]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-vrp.c
2014-10-27 Andrew MacLeod <amacleod@redhat.com>
[thirdparty/gcc.git] / gcc / tree-vrp.c
CommitLineData
88dbf20f 1/* Support routines for Value Range Propagation (VRP).
3aea1f79 2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
88dbf20f 3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
8c4c00c1 9the Free Software Foundation; either version 3, or (at your option)
88dbf20f 10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
88dbf20f 20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
88dbf20f 25#include "flags.h"
26#include "tree.h"
9ed99284 27#include "stor-layout.h"
28#include "calls.h"
94ea8568 29#include "predict.h"
30#include "vec.h"
31#include "hashtab.h"
32#include "hash-set.h"
33#include "machmode.h"
34#include "hard-reg-set.h"
35#include "input.h"
36#include "function.h"
37#include "dominance.h"
38#include "cfg.h"
39#include "cfganal.h"
88dbf20f 40#include "basic-block.h"
bc61cadb 41#include "tree-ssa-alias.h"
42#include "internal-fn.h"
43#include "gimple-fold.h"
44#include "tree-eh.h"
45#include "gimple-expr.h"
46#include "is-a.h"
073c1fd5 47#include "gimple.h"
dcf1a1ec 48#include "gimple-iterator.h"
49#include "gimple-walk.h"
073c1fd5 50#include "gimple-ssa.h"
51#include "tree-cfg.h"
52#include "tree-phinodes.h"
53#include "ssa-iterators.h"
9ed99284 54#include "stringpool.h"
073c1fd5 55#include "tree-ssanames.h"
05d9c18a 56#include "tree-ssa-loop-manip.h"
57#include "tree-ssa-loop-niter.h"
073c1fd5 58#include "tree-ssa-loop.h"
59#include "tree-into-ssa.h"
69ee5dbb 60#include "tree-ssa.h"
88dbf20f 61#include "tree-pass.h"
62#include "tree-dump.h"
ce084dfc 63#include "gimple-pretty-print.h"
0b205f4c 64#include "diagnostic-core.h"
a2a1fde2 65#include "intl.h"
88dbf20f 66#include "cfgloop.h"
67#include "tree-scalar-evolution.h"
68#include "tree-ssa-propagate.h"
69#include "tree-chrec.h"
0c5b289a 70#include "tree-ssa-threadupdate.h"
f0938d2c 71#include "expr.h"
72#include "optabs.h"
424a4a92 73#include "tree-ssa-threadedge.h"
6b409616 74#include "wide-int.h"
88dbf20f 75
75a70cf9 76
14f101cf 77
78/* Range of values that can be associated with an SSA_NAME after VRP
79 has executed. */
80struct value_range_d
81{
82 /* Lattice value represented by this range. */
83 enum value_range_type type;
84
85 /* Minimum and maximum values represented by this range. These
86 values should be interpreted as follows:
87
88 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
89 be NULL.
90
91 - If TYPE == VR_RANGE then MIN holds the minimum value and
92 MAX holds the maximum value of the range [MIN, MAX].
93
94 - If TYPE == ANTI_RANGE the variable is known to NOT
95 take any values in the range [MIN, MAX]. */
96 tree min;
97 tree max;
98
99 /* Set of SSA names whose value ranges are equivalent to this one.
100 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
101 bitmap equiv;
102};
103
104typedef struct value_range_d value_range_t;
105
748eb1f9 106#define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
107
17ed8337 108/* Set of SSA names found live during the RPO traversal of the function
109 for still active basic-blocks. */
110static sbitmap *live;
111
112/* Return true if the SSA name NAME is live on the edge E. */
113
114static bool
115live_on_edge (edge e, tree name)
116{
117 return (live[e->dest->index]
08b7917c 118 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
17ed8337 119}
88dbf20f 120
88dbf20f 121/* Local functions. */
122static int compare_values (tree val1, tree val2);
c3783c3b 123static int compare_values_warnv (tree val1, tree val2, bool *);
ec0fa513 124static void vrp_meet (value_range_t *, value_range_t *);
04dbf3c4 125static void vrp_intersect_ranges (value_range_t *, value_range_t *);
93116081 126static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
e0ad89bd 127 tree, tree, bool, bool *,
128 bool *);
88dbf20f 129
eea12c72 130/* Location information for ASSERT_EXPRs. Each instance of this
131 structure describes an ASSERT_EXPR for an SSA name. Since a single
132 SSA name may have more than one assertion associated with it, these
133 locations are kept in a linked list attached to the corresponding
134 SSA name. */
135struct assert_locus_d
88dbf20f 136{
eea12c72 137 /* Basic block where the assertion would be inserted. */
138 basic_block bb;
139
140 /* Some assertions need to be inserted on an edge (e.g., assertions
141 generated by COND_EXPRs). In those cases, BB will be NULL. */
142 edge e;
143
144 /* Pointer to the statement that generated this assertion. */
75a70cf9 145 gimple_stmt_iterator si;
eea12c72 146
147 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
148 enum tree_code comp_code;
149
150 /* Value being compared against. */
151 tree val;
152
bed8bec4 153 /* Expression to compare. */
154 tree expr;
155
eea12c72 156 /* Next node in the linked list. */
157 struct assert_locus_d *next;
158};
159
160typedef struct assert_locus_d *assert_locus_t;
161
162/* If bit I is present, it means that SSA name N_i has a list of
163 assertions that should be inserted in the IL. */
164static bitmap need_assert_for;
165
166/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
167 holds a list of ASSERT_LOCUS_T nodes that describe where
168 ASSERT_EXPRs for SSA name N_I should be inserted. */
169static assert_locus_t *asserts_for;
170
eea12c72 171/* Value range array. After propagation, VR_VALUE[I] holds the range
172 of values that SSA name N_I may take. */
e0186710 173static unsigned num_vr_values;
eea12c72 174static value_range_t **vr_value;
e0186710 175static bool values_propagated;
88dbf20f 176
5c7155ca 177/* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
178 number of executable edges we saw the last time we visited the
179 node. */
180static int *vr_phi_edge_counts;
181
72c30859 182typedef struct {
75a70cf9 183 gimple stmt;
72c30859 184 tree vec;
185} switch_update;
186
f1f41a6c 187static vec<edge> to_remove_edges;
188static vec<switch_update> to_update_switch_stmts;
72c30859 189
88dbf20f 190
a9538d68 191/* Return the maximum value for TYPE. */
22cdb855 192
193static inline tree
194vrp_val_max (const_tree type)
195{
196 if (!INTEGRAL_TYPE_P (type))
197 return NULL_TREE;
198
22cdb855 199 return TYPE_MAX_VALUE (type);
200}
201
a9538d68 202/* Return the minimum value for TYPE. */
22cdb855 203
204static inline tree
205vrp_val_min (const_tree type)
206{
207 if (!INTEGRAL_TYPE_P (type))
208 return NULL_TREE;
209
22cdb855 210 return TYPE_MIN_VALUE (type);
211}
212
213/* Return whether VAL is equal to the maximum value of its type. This
214 will be true for a positive overflow infinity. We can't do a
215 simple equality comparison with TYPE_MAX_VALUE because C typedefs
216 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
217 to the integer constant with the same value in the type. */
218
219static inline bool
220vrp_val_is_max (const_tree val)
221{
222 tree type_max = vrp_val_max (TREE_TYPE (val));
223 return (val == type_max
224 || (type_max != NULL_TREE
225 && operand_equal_p (val, type_max, 0)));
226}
227
228/* Return whether VAL is equal to the minimum value of its type. This
229 will be true for a negative overflow infinity. */
230
231static inline bool
232vrp_val_is_min (const_tree val)
233{
234 tree type_min = vrp_val_min (TREE_TYPE (val));
235 return (val == type_min
236 || (type_min != NULL_TREE
237 && operand_equal_p (val, type_min, 0)));
238}
239
240
c3783c3b 241/* Return whether TYPE should use an overflow infinity distinct from
242 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
243 represent a signed overflow during VRP computations. An infinity
244 is distinct from a half-range, which will go from some number to
245 TYPE_{MIN,MAX}_VALUE. */
246
247static inline bool
9f627b1a 248needs_overflow_infinity (const_tree type)
c3783c3b 249{
a9538d68 250 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
c3783c3b 251}
252
253/* Return whether TYPE can support our overflow infinity
254 representation: we use the TREE_OVERFLOW flag, which only exists
255 for constants. If TYPE doesn't support this, we don't optimize
256 cases which would require signed overflow--we drop them to
257 VARYING. */
258
259static inline bool
9f627b1a 260supports_overflow_infinity (const_tree type)
c3783c3b 261{
22cdb855 262 tree min = vrp_val_min (type), max = vrp_val_max (type);
c3783c3b 263#ifdef ENABLE_CHECKING
264 gcc_assert (needs_overflow_infinity (type));
265#endif
22cdb855 266 return (min != NULL_TREE
267 && CONSTANT_CLASS_P (min)
268 && max != NULL_TREE
269 && CONSTANT_CLASS_P (max));
c3783c3b 270}
271
272/* VAL is the maximum or minimum value of a type. Return a
273 corresponding overflow infinity. */
274
275static inline tree
276make_overflow_infinity (tree val)
277{
1b4345f7 278 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
c3783c3b 279 val = copy_node (val);
280 TREE_OVERFLOW (val) = 1;
281 return val;
282}
283
284/* Return a negative overflow infinity for TYPE. */
285
286static inline tree
287negative_overflow_infinity (tree type)
288{
1b4345f7 289 gcc_checking_assert (supports_overflow_infinity (type));
22cdb855 290 return make_overflow_infinity (vrp_val_min (type));
c3783c3b 291}
292
293/* Return a positive overflow infinity for TYPE. */
294
295static inline tree
296positive_overflow_infinity (tree type)
297{
1b4345f7 298 gcc_checking_assert (supports_overflow_infinity (type));
22cdb855 299 return make_overflow_infinity (vrp_val_max (type));
c3783c3b 300}
301
302/* Return whether VAL is a negative overflow infinity. */
303
304static inline bool
9f627b1a 305is_negative_overflow_infinity (const_tree val)
c3783c3b 306{
42081cd6 307 return (TREE_OVERFLOW_P (val)
308 && needs_overflow_infinity (TREE_TYPE (val))
22cdb855 309 && vrp_val_is_min (val));
c3783c3b 310}
311
312/* Return whether VAL is a positive overflow infinity. */
313
314static inline bool
9f627b1a 315is_positive_overflow_infinity (const_tree val)
c3783c3b 316{
42081cd6 317 return (TREE_OVERFLOW_P (val)
318 && needs_overflow_infinity (TREE_TYPE (val))
22cdb855 319 && vrp_val_is_max (val));
c3783c3b 320}
321
322/* Return whether VAL is a positive or negative overflow infinity. */
323
324static inline bool
9f627b1a 325is_overflow_infinity (const_tree val)
c3783c3b 326{
42081cd6 327 return (TREE_OVERFLOW_P (val)
328 && needs_overflow_infinity (TREE_TYPE (val))
22cdb855 329 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
c3783c3b 330}
331
75a70cf9 332/* Return whether STMT has a constant rhs that is_overflow_infinity. */
333
334static inline bool
335stmt_overflow_infinity (gimple stmt)
336{
337 if (is_gimple_assign (stmt)
338 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
339 GIMPLE_SINGLE_RHS)
340 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
341 return false;
342}
343
afc1ad6d 344/* If VAL is now an overflow infinity, return VAL. Otherwise, return
345 the same value with TREE_OVERFLOW clear. This can be used to avoid
346 confusing a regular value with an overflow value. */
347
348static inline tree
349avoid_overflow_infinity (tree val)
350{
351 if (!is_overflow_infinity (val))
352 return val;
353
22cdb855 354 if (vrp_val_is_max (val))
355 return vrp_val_max (TREE_TYPE (val));
afc1ad6d 356 else
357 {
1b4345f7 358 gcc_checking_assert (vrp_val_is_min (val));
22cdb855 359 return vrp_val_min (TREE_TYPE (val));
afc1ad6d 360 }
361}
362
c3783c3b 363
909992de 364/* Return true if ARG is marked with the nonnull attribute in the
365 current function signature. */
366
367static bool
9f627b1a 368nonnull_arg_p (const_tree arg)
909992de 369{
370 tree t, attrs, fntype;
371 unsigned HOST_WIDE_INT arg_num;
372
373 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
374
8d665d11 375 /* The static chain decl is always non null. */
376 if (arg == cfun->static_chain_decl)
377 return true;
378
909992de 379 fntype = TREE_TYPE (current_function_decl);
9ca77b08 380 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
909992de 381 {
9ca77b08 382 attrs = lookup_attribute ("nonnull", attrs);
909992de 383
9ca77b08 384 /* If "nonnull" wasn't specified, we know nothing about the argument. */
385 if (attrs == NULL_TREE)
386 return false;
909992de 387
9ca77b08 388 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
389 if (TREE_VALUE (attrs) == NULL_TREE)
909992de 390 return true;
9ca77b08 391
392 /* Get the position number for ARG in the function signature. */
393 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
394 t;
395 t = DECL_CHAIN (t), arg_num++)
396 {
397 if (t == arg)
398 break;
399 }
400
401 gcc_assert (t == arg);
402
403 /* Now see if ARG_NUM is mentioned in the nonnull list. */
404 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
405 {
406 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
407 return true;
408 }
909992de 409 }
410
411 return false;
412}
413
414
bc8c1f83 415/* Set value range VR to VR_UNDEFINED. */
416
417static inline void
418set_value_range_to_undefined (value_range_t *vr)
419{
420 vr->type = VR_UNDEFINED;
421 vr->min = vr->max = NULL_TREE;
422 if (vr->equiv)
423 bitmap_clear (vr->equiv);
424}
425
426
bed8bec4 427/* Set value range VR to VR_VARYING. */
428
429static inline void
430set_value_range_to_varying (value_range_t *vr)
431{
432 vr->type = VR_VARYING;
433 vr->min = vr->max = NULL_TREE;
434 if (vr->equiv)
435 bitmap_clear (vr->equiv);
436}
437
438
eea12c72 439/* Set value range VR to {T, MIN, MAX, EQUIV}. */
440
441static void
442set_value_range (value_range_t *vr, enum value_range_type t, tree min,
443 tree max, bitmap equiv)
88dbf20f 444{
445#if defined ENABLE_CHECKING
eea12c72 446 /* Check the validity of the range. */
88dbf20f 447 if (t == VR_RANGE || t == VR_ANTI_RANGE)
448 {
449 int cmp;
450
451 gcc_assert (min && max);
452
3dad27e9 453 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
454 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
455
88dbf20f 456 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
b876a744 457 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
88dbf20f 458
459 cmp = compare_values (min, max);
460 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
b700987e 461
462 if (needs_overflow_infinity (TREE_TYPE (min)))
463 gcc_assert (!is_overflow_infinity (min)
464 || !is_overflow_infinity (max));
88dbf20f 465 }
88dbf20f 466
eea12c72 467 if (t == VR_UNDEFINED || t == VR_VARYING)
468 gcc_assert (min == NULL_TREE && max == NULL_TREE);
469
470 if (t == VR_UNDEFINED || t == VR_VARYING)
471 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
472#endif
88dbf20f 473
474 vr->type = t;
475 vr->min = min;
476 vr->max = max;
eea12c72 477
478 /* Since updating the equivalence set involves deep copying the
479 bitmaps, only do it if absolutely necessary. */
fbcece5e 480 if (vr->equiv == NULL
481 && equiv != NULL)
eea12c72 482 vr->equiv = BITMAP_ALLOC (NULL);
483
484 if (equiv != vr->equiv)
485 {
486 if (equiv && !bitmap_empty_p (equiv))
487 bitmap_copy (vr->equiv, equiv);
488 else
489 bitmap_clear (vr->equiv);
490 }
88dbf20f 491}
492
493
bed8bec4 494/* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
495 This means adjusting T, MIN and MAX representing the case of a
496 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
497 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
498 In corner cases where MAX+1 or MIN-1 wraps this will fall back
499 to varying.
500 This routine exists to ease canonicalization in the case where we
501 extract ranges from var + CST op limit. */
88dbf20f 502
bed8bec4 503static void
504set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
505 tree min, tree max, bitmap equiv)
88dbf20f 506{
bc8c1f83 507 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
508 if (t == VR_UNDEFINED)
509 {
510 set_value_range_to_undefined (vr);
511 return;
512 }
513 else if (t == VR_VARYING)
514 {
515 set_value_range_to_varying (vr);
516 return;
517 }
518
519 /* Nothing to canonicalize for symbolic ranges. */
520 if (TREE_CODE (min) != INTEGER_CST
22cdb855 521 || TREE_CODE (max) != INTEGER_CST)
bed8bec4 522 {
523 set_value_range (vr, t, min, max, equiv);
524 return;
525 }
c3783c3b 526
bed8bec4 527 /* Wrong order for min and max, to swap them and the VR type we need
528 to adjust them. */
bed8bec4 529 if (tree_int_cst_lt (max, min))
530 {
5b7878ed 531 tree one, tmp;
532
533 /* For one bit precision if max < min, then the swapped
534 range covers all values, so for VR_RANGE it is varying and
535 for VR_ANTI_RANGE empty range, so drop to varying as well. */
536 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
537 {
538 set_value_range_to_varying (vr);
539 return;
540 }
541
542 one = build_int_cst (TREE_TYPE (min), 1);
543 tmp = int_const_binop (PLUS_EXPR, max, one);
317e2a67 544 max = int_const_binop (MINUS_EXPR, min, one);
22cdb855 545 min = tmp;
546
547 /* There's one corner case, if we had [C+1, C] before we now have
548 that again. But this represents an empty value range, so drop
549 to varying in this case. */
550 if (tree_int_cst_lt (max, min))
551 {
552 set_value_range_to_varying (vr);
553 return;
554 }
555
556 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
557 }
558
559 /* Anti-ranges that can be represented as ranges should be so. */
560 if (t == VR_ANTI_RANGE)
561 {
562 bool is_min = vrp_val_is_min (min);
563 bool is_max = vrp_val_is_max (max);
564
565 if (is_min && is_max)
566 {
bc8c1f83 567 /* We cannot deal with empty ranges, drop to varying.
568 ??? This could be VR_UNDEFINED instead. */
22cdb855 569 set_value_range_to_varying (vr);
570 return;
571 }
5b7878ed 572 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
5b7878ed 573 && (is_min || is_max))
574 {
ce7ae77c 575 /* Non-empty boolean ranges can always be represented
576 as a singleton range. */
577 if (is_min)
578 min = max = vrp_val_max (TREE_TYPE (min));
5b7878ed 579 else
ce7ae77c 580 min = max = vrp_val_min (TREE_TYPE (min));
581 t = VR_RANGE;
5b7878ed 582 }
22cdb855 583 else if (is_min
584 /* As a special exception preserve non-null ranges. */
585 && !(TYPE_UNSIGNED (TREE_TYPE (min))
586 && integer_zerop (max)))
587 {
588 tree one = build_int_cst (TREE_TYPE (max), 1);
317e2a67 589 min = int_const_binop (PLUS_EXPR, max, one);
22cdb855 590 max = vrp_val_max (TREE_TYPE (max));
591 t = VR_RANGE;
592 }
593 else if (is_max)
594 {
595 tree one = build_int_cst (TREE_TYPE (min), 1);
317e2a67 596 max = int_const_binop (MINUS_EXPR, min, one);
22cdb855 597 min = vrp_val_min (TREE_TYPE (min));
598 t = VR_RANGE;
599 }
bed8bec4 600 }
601
bc8c1f83 602 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
603 if (needs_overflow_infinity (TREE_TYPE (min))
604 && is_overflow_infinity (min)
605 && is_overflow_infinity (max))
606 {
607 set_value_range_to_varying (vr);
608 return;
609 }
610
bed8bec4 611 set_value_range (vr, t, min, max, equiv);
612}
613
614/* Copy value range FROM into value range TO. */
8dbf774a 615
616static inline void
bed8bec4 617copy_value_range (value_range_t *to, value_range_t *from)
8dbf774a 618{
bed8bec4 619 set_value_range (to, from->type, from->min, from->max, from->equiv);
c3783c3b 620}
621
b700987e 622/* Set value range VR to a single value. This function is only called
623 with values we get from statements, and exists to clear the
624 TREE_OVERFLOW flag so that we don't think we have an overflow
625 infinity when we shouldn't. */
626
627static inline void
4baf1a77 628set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
b700987e 629{
630 gcc_assert (is_gimple_min_invariant (val));
3dad27e9 631 if (TREE_OVERFLOW_P (val))
632 val = drop_tree_overflow (val);
4baf1a77 633 set_value_range (vr, VR_RANGE, val, val, equiv);
b700987e 634}
635
c3783c3b 636/* Set value range VR to a non-negative range of type TYPE.
80777cd8 637 OVERFLOW_INFINITY indicates whether to use an overflow infinity
c3783c3b 638 rather than TYPE_MAX_VALUE; this should be true if we determine
639 that the range is nonnegative based on the assumption that signed
640 overflow does not occur. */
641
642static inline void
643set_value_range_to_nonnegative (value_range_t *vr, tree type,
644 bool overflow_infinity)
645{
646 tree zero;
647
648 if (overflow_infinity && !supports_overflow_infinity (type))
649 {
650 set_value_range_to_varying (vr);
651 return;
652 }
653
654 zero = build_int_cst (type, 0);
655 set_value_range (vr, VR_RANGE, zero,
656 (overflow_infinity
657 ? positive_overflow_infinity (type)
658 : TYPE_MAX_VALUE (type)),
659 vr->equiv);
8dbf774a 660}
eea12c72 661
662/* Set value range VR to a non-NULL range of type TYPE. */
663
664static inline void
665set_value_range_to_nonnull (value_range_t *vr, tree type)
666{
667 tree zero = build_int_cst (type, 0);
668 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
669}
670
671
672/* Set value range VR to a NULL range of type TYPE. */
673
674static inline void
675set_value_range_to_null (value_range_t *vr, tree type)
676{
4baf1a77 677 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
eea12c72 678}
679
680
b9b64cb7 681/* Set value range VR to a range of a truthvalue of type TYPE. */
682
683static inline void
684set_value_range_to_truthvalue (value_range_t *vr, tree type)
685{
686 if (TYPE_PRECISION (type) == 1)
687 set_value_range_to_varying (vr);
688 else
689 set_value_range (vr, VR_RANGE,
690 build_int_cst (type, 0), build_int_cst (type, 1),
691 vr->equiv);
692}
693
694
e52dd258 695/* If abs (min) < abs (max), set VR to [-max, max], if
696 abs (min) >= abs (max), set VR to [-min, min]. */
697
698static void
699abs_extent_range (value_range_t *vr, tree min, tree max)
700{
701 int cmp;
702
703 gcc_assert (TREE_CODE (min) == INTEGER_CST);
704 gcc_assert (TREE_CODE (max) == INTEGER_CST);
705 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
706 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
707 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
708 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
709 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
710 {
711 set_value_range_to_varying (vr);
712 return;
713 }
714 cmp = compare_values (min, max);
715 if (cmp == -1)
716 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
717 else if (cmp == 0 || cmp == 1)
718 {
719 max = min;
720 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
721 }
722 else
723 {
724 set_value_range_to_varying (vr);
725 return;
726 }
727 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
728}
729
730
48e1416a 731/* Return value range information for VAR.
