range. So wait until after we've handled conversions
2252 before dropping the result to VR_VARYING if we had a source
2253 operand that is VR_VARYING. */
2254 if (vr0.type == VR_VARYING)
2255 {
2256 set_value_range_to_varying (vr);
2257 return;
2258 }
2259
0bca51f0
DN
2260 /* Apply the operation to each end of the range and see what we end
2261 up with. */
227858d1
DN
2262 if (code == NEGATE_EXPR
2263 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2264 {
96b2034b 2265 /* NEGATE_EXPR flips the range around. We need to treat
12df8a7e
ILT
2266 TYPE_MIN_VALUE specially. */
2267 if (is_positive_overflow_infinity (vr0.max))
2268 min = negative_overflow_infinity (TREE_TYPE (expr));
2269 else if (is_negative_overflow_infinity (vr0.max))
2270 min = positive_overflow_infinity (TREE_TYPE (expr));
e1f28918 2271 else if (!vrp_val_is_min (vr0.max))
12df8a7e
ILT
2272 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2273 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2274 {
8cf781f0
ILT
2275 if (supports_overflow_infinity (TREE_TYPE (expr))
2276 && !is_overflow_infinity (vr0.min)
e1f28918 2277 && !vrp_val_is_min (vr0.min))
12df8a7e
ILT
2278 min = positive_overflow_infinity (TREE_TYPE (expr));
2279 else
2280 {
2281 set_value_range_to_varying (vr);
2282 return;
2283 }
2284 }
2285 else
2286 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2287
2288 if (is_positive_overflow_infinity (vr0.min))
2289 max = negative_overflow_infinity (TREE_TYPE (expr));
2290 else if (is_negative_overflow_infinity (vr0.min))
2291 max = positive_overflow_infinity (TREE_TYPE (expr));
e1f28918 2292 else if (!vrp_val_is_min (vr0.min))
12df8a7e
ILT
2293 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2294 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2295 {
2296 if (supports_overflow_infinity (TREE_TYPE (expr)))
2297 max = positive_overflow_infinity (TREE_TYPE (expr));
2298 else
2299 {
2300 set_value_range_to_varying (vr);
2301 return;
2302 }
2303 }
2304 else
2305 max = TYPE_MIN_VALUE (TREE_TYPE (expr));
c1a70a3c
RS
2306 }
2307 else if (code == NEGATE_EXPR
2308 && TYPE_UNSIGNED (TREE_TYPE (expr)))
2309 {
2310 if (!range_includes_zero_p (&vr0))
2311 {
2312 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2313 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2314 }
2315 else
2316 {
2317 if (range_is_null (&vr0))
2318 set_value_range_to_null (vr, TREE_TYPE (expr));
2319 else
2320 set_value_range_to_varying (vr);
2321 return;
2322 }
227858d1
DN
2323 }
2324 else if (code == ABS_EXPR
2325 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2326 {
ff08cbee
JM
2327 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2328 useful range. */
eeef0e45 2329 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
ff08cbee 2330 && ((vr0.type == VR_RANGE
e1f28918 2331 && vrp_val_is_min (vr0.min))
ff08cbee 2332 || (vr0.type == VR_ANTI_RANGE
e1f28918 2333 && !vrp_val_is_min (vr0.min)
ff08cbee
JM
2334 && !range_includes_zero_p (&vr0))))
2335 {
2336 set_value_range_to_varying (vr);
2337 return;
2338 }
2339
227858d1
DN
2340 /* ABS_EXPR may flip the range around, if the original range
2341 included negative values. */
12df8a7e
ILT
2342 if (is_overflow_infinity (vr0.min))
2343 min = positive_overflow_infinity (TREE_TYPE (expr));
e1f28918 2344 else if (!vrp_val_is_min (vr0.min))
12df8a7e
ILT
2345 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2346 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2347 min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2348 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2349 min = positive_overflow_infinity (TREE_TYPE (expr));
2350 else
2351 {
2352 set_value_range_to_varying (vr);
2353 return;
2354 }
227858d1 2355
12df8a7e
ILT
2356 if (is_overflow_infinity (vr0.max))
2357 max = positive_overflow_infinity (TREE_TYPE (expr));
e1f28918 2358 else if (!vrp_val_is_min (vr0.max))
12df8a7e
ILT
2359 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2360 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2361 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2362 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2363 max = positive_overflow_infinity (TREE_TYPE (expr));
2364 else
2365 {
2366 set_value_range_to_varying (vr);
2367 return;
2368 }
227858d1 2369
ff08cbee
JM
2370 cmp = compare_values (min, max);
2371
2372 /* If a VR_ANTI_RANGEs contains zero, then we have
2373 ~[-INF, min(MIN, MAX)]. */
2374 if (vr0.type == VR_ANTI_RANGE)
2375 {
2376 if (range_includes_zero_p (&vr0))
2377 {
ff08cbee
JM
2378 /* Take the lower of the two values. */
2379 if (cmp != 1)
2380 max = min;
2381
2382 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2383 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2384 flag_wrapv is set and the original anti-range doesn't include
2385 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
12df8a7e
ILT
2386 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2387 {
2388 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2389
2390 min = (vr0.min != type_min_value
2391 ? int_const_binop (PLUS_EXPR, type_min_value,
2392 integer_one_node, 0)
2393 : type_min_value);
2394 }
2395 else
2396 {
2397 if (overflow_infinity_range_p (&vr0))
2398 min = negative_overflow_infinity (TREE_TYPE (expr));
2399 else
2400 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2401 }
ff08cbee
JM
2402 }
2403 else
2404 {
2405 /* All else has failed, so create the range [0, INF], even for
2406 flag_wrapv since TYPE_MIN_VALUE is in the original
2407 anti-range. */
2408 vr0.type = VR_RANGE;
2409 min = build_int_cst (TREE_TYPE (expr), 0);
12df8a7e
ILT
2410 if (needs_overflow_infinity (TREE_TYPE (expr)))
2411 {
2412 if (supports_overflow_infinity (TREE_TYPE (expr)))
2413 max = positive_overflow_infinity (TREE_TYPE (expr));
2414 else
2415 {
2416 set_value_range_to_varying (vr);
2417 return;
2418 }
2419 }
2420 else
2421 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
ff08cbee
JM
2422 }
2423 }
2424
2425 /* If the range contains zero then we know that the minimum value in the
2426 range will be zero. */
2427 else if (range_includes_zero_p (&vr0))
2428 {
2429 if (cmp == 1)
2430 max = min;
2431 min = build_int_cst (TREE_TYPE (expr), 0);
2432 }
2433 else
227858d1 2434 {
ff08cbee
JM
2435 /* If the range was reversed, swap MIN and MAX. */
2436 if (cmp == 1)
2437 {
2438 tree t = min;
2439 min = max;
2440 max = t;
2441 }
227858d1
DN
2442 }
2443 }
2444 else
2445 {
2446 /* Otherwise, operate on each end of the range. */
2447 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2448 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
12df8a7e
ILT
2449
2450 if (needs_overflow_infinity (TREE_TYPE (expr)))
2451 {
2452 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
8cf781f0
ILT
2453
2454 /* If both sides have overflowed, we don't know
2455 anything. */
2456 if ((is_overflow_infinity (vr0.min)
2457 || TREE_OVERFLOW (min))
2458 && (is_overflow_infinity (vr0.max)
2459 || TREE_OVERFLOW (max)))
2460 {
2461 set_value_range_to_varying (vr);
2462 return;
2463 }
2464
12df8a7e
ILT
2465 if (is_overflow_infinity (vr0.min))
2466 min = vr0.min;
2467 else if (TREE_OVERFLOW (min))
2468 {
2469 if (supports_overflow_infinity (TREE_TYPE (expr)))
2470 min = (tree_int_cst_sgn (min) >= 0
2471 ? positive_overflow_infinity (TREE_TYPE (min))
2472 : negative_overflow_infinity (TREE_TYPE (min)));
2473 else
2474 {
2475 set_value_range_to_varying (vr);
2476 return;
2477 }
2478 }
2479
2480 if (is_overflow_infinity (vr0.max))
2481 max = vr0.max;
2482 else if (TREE_OVERFLOW (max))
2483 {
2484 if (supports_overflow_infinity (TREE_TYPE (expr)))
2485 max = (tree_int_cst_sgn (max) >= 0
2486 ? positive_overflow_infinity (TREE_TYPE (max))
2487 : negative_overflow_infinity (TREE_TYPE (max)));
2488 else
2489 {
2490 set_value_range_to_varying (vr);
2491 return;
2492 }
2493 }
2494 }
227858d1 2495 }
0bca51f0
DN
2496
2497 cmp = compare_values (min, max);
2498 if (cmp == -2 || cmp == 1)
2499 {
2500 /* If the new range has its limits swapped around (MIN > MAX),
2501 then the operation caused one of them to wrap around, mark
2502 the new range VARYING. */
b565d777 2503 set_value_range_to_varying (vr);
0bca51f0
DN
2504 }
2505 else
227858d1
DN
2506 set_value_range (vr, vr0.type, min, max, NULL);
2507}
2508
2509
f255541f
RC
2510/* Extract range information from a conditional expression EXPR based on
2511 the ranges of each of its operands and the expression code. */
2512
2513static void
2514extract_range_from_cond_expr (value_range_t *vr, tree expr)
2515{
2516 tree op0, op1;
2517 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2518 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2519
2520 /* Get value ranges for each operand. For constant operands, create
2521 a new value range with the operand to simplify processing. */
2522 op0 = COND_EXPR_THEN (expr);
2523 if (TREE_CODE (op0) == SSA_NAME)
2524 vr0 = *(get_value_range (op0));
2525 else if (is_gimple_min_invariant (op0))
b60b4711 2526 set_value_range_to_value (&vr0, op0, NULL);
f255541f
RC
2527 else
2528 set_value_range_to_varying (&vr0);
2529
2530 op1 = COND_EXPR_ELSE (expr);
2531 if (TREE_CODE (op1) == SSA_NAME)
2532 vr1 = *(get_value_range (op1));
2533 else if (is_gimple_min_invariant (op1))
b60b4711 2534 set_value_range_to_value (&vr1, op1, NULL);
f255541f
RC
2535 else
2536 set_value_range_to_varying (&vr1);
2537
2538 /* The resulting value range is the union of the operand ranges */
2539 vrp_meet (&vr0, &vr1);
2540 copy_value_range (vr, &vr0);
2541}
2542
2543
227858d1
DN
2544/* Extract range information from a comparison expression EXPR based
2545 on the range of its operand and the expression code. */
2546
2547static void
2548extract_range_from_comparison (value_range_t *vr, tree expr)
2549{
12df8a7e 2550 bool sop = false;
0c948c27 2551 tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
12df8a7e
ILT
2552
2553 /* A disadvantage of using a special infinity as an overflow
2554 representation is that we lose the ability to record overflow
2555 when we don't have an infinity. So we have to ignore a result
2556 which relies on overflow. */
2557
2558 if (val && !is_overflow_infinity (val) && !sop)
227858d1
DN
2559 {
2560 /* Since this expression was found on the RHS of an assignment,
2561 its type may be different from _Bool. Convert VAL to EXPR's
2562 type. */
2563 val = fold_convert (TREE_TYPE (expr), val);
b60b4711
ILT
2564 if (is_gimple_min_invariant (val))
2565 set_value_range_to_value (vr, val, vr->equiv);
2566 else
2567 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
227858d1
DN
2568 }
2569 else
31ab1cc9
RG
2570 /* The result of a comparison is always true or false. */
2571 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
0bca51f0
DN
2572}
2573
2574
2575/* Try to compute a useful range out of expression EXPR and store it
227858d1 2576 in *VR. */
0bca51f0
DN
2577
2578static void
227858d1 2579extract_range_from_expr (value_range_t *vr, tree expr)
0bca51f0
DN
2580{
2581 enum tree_code code = TREE_CODE (expr);
2582
2583 if (code == ASSERT_EXPR)
2584 extract_range_from_assert (vr, expr);
2585 else if (code == SSA_NAME)
2586 extract_range_from_ssa_name (vr, expr);
227858d1
DN
2587 else if (TREE_CODE_CLASS (code) == tcc_binary
2588 || code == TRUTH_ANDIF_EXPR
2589 || code == TRUTH_ORIF_EXPR
2590 || code == TRUTH_AND_EXPR
2591 || code == TRUTH_OR_EXPR
2592 || code == TRUTH_XOR_EXPR)
0bca51f0
DN
2593 extract_range_from_binary_expr (vr, expr);
2594 else if (TREE_CODE_CLASS (code) == tcc_unary)
2595 extract_range_from_unary_expr (vr, expr);
f255541f
RC
2596 else if (code == COND_EXPR)
2597 extract_range_from_cond_expr (vr, expr);
227858d1
DN
2598 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2599 extract_range_from_comparison (vr, expr);
227858d1 2600 else if (is_gimple_min_invariant (expr))
b60b4711 2601 set_value_range_to_value (vr, expr, NULL);
0bca51f0 2602 else
b565d777 2603 set_value_range_to_varying (vr);
b16caf72
JL
2604
2605 /* If we got a varying range from the tests above, try a final
2606 time to derive a nonnegative or nonzero range. This time
2607 relying primarily on generic routines in fold in conjunction
2608 with range data. */
2609 if (vr->type == VR_VARYING)
2610 {
12df8a7e
ILT
2611 bool sop = false;
2612
b16caf72 2613 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
12df8a7e
ILT
2614 && vrp_expr_computes_nonnegative (expr, &sop))
2615 set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2616 sop || is_overflow_infinity (expr));
2617 else if (vrp_expr_computes_nonzero (expr, &sop)
2618 && !sop)
b16caf72
JL
2619 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2620 }
0bca51f0
DN
2621}
2622
1e8552eb 2623/* Given a range VR, a LOOP and a variable VAR, determine whether it
0bca51f0
DN
2624 would be profitable to adjust VR using scalar evolution information
2625 for VAR. If so, update VR with the new limits. */
2626
2627static void
1e8552eb
SP
2628adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2629 tree var)
0bca51f0 2630{
20527215 2631 tree init, step, chrec, tmin, tmax, min, max, type;
d7f5de76 2632 enum ev_direction dir;
0bca51f0
DN
2633
2634 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2635 better opportunities than a regular range, but I'm not sure. */
2636 if (vr->type == VR_ANTI_RANGE)
2637 return;
2638
13285d51
ZD
2639 /* Ensure that there are not values in the scev cache based on assumptions
2640 on ranges of ssa names that were changed
2641 (in set_value_range/set_value_range_to_varying). Preserve cached numbers
2642 of iterations, that were computed before the start of VRP (we do not
2643 recompute these each time to save the compile time). */
2644 scev_reset_except_niters ();
2645
d7770457 2646 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
6f1c9cd0
SP
2647
2648 /* Like in PR19590, scev can return a constant function. */
2649 if (is_gimple_min_invariant (chrec))
2650 {
cdc64612 2651 set_value_range_to_value (vr, chrec, vr->equiv);
6f1c9cd0
SP
2652 return;
2653 }
2654
0bca51f0
DN
2655 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2656 return;
2657
d7770457
SP
2658 init = initial_condition_in_loop_num (chrec, loop->num);
2659 step = evolution_part_in_loop_num (chrec, loop->num);
0bca51f0
DN
2660
2661 /* If STEP is symbolic, we can't know whether INIT will be the
04dce5a4
ZD
2662 minimum or maximum value in the range. Also, unless INIT is
2663 a simple expression, compare_values and possibly other functions
2664 in tree-vrp won't be able to handle it. */
d7770457 2665 if (step == NULL_TREE
04dce5a4
ZD
2666 || !is_gimple_min_invariant (step)
2667 || !valid_value_p (init))
0bca51f0
DN
2668 return;
2669
d7f5de76
ZD
2670 dir = scev_direction (chrec);
2671 if (/* Do not adjust ranges if we do not know whether the iv increases
2672 or decreases, ... */
2673 dir == EV_DIR_UNKNOWN
2674 /* ... or if it may wrap. */
42fd6772 2675 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
d7f5de76 2676 true))
227858d1
DN
2677 return;
2678
12df8a7e
ILT
2679 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2680 negative_overflow_infinity and positive_overflow_infinity,
2681 because we have concluded that the loop probably does not
2682 wrap. */
2683
20527215
ZD
2684 type = TREE_TYPE (var);
2685 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2686 tmin = lower_bound_in_type (type, type);
2687 else
2688 tmin = TYPE_MIN_VALUE (type);
2689 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2690 tmax = upper_bound_in_type (type, type);
2691 else
2692 tmax = TYPE_MAX_VALUE (type);
2693
2694 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
0bca51f0 2695 {
20527215
ZD
2696 min = tmin;
2697 max = tmax;
2698
0bca51f0
DN
2699 /* For VARYING or UNDEFINED ranges, just about anything we get
2700 from scalar evolutions should be better. */
4f67dfcf 2701
d7f5de76 2702 if (dir == EV_DIR_DECREASES)
4f67dfcf 2703 max = init;
0bca51f0 2704 else
4f67dfcf
JL
2705 min = init;
2706
2707 /* If we would create an invalid range, then just assume we
2708 know absolutely nothing. This may be over-conservative,
20527215
ZD
2709 but it's clearly safe, and should happen only in unreachable
2710 parts of code, or for invalid programs. */
4f67dfcf
JL
2711 if (compare_values (min, max) == 1)
2712 return;
2713
2714 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
0bca51f0
DN
2715 }
2716 else if (vr->type == VR_RANGE)
2717 {
20527215
ZD
2718 min = vr->min;
2719 max = vr->max;
d5448566 2720
d7f5de76 2721 if (dir == EV_DIR_DECREASES)
0bca51f0 2722 {
d5448566
KH
2723 /* INIT is the maximum value. If INIT is lower than VR->MAX
2724 but no smaller than VR->MIN, set VR->MAX to INIT. */
2725 if (compare_values (init, max) == -1)
2726 {
2727 max = init;
2728
2729 /* If we just created an invalid range with the minimum
20527215
ZD
2730 greater than the maximum, we fail conservatively.