8dbf774a 732
733 If we have no values ranges recorded (ie, VRP is not running), then
734 return NULL. Otherwise create an empty range if none existed for VAR. */
88dbf20f 735
eea12c72 736static value_range_t *
9f627b1a 737get_value_range (const_tree var)
88dbf20f 738{
e0186710 739 static const struct value_range_d vr_const_varying
740 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
eea12c72 741 value_range_t *vr;
88dbf20f 742 tree sym;
eea12c72 743 unsigned ver = SSA_NAME_VERSION (var);
88dbf20f 744
8dbf774a 745 /* If we have no recorded ranges, then return NULL. */
746 if (! vr_value)
747 return NULL;
748
e0186710 749 /* If we query the range for a new SSA name return an unmodifiable VARYING.
750 We should get here at most from the substitute-and-fold stage which
751 will never try to change values. */
752 if (ver >= num_vr_values)
753 return CONST_CAST (value_range_t *, &vr_const_varying);
754
eea12c72 755 vr = vr_value[ver];
88dbf20f 756 if (vr)
757 return vr;
758
e0186710 759 /* After propagation finished do not allocate new value-ranges. */
760 if (values_propagated)
761 return CONST_CAST (value_range_t *, &vr_const_varying);
762
88dbf20f 763 /* Create a default value range. */
43959b95 764 vr_value[ver] = vr = XCNEW (value_range_t);
88dbf20f 765
fbcece5e 766 /* Defer allocating the equivalence set. */
767 vr->equiv = NULL;
eea12c72 768
fb41023e 769 /* If VAR is a default definition of a parameter, the variable can
770 take any value in VAR's type. */
0e443ce1 771 if (SSA_NAME_IS_DEFAULT_DEF (var))
909992de 772 {
7ecda5e8 773 sym = SSA_NAME_VAR (var);
0e443ce1 774 if (TREE_CODE (sym) == PARM_DECL)
775 {
776 /* Try to use the "nonnull" attribute to create ~[0, 0]
777 anti-ranges for pointers. Note that this is only valid with
778 default definitions of PARM_DECLs. */
779 if (POINTER_TYPE_P (TREE_TYPE (sym))
780 && nonnull_arg_p (sym))
781 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
782 else
783 set_value_range_to_varying (vr);
784 }
785 else if (TREE_CODE (sym) == RESULT_DECL
786 && DECL_BY_REFERENCE (sym))
909992de 787 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
909992de 788 }
88dbf20f 789
790 return vr;
791}
792
238ad80e 793/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
794
795static inline bool
9f627b1a 796vrp_operand_equal_p (const_tree val1, const_tree val2)
238ad80e 797{
c3783c3b 798 if (val1 == val2)
799 return true;
800 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
801 return false;
42081cd6 802 return is_overflow_infinity (val1) == is_overflow_infinity (val2);
238ad80e 803}
804
805/* Return true, if the bitmaps B1 and B2 are equal. */
806
807static inline bool
1f1872fd 808vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
238ad80e 809{
810 return (b1 == b2
b1296be0 811 || ((!b1 || bitmap_empty_p (b1))
812 && (!b2 || bitmap_empty_p (b2)))
238ad80e 813 || (b1 && b2
814 && bitmap_equal_p (b1, b2)));
815}
88dbf20f 816
eea12c72 817/* Update the value range and equivalence set for variable VAR to
818 NEW_VR. Return true if NEW_VR is different from VAR's previous
819 value.
820
821 NOTE: This function assumes that NEW_VR is a temporary value range
822 object created for the sole purpose of updating VAR's range. The
823 storage used by the equivalence set from NEW_VR will be freed by
824 this function. Do not call update_value_range when NEW_VR
825 is the range object associated with another SSA name. */
88dbf20f 826
827static inline bool
9f627b1a 828update_value_range (const_tree var, value_range_t *new_vr)
88dbf20f 829{
eea12c72 830 value_range_t *old_vr;
831 bool is_new;
832
833 /* Update the value range, if necessary. */
834 old_vr = get_value_range (var);
835 is_new = old_vr->type != new_vr->type
238ad80e 836 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
837 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
838 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
88dbf20f 839
eea12c72 840 if (is_new)
a74ec8b4 841 {
842 /* Do not allow transitions up the lattice. The following
843 is slightly more awkward than just new_vr->type < old_vr->type
844 because VR_RANGE and VR_ANTI_RANGE need to be considered
845 the same. We may not have is_new when transitioning to
846 UNDEFINED or from VARYING. */
847 if (new_vr->type == VR_UNDEFINED
848 || old_vr->type == VR_VARYING)
849 set_value_range_to_varying (old_vr);
850 else
851 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
852 new_vr->equiv);
853 }
88dbf20f 854
eea12c72 855 BITMAP_FREE (new_vr->equiv);
88dbf20f 856
eea12c72 857 return is_new;
858}
88dbf20f 859
88dbf20f 860
fbcece5e 861/* Add VAR and VAR's equivalence set to EQUIV. This is the central
862 point where equivalence processing can be turned on/off. */
88dbf20f 863
eea12c72 864static void
9f627b1a 865add_equivalence (bitmap *equiv, const_tree var)
eea12c72 866{
867 unsigned ver = SSA_NAME_VERSION (var);
868 value_range_t *vr = vr_value[ver];
88dbf20f 869
fbcece5e 870 if (*equiv == NULL)
871 *equiv = BITMAP_ALLOC (NULL);
872 bitmap_set_bit (*equiv, ver);
eea12c72 873 if (vr && vr->equiv)
fbcece5e 874 bitmap_ior_into (*equiv, vr->equiv);
88dbf20f 875}
876
877
878/* Return true if VR is ~[0, 0]. */
879
880static inline bool
eea12c72 881range_is_nonnull (value_range_t *vr)
88dbf20f 882{
883 return vr->type == VR_ANTI_RANGE
884 && integer_zerop (vr->min)
885 && integer_zerop (vr->max);
886}
887
888
889/* Return true if VR is [0, 0]. */
890
891static inline bool
eea12c72 892range_is_null (value_range_t *vr)
88dbf20f 893{
894 return vr->type == VR_RANGE
895 && integer_zerop (vr->min)
896 && integer_zerop (vr->max);
897}
898
bca0860e 899/* Return true if max and min of VR are INTEGER_CST. It's not necessary
900 a singleton. */
901
902static inline bool
903range_int_cst_p (value_range_t *vr)
904{
905 return (vr->type == VR_RANGE
906 && TREE_CODE (vr->max) == INTEGER_CST
ac4a8000 907 && TREE_CODE (vr->min) == INTEGER_CST);
bca0860e 908}
909
910/* Return true if VR is a INTEGER_CST singleton. */
911
912static inline bool
913range_int_cst_singleton_p (value_range_t *vr)
914{
915 return (range_int_cst_p (vr)
4a8f88ff 916 && !is_overflow_infinity (vr->min)
917 && !is_overflow_infinity (vr->max)
bca0860e 918 && tree_int_cst_equal (vr->min, vr->max));
919}
88dbf20f 920
eea12c72 921/* Return true if value range VR involves at least one symbol. */
88dbf20f 922
eea12c72 923static inline bool
924symbolic_range_p (value_range_t *vr)
88dbf20f 925{
eea12c72 926 return (!is_gimple_min_invariant (vr->min)
927 || !is_gimple_min_invariant (vr->max));
88dbf20f 928}
929
1ec8aa41 930/* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
931 otherwise. We only handle additive operations and set NEG to true if the
932 symbol is negated and INV to the invariant part, if any. */
933
934static tree
935get_single_symbol (tree t, bool *neg, tree *inv)
936{
937 bool neg_;
938 tree inv_;
939
940 if (TREE_CODE (t) == PLUS_EXPR
941 || TREE_CODE (t) == POINTER_PLUS_EXPR
942 || TREE_CODE (t) == MINUS_EXPR)
943 {
944 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
945 {
946 neg_ = (TREE_CODE (t) == MINUS_EXPR);
947 inv_ = TREE_OPERAND (t, 0);
948 t = TREE_OPERAND (t, 1);
949 }
950 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
951 {
952 neg_ = false;
953 inv_ = TREE_OPERAND (t, 1);
954 t = TREE_OPERAND (t, 0);
955 }
956 else
957 return NULL_TREE;
958 }
959 else
960 {
961 neg_ = false;
962 inv_ = NULL_TREE;
963 }
964
965 if (TREE_CODE (t) == NEGATE_EXPR)
966 {
967 t = TREE_OPERAND (t, 0);
968 neg_ = !neg_;
969 }
970
971 if (TREE_CODE (t) != SSA_NAME)
972 return NULL_TREE;
973
974 *neg = neg_;
975 *inv = inv_;
976 return t;
977}
978
979/* The reverse operation: build a symbolic expression with TYPE
980 from symbol SYM, negated according to NEG, and invariant INV. */
981
982static tree
983build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
984{
985 const bool pointer_p = POINTER_TYPE_P (type);
986 tree t = sym;
987
988 if (neg)
989 t = build1 (NEGATE_EXPR, type, t);
990
991 if (integer_zerop (inv))
992 return t;
993
994 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
995}
996
997/* Return true if value range VR involves exactly one symbol SYM. */
998
999static bool
1000symbolic_range_based_on_p (value_range_t *vr, const_tree sym)
1001{
1002 bool neg, min_has_symbol, max_has_symbol;
1003 tree inv;
1004
1005 if (is_gimple_min_invariant (vr->min))
1006 min_has_symbol = false;
1007 else if (get_single_symbol (vr->min, &neg, &inv) == sym)
1008 min_has_symbol = true;
1009 else
1010 return false;
1011
1012 if (is_gimple_min_invariant (vr->max))
1013 max_has_symbol = false;
1014 else if (get_single_symbol (vr->max, &neg, &inv) == sym)
1015 max_has_symbol = true;
1016 else
1017 return false;
1018
1019 return (min_has_symbol || max_has_symbol);
1020}
1021
80777cd8 1022/* Return true if value range VR uses an overflow infinity. */
8dbf774a 1023
c3783c3b 1024static inline bool
1025overflow_infinity_range_p (value_range_t *vr)
8dbf774a 1026{
c3783c3b 1027 return (vr->type == VR_RANGE
1028 && (is_overflow_infinity (vr->min)
1029 || is_overflow_infinity (vr->max)));
1030}
add6ee5e 1031
a2a1fde2 1032/* Return false if we can not make a valid comparison based on VR;
1033 this will be the case if it uses an overflow infinity and overflow
1034 is not undefined (i.e., -fno-strict-overflow is in effect).
1035 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
1036 uses an overflow infinity. */
1037
1038static bool
1039usable_range_p (value_range_t *vr, bool *strict_overflow_p)
1040{
1041 gcc_assert (vr->type == VR_RANGE);
1042 if (is_overflow_infinity (vr->min))
1043 {
1044 *strict_overflow_p = true;
1045 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
1046 return false;
1047 }
1048 if (is_overflow_infinity (vr->max))
1049 {
1050 *strict_overflow_p = true;
1051 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
1052 return false;
1053 }
1054 return true;
1055}
1056
1057
75a70cf9 1058/* Return true if the result of assignment STMT is know to be non-negative.
1059 If the return value is based on the assumption that signed overflow is
1060 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1061 *STRICT_OVERFLOW_P.*/
1062
1063static bool
1064gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1065{
1066 enum tree_code code = gimple_assign_rhs_code (stmt);
1067 switch (get_gimple_rhs_class (code))
1068 {
1069 case GIMPLE_UNARY_RHS:
1070 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
1071 gimple_expr_type (stmt),
1072 gimple_assign_rhs1 (stmt),
1073 strict_overflow_p);
1074 case GIMPLE_BINARY_RHS:
1075 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
1076 gimple_expr_type (stmt),
1077 gimple_assign_rhs1 (stmt),
1078 gimple_assign_rhs2 (stmt),
1079 strict_overflow_p);
00f4f705 1080 case GIMPLE_TERNARY_RHS:
1081 return false;
75a70cf9 1082 case GIMPLE_SINGLE_RHS:
1083 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
1084 strict_overflow_p);
1085 case GIMPLE_INVALID_RHS:
1086 gcc_unreachable ();
1087 default:
1088 gcc_unreachable ();
1089 }
1090}
1091
1092/* Return true if return value of call STMT is know to be non-negative.
1093 If the return value is based on the assumption that signed overflow is
1094 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1095 *STRICT_OVERFLOW_P.*/
1096
1097static bool
1098gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1099{
1100 tree arg0 = gimple_call_num_args (stmt) > 0 ?
1101 gimple_call_arg (stmt, 0) : NULL_TREE;
1102 tree arg1 = gimple_call_num_args (stmt) > 1 ?
1103 gimple_call_arg (stmt, 1) : NULL_TREE;
1104
1105 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
1106 gimple_call_fndecl (stmt),
1107 arg0,
1108 arg1,
1109 strict_overflow_p);
1110}
1111
1112/* Return true if STMT is know to to compute a non-negative value.
1113 If the return value is based on the assumption that signed overflow is
1114 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1115 *STRICT_OVERFLOW_P.*/
1116
1117static bool
1118gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1119{
1120 switch (gimple_code (stmt))
1121 {
1122 case GIMPLE_ASSIGN:
1123 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1124 case GIMPLE_CALL:
1125 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1126 default:
1127 gcc_unreachable ();
1128 }
1129}
1130
1131/* Return true if the result of assignment STMT is know to be non-zero.
1132 If the return value is based on the assumption that signed overflow is
1133 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1134 *STRICT_OVERFLOW_P.*/
1135
1136static bool
1137gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1138{
1139 enum tree_code code = gimple_assign_rhs_code (stmt);
1140 switch (get_gimple_rhs_class (code))
1141 {
1142 case GIMPLE_UNARY_RHS:
1143 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1144 gimple_expr_type (stmt),
1145 gimple_assign_rhs1 (stmt),
1146 strict_overflow_p);
1147 case GIMPLE_BINARY_RHS:
1148 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1149 gimple_expr_type (stmt),
1150 gimple_assign_rhs1 (stmt),
1151 gimple_assign_rhs2 (stmt),
1152 strict_overflow_p);
00f4f705 1153 case GIMPLE_TERNARY_RHS:
1154 return false;
75a70cf9 1155 case GIMPLE_SINGLE_RHS:
1156 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1157 strict_overflow_p);
1158 case GIMPLE_INVALID_RHS:
1159 gcc_unreachable ();
1160 default:
1161 gcc_unreachable ();
1162 }
1163}
1164
d7dcba40 1165/* Return true if STMT is known to compute a non-zero value.
75a70cf9 1166 If the return value is based on the assumption that signed overflow is
1167 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1168 *STRICT_OVERFLOW_P.*/
1169
1170static bool
1171gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1172{
1173 switch (gimple_code (stmt))
1174 {
1175 case GIMPLE_ASSIGN:
1176 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1177 case GIMPLE_CALL:
0b7282f1 1178 {
1179 tree fndecl = gimple_call_fndecl (stmt);
1180 if (!fndecl) return false;
1181 if (flag_delete_null_pointer_checks && !flag_check_new
1182 && DECL_IS_OPERATOR_NEW (fndecl)
1183 && !TREE_NOTHROW (fndecl))
1184 return true;
d7dcba40 1185 if (flag_delete_null_pointer_checks &&
1186 lookup_attribute ("returns_nonnull",
1187 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1188 return true;
0b7282f1 1189 return gimple_alloca_call_p (stmt);
1190 }
75a70cf9 1191 default:
1192 gcc_unreachable ();
1193 }
1194}
1195
c3783c3b 1196/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
eea12c72 1197 obtained so far. */
88dbf20f 1198
eea12c72 1199static bool
75a70cf9 1200vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
88dbf20f 1201{
75a70cf9 1202 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
eea12c72 1203 return true;
88dbf20f 1204
eea12c72 1205 /* If we have an expression of the form &X->a, then the expression
1206 is nonnull if X is nonnull. */
75a70cf9 1207 if (is_gimple_assign (stmt)
1208 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
eea12c72 1209 {
75a70cf9 1210 tree expr = gimple_assign_rhs1 (stmt);
eea12c72 1211 tree base = get_base_address (TREE_OPERAND (expr, 0));
88dbf20f 1212
eea12c72 1213 if (base != NULL_TREE
182cf5a9 1214 && TREE_CODE (base) == MEM_REF
eea12c72 1215 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1216 {
1217 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1218 if (range_is_nonnull (vr))
1219 return true;
1220 }
1221 }
e7d43f99 1222
eea12c72 1223 return false;
e7d43f99 1224}
1225
7587869b 1226/* Returns true if EXPR is a valid value (as expected by compare_values) --
1227 a gimple invariant, or SSA_NAME +- CST. */
1228
1229static bool
1230valid_value_p (tree expr)
1231{
1232 if (TREE_CODE (expr) == SSA_NAME)
1233 return true;
1234
1235 if (TREE_CODE (expr) == PLUS_EXPR
1236 || TREE_CODE (expr) == MINUS_EXPR)
1237 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1238 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
48e1416a 1239
7587869b 1240 return is_gimple_min_invariant (expr);
1241}
e7d43f99 1242
48e1416a 1243/* Return
7e8bc5b6 1244 1 if VAL < VAL2
1245 0 if !(VAL < VAL2)
1246 -2 if those are incomparable. */
1247static inline int
1248operand_less_p (tree val, tree val2)
1249{
7e8bc5b6 1250 /* LT is folded faster than GE and others. Inline the common case. */
1251 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
d99d10ca 1252 return tree_int_cst_lt (val, val2);
7e8bc5b6 1253 else
c3783c3b 1254 {
1255 tree tcmp;
1256
f82ccac1 1257 fold_defer_overflow_warnings ();
1258
c3783c3b 1259 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
f82ccac1 1260
1261 fold_undefer_and_ignore_overflow_warnings ();
1262
ffdf1c47 1263 if (!tcmp
1264 || TREE_CODE (tcmp) != INTEGER_CST)
c3783c3b 1265 return -2;
1266
1267 if (!integer_zerop (tcmp))
1268 return 1;
1269 }
1270
1271 /* val >= val2, not considering overflow infinity. */
1272 if (is_negative_overflow_infinity (val))
1273 return is_negative_overflow_infinity (val2) ? 0 : 1;
1274 else if (is_positive_overflow_infinity (val2))
1275 return is_positive_overflow_infinity (val) ? 0 : 1;
1276
1277 return 0;
7e8bc5b6 1278}
1279
88dbf20f 1280/* Compare two values VAL1 and VAL2. Return
48e1416a 1281
88dbf20f 1282 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1283 -1 if VAL1 < VAL2,
1284 0 if VAL1 == VAL2,
1285 +1 if VAL1 > VAL2, and
1286 +2 if VAL1 != VAL2
1287
1288 This is similar to tree_int_cst_compare but supports pointer values
c3783c3b 1289 and values that cannot be compared at compile time.
1290
1291 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1292 true if the return value is only valid if we assume that signed
1293 overflow is undefined. */
88dbf20f 1294
1295static int
c3783c3b 1296compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
88dbf20f 1297{
1298 if (val1 == val2)
1299 return 0;
1300
a9b4b38e 1301 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1302 both integers. */
1303 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1304 == POINTER_TYPE_P (TREE_TYPE (val2)));
1ec8aa41 1305
0de36bdb 1306 /* Convert the two values into the same type. This is needed because
1307 sizetype causes sign extension even for unsigned types. */
1308 val2 = fold_convert (TREE_TYPE (val1), val2);
1309 STRIP_USELESS_TYPE_CONVERSION (val2);
a9b4b38e 1310
88dbf20f 1311 if ((TREE_CODE (val1) == SSA_NAME
1ec8aa41 1312 || (TREE_CODE (val1) == NEGATE_EXPR
1313 && TREE_CODE (TREE_OPERAND (val1, 0)) == SSA_NAME)
88dbf20f 1314 || TREE_CODE (val1) == PLUS_EXPR
1315 || TREE_CODE (val1) == MINUS_EXPR)
1316 && (TREE_CODE (val2) == SSA_NAME
1ec8aa41 1317 || (TREE_CODE (val2) == NEGATE_EXPR
1318 && TREE_CODE (TREE_OPERAND (val2, 0)) == SSA_NAME)
88dbf20f 1319 || TREE_CODE (val2) == PLUS_EXPR
1320 || TREE_CODE (val2) == MINUS_EXPR))
1321 {
1322 tree n1, c1, n2, c2;
82086091 1323 enum tree_code code1, code2;
48e1416a 1324
1ec8aa41 1325 /* If VAL1 and VAL2 are of the form '[-]NAME [+-] CST' or 'NAME',
88dbf20f 1326 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1327 same name, return -2. */
1ec8aa41 1328 if (TREE_CODE (val1) == SSA_NAME || TREE_CODE (val1) == NEGATE_EXPR)
88dbf20f 1329 {
82086091 1330 code1 = SSA_NAME;
88dbf20f 1331 n1 = val1;
1332 c1 = NULL_TREE;
1333 }
1334 else
1335 {
82086091 1336 code1 = TREE_CODE (val1);
88dbf20f 1337 n1 = TREE_OPERAND (val1, 0);
1338 c1 = TREE_OPERAND (val1, 1);
82086091 1339 if (tree_int_cst_sgn (c1) == -1)
1340 {
c3783c3b 1341 if (is_negative_overflow_infinity (c1))
1342 return -2;
82086091 1343 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1344 if (!c1)
1345 return -2;
1346 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1347 }
88dbf20f 1348 }
1349
1ec8aa41 1350 if (TREE_CODE (val2) == SSA_NAME || TREE_CODE (val2) == NEGATE_EXPR)
88dbf20f 1351 {
82086091 1352 code2 = SSA_NAME;
88dbf20f 1353 n2 = val2;
1354 c2 = NULL_TREE;
1355 }
1356 else
1357 {
82086091 1358 code2 = TREE_CODE (val2);
88dbf20f 1359 n2 = TREE_OPERAND (val2, 0);
1360 c2 = TREE_OPERAND (val2, 1);
82086091 1361 if (tree_int_cst_sgn (c2) == -1)
1362 {
c3783c3b 1363 if (is_negative_overflow_infinity (c2))
1364 return -2;
82086091 1365 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1366 if (!c2)
1367 return -2;
1368 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1369 }
88dbf20f 1370 }
1371
1372 /* Both values must use the same name. */
1ec8aa41 1373 if (TREE_CODE (n1) == NEGATE_EXPR && TREE_CODE (n2) == NEGATE_EXPR)
1374 {
1375 n1 = TREE_OPERAND (n1, 0);
1376 n2 = TREE_OPERAND (n2, 0);
1377 }
88dbf20f 1378 if (n1 != n2)
1379 return -2;
1380
1ec8aa41 1381 if (code1 == SSA_NAME && code2 == SSA_NAME)
82086091 1382 /* NAME == NAME */
1383 return 0;
1384
1385 /* If overflow is defined we cannot simplify more. */
981eb798 1386 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
82086091 1387 return -2;
1388
d8f696cf 1389 if (strict_overflow_p != NULL
1390 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1391 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
c3783c3b 1392 *strict_overflow_p = true;
1393
82086091 1394 if (code1 == SSA_NAME)
88dbf20f 1395 {
82086091 1396 if (code2 == PLUS_EXPR)
88dbf20f 1397 /* NAME < NAME + CST */
1398 return -1;
82086091 1399 else if (code2 == MINUS_EXPR)
88dbf20f 1400 /* NAME > NAME - CST */
1401 return 1;
1402 }
82086091 1403 else if (code1 == PLUS_EXPR)
88dbf20f 1404 {
82086091 1405 if (code2 == SSA_NAME)
88dbf20f 1406 /* NAME + CST > NAME */
1407 return 1;
82086091 1408 else if (code2 == PLUS_EXPR)
88dbf20f 1409 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
c3783c3b 1410 return compare_values_warnv (c1, c2, strict_overflow_p);
82086091 1411 else if (code2 == MINUS_EXPR)
88dbf20f 1412 /* NAME + CST1 > NAME - CST2 */
1413 return 1;
1414 }
82086091 1415 else if (code1 == MINUS_EXPR)
88dbf20f 1416 {
82086091 1417 if (code2 == SSA_NAME)
88dbf20f 1418 /* NAME - CST < NAME */
1419 return -1;
82086091 1420 else if (code2 == PLUS_EXPR)
88dbf20f 1421 /* NAME - CST1 < NAME + CST2 */
1422 return -1;
82086091 1423 else if (code2 == MINUS_EXPR)
88dbf20f 1424 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1425 C1 and C2 are swapped in the call to compare_values. */
c3783c3b 1426 return compare_values_warnv (c2, c1, strict_overflow_p);
88dbf20f 1427 }
1428
1429 gcc_unreachable ();
1430 }
1431
1432 /* We cannot compare non-constants. */
1433 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1434 return -2;
1435
a9b4b38e 1436 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
05812c7f 1437 {
c3783c3b 1438 /* We cannot compare overflowed values, except for overflow
1439 infinities. */
05812c7f 1440 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
c3783c3b 1441 {
a2a1fde2 1442 if (strict_overflow_p != NULL)
1443 *strict_overflow_p = true;
c3783c3b 1444 if (is_negative_overflow_infinity (val1))
1445 return is_negative_overflow_infinity (val2) ? 0 : -1;
1446 else if (is_negative_overflow_infinity (val2))
1447 return 1;
1448 else if (is_positive_overflow_infinity (val1))
1449 return is_positive_overflow_infinity (val2) ? 0 : 1;
1450 else if (is_positive_overflow_infinity (val2))
1451 return -1;
1452 return -2;
1453 }
05812c7f 1454
1455 return tree_int_cst_compare (val1, val2);
1456 }
88dbf20f 1457 else
1458 {
1459 tree t;
1460
1461 /* First see if VAL1 and VAL2 are not the same. */
1462 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1463 return 0;
48e1416a 1464
88dbf20f 1465 /* If VAL1 is a lower address than VAL2, return -1. */
7e8bc5b6 1466 if (operand_less_p (val1, val2) == 1)
88dbf20f 1467 return -1;
1468
1469 /* If VAL1 is a higher address than VAL2, return +1. */
7e8bc5b6 1470 if (operand_less_p (val2, val1) == 1)
88dbf20f 1471 return 1;
1472
14dc13e5 1473 /* If VAL1 is different than VAL2, return +2.
1474 For integer constants we either have already returned -1 or 1
7920eed5 1475 or they are equivalent. We still might succeed in proving
1476 something about non-trivial operands. */
14dc13e5 1477 if (TREE_CODE (val1) != INTEGER_CST
1478 || TREE_CODE (val2) != INTEGER_CST)
1479 {
1480 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
ffdf1c47 1481 if (t && integer_onep (t))
14dc13e5 1482 return 2;
1483 }
88dbf20f 1484
1485 return -2;
1486 }
1487}
1488
a2a1fde2 1489/* Compare values like compare_values_warnv, but treat comparisons of
1490 nonconstants which rely on undefined overflow as incomparable. */
c3783c3b 1491
1492static int
1493compare_values (tree val1, tree val2)
1494{
1495 bool sop;
1496 int ret;
1497
1498 sop = false;
1499 ret = compare_values_warnv (val1, val2, &sop);
a2a1fde2 1500 if (sop
1501 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
c3783c3b 1502 ret = -2;
1503 return ret;
1504}
1505
88dbf20f 1506
7d48cd66 1507/* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1508 0 if VAL is not inside [MIN, MAX],
30a9e679 1509 -2 if we cannot tell either way.
1510
7e8bc5b6 1511 Benchmark compile/20001226-1.c compilation time after changing this
1512 function. */
88dbf20f 1513
1514static inline int
7d48cd66 1515value_inside_range (tree val, tree min, tree max)
88dbf20f 1516{
7e8bc5b6 1517 int cmp1, cmp2;
88dbf20f 1518
7d48cd66 1519 cmp1 = operand_less_p (val, min);
7e8bc5b6 1520 if (cmp1 == -2)
88dbf20f 1521 return -2;
7e8bc5b6 1522 if (cmp1 == 1)
1523 return 0;
88dbf20f 1524
7d48cd66 1525 cmp2 = operand_less_p (max, val);
7e8bc5b6 1526 if (cmp2 == -2)
88dbf20f 1527 return -2;
1528
7e8bc5b6 1529 return !cmp2;
88dbf20f 1530}
1531
1532
1533/* Return true if value ranges VR0 and VR1 have a non-empty
48e1416a 1534 intersection.
1535
7e8bc5b6 1536 Benchmark compile/20001226-1.c compilation time after changing this
1537 function.
1538 */
88dbf20f 1539
1540static inline bool
eea12c72 1541value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
88dbf20f 1542{
14dc13e5 1543 /* The value ranges do not intersect if the maximum of the first range is
1544 less than the minimum of the second range or vice versa.
1545 When those relations are unknown, we can't do any better. */
1546 if (operand_less_p (vr0->max, vr1->min) != 0)
1547 return false;
1548 if (operand_less_p (vr1->max, vr0->min) != 0)
1549 return false;
1550 return true;
88dbf20f 1551}
1552
1553
7d48cd66 1554/* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1555 include the value zero, -2 if we cannot tell. */
eea12c72 1556
7d48cd66 1557static inline int
1558range_includes_zero_p (tree min, tree max)
eea12c72 1559{
7d48cd66 1560 tree zero = build_int_cst (TREE_TYPE (min), 0);
1561 return value_inside_range (zero, min, max);
eea12c72 1562}
1563
c37659ce 1564/* Return true if *VR is know to only contain nonnegative values. */
1565
1566static inline bool
1567value_range_nonnegative_p (value_range_t *vr)
1568{
713b2724 1569 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1570 which would return a useful value should be encoded as a
1571 VR_RANGE. */
c37659ce 1572 if (vr->type == VR_RANGE)
1573 {
1574 int result = compare_values (vr->min, integer_zero_node);
1575 return (result == 0 || result == 1);
1576 }
c37659ce 1577
1578 return false;
1579}
1580
c37659ce 1581/* If *VR has a value rante that is a single constant value return that,
1582 otherwise return NULL_TREE. */
1583
1584static tree
1585value_range_constant_singleton (value_range_t *vr)
1586{
1587 if (vr->type == VR_RANGE
1588 && operand_equal_p (vr->min, vr->max, 0)
1589 && is_gimple_min_invariant (vr->min))
1590 return vr->min;
1591
1592 return NULL_TREE;
8dbf774a 1593}
1594
43ffec67 1595/* If OP has a value range with a single constant value return that,
1596 otherwise return NULL_TREE. This returns OP itself if OP is a
1597 constant. */
1598
1599static tree
1600op_with_constant_singleton_value_range (tree op)
1601{
43ffec67 1602 if (is_gimple_min_invariant (op))
1603 return op;
1604
1605 if (TREE_CODE (op) != SSA_NAME)
1606 return NULL_TREE;
1607
c37659ce 1608 return value_range_constant_singleton (get_value_range (op));
43ffec67 1609}
1610
d6f3306a 1611/* Return true if op is in a boolean [0, 1] value-range. */
1612
1613static bool
1614op_with_boolean_value_range_p (tree op)
1615{
1616 value_range_t *vr;
1617
1618 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1619 return true;
1620
1621 if (integer_zerop (op)
1622 || integer_onep (op))
1623 return true;
1624
1625 if (TREE_CODE (op) != SSA_NAME)
1626 return false;
1627
1628 vr = get_value_range (op);
1629 return (vr->type == VR_RANGE
1630 && integer_zerop (vr->min)
1631 && integer_onep (vr->max));
1632}
eea12c72 1633
88dbf20f 1634/* Extract value range information from an ASSERT_EXPR EXPR and store
1635 it in *VR_P. */
1636
1637static void
eea12c72 1638extract_range_from_assert (value_range_t *vr_p, tree expr)
88dbf20f 1639{
eea12c72 1640 tree var, cond, limit, min, max, type;
04dbf3c4 1641 value_range_t *limit_vr;
e7d43f99 1642 enum tree_code cond_code;
88dbf20f 1643
1644 var = ASSERT_EXPR_VAR (expr);
1645 cond = ASSERT_EXPR_COND (expr);
1646
a640bb21 1647 gcc_assert (COMPARISON_CLASS_P (cond));
88dbf20f 1648
1649 /* Find VAR in the ASSERT_EXPR conditional. */
bed8bec4 1650 if (var == TREE_OPERAND (cond, 0)
1651 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1652 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
eea12c72 1653 {
1654 /* If the predicate is of the form VAR COMP LIMIT, then we just
1655 take LIMIT from the RHS and use the same comparison code. */
eea12c72 1656 cond_code = TREE_CODE (cond);
bed8bec4 1657 limit = TREE_OPERAND (cond, 1);
1658 cond = TREE_OPERAND (cond, 0);
eea12c72 1659 }
1660 else
1661 {
1662 /* If the predicate is of the form LIMIT COMP VAR, then we need
1663 to flip around the comparison code to create the proper range
1664 for VAR. */
6a0aeeaa 1665 cond_code = swap_tree_comparison (TREE_CODE (cond));
bed8bec4 1666 limit = TREE_OPERAND (cond, 0);
1667 cond = TREE_OPERAND (cond, 1);
eea12c72 1668 }
88dbf20f 1669
afc1ad6d 1670 limit = avoid_overflow_infinity (limit);
1671
325d00b0 1672 type = TREE_TYPE (var);
88dbf20f 1673 gcc_assert (limit != var);
1674
eea12c72 1675 /* For pointer arithmetic, we only keep track of pointer equality
1676 and inequality. */
1677 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
88dbf20f 1678 {
e7d43f99 1679 set_value_range_to_varying (vr_p);
88dbf20f 1680 return;
1681 }
1682
eea12c72 1683 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1684 try to use LIMIT's range to avoid creating symbolic ranges
1685 unnecessarily. */
1686 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1687
1688 /* LIMIT's range is only interesting if it has any useful information. */
1689 if (limit_vr
1690 && (limit_vr->type == VR_UNDEFINED
1691 || limit_vr->type == VR_VARYING
1692 || symbolic_range_p (limit_vr)))
1693 limit_vr = NULL;
1694
166b8fc0 1695 /* Initially, the new range has the same set of equivalences of
1696 VAR's range. This will be revised before returning the final
1697 value. Since assertions may be chained via mutually exclusive
1698 predicates, we will need to trim the set of equivalences before
1699 we are done. */
eea12c72 1700 gcc_assert (vr_p->equiv == NULL);
fbcece5e 1701 add_equivalence (&vr_p->equiv, var);
eea12c72 1702
1703 /* Extract a new range based on the asserted comparison for VAR and
1704 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1705 will only use it for equality comparisons (EQ_EXPR). For any
1706 other kind of assertion, we cannot derive a range from LIMIT's
1707 anti-range that can be used to describe the new range. For
1708 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1709 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1710 no single range for x_2 that could describe LE_EXPR, so we might
bed8bec4 1711 as well build the range [b_4, +INF] for it.
1712 One special case we handle is extracting a range from a
1713 range test encoded as (unsigned)var + CST <= limit. */
1714 if (TREE_CODE (cond) == NOP_EXPR
1715 || TREE_CODE (cond) == PLUS_EXPR)
1716 {
bed8bec4 1717 if (TREE_CODE (cond) == PLUS_EXPR)
1718 {
22cdb855 1719 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1720 TREE_OPERAND (cond, 1));
317e2a67 1721 max = int_const_binop (PLUS_EXPR, limit, min);
bed8bec4 1722 cond = TREE_OPERAND (cond, 0);
1723 }
1724 else
22cdb855 1725 {
1726 min = build_int_cst (TREE_TYPE (var), 0);
1727 max = limit;
1728 }
bed8bec4 1729
22cdb855 1730 /* Make sure to not set TREE_OVERFLOW on the final type
1731 conversion. We are willingly interpreting large positive
f754c5e6 1732 unsigned values as negative signed values here. */
8945e16b 1733 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1734 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
bed8bec4 1735
1736 /* We can transform a max, min range to an anti-range or
1737 vice-versa. Use set_and_canonicalize_value_range which does
1738 this for us. */
1739 if (cond_code == LE_EXPR)
1740 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1741 min, max, vr_p->equiv);
1742 else if (cond_code == GT_EXPR)
1743 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1744 min, max, vr_p->equiv);
1745 else
1746 gcc_unreachable ();
1747 }
1748 else if (cond_code == EQ_EXPR)
eea12c72 1749 {
1750 enum value_range_type range_type;
1751
1752 if (limit_vr)
1753 {
1754 range_type = limit_vr->type;
1755 min = limit_vr->min;
1756 max = limit_vr->max;
1757 }
1758 else
1759 {
1760 range_type = VR_RANGE;
1761 min = limit;
1762 max = limit;
1763 }
1764
1765 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1766
1767 /* When asserting the equality VAR == LIMIT and LIMIT is another
1768 SSA name, the new range will also inherit the equivalence set
1769 from LIMIT. */
1770 if (TREE_CODE (limit) == SSA_NAME)
fbcece5e 1771 add_equivalence (&vr_p->equiv, limit);
eea12c72 1772 }
1773 else if (cond_code == NE_EXPR)
1774 {
1775 /* As described above, when LIMIT's range is an anti-range and
1776 this assertion is an inequality (NE_EXPR), then we cannot
1777 derive anything from the anti-range. For instance, if
1778 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1779 not imply that VAR's range is [0, 0]. So, in the case of
1780 anti-ranges, we just assert the inequality using LIMIT and
d461f9a9 1781 not its anti-range.
1782
1783 If LIMIT_VR is a range, we can only use it to build a new
1784 anti-range if LIMIT_VR is a single-valued range. For
1785 instance, if LIMIT_VR is [0, 1], the predicate
1786 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1787 Rather, it means that for value 0 VAR should be ~[0, 0]
1788 and for value 1, VAR should be ~[1, 1]. We cannot
1789 represent these ranges.
1790
1791 The only situation in which we can build a valid
1792 anti-range is when LIMIT_VR is a single-valued range
48e1416a 1793 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
d461f9a9 1794 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1795 if (limit_vr
1796 && limit_vr->type == VR_RANGE
1797 && compare_values (limit_vr->min, limit_vr->max) == 0)
eea12c72 1798 {
d461f9a9 1799 min = limit_vr->min;
1800 max = limit_vr->max;
eea12c72 1801 }
1802 else
1803 {
d461f9a9 1804 /* In any other case, we cannot use LIMIT's range to build a
1805 valid anti-range. */
1806 min = max = limit;
eea12c72 1807 }
1808
1809 /* If MIN and MAX cover the whole range for their type, then
1810 just use the original LIMIT. */
1811 if (INTEGRAL_TYPE_P (type)
b876a744 1812 && vrp_val_is_min (min)
1813 && vrp_val_is_max (max))
eea12c72 1814 min = max = limit;
1815
ce7ae77c 1816 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1817 min, max, vr_p->equiv);
eea12c72 1818 }
1819 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
88dbf20f 1820 {
eea12c72 1821 min = TYPE_MIN_VALUE (type);
1822
1823 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1824 max = limit;
1825 else
1826 {
1827 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1828 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1829 LT_EXPR. */
1830 max = limit_vr->max;
1831 }
1832
ad2a47a5 1833 /* If the maximum value forces us to be out of bounds, simply punt.
1834 It would be pointless to try and do anything more since this
1835 all should be optimized away above us. */
c08d658d 1836 if ((cond_code == LT_EXPR
1837 && compare_values (max, min) == 0)
4a8f88ff 1838 || is_overflow_infinity (max))
ad2a47a5 1839 set_value_range_to_varying (vr_p);
1840 else
eea12c72 1841 {
ad2a47a5 1842 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
c08d658d 1843 if (cond_code == LT_EXPR)
ad2a47a5 1844 {
0418ac74 1845 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1846 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1847 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1848 build_int_cst (TREE_TYPE (max), -1));
1849 else
1850 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1851 build_int_cst (TREE_TYPE (max), 1));
d8f696cf 1852 if (EXPR_P (max))
1853 TREE_NO_WARNING (max) = 1;
ad2a47a5 1854 }
eea12c72 1855
ad2a47a5 1856 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1857 }
88dbf20f 1858 }
eea12c72 1859 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
88dbf20f 1860 {
eea12c72 1861 max = TYPE_MAX_VALUE (type);
1862
1863 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1864 min = limit;
1865 else
1866 {
1867 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1868 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1869 GT_EXPR. */
1870 min = limit_vr->min;
1871 }
1872
ad2a47a5 1873 /* If the minimum value forces us to be out of bounds, simply punt.
1874 It would be pointless to try and do anything more since this
1875 all should be optimized away above us. */
c08d658d 1876 if ((cond_code == GT_EXPR
1877 && compare_values (min, max) == 0)
4a8f88ff 1878 || is_overflow_infinity (min))
ad2a47a5 1879 set_value_range_to_varying (vr_p);
1880 else
eea12c72 1881 {
ad2a47a5 1882 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
c08d658d 1883 if (cond_code == GT_EXPR)
ad2a47a5 1884 {
0418ac74 1885 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1886 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1887 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1888 build_int_cst (TREE_TYPE (min), -1));
1889 else
1890 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1891 build_int_cst (TREE_TYPE (min), 1));
d8f696cf 1892 if (EXPR_P (min))
1893 TREE_NO_WARNING (min) = 1;
ad2a47a5 1894 }
eea12c72 1895
ad2a47a5 1896 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1897 }
88dbf20f 1898 }
1899 else
1900 gcc_unreachable ();
1901
04dbf3c4 1902 /* Finally intersect the new range with what we already know about var. */
1903 vrp_intersect_ranges (vr_p, get_value_range (var));
88dbf20f 1904}
1905
1906
1907/* Extract range information from SSA name VAR and store it in VR. If
1908 VAR has an interesting range, use it. Otherwise, create the
1909 range [VAR, VAR] and return it. This is useful in situations where
1910 we may have conditionals testing values of VARYING names. For
1911 instance,
1912
1913 x_3 = y_5;
1914 if (x_3 > y_5)
1915 ...
1916
1917 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1918 always false. */
1919
1920static void
eea12c72 1921extract_range_from_ssa_name (value_range_t *vr, tree var)
88dbf20f 1922{
eea12c72 1923 value_range_t *var_vr = get_value_range (var);
88dbf20f 1924
0d4c8cda 1925 if (var_vr->type != VR_VARYING)
eea12c72 1926 copy_value_range (vr, var_vr);
88dbf20f 1927 else
eea12c72 1928 set_value_range (vr, VR_RANGE, var, var, NULL);
1929
fbcece5e 1930 add_equivalence (&vr->equiv, var);
88dbf20f 1931}
1932
1933
c25c642e 1934/* Wrapper around int_const_binop. If the operation overflows and we
1935 are not using wrapping arithmetic, then adjust the result to be
c3783c3b 1936 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1937 NULL_TREE if we need to use an overflow infinity representation but
1938 the type does not support it. */
c25c642e 1939
c3783c3b 1940static tree
c25c642e 1941vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1942{
1943 tree res;
1944
317e2a67 1945 res = int_const_binop (code, val1, val2);
c25c642e 1946
0da2010b 1947 /* If we are using unsigned arithmetic, operate symbolically
1948 on -INF and +INF as int_const_binop only handles signed overflow. */
1949 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
0bca0790 1950 {
1951 int checkz = compare_values (res, val1);
9d8b8bc4 1952 bool overflow = false;
0bca0790 1953
38f0f92a 1954 /* Ensure that res = val1 [+*] val2 >= val1
0bca0790 1955 or that res = val1 - val2 <= val1. */
9d8b8bc4 1956 if ((code == PLUS_EXPR
38f0f92a 1957 && !(checkz == 1 || checkz == 0))
1958 || (code == MINUS_EXPR
1959 && !(checkz == 0 || checkz == -1)))
9d8b8bc4 1960 {
1961 overflow = true;
1962 }
1963 /* Checking for multiplication overflow is done by dividing the
1964 output of the multiplication by the first input of the
1965 multiplication. If the result of that division operation is
1966 not equal to the second input of the multiplication, then the
1967 multiplication overflowed. */
1968 else if (code == MULT_EXPR && !integer_zerop (val1))
1969 {
1970 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
9fbc4e9e 1971 res,
317e2a67 1972 val1);
9d8b8bc4 1973 int check = compare_values (tmp, val2);
1974
1975 if (check != 0)
1976 overflow = true;
1977 }
1978
1979 if (overflow)
0bca0790 1980 {
1981 res = copy_node (res);
1982 TREE_OVERFLOW (res) = 1;
1983 }
9d8b8bc4 1984
0bca0790 1985 }
e1b11b05 1986 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1987 /* If the singed operation wraps then int_const_binop has done
1988 everything we want. */
1989 ;
e913b5cd 1990 /* Signed division of -1/0 overflows and by the time it gets here
1991 returns NULL_TREE. */
1992 else if (!res)
1993 return NULL_TREE;
c3783c3b 1994 else if ((TREE_OVERFLOW (res)
1995 && !TREE_OVERFLOW (val1)
1996 && !TREE_OVERFLOW (val2))
1997 || is_overflow_infinity (val1)
1998 || is_overflow_infinity (val2))
c25c642e 1999 {
38f0f92a 2000 /* If the operation overflowed but neither VAL1 nor VAL2 are
2001 overflown, return -INF or +INF depending on the operation
2002 and the combination of signs of the operands. */
c25c642e 2003 int sgn1 = tree_int_cst_sgn (val1);
2004 int sgn2 = tree_int_cst_sgn (val2);
2005
c3783c3b 2006 if (needs_overflow_infinity (TREE_TYPE (res))
2007 && !supports_overflow_infinity (TREE_TYPE (res)))
2008 return NULL_TREE;
2009
659753d3 2010 /* We have to punt on adding infinities of different signs,
2011 since we can't tell what the sign of the result should be.