2731 This should happen only in unreachable
2732 parts of code, or for invalid programs. */
d5448566 2733 if (compare_values (min, max) == 1)
20527215 2734 return;
d5448566 2735 }
9a46cc16
ILT
2736
2737 /* According to the loop information, the variable does not
2738 overflow. If we think it does, probably because of an
2739 overflow due to arithmetic on a different INF value,
2740 reset now. */
2741 if (is_negative_overflow_infinity (min))
2742 min = tmin;
0bca51f0
DN
2743 }
2744 else
2745 {
2746 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
d5448566
KH
2747 if (compare_values (init, min) == 1)
2748 {
2749 min = init;
2750
20527215 2751 /* Again, avoid creating invalid range by failing. */
d5448566 2752 if (compare_values (min, max) == 1)
20527215 2753 return;
d5448566 2754 }
9a46cc16
ILT
2755
2756 if (is_positive_overflow_infinity (max))
2757 max = tmax;
0bca51f0 2758 }
d5448566 2759
227858d1 2760 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
0bca51f0
DN
2761 }
2762}
2763
9a46cc16
ILT
2764/* Return true if VAR may overflow at STMT. This checks any available
2765 loop information to see if we can determine that VAR does not
2766 overflow. */
2767
2768static bool
2769vrp_var_may_overflow (tree var, tree stmt)
2770{
2771 struct loop *l;
2772 tree chrec, init, step;
2773
2774 if (current_loops == NULL)
2775 return true;
2776
2777 l = loop_containing_stmt (stmt);
2778 if (l == NULL)
2779 return true;
2780
2781 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
2782 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2783 return true;
2784
2785 init = initial_condition_in_loop_num (chrec, l->num);
2786 step = evolution_part_in_loop_num (chrec, l->num);
2787
2788 if (step == NULL_TREE
2789 || !is_gimple_min_invariant (step)
2790 || !valid_value_p (init))
2791 return true;
2792
2793 /* If we get here, we know something useful about VAR based on the
2794 loop information. If it wraps, it may overflow. */
2795
2796 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2797 true))
2798 return true;
2799
2800 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
2801 {
2802 print_generic_expr (dump_file, var, 0);
2803 fprintf (dump_file, ": loop information indicates does not overflow\n");
2804 }
2805
2806 return false;
2807}
2808
0bca51f0
DN
2809
2810/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2811
227858d1
DN
2812 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2813 all the values in the ranges.
0bca51f0
DN
2814
2815 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2816
227858d1 2817 - Return NULL_TREE if it is not always possible to determine the
12df8a7e
ILT
2818 value of the comparison.
2819
2820 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2821 overflow infinity was used in the test. */
227858d1 2822
0bca51f0
DN
2823
2824static tree
12df8a7e
ILT
2825compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2826 bool *strict_overflow_p)
0bca51f0
DN
2827{
2828 /* VARYING or UNDEFINED ranges cannot be compared. */
2829 if (vr0->type == VR_VARYING
2830 || vr0->type == VR_UNDEFINED
2831 || vr1->type == VR_VARYING
2832 || vr1->type == VR_UNDEFINED)
2833 return NULL_TREE;
2834
2835 /* Anti-ranges need to be handled separately. */
2836 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2837 {
2838 /* If both are anti-ranges, then we cannot compute any
2839 comparison. */
2840 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2841 return NULL_TREE;
2842
2843 /* These comparisons are never statically computable. */
2844 if (comp == GT_EXPR
2845 || comp == GE_EXPR
2846 || comp == LT_EXPR
2847 || comp == LE_EXPR)
2848 return NULL_TREE;
2849
2850 /* Equality can be computed only between a range and an
2851 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2852 if (vr0->type == VR_RANGE)
2853 {
2854 /* To simplify processing, make VR0 the anti-range. */
227858d1 2855 value_range_t *tmp = vr0;
0bca51f0
DN
2856 vr0 = vr1;
2857 vr1 = tmp;
2858 }
2859
2860 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2861
12df8a7e
ILT
2862 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2863 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
0bca51f0
DN
2864 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2865
2866 return NULL_TREE;
2867 }
2868
0c948c27
ILT
2869 if (!usable_range_p (vr0, strict_overflow_p)
2870 || !usable_range_p (vr1, strict_overflow_p))
2871 return NULL_TREE;
2872
0bca51f0
DN
2873 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2874 operands around and change the comparison code. */
2875 if (comp == GT_EXPR || comp == GE_EXPR)
2876 {
227858d1 2877 value_range_t *tmp;
0bca51f0
DN
2878 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2879 tmp = vr0;
2880 vr0 = vr1;
2881 vr1 = tmp;
2882 }
2883
2884 if (comp == EQ_EXPR)
2885 {
2886 /* Equality may only be computed if both ranges represent
2887 exactly one value. */
12df8a7e
ILT
2888 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2889 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
0bca51f0 2890 {
12df8a7e
ILT
2891 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2892 strict_overflow_p);
2893 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2894 strict_overflow_p);
0bca51f0
DN
2895 if (cmp_min == 0 && cmp_max == 0)
2896 return boolean_true_node;
2897 else if (cmp_min != -2 && cmp_max != -2)
2898 return boolean_false_node;
2899 }
7ab1122a 2900 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
12df8a7e
ILT
2901 else if (compare_values_warnv (vr0->min, vr1->max,
2902 strict_overflow_p) == 1
2903 || compare_values_warnv (vr1->min, vr0->max,
2904 strict_overflow_p) == 1)
7ab1122a 2905 return boolean_false_node;
0bca51f0
DN
2906
2907 return NULL_TREE;
2908 }
2909 else if (comp == NE_EXPR)
2910 {
2911 int cmp1, cmp2;
2912
2913 /* If VR0 is completely to the left or completely to the right
2914 of VR1, they are always different. Notice that we need to
2915 make sure that both comparisons yield similar results to
2916 avoid comparing values that cannot be compared at
2917 compile-time. */
12df8a7e
ILT
2918 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2919 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
0bca51f0
DN
2920 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2921 return boolean_true_node;
2922
2923 /* If VR0 and VR1 represent a single value and are identical,
2924 return false. */
12df8a7e
ILT
2925 else if (compare_values_warnv (vr0->min, vr0->max,
2926 strict_overflow_p) == 0
2927 && compare_values_warnv (vr1->min, vr1->max,
2928 strict_overflow_p) == 0
2929 && compare_values_warnv (vr0->min, vr1->min,
2930 strict_overflow_p) == 0
2931 && compare_values_warnv (vr0->max, vr1->max,
2932 strict_overflow_p) == 0)
0bca51f0
DN
2933 return boolean_false_node;
2934
2935 /* Otherwise, they may or may not be different. */
2936 else
2937 return NULL_TREE;
2938 }
2939 else if (comp == LT_EXPR || comp == LE_EXPR)
2940 {
2941 int tst;
2942
2943 /* If VR0 is to the left of VR1, return true. */
12df8a7e 2944 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
0bca51f0
DN
2945 if ((comp == LT_EXPR && tst == -1)
2946 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
12df8a7e
ILT
2947 {
2948 if (overflow_infinity_range_p (vr0)
2949 || overflow_infinity_range_p (vr1))
2950 *strict_overflow_p = true;
2951 return boolean_true_node;
2952 }
0bca51f0
DN
2953
2954 /* If VR0 is to the right of VR1, return false. */
12df8a7e 2955 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
0bca51f0
DN
2956 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2957 || (comp == LE_EXPR && tst == 1))
12df8a7e
ILT
2958 {
2959 if (overflow_infinity_range_p (vr0)
2960 || overflow_infinity_range_p (vr1))
2961 *strict_overflow_p = true;
2962 return boolean_false_node;
2963 }
0bca51f0
DN
2964
2965 /* Otherwise, we don't know. */
2966 return NULL_TREE;
2967 }
2968
2969 gcc_unreachable ();
2970}
2971
2972
2973/* Given a value range VR, a value VAL and a comparison code COMP, return
227858d1 2974 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
0bca51f0
DN
2975 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2976 always returns false. Return NULL_TREE if it is not always
12df8a7e
ILT
2977 possible to determine the value of the comparison. Also set
2978 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2979 infinity was used in the test. */
0bca51f0
DN
2980
2981static tree
12df8a7e
ILT
2982compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2983 bool *strict_overflow_p)
0bca51f0
DN
2984{
2985 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2986 return NULL_TREE;
2987
2988 /* Anti-ranges need to be handled separately. */
2989 if (vr->type == VR_ANTI_RANGE)
2990 {
2991 /* For anti-ranges, the only predicates that we can compute at
2992 compile time are equality and inequality. */
2993 if (comp == GT_EXPR
2994 || comp == GE_EXPR
2995 || comp == LT_EXPR
2996 || comp == LE_EXPR)
2997 return NULL_TREE;
2998
d2f3ffba
JM
2999 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3000 if (value_inside_range (val, vr) == 1)
0bca51f0
DN
3001 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3002
3003 return NULL_TREE;
3004 }
3005
0c948c27
ILT
3006 if (!usable_range_p (vr, strict_overflow_p))
3007 return NULL_TREE;
3008
0bca51f0
DN
3009 if (comp == EQ_EXPR)
3010 {
3011 /* EQ_EXPR may only be computed if VR represents exactly
3012 one value. */
12df8a7e 3013 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
0bca51f0 3014 {
12df8a7e 3015 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
0bca51f0
DN
3016 if (cmp == 0)
3017 return boolean_true_node;
3018 else if (cmp == -1 || cmp == 1 || cmp == 2)
3019 return boolean_false_node;
3020 }
12df8a7e
ILT
3021 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3022 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
5de2df7b 3023 return boolean_false_node;
0bca51f0
DN
3024
3025 return NULL_TREE;
3026 }
3027 else if (comp == NE_EXPR)
3028 {
3029 /* If VAL is not inside VR, then they are always different. */
12df8a7e
ILT
3030 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3031 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
0bca51f0
DN
3032 return boolean_true_node;
3033
3034 /* If VR represents exactly one value equal to VAL, then return
3035 false. */
12df8a7e
ILT
3036 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3037 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
0bca51f0
DN
3038 return boolean_false_node;
3039
3040 /* Otherwise, they may or may not be different. */
3041 return NULL_TREE;
3042 }
3043 else if (comp == LT_EXPR || comp == LE_EXPR)
3044 {
3045 int tst;
3046
3047 /* If VR is to the left of VAL, return true. */
12df8a7e 3048 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
0bca51f0
DN
3049 if ((comp == LT_EXPR && tst == -1)
3050 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
12df8a7e
ILT
3051 {
3052 if (overflow_infinity_range_p (vr))
3053 *strict_overflow_p = true;
3054 return boolean_true_node;
3055 }
0bca51f0
DN
3056
3057 /* If VR is to the right of VAL, return false. */
12df8a7e 3058 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
0bca51f0
DN
3059 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3060 || (comp == LE_EXPR && tst == 1))
12df8a7e
ILT
3061 {
3062 if (overflow_infinity_range_p (vr))
3063 *strict_overflow_p = true;
3064 return boolean_false_node;
3065 }
0bca51f0
DN
3066
3067 /* Otherwise, we don't know. */
3068 return NULL_TREE;
3069 }
3070 else if (comp == GT_EXPR || comp == GE_EXPR)
3071 {
3072 int tst;
3073
3074 /* If VR is to the right of VAL, return true. */
12df8a7e 3075 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
0bca51f0
DN
3076 if ((comp == GT_EXPR && tst == 1)
3077 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
12df8a7e
ILT
3078 {
3079 if (overflow_infinity_range_p (vr))
3080 *strict_overflow_p = true;
3081 return boolean_true_node;
3082 }
0bca51f0
DN
3083
3084 /* If VR is to the left of VAL, return false. */
12df8a7e 3085 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
0bca51f0
DN
3086 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3087 || (comp == GE_EXPR && tst == -1))
12df8a7e
ILT
3088 {
3089 if (overflow_infinity_range_p (vr))
3090 *strict_overflow_p = true;
3091 return boolean_false_node;
3092 }
0bca51f0
DN
3093
3094 /* Otherwise, we don't know. */
3095 return NULL_TREE;
3096 }
3097
3098 gcc_unreachable ();
3099}
3100
3101
3102/* Debugging dumps. */
3103
227858d1
DN
3104void dump_value_range (FILE *, value_range_t *);
3105void debug_value_range (value_range_t *);
3106void dump_all_value_ranges (FILE *);
3107void debug_all_value_ranges (void);
3108void dump_vr_equiv (FILE *, bitmap);
3109void debug_vr_equiv (bitmap);
3110
3111
3112/* Dump value range VR to FILE. */
3113
0bca51f0 3114void
227858d1 3115dump_value_range (FILE *file, value_range_t *vr)
0bca51f0
DN
3116{
3117 if (vr == NULL)
3118 fprintf (file, "[]");
3119 else if (vr->type == VR_UNDEFINED)
3120 fprintf (file, "UNDEFINED");
3121 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3122 {
227858d1
DN
3123 tree type = TREE_TYPE (vr->min);
3124
0bca51f0 3125 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
227858d1 3126
e1f28918 3127 if (is_negative_overflow_infinity (vr->min))
12df8a7e 3128 fprintf (file, "-INF(OVF)");
e1f28918
ILT
3129 else if (INTEGRAL_TYPE_P (type)
3130 && !TYPE_UNSIGNED (type)
3131 && vrp_val_is_min (vr->min))
3132 fprintf (file, "-INF");
227858d1
DN
3133 else
3134 print_generic_expr (file, vr->min, 0);
3135
0bca51f0 3136 fprintf (file, ", ");
227858d1 3137
e1f28918 3138 if (is_positive_overflow_infinity (vr->max))
12df8a7e 3139 fprintf (file, "+INF(OVF)");
e1f28918
ILT
3140 else if (INTEGRAL_TYPE_P (type)
3141 && vrp_val_is_max (vr->max))
3142 fprintf (file, "+INF");
227858d1
DN
3143 else
3144 print_generic_expr (file, vr->max, 0);
3145
0bca51f0 3146 fprintf (file, "]");
227858d1
DN
3147
3148 if (vr->equiv)
3149 {
3150 bitmap_iterator bi;
3151 unsigned i, c = 0;
3152
3153 fprintf (file, " EQUIVALENCES: { ");
3154
3155 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3156 {
3157 print_generic_expr (file, ssa_name (i), 0);
3158 fprintf (file, " ");
3159 c++;
3160 }
3161
3162 fprintf (file, "} (%u elements)", c);
3163 }
0bca51f0
DN
3164 }
3165 else if (vr->type == VR_VARYING)
3166 fprintf (file, "VARYING");
3167 else
3168 fprintf (file, "INVALID RANGE");
3169}
3170
3171
3172/* Dump value range VR to stderr. */
3173
3174void
227858d1 3175debug_value_range (value_range_t *vr)
0bca51f0
DN
3176{
3177 dump_value_range (stderr, vr);
96644aba 3178 fprintf (stderr, "\n");
0bca51f0
DN
3179}
3180
3181
3182/* Dump value ranges of all SSA_NAMEs to FILE. */
3183
3184void
3185dump_all_value_ranges (FILE *file)
3186{
3187 size_t i;
3188
3189 for (i = 0; i < num_ssa_names; i++)
3190 {
227858d1 3191 if (vr_value[i])
0bca51f0 3192 {
227858d1 3193 print_generic_expr (file, ssa_name (i), 0);
0bca51f0 3194 fprintf (file, ": ");
227858d1 3195 dump_value_range (file, vr_value[i]);
0bca51f0
DN
3196 fprintf (file, "\n");
3197 }
3198 }
3199
3200 fprintf (file, "\n");
3201}
3202
3203
3204/* Dump all value ranges to stderr. */
3205
3206void
3207debug_all_value_ranges (void)
3208{
3209 dump_all_value_ranges (stderr);
3210}
3211
3212
0bca51f0
DN
3213/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3214 create a new SSA name N and return the assertion assignment
3215 'V = ASSERT_EXPR <V, V OP W>'. */
3216
3217static tree
3218build_assert_expr_for (tree cond, tree v)
3219{
3220 tree n, assertion;
3221
3222 gcc_assert (TREE_CODE (v) == SSA_NAME);
3223 n = duplicate_ssa_name (v, NULL_TREE);
3224
7da4bf7d 3225 if (COMPARISON_CLASS_P (cond))
0bca51f0 3226 {
0d451405 3227 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
ebb07520 3228 assertion = build_gimple_modify_stmt (n, a);
0bca51f0
DN
3229 }
3230 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3231 {
3232 /* Given !V, build the assignment N = false. */
3233 tree op0 = TREE_OPERAND (cond, 0);
3234 gcc_assert (op0 == v);
ebb07520 3235 assertion = build_gimple_modify_stmt (n, boolean_false_node);
0bca51f0
DN
3236 }
3237 else if (TREE_CODE (cond) == SSA_NAME)
3238 {
3239 /* Given V, build the assignment N = true. */
3240 gcc_assert (v == cond);
ebb07520 3241 assertion = build_gimple_modify_stmt (n, boolean_true_node);
0bca51f0
DN
3242 }
3243 else
3244 gcc_unreachable ();
3245
3246 SSA_NAME_DEF_STMT (n) = assertion;
3247
3248 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3249 operand of the ASSERT_EXPR. Register the new name and the old one
3250 in the replacement table so that we can fix the SSA web after
3251 adding all the ASSERT_EXPRs. */
3252 register_new_name_mapping (n, v);
3253
3254 return assertion;
3255}
3256
3257
3258/* Return false if EXPR is a predicate expression involving floating
3259 point values. */
3260
3261static inline bool
58f9752a 3262fp_predicate (const_tree expr)
0bca51f0 3263{
7da4bf7d
KH
3264 return (COMPARISON_CLASS_P (expr)
3265 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
0bca51f0
DN
3266}
3267
3268
227858d1
DN
3269/* If the range of values taken by OP can be inferred after STMT executes,
3270 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3271 describes the inferred range. Return true if a range could be
3272 inferred. */
0bca51f0 3273
227858d1
DN
3274static bool
3275infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
0bca51f0 3276{
227858d1
DN
3277 *val_p = NULL_TREE;
3278 *comp_code_p = ERROR_MARK;
3279