2012 Likewise for subtracting infinities of the same sign. */
2013 if (((code == PLUS_EXPR && sgn1 != sgn2)
2014 || (code == MINUS_EXPR && sgn1 == sgn2))
c3783c3b 2015 && is_overflow_infinity (val1)
2016 && is_overflow_infinity (val2))
2017 return NULL_TREE;
2018
659753d3 2019 /* Don't try to handle division or shifting of infinities. */
2020 if ((code == TRUNC_DIV_EXPR
2021 || code == FLOOR_DIV_EXPR
2022 || code == CEIL_DIV_EXPR
2023 || code == EXACT_DIV_EXPR
2024 || code == ROUND_DIV_EXPR
2025 || code == RSHIFT_EXPR)
2026 && (is_overflow_infinity (val1)
2027 || is_overflow_infinity (val2)))
2028 return NULL_TREE;
2029
a26da925 2030 /* Notice that we only need to handle the restricted set of
2031 operations handled by extract_range_from_binary_expr.
2032 Among them, only multiplication, addition and subtraction
2033 can yield overflow without overflown operands because we
2034 are working with integral types only... except in the
2035 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2036 for division too. */
2037
2038 /* For multiplication, the sign of the overflow is given
2039 by the comparison of the signs of the operands. */
2040 if ((code == MULT_EXPR && sgn1 == sgn2)
2041 /* For addition, the operands must be of the same sign
2042 to yield an overflow. Its sign is therefore that
659753d3 2043 of one of the operands, for example the first. For
2044 infinite operands X + -INF is negative, not positive. */
2045 || (code == PLUS_EXPR
2046 && (sgn1 >= 0
2047 ? !is_negative_overflow_infinity (val2)
2048 : is_positive_overflow_infinity (val2)))
c3783c3b 2049 /* For subtraction, non-infinite operands must be of
2050 different signs to yield an overflow. Its sign is
2051 therefore that of the first operand or the opposite of
2052 that of the second operand. A first operand of 0 counts
2053 as positive here, for the corner case 0 - (-INF), which
2054 overflows, but must yield +INF. For infinite operands 0
2055 - INF is negative, not positive. */
2056 || (code == MINUS_EXPR
2057 && (sgn1 >= 0
2058 ? !is_positive_overflow_infinity (val2)
2059 : is_negative_overflow_infinity (val2)))
62065c0b 2060 /* We only get in here with positive shift count, so the
2061 overflow direction is the same as the sign of val1.
2062 Actually rshift does not overflow at all, but we only
2063 handle the case of shifting overflowed -INF and +INF. */
2064 || (code == RSHIFT_EXPR
2065 && sgn1 >= 0)
a26da925 2066 /* For division, the only case is -INF / -1 = +INF. */
2067 || code == TRUNC_DIV_EXPR
2068 || code == FLOOR_DIV_EXPR
2069 || code == CEIL_DIV_EXPR
2070 || code == EXACT_DIV_EXPR
2071 || code == ROUND_DIV_EXPR)
c3783c3b 2072 return (needs_overflow_infinity (TREE_TYPE (res))
2073 ? positive_overflow_infinity (TREE_TYPE (res))
2074 : TYPE_MAX_VALUE (TREE_TYPE (res)));
c25c642e 2075 else
c3783c3b 2076 return (needs_overflow_infinity (TREE_TYPE (res))
2077 ? negative_overflow_infinity (TREE_TYPE (res))
2078 : TYPE_MIN_VALUE (TREE_TYPE (res)));
c25c642e 2079 }
2080
2081 return res;
2082}
2083
2084
e913b5cd 2085/* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
522b9a02 2086 bitmask if some bit is unset, it means for all numbers in the range
2087 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2088 bitmask if some bit is set, it means for all numbers in the range
2089 the bit is 1, otherwise it might be 0 or 1. */
2090
2091static bool
e913b5cd 2092zero_nonzero_bits_from_vr (const tree expr_type,
2093 value_range_t *vr,
2094 wide_int *may_be_nonzero,
2095 wide_int *must_be_nonzero)
522b9a02 2096{
796b6678 2097 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
2098 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
ac4a8000 2099 if (!range_int_cst_p (vr)
4a8f88ff 2100 || is_overflow_infinity (vr->min)
2101 || is_overflow_infinity (vr->max))
63bb6dcf 2102 return false;
2103
2104 if (range_int_cst_singleton_p (vr))
2105 {
e913b5cd 2106 *may_be_nonzero = vr->min;
63bb6dcf 2107 *must_be_nonzero = *may_be_nonzero;
2108 }
2109 else if (tree_int_cst_sgn (vr->min) >= 0
2110 || tree_int_cst_sgn (vr->max) < 0)
522b9a02 2111 {
ab2c1de8 2112 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
2113 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
2114 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
796b6678 2115 if (xor_mask != 0)
522b9a02 2116 {
796b6678 2117 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
b3fba3cd 2118 may_be_nonzero->get_precision ());
2119 *may_be_nonzero = *may_be_nonzero | mask;
2120 *must_be_nonzero = must_be_nonzero->and_not (mask);
522b9a02 2121 }
2122 }
63bb6dcf 2123
2124 return true;
522b9a02 2125}
2126
748eb1f9 2127/* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2128 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2129 false otherwise. If *AR can be represented with a single range
2130 *VR1 will be VR_UNDEFINED. */
2131
2132static bool
2133ranges_from_anti_range (value_range_t *ar,
2134 value_range_t *vr0, value_range_t *vr1)
2135{
2136 tree type = TREE_TYPE (ar->min);
2137
2138 vr0->type = VR_UNDEFINED;
2139 vr1->type = VR_UNDEFINED;
2140
2141 if (ar->type != VR_ANTI_RANGE
2142 || TREE_CODE (ar->min) != INTEGER_CST
2143 || TREE_CODE (ar->max) != INTEGER_CST
2144 || !vrp_val_min (type)
2145 || !vrp_val_max (type))
2146 return false;
2147
2148 if (!vrp_val_is_min (ar->min))
2149 {
2150 vr0->type = VR_RANGE;
2151 vr0->min = vrp_val_min (type);
6da74b21 2152 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
748eb1f9 2153 }
2154 if (!vrp_val_is_max (ar->max))
2155 {
2156 vr1->type = VR_RANGE;
6da74b21 2157 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
748eb1f9 2158 vr1->max = vrp_val_max (type);
2159 }
2160 if (vr0->type == VR_UNDEFINED)
2161 {
2162 *vr0 = *vr1;
2163 vr1->type = VR_UNDEFINED;
2164 }
2165
2166 return vr0->type != VR_UNDEFINED;
2167}
2168
5360e345 2169/* Helper to extract a value-range *VR for a multiplicative operation
2170 *VR0 CODE *VR1. */
2171
2172static void
2173extract_range_from_multiplicative_op_1 (value_range_t *vr,
2174 enum tree_code code,
2175 value_range_t *vr0, value_range_t *vr1)
2176{
2177 enum value_range_type type;
2178 tree val[4];
2179 size_t i;
2180 tree min, max;
2181 bool sop;
2182 int cmp;
2183
2184 /* Multiplications, divisions and shifts are a bit tricky to handle,
2185 depending on the mix of signs we have in the two ranges, we
2186 need to operate on different values to get the minimum and
2187 maximum values for the new range. One approach is to figure
2188 out all the variations of range combinations and do the
2189 operations.
2190
2191 However, this involves several calls to compare_values and it
2192 is pretty convoluted. It's simpler to do the 4 operations
2193 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2194 MAX1) and then figure the smallest and largest values to form
2195 the new range. */
2196 gcc_assert (code == MULT_EXPR
2197 || code == TRUNC_DIV_EXPR
2198 || code == FLOOR_DIV_EXPR
2199 || code == CEIL_DIV_EXPR
2200 || code == EXACT_DIV_EXPR
2201 || code == ROUND_DIV_EXPR
b0b91aff 2202 || code == RSHIFT_EXPR
2203 || code == LSHIFT_EXPR);
5360e345 2204 gcc_assert ((vr0->type == VR_RANGE
2205 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2206 && vr0->type == vr1->type);
2207
2208 type = vr0->type;
2209
2210 /* Compute the 4 cross operations. */
2211 sop = false;
2212 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2213 if (val[0] == NULL_TREE)
2214 sop = true;
2215
2216 if (vr1->max == vr1->min)
2217 val[1] = NULL_TREE;
2218 else
2219 {
2220 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2221 if (val[1] == NULL_TREE)
2222 sop = true;
2223 }
2224
2225 if (vr0->max == vr0->min)
2226 val[2] = NULL_TREE;
2227 else
2228 {
2229 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2230 if (val[2] == NULL_TREE)
2231 sop = true;
2232 }
2233
2234 if (vr0->min == vr0->max || vr1->min == vr1->max)
2235 val[3] = NULL_TREE;
2236 else
2237 {
2238 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2239 if (val[3] == NULL_TREE)
2240 sop = true;
2241 }
2242
2243 if (sop)
2244 {
2245 set_value_range_to_varying (vr);
2246 return;
2247 }
2248
2249 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2250 of VAL[i]. */
2251 min = val[0];
2252 max = val[0];
2253 for (i = 1; i < 4; i++)
2254 {
2255 if (!is_gimple_min_invariant (min)
2256 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2257 || !is_gimple_min_invariant (max)
2258 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2259 break;
2260
2261 if (val[i])
2262 {
2263 if (!is_gimple_min_invariant (val[i])
2264 || (TREE_OVERFLOW (val[i])
2265 && !is_overflow_infinity (val[i])))
2266 {
2267 /* If we found an overflowed value, set MIN and MAX
2268 to it so that we set the resulting range to
2269 VARYING. */
2270 min = max = val[i];
2271 break;
2272 }
2273
2274 if (compare_values (val[i], min) == -1)
2275 min = val[i];
2276
2277 if (compare_values (val[i], max) == 1)
2278 max = val[i];
2279 }
2280 }
2281
2282 /* If either MIN or MAX overflowed, then set the resulting range to
2283 VARYING. But we do accept an overflow infinity
2284 representation. */
2285 if (min == NULL_TREE
2286 || !is_gimple_min_invariant (min)
2287 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2288 || max == NULL_TREE
2289 || !is_gimple_min_invariant (max)
2290 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2291 {
2292 set_value_range_to_varying (vr);
2293 return;
2294 }
2295
2296 /* We punt if:
2297 1) [-INF, +INF]
2298 2) [-INF, +-INF(OVF)]
2299 3) [+-INF(OVF), +INF]
2300 4) [+-INF(OVF), +-INF(OVF)]
2301 We learn nothing when we have INF and INF(OVF) on both sides.
2302 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2303 overflow. */
2304 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2305 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2306 {
2307 set_value_range_to_varying (vr);
2308 return;
2309 }
2310
2311 cmp = compare_values (min, max);
2312 if (cmp == -2 || cmp == 1)
2313 {
2314 /* If the new range has its limits swapped around (MIN > MAX),
2315 then the operation caused one of them to wrap around, mark
2316 the new range VARYING. */
2317 set_value_range_to_varying (vr);
2318 }
2319 else
2320 set_value_range (vr, type, min, max, NULL);
2321}
522b9a02 2322
c37659ce 2323/* Extract range information from a binary operation CODE based on
1ec8aa41 2324 the ranges of each of its operands *VR0 and *VR1 with resulting
c37659ce 2325 type EXPR_TYPE. The resulting range is stored in *VR. */
88dbf20f 2326
2327static void
c37659ce 2328extract_range_from_binary_expr_1 (value_range_t *vr,
2329 enum tree_code code, tree expr_type,
2330 value_range_t *vr0_, value_range_t *vr1_)
88dbf20f 2331{
c37659ce 2332 value_range_t vr0 = *vr0_, vr1 = *vr1_;
748eb1f9 2333 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
0ed3ba34 2334 enum value_range_type type;
5360e345 2335 tree min = NULL_TREE, max = NULL_TREE;
88dbf20f 2336 int cmp;
2337
5360e345 2338 if (!INTEGRAL_TYPE_P (expr_type)
2339 && !POINTER_TYPE_P (expr_type))
2340 {
2341 set_value_range_to_varying (vr);
2342 return;
2343 }
2344
88dbf20f 2345 /* Not all binary expressions can be applied to ranges in a
2346 meaningful way. Handle only arithmetic operations. */
2347 if (code != PLUS_EXPR
2348 && code != MINUS_EXPR
0de36bdb 2349 && code != POINTER_PLUS_EXPR
88dbf20f 2350 && code != MULT_EXPR
2351 && code != TRUNC_DIV_EXPR
2352 && code != FLOOR_DIV_EXPR
2353 && code != CEIL_DIV_EXPR
2354 && code != EXACT_DIV_EXPR
2355 && code != ROUND_DIV_EXPR
ccab2921 2356 && code != TRUNC_MOD_EXPR
975070ea 2357 && code != RSHIFT_EXPR
e7ea1c21 2358 && code != LSHIFT_EXPR
88dbf20f 2359 && code != MIN_EXPR
eea12c72 2360 && code != MAX_EXPR
b3ded9f8 2361 && code != BIT_AND_EXPR
6c696748 2362 && code != BIT_IOR_EXPR
2363 && code != BIT_XOR_EXPR)
88dbf20f 2364 {
e7d43f99 2365 set_value_range_to_varying (vr);
88dbf20f 2366 return;
2367 }
2368
fb41023e 2369 /* If both ranges are UNDEFINED, so is the result. */
2370 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
88dbf20f 2371 {
eea12c72 2372 set_value_range_to_undefined (vr);
88dbf20f 2373 return;
2374 }
fb41023e 2375 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2376 code. At some point we may want to special-case operations that
2377 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2378 operand. */
2379 else if (vr0.type == VR_UNDEFINED)
2380 set_value_range_to_varying (&vr0);
2381 else if (vr1.type == VR_UNDEFINED)
2382 set_value_range_to_varying (&vr1);
88dbf20f 2383
748eb1f9 2384 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2385 and express ~[] op X as ([]' op X) U ([]'' op X). */
2386 if (vr0.type == VR_ANTI_RANGE
2387 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2388 {
2389 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2390 if (vrtem1.type != VR_UNDEFINED)
2391 {
2392 value_range_t vrres = VR_INITIALIZER;
2393 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2394 &vrtem1, vr1_);
2395 vrp_meet (vr, &vrres);
2396 }
2397 return;
2398 }
2399 /* Likewise for X op ~[]. */
2400 if (vr1.type == VR_ANTI_RANGE
2401 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2402 {
2403 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2404 if (vrtem1.type != VR_UNDEFINED)
2405 {
2406 value_range_t vrres = VR_INITIALIZER;
2407 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2408 vr0_, &vrtem1);
2409 vrp_meet (vr, &vrres);
2410 }
2411 return;
2412 }
2413
0ed3ba34 2414 /* The type of the resulting value range defaults to VR0.TYPE. */
2415 type = vr0.type;
2416
eea12c72 2417 /* Refuse to operate on VARYING ranges, ranges of different kinds
1ec8aa41 2418 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
b3ded9f8 2419 because we may be able to derive a useful range even if one of
e52dd258 2420 the operands is VR_VARYING or symbolic range. Similarly for
1ec8aa41 2421 divisions, MIN/MAX and PLUS/MINUS.
2422
2423 TODO, we may be able to derive anti-ranges in some cases. */
b3ded9f8 2424 if (code != BIT_AND_EXPR
cfd7906e 2425 && code != BIT_IOR_EXPR
e52dd258 2426 && code != TRUNC_DIV_EXPR
2427 && code != FLOOR_DIV_EXPR
2428 && code != CEIL_DIV_EXPR
2429 && code != EXACT_DIV_EXPR
2430 && code != ROUND_DIV_EXPR
ccab2921 2431 && code != TRUNC_MOD_EXPR
1e24c0c9 2432 && code != MIN_EXPR
2433 && code != MAX_EXPR
1ec8aa41 2434 && code != PLUS_EXPR
2435 && code != MINUS_EXPR
b3ded9f8 2436 && (vr0.type == VR_VARYING
2437 || vr1.type == VR_VARYING
2438 || vr0.type != vr1.type
2439 || symbolic_range_p (&vr0)
2440 || symbolic_range_p (&vr1)))
88dbf20f 2441 {
e7d43f99 2442 set_value_range_to_varying (vr);
88dbf20f 2443 return;
2444 }
2445
2446 /* Now evaluate the expression to determine the new range. */
c37659ce 2447 if (POINTER_TYPE_P (expr_type))
88dbf20f 2448 {
c37659ce 2449 if (code == MIN_EXPR || code == MAX_EXPR)
5e3e3575 2450 {
0de36bdb 2451 /* For MIN/MAX expressions with pointers, we only care about
2452 nullness, if both are non null, then the result is nonnull.
2453 If both are null, then the result is null. Otherwise they
2454 are varying. */
2455 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
93116081 2456 set_value_range_to_nonnull (vr, expr_type);
5e3e3575 2457 else if (range_is_null (&vr0) && range_is_null (&vr1))
93116081 2458 set_value_range_to_null (vr, expr_type);
5e3e3575 2459 else
2460 set_value_range_to_varying (vr);
2461 }
c37659ce 2462 else if (code == POINTER_PLUS_EXPR)
b03fbfbd 2463 {
2464 /* For pointer types, we are really only interested in asserting
2465 whether the expression evaluates to non-NULL. */
2466 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2467 set_value_range_to_nonnull (vr, expr_type);
2468 else if (range_is_null (&vr0) && range_is_null (&vr1))
2469 set_value_range_to_null (vr, expr_type);
2470 else
2471 set_value_range_to_varying (vr);
2472 }
2473 else if (code == BIT_AND_EXPR)
2474 {
2475 /* For pointer types, we are really only interested in asserting
2476 whether the expression evaluates to non-NULL. */
2477 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2478 set_value_range_to_nonnull (vr, expr_type);
2479 else if (range_is_null (&vr0) || range_is_null (&vr1))
2480 set_value_range_to_null (vr, expr_type);
2481 else
2482 set_value_range_to_varying (vr);
2483 }
88dbf20f 2484 else
c37659ce 2485 set_value_range_to_varying (vr);
88dbf20f 2486
2487 return;
2488 }
2489
2490 /* For integer ranges, apply the operation to each end of the
2491 range and see what we end up with. */
c5faecd5 2492 if (code == PLUS_EXPR || code == MINUS_EXPR)
88dbf20f 2493 {
1ec8aa41 2494 const bool minus_p = (code == MINUS_EXPR);
2495 tree min_op0 = vr0.min;
2496 tree min_op1 = minus_p ? vr1.max : vr1.min;
2497 tree max_op0 = vr0.max;
2498 tree max_op1 = minus_p ? vr1.min : vr1.max;
2499 tree sym_min_op0 = NULL_TREE;
2500 tree sym_min_op1 = NULL_TREE;
2501 tree sym_max_op0 = NULL_TREE;
2502 tree sym_max_op1 = NULL_TREE;
2503 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2504
2505 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2506 single-symbolic ranges, try to compute the precise resulting range,
2507 but only if we know that this resulting range will also be constant
2508 or single-symbolic. */
2509 if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2510 && (TREE_CODE (min_op0) == INTEGER_CST
2511 || (sym_min_op0
2512 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2513 && (TREE_CODE (min_op1) == INTEGER_CST
2514 || (sym_min_op1
2515 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2516 && (!(sym_min_op0 && sym_min_op1)
2517 || (sym_min_op0 == sym_min_op1
2518 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2519 && (TREE_CODE (max_op0) == INTEGER_CST
2520 || (sym_max_op0
2521 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2522 && (TREE_CODE (max_op1) == INTEGER_CST
2523 || (sym_max_op1
2524 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2525 && (!(sym_max_op0 && sym_max_op1)
2526 || (sym_max_op0 == sym_max_op1
2527 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
e913b5cd 2528 {
1ec8aa41 2529 const signop sgn = TYPE_SIGN (expr_type);
2530 const unsigned int prec = TYPE_PRECISION (expr_type);
2531 wide_int type_min, type_max, wmin, wmax;
c5faecd5 2532 int min_ovf = 0;
2533 int max_ovf = 0;
ac4a8000 2534
1ec8aa41 2535 /* Get the lower and upper bounds of the type. */
2536 if (TYPE_OVERFLOW_WRAPS (expr_type))
2537 {
2538 type_min = wi::min_value (prec, sgn);
2539 type_max = wi::max_value (prec, sgn);
2540 }
2541 else
c5faecd5 2542 {
1ec8aa41 2543 type_min = vrp_val_min (expr_type);
2544 type_max = vrp_val_max (expr_type);
c5faecd5 2545 }
1ec8aa41 2546
2547 /* Combine the lower bounds, if any. */
2548 if (min_op0 && min_op1)
c5faecd5 2549 {
1ec8aa41 2550 if (minus_p)
2551 {
2552 wmin = wi::sub (min_op0, min_op1);
cf8f0e63 2553
1ec8aa41 2554 /* Check for overflow. */
2555 if (wi::cmp (0, min_op1, sgn)
2556 != wi::cmp (wmin, min_op0, sgn))
2557 min_ovf = wi::cmp (min_op0, min_op1, sgn);
2558 }
2559 else
2560 {
2561 wmin = wi::add (min_op0, min_op1);
2562
2563 /* Check for overflow. */
2564 if (wi::cmp (min_op1, 0, sgn)
2565 != wi::cmp (wmin, min_op0, sgn))
2566 min_ovf = wi::cmp (min_op0, wmin, sgn);
2567 }
c5faecd5 2568 }
1ec8aa41 2569 else if (min_op0)
2570 wmin = min_op0;
2571 else if (min_op1)
2572 wmin = minus_p ? wi::neg (min_op1) : min_op1;
2573 else
2574 wmin = wi::shwi (0, prec);
c5faecd5 2575
1ec8aa41 2576 /* Combine the upper bounds, if any. */
2577 if (max_op0 && max_op1)
c5faecd5 2578 {
1ec8aa41 2579 if (minus_p)
2580 {
2581 wmax = wi::sub (max_op0, max_op1);
2582
2583 /* Check for overflow. */
2584 if (wi::cmp (0, max_op1, sgn)
2585 != wi::cmp (wmax, max_op0, sgn))
2586 max_ovf = wi::cmp (max_op0, max_op1, sgn);
2587 }
2588 else
2589 {
2590 wmax = wi::add (max_op0, max_op1);
2591
2592 if (wi::cmp (max_op1, 0, sgn)
2593 != wi::cmp (wmax, max_op0, sgn))
2594 max_ovf = wi::cmp (max_op0, wmax, sgn);
2595 }
c5faecd5 2596 }
1ec8aa41 2597 else if (max_op0)
2598 wmax = max_op0;
2599 else if (max_op1)
2600 wmax = minus_p ? wi::neg (max_op1) : max_op1;
2601 else
2602 wmax = wi::shwi (0, prec);
c5faecd5 2603
2604 /* Check for type overflow. */
2605 if (min_ovf == 0)
2606 {
796b6678 2607 if (wi::cmp (wmin, type_min, sgn) == -1)
c5faecd5 2608 min_ovf = -1;
796b6678 2609 else if (wi::cmp (wmin, type_max, sgn) == 1)
c5faecd5 2610 min_ovf = 1;
2611 }
2612 if (max_ovf == 0)
2613 {
796b6678 2614 if (wi::cmp (wmax, type_min, sgn) == -1)
c5faecd5 2615 max_ovf = -1;
796b6678 2616 else if (wi::cmp (wmax, type_max, sgn) == 1)
c5faecd5 2617 max_ovf = 1;
2618 }
ac4a8000 2619
1ec8aa41 2620 /* If we have overflow for the constant part and the resulting
2621 range will be symbolic, drop to VR_VARYING. */
2622 if ((min_ovf && sym_min_op0 != sym_min_op1)
2623 || (max_ovf && sym_max_op0 != sym_max_op1))
2624 {
2625 set_value_range_to_varying (vr);
2626 return;
2627 }
2628
ac4a8000 2629 if (TYPE_OVERFLOW_WRAPS (expr_type))
2630 {
2631 /* If overflow wraps, truncate the values and adjust the
2632 range kind and bounds appropriately. */
796b6678 2633 wide_int tmin = wide_int::from (wmin, prec, sgn);
2634 wide_int tmax = wide_int::from (wmax, prec, sgn);
c5faecd5 2635 if (min_ovf == max_ovf)
ac4a8000 2636 {
2637 /* No overflow or both overflow or underflow. The
2638 range kind stays VR_RANGE. */
e913b5cd 2639 min = wide_int_to_tree (expr_type, tmin);
2640 max = wide_int_to_tree (expr_type, tmax);
ac4a8000 2641 }
1ec8aa41 2642 else if (min_ovf == -1 && max_ovf == 1)
ac4a8000 2643 {
2644 /* Underflow and overflow, drop to VR_VARYING. */
2645 set_value_range_to_varying (vr);
2646 return;
2647 }
2648 else
2649 {
2650 /* Min underflow or max overflow. The range kind
2651 changes to VR_ANTI_RANGE. */
b7c599a6 2652 bool covers = false;
e913b5cd 2653 wide_int tem = tmin;
c5faecd5 2654 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2655 || (max_ovf == 1 && min_ovf == 0));
ac4a8000 2656 type = VR_ANTI_RANGE;
e913b5cd 2657 tmin = tmax + 1;
796b6678 2658 if (wi::cmp (tmin, tmax, sgn) < 0)
b7c599a6 2659 covers = true;
e913b5cd 2660 tmax = tem - 1;
796b6678 2661 if (wi::cmp (tmax, tem, sgn) > 0)
b7c599a6 2662 covers = true;
ac4a8000 2663 /* If the anti-range would cover nothing, drop to varying.