9fabf0d4
DN
3280 /* Do not attempt to infer anything in names that flow through
3281 abnormal edges. */
3282 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
227858d1
DN
3283 return false;
3284
3285 /* Similarly, don't infer anything from statements that may throw
3286 exceptions. */
3287 if (tree_could_throw_p (stmt))
3288 return false;
9fabf0d4 3289
8c5285e1
DN
3290 /* If STMT is the last statement of a basic block with no
3291 successors, there is no point inferring anything about any of its
3292 operands. We would not be able to find a proper insertion point
3293 for the assertion, anyway. */
3294 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3295 return false;
3296
60c9ad46
JL
3297 /* We can only assume that a pointer dereference will yield
3298 non-NULL if -fdelete-null-pointer-checks is enabled. */
3299 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
0bca51f0 3300 {
e9e0aa2c 3301 unsigned num_uses, num_loads, num_stores;
0bca51f0 3302
e9e0aa2c
DN
3303 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3304 if (num_loads + num_stores > 0)
0bca51f0 3305 {
227858d1
DN
3306 *val_p = build_int_cst (TREE_TYPE (op), 0);
3307 *comp_code_p = NE_EXPR;
3308 return true;
0bca51f0
DN
3309 }
3310 }
3311
227858d1 3312 return false;
0bca51f0
DN
3313}
3314
3315
227858d1
DN
3316void dump_asserts_for (FILE *, tree);
3317void debug_asserts_for (tree);
3318void dump_all_asserts (FILE *);
3319void debug_all_asserts (void);
3320
3321/* Dump all the registered assertions for NAME to FILE. */
3322
3323void
3324dump_asserts_for (FILE *file, tree name)
3325{
3326 assert_locus_t loc;
3327
3328 fprintf (file, "Assertions to be inserted for ");
3329 print_generic_expr (file, name, 0);
3330 fprintf (file, "\n");
3331
3332 loc = asserts_for[SSA_NAME_VERSION (name)];
3333 while (loc)
3334 {
3335 fprintf (file, "\t");
3336 print_generic_expr (file, bsi_stmt (loc->si), 0);
3337 fprintf (file, "\n\tBB #%d", loc->bb->index);
3338 if (loc->e)
3339 {
3340 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3341 loc->e->dest->index);
3342 dump_edge_info (file, loc->e, 0);
3343 }
3344 fprintf (file, "\n\tPREDICATE: ");
3345 print_generic_expr (file, name, 0);
3346 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3347 print_generic_expr (file, loc->val, 0);
3348 fprintf (file, "\n\n");
3349 loc = loc->next;
3350 }
3351
3352 fprintf (file, "\n");
3353}
3354
3355
3356/* Dump all the registered assertions for NAME to stderr. */
3357
3358void
3359debug_asserts_for (tree name)
3360{
3361 dump_asserts_for (stderr, name);
3362}
3363
3364
3365/* Dump all the registered assertions for all the names to FILE. */
3366
3367void
3368dump_all_asserts (FILE *file)
3369{
3370 unsigned i;
3371 bitmap_iterator bi;
3372
3373 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3374 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3375 dump_asserts_for (file, ssa_name (i));
3376 fprintf (file, "\n");
3377}
3378
3379
3380/* Dump all the registered assertions for all the names to stderr. */
3381
3382void
3383debug_all_asserts (void)
3384{
3385 dump_all_asserts (stderr);
3386}
3387
3388
3389/* If NAME doesn't have an ASSERT_EXPR registered for asserting
3390 'NAME COMP_CODE VAL' at a location that dominates block BB or
3391 E->DEST, then register this location as a possible insertion point
3392 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3393
3394 BB, E and SI provide the exact insertion point for the new
3395 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3396 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3397 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3398 must not be NULL. */
3399
3400static void
3401register_new_assert_for (tree name,
3402 enum tree_code comp_code,
3403 tree val,
3404 basic_block bb,
3405 edge e,
3406 block_stmt_iterator si)
3407{
3408 assert_locus_t n, loc, last_loc;
3409 bool found;
3410 basic_block dest_bb;
3411
3412#if defined ENABLE_CHECKING
3413 gcc_assert (bb == NULL || e == NULL);
3414
3415 if (e == NULL)
3416 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3417 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3418#endif
3419
3420 /* The new assertion A will be inserted at BB or E. We need to
3421 determine if the new location is dominated by a previously
3422 registered location for A. If we are doing an edge insertion,
3423 assume that A will be inserted at E->DEST. Note that this is not
3424 necessarily true.
3425
3426 If E is a critical edge, it will be split. But even if E is
3427 split, the new block will dominate the same set of blocks that
3428 E->DEST dominates.
3429
3430 The reverse, however, is not true, blocks dominated by E->DEST
3431 will not be dominated by the new block created to split E. So,
3432 if the insertion location is on a critical edge, we will not use
3433 the new location to move another assertion previously registered
3434 at a block dominated by E->DEST. */
3435 dest_bb = (bb) ? bb : e->dest;
3436
3437 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3438 VAL at a block dominating DEST_BB, then we don't need to insert a new
3439 one. Similarly, if the same assertion already exists at a block
3440 dominated by DEST_BB and the new location is not on a critical
3441 edge, then update the existing location for the assertion (i.e.,
3442 move the assertion up in the dominance tree).
3443
3444 Note, this is implemented as a simple linked list because there
3445 should not be more than a handful of assertions registered per
3446 name. If this becomes a performance problem, a table hashed by
3447 COMP_CODE and VAL could be implemented. */
3448 loc = asserts_for[SSA_NAME_VERSION (name)];
3449 last_loc = loc;
3450 found = false;
3451 while (loc)
3452 {
3453 if (loc->comp_code == comp_code
3454 && (loc->val == val
3455 || operand_equal_p (loc->val, val, 0)))
3456 {
3457 /* If the assertion NAME COMP_CODE VAL has already been
3458 registered at a basic block that dominates DEST_BB, then
3459 we don't need to insert the same assertion again. Note
3460 that we don't check strict dominance here to avoid
3461 replicating the same assertion inside the same basic
3462 block more than once (e.g., when a pointer is
3463 dereferenced several times inside a block).
3464
3465 An exception to this rule are edge insertions. If the
3466 new assertion is to be inserted on edge E, then it will
3467 dominate all the other insertions that we may want to
3468 insert in DEST_BB. So, if we are doing an edge
3469 insertion, don't do this dominance check. */
3470 if (e == NULL
3471 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3472 return;
3473
3474 /* Otherwise, if E is not a critical edge and DEST_BB
3475 dominates the existing location for the assertion, move
3476 the assertion up in the dominance tree by updating its
3477 location information. */
3478 if ((e == NULL || !EDGE_CRITICAL_P (e))
3479 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3480 {
3481 loc->bb = dest_bb;
3482 loc->e = e;
3483 loc->si = si;
3484 return;
3485 }
3486 }
3487
3488 /* Update the last node of the list and move to the next one. */
3489 last_loc = loc;
3490 loc = loc->next;
3491 }
3492
3493 /* If we didn't find an assertion already registered for
3494 NAME COMP_CODE VAL, add a new one at the end of the list of
3495 assertions associated with NAME. */
5ed6ace5 3496 n = XNEW (struct assert_locus_d);
227858d1
DN
3497 n->bb = dest_bb;
3498 n->e = e;
3499 n->si = si;
3500 n->comp_code = comp_code;
3501 n->val = val;
3502 n->next = NULL;
3503
3504 if (last_loc)
3505 last_loc->next = n;
3506 else
3507 asserts_for[SSA_NAME_VERSION (name)] = n;
3508
3509 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3510}
3511
279f3eb5
JL
3512/* COND is a predicate which uses NAME. Extract a suitable test code
3513 and value and store them into *CODE_P and *VAL_P so the predicate
3514 is normalized to NAME *CODE_P *VAL_P.
227858d1 3515
279f3eb5
JL
3516 If no extraction was possible, return FALSE, otherwise return TRUE.
3517
3518 If INVERT is true, then we invert the result stored into *CODE_P. */
227858d1
DN
3519
3520static bool
279f3eb5
JL
3521extract_code_and_val_from_cond (tree name, tree cond, bool invert,
3522 enum tree_code *code_p, tree *val_p)
227858d1 3523{
227858d1 3524 enum tree_code comp_code;
279f3eb5
JL
3525 tree val;
3526
3527 /* Predicates may be a single SSA name or NAME OP VAL. */
3528 if (cond == name)
3529 {
3530 /* If the predicate is a name, it must be NAME, in which
3531 case we create the predicate NAME == true or
3532 NAME == false accordingly. */
3533 comp_code = EQ_EXPR;
3534 val = invert ? boolean_false_node : boolean_true_node;
3535 }
3536 else
3537 {
3538 /* Otherwise, we have a comparison of the form NAME COMP VAL
3539 or VAL COMP NAME. */
3540 if (name == TREE_OPERAND (cond, 1))
3541 {
3542 /* If the predicate is of the form VAL COMP NAME, flip
3543 COMP around because we need to register NAME as the
3544 first operand in the predicate. */
3545 comp_code = swap_tree_comparison (TREE_CODE (cond));
3546 val = TREE_OPERAND (cond, 0);
3547 }
3548 else
3549 {
3550 /* The comparison is of the form NAME COMP VAL, so the
3551 comparison code remains unchanged. */
3552 comp_code = TREE_CODE (cond);
3553 val = TREE_OPERAND (cond, 1);
3554 }
227858d1 3555
279f3eb5
JL
3556 /* Invert the comparison code as necessary. */
3557 if (invert)
3558 comp_code = invert_tree_comparison (comp_code, 0);
227858d1 3559
279f3eb5
JL
3560 /* VRP does not handle float types. */
3561 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3562 return false;
3563
3564 /* Do not register always-false predicates.
3565 FIXME: this works around a limitation in fold() when dealing with
3566 enumerations. Given 'enum { N1, N2 } x;', fold will not
3567 fold 'if (x > N2)' to 'if (0)'. */
3568 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3569 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3570 {
3571 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3572 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3573
3574 if (comp_code == GT_EXPR
3575 && (!max
3576 || compare_values (val, max) == 0))
3577 return false;
3578
3579 if (comp_code == LT_EXPR
3580 && (!min
3581 || compare_values (val, min) == 0))
3582 return false;
3583 }
3584 }
3585 *code_p = comp_code;
3586 *val_p = val;
3587 return true;
3588}
3589
3590/* OP is an operand of a truth value expression which is known to have
3591 a particular value. Register any asserts for OP and for any
3592 operands in OP's defining statement.
3593
3594 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3595 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3596
3597static bool
3598register_edge_assert_for_1 (tree op, enum tree_code code,
3599 edge e, block_stmt_iterator bsi)
3600{
34fc5065 3601 bool retval = false;
279f3eb5 3602 tree op_def, rhs, val;
227858d1 3603
279f3eb5
JL
3604 /* We only care about SSA_NAMEs. */
3605 if (TREE_CODE (op) != SSA_NAME)
227858d1
DN
3606 return false;
3607
279f3eb5
JL
3608 /* We know that OP will have a zero or nonzero value. If OP is used
3609 more than once go ahead and register an assert for OP.
3610
3611 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3612 it will always be set for OP (because OP is used in a COND_EXPR in
3613 the subgraph). */
3614 if (!has_single_use (op))
3615 {
3616 val = build_int_cst (TREE_TYPE (op), 0);
3617 register_new_assert_for (op, code, val, NULL, e, bsi);
3618 retval = true;
3619 }
3620
3621 /* Now look at how OP is set. If it's set from a comparison,
3622 a truth operation or some bit operations, then we may be able
3623 to register information about the operands of that assignment. */
3624 op_def = SSA_NAME_DEF_STMT (op);
07beea0d 3625 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
279f3eb5
JL
3626 return retval;
3627
07beea0d 3628 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
279f3eb5
JL
3629
3630 if (COMPARISON_CLASS_P (rhs))
227858d1 3631 {
34fc5065 3632 bool invert = (code == EQ_EXPR ? true : false);
279f3eb5
JL
3633 tree op0 = TREE_OPERAND (rhs, 0);
3634 tree op1 = TREE_OPERAND (rhs, 1);
227858d1 3635
279f3eb5
JL
3636 /* Conditionally register an assert for each SSA_NAME in the
3637 comparison. */
3638 if (TREE_CODE (op0) == SSA_NAME
3639 && !has_single_use (op0)
3640 && extract_code_and_val_from_cond (op0, rhs,
3641 invert, &code, &val))
227858d1 3642 {
279f3eb5
JL
3643 register_new_assert_for (op0, code, val, NULL, e, bsi);
3644 retval = true;
227858d1 3645 }
279f3eb5
JL
3646
3647 /* Similarly for the second operand of the comparison. */
3648 if (TREE_CODE (op1) == SSA_NAME
3649 && !has_single_use (op1)
3650 && extract_code_and_val_from_cond (op1, rhs,
3651 invert, &code, &val))
227858d1 3652 {
279f3eb5
JL
3653 register_new_assert_for (op1, code, val, NULL, e, bsi);
3654 retval = true;
3655 }
3656 }
3657 else if ((code == NE_EXPR
3658 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
3659 || TREE_CODE (rhs) == BIT_AND_EXPR))
3660 || (code == EQ_EXPR
3661 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
3662 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
3663 {
3664 /* Recurse on each operand. */
3665 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3666 code, e, bsi);
3667 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
3668 code, e, bsi);
3669 }
3670 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
3671 {
34fc5065
RG
3672 /* Recurse, flipping CODE. */
3673 code = invert_tree_comparison (code, false);
279f3eb5 3674 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
34fc5065 3675 code, e, bsi);
279f3eb5
JL
3676 }
3677 else if (TREE_CODE (rhs) == SSA_NAME)
3678 {
34fc5065 3679 /* Recurse through the copy. */
279f3eb5
JL
3680 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
3681 }
3682 else if (TREE_CODE (rhs) == NOP_EXPR
3683 || TREE_CODE (rhs) == CONVERT_EXPR
279f3eb5
JL
3684 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
3685 {
34fc5065 3686 /* Recurse through the type conversion. */
279f3eb5
JL
3687 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3688 code, e, bsi);
3689 }
227858d1 3690
279f3eb5
JL
3691 return retval;
3692}
da11c5d2 3693
279f3eb5
JL
3694/* Try to register an edge assertion for SSA name NAME on edge E for
3695 the condition COND contributing to the conditional jump pointed to by SI.
3696 Return true if an assertion for NAME could be registered. */
da11c5d2 3697
279f3eb5
JL
3698static bool
3699register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
3700{
3701 tree val;
3702 enum tree_code comp_code;
3703 bool retval = false;
3704 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3705
3706 /* Do not attempt to infer anything in names that flow through
3707 abnormal edges. */
3708 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3709 return false;
3710
3711 if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
3712 &comp_code, &val))
3713 return false;
3714
3715 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3716 reachable from E. */
3717 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3718 {
3719 register_new_assert_for (name, comp_code, val, NULL, e, si);
3720 retval = true;
3721 }
3722
3723 /* If COND is effectively an equality test of an SSA_NAME against
3724 the value zero or one, then we may be able to assert values
3725 for SSA_NAMEs which flow into COND. */
3726
3727 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
3728 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
2f8e468b 3729 have nonzero value. */
279f3eb5
JL
3730 if (((comp_code == EQ_EXPR && integer_onep (val))
3731 || (comp_code == NE_EXPR && integer_zerop (val))))
3732 {
3733 tree def_stmt = SSA_NAME_DEF_STMT (name);
3734
07beea0d
AH
3735 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3736 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
3737 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
279f3eb5 3738 {
07beea0d
AH
3739 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3740 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
279f3eb5
JL
3741 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
3742 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
227858d1
DN
3743 }
3744 }
279f3eb5
JL
3745
3746 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
3747 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
3748 have zero value. */
3749 if (((comp_code == EQ_EXPR && integer_zerop (val))
3750 || (comp_code == NE_EXPR && integer_onep (val))))
227858d1 3751 {
279f3eb5
JL
3752 tree def_stmt = SSA_NAME_DEF_STMT (name);
3753
07beea0d
AH
3754 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3755 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
e09deb14
RG
3756 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
3757 necessarily zero value. */
3758 || (comp_code == EQ_EXPR
3759 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1))
3760 == BIT_IOR_EXPR))))
279f3eb5 3761 {
07beea0d
AH
3762 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3763 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
279f3eb5
JL
3764 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
3765 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
3766 }
227858d1
DN
3767 }
3768
279f3eb5 3769 return retval;
227858d1
DN
3770}
3771
3772
3773static bool find_assert_locations (basic_block bb);
3774
3775/* Determine whether the outgoing edges of BB should receive an
279f3eb5 3776 ASSERT_EXPR for each of the operands of BB's LAST statement.