2664 Likewise if the anti-range bounds are outside of the
2665 types values. */
796b6678 2666 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
ac4a8000 2667 {
2668 set_value_range_to_varying (vr);
2669 return;
2670 }
e913b5cd 2671 min = wide_int_to_tree (expr_type, tmin);
2672 max = wide_int_to_tree (expr_type, tmax);
ac4a8000 2673 }
2674 }
2675 else
2676 {
ac4a8000 2677 /* If overflow does not wrap, saturate to the types min/max
2678 value. */
c5faecd5 2679 if (min_ovf == -1)
ac4a8000 2680 {
2681 if (needs_overflow_infinity (expr_type)
2682 && supports_overflow_infinity (expr_type))
2683 min = negative_overflow_infinity (expr_type);
2684 else
e913b5cd 2685 min = wide_int_to_tree (expr_type, type_min);
ac4a8000 2686 }
c5faecd5 2687 else if (min_ovf == 1)
ac4a8000 2688 {
2689 if (needs_overflow_infinity (expr_type)
2690 && supports_overflow_infinity (expr_type))
2691 min = positive_overflow_infinity (expr_type);
2692 else
e913b5cd 2693 min = wide_int_to_tree (expr_type, type_max);
ac4a8000 2694 }
2695 else
e913b5cd 2696 min = wide_int_to_tree (expr_type, wmin);
ac4a8000 2697
c5faecd5 2698 if (max_ovf == -1)
ac4a8000 2699 {
2700 if (needs_overflow_infinity (expr_type)
2701 && supports_overflow_infinity (expr_type))
2702 max = negative_overflow_infinity (expr_type);
2703 else
e913b5cd 2704 max = wide_int_to_tree (expr_type, type_min);
ac4a8000 2705 }
c5faecd5 2706 else if (max_ovf == 1)
ac4a8000 2707 {
2708 if (needs_overflow_infinity (expr_type)
2709 && supports_overflow_infinity (expr_type))
2710 max = positive_overflow_infinity (expr_type);
2711 else
e913b5cd 2712 max = wide_int_to_tree (expr_type, type_max);
ac4a8000 2713 }
2714 else
e913b5cd 2715 max = wide_int_to_tree (expr_type, wmax);
ac4a8000 2716 }
1ec8aa41 2717
ac4a8000 2718 if (needs_overflow_infinity (expr_type)
2719 && supports_overflow_infinity (expr_type))
2720 {
1ec8aa41 2721 if ((min_op0 && is_negative_overflow_infinity (min_op0))
2722 || (min_op1
2723 && (minus_p
2724 ? is_positive_overflow_infinity (min_op1)
2725 : is_negative_overflow_infinity (min_op1))))
ac4a8000 2726 min = negative_overflow_infinity (expr_type);
1ec8aa41 2727 if ((max_op0 && is_positive_overflow_infinity (max_op0))
2728 || (max_op1
2729 && (minus_p
2730 ? is_negative_overflow_infinity (max_op1)
2731 : is_positive_overflow_infinity (max_op1))))
ac4a8000 2732 max = positive_overflow_infinity (expr_type);
2733 }
1ec8aa41 2734
2735 /* If the result lower bound is constant, we're done;
2736 otherwise, build the symbolic lower bound. */
2737 if (sym_min_op0 == sym_min_op1)
2738 ;
2739 else if (sym_min_op0)
2740 min = build_symbolic_expr (expr_type, sym_min_op0,
2741 neg_min_op0, min);
2742 else if (sym_min_op1)
2743 min = build_symbolic_expr (expr_type, sym_min_op1,
2744 neg_min_op1 ^ minus_p, min);
2745
2746 /* Likewise for the upper bound. */
2747 if (sym_max_op0 == sym_max_op1)
2748 ;
2749 else if (sym_max_op0)
2750 max = build_symbolic_expr (expr_type, sym_max_op0,
2751 neg_max_op0, max);
2752 else if (sym_max_op1)
2753 max = build_symbolic_expr (expr_type, sym_max_op1,
2754 neg_max_op1 ^ minus_p, max);
ac4a8000 2755 }
2756 else
6285cf63 2757 {
ac4a8000 2758 /* For other cases, for example if we have a PLUS_EXPR with two
2759 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2760 to compute a precise range for such a case.
2761 ??? General even mixed range kind operations can be expressed
2762 by for example transforming ~[3, 5] + [1, 2] to range-only
2763 operations and a union primitive:
2764 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2765 [-INF+1, 4] U [6, +INF(OVF)]
2766 though usually the union is not exactly representable with
2767 a single range or anti-range as the above is
2768 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2769 but one could use a scheme similar to equivalences for this. */
5360e345 2770 set_value_range_to_varying (vr);
2771 return;
6285cf63 2772 }
88dbf20f 2773 }
5360e345 2774 else if (code == MIN_EXPR
2775 || code == MAX_EXPR)
2776 {
1e24c0c9 2777 if (vr0.type == VR_RANGE
2778 && !symbolic_range_p (&vr0))
2779 {
2780 type = VR_RANGE;
2781 if (vr1.type == VR_RANGE
2782 && !symbolic_range_p (&vr1))
2783 {
2784 /* For operations that make the resulting range directly
2785 proportional to the original ranges, apply the operation to
2786 the same end of each range. */
2787 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2788 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2789 }
2790 else if (code == MIN_EXPR)
2791 {
2792 min = vrp_val_min (expr_type);
2793 max = vr0.max;
2794 }
2795 else if (code == MAX_EXPR)
2796 {
2797 min = vr0.min;
2798 max = vrp_val_max (expr_type);
2799 }
2800 }
2801 else if (vr1.type == VR_RANGE
2802 && !symbolic_range_p (&vr1))
5360e345 2803 {
1e24c0c9 2804 type = VR_RANGE;
2805 if (code == MIN_EXPR)
2806 {
2807 min = vrp_val_min (expr_type);
2808 max = vr1.max;
2809 }
2810 else if (code == MAX_EXPR)
2811 {
2812 min = vr1.min;
2813 max = vrp_val_max (expr_type);
2814 }
5360e345 2815 }
2816 else
2817 {
1e24c0c9 2818 set_value_range_to_varying (vr);
2819 return;
5360e345 2820 }
2821 }
2822 else if (code == MULT_EXPR)
88dbf20f 2823 {
4f5712bd 2824 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
e913b5cd 2825 drop to varying. This test requires 2*prec bits if both
2826 operands are signed and 2*prec + 2 bits if either is not. */
2827
2828 signop sign = TYPE_SIGN (expr_type);
2829 unsigned int prec = TYPE_PRECISION (expr_type);
e913b5cd 2830
4f5712bd 2831 if (range_int_cst_p (&vr0)
2832 && range_int_cst_p (&vr1)
2833 && TYPE_OVERFLOW_WRAPS (expr_type))
2834 {
84014c53 2835 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2836 typedef generic_wide_int
2837 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2838 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2839 vrp_int size = sizem1 + 1;
4f5712bd 2840
e913b5cd 2841 /* Extend the values using the sign of the result to PREC2.
2842 From here on out, everthing is just signed math no matter
ddb1be65 2843 what the input types were. */
84014c53 2844 vrp_int min0 = vrp_int_cst (vr0.min);
2845 vrp_int max0 = vrp_int_cst (vr0.max);
2846 vrp_int min1 = vrp_int_cst (vr1.min);
2847 vrp_int max1 = vrp_int_cst (vr1.max);
4f5712bd 2848 /* Canonicalize the intervals. */
e913b5cd 2849 if (sign == UNSIGNED)
4f5712bd 2850 {
796b6678 2851 if (wi::ltu_p (size, min0 + max0))
4f5712bd 2852 {
e913b5cd 2853 min0 -= size;
cf8f0e63 2854 max0 -= size;
4f5712bd 2855 }
2856
796b6678 2857 if (wi::ltu_p (size, min1 + max1))
4f5712bd 2858 {
e913b5cd 2859 min1 -= size;
cf8f0e63 2860 max1 -= size;
4f5712bd 2861 }
2862 }
4f5712bd 2863
84014c53 2864 vrp_int prod0 = min0 * min1;
2865 vrp_int prod1 = min0 * max1;
2866 vrp_int prod2 = max0 * min1;
2867 vrp_int prod3 = max0 * max1;
e913b5cd 2868
2869 /* Sort the 4 products so that min is in prod0 and max is in
2870 prod3. */
2871 /* min0min1 > max0max1 */
796b6678 2872 if (wi::gts_p (prod0, prod3))
4f5712bd 2873 {
84014c53 2874 vrp_int tmp = prod3;
e913b5cd 2875 prod3 = prod0;
2876 prod0 = tmp;
4f5712bd 2877 }
e913b5cd 2878
2879 /* min0max1 > max0min1 */
796b6678 2880 if (wi::gts_p (prod1, prod2))
e913b5cd 2881 {
84014c53 2882 vrp_int tmp = prod2;
e913b5cd 2883 prod2 = prod1;
2884 prod1 = tmp;
2885 }
2886
796b6678 2887 if (wi::gts_p (prod0, prod1))
4f5712bd 2888 {
84014c53 2889 vrp_int tmp = prod1;
e913b5cd 2890 prod1 = prod0;
2891 prod0 = tmp;
4f5712bd 2892 }
4f5712bd 2893
796b6678 2894 if (wi::gts_p (prod2, prod3))
e913b5cd 2895 {
84014c53 2896 vrp_int tmp = prod3;
e913b5cd 2897 prod3 = prod2;
2898 prod2 = tmp;
2899 }
2900
2901 /* diff = max - min. */
2902 prod2 = prod3 - prod0;
796b6678 2903 if (wi::geu_p (prod2, sizem1))
4f5712bd 2904 {
2905 /* the range covers all values. */
2906 set_value_range_to_varying (vr);
2907 return;
2908 }
2909
2910 /* The following should handle the wrapping and selecting
2911 VR_ANTI_RANGE for us. */
e913b5cd 2912 min = wide_int_to_tree (expr_type, prod0);
2913 max = wide_int_to_tree (expr_type, prod3);
4f5712bd 2914 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2915 return;
2916 }
2917
6285cf63 2918 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2919 drop to VR_VARYING. It would take more effort to compute a
2920 precise range for such a case. For example, if we have
2921 op0 == 65536 and op1 == 65536 with their ranges both being
2922 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2923 we cannot claim that the product is in ~[0,0]. Note that we
2924 are guaranteed to have vr0.type == vr1.type at this
2925 point. */
5360e345 2926 if (vr0.type == VR_ANTI_RANGE
c37659ce 2927 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
6285cf63 2928 {
2929 set_value_range_to_varying (vr);
2930 return;
2931 }
2932
5360e345 2933 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2934 return;
2935 }
e208bd44 2936 else if (code == RSHIFT_EXPR
2937 || code == LSHIFT_EXPR)
5360e345 2938 {
6291249b 2939 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2940 then drop to VR_VARYING. Outside of this range we get undefined
efec32e0 2941 behavior from the shift operation. We cannot even trust
6291249b 2942 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2943 shifts, and the operation at the tree level may be widened. */
e208bd44 2944 if (range_int_cst_p (&vr1)
2945 && compare_tree_int (vr1.min, 0) >= 0
2946 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
62065c0b 2947 {
e208bd44 2948 if (code == RSHIFT_EXPR)
2949 {
2950 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2951 return;
2952 }
2953 /* We can map lshifts by constants to MULT_EXPR handling. */
2954 else if (code == LSHIFT_EXPR
2955 && range_int_cst_singleton_p (&vr1))
2956 {
2957 bool saved_flag_wrapv;
2958 value_range_t vr1p = VR_INITIALIZER;
2959 vr1p.type = VR_RANGE;
796b6678 2960 vr1p.min = (wide_int_to_tree
2961 (expr_type,
2962 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
2963 TYPE_PRECISION (expr_type))));
e208bd44 2964 vr1p.max = vr1p.min;
2965 /* We have to use a wrapping multiply though as signed overflow
2966 on lshifts is implementation defined in C89. */
2967 saved_flag_wrapv = flag_wrapv;
2968 flag_wrapv = 1;
2969 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2970 &vr0, &vr1p);
2971 flag_wrapv = saved_flag_wrapv;
2972 return;
2973 }
b0b91aff 2974 else if (code == LSHIFT_EXPR
2975 && range_int_cst_p (&vr0))
2976 {
b3133d23 2977 int prec = TYPE_PRECISION (expr_type);
2978 int overflow_pos = prec;
b0b91aff 2979 int bound_shift;
ab2c1de8 2980 wide_int low_bound, high_bound;
b3133d23 2981 bool uns = TYPE_UNSIGNED (expr_type);
2982 bool in_bounds = false;
b0b91aff 2983
b3133d23 2984 if (!uns)
b0b91aff 2985 overflow_pos -= 1;
2986
e913b5cd 2987 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
2988 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
b3133d23 2989 overflow. However, for that to happen, vr1.max needs to be
2990 zero, which means vr1 is a singleton range of zero, which
2991 means it should be handled by the previous LSHIFT_EXPR
2992 if-clause. */
ab2c1de8 2993 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
2994 wide_int complement = ~(bound - 1);
b3133d23 2995
2996 if (uns)
2997 {
e913b5cd 2998 low_bound = bound;
2999 high_bound = complement;
796b6678 3000 if (wi::ltu_p (vr0.max, low_bound))
b3133d23 3001 {
3002 /* [5, 6] << [1, 2] == [10, 24]. */
3003 /* We're shifting out only zeroes, the value increases
3004 monotonically. */
3005 in_bounds = true;
3006 }
796b6678 3007 else if (wi::ltu_p (high_bound, vr0.min))
b3133d23 3008 {
3009 /* [0xffffff00, 0xffffffff] << [1, 2]
3010 == [0xfffffc00, 0xfffffffe]. */
3011 /* We're shifting out only ones, the value decreases
3012 monotonically. */
3013 in_bounds = true;
3014 }
3015 }
3016 else
3017 {
3018 /* [-1, 1] << [1, 2] == [-4, 4]. */
e913b5cd 3019 low_bound = complement;
b3133d23 3020 high_bound = bound;
796b6678 3021 if (wi::lts_p (vr0.max, high_bound)
3022 && wi::lts_p (low_bound, vr0.min))
b3133d23 3023 {
3024 /* For non-negative numbers, we're shifting out only
3025 zeroes, the value increases monotonically.
3026 For negative numbers, we're shifting out only ones, the
3027 value decreases monotomically. */
3028 in_bounds = true;
3029 }
3030 }
3031
3032 if (in_bounds)
b0b91aff 3033 {
b0b91aff 3034 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3035 return;
3036 }
3037 }
e7ea1c21 3038 }
e7ea1c21 3039 set_value_range_to_varying (vr);
3040 return;
3041 }
5360e345 3042 else if (code == TRUNC_DIV_EXPR
3043 || code == FLOOR_DIV_EXPR
3044 || code == CEIL_DIV_EXPR
3045 || code == EXACT_DIV_EXPR
3046 || code == ROUND_DIV_EXPR)
3047 {
3048 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
e52dd258 3049 {
3050 /* For division, if op1 has VR_RANGE but op0 does not, something
3051 can be deduced just from that range. Say [min, max] / [4, max]
3052 gives [min / 4, max / 4] range. */
3053 if (vr1.type == VR_RANGE
3054 && !symbolic_range_p (&vr1)
7d48cd66 3055 && range_includes_zero_p (vr1.min, vr1.max) == 0)
e52dd258 3056 {
3057 vr0.type = type = VR_RANGE;
c37659ce 3058 vr0.min = vrp_val_min (expr_type);
3059 vr0.max = vrp_val_max (expr_type);
e52dd258 3060 }
3061 else
3062 {
3063 set_value_range_to_varying (vr);
3064 return;
3065 }
3066 }
3067
47d397e1 3068 /* For divisions, if flag_non_call_exceptions is true, we must
3069 not eliminate a division by zero. */
5360e345 3070 if (cfun->can_throw_non_call_exceptions
47d397e1 3071 && (vr1.type != VR_RANGE
7d48cd66 3072 || range_includes_zero_p (vr1.min, vr1.max) != 0))
47d397e1 3073 {
3074 set_value_range_to_varying (vr);
3075 return;
3076 }
3077
e52dd258 3078 /* For divisions, if op0 is VR_RANGE, we can deduce a range
3079 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
3080 include 0. */
5360e345 3081 if (vr0.type == VR_RANGE
e52dd258 3082 && (vr1.type != VR_RANGE
7d48cd66 3083 || range_includes_zero_p (vr1.min, vr1.max) != 0))
e52dd258 3084 {
3085 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
3086 int cmp;
3087
e52dd258 3088 min = NULL_TREE;
3089 max = NULL_TREE;
c37659ce 3090 if (TYPE_UNSIGNED (expr_type)
3091 || value_range_nonnegative_p (&vr1))
e52dd258 3092 {
3093 /* For unsigned division or when divisor is known
3094 to be non-negative, the range has to cover
3095 all numbers from 0 to max for positive max
3096 and all numbers from min to 0 for negative min. */
3097 cmp = compare_values (vr0.max, zero);
3098 if (cmp == -1)
3099 max = zero;
3100 else if (cmp == 0 || cmp == 1)
3101 max = vr0.max;
3102 else
3103 type = VR_VARYING;
3104 cmp = compare_values (vr0.min, zero);
3105 if (cmp == 1)
3106 min = zero;
3107 else if (cmp == 0 || cmp == -1)
3108 min = vr0.min;
3109 else
3110 type = VR_VARYING;
3111 }
3112 else
3113 {
3114 /* Otherwise the range is -max .. max or min .. -min
3115 depending on which bound is bigger in absolute value,
3116 as the division can change the sign. */
3117 abs_extent_range (vr, vr0.min, vr0.max);
3118 return;
3119 }
3120 if (type == VR_VARYING)
3121 {
3122 set_value_range_to_varying (vr);
3123 return;
3124 }
3125 }
c3783c3b 3126 else
3127 {
5360e345 3128 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3129 return;
eea12c72 3130 }
3131 }
ebc6c513 3132 else if (code == TRUNC_MOD_EXPR)
ccab2921 3133 {
ebc6c513 3134 if (vr1.type != VR_RANGE
7d48cd66 3135 || range_includes_zero_p (vr1.min, vr1.max) != 0
ebc6c513 3136 || vrp_val_is_min (vr1.min))
ccab2921 3137 {
3138 set_value_range_to_varying (vr);
3139 return;
3140 }
3141 type = VR_RANGE;
ebc6c513 3142 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
c37659ce 3143 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
ebc6c513 3144 if (tree_int_cst_lt (max, vr1.max))
3145 max = vr1.max;
e913b5cd 3146 max = int_const_binop (MINUS_EXPR, max, build_int_cst (TREE_TYPE (max), 1));
ebc6c513 3147 /* If the dividend is non-negative the modulus will be
3148 non-negative as well. */
c37659ce 3149 if (TYPE_UNSIGNED (expr_type)
3150 || value_range_nonnegative_p (&vr0))
ebc6c513 3151 min = build_int_cst (TREE_TYPE (max), 0);
ccab2921 3152 else
c37659ce 3153 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
ccab2921 3154 }
6c696748 3155 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
b3ded9f8 3156 {
522b9a02 3157 bool int_cst_range0, int_cst_range1;
e913b5cd 3158 wide_int may_be_nonzero0, may_be_nonzero1;
3159 wide_int must_be_nonzero0, must_be_nonzero1;
bca0860e 3160
ab2c1de8 3161 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
3162 &may_be_nonzero0,
522b9a02 3163 &must_be_nonzero0);
ab2c1de8 3164 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
3165 &may_be_nonzero1,
522b9a02 3166 &must_be_nonzero1);
bca0860e 3167
522b9a02 3168 type = VR_RANGE;
f26adbc1 3169 if (code == BIT_AND_EXPR)
0c0b52bd 3170 {
e913b5cd 3171 min = wide_int_to_tree (expr_type,
3172 must_be_nonzero0 & must_be_nonzero1);
ab2c1de8 3173 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
63bb6dcf 3174 /* If both input ranges contain only negative values we can
3175 truncate the result range maximum to the minimum of the
3176 input range maxima. */
3177 if (int_cst_range0 && int_cst_range1
3178 && tree_int_cst_sgn (vr0.max) < 0
3179 && tree_int_cst_sgn (vr1.max) < 0)
0c0b52bd 3180 {
796b6678 3181 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3182 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
0c0b52bd 3183 }
63bb6dcf 3184 /* If either input range contains only non-negative values
3185 we can truncate the result range maximum to the respective
3186 maximum of the input range. */
3187 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
796b6678 3188 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
522b9a02 3189 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
796b6678 3190 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
e913b5cd 3191 max = wide_int_to_tree (expr_type, wmax);
b3ded9f8 3192 }
f26adbc1 3193 else if (code == BIT_IOR_EXPR)
e31161b3 3194 {
e913b5cd 3195 max = wide_int_to_tree (expr_type,
3196 may_be_nonzero0 | may_be_nonzero1);
ab2c1de8 3197 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
63bb6dcf 3198 /* If the input ranges contain only positive values we can
3199 truncate the minimum of the result range to the maximum
3200 of the input range minima. */
3201 if (int_cst_range0 && int_cst_range1
3202 && tree_int_cst_sgn (vr0.min) >= 0
3203 && tree_int_cst_sgn (vr1.min) >= 0)
f26adbc1 3204 {
796b6678 3205 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3206 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
f26adbc1 3207 }
63bb6dcf 3208 /* If either input range contains only negative values
3209 we can truncate the minimum of the result range to the
3210 respective minimum range. */
3211 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
796b6678 3212 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
63bb6dcf 3213 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
796b6678 3214 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
e913b5cd 3215 min = wide_int_to_tree (expr_type, wmin);
f26adbc1 3216 }
6c696748 3217 else if (code == BIT_XOR_EXPR)
3218 {
ab2c1de8 3219 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
3220 | ~(may_be_nonzero0 | may_be_nonzero1));
3221 wide_int result_one_bits
3222 = (must_be_nonzero0.and_not (may_be_nonzero1)
3223 | must_be_nonzero1.and_not (may_be_nonzero0));
e913b5cd 3224 max = wide_int_to_tree (expr_type, ~result_zero_bits);
3225 min = wide_int_to_tree (expr_type, result_one_bits);
63bb6dcf 3226 /* If the range has all positive or all negative values the
3227 result is better than VARYING. */
3228 if (tree_int_cst_sgn (min) < 0
3229 || tree_int_cst_sgn (max) >= 0)
3230 ;
6c696748 3231 else
6c696748 3232 max = min = NULL_TREE;
3233 }
e31161b3 3234 }
eea12c72 3235 else
3236 gcc_unreachable ();
ed19cf09 3237
c25c642e 3238 /* If either MIN or MAX overflowed, then set the resulting range to
1ec8aa41 3239 VARYING. But we do accept an overflow infinity representation. */
c3783c3b 3240 if (min == NULL_TREE
1ec8aa41 3241 || (TREE_OVERFLOW_P (min) && !is_overflow_infinity (min))
c3783c3b 3242 || max == NULL_TREE
1ec8aa41 3243 || (TREE_OVERFLOW_P (max) && !is_overflow_infinity (max)))
c3783c3b 3244 {
3245 set_value_range_to_varying (vr);
3246 return;
3247 }
3248
c68b42d2 3249 /* We punt if:
3250 1) [-INF, +INF]
3251 2) [-INF, +-INF(OVF)]
3252 3) [+-INF(OVF), +INF]
3253 4) [+-INF(OVF), +-INF(OVF)]
3254 We learn nothing when we have INF and INF(OVF) on both sides.
3255 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3256 overflow. */
b876a744 3257 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3258 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
eea12c72 3259 {
c25c642e 3260 set_value_range_to_varying (vr);
3261 return;
ed19cf09 3262 }
3263
eea12c72 3264 cmp = compare_values (min, max);
3265 if (cmp == -2 || cmp == 1)
3266 {
3267 /* If the new range has its limits swapped around (MIN > MAX),
3268 then the operation caused one of them to wrap around, mark
3269 the new range VARYING. */
3270 set_value_range_to_varying (vr);
3271 }
3272 else
0ed3ba34 3273 set_value_range (vr, type, min, max, NULL);
ed19cf09 3274}
3275
c37659ce 3276/* Extract range information from a binary expression OP0 CODE OP1 based on
3277 the ranges of each of its operands with resulting type EXPR_TYPE.
3278 The resulting range is stored in *VR. */
3279
3280static void
3281extract_range_from_binary_expr (value_range_t *vr,
3282 enum tree_code code,
3283 tree expr_type, tree op0, tree op1)
3284{
748eb1f9 3285 value_range_t vr0 = VR_INITIALIZER;
3286 value_range_t vr1 = VR_INITIALIZER;
c37659ce 3287
3288 /* Get value ranges for each operand. For constant operands, create
3289 a new value range with the operand to simplify processing. */
3290 if (TREE_CODE (op0) == SSA_NAME)
3291 vr0 = *(get_value_range (op0));
3292 else if (is_gimple_min_invariant (op0))
3293 set_value_range_to_value (&vr0, op0, NULL);
3294 else
3295 set_value_range_to_varying (&vr0);
3296
3297 if (TREE_CODE (op1) == SSA_NAME)
3298 vr1 = *(get_value_range (op1));
3299 else if (is_gimple_min_invariant (op1))
3300 set_value_range_to_value (&vr1, op1, NULL);
3301 else
3302 set_value_range_to_varying (&vr1);
3303
3304 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
1ec8aa41 3305
3306 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3307 and based on the other operand, for example if it was deduced from a
3308 symbolic comparison. When a bound of the range of the first operand
3309 is invariant, we set the corresponding bound of the new range to INF
3310 in order to avoid recursing on the range of the second operand. */
3311 if (vr->type == VR_VARYING
3312 && (code == PLUS_EXPR || code == MINUS_EXPR)
3313 && TREE_CODE (op1) == SSA_NAME
3314 && vr0.type == VR_RANGE
3315 && symbolic_range_based_on_p (&vr0, op1))
3316 {
3317 const bool minus_p = (code == MINUS_EXPR);
3318 value_range_t n_vr1 = VR_INITIALIZER;
3319
3320 /* Try with VR0 and [-INF, OP1]. */
3321 if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3322 set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3323
3324 /* Try with VR0 and [OP1, +INF]. */
3325 else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3326 set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3327
3328 /* Try with VR0 and [OP1, OP1]. */
3329 else
3330 set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3331
3332 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3333 }
3334
3335 if (vr->type == VR_VARYING
3336 && (code == PLUS_EXPR || code == MINUS_EXPR)
3337 && TREE_CODE (op0) == SSA_NAME
3338 && vr1.type == VR_RANGE
3339 && symbolic_range_based_on_p (&vr1, op0))
3340 {
3341 const bool minus_p = (code == MINUS_EXPR);
3342 value_range_t n_vr0 = VR_INITIALIZER;
3343
3344 /* Try with [-INF, OP0] and VR1. */
3345 if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3346 set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3347
3348 /* Try with [OP0, +INF] and VR1. */
3349 else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3350 set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3351
3352 /* Try with [OP0, OP0] and VR1. */
3353 else
3354 set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3355
3356 extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3357 }
c37659ce 3358}
ed19cf09 3359
113fbe09 3360/* Extract range information from a unary operation CODE based on
3361 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3362 The The resulting range is stored in *VR. */
88dbf20f 3363
3364static void
113fbe09 3365extract_range_from_unary_expr_1 (value_range_t *vr,
3366 enum tree_code code, tree type,
3367 value_range_t *vr0_, tree op0_type)
88dbf20f 3368{
748eb1f9 3369 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
eea12c72 3370
713b2724 3371 /* VRP only operates on integral and pointer types. */
3372 if (!(INTEGRAL_TYPE_P (op0_type)
3373 || POINTER_TYPE_P (op0_type))
3374 || !(INTEGRAL_TYPE_P (type)
3375 || POINTER_TYPE_P (type)))
eea12c72 3376 {
3377 set_value_range_to_varying (vr);
3378 return;
3379 }
88dbf20f 3380
713b2724 3381 /* If VR0 is UNDEFINED, so is the result. */
3382 if (vr0.type == VR_UNDEFINED)
88dbf20f 3383 {
713b2724 3384 set_value_range_to_undefined (vr);
88dbf20f 3385 return;
3386 }
3387
748eb1f9 3388 /* Handle operations that we express in terms of others. */
273da1f5 3389 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
748eb1f9 3390 {
273da1f5 3391 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
748eb1f9 3392 copy_value_range (vr, &vr0);
3393 return;
3394 }
3395 else if (code == NEGATE_EXPR)
3396 {
3397 /* -X is simply 0 - X, so re-use existing code that also handles
3398 anti-ranges fine. */
3399 value_range_t zero = VR_INITIALIZER;
3400 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3401 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3402 return;
3403 }
3404 else if (code == BIT_NOT_EXPR)
3405 {
3406 /* ~X is simply -1 - X, so re-use existing code that also handles
3407 anti-ranges fine. */
3408 value_range_t minusone = VR_INITIALIZER;
3409 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3410 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3411 type, &minusone, &vr0);
3412 return;
3413 }
3414
3415 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3416 and express op ~[] as (op []') U (op []''). */
3417 if (vr0.type == VR_ANTI_RANGE
3418 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3419 {
3420 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3421 if (vrtem1.type != VR_UNDEFINED)
3422 {
3423 value_range_t vrres = VR_INITIALIZER;
3424 extract_range_from_unary_expr_1 (&vrres, code, type,
3425 &vrtem1, op0_type);
3426 vrp_meet (vr, &vrres);
3427 }
3428 return;
3429 }
3430
713b2724 3431 if (CONVERT_EXPR_CODE_P (code))
88dbf20f 3432 {
113fbe09 3433 tree inner_type = op0_type;
93116081 3434 tree outer_type = type;
80096ea0 3435
713b2724 3436 /* If the expression evaluates to a pointer, we are only interested in
3437 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3438 if (POINTER_TYPE_P (type))
3439 {
81e042f9 3440 if (range_is_nonnull (&vr0))
3441 set_value_range_to_nonnull (vr, type);
3442 else if (range_is_null (&vr0))
3443 set_value_range_to_null (vr, type);
713b2724 3444 else
3445 set_value_range_to_varying (vr);
3446 return;
3447 }
3448
0d27ac1e 3449 /* If VR0 is varying and we increase the type precision, assume
3450 a full range for the following transformation. */
3451 if (vr0.type == VR_VARYING
713b2724 3452 && INTEGRAL_TYPE_P (inner_type)
0d27ac1e 3453 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
b8f8bd67 3454 {
0d27ac1e 3455 vr0.type = VR_RANGE;
3456 vr0.min = TYPE_MIN_VALUE (inner_type);
3457 vr0.max = TYPE_MAX_VALUE (inner_type);
b8f8bd67 3458 }
3459
0d27ac1e 3460 /* If VR0 is a constant range or anti-range and the conversion is
3461 not truncating we can convert the min and max values and
3462 canonicalize the resulting range. Otherwise we can do the
3463 conversion if the size of the range is less than what the
3464 precision of the target type can represent and the range is
3465 not an anti-range. */
3466 if ((vr0.type == VR_RANGE
3467 || vr0.type == VR_ANTI_RANGE)
3468 && TREE_CODE (vr0.min) == INTEGER_CST
3469 && TREE_CODE (vr0.max) == INTEGER_CST
33731620 3470 && (!is_overflow_infinity (vr0.min)
3471 || (vr0.type == VR_RANGE
3472 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3473 && needs_overflow_infinity (outer_type)
3474 && supports_overflow_infinity (outer_type)))
3475 && (!is_overflow_infinity (vr0.max)
3476 || (vr0.type == VR_RANGE
3477 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3478 && needs_overflow_infinity (outer_type)
3479 && supports_overflow_infinity (outer_type)))
0d27ac1e 3480 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3481 || (vr0.type == VR_RANGE
3482 && integer_zerop (int_const_binop (RSHIFT_EXPR,
317e2a67 3483 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3484 size_int (TYPE_PRECISION (outer_type)))))))
80096ea0 3485 {
0d27ac1e 3486 tree new_min, new_max;
33731620 3487 if (is_overflow_infinity (vr0.min))
3488 new_min = negative_overflow_infinity (outer_type);
df8f94d5 3489 else
8945e16b 3490 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
e913b5cd 3491 0, false);
33731620 3492 if (is_overflow_infinity (vr0.max))
3493 new_max = positive_overflow_infinity (outer_type);
df8f94d5 3494 else
8945e16b 3495 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
e913b5cd 3496 0, false);
0d27ac1e 3497 set_and_canonicalize_value_range (vr, vr0.type,
3498 new_min, new_max, NULL);
80096ea0 3499 return;
3500 }
0d27ac1e 3501
3502 set_value_range_to_varying (vr);
3503 return;
88dbf20f 3504 }
713b2724 3505 else if (code == ABS_EXPR)
eea12c72 3506 {
713b2724 3507 tree min, max;
3508 int cmp;
3509
3510 /* Pass through vr0 in the easy cases. */
3511 if (TYPE_UNSIGNED (type)
3512 || value_range_nonnegative_p (&vr0))
3513 {
3514 copy_value_range (vr, &vr0);
3515 return;
3516 }
3517
3518 /* For the remaining varying or symbolic ranges we can't do anything
3519 useful. */
3520 if (vr0.type == VR_VARYING
3521 || symbolic_range_p (&vr0))
3522 {
3523 set_value_range_to_varying (vr);
3524 return;
3525 }
3526
8b5d7cdf 3527 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3528 useful range. */
93116081 3529 if (!TYPE_OVERFLOW_UNDEFINED (type)
8b5d7cdf 3530 && ((vr0.type == VR_RANGE
b876a744 3531 && vrp_val_is_min (vr0.min))
8b5d7cdf 3532 || (vr0.type == VR_ANTI_RANGE
713b2724 3533 && !vrp_val_is_min (vr0.min))))
8b5d7cdf 3534 {
3535 set_value_range_to_varying (vr);
3536 return;
3537 }
48e1416a 3538
eea12c72 3539 /* ABS_EXPR may flip the range around, if the original range
3540 included negative values. */
c3783c3b 3541 if (is_overflow_infinity (vr0.min))
93116081 3542 min = positive_overflow_infinity (type);
b876a744 3543 else if (!vrp_val_is_min (vr0.min))
93116081 3544 min = fold_unary_to_constant (code, type, vr0.min);
3545 else if (!needs_overflow_infinity (type))
3546 min = TYPE_MAX_VALUE (type);
3547 else if (supports_overflow_infinity (type))
3548 min = positive_overflow_infinity (type);
c3783c3b 3549 else
3550 {
3551 set_value_range_to_varying (vr);
3552 return;
3553 }
eea12c72 3554
c3783c3b 3555 if (is_overflow_infinity (vr0.max))
93116081 3556 max = positive_overflow_infinity (type);
b876a744 3557 else if (!vrp_val_is_min (vr0.max))
93116081 3558 max = fold_unary_to_constant (code, type, vr0.max);
3559 else if (!needs_overflow_infinity (type))
3560 max = TYPE_MAX_VALUE (type);
eaba51b9 3561 else if (supports_overflow_infinity (type)
3562 /* We shouldn't generate [+INF, +INF] as set_value_range
3563 doesn't like this and ICEs. */
3564 && !is_positive_overflow_infinity (min))
93116081 3565 max = positive_overflow_infinity (type);
c3783c3b 3566 else
3567 {
3568 set_value_range_to_varying (vr);
3569 return;
3570 }
eea12c72 3571
8b5d7cdf 3572 cmp = compare_values (min, max);
3573
3574 /* If a VR_ANTI_RANGEs contains zero, then we have
3575 ~[-INF, min(MIN, MAX)]. */
3576 if (vr0.type == VR_ANTI_RANGE)
48e1416a 3577 {
7d48cd66 3578 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
8b5d7cdf 3579 {
8b5d7cdf 3580 /* Take the lower of the two values. */
3581 if (cmp != 1)
3582 max = min;
3583
3584 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3585 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3586 flag_wrapv is set and the original anti-range doesn't include
3587 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
93116081 3588 if (TYPE_OVERFLOW_WRAPS (type))
c3783c3b 3589 {
93116081 3590 tree type_min_value = TYPE_MIN_VALUE (type);
c3783c3b 3591
3592 min = (vr0.min != type_min_value
3593 ? int_const_binop (PLUS_EXPR, type_min_value,
e913b5cd 3594 build_int_cst (TREE_TYPE (type_min_value), 1))
c3783c3b 3595 : type_min_value);
3596 }
3597 else
3598 {
3599 if (overflow_infinity_range_p (&vr0))
93116081 3600 min = negative_overflow_infinity (type);
c3783c3b 3601 else
93116081 3602 min = TYPE_MIN_VALUE (type);
c3783c3b 3603 }
8b5d7cdf 3604 }
3605 else
3606 {
3607 /* All else has failed, so create the range [0, INF], even for
3608 flag_wrapv since TYPE_MIN_VALUE is in the original
3609 anti-range. */
3610 vr0.type = VR_RANGE;
93116081 3611 min = build_int_cst (type, 0);
3612 if (needs_overflow_infinity (type))
c3783c3b 3613 {
93116081 3614 if (supports_overflow_infinity (type))
3615 max = positive_overflow_infinity (type);
c3783c3b 3616 else
3617 {
3618 set_value_range_to_varying (vr);
3619 return;
3620 }
3621 }
3622 else
93116081 3623 max = TYPE_MAX_VALUE (type);
8b5d7cdf 3624 }
3625 }
3626
3627 /* If the range contains zero then we know that the minimum value in the
3628 range will be zero. */
7d48cd66 3629 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
8b5d7cdf 3630 {
3631 if (cmp == 1)
3632 max = min;
93116081 3633 min = build_int_cst (type, 0);
8b5d7cdf 3634 }
3635 else
eea12c72 3636 {
8b5d7cdf 3637 /* If the range was reversed, swap MIN and MAX. */
3638 if (cmp == 1)
3639 {
3640 tree t = min;
3641 min = max;
3642 max = t;
3643 }
eea12c72 3644 }
713b2724 3645
3646 cmp = compare_values (min, max);
3647 if (cmp == -2 || cmp == 1)
3648 {
3649 /* If the new range has its limits swapped around (MIN > MAX),
3650 then the operation caused one of them to wrap around, mark
3651 the new range VARYING. */
3652 set_value_range_to_varying (vr);
3653 }
3654 else
3655 set_value_range (vr, vr0.type, min, max, NULL);
3656 return;
eea12c72 3657 }
88dbf20f 3658
713b2724 3659 /* For unhandled operations fall back to varying. */
3660 set_value_range_to_varying (vr);
3661 return;
eea12c72 3662}
3663
3664
113fbe09 3665/* Extract range information from a unary expression CODE OP0 based on
3666 the range of its operand with resulting type TYPE.
3667 The resulting range is stored in *VR. */
3668
3669static void
3670extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3671 tree type, tree op0)
3672{
748eb1f9 3673 value_range_t vr0 = VR_INITIALIZER;
113fbe09 3674
3675 /* Get value ranges for the operand. For constant operands, create
3676 a new value range with the operand to simplify processing. */
3677 if (TREE_CODE (op0) == SSA_NAME)
3678 vr0 = *(get_value_range (op0));
3679 else if (is_gimple_min_invariant (op0))
3680 set_value_range_to_value (&vr0, op0, NULL);
3681 else
3682 set_value_range_to_varying (&vr0);
3683
3684 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3685}
3686
3687
8a2caf10 3688/* Extract range information from a conditional expression STMT based on
ec0fa513 3689 the ranges of each of its operands and the expression code. */
3690
3691static void
8a2caf10 3692extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
ec0fa513 3693{
3694 tree op0, op1;
748eb1f9 3695 value_range_t vr0 = VR_INITIALIZER;
3696 value_range_t vr1 = VR_INITIALIZER;
ec0fa513 3697
3698 /* Get value ranges for each operand. For constant operands, create
3699 a new value range with the operand to simplify processing. */
8a2caf10 3700 op0 = gimple_assign_rhs2 (stmt);
ec0fa513 3701 if (TREE_CODE (op0) == SSA_NAME)
3702 vr0 = *(get_value_range (op0));
3703 else if (is_gimple_min_invariant (op0))
4baf1a77 3704 set_value_range_to_value (&vr0, op0, NULL);
ec0fa513 3705 else
3706 set_value_range_to_varying (&vr0);
3707
8a2caf10 3708 op1 = gimple_assign_rhs3 (stmt);
ec0fa513 3709 if (TREE_CODE (op1) == SSA_NAME)
3710 vr1 = *(get_value_range (op1));
3711 else if (is_gimple_min_invariant (op1))
4baf1a77 3712 set_value_range_to_value (&vr1, op1, NULL);
ec0fa513 3713 else
3714 set_value_range_to_varying (&vr1);
3715
3716 /* The resulting value range is the union of the operand ranges */
ec0fa513 3717 copy_value_range (vr, &vr0);
a2623f6b 3718 vrp_meet (vr, &vr1);
ec0fa513 3719}
3720
3721
eea12c72 3722/* Extract range information from a comparison expression EXPR based
3723 on the range of its operand and the expression code. */
3724
3725static void
93116081 3726extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3727 tree type, tree op0, tree op1)
eea12c72 3728{
c3783c3b 3729 bool sop = false;
75a70cf9 3730 tree val;
48e1416a 3731
e0ad89bd 3732 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3733 NULL);
c3783c3b 3734
3735 /* A disadvantage of using a special infinity as an overflow
3736 representation is that we lose the ability to record overflow
3737 when we don't have an infinity. So we have to ignore a result
3738 which relies on overflow. */
3739
3740 if (val && !is_overflow_infinity (val) && !sop)
eea12c72 3741 {
3742 /* Since this expression was found on the RHS of an assignment,
3743 its type may be different from _Bool. Convert VAL to EXPR's
3744 type. */
93116081 3745 val = fold_convert (type, val);
4baf1a77 3746 if (is_gimple_min_invariant (val))
3747 set_value_range_to_value (vr, val, vr->equiv);
3748 else
3749 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
eea12c72 3750 }
3751 else
b9b64cb7 3752 /* The result of a comparison is always true or false. */
93116081 3753 set_value_range_to_truthvalue (vr, type);
88dbf20f 3754}
3755
75a70cf9 3756/* Try to derive a nonnegative or nonzero range out of STMT relying
3757 primarily on generic routines in fold in conjunction with range data.