9bb6aa43 3777 The last statement of BB must be a COND_EXPR.
227858d1
DN
3778
3779 If any of the sub-graphs rooted at BB have an interesting use of
3780 the predicate operands, an assert location node is added to the
3781 list of assertions for the corresponding operands. */
3782
3783static bool
279f3eb5 3784find_conditional_asserts (basic_block bb, tree last)
227858d1
DN
3785{
3786 bool need_assert;
279f3eb5
JL
3787 block_stmt_iterator bsi;
3788 tree op;
227858d1
DN
3789 edge_iterator ei;
3790 edge e;
3791 ssa_op_iter iter;
3792
3793 need_assert = false;
279f3eb5 3794 bsi = bsi_for_stmt (last);
227858d1
DN
3795
3796 /* Look for uses of the operands in each of the sub-graphs
3797 rooted at BB. We need to check each of the outgoing edges
3798 separately, so that we know what kind of ASSERT_EXPR to
3799 insert. */
3800 FOR_EACH_EDGE (e, ei, bb->succs)
3801 {
3802 if (e->dest == bb)
3803 continue;
3804
3805 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3806 Otherwise, when we finish traversing each of the sub-graphs, we
3807 won't know whether the variables were found in the sub-graphs or
2090d6a0
JL
3808 if they had been found in a block upstream from BB.
3809
3810 This is actually a bad idea is some cases, particularly jump
3811 threading. Consider a CFG like the following:
3812
3813 0
3814 /|
3815 1 |
3816 \|
3817 2
3818 / \
3819 3 4
3820
3821 Assume that one or more operands in the conditional at the
3822 end of block 0 are used in a conditional in block 2, but not
3823 anywhere in block 1. In this case we will not insert any
3824 assert statements in block 1, which may cause us to miss
3825 opportunities to optimize, particularly for jump threading. */
227858d1
DN
3826 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3827 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3828
3829 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3830 to determine if any of the operands in the conditional
3831 predicate are used. */
12a6309e 3832 need_assert |= find_assert_locations (e->dest);
227858d1
DN
3833
3834 /* Register the necessary assertions for each operand in the
3835 conditional predicate. */
3836 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
279f3eb5
JL
3837 need_assert |= register_edge_assert_for (op, e, bsi,
3838 COND_EXPR_COND (last));
227858d1
DN
3839 }
3840
3841 /* Finally, indicate that we have found the operands in the
3842 conditional. */
3843 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3844 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3845
3846 return need_assert;
3847}
3848
9bb6aa43
RG
3849/* Compare two case labels sorting first by the destination label uid
3850 and then by the case value. */
3851
3852static int
3853compare_case_labels (const void *p1, const void *p2)
3854{
741ac903
KG
3855 const_tree const case1 = *(const_tree const*)p1;
3856 const_tree const case2 = *(const_tree const*)p2;
9bb6aa43
RG
3857 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
3858 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
3859
3860 if (uid1 < uid2)
3861 return -1;
3862 else if (uid1 == uid2)
3863 {
3864 /* Make sure the default label is first in a group. */
3865 if (!CASE_LOW (case1))
3866 return -1;
3867 else if (!CASE_LOW (case2))
3868 return 1;
3869 else
3870 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
3871 }
3872 else
3873 return 1;
3874}
3875
3876/* Determine whether the outgoing edges of BB should receive an
3877 ASSERT_EXPR for each of the operands of BB's LAST statement.
3878 The last statement of BB must be a SWITCH_EXPR.
3879
3880 If any of the sub-graphs rooted at BB have an interesting use of
3881 the predicate operands, an assert location node is added to the
3882 list of assertions for the corresponding operands. */
3883
3884static bool
3885find_switch_asserts (basic_block bb, tree last)
3886{
3887 bool need_assert;
3888 block_stmt_iterator bsi;
3889 tree op, cond;
3890 edge e;
3891 tree vec = SWITCH_LABELS (last), vec2;
3892 size_t n = TREE_VEC_LENGTH (vec);
3893 unsigned int idx;
3894
3895 need_assert = false;
3896 bsi = bsi_for_stmt (last);
3897 op = TREE_OPERAND (last, 0);
3898 if (TREE_CODE (op) != SSA_NAME)
3899 return false;
3900
3901 /* Build a vector of case labels sorted by destination label. */
3902 vec2 = make_tree_vec (n);
3903 for (idx = 0; idx < n; ++idx)
3904 TREE_VEC_ELT (vec2, idx) = TREE_VEC_ELT (vec, idx);
3905 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
3906
3907 for (idx = 0; idx < n; ++idx)
3908 {
3909 tree min, max;
3910 tree cl = TREE_VEC_ELT (vec2, idx);
3911
3912 min = CASE_LOW (cl);
3913 max = CASE_HIGH (cl);
3914
3915 /* If there are multiple case labels with the same destination
3916 we need to combine them to a single value range for the edge. */
3917 if (idx + 1 < n
3918 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
3919 {
3920 /* Skip labels until the last of the group. */
3921 do {
3922 ++idx;
3923 } while (idx < n
3924 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
3925 --idx;
3926
3927 /* Pick up the maximum of the case label range. */
3928 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
3929 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
3930 else
3931 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
3932 }
3933
3934 /* Nothing to do if the range includes the default label until we
3935 can register anti-ranges. */
3936 if (min == NULL_TREE)
3937 continue;
3938
3939 /* Find the edge to register the assert expr on. */
3940 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
3941
3942 /* Remove the SWITCH_EXPR operand from the FOUND_IN_SUBGRAPH bitmap.
3943 Otherwise, when we finish traversing each of the sub-graphs, we
3944 won't know whether the variables were found in the sub-graphs or
3945 if they had been found in a block upstream from BB. */
3946 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3947
3948 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3949 to determine if any of the operands in the conditional
3950 predicate are used. */
3951 if (e->dest != bb)
3952 need_assert |= find_assert_locations (e->dest);
3953
3954 /* Register the necessary assertions for the operand in the
3955 SWITCH_EXPR. */
3956 cond = build2 (max ? GE_EXPR : EQ_EXPR, boolean_type_node,
3957 op, fold_convert (TREE_TYPE (op), min));
3958 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3959 if (max)
3960 {
3961 cond = build2 (LE_EXPR, boolean_type_node,
3962 op, fold_convert (TREE_TYPE (op), max));
3963 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3964 }
3965 }
3966
3967 /* Finally, indicate that we have found the operand in the
3968 SWITCH_EXPR. */
3969 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3970
3971 return need_assert;
3972}
3973
227858d1
DN
3974
3975/* Traverse all the statements in block BB looking for statements that
3976 may generate useful assertions for the SSA names in their operand.
3977 If a statement produces a useful assertion A for name N_i, then the
3978 list of assertions already generated for N_i is scanned to
3979 determine if A is actually needed.
3980
3981 If N_i already had the assertion A at a location dominating the
3982 current location, then nothing needs to be done. Otherwise, the
3983 new location for A is recorded instead.
3984
3985 1- For every statement S in BB, all the variables used by S are
3986 added to bitmap FOUND_IN_SUBGRAPH.
3987
3988 2- If statement S uses an operand N in a way that exposes a known
3989 value range for N, then if N was not already generated by an
3990 ASSERT_EXPR, create a new assert location for N. For instance,
3991 if N is a pointer and the statement dereferences it, we can
3992 assume that N is not NULL.
3993
3994 3- COND_EXPRs are a special case of #2. We can derive range
3995 information from the predicate but need to insert different
3996 ASSERT_EXPRs for each of the sub-graphs rooted at the
3997 conditional block. If the last statement of BB is a conditional
3998 expression of the form 'X op Y', then
3999
4000 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4001
4002 b) If the conditional is the only entry point to the sub-graph
4003 corresponding to the THEN_CLAUSE, recurse into it. On
4004 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4005 an ASSERT_EXPR is added for the corresponding variable.
4006
4007 c) Repeat step (b) on the ELSE_CLAUSE.
4008
4009 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4010
4011 For instance,
4012
4013 if (a == 9)
4014 b = a;
4015 else
4016 b = c + 1;
4017
4018 In this case, an assertion on the THEN clause is useful to
4019 determine that 'a' is always 9 on that edge. However, an assertion
4020 on the ELSE clause would be unnecessary.
4021
4022 4- If BB does not end in a conditional expression, then we recurse
4023 into BB's dominator children.
4024
4025 At the end of the recursive traversal, every SSA name will have a
4026 list of locations where ASSERT_EXPRs should be added. When a new
4027 location for name N is found, it is registered by calling
4028 register_new_assert_for. That function keeps track of all the
4029 registered assertions to prevent adding unnecessary assertions.
4030 For instance, if a pointer P_4 is dereferenced more than once in a
4031 dominator tree, only the location dominating all the dereference of
4032 P_4 will receive an ASSERT_EXPR.
4033
4034 If this function returns true, then it means that there are names
4035 for which we need to generate ASSERT_EXPRs. Those assertions are
9bb6aa43 4036 inserted by process_assert_insertions. */
227858d1
DN
4037
4038static bool
4039find_assert_locations (basic_block bb)
4040{
4041 block_stmt_iterator si;
4042 tree last, phi;
4043 bool need_assert;
4044 basic_block son;
4045
4046 if (TEST_BIT (blocks_visited, bb->index))
4047 return false;
4048
4049 SET_BIT (blocks_visited, bb->index);
4050
4051 need_assert = false;
4052
4053 /* Traverse all PHI nodes in BB marking used operands. */
4054 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4055 {
4056 use_operand_p arg_p;
4057 ssa_op_iter i;
4058
4059 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4060 {
4061 tree arg = USE_FROM_PTR (arg_p);
4062 if (TREE_CODE (arg) == SSA_NAME)
4063 {
4064 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
4065 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
4066 }
4067 }
4068 }
4069
4070 /* Traverse all the statements in BB marking used names and looking
4071 for statements that may infer assertions for their used operands. */
4072 last = NULL_TREE;
4073 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4074 {
4075 tree stmt, op;
4076 ssa_op_iter i;
4077
4078 stmt = bsi_stmt (si);
4079
4080 /* See if we can derive an assertion for any of STMT's operands. */
4081 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4082 {
4083 tree value;
4084 enum tree_code comp_code;
4085
4086 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
4087 the sub-graph of a conditional block, when we return from
4088 this recursive walk, our parent will use the
4089 FOUND_IN_SUBGRAPH bitset to determine if one of the
4090 operands it was looking for was present in the sub-graph. */
4091 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4092
227858d1
DN
4093 /* If OP is used in such a way that we can infer a value
4094 range for it, and we don't find a previous assertion for
4095 it, create a new assertion location node for OP. */
4096 if (infer_value_range (stmt, op, &comp_code, &value))
4097 {
917f1b7e 4098 /* If we are able to infer a nonzero value range for OP,
60c9ad46
JL
4099 then walk backwards through the use-def chain to see if OP
4100 was set via a typecast.
4101
4102 If so, then we can also infer a nonzero value range
4103 for the operand of the NOP_EXPR. */
4104 if (comp_code == NE_EXPR && integer_zerop (value))
4105 {
4106 tree t = op;
4107 tree def_stmt = SSA_NAME_DEF_STMT (t);
4108
07beea0d
AH
4109 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4110 && TREE_CODE
4111 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
4112 && TREE_CODE
4113 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
4114 0)) == SSA_NAME
4115 && POINTER_TYPE_P
4116 (TREE_TYPE (TREE_OPERAND
4117 (GIMPLE_STMT_OPERAND (def_stmt,
4118 1), 0))))
60c9ad46 4119 {
07beea0d 4120 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
60c9ad46
JL
4121 def_stmt = SSA_NAME_DEF_STMT (t);
4122
4123 /* Note we want to register the assert for the
4124 operand of the NOP_EXPR after SI, not after the
4125 conversion. */
4126 if (! has_single_use (t))
4127 {
4128 register_new_assert_for (t, comp_code, value,
4129 bb, NULL, si);
4130 need_assert = true;
4131 }
4132 }
4133 }
4134
4135 /* If OP is used only once, namely in this STMT, don't
4136 bother creating an ASSERT_EXPR for it. Such an
4137 ASSERT_EXPR would do nothing but increase compile time. */
4138 if (!has_single_use (op))
4139 {
4140 register_new_assert_for (op, comp_code, value, bb, NULL, si);
4141 need_assert = true;
4142 }
0bca51f0
DN
4143 }
4144 }
4145
4146 /* Remember the last statement of the block. */
4147 last = stmt;
4148 }
4149
227858d1 4150 /* If BB's last statement is a conditional expression
0bca51f0 4151 involving integer operands, recurse into each of the sub-graphs
227858d1 4152 rooted at BB to determine if we need to add ASSERT_EXPRs. */
0bca51f0
DN
4153 if (last
4154 && TREE_CODE (last) == COND_EXPR
4155 && !fp_predicate (COND_EXPR_COND (last))
f47c96aa 4156 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
279f3eb5 4157 need_assert |= find_conditional_asserts (bb, last);
227858d1 4158
9bb6aa43
RG
4159 if (last
4160 && TREE_CODE (last) == SWITCH_EXPR
4161 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4162 need_assert |= find_switch_asserts (bb, last);
4163
227858d1
DN
4164 /* Recurse into the dominator children of BB. */
4165 for (son = first_dom_son (CDI_DOMINATORS, bb);
4166 son;
4167 son = next_dom_son (CDI_DOMINATORS, son))
4168 need_assert |= find_assert_locations (son);
4169
4170 return need_assert;
4171}
4172
4173
4174/* Create an ASSERT_EXPR for NAME and insert it in the location
4175 indicated by LOC. Return true if we made any edge insertions. */
4176
4177static bool
4178process_assert_insertions_for (tree name, assert_locus_t loc)
4179{
4180 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4181 tree stmt, cond, assert_expr;
4182 edge_iterator ei;
4183 edge e;
4184
0d451405 4185 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
227858d1
DN
4186 assert_expr = build_assert_expr_for (cond, name);
4187
4188 if (loc->e)
0bca51f0 4189 {
227858d1
DN
4190 /* We have been asked to insert the assertion on an edge. This
4191 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4192#if defined ENABLE_CHECKING
4193 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
4194 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
4195#endif
0bca51f0 4196
227858d1
DN
4197 bsi_insert_on_edge (loc->e, assert_expr);
4198 return true;
4199 }
9fabf0d4 4200
227858d1
DN
4201 /* Otherwise, we can insert right after LOC->SI iff the
4202 statement must not be the last statement in the block. */
4203 stmt = bsi_stmt (loc->si);
4204 if (!stmt_ends_bb_p (stmt))
4205 {
4206 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
4207 return false;
4208 }
9fabf0d4 4209
227858d1
DN
4210 /* If STMT must be the last statement in BB, we can only insert new
4211 assertions on the non-abnormal edge out of BB. Note that since
4212 STMT is not control flow, there may only be one non-abnormal edge
4213 out of BB. */
4214 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4215 if (!(e->flags & EDGE_ABNORMAL))
4216 {
4217 bsi_insert_on_edge (e, assert_expr);
4218 return true;
4219 }
0bca51f0 4220
227858d1
DN
4221 gcc_unreachable ();
4222}
0bca51f0 4223
0bca51f0 4224
227858d1
DN
4225/* Process all the insertions registered for every name N_i registered
4226 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4227 found in ASSERTS_FOR[i]. */
0bca51f0 4228
227858d1
DN
4229static void
4230process_assert_insertions (void)
4231{
4232 unsigned i;
4233 bitmap_iterator bi;
4234 bool update_edges_p = false;
4235 int num_asserts = 0;
0bca51f0 4236
227858d1
DN
4237 if (dump_file && (dump_flags & TDF_DETAILS))
4238 dump_all_asserts (dump_file);
60b4ccde 4239
227858d1
DN
4240 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4241 {
4242 assert_locus_t loc = asserts_for[i];
4243 gcc_assert (loc);
4244
4245 while (loc)
60b4ccde 4246 {
227858d1
DN
4247 assert_locus_t next = loc->next;
4248 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4249 free (loc);
4250 loc = next;
4251 num_asserts++;
60b4ccde 4252 }
0bca51f0 4253 }
0bca51f0 4254
227858d1
DN
4255 if (update_edges_p)
4256 bsi_commit_edge_inserts ();
0bca51f0 4257
227858d1
DN
4258 if (dump_file && (dump_flags & TDF_STATS))
4259 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
4260 num_asserts);
0bca51f0
DN
4261}
4262
4263
4264/* Traverse the flowgraph looking for conditional jumps to insert range
4265 expressions. These range expressions are meant to provide information
4266 to optimizations that need to reason in terms of value ranges. They
4267 will not be expanded into RTL. For instance, given:
4268
4269 x = ...