3758 Store the result in *VR */
88dbf20f 3759
75a70cf9 3760static void
3761extract_range_basic (value_range_t *vr, gimple stmt)
3762{
3763 bool sop = false;
3764 tree type = gimple_expr_type (stmt);
3765
64b5be08 3766 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3767 {
3768 tree fndecl = gimple_call_fndecl (stmt), arg;
3769 int mini, maxi, zerov = 0, prec;
3770
3771 switch (DECL_FUNCTION_CODE (fndecl))
3772 {
3773 case BUILT_IN_CONSTANT_P:
3774 /* If the call is __builtin_constant_p and the argument is a
3775 function parameter resolve it to false. This avoids bogus
3776 array bound warnings.
3777 ??? We could do this as early as inlining is finished. */
3778 arg = gimple_call_arg (stmt, 0);
3779 if (TREE_CODE (arg) == SSA_NAME
3780 && SSA_NAME_IS_DEFAULT_DEF (arg)
3781 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3782 {
3783 set_value_range_to_null (vr, type);
3784 return;
3785 }
3786 break;
3787 /* Both __builtin_ffs* and __builtin_popcount return
3788 [0, prec]. */
3789 CASE_INT_FN (BUILT_IN_FFS):
3790 CASE_INT_FN (BUILT_IN_POPCOUNT):
3791 arg = gimple_call_arg (stmt, 0);
3792 prec = TYPE_PRECISION (TREE_TYPE (arg));
3793 mini = 0;
3794 maxi = prec;
3795 if (TREE_CODE (arg) == SSA_NAME)
3796 {
3797 value_range_t *vr0 = get_value_range (arg);
3798 /* If arg is non-zero, then ffs or popcount
3799 are non-zero. */
3800 if (((vr0->type == VR_RANGE
80b766e4 3801 && range_includes_zero_p (vr0->min, vr0->max) == 0)
64b5be08 3802 || (vr0->type == VR_ANTI_RANGE
80b766e4 3803 && range_includes_zero_p (vr0->min, vr0->max) == 1))
3804 && !is_overflow_infinity (vr0->min)
3805 && !is_overflow_infinity (vr0->max))
64b5be08 3806 mini = 1;
3807 /* If some high bits are known to be zero,
3808 we can decrease the maximum. */
3809 if (vr0->type == VR_RANGE
3810 && TREE_CODE (vr0->max) == INTEGER_CST
80b766e4 3811 && !operand_less_p (vr0->min,
3812 build_zero_cst (TREE_TYPE (vr0->min)))
4a8f88ff 3813 && !is_overflow_infinity (vr0->max))
64b5be08 3814 maxi = tree_floor_log2 (vr0->max) + 1;
3815 }
3816 goto bitop_builtin;
3817 /* __builtin_parity* returns [0, 1]. */
3818 CASE_INT_FN (BUILT_IN_PARITY):
3819 mini = 0;
3820 maxi = 1;
3821 goto bitop_builtin;
3822 /* __builtin_c[lt]z* return [0, prec-1], except for
3823 when the argument is 0, but that is undefined behavior.
3824 On many targets where the CLZ RTL or optab value is defined
3825 for 0 the value is prec, so include that in the range
3826 by default. */
3827 CASE_INT_FN (BUILT_IN_CLZ):
3828 arg = gimple_call_arg (stmt, 0);
3829 prec = TYPE_PRECISION (TREE_TYPE (arg));
3830 mini = 0;
3831 maxi = prec;
3832 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3833 != CODE_FOR_nothing
3834 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3835 zerov)
3836 /* Handle only the single common value. */
3837 && zerov != prec)
3838 /* Magic value to give up, unless vr0 proves
3839 arg is non-zero. */
3840 mini = -2;
3841 if (TREE_CODE (arg) == SSA_NAME)
3842 {
3843 value_range_t *vr0 = get_value_range (arg);
3844 /* From clz of VR_RANGE minimum we can compute
3845 result maximum. */
3846 if (vr0->type == VR_RANGE
3847 && TREE_CODE (vr0->min) == INTEGER_CST
4a8f88ff 3848 && !is_overflow_infinity (vr0->min))
64b5be08 3849 {
3850 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3851 if (maxi != prec)
3852 mini = 0;
3853 }
3854 else if (vr0->type == VR_ANTI_RANGE
3855 && integer_zerop (vr0->min)
4a8f88ff 3856 && !is_overflow_infinity (vr0->min))
64b5be08 3857 {
3858 maxi = prec - 1;
3859 mini = 0;
3860 }
3861 if (mini == -2)
3862 break;
3863 /* From clz of VR_RANGE maximum we can compute
3864 result minimum. */
3865 if (vr0->type == VR_RANGE
3866 && TREE_CODE (vr0->max) == INTEGER_CST
4a8f88ff 3867 && !is_overflow_infinity (vr0->max))
64b5be08 3868 {
3869 mini = prec - 1 - tree_floor_log2 (vr0->max);
3870 if (mini == prec)
3871 break;
3872 }
3873 }
3874 if (mini == -2)
3875 break;
3876 goto bitop_builtin;
3877 /* __builtin_ctz* return [0, prec-1], except for
3878 when the argument is 0, but that is undefined behavior.
3879 If there is a ctz optab for this mode and
3880 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3881 otherwise just assume 0 won't be seen. */
3882 CASE_INT_FN (BUILT_IN_CTZ):
3883 arg = gimple_call_arg (stmt, 0);
3884 prec = TYPE_PRECISION (TREE_TYPE (arg));
3885 mini = 0;
3886 maxi = prec - 1;
3887 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3888 != CODE_FOR_nothing
3889 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3890 zerov))
3891 {
3892 /* Handle only the two common values. */
3893 if (zerov == -1)
3894 mini = -1;
3895 else if (zerov == prec)
3896 maxi = prec;
3897 else
3898 /* Magic value to give up, unless vr0 proves
3899 arg is non-zero. */
3900 mini = -2;
3901 }
3902 if (TREE_CODE (arg) == SSA_NAME)
3903 {
3904 value_range_t *vr0 = get_value_range (arg);
3905 /* If arg is non-zero, then use [0, prec - 1]. */
3906 if (((vr0->type == VR_RANGE
3907 && integer_nonzerop (vr0->min))
3908 || (vr0->type == VR_ANTI_RANGE
3909 && integer_zerop (vr0->min)))
4a8f88ff 3910 && !is_overflow_infinity (vr0->min))
64b5be08 3911 {
3912 mini = 0;
3913 maxi = prec - 1;
3914 }
3915 /* If some high bits are known to be zero,
3916 we can decrease the result maximum. */
3917 if (vr0->type == VR_RANGE
3918 && TREE_CODE (vr0->max) == INTEGER_CST
4a8f88ff 3919 && !is_overflow_infinity (vr0->max))
64b5be08 3920 {
3921 maxi = tree_floor_log2 (vr0->max);
3922 /* For vr0 [0, 0] give up. */
3923 if (maxi == -1)
3924 break;
3925 }
3926 }
3927 if (mini == -2)
3928 break;
3929 goto bitop_builtin;
3930 /* __builtin_clrsb* returns [0, prec-1]. */
3931 CASE_INT_FN (BUILT_IN_CLRSB):
3932 arg = gimple_call_arg (stmt, 0);
3933 prec = TYPE_PRECISION (TREE_TYPE (arg));
3934 mini = 0;
3935 maxi = prec - 1;
3936 goto bitop_builtin;
3937 bitop_builtin:
3938 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3939 build_int_cst (type, maxi), NULL);
3940 return;
3941 default:
3942 break;
3943 }
3944 }
137559b2 3945 else if (is_gimple_call (stmt)
3946 && gimple_call_internal_p (stmt))
3947 {
3948 enum tree_code subcode = ERROR_MARK;
3949 switch (gimple_call_internal_fn (stmt))
3950 {
3951 case IFN_UBSAN_CHECK_ADD:
3952 subcode = PLUS_EXPR;
3953 break;
3954 case IFN_UBSAN_CHECK_SUB:
3955 subcode = MINUS_EXPR;
3956 break;
3957 case IFN_UBSAN_CHECK_MUL:
3958 subcode = MULT_EXPR;
3959 break;
3960 default:
3961 break;
3962 }
3963 if (subcode != ERROR_MARK)
3964 {
3965 bool saved_flag_wrapv = flag_wrapv;
3966 /* Pretend the arithmetics is wrapping. If there is
3967 any overflow, we'll complain, but will actually do
3968 wrapping operation. */
3969 flag_wrapv = 1;
3970 extract_range_from_binary_expr (vr, subcode, type,
3971 gimple_call_arg (stmt, 0),
3972 gimple_call_arg (stmt, 1));
3973 flag_wrapv = saved_flag_wrapv;
3974
3975 /* If for both arguments vrp_valueize returned non-NULL,
3976 this should have been already folded and if not, it
3977 wasn't folded because of overflow. Avoid removing the
3978 UBSAN_CHECK_* calls in that case. */
3979 if (vr->type == VR_RANGE
3980 && (vr->min == vr->max
3981 || operand_equal_p (vr->min, vr->max, 0)))
3982 set_value_range_to_varying (vr);
3983 return;
3984 }
3985 }
64b5be08 3986 if (INTEGRAL_TYPE_P (type)
3987 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
75a70cf9 3988 set_value_range_to_nonnegative (vr, type,
3989 sop || stmt_overflow_infinity (stmt));
3990 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3991 && !sop)
3992 set_value_range_to_nonnull (vr, type);
3993 else
3994 set_value_range_to_varying (vr);
3995}
3996
3997
3998/* Try to compute a useful range out of assignment STMT and store it
eea12c72 3999 in *VR. */
88dbf20f 4000
4001static void
75a70cf9 4002extract_range_from_assignment (value_range_t *vr, gimple stmt)
88dbf20f 4003{
75a70cf9 4004 enum tree_code code = gimple_assign_rhs_code (stmt);
88dbf20f 4005
4006 if (code == ASSERT_EXPR)
75a70cf9 4007 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
88dbf20f 4008 else if (code == SSA_NAME)
75a70cf9 4009 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
cfd7906e 4010 else if (TREE_CODE_CLASS (code) == tcc_binary)
75a70cf9 4011 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
4012 gimple_expr_type (stmt),
4013 gimple_assign_rhs1 (stmt),
4014 gimple_assign_rhs2 (stmt));
88dbf20f 4015 else if (TREE_CODE_CLASS (code) == tcc_unary)
75a70cf9 4016 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
4017 gimple_expr_type (stmt),
4018 gimple_assign_rhs1 (stmt));
ec0fa513 4019 else if (code == COND_EXPR)
8a2caf10 4020 extract_range_from_cond_expr (vr, stmt);
eea12c72 4021 else if (TREE_CODE_CLASS (code) == tcc_comparison)
75a70cf9 4022 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
4023 gimple_expr_type (stmt),
4024 gimple_assign_rhs1 (stmt),
4025 gimple_assign_rhs2 (stmt));
4026 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
4027 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
4028 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
88dbf20f 4029 else
e7d43f99 4030 set_value_range_to_varying (vr);
8dbf774a 4031
8dbf774a 4032 if (vr->type == VR_VARYING)
75a70cf9 4033 extract_range_basic (vr, stmt);
88dbf20f 4034}
4035
b3786ab3 4036/* Given a range VR, a LOOP and a variable VAR, determine whether it
88dbf20f 4037 would be profitable to adjust VR using scalar evolution information
4038 for VAR. If so, update VR with the new limits. */
4039
4040static void
75a70cf9 4041adjust_range_with_scev (value_range_t *vr, struct loop *loop,
4042 gimple stmt, tree var)
88dbf20f 4043{
9300c776 4044 tree init, step, chrec, tmin, tmax, min, max, type, tem;
57e3f39a 4045 enum ev_direction dir;
88dbf20f 4046
4047 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4048 better opportunities than a regular range, but I'm not sure. */
4049 if (vr->type == VR_ANTI_RANGE)
4050 return;
4051
903dae48 4052 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
437fd8c0 4053
4054 /* Like in PR19590, scev can return a constant function. */
4055 if (is_gimple_min_invariant (chrec))
4056 {
fb807d22 4057 set_value_range_to_value (vr, chrec, vr->equiv);
437fd8c0 4058 return;
4059 }
4060
88dbf20f 4061 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4062 return;
4063
903dae48 4064 init = initial_condition_in_loop_num (chrec, loop->num);
9300c776 4065 tem = op_with_constant_singleton_value_range (init);
4066 if (tem)
4067 init = tem;
903dae48 4068 step = evolution_part_in_loop_num (chrec, loop->num);
9300c776 4069 tem = op_with_constant_singleton_value_range (step);
4070 if (tem)
4071 step = tem;
88dbf20f 4072
4073 /* If STEP is symbolic, we can't know whether INIT will be the
7587869b 4074 minimum or maximum value in the range. Also, unless INIT is
4075 a simple expression, compare_values and possibly other functions
4076 in tree-vrp won't be able to handle it. */
903dae48 4077 if (step == NULL_TREE
7587869b 4078 || !is_gimple_min_invariant (step)
4079 || !valid_value_p (init))
88dbf20f 4080 return;
4081
57e3f39a 4082 dir = scev_direction (chrec);
4083 if (/* Do not adjust ranges if we do not know whether the iv increases
4084 or decreases, ... */
4085 dir == EV_DIR_UNKNOWN
4086 /* ... or if it may wrap. */
17519ba0 4087 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
57e3f39a 4088 true))
eea12c72 4089 return;
4090
c3783c3b 4091 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4092 negative_overflow_infinity and positive_overflow_infinity,
4093 because we have concluded that the loop probably does not
4094 wrap. */
4095
318a3281 4096 type = TREE_TYPE (var);
4097 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4098 tmin = lower_bound_in_type (type, type);
4099 else
4100 tmin = TYPE_MIN_VALUE (type);
4101 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4102 tmax = upper_bound_in_type (type, type);
4103 else
4104 tmax = TYPE_MAX_VALUE (type);
4105
9b53b827 4106 /* Try to use estimated number of iterations for the loop to constrain the
8fe79ba5 4107 final value in the evolution. */
9b53b827 4108 if (TREE_CODE (step) == INTEGER_CST
9b53b827 4109 && is_gimple_val (init)
4110 && (TREE_CODE (init) != SSA_NAME
4111 || get_value_range (init)->type == VR_RANGE))
4112 {
5de9d3ed 4113 widest_int nit;
8fe79ba5 4114
dbf94397 4115 /* We are only entering here for loop header PHI nodes, so using
4116 the number of latch executions is the correct thing to use. */
4117 if (max_loop_iterations (loop, &nit))
8fe79ba5 4118 {
748eb1f9 4119 value_range_t maxvr = VR_INITIALIZER;
e913b5cd 4120 signop sgn = TYPE_SIGN (TREE_TYPE (step));
4121 bool overflow;
ddb1be65 4122
28e557ef 4123 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4124 &overflow);
8fe79ba5 4125 /* If the multiplication overflowed we can't do a meaningful
4126 adjustment. Likewise if the result doesn't fit in the type
4127 of the induction variable. For a signed type we have to
4128 check whether the result has the expected signedness which
4129 is that of the step as number of iterations is unsigned. */
4130 if (!overflow
796b6678 4131 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
e913b5cd 4132 && (sgn == UNSIGNED
796b6678 4133 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
9b53b827 4134 {
e913b5cd 4135 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
8fe79ba5 4136 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4137 TREE_TYPE (init), init, tem);
4138 /* Likewise if the addition did. */
4139 if (maxvr.type == VR_RANGE)
4140 {
4141 tmin = maxvr.min;
4142 tmax = maxvr.max;
4143 }
9b53b827 4144 }
4145 }
4146 }
4147
318a3281 4148 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
88dbf20f 4149 {
318a3281 4150 min = tmin;
4151 max = tmax;
4152
88dbf20f 4153 /* For VARYING or UNDEFINED ranges, just about anything we get
4154 from scalar evolutions should be better. */
a16bbe8b 4155
57e3f39a 4156 if (dir == EV_DIR_DECREASES)
a16bbe8b 4157 max = init;
88dbf20f 4158 else
a16bbe8b 4159 min = init;
88dbf20f 4160 }
4161 else if (vr->type == VR_RANGE)
4162 {
318a3281 4163 min = vr->min;
4164 max = vr->max;
f486df52 4165
57e3f39a 4166 if (dir == EV_DIR_DECREASES)
88dbf20f 4167 {
f486df52 4168 /* INIT is the maximum value. If INIT is lower than VR->MAX
4169 but no smaller than VR->MIN, set VR->MAX to INIT. */
4170 if (compare_values (init, max) == -1)
9b53b827 4171 max = init;
4d1ddfdf 4172
4173 /* According to the loop information, the variable does not
4174 overflow. If we think it does, probably because of an
4175 overflow due to arithmetic on a different INF value,
4176 reset now. */
9b53b827 4177 if (is_negative_overflow_infinity (min)
4178 || compare_values (min, tmin) == -1)
4d1ddfdf 4179 min = tmin;
9b53b827 4180
88dbf20f 4181 }
4182 else
4183 {
4184 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
f486df52 4185 if (compare_values (init, min) == 1)
9b53b827 4186 min = init;
4d1ddfdf 4187
9b53b827 4188 if (is_positive_overflow_infinity (max)
4189 || compare_values (tmax, max) == -1)
4d1ddfdf 4190 max = tmax;
88dbf20f 4191 }
6ee295d9 4192 }
4193 else
4194 return;
f486df52 4195
6ee295d9 4196 /* If we just created an invalid range with the minimum
4197 greater than the maximum, we fail conservatively.
4198 This should happen only in unreachable
4199 parts of code, or for invalid programs. */
4200 if (compare_values (min, max) == 1
4201 || (is_negative_overflow_infinity (min)
4202 && is_positive_overflow_infinity (max)))
4203 return;
9b53b827 4204
6ee295d9 4205 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
88dbf20f 4206}
4207
4208
4209/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
48e1416a 4210
eea12c72 4211 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4212 all the values in the ranges.
88dbf20f 4213
4214 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4215
eea12c72 4216 - Return NULL_TREE if it is not always possible to determine the
c3783c3b 4217 value of the comparison.