4270 y = ...
4271 if (x < y)
4272 y = x - 2;
4273 else
4274 x = y + 3;
4275
4276 this pass will transform the code into:
4277
4278 x = ...
4279 y = ...
4280 if (x < y)
4281 {
4282 x = ASSERT_EXPR <x, x < y>
4283 y = x - 2
4284 }
4285 else
4286 {
4287 y = ASSERT_EXPR <y, x <= y>
4288 x = y + 3
4289 }
4290
4291 The idea is that once copy and constant propagation have run, other
4292 optimizations will be able to determine what ranges of values can 'x'
4293 take in different paths of the code, simply by checking the reaching
4294 definition of 'x'. */
4295
4296static void
4297insert_range_assertions (void)
4298{
4299 edge e;
4300 edge_iterator ei;
4301 bool update_ssa_p;
4302
227858d1
DN
4303 found_in_subgraph = sbitmap_alloc (num_ssa_names);
4304 sbitmap_zero (found_in_subgraph);
4305
4306 blocks_visited = sbitmap_alloc (last_basic_block);
4307 sbitmap_zero (blocks_visited);
4308
4309 need_assert_for = BITMAP_ALLOC (NULL);
b9eae1a9 4310 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
0bca51f0
DN
4311
4312 calculate_dominance_info (CDI_DOMINATORS);
4313
4314 update_ssa_p = false;
4315 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
227858d1 4316 if (find_assert_locations (e->dest))
0bca51f0
DN
4317 update_ssa_p = true;
4318
4319 if (update_ssa_p)
4320 {
227858d1 4321 process_assert_insertions ();
0bca51f0
DN
4322 update_ssa (TODO_update_ssa_no_phi);
4323 }
4324
4325 if (dump_file && (dump_flags & TDF_DETAILS))
4326 {
4327 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4328 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4329 }
4330
227858d1
DN
4331 sbitmap_free (found_in_subgraph);
4332 free (asserts_for);
4333 BITMAP_FREE (need_assert_for);
0bca51f0
DN
4334}
4335
590b1f2d
DM
4336/* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4337 and "struct" hacks. If VRP can determine that the
9f5ed61a 4338 array subscript is a constant, check if it is outside valid
590b1f2d
DM
4339 range. If the array subscript is a RANGE, warn if it is
4340 non-overlapping with valid range.
4341 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4342
4343static void
4344check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
4345{
4346 value_range_t* vr = NULL;
4347 tree low_sub, up_sub;
4348 tree low_bound, up_bound = array_ref_up_bound (ref);
4349
4350 low_sub = up_sub = TREE_OPERAND (ref, 1);
4351
88df9da1 4352 if (!up_bound || TREE_NO_WARNING (ref)
590b1f2d
DM
4353 || TREE_CODE (up_bound) != INTEGER_CST
4354 /* Can not check flexible arrays. */
4355 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4356 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4357 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4358 /* Accesses after the end of arrays of size 0 (gcc
4359 extension) and 1 are likely intentional ("struct
4360 hack"). */
4361 || compare_tree_int (up_bound, 1) <= 0)
4362 return;
4363
4364 low_bound = array_ref_low_bound (ref);
4365
4366 if (TREE_CODE (low_sub) == SSA_NAME)
4367 {
4368 vr = get_value_range (low_sub);
4369 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4370 {
4371 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4372 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4373 }
4374 }
4375
4376 if (vr && vr->type == VR_ANTI_RANGE)
4377 {
4378 if (TREE_CODE (up_sub) == INTEGER_CST
4379 && tree_int_cst_lt (up_bound, up_sub)
4380 && TREE_CODE (low_sub) == INTEGER_CST
4381 && tree_int_cst_lt (low_sub, low_bound))
4382 {
4383 warning (OPT_Warray_bounds,
4384 "%Harray subscript is outside array bounds", locus);
4385 TREE_NO_WARNING (ref) = 1;
4386 }
4387 }
4388 else if (TREE_CODE (up_sub) == INTEGER_CST
4389 && tree_int_cst_lt (up_bound, up_sub)
4390 && !tree_int_cst_equal (up_bound, up_sub)
4391 && (!ignore_off_by_one
4392 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4393 up_bound,
4394 integer_one_node,
4395 0),
4396 up_sub)))
4397 {
4398 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4399 locus);
4400 TREE_NO_WARNING (ref) = 1;
4401 }
4402 else if (TREE_CODE (low_sub) == INTEGER_CST
4403 && tree_int_cst_lt (low_sub, low_bound))
4404 {
4405 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4406 locus);
4407 TREE_NO_WARNING (ref) = 1;
4408 }
4409}
4410
05fb69e4
DM
4411/* Searches if the expr T, located at LOCATION computes
4412 address of an ARRAY_REF, and call check_array_ref on it. */
4413
4414static void
4415search_for_addr_array(tree t, location_t* location)
4416{
4417 while (TREE_CODE (t) == SSA_NAME)
4418 {
4419 t = SSA_NAME_DEF_STMT (t);
4420 if (TREE_CODE (t) != GIMPLE_MODIFY_STMT)
4421 return;
4422 t = GIMPLE_STMT_OPERAND (t, 1);
4423 }
4424
4425
4426 /* We are only interested in addresses of ARRAY_REF's. */
4427 if (TREE_CODE (t) != ADDR_EXPR)
4428 return;
4429
4430 /* Check each ARRAY_REFs in the reference chain. */
4431 do
4432 {
4433 if (TREE_CODE (t) == ARRAY_REF)
4434 check_array_ref (t, location, true /*ignore_off_by_one*/);
4435
4436 t = TREE_OPERAND(t,0);
4437 }
4438 while (handled_component_p (t));
4439}
4440
590b1f2d
DM
4441/* walk_tree() callback that checks if *TP is
4442 an ARRAY_REF inside an ADDR_EXPR (in which an array
4443 subscript one outside the valid range is allowed). Call
4444 check_array_ref for each ARRAY_REF found. The location is
4445 passed in DATA. */
4446
4447static tree
4448check_array_bounds (tree *tp, int *walk_subtree, void *data)
4449{
4450 tree t = *tp;
1eb7b049
DM
4451 tree stmt = (tree)data;
4452 location_t *location = EXPR_LOCUS (stmt);
590b1f2d 4453
88df9da1
DM
4454 if (!EXPR_HAS_LOCATION (stmt))
4455 {
4456 *walk_subtree = FALSE;
4457 return NULL_TREE;
4458 }
4459
590b1f2d
DM
4460 *walk_subtree = TRUE;
4461
4462 if (TREE_CODE (t) == ARRAY_REF)
4463 check_array_ref (t, location, false /*ignore_off_by_one*/);
1eb7b049 4464
05fb69e4
DM
4465 if (TREE_CODE (t) == INDIRECT_REF
4466 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
4467 search_for_addr_array (TREE_OPERAND (t, 0), location);
4468 else if (TREE_CODE (t) == CALL_EXPR)
4469 {
4470 tree arg;
4471 call_expr_arg_iterator iter;
1eb7b049 4472
05fb69e4
DM
4473 FOR_EACH_CALL_EXPR_ARG (arg, iter, t)
4474 search_for_addr_array (arg, location);
590b1f2d
DM
4475 }
4476
05fb69e4
DM
4477 if (TREE_CODE (t) == ADDR_EXPR)
4478 *walk_subtree = FALSE;
4479
590b1f2d
DM
4480 return NULL_TREE;
4481}
4482
4483/* Walk over all statements of all reachable BBs and call check_array_bounds
4484 on them. */
4485
4486static void
4487check_all_array_refs (void)
4488{
4489 basic_block bb;
4490 block_stmt_iterator si;
4491
4492 FOR_EACH_BB (bb)
4493 {
4494 /* Skip bb's that are clearly unreachable. */
4495 if (single_pred_p (bb))
4496 {
4497 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
4498 tree ls = NULL_TREE;
4499
4500 if (!bsi_end_p (bsi_last (pred_bb)))
4501 ls = bsi_stmt (bsi_last (pred_bb));
4502
4503 if (ls && TREE_CODE (ls) == COND_EXPR
4504 && ((COND_EXPR_COND (ls) == boolean_false_node
4505 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
4506 || (COND_EXPR_COND (ls) == boolean_true_node
4507 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
4508 continue;
4509 }
4510 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4511 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
4512 bsi_stmt (si), NULL);
4513 }
4514}
0bca51f0 4515
94908762
JL
4516/* Convert range assertion expressions into the implied copies and
4517 copy propagate away the copies. Doing the trivial copy propagation
4518 here avoids the need to run the full copy propagation pass after
4519 VRP.
227858d1
DN
4520
4521 FIXME, this will eventually lead to copy propagation removing the
4522 names that had useful range information attached to them. For
4523 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4524 then N_i will have the range [3, +INF].
4525
4526 However, by converting the assertion into the implied copy
4527 operation N_i = N_j, we will then copy-propagate N_j into the uses
4528 of N_i and lose the range information. We may want to hold on to
4529 ASSERT_EXPRs a little while longer as the ranges could be used in
4530 things like jump threading.
4531
4532 The problem with keeping ASSERT_EXPRs around is that passes after
94908762
JL
4533 VRP need to handle them appropriately.
4534
4535 Another approach would be to make the range information a first
4536 class property of the SSA_NAME so that it can be queried from
4537 any pass. This is made somewhat more complex by the need for
4538 multiple ranges to be associated with one SSA_NAME. */
0bca51f0
DN
4539
4540static void
4541remove_range_assertions (void)
4542{
4543 basic_block bb;
4544 block_stmt_iterator si;
4545
94908762
JL
4546 /* Note that the BSI iterator bump happens at the bottom of the
4547 loop and no bump is necessary if we're removing the statement
4548 referenced by the current BSI. */
0bca51f0 4549 FOR_EACH_BB (bb)
94908762 4550 for (si = bsi_start (bb); !bsi_end_p (si);)
0bca51f0
DN
4551 {
4552 tree stmt = bsi_stmt (si);
6c00f606 4553 tree use_stmt;
0bca51f0 4554
07beea0d
AH
4555 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4556 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
0bca51f0 4557 {
07beea0d 4558 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
0bca51f0 4559 tree cond = fold (ASSERT_EXPR_COND (rhs));
94908762
JL
4560 use_operand_p use_p;
4561 imm_use_iterator iter;
4562
0bca51f0 4563 gcc_assert (cond != boolean_false_node);
94908762 4564
701b8964
ZD
4565 /* Propagate the RHS into every use of the LHS. */
4566 var = ASSERT_EXPR_VAR (rhs);
07beea0d
AH
4567 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
4568 GIMPLE_STMT_OPERAND (stmt, 0))
6c00f606
AM
4569 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4570 {
4571 SET_USE (use_p, var);
4572 gcc_assert (TREE_CODE (var) == SSA_NAME);
4573 }
94908762
JL
4574
4575 /* And finally, remove the copy, it is not needed. */
736432ee 4576 bsi_remove (&si, true);
ca15e365 4577 release_defs (stmt);
0bca51f0 4578 }
94908762
JL
4579 else
4580 bsi_next (&si);
0bca51f0 4581 }
f7acf1c2
RG
4582
4583 sbitmap_free (blocks_visited);
0bca51f0
DN
4584}
4585
4586
4587/* Return true if STMT is interesting for VRP. */
4588
4589static bool
4590stmt_interesting_for_vrp (tree stmt)
4591{
4592 if (TREE_CODE (stmt) == PHI_NODE
4593 && is_gimple_reg (PHI_RESULT (stmt))
4594 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
4595 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
4596 return true;
07beea0d 4597 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
0bca51f0 4598 {
07beea0d
AH
4599 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4600 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
0bca51f0 4601
2bbec6d9
JL
4602 /* In general, assignments with virtual operands are not useful
4603 for deriving ranges, with the obvious exception of calls to
4604 builtin functions. */
0bca51f0
DN
4605 if (TREE_CODE (lhs) == SSA_NAME
4606 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4607 || POINTER_TYPE_P (TREE_TYPE (lhs)))
2bbec6d9 4608 && ((TREE_CODE (rhs) == CALL_EXPR
5039610b
SL
4609 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4610 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4611 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
2bbec6d9 4612 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
0bca51f0
DN
4613 return true;
4614 }
4615 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4616 return true;
4617
4618 return false;
4619}
4620
4621
87e71ff4 4622/* Initialize local data structures for VRP. */
0bca51f0 4623
227858d1 4624static void
0bca51f0
DN
4625vrp_initialize (void)
4626{
4627 basic_block bb;
0bca51f0 4628
b9eae1a9 4629 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
fc6827fe 4630 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
0bca51f0
DN
4631
4632 FOR_EACH_BB (bb)
4633 {
4634 block_stmt_iterator si;
4635 tree phi;
4636
4637 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4638 {
4639 if (!stmt_interesting_for_vrp (phi))
4640 {
4641 tree lhs = PHI_RESULT (phi);
b565d777 4642 set_value_range_to_varying (get_value_range (lhs));
0bca51f0
DN
4643 DONT_SIMULATE_AGAIN (phi) = true;
4644 }
4645 else
4646 DONT_SIMULATE_AGAIN (phi) = false;
4647 }
4648
4649 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4650 {
4651 tree stmt = bsi_stmt (si);
4652
4653 if (!stmt_interesting_for_vrp (stmt))
4654 {
4655 ssa_op_iter i;
4656 tree def;
4657 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
b565d777 4658 set_value_range_to_varying (get_value_range (def));
0bca51f0
DN
4659 DONT_SIMULATE_AGAIN (stmt) = true;
4660 }
4661 else
4662 {
0bca51f0
DN
4663 DONT_SIMULATE_AGAIN (stmt) = false;
4664 }
4665 }
4666 }
0bca51f0
DN
4667}
4668
4669
4670/* Visit assignment STMT. If it produces an interesting range, record
4671 the SSA name in *OUTPUT_P. */
4672
4673static enum ssa_prop_result
4674vrp_visit_assignment (tree stmt, tree *output_p)
4675{
4676 tree lhs, rhs, def;
4677 ssa_op_iter iter;
4678
07beea0d
AH
4679 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4680 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
0bca51f0
DN
4681
4682 /* We only keep track of ranges in integral and pointer types. */
4683 if (TREE_CODE (lhs) == SSA_NAME
e260a614
JL
4684 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4685 /* It is valid to have NULL MIN/MAX values on a type. See
4686 build_range_type. */
4687 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4688 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
0bca51f0
DN
4689 || POINTER_TYPE_P (TREE_TYPE (lhs))))
4690 {
0bca51f0 4691 struct loop *l;
227858d1
DN
4692 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4693
0bca51f0
DN
4694 extract_range_from_expr (&new_vr, rhs);
4695
4696 /* If STMT is inside a loop, we may be able to know something
4697 else about the range of LHS by examining scalar evolution
4698 information. */
d78f3f78 4699 if (current_loops && (l = loop_containing_stmt (stmt)))
1e8552eb 4700 adjust_range_with_scev (&new_vr, l, stmt, lhs);
0bca51f0 4701
227858d1 4702 if (update_value_range (lhs, &new_vr))
0bca51f0
DN
4703 {
4704 *output_p = lhs;
4705
4706 if (dump_file && (dump_flags & TDF_DETAILS))
4707 {
227858d1 4708 fprintf (dump_file, "Found new range for ");
0bca51f0 4709 print_generic_expr (dump_file, lhs, 0);
227858d1
DN
4710 fprintf (dump_file, ": ");
4711 dump_value_range (dump_file, &new_vr);
0bca51f0
DN
4712 fprintf (dump_file, "\n\n");
4713 }
4714
4715 if (new_vr.type == VR_VARYING)
4716 return SSA_PROP_VARYING;
4717
4718 return SSA_PROP_INTERESTING;
4719 }
4720
4721 return SSA_PROP_NOT_INTERESTING;
4722 }
4723
227858d1 4724 /* Every other statement produces no useful ranges. */
0bca51f0 4725 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
b565d777 4726 set_value_range_to_varying (get_value_range (def));
0bca51f0
DN
4727
4728 return SSA_PROP_VARYING;
4729}
4730
f5052e29 4731/* Helper that gets the value range of the SSA_NAME with version I
c80b4100 4732 or a symbolic range containing the SSA_NAME only if the value range
f5052e29
RG
4733 is varying or undefined. */
4734
4735static inline value_range_t
4736get_vr_for_comparison (int i)
4737{
4738 value_range_t vr = *(vr_value[i]);
4739
4740 /* If name N_i does not have a valid range, use N_i as its own
4741 range. This allows us to compare against names that may
4742 have N_i in their ranges. */
4743 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
4744 {
4745 vr.type = VR_RANGE;
4746 vr.min = ssa_name (i);
4747 vr.max = ssa_name (i);
4748 }
4749
4750 return vr;
4751}
0bca51f0 4752
227858d1
DN
4753/* Compare all the value ranges for names equivalent to VAR with VAL
4754 using comparison code COMP. Return the same value returned by
12df8a7e
ILT
4755 compare_range_with_value, including the setting of
4756 *STRICT_OVERFLOW_P. */
227858d1
DN
4757
4758static tree
12df8a7e
ILT
4759compare_name_with_value (enum tree_code comp, tree var, tree val,
4760 bool *strict_overflow_p)
227858d1
DN
4761{
4762 bitmap_iterator bi;
4763 unsigned i;
4764 bitmap e;
4765 tree retval, t;
12df8a7e 4766 int used_strict_overflow;
f5052e29
RG
4767 bool sop;
4768 value_range_t equiv_vr;
227858d1
DN
4769
4770 /* Get the set of equivalences for VAR. */
4771 e = get_value_range (var)->equiv;
4772
12df8a7e
ILT
4773 /* Start at -1. Set it to 0 if we do a comparison without relying
4774 on overflow, or 1 if all comparisons rely on overflow. */
4775 used_strict_overflow = -1;
4776
f5052e29
RG
4777 /* Compare vars' value range with val. */
4778 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
4779 sop = false;
4780 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
e07e405d
ILT
4781 if (retval)
4782 used_strict_overflow = sop ? 1 : 0;
227858d1 4783
f5052e29
RG
4784 /* If the equiv set is empty we have done all work we need to do. */
4785 if (e == NULL)
4786 {
4787 if (retval
4788 && used_strict_overflow > 0)
4789 *strict_overflow_p = true;
4790 return retval;
4791 }
227858d1 4792
f5052e29
RG
4793 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4794 {
4795 equiv_vr = get_vr_for_comparison (i);
12df8a7e
ILT
4796 sop = false;
4797 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
227858d1
DN
4798 if (t)
4799 {
96644aba
RG
4800 /* If we get different answers from different members
4801 of the equivalence set this check must be in a dead
4802 code region. Folding it to a trap representation
4803 would be correct here. For now just return don't-know. */
4804 if (retval != NULL
4805 && t != retval)
4806 {
4807 retval = NULL_TREE;
4808 break;
4809 }
227858d1 4810 retval = t;
12df8a7e
ILT
4811
4812 if (!sop)
4813 used_strict_overflow = 0;
4814 else if (used_strict_overflow < 0)
4815 used_strict_overflow = 1;
227858d1
DN
4816 }
4817 }
4818
f5052e29
RG
4819 if (retval
4820 && used_strict_overflow > 0)
4821 *strict_overflow_p = true;
227858d1 4822
f5052e29 4823 return retval;
227858d1
DN
4824}
4825
4826
4827/* Given a comparison code COMP and names N1 and N2, compare all the
8ab5f5c9 4828 ranges equivalent to N1 against all the ranges equivalent to N2
227858d1 4829 to determine the value of N1 COMP N2. Return the same value
12df8a7e
ILT
4830 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
4831 whether we relied on an overflow infinity in the comparison. */
4832
0bca51f0
DN
4833
4834static tree
12df8a7e
ILT
4835compare_names (enum tree_code comp, tree n1, tree n2,
4836 bool *strict_overflow_p)
227858d1
DN
4837{
4838 tree t, retval;
4839 bitmap e1, e2;
4840 bitmap_iterator bi1, bi2;
4841 unsigned i1, i2;
12df8a7e 4842 int used_strict_overflow;
f5052e29
RG
4843 static bitmap_obstack *s_obstack = NULL;
4844 static bitmap s_e1 = NULL, s_e2 = NULL;
227858d1
DN
4845
4846 /* Compare the ranges of every name equivalent to N1 against the
4847 ranges of every name equivalent to N2. */
4848 e1 = get_value_range (n1)->equiv;
4849 e2 = get_value_range (n2)->equiv;
4850
f5052e29
RG
4851 /* Use the fake bitmaps if e1 or e2 are not available. */
4852 if (s_obstack == NULL)
4853 {
4854 s_obstack = XNEW (bitmap_obstack);
4855 bitmap_obstack_initialize (s_obstack);
4856 s_e1 = BITMAP_ALLOC (s_obstack);
4857 s_e2 = BITMAP_ALLOC (s_obstack);
4858 }
4859 if (e1 == NULL)
4860 e1 = s_e1;
4861 if (e2 == NULL)
4862 e2 = s_e2;
4863
227858d1
DN
4864 /* Add N1 and N2 to their own set of equivalences to avoid
4865 duplicating the body of the loop just to check N1 and N2
4866 ranges. */
4867 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4868 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4869
4870 /* If the equivalence sets have a common intersection, then the two
4871 names can be compared without checking their ranges. */
4872 if (bitmap_intersect_p (e1, e2))
4873 {
4874 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4875 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4876
4877 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4878 ? boolean_true_node
4879 : boolean_false_node;
4880 }
4881
12df8a7e
ILT
4882 /* Start at -1. Set it to 0 if we do a comparison without relying
4883 on overflow, or 1 if all comparisons rely on overflow. */
4884 used_strict_overflow = -1;
4885
227858d1
DN
4886 /* Otherwise, compare all the equivalent ranges. First, add N1 and
4887 N2 to their own set of equivalences to avoid duplicating the body
4888 of the loop just to check N1 and N2 ranges. */
4889 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4890 {
f5052e29 4891 value_range_t vr1 = get_vr_for_comparison (i1);
227858d1
DN
4892
4893 t = retval = NULL_TREE;
4894 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4895 {
3b7bab4d 4896 bool sop = false;
12df8a7e 4897
f5052e29 4898 value_range_t vr2 = get_vr_for_comparison (i2);
227858d1 4899
12df8a7e 4900 t = compare_ranges (comp, &vr1, &vr2, &sop);
227858d1
DN
4901 if (t)
4902 {
96644aba
RG
4903 /* If we get different answers from different members
4904 of the equivalence set this check must be in a dead
4905 code region. Folding it to a trap representation
4906 would be correct here. For now just return don't-know. */
4907 if (retval != NULL
4908 && t != retval)
4909 {
4910 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4911 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4912 return NULL_TREE;
4913 }
227858d1 4914 retval = t;
12df8a7e
ILT
4915
4916 if (!sop)
4917 used_strict_overflow = 0;
4918 else if (used_strict_overflow < 0)
4919 used_strict_overflow = 1;
227858d1
DN
4920 }
4921 }
4922
4923 if (retval)
4924 {
4925 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4926 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
12df8a7e
ILT
4927 if (used_strict_overflow > 0)
4928 *strict_overflow_p = true;
227858d1
DN
4929 return retval;
4930 }
4931 }
4932
4933 /* None of the equivalent ranges are useful in computing this
4934 comparison. */
4935 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4936 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4937 return NULL_TREE;
4938}
4939
4940
4941/* Given a conditional predicate COND, try to determine if COND yields
4942 true or false based on the value ranges of its operands. Return
4943 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4944 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4945 NULL if the conditional cannot be evaluated at compile time.
4946
4947 If USE_EQUIV_P is true, the ranges of all the names equivalent with
4948 the operands in COND are used when trying to compute its value.
4949 This is only used during final substitution. During propagation,
12df8a7e
ILT
4950 we only check the range of each variable and not its equivalents.
4951
4952 Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4953 infinity to produce the result. */
227858d1 4954
0c948c27
ILT
4955static tree
4956vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4957 bool *strict_overflow_p)
0bca51f0
DN
4958{
4959 gcc_assert (TREE_CODE (cond) == SSA_NAME
4960 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4961
4962 if (TREE_CODE (cond) == SSA_NAME)
4963 {
227858d1
DN
4964 value_range_t *vr;
4965 tree retval;
4966
4967 if (use_equiv_p)
12df8a7e
ILT
4968 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4969 strict_overflow_p);
227858d1
DN
4970 else
4971 {
4972 value_range_t *vr = get_value_range (cond);
12df8a7e
ILT
4973 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4974 strict_overflow_p);
227858d1
DN
4975 }
4976
4977 /* If COND has a known boolean range, return it. */
4978 if (retval)
4979 return retval;
4980
4981 /* Otherwise, if COND has a symbolic range of exactly one value,
4982 return it. */
4983 vr = get_value_range (cond);
4984 if (vr->type == VR_RANGE && vr->min == vr->max)
0bca51f0
DN
4985 return vr->min;
4986 }
4987 else
4988 {
227858d1
DN
4989 tree op0 = TREE_OPERAND (cond, 0);
4990 tree op1 = TREE_OPERAND (cond, 1);
0bca51f0 4991
227858d1
DN
4992 /* We only deal with integral and pointer types. */
4993 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4994 && !POINTER_TYPE_P (TREE_TYPE (op0)))
4995 return NULL_TREE;
0bca51f0 4996
227858d1
DN
4997 if (use_equiv_p)
4998 {
4999 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
12df8a7e
ILT
5000 return compare_names (TREE_CODE (cond), op0, op1,
5001 strict_overflow_p);
227858d1 5002 else if (TREE_CODE (op0) == SSA_NAME)
12df8a7e
ILT
5003 return compare_name_with_value (TREE_CODE (cond), op0, op1,
5004 strict_overflow_p);
227858d1 5005 else if (TREE_CODE (op1) == SSA_NAME)
12df8a7e
ILT
5006 return (compare_name_with_value
5007 (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
5008 strict_overflow_p));
227858d1
DN
5009 }
5010 else
5011 {
5012 value_range_t *vr0, *vr1;
5013
5014 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5015 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5016
5017 if (vr0 && vr1)
12df8a7e
ILT
5018 return compare_ranges (TREE_CODE (cond), vr0, vr1,
5019 strict_overflow_p);
227858d1 5020 else if (vr0 && vr1 == NULL)
12df8a7e
ILT
5021 return compare_range_with_value (TREE_CODE (cond), vr0, op1,
5022 strict_overflow_p);
227858d1 5023 else if (vr0 == NULL && vr1)
12df8a7e
ILT
5024 return (compare_range_with_value
5025 (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
5026 strict_overflow_p));
227858d1 5027 }
0bca51f0
DN
5028 }
5029
5030 /* Anything else cannot be computed statically. */
5031 return NULL_TREE;
5032}
5033
0c948c27
ILT
5034/* Given COND within STMT, try to simplify it based on value range
5035 information. Return NULL if the conditional can not be evaluated.
5036 The ranges of all the names equivalent with the operands in COND
5037 will be used when trying to compute the value. If the result is
5038 based on undefined signed overflow, issue a warning if
5039 appropriate. */
5040
5041tree
5042vrp_evaluate_conditional (tree cond, tree stmt)
5043{
5044 bool sop;
5045 tree ret;
5046
5047 sop = false;
5048 ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
5049
5050 if (ret && sop)
5051 {
5052 enum warn_strict_overflow_code wc;
5053 const char* warnmsg;
5054
5055 if (is_gimple_min_invariant (ret))
5056 {
5057 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5058 warnmsg = G_("assuming signed overflow does not occur when "
5059 "simplifying conditional to constant");
5060 }
5061 else
5062 {
5063 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5064 warnmsg = G_("assuming signed overflow does not occur when "
5065 "simplifying conditional");
5066 }
5067
5068 if (issue_strict_overflow_warning (wc))
5069 {
5070 location_t locus;
5071
5072 if (!EXPR_HAS_LOCATION (stmt))
5073 locus = input_location;
5074 else
5075 locus = EXPR_LOCATION (stmt);
5076 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
5077 }
5078 }
5079
faebccf9
DN
5080 if (warn_type_limits
5081 && ret
5082 && TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
5083 {
5084 /* If the comparison is being folded and the operand on the LHS
5085 is being compared against a constant value that is outside of
5086 the natural range of OP0's type, then the predicate will
5087 always fold regardless of the value of OP0. If -Wtype-limits
5088 was specified, emit a warning. */
5089 const char *warnmsg = NULL;
5090 tree op0 = TREE_OPERAND (cond, 0);
5091 tree op1 = TREE_OPERAND (cond, 1);
5092 tree type = TREE_TYPE (op0);
5093 value_range_t *vr0 = get_value_range (op0);
5094
5095 if (vr0->type != VR_VARYING
5096 && INTEGRAL_TYPE_P (type)
5097 && vrp_val_is_min (vr0->min)
5098 && vrp_val_is_max (vr0->max)
5099 && is_gimple_min_invariant (op1))
5100 {
5101 if (integer_zerop (ret))
5102 warnmsg = G_("comparison always false due to limited range of "
5103 "data type");
5104 else
5105 warnmsg = G_("comparison always true due to limited range of "
5106 "data type");
5107 }
5108
5109 if (warnmsg)
5110 {
5111 location_t locus;
5112
5113 if (!EXPR_HAS_LOCATION (stmt))
5114 locus = input_location;
5115 else
5116 locus = EXPR_LOCATION (stmt);
5117
5118 warning (OPT_Wtype_limits, "%H%s", &locus, warnmsg);
5119 }
5120 }
5121
0c948c27
ILT
5122 return ret;
5123}
5124
0bca51f0
DN
5125
5126/* Visit conditional statement STMT. If we can determine which edge
5127 will be taken out of STMT's basic block, record it in
5128 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5129 SSA_PROP_VARYING. */
5130
5131static enum ssa_prop_result
5132vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
5133{
5134 tree cond, val;
12df8a7e 5135 bool sop;
0bca51f0
DN
5136
5137 *taken_edge_p = NULL;
5138
9bb6aa43 5139 /* FIXME. Handle SWITCH_EXPRs. */
0bca51f0
DN
5140 if (TREE_CODE (stmt) == SWITCH_EXPR)
5141 return SSA_PROP_VARYING;
5142
5143 cond = COND_EXPR_COND (stmt);
5144
5145 if (dump_file && (dump_flags & TDF_DETAILS))
5146 {
5147 tree use;
5148 ssa_op_iter i;
5149
5150 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5151 print_generic_expr (dump_file, cond, 0);
5152 fprintf (dump_file, "\nWith known ranges\n");
5153
5154 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5155 {
5156 fprintf (dump_file, "\t");
5157 print_generic_expr (dump_file, use, 0);
5158 fprintf (dump_file, ": ");
227858d1 5159 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
0bca51f0
DN
5160 }
5161
5162 fprintf (dump_file, "\n");
5163 }
5164
5165 /* Compute the value of the predicate COND by checking the known
227858d1
DN
5166 ranges of each of its operands.
5167
5168 Note that we cannot evaluate all the equivalent ranges here
5169 because those ranges may not yet be final and with the current
5170 propagation strategy, we cannot determine when the value ranges
5171 of the names in the equivalence set have changed.
5172
5173 For instance, given the following code fragment
5174
5175 i_5 = PHI <8, i_13>
5176 ...
5177 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5178 if (i_14 == 1)
5179 ...
5180
5181 Assume that on the first visit to i_14, i_5 has the temporary
5182 range [8, 8] because the second argument to the PHI function is
5183 not yet executable. We derive the range ~[0, 0] for i_14 and the
5184 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5185 the first time, since i_14 is equivalent to the range [8, 8], we
5186 determine that the predicate is always false.
5187
5188 On the next round of propagation, i_13 is determined to be
5189 VARYING, which causes i_5 to drop down to VARYING. So, another
5190 visit to i_14 is scheduled. In this second visit, we compute the
5191 exact same range and equivalence set for i_14, namely ~[0, 0] and
5192 { i_5 }. But we did not have the previous range for i_5
5193 registered, so vrp_visit_assignment thinks that the range for
5194 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5195 is not visited again, which stops propagation from visiting
5196 statements in the THEN clause of that if().
5197
5198 To properly fix this we would need to keep the previous range
5199 value for the names in the equivalence set. This way we would've
5200 discovered that from one visit to the other i_5 changed from
5201 range [8, 8] to VR_VARYING.
5202
5203 However, fixing this apparent limitation may not be worth the
5204 additional checking. Testing on several code bases (GCC, DLV,
5205 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5206 4 more predicates folded in SPEC. */
12df8a7e 5207 sop = false;
0c948c27 5208 val = vrp_evaluate_conditional_warnv (cond, false, &sop);
0bca51f0 5209 if (val)
12df8a7e
ILT
5210 {
5211 if (!sop)
5212 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
5213 else
5214 {
5215 if (dump_file && (dump_flags & TDF_DETAILS))
5216 fprintf (dump_file,
5217 "\nIgnoring predicate evaluation because "
5218 "it assumes that signed overflow is undefined");
5219 val = NULL_TREE;
5220 }
5221 }
0bca51f0
DN
5222
5223 if (dump_file && (dump_flags & TDF_DETAILS))
5224 {
5225 fprintf (dump_file, "\nPredicate evaluates to: ");
5226 if (val == NULL_TREE)
5227 fprintf (dump_file, "DON'T KNOW\n");
5228 else
5229 print_generic_stmt (dump_file, val, 0);
5230 }
5231
5232 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5233}
5234
5235
5236/* Evaluate statement STMT. If the statement produces a useful range,
5237 return SSA_PROP_INTERESTING and record the SSA name with the
5238 interesting range into *OUTPUT_P.
5239
5240 If STMT is a conditional branch and we can determine its truth
5241 value, the taken edge is recorded in *TAKEN_EDGE_P.
5242
5243 If STMT produces a varying value, return SSA_PROP_VARYING. */
5244
5245static enum ssa_prop_result
5246vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
5247{
5248 tree def;
5249 ssa_op_iter iter;
5250 stmt_ann_t ann;
5251
5252 if (dump_file && (dump_flags & TDF_DETAILS))
5253 {
5254 fprintf (dump_file, "\nVisiting statement:\n");
5255 print_generic_stmt (dump_file, stmt, dump_flags);
5256 fprintf (dump_file, "\n");
5257 }
5258
5259 ann = stmt_ann (stmt);
07beea0d 5260 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
2bbec6d9 5261 {
07beea0d 5262 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
2bbec6d9
JL
5263
5264 /* In general, assignments with virtual operands are not useful
5265 for deriving ranges, with the obvious exception of calls to
5266 builtin functions. */
5267 if ((TREE_CODE (rhs) == CALL_EXPR
5039610b
SL
5268 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
5269 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
5270 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
2bbec6d9
JL
5271 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
5272 return vrp_visit_assignment (stmt, output_p);
5273 }
0bca51f0
DN
5274 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
5275 return vrp_visit_cond_stmt (stmt, taken_edge_p);
5276
5277 /* All other statements produce nothing of interest for VRP, so mark
5278 their outputs varying and prevent further simulation. */
5279 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
b565d777 5280 set_value_range_to_varying (get_value_range (def));
0bca51f0
DN
5281
5282 return SSA_PROP_VARYING;
5283}
5284
5285
5286/* Meet operation for value ranges. Given two value ranges VR0 and
32c8bce7
DS
5287 VR1, store in VR0 a range that contains both VR0 and VR1. This
5288 may not be the smallest possible such range. */
0bca51f0
DN
5289
5290static void
227858d1 5291vrp_meet (value_range_t *vr0, value_range_t *vr1)
0bca51f0
DN
5292{
5293 if (vr0->type == VR_UNDEFINED)
5294 {
227858d1 5295 copy_value_range (vr0, vr1);
0bca51f0
DN
5296 return;
5297 }
5298
5299 if (vr1->type == VR_UNDEFINED)
5300 {
5301 /* Nothing to do. VR0 already has the resulting range. */
5302 return;
5303 }
5304
5305 if (vr0->type == VR_VARYING)
5306 {
5307 /* Nothing to do. VR0 already has the resulting range. */
5308 return;
5309 }
5310
5311 if (vr1->type == VR_VARYING)
0bca51f0 5312 {
b565d777 5313 set_value_range_to_varying (vr0);
0bca51f0
DN
5314 return;
5315 }
5316
5317 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
5318 {
32c8bce7
DS
5319 int cmp;
5320 tree min, max;
5321
5322 /* Compute the convex hull of the ranges. The lower limit of
5323 the new range is the minimum of the two ranges. If they
5324 cannot be compared, then give up. */
5325 cmp = compare_values (vr0->min, vr1->min);
5326 if (cmp == 0 || cmp == 1)
5327 min = vr1->min;
5328 else if (cmp == -1)
5329 min = vr0->min;
5330 else
5331 goto give_up;
5332
5333 /* Similarly, the upper limit of the new range is the maximum
5334 of the two ranges. If they cannot be compared, then
5335 give up. */
5336 cmp = compare_values (vr0->max, vr1->max);
5337 if (cmp == 0 || cmp == -1)
5338 max = vr1->max;
5339 else if (cmp == 1)
5340 max = vr0->max;
5341 else
5342 goto give_up;
0bca51f0 5343
8cf781f0
ILT
5344 /* Check for useless ranges. */
5345 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
e1f28918
ILT
5346 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
5347 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
8cf781f0
ILT
5348 goto give_up;
5349
32c8bce7
DS
5350 /* The resulting set of equivalences is the intersection of
5351 the two sets. */
5352 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5353 bitmap_and_into (vr0->equiv, vr1->equiv);
5354 else if (vr0->equiv && !vr1->equiv)
5355 bitmap_clear (vr0->equiv);
227858d1 5356
32c8bce7 5357 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
0bca51f0
DN
5358 }
5359 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
5360 {
32c8bce7
DS
5361 /* Two anti-ranges meet only if their complements intersect.
5362 Only handle the case of identical ranges. */
0bca51f0
DN
5363 if (compare_values (vr0->min, vr1->min) == 0
5364 && compare_values (vr0->max, vr1->max) == 0
5365 && compare_values (vr0->min, vr0->max) == 0)
227858d1 5366 {
8ab5f5c9 5367 /* The resulting set of equivalences is the intersection of
227858d1
DN
5368 the two sets. */
5369 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5370 bitmap_and_into (vr0->equiv, vr1->equiv);
880031e1
JL
5371 else if (vr0->equiv && !vr1->equiv)
5372 bitmap_clear (vr0->equiv);
227858d1 5373 }
0bca51f0 5374 else
32c8bce7 5375 goto give_up;
0bca51f0
DN
5376 }
5377 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
5378 {
32c8bce7
DS
5379 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
5380 only handle the case where the ranges have an empty intersection.
5381 The result of the meet operation is the anti-range. */
227858d1
DN
5382 if (!symbolic_range_p (vr0)
5383 && !symbolic_range_p (vr1)
5384 && !value_ranges_intersect_p (vr0, vr1))
0bca51f0 5385 {
2d33a2ef
DN
5386 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
5387 set. We need to compute the intersection of the two
5388 equivalence sets. */
0bca51f0 5389 if (vr1->type == VR_ANTI_RANGE)
2d33a2ef 5390 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
880031e1
JL
5391
5392 /* The resulting set of equivalences is the intersection of
5393 the two sets. */
5394 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5395 bitmap_and_into (vr0->equiv, vr1->equiv);
5396 else if (vr0->equiv && !vr1->equiv)
5397 bitmap_clear (vr0->equiv);
0bca51f0
DN
5398 }
5399 else
32c8bce7 5400 goto give_up;
0bca51f0
DN
5401 }
5402 else
5403 gcc_unreachable ();
227858d1
DN
5404
5405 return;
5406
32c8bce7
DS
5407give_up:
5408 /* Failed to find an efficient meet. Before giving up and setting
5409 the result to VARYING, see if we can at least derive a useful
5410 anti-range. FIXME, all this nonsense about distinguishing
b19bb8b0
DN
5411 anti-ranges from ranges is necessary because of the odd
5412 semantics of range_includes_zero_p and friends. */
227858d1 5413 if (!symbolic_range_p (vr0)
b19bb8b0
DN
5414 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
5415 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
227858d1 5416 && !symbolic_range_p (vr1)
b19bb8b0
DN
5417 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
5418 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
e82d7e60
DN
5419 {
5420 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
5421
5422 /* Since this meet operation did not result from the meeting of
5423 two equivalent names, VR0 cannot have any equivalences. */
5424 if (vr0->equiv)
5425 bitmap_clear (vr0->equiv);
5426 }
227858d1
DN
5427 else
5428 set_value_range_to_varying (vr0);
0bca51f0
DN
5429}
5430
227858d1 5431
0bca51f0
DN
5432/* Visit all arguments for PHI node PHI that flow through executable
5433 edges. If a valid value range can be derived from all the incoming
5434 value ranges, set a new range for the LHS of PHI. */
5435
5436static enum ssa_prop_result
5437vrp_visit_phi_node (tree phi)
5438{
5439 int i;
5440 tree lhs = PHI_RESULT (phi);
227858d1
DN
5441 value_range_t *lhs_vr = get_value_range (lhs);
5442 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
fc6827fe 5443 int edges, old_edges;
227858d1
DN
5444
5445 copy_value_range (&vr_result, lhs_vr);
0bca51f0
DN
5446
5447 if (dump_file && (dump_flags & TDF_DETAILS))
5448 {
5449 fprintf (dump_file, "\nVisiting PHI node: ");
5450 print_generic_expr (dump_file, phi, dump_flags);
5451 }
5452
fc6827fe 5453 edges = 0;
0bca51f0
DN
5454 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
5455 {
5456 edge e = PHI_ARG_EDGE (phi, i);
5457
5458 if (dump_file && (dump_flags & TDF_DETAILS))
5459 {
5460 fprintf (dump_file,
5461 "\n Argument #%d (%d -> %d %sexecutable)\n",
5462 i, e->src->index, e->dest->index,
5463 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
5464 }
5465
5466 if (e->flags & EDGE_EXECUTABLE)
5467 {
5468 tree arg = PHI_ARG_DEF (phi, i);
227858d1 5469 value_range_t vr_arg;
0bca51f0 5470
fc6827fe
ILT
5471 ++edges;
5472
0bca51f0 5473 if (TREE_CODE (arg) == SSA_NAME)
31ab1cc9
RG
5474 {
5475 vr_arg = *(get_value_range (arg));
31ab1cc9 5476 }
0bca51f0
DN
5477 else
5478 {
8cf781f0
ILT
5479 if (is_overflow_infinity (arg))
5480 {
5481 arg = copy_node (arg);
5482 TREE_OVERFLOW (arg) = 0;
5483 }
5484
0bca51f0
DN
5485 vr_arg.type = VR_RANGE;
5486 vr_arg.min = arg;
5487 vr_arg.max = arg;
227858d1 5488 vr_arg.equiv = NULL;
0bca51f0
DN
5489 }
5490
5491 if (dump_file && (dump_flags & TDF_DETAILS))
5492 {
5493 fprintf (dump_file, "\t");
5494 print_generic_expr (dump_file, arg, dump_flags);
5495 fprintf (dump_file, "\n\tValue: ");
5496 dump_value_range (dump_file, &vr_arg);
5497 fprintf (dump_file, "\n");
5498 }
5499
5500 vrp_meet (&vr_result, &vr_arg);
5501
5502 if (vr_result.type == VR_VARYING)
5503 break;
5504 }
5505 }
5506
5507 if (vr_result.type == VR_VARYING)
227858d1 5508 goto varying;
0bca51f0 5509
fc6827fe
ILT
5510 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
5511 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
5512
0bca51f0
DN
5513 /* To prevent infinite iterations in the algorithm, derive ranges
5514 when the new value is slightly bigger or smaller than the
fc6827fe
ILT
5515 previous one. We don't do this if we have seen a new executable
5516 edge; this helps us avoid an overflow infinity for conditionals
5517 which are not in a loop. */
31ab1cc9 5518 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
fc6827fe 5519 && edges <= old_edges)
0bca51f0
DN
5520 {
5521 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
5522 {
5523 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
5524 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
5525
5526 /* If the new minimum is smaller or larger than the previous
5527 one, go all the way to -INF. In the first case, to avoid
5528 iterating millions of times to reach -INF, and in the
5529 other case to avoid infinite bouncing between different
5530 minimums. */
5531 if (cmp_min > 0 || cmp_min < 0)
12df8a7e
ILT
5532 {
5533 /* If we will end up with a (-INF, +INF) range, set it
5534 to VARYING. */
e1f28918 5535 if (vrp_val_is_max (vr_result.max))
12df8a7e
ILT
5536 goto varying;
5537
9a46cc16
ILT
5538 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
5539 || !vrp_var_may_overflow (lhs, phi))
12df8a7e
ILT
5540 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
5541 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
5542 vr_result.min =
5543 negative_overflow_infinity (TREE_TYPE (vr_result.min));
5544 else
5545 goto varying;
5546 }
0bca51f0
DN
5547
5548 /* Similarly, if the new maximum is smaller or larger than
5549 the previous one, go all the way to +INF. */
5550 if (cmp_max < 0 || cmp_max > 0)
12df8a7e
ILT
5551 {
5552 /* If we will end up with a (-INF, +INF) range, set it
5553 to VARYING. */
e1f28918 5554 if (vrp_val_is_min (vr_result.min))
12df8a7e
ILT
5555 goto varying;
5556
9a46cc16
ILT
5557 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
5558 || !vrp_var_may_overflow (lhs, phi))
12df8a7e
ILT
5559 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
5560 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
5561 vr_result.max =
5562 positive_overflow_infinity (TREE_TYPE (vr_result.max));
5563 else
5564 goto varying;
5565 }
0bca51f0
DN
5566 }
5567 }
5568
5569 /* If the new range is different than the previous value, keep
5570 iterating. */
227858d1 5571 if (update_value_range (lhs, &vr_result))
0bca51f0
DN
5572 return SSA_PROP_INTERESTING;
5573
5574 /* Nothing changed, don't add outgoing edges. */
5575 return SSA_PROP_NOT_INTERESTING;
227858d1
DN
5576
5577 /* No match found. Set the LHS to VARYING. */
5578varying:
5579 set_value_range_to_varying (lhs_vr);
5580 return SSA_PROP_VARYING;
0bca51f0
DN
5581}
5582
1a557723
JL
5583/* Simplify a division or modulo operator to a right shift or
5584 bitwise and if the first operand is unsigned or is greater
5585 than zero and the second operand is an exact power of two. */
a513fe88
JL
5586
5587static void
1a557723 5588simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
a513fe88 5589{
1a557723
JL
5590 tree val = NULL;
5591 tree op = TREE_OPERAND (rhs, 0);
5592 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
a513fe88 5593
1a557723
JL
5594 if (TYPE_UNSIGNED (TREE_TYPE (op)))
5595 {
5596 val = integer_one_node;
5597 }
5598 else
5599 {
12df8a7e
ILT
5600 bool sop = false;
5601
737b0891 5602 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
0c948c27
ILT
5603
5604 if (val
5605 && sop
5606 && integer_onep (val)
5607 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5608 {
5609 location_t locus;
5610
5611 if (!EXPR_HAS_LOCATION (stmt))
5612 locus = input_location;
5613 else
5614 locus = EXPR_LOCATION (stmt);
5615 warning (OPT_Wstrict_overflow,
5616 ("%Hassuming signed overflow does not occur when "
5617 "simplifying / or %% to >> or &"),
5618 &locus);
5619 }
1a557723
JL
5620 }
5621
5622 if (val && integer_onep (val))
a513fe88 5623 {
1a557723
JL
5624 tree t;
5625 tree op0 = TREE_OPERAND (rhs, 0);
5626 tree op1 = TREE_OPERAND (rhs, 1);
a513fe88 5627
1a557723
JL
5628 if (rhs_code == TRUNC_DIV_EXPR)
5629 {
5630 t = build_int_cst (NULL_TREE, tree_log2 (op1));
a5ad7269 5631 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
1a557723
JL
5632 }
5633 else
a513fe88 5634 {
1a557723
JL
5635 t = build_int_cst (TREE_TYPE (op1), 1);
5636 t = int_const_binop (MINUS_EXPR, op1, t, 0);
5637 t = fold_convert (TREE_TYPE (op0), t);
5638 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
5639 }
5640
07beea0d 5641 GIMPLE_STMT_OPERAND (stmt, 1) = t;
1a557723
JL
5642 update_stmt (stmt);
5643 }
5644}
a513fe88 5645
1a557723
JL
5646/* If the operand to an ABS_EXPR is >= 0, then eliminate the
5647 ABS_EXPR. If the operand is <= 0, then simplify the
5648 ABS_EXPR into a NEGATE_EXPR. */
5649
5650static void
5651simplify_abs_using_ranges (tree stmt, tree rhs)
5652{
5653 tree val = NULL;
5654 tree op = TREE_OPERAND (rhs, 0);
5655 tree type = TREE_TYPE (op);
5656 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5657
5658 if (TYPE_UNSIGNED (type))
5659 {
5660 val = integer_zero_node;
5661 }
5662 else if (vr)
5663 {
12df8a7e
ILT
5664 bool sop = false;
5665
5666 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
1a557723
JL
5667 if (!val)
5668 {
12df8a7e
ILT
5669 sop = false;
5670 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
5671 &sop);
1a557723
JL
5672
5673 if (val)
a513fe88 5674 {
1a557723
JL
5675 if (integer_zerop (val))
5676 val = integer_one_node;
5677 else if (integer_onep (val))
5678 val = integer_zero_node;
5679 }
5680 }
a513fe88 5681
1a557723
JL
5682 if (val
5683 && (integer_onep (val) || integer_zerop (val)))
5684 {
5685 tree t;
5686
0c948c27
ILT
5687 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5688 {
5689 location_t locus;
5690
5691 if (!EXPR_HAS_LOCATION (stmt))
5692 locus = input_location;
5693 else
5694 locus = EXPR_LOCATION (stmt);
5695 warning (OPT_Wstrict_overflow,
5696 ("%Hassuming signed overflow does not occur when "
5697 "simplifying abs (X) to X or -X"),
5698 &locus);
5699 }
5700
1a557723
JL
5701 if (integer_onep (val))
5702 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5703 else
5704 t = op;
5705
07beea0d 5706 GIMPLE_STMT_OPERAND (stmt, 1) = t;
1a557723
JL
5707 update_stmt (stmt);
5708 }
5709 }
5710}
5711
d579f20b
JL
5712/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
5713 a known value range VR.
5714
5715 If there is one and only one value which will satisfy the
5716 conditional, then return that value. Else return NULL. */
5717
5718static tree
5719test_for_singularity (enum tree_code cond_code, tree op0,
5720 tree op1, value_range_t *vr)
5721{
5722 tree min = NULL;
5723 tree max = NULL;
5724
5725 /* Extract minimum/maximum values which satisfy the
5726 the conditional as it was written. */
5727 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5728 {
12df8a7e
ILT
5729 /* This should not be negative infinity; there is no overflow
5730 here. */
d579f20b
JL
5731 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5732
5733 max = op1;
12df8a7e 5734 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
d579f20b
JL
5735 {
5736 tree one = build_int_cst (TREE_TYPE (op0), 1);
a5ad7269 5737 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
3fe5bcaf
ILT
5738 if (EXPR_P (max))
5739 TREE_NO_WARNING (max) = 1;
d579f20b
JL
5740 }
5741 }
5742 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5743 {
12df8a7e
ILT
5744 /* This should not be positive infinity; there is no overflow
5745 here. */
d579f20b
JL
5746 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5747
5748 min = op1;
12df8a7e 5749 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
d579f20b
JL
5750 {
5751 tree one = build_int_cst (TREE_TYPE (op0), 1);
f9fe7aed 5752 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
3fe5bcaf
ILT
5753 if (EXPR_P (min))
5754 TREE_NO_WARNING (min) = 1;
d579f20b
JL
5755 }
5756 }
5757
5758 /* Now refine the minimum and maximum values using any
5759 value range information we have for op0. */
5760 if (min && max)
5761 {
5762 if (compare_values (vr->min, min) == -1)
5763 min = min;
5764 else
5765 min = vr->min;
5766 if (compare_values (vr->max, max) == 1)
5767 max = max;
5768 else
5769 max = vr->max;
5770
f9fe7aed
JL
5771 /* If the new min/max values have converged to a single value,
5772 then there is only one value which can satisfy the condition,
5773 return that value. */
5774 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
d579f20b
JL
5775 return min;
5776 }
5777 return NULL;
5778}
5779
1a557723
JL
5780/* Simplify a conditional using a relational operator to an equality
5781 test if the range information indicates only one value can satisfy
5782 the original conditional. */
5783
5784static void
5785simplify_cond_using_ranges (tree stmt)
5786{
5787 tree cond = COND_EXPR_COND (stmt);
5788 tree op0 = TREE_OPERAND (cond, 0);
5789 tree op1 = TREE_OPERAND (cond, 1);
5790 enum tree_code cond_code = TREE_CODE (cond);
5791
5792 if (cond_code != NE_EXPR
5793 && cond_code != EQ_EXPR
5794 && TREE_CODE (op0) == SSA_NAME
5795 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5796 && is_gimple_min_invariant (op1))
5797 {
5798 value_range_t *vr = get_value_range (op0);
5799
5800 /* If we have range information for OP0, then we might be
5801 able to simplify this conditional. */
5802 if (vr->type == VR_RANGE)
5803 {
d579f20b 5804 tree new = test_for_singularity (cond_code, op0, op1, vr);
1a557723 5805
d579f20b 5806 if (new)
1a557723 5807 {
d579f20b 5808 if (dump_file)
1a557723 5809 {
d579f20b
JL
5810 fprintf (dump_file, "Simplified relational ");
5811 print_generic_expr (dump_file, cond, 0);
5812 fprintf (dump_file, " into ");
a513fe88
JL
5813 }
5814
d579f20b 5815 COND_EXPR_COND (stmt)
0d451405 5816 = build2 (EQ_EXPR, boolean_type_node, op0, new);
d579f20b
JL
5817 update_stmt (stmt);
5818
5819 if (dump_file)
a513fe88 5820 {
d579f20b
JL
5821 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5822 fprintf (dump_file, "\n");
a513fe88 5823 }
d579f20b
JL
5824 return;
5825
a513fe88
JL
5826 }
5827
d579f20b
JL
5828 /* Try again after inverting the condition. We only deal
5829 with integral types here, so no need to worry about
5830 issues with inverting FP comparisons. */
5831 cond_code = invert_tree_comparison (cond_code, false);
5832 new = test_for_singularity (cond_code, op0, op1, vr);
5833
5834 if (new)
1a557723 5835 {
d579f20b 5836 if (dump_file)
1a557723 5837 {
d579f20b
JL
5838 fprintf (dump_file, "Simplified relational ");
5839 print_generic_expr (dump_file, cond, 0);
5840 fprintf (dump_file, " into ");
1a557723 5841 }
d579f20b
JL
5842
5843 COND_EXPR_COND (stmt)
0d451405 5844 = build2 (NE_EXPR, boolean_type_node, op0, new);
d579f20b
JL
5845 update_stmt (stmt);
5846
5847 if (dump_file)
5848 {
5849 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5850 fprintf (dump_file, "\n");
5851 }
5852 return;
5853
1a557723 5854 }
a513fe88
JL
5855 }
5856 }
5857}
5858
1a557723
JL
5859/* Simplify STMT using ranges if possible. */
5860
5861void
5862simplify_stmt_using_ranges (tree stmt)
5863{
07beea0d 5864 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
1a557723 5865 {
07beea0d 5866 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
1a557723
JL
5867 enum tree_code rhs_code = TREE_CODE (rhs);
5868
5869 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5870 and BIT_AND_EXPR respectively if the first operand is greater
5871 than zero and the second operand is an exact power of two. */
5872 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5873 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5874 && integer_pow2p (TREE_OPERAND (rhs, 1)))
5875 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5876
5877 /* Transform ABS (X) into X or -X as appropriate. */
5878 if (rhs_code == ABS_EXPR
5879 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5880 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5881 simplify_abs_using_ranges (stmt, rhs);
5882 }
5883 else if (TREE_CODE (stmt) == COND_EXPR
5884 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5885 {
5886 simplify_cond_using_ranges (stmt);
5887 }
5888}
5889
2090d6a0
JL
5890/* Stack of dest,src equivalency pairs that need to be restored after
5891 each attempt to thread a block's incoming edge to an outgoing edge.
5892
5893 A NULL entry is used to mark the end of pairs which need to be
5894 restored. */
5895static VEC(tree,heap) *stack;
5896
0c948c27
ILT
5897/* A trivial wrapper so that we can present the generic jump threading
5898 code with a simple API for simplifying statements. STMT is the
5899 statement we want to simplify, WITHIN_STMT provides the location
5900 for any overflow warnings. */
5901
2090d6a0 5902static tree
0c948c27 5903simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
2090d6a0
JL
5904{
5905 /* We only use VRP information to simplify conditionals. This is
5906 overly conservative, but it's unclear if doing more would be
5907 worth the compile time cost. */
5908 if (TREE_CODE (stmt) != COND_EXPR)
5909 return NULL;
5910
0c948c27 5911 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
2090d6a0
JL
5912}
5913
5914/* Blocks which have more than one predecessor and more than
5915 one successor present jump threading opportunities. ie,
5916 when the block is reached from a specific predecessor, we
5917 may be able to determine which of the outgoing edges will
5918 be traversed. When this optimization applies, we are able
5919 to avoid conditionals at runtime and we may expose secondary
5920 optimization opportunities.
5921
5922 This routine is effectively a driver for the generic jump
5923 threading code. It basically just presents the generic code
5924 with edges that may be suitable for jump threading.
5925
5926 Unlike DOM, we do not iterate VRP if jump threading was successful.
5927 While iterating may expose new opportunities for VRP, it is expected
5928 those opportunities would be very limited and the compile time cost
5929 to expose those opportunities would be significant.
5930
5931 As jump threading opportunities are discovered, they are registered
5932 for later realization. */
5933
5934static void
5935identify_jump_threads (void)
5936{
5937 basic_block bb;
5938 tree dummy;
5939
5940 /* Ugh. When substituting values earlier in this pass we can
5941 wipe the dominance information. So rebuild the dominator
5942 information as we need it within the jump threading code. */
5943 calculate_dominance_info (CDI_DOMINATORS);
5944
5945 /* We do not allow VRP information to be used for jump threading
5946 across a back edge in the CFG. Otherwise it becomes too
5947 difficult to avoid eliminating loop exit tests. Of course
5948 EDGE_DFS_BACK is not accurate at this time so we have to
5949 recompute it. */
5950 mark_dfs_back_edges ();
5951
5952 /* Allocate our unwinder stack to unwind any temporary equivalences
5953 that might be recorded. */
5954 stack = VEC_alloc (tree, heap, 20);
5955
5956 /* To avoid lots of silly node creation, we create a single
5957 conditional and just modify it in-place when attempting to
5958 thread jumps. */
5959 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5960 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5961
5962 /* Walk through all the blocks finding those which present a
5963 potential jump threading opportunity. We could set this up
5964 as a dominator walker and record data during the walk, but
5965 I doubt it's worth the effort for the classes of jump
5966 threading opportunities we are trying to identify at this
5967 point in compilation. */
5968 FOR_EACH_BB (bb)
5969 {
5970 tree last, cond;
5971
5972 /* If the generic jump threading code does not find this block
5973 interesting, then there is nothing to do. */
5974 if (! potentially_threadable_block (bb))
5975 continue;
5976
5977 /* We only care about blocks ending in a COND_EXPR. While there
5978 may be some value in handling SWITCH_EXPR here, I doubt it's
5979 terribly important. */
5980 last = bsi_stmt (bsi_last (bb));
5981 if (TREE_CODE (last) != COND_EXPR)
5982 continue;
5983
5984 /* We're basically looking for any kind of conditional with
5985 integral type arguments. */
5986 cond = COND_EXPR_COND (last);
5987 if ((TREE_CODE (cond) == SSA_NAME
5988 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5989 || (COMPARISON_CLASS_P (cond)
5990 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5991 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5992 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5993 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5994 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5995 {
5996 edge_iterator ei;
5997 edge e;
5998
5999 /* We've got a block with multiple predecessors and multiple
6000 successors which also ends in a suitable conditional. For
6001 each predecessor, see if we can thread it to a specific
6002 successor. */
6003 FOR_EACH_EDGE (e, ei, bb->preds)
6004 {
6005 /* Do not thread across back edges or abnormal edges
6006 in the CFG. */
6007 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
6008 continue;
6009
6010 thread_across_edge (dummy, e, true,
6011 &stack,
6012 simplify_stmt_for_jump_threading);
6013 }
6014 }
6015 }
6016
6017 /* We do not actually update the CFG or SSA graphs at this point as
6018 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6019 handle ASSERT_EXPRs gracefully. */
6020}
6021
6022/* We identified all the jump threading opportunities earlier, but could
6023 not transform the CFG at that time. This routine transforms the
6024 CFG and arranges for the dominator tree to be rebuilt if necessary.
6025
6026 Note the SSA graph update will occur during the normal TODO
6027 processing by the pass manager. */
6028static void
6029finalize_jump_threads (void)
6030{
b02b9b53 6031 thread_through_all_blocks (false);
2090d6a0
JL
6032 VEC_free (tree, heap, stack);
6033}
1a557723 6034
0bca51f0
DN
6035
6036/* Traverse all the blocks folding conditionals with known ranges. */
6037
6038static void
6039vrp_finalize (void)
6040{
227858d1
DN
6041 size_t i;
6042 prop_value_t *single_val_range;
6043 bool do_value_subst_p;
0bca51f0
DN
6044
6045 if (dump_file)
6046 {
6047 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
6048 dump_all_value_ranges (dump_file);
6049 fprintf (dump_file, "\n");
6050 }
6051
227858d1
DN
6052 /* We may have ended with ranges that have exactly one value. Those
6053 values can be substituted as any other copy/const propagated
6054 value using substitute_and_fold. */
b9eae1a9 6055 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
227858d1
DN
6056
6057 do_value_subst_p = false;
6058 for (i = 0; i < num_ssa_names; i++)
6059 if (vr_value[i]
6060 && vr_value[i]->type == VR_RANGE
6061 && vr_value[i]->min == vr_value[i]->max)
6062 {
6063 single_val_range[i].value = vr_value[i]->min;
6064 do_value_subst_p = true;
6065 }
6066
6067 if (!do_value_subst_p)
0bca51f0 6068 {
227858d1
DN
6069 /* We found no single-valued ranges, don't waste time trying to
6070 do single value substitution in substitute_and_fold. */
6071 free (single_val_range);
6072 single_val_range = NULL;
0bca51f0
DN
6073 }
6074
227858d1
DN
6075 substitute_and_fold (single_val_range, true);
6076
590b1f2d 6077 if (warn_array_bounds)
62e5bf5d 6078 check_all_array_refs ();
590b1f2d 6079
2090d6a0
JL
6080 /* We must identify jump threading opportunities before we release
6081 the datastructures built by VRP. */
6082 identify_jump_threads ();
6083
227858d1
DN
6084 /* Free allocated memory. */
6085 for (i = 0; i < num_ssa_names; i++)
6086 if (vr_value[i])
6087 {
6088 BITMAP_FREE (vr_value[i]->equiv);
6089 free (vr_value[i]);
6090 }
6091
6092 free (single_val_range);
6093 free (vr_value);
fc6827fe 6094 free (vr_phi_edge_counts);
b16caf72
JL
6095
6096 /* So that we can distinguish between VRP data being available
6097 and not available. */
6098 vr_value = NULL;
fc6827fe 6099 vr_phi_edge_counts = NULL;
0bca51f0
DN
6100}
6101
13285d51
ZD
6102/* Calculates number of iterations for all loops, to ensure that they are
6103 cached. */
6104
6105static void
6106record_numbers_of_iterations (void)
6107{
6108 loop_iterator li;
6109 struct loop *loop;
6110
6111 FOR_EACH_LOOP (li, loop, 0)
6112 {
6113 number_of_latch_executions (loop);
6114 }
6115}
0bca51f0
DN
6116
6117/* Main entry point to VRP (Value Range Propagation). This pass is
6118 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6119 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6120 Programming Language Design and Implementation, pp. 67-78, 1995.
6121 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6122
6123 This is essentially an SSA-CCP pass modified to deal with ranges
6124 instead of constants.
6125
227858d1
DN
6126 While propagating ranges, we may find that two or more SSA name
6127 have equivalent, though distinct ranges. For instance,
6128
6129 1 x_9 = p_3->a;
6130 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6131 3 if (p_4 == q_2)
6132 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6133 5 endif
6134 6 if (q_2)
6135
6136 In the code above, pointer p_5 has range [q_2, q_2], but from the
6137 code we can also determine that p_5 cannot be NULL and, if q_2 had
6138 a non-varying range, p_5's range should also be compatible with it.
6139
8ab5f5c9 6140 These equivalences are created by two expressions: ASSERT_EXPR and
227858d1
DN
6141 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6142 result of another assertion, then we can use the fact that p_5 and
6143 p_4 are equivalent when evaluating p_5's range.
6144
8ab5f5c9 6145 Together with value ranges, we also propagate these equivalences
227858d1
DN
6146 between names so that we can take advantage of information from
6147 multiple ranges when doing final replacement. Note that this
6148 equivalency relation is transitive but not symmetric.
6149
6150 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6151 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6152 in contexts where that assertion does not hold (e.g., in line 6).
6153
0bca51f0
DN
6154 TODO, the main difference between this pass and Patterson's is that
6155 we do not propagate edge probabilities. We only compute whether
6156 edges can be taken or not. That is, instead of having a spectrum
6157 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6158 DON'T KNOW. In the future, it may be worthwhile to propagate
6159 probabilities to aid branch prediction. */
6160
c2924966 6161static unsigned int
0bca51f0
DN
6162execute_vrp (void)
6163{
b02b9b53 6164 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
d51157de
ZD
6165 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6166 scev_initialize ();
b02b9b53
ZD
6167
6168 insert_range_assertions ();
0bca51f0 6169
13285d51
ZD
6170 /* Compute the # of iterations for each loop before we start the VRP
6171 analysis. The value ranges determined by VRP are used in expression
6172 simplification, that is also used by the # of iterations analysis.
6173 However, in the middle of the VRP analysis, the value ranges do not take
6174 all the possible paths in CFG into account, so they do not have to be
6175 correct, and the # of iterations analysis can obtain wrong results.
6176 This is a problem, since the results of the # of iterations analysis
6177 are cached, so these mistakes would not be corrected when the value
6178 ranges are corrected. */
6179 record_numbers_of_iterations ();
6180
227858d1
DN
6181 vrp_initialize ();
6182 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
6183 vrp_finalize ();
0bca51f0 6184
2090d6a0
JL
6185 /* ASSERT_EXPRs must be removed before finalizing jump threads
6186 as finalizing jump threads calls the CFG cleanup code which
6187 does not properly handle ASSERT_EXPRs. */
0bca51f0 6188 remove_range_assertions ();
59c02d8a
JL
6189
6190 /* If we exposed any new variables, go ahead and put them into
6191 SSA form now, before we handle jump threading. This simplifies
6192 interactions between rewriting of _DECL nodes into SSA form
6193 and rewriting SSA_NAME nodes into SSA form after block
6194 duplication and CFG manipulation. */
6195 update_ssa (TODO_update_ssa);
6196
2090d6a0 6197 finalize_jump_threads ();
d51157de
ZD
6198 scev_finalize ();
6199 loop_optimizer_finalize ();
b02b9b53 6200
c2924966 6201 return 0;
0bca51f0
DN
6202}
6203
6204static bool
6205gate_vrp (void)
6206{
6207 return flag_tree_vrp != 0;
6208}
6209
6210struct tree_opt_pass pass_vrp =
6211{
6212 "vrp", /* name */
6213 gate_vrp, /* gate */
6214 execute_vrp, /* execute */
6215 NULL, /* sub */
6216 NULL, /* next */
6217 0, /* static_pass_number */
6218 TV_TREE_VRP, /* tv_id */
6219 PROP_ssa | PROP_alias, /* properties_required */
6220 0, /* properties_provided */
ae07b463 6221 0, /* properties_destroyed */
0bca51f0
DN
6222 0, /* todo_flags_start */
6223 TODO_cleanup_cfg
6224 | TODO_ggc_collect
6225 | TODO_verify_ssa
6226 | TODO_dump_func
706ca88e 6227 | TODO_update_ssa, /* todo_flags_finish */
0bca51f0
DN
6228 0 /* letter */
6229};