4218
4219 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4220 overflow infinity was used in the test. */
eea12c72 4221
88dbf20f 4222
4223static tree
c3783c3b 4224compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
4225 bool *strict_overflow_p)
88dbf20f 4226{
4227 /* VARYING or UNDEFINED ranges cannot be compared. */
4228 if (vr0->type == VR_VARYING
4229 || vr0->type == VR_UNDEFINED
4230 || vr1->type == VR_VARYING
4231 || vr1->type == VR_UNDEFINED)
4232 return NULL_TREE;
4233
4234 /* Anti-ranges need to be handled separately. */
4235 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4236 {
4237 /* If both are anti-ranges, then we cannot compute any
4238 comparison. */
4239 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4240 return NULL_TREE;
4241
4242 /* These comparisons are never statically computable. */
4243 if (comp == GT_EXPR
4244 || comp == GE_EXPR
4245 || comp == LT_EXPR
4246 || comp == LE_EXPR)
4247 return NULL_TREE;
4248
4249 /* Equality can be computed only between a range and an
4250 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4251 if (vr0->type == VR_RANGE)
4252 {
4253 /* To simplify processing, make VR0 the anti-range. */
eea12c72 4254 value_range_t *tmp = vr0;
88dbf20f 4255 vr0 = vr1;
4256 vr1 = tmp;
4257 }
4258
4259 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4260
c3783c3b 4261 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4262 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
88dbf20f 4263 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4264
4265 return NULL_TREE;
4266 }
4267
a2a1fde2 4268 if (!usable_range_p (vr0, strict_overflow_p)
4269 || !usable_range_p (vr1, strict_overflow_p))
4270 return NULL_TREE;
4271
88dbf20f 4272 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4273 operands around and change the comparison code. */
4274 if (comp == GT_EXPR || comp == GE_EXPR)
4275 {
eea12c72 4276 value_range_t *tmp;
88dbf20f 4277 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4278 tmp = vr0;
4279 vr0 = vr1;
4280 vr1 = tmp;
4281 }
4282
4283 if (comp == EQ_EXPR)
4284 {
4285 /* Equality may only be computed if both ranges represent
4286 exactly one value. */
c3783c3b 4287 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4288 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
88dbf20f 4289 {
c3783c3b 4290 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4291 strict_overflow_p);
4292 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4293 strict_overflow_p);
88dbf20f 4294 if (cmp_min == 0 && cmp_max == 0)
4295 return boolean_true_node;
4296 else if (cmp_min != -2 && cmp_max != -2)
4297 return boolean_false_node;
4298 }
b200b146 4299 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
c3783c3b 4300 else if (compare_values_warnv (vr0->min, vr1->max,
4301 strict_overflow_p) == 1
4302 || compare_values_warnv (vr1->min, vr0->max,
4303 strict_overflow_p) == 1)
b200b146 4304 return boolean_false_node;
88dbf20f 4305
4306 return NULL_TREE;
4307 }
4308 else if (comp == NE_EXPR)
4309 {
4310 int cmp1, cmp2;
4311
4312 /* If VR0 is completely to the left or completely to the right
4313 of VR1, they are always different. Notice that we need to
4314 make sure that both comparisons yield similar results to
4315 avoid comparing values that cannot be compared at
4316 compile-time. */
c3783c3b 4317 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4318 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
88dbf20f 4319 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4320 return boolean_true_node;
4321
4322 /* If VR0 and VR1 represent a single value and are identical,
4323 return false. */
c3783c3b 4324 else if (compare_values_warnv (vr0->min, vr0->max,
4325 strict_overflow_p) == 0
4326 && compare_values_warnv (vr1->min, vr1->max,
4327 strict_overflow_p) == 0
4328 && compare_values_warnv (vr0->min, vr1->min,
4329 strict_overflow_p) == 0
4330 && compare_values_warnv (vr0->max, vr1->max,
4331 strict_overflow_p) == 0)
88dbf20f 4332 return boolean_false_node;
4333
4334 /* Otherwise, they may or may not be different. */
4335 else
4336 return NULL_TREE;
4337 }
4338 else if (comp == LT_EXPR || comp == LE_EXPR)
4339 {
4340 int tst;
4341
4342 /* If VR0 is to the left of VR1, return true. */
c3783c3b 4343 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
88dbf20f 4344 if ((comp == LT_EXPR && tst == -1)
4345 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
c3783c3b 4346 {
4347 if (overflow_infinity_range_p (vr0)
4348 || overflow_infinity_range_p (vr1))
4349 *strict_overflow_p = true;
4350 return boolean_true_node;
4351 }
88dbf20f 4352
4353 /* If VR0 is to the right of VR1, return false. */
c3783c3b 4354 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
88dbf20f 4355 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4356 || (comp == LE_EXPR && tst == 1))
c3783c3b 4357 {
4358 if (overflow_infinity_range_p (vr0)
4359 || overflow_infinity_range_p (vr1))
4360 *strict_overflow_p = true;
4361 return boolean_false_node;
4362 }
88dbf20f 4363
4364 /* Otherwise, we don't know. */
4365 return NULL_TREE;
4366 }
48e1416a 4367
88dbf20f 4368 gcc_unreachable ();
4369}
4370
4371
4372/* Given a value range VR, a value VAL and a comparison code COMP, return
eea12c72 4373 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
88dbf20f 4374 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4375 always returns false. Return NULL_TREE if it is not always
c3783c3b 4376 possible to determine the value of the comparison. Also set
4377 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4378 infinity was used in the test. */
88dbf20f 4379
4380static tree
c3783c3b 4381compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4382 bool *strict_overflow_p)
88dbf20f 4383{
4384 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4385 return NULL_TREE;
4386
4387 /* Anti-ranges need to be handled separately. */
4388 if (vr->type == VR_ANTI_RANGE)
4389 {
4390 /* For anti-ranges, the only predicates that we can compute at
4391 compile time are equality and inequality. */
4392 if (comp == GT_EXPR
4393 || comp == GE_EXPR
4394 || comp == LT_EXPR
4395 || comp == LE_EXPR)
4396 return NULL_TREE;
4397
446faf9d 4398 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
7d48cd66 4399 if (value_inside_range (val, vr->min, vr->max) == 1)
88dbf20f 4400 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4401
4402 return NULL_TREE;
4403 }
4404
a2a1fde2 4405 if (!usable_range_p (vr, strict_overflow_p))
4406 return NULL_TREE;
4407
88dbf20f 4408 if (comp == EQ_EXPR)
4409 {
4410 /* EQ_EXPR may only be computed if VR represents exactly
4411 one value. */
c3783c3b 4412 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
88dbf20f 4413 {
c3783c3b 4414 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
88dbf20f 4415 if (cmp == 0)
4416 return boolean_true_node;
4417 else if (cmp == -1 || cmp == 1 || cmp == 2)
4418 return boolean_false_node;
4419 }
c3783c3b 4420 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4421 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
5b9b1fc4 4422 return boolean_false_node;
88dbf20f 4423
4424 return NULL_TREE;
4425 }
4426 else if (comp == NE_EXPR)
4427 {
4428 /* If VAL is not inside VR, then they are always different. */
c3783c3b 4429 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4430 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
88dbf20f 4431 return boolean_true_node;
4432
4433 /* If VR represents exactly one value equal to VAL, then return
4434 false. */
c3783c3b 4435 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4436 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
88dbf20f 4437 return boolean_false_node;
4438
4439 /* Otherwise, they may or may not be different. */
4440 return NULL_TREE;
4441 }
4442 else if (comp == LT_EXPR || comp == LE_EXPR)
4443 {
4444 int tst;
4445
4446 /* If VR is to the left of VAL, return true. */
c3783c3b 4447 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
88dbf20f 4448 if ((comp == LT_EXPR && tst == -1)
4449 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
c3783c3b 4450 {
4451 if (overflow_infinity_range_p (vr))
4452 *strict_overflow_p = true;
4453 return boolean_true_node;
4454 }
88dbf20f 4455
4456 /* If VR is to the right of VAL, return false. */
c3783c3b 4457 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
88dbf20f 4458 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4459 || (comp == LE_EXPR && tst == 1))
c3783c3b 4460 {
4461 if (overflow_infinity_range_p (vr))
4462 *strict_overflow_p = true;
4463 return boolean_false_node;
4464 }
88dbf20f 4465
4466 /* Otherwise, we don't know. */
4467 return NULL_TREE;
4468 }
4469 else if (comp == GT_EXPR || comp == GE_EXPR)
4470 {
4471 int tst;
4472
4473 /* If VR is to the right of VAL, return true. */
c3783c3b 4474 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
88dbf20f 4475 if ((comp == GT_EXPR && tst == 1)
4476 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
c3783c3b 4477 {
4478 if (overflow_infinity_range_p (vr))
4479 *strict_overflow_p = true;
4480 return boolean_true_node;
4481 }
88dbf20f 4482
4483 /* If VR is to the left of VAL, return false. */
c3783c3b 4484 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
88dbf20f 4485 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4486 || (comp == GE_EXPR && tst == -1))
c3783c3b 4487 {
4488 if (overflow_infinity_range_p (vr))
4489 *strict_overflow_p = true;
4490 return boolean_false_node;
4491 }
88dbf20f 4492
4493 /* Otherwise, we don't know. */
4494 return NULL_TREE;
4495 }
4496
4497 gcc_unreachable ();
4498}
4499
4500
4501/* Debugging dumps. */
4502
eea12c72 4503void dump_value_range (FILE *, value_range_t *);
4504void debug_value_range (value_range_t *);
4505void dump_all_value_ranges (FILE *);
4506void debug_all_value_ranges (void);
4507void dump_vr_equiv (FILE *, bitmap);
4508void debug_vr_equiv (bitmap);
4509
4510
4511/* Dump value range VR to FILE. */
4512
88dbf20f 4513void
eea12c72 4514dump_value_range (FILE *file, value_range_t *vr)
88dbf20f 4515{
4516 if (vr == NULL)
4517 fprintf (file, "[]");
4518 else if (vr->type == VR_UNDEFINED)
4519 fprintf (file, "UNDEFINED");
4520 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4521 {
eea12c72 4522 tree type = TREE_TYPE (vr->min);
4523
88dbf20f 4524 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
eea12c72 4525
b876a744 4526 if (is_negative_overflow_infinity (vr->min))
c3783c3b 4527 fprintf (file, "-INF(OVF)");
b876a744 4528 else if (INTEGRAL_TYPE_P (type)
4529 && !TYPE_UNSIGNED (type)
4530 && vrp_val_is_min (vr->min))
4531 fprintf (file, "-INF");
eea12c72 4532 else
4533 print_generic_expr (file, vr->min, 0);
4534
88dbf20f 4535 fprintf (file, ", ");
eea12c72 4536
b876a744 4537 if (is_positive_overflow_infinity (vr->max))
c3783c3b 4538 fprintf (file, "+INF(OVF)");
b876a744 4539 else if (INTEGRAL_TYPE_P (type)
4540 && vrp_val_is_max (vr->max))
4541 fprintf (file, "+INF");
eea12c72 4542 else
4543 print_generic_expr (file, vr->max, 0);
4544
88dbf20f 4545 fprintf (file, "]");
eea12c72 4546
4547 if (vr->equiv)
4548 {
4549 bitmap_iterator bi;
4550 unsigned i, c = 0;
4551
4552 fprintf (file, " EQUIVALENCES: { ");
4553
4554 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4555 {
4556 print_generic_expr (file, ssa_name (i), 0);
4557 fprintf (file, " ");
4558 c++;
4559 }
4560
4561 fprintf (file, "} (%u elements)", c);
4562 }
88dbf20f 4563 }
4564 else if (vr->type == VR_VARYING)
4565 fprintf (file, "VARYING");
4566 else
4567 fprintf (file, "INVALID RANGE");
4568}
4569
4570
4571/* Dump value range VR to stderr. */
4572
4b987fac 4573DEBUG_FUNCTION void
eea12c72 4574debug_value_range (value_range_t *vr)
88dbf20f 4575{
4576 dump_value_range (stderr, vr);
79f0a894 4577 fprintf (stderr, "\n");
88dbf20f 4578}
4579
4580
4581/* Dump value ranges of all SSA_NAMEs to FILE. */
4582
4583void
4584dump_all_value_ranges (FILE *file)
4585{
4586 size_t i;
4587
e0186710 4588 for (i = 0; i < num_vr_values; i++)
88dbf20f 4589 {
eea12c72 4590 if (vr_value[i])
88dbf20f 4591 {
eea12c72 4592 print_generic_expr (file, ssa_name (i), 0);
88dbf20f 4593 fprintf (file, ": ");
eea12c72 4594 dump_value_range (file, vr_value[i]);
88dbf20f 4595 fprintf (file, "\n");
4596 }
4597 }
4598
4599 fprintf (file, "\n");
4600}
4601
4602
4603/* Dump all value ranges to stderr. */
4604
4b987fac 4605DEBUG_FUNCTION void
88dbf20f 4606debug_all_value_ranges (void)
4607{
4608 dump_all_value_ranges (stderr);
4609}
4610
4611
88dbf20f 4612/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4613 create a new SSA name N and return the assertion assignment
54751bcf 4614 'N = ASSERT_EXPR <V, V OP W>'. */
88dbf20f 4615
75a70cf9 4616static gimple
88dbf20f 4617build_assert_expr_for (tree cond, tree v)
4618{
0dc262e0 4619 tree a;
75a70cf9 4620 gimple assertion;
88dbf20f 4621
0dc262e0 4622 gcc_assert (TREE_CODE (v) == SSA_NAME
4623 && COMPARISON_CLASS_P (cond));
88dbf20f 4624
0dc262e0 4625 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4626 assertion = gimple_build_assign (NULL_TREE, a);
88dbf20f 4627
4628 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
0dc262e0 4629 operand of the ASSERT_EXPR. Create it so the new name and the old one
4630 are registered in the replacement table so that we can fix the SSA web
4631 after adding all the ASSERT_EXPRs. */
4632 create_new_def_for (v, assertion, NULL);
88dbf20f 4633
4634 return assertion;
4635}
4636
4637
4638/* Return false if EXPR is a predicate expression involving floating
4639 point values. */
4640
4641static inline bool
75a70cf9 4642fp_predicate (gimple stmt)
88dbf20f 4643{
75a70cf9 4644 GIMPLE_CHECK (stmt, GIMPLE_COND);
4645
4646 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
88dbf20f 4647}
4648
eea12c72 4649/* If the range of values taken by OP can be inferred after STMT executes,
4650 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4651 describes the inferred range. Return true if a range could be
4652 inferred. */
88dbf20f 4653
eea12c72 4654static bool
75a70cf9 4655infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
88dbf20f 4656{
eea12c72 4657 *val_p = NULL_TREE;
4658 *comp_code_p = ERROR_MARK;
4659
2b6719e9 4660 /* Do not attempt to infer anything in names that flow through
4661 abnormal edges. */
4662 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
eea12c72 4663 return false;
4664
4665 /* Similarly, don't infer anything from statements that may throw
d00cc43d 4666 exceptions. ??? Relax this requirement? */
75a70cf9 4667 if (stmt_could_throw_p (stmt))
eea12c72 4668 return false;
2b6719e9 4669
d3d3f7c2 4670 /* If STMT is the last statement of a basic block with no normal
4a34401c 4671 successors, there is no point inferring anything about any of its
4672 operands. We would not be able to find a proper insertion point
4673 for the assertion, anyway. */
d3d3f7c2 4674 if (stmt_ends_bb_p (stmt))
4675 {
4676 edge_iterator ei;
4677 edge e;
4678
4679 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4680 if (!(e->flags & EDGE_ABNORMAL))
4681 break;
4682 if (e == NULL)
4683 return false;
4684 }
4a34401c 4685
30b10261 4686 if (infer_nonnull_range (stmt, op, true, true))
88dbf20f 4687 {
d00cc43d 4688 *val_p = build_int_cst (TREE_TYPE (op), 0);
4689 *comp_code_p = NE_EXPR;
4690 return true;
88dbf20f 4691 }
4692
eea12c72 4693 return false;
88dbf20f 4694}
4695
4696
eea12c72 4697void dump_asserts_for (FILE *, tree);
4698void debug_asserts_for (tree);
4699void dump_all_asserts (FILE *);
4700void debug_all_asserts (void);
4701
4702/* Dump all the registered assertions for NAME to FILE. */
4703
4704void
4705dump_asserts_for (FILE *file, tree name)
4706{
4707 assert_locus_t loc;
4708
4709 fprintf (file, "Assertions to be inserted for ");
4710 print_generic_expr (file, name, 0);
4711 fprintf (file, "\n");
4712
4713 loc = asserts_for[SSA_NAME_VERSION (name)];
4714 while (loc)
4715 {
4716 fprintf (file, "\t");
75a70cf9 4717 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
eea12c72 4718 fprintf (file, "\n\tBB #%d", loc->bb->index);
4719 if (loc->e)
4720 {
4721 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4722 loc->e->dest->index);
5147ec07 4723 dump_edge_info (file, loc->e, dump_flags, 0);
eea12c72 4724 }
4725 fprintf (file, "\n\tPREDICATE: ");
4726 print_generic_expr (file, name, 0);
f3d35d4d 4727 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
eea12c72 4728 print_generic_expr (file, loc->val, 0);
4729 fprintf (file, "\n\n");
4730 loc = loc->next;
4731 }
4732
4733 fprintf (file, "\n");
4734}
4735
4736
4737/* Dump all the registered assertions for NAME to stderr. */
4738
4b987fac 4739DEBUG_FUNCTION void
eea12c72 4740debug_asserts_for (tree name)
4741{
4742 dump_asserts_for (stderr, name);
4743}
4744
4745
4746/* Dump all the registered assertions for all the names to FILE. */
4747
4748void
4749dump_all_asserts (FILE *file)
4750{
4751 unsigned i;
4752 bitmap_iterator bi;
4753
4754 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4755 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4756 dump_asserts_for (file, ssa_name (i));
4757 fprintf (file, "\n");
4758}
4759
4760
4761/* Dump all the registered assertions for all the names to stderr. */
4762
4b987fac 4763DEBUG_FUNCTION void
eea12c72 4764debug_all_asserts (void)
4765{
4766 dump_all_asserts (stderr);
4767}
4768
4769
4770/* If NAME doesn't have an ASSERT_EXPR registered for asserting
bed8bec4 4771 'EXPR COMP_CODE VAL' at a location that dominates block BB or
eea12c72 4772 E->DEST, then register this location as a possible insertion point
bed8bec4 4773 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
eea12c72 4774
4775 BB, E and SI provide the exact insertion point for the new
4776 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4777 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4778 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4779 must not be NULL. */
4780
4781static void
bed8bec4 4782register_new_assert_for (tree name, tree expr,
eea12c72 4783 enum tree_code comp_code,
4784 tree val,
4785 basic_block bb,
4786 edge e,
75a70cf9 4787 gimple_stmt_iterator si)
eea12c72 4788{
4789 assert_locus_t n, loc, last_loc;
eea12c72 4790 basic_block dest_bb;
4791
1b4345f7 4792 gcc_checking_assert (bb == NULL || e == NULL);
eea12c72 4793
4794 if (e == NULL)
1b4345f7 4795 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4796 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
eea12c72 4797
ca9e4658 4798 /* Never build an assert comparing against an integer constant with
4799 TREE_OVERFLOW set. This confuses our undefined overflow warning
4800 machinery. */
4a8f88ff 4801 if (TREE_OVERFLOW_P (val))
4802 val = drop_tree_overflow (val);
ca9e4658 4803
eea12c72 4804 /* The new assertion A will be inserted at BB or E. We need to
4805 determine if the new location is dominated by a previously
4806 registered location for A. If we are doing an edge insertion,
4807 assume that A will be inserted at E->DEST. Note that this is not
4808 necessarily true.
48e1416a 4809
eea12c72 4810 If E is a critical edge, it will be split. But even if E is
4811 split, the new block will dominate the same set of blocks that
4812 E->DEST dominates.
48e1416a 4813
eea12c72 4814 The reverse, however, is not true, blocks dominated by E->DEST
4815 will not be dominated by the new block created to split E. So,
4816 if the insertion location is on a critical edge, we will not use
4817 the new location to move another assertion previously registered
4818 at a block dominated by E->DEST. */
4819 dest_bb = (bb) ? bb : e->dest;
4820
4821 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4822 VAL at a block dominating DEST_BB, then we don't need to insert a new
4823 one. Similarly, if the same assertion already exists at a block
4824 dominated by DEST_BB and the new location is not on a critical
4825 edge, then update the existing location for the assertion (i.e.,
4826 move the assertion up in the dominance tree).
4827
4828 Note, this is implemented as a simple linked list because there
4829 should not be more than a handful of assertions registered per
4830 name. If this becomes a performance problem, a table hashed by
4831 COMP_CODE and VAL could be implemented. */
4832 loc = asserts_for[SSA_NAME_VERSION (name)];
4833 last_loc = loc;
eea12c72 4834 while (loc)
4835 {
4836 if (loc->comp_code == comp_code
4837 && (loc->val == val
bed8bec4 4838 || operand_equal_p (loc->val, val, 0))
4839 && (loc->expr == expr
4840 || operand_equal_p (loc->expr, expr, 0)))
eea12c72 4841 {
d6f10e50 4842 /* If E is not a critical edge and DEST_BB
eea12c72 4843 dominates the existing location for the assertion, move
4844 the assertion up in the dominance tree by updating its
4845 location information. */
4846 if ((e == NULL || !EDGE_CRITICAL_P (e))
4847 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4848 {
4849 loc->bb = dest_bb;
4850 loc->e = e;
4851 loc->si = si;
4852 return;
4853 }
4854 }
4855
4856 /* Update the last node of the list and move to the next one. */
4857 last_loc = loc;
4858 loc = loc->next;
4859 }
4860
4861 /* If we didn't find an assertion already registered for
4862 NAME COMP_CODE VAL, add a new one at the end of the list of
4863 assertions associated with NAME. */
4c36ffe6 4864 n = XNEW (struct assert_locus_d);
eea12c72 4865 n->bb = dest_bb;
4866 n->e = e;
4867 n->si = si;
4868 n->comp_code = comp_code;
4869 n->val = val;
bed8bec4 4870 n->expr = expr;
eea12c72 4871 n->next = NULL;
4872
4873 if (last_loc)
4874 last_loc->next = n;
4875 else
4876 asserts_for[SSA_NAME_VERSION (name)] = n;
4877
4878 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4879}
4880
a00913c7 4881/* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4882 Extract a suitable test code and value and store them into *CODE_P and
4883 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4884
4885 If no extraction was possible, return FALSE, otherwise return TRUE.
4886
4887 If INVERT is true, then we invert the result stored into *CODE_P. */
7433d1d6 4888
4889static bool
4890extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4891 tree cond_op0, tree cond_op1,
4892 bool invert, enum tree_code *code_p,
4893 tree *val_p)
4894{
4895 enum tree_code comp_code;
4896 tree val;
4897
4898 /* Otherwise, we have a comparison of the form NAME COMP VAL
4899 or VAL COMP NAME. */
4900 if (name == cond_op1)
4901 {
4902 /* If the predicate is of the form VAL COMP NAME, flip
4903 COMP around because we need to register NAME as the
4904 first operand in the predicate. */
4905 comp_code = swap_tree_comparison (cond_code);
4906 val = cond_op0;
4907 }
4908 else
4909 {
4910 /* The comparison is of the form NAME COMP VAL, so the
4911 comparison code remains unchanged. */
4912 comp_code = cond_code;
4913 val = cond_op1;
4914 }
4915
4916 /* Invert the comparison code as necessary. */
4917 if (invert)
4918 comp_code = invert_tree_comparison (comp_code, 0);
4919
4920 /* VRP does not handle float types. */
4921 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4922 return false;
4923
4924 /* Do not register always-false predicates.
4925 FIXME: this works around a limitation in fold() when dealing with
4926 enumerations. Given 'enum { N1, N2 } x;', fold will not
4927 fold 'if (x > N2)' to 'if (0)'. */
4928 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4929 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4930 {
4931 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4932 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4933
4934 if (comp_code == GT_EXPR
4935 && (!max
4936 || compare_values (val, max) == 0))
4937 return false;
4938
4939 if (comp_code == LT_EXPR
4940 && (!min
4941 || compare_values (val, min) == 0))
4942 return false;
4943 }
4944 *code_p = comp_code;
4945 *val_p = val;
4946 return true;
4947}
fecf3b39 4948
7139adf8 4949/* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4950 (otherwise return VAL). VAL and MASK must be zero-extended for
4951 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4952 (to transform signed values into unsigned) and at the end xor
4953 SGNBIT back. */
4954
e913b5cd 4955static wide_int
10c3fe8d 4956masked_increment (const wide_int &val_in, const wide_int &mask,
4957 const wide_int &sgnbit, unsigned int prec)
7139adf8 4958{
796b6678 4959 wide_int bit = wi::one (prec), res;
7139adf8 4960 unsigned int i;
4961
10c3fe8d 4962 wide_int val = val_in ^ sgnbit;
cf8f0e63 4963 for (i = 0; i < prec; i++, bit += bit)
7139adf8 4964 {
4965 res = mask;
796b6678 4966 if ((res & bit) == 0)
7139adf8 4967 continue;
e913b5cd 4968 res = bit - 1;
cf8f0e63 4969 res = (val + bit).and_not (res);
4970 res &= mask;
796b6678 4971 if (wi::gtu_p (res, val))
cf8f0e63 4972 return res ^ sgnbit;
7139adf8 4973 }
cf8f0e63 4974 return val ^ sgnbit;
7139adf8 4975}
4976
bed8bec4 4977/* Try to register an edge assertion for SSA name NAME on edge E for
4978 the condition COND contributing to the conditional jump pointed to by BSI.
4979 Invert the condition COND if INVERT is true.
4980 Return true if an assertion for NAME could be registered. */
4981
4982static bool
75a70cf9 4983register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
a00913c7 4984 enum tree_code cond_code,
4985 tree cond_op0, tree cond_op1, bool invert)
bed8bec4 4986{
4987 tree val;
4988 enum tree_code comp_code;
4989 bool retval = false;
4990
a00913c7 4991 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4992 cond_op0,
4993 cond_op1,
4994 invert, &comp_code, &val))
bed8bec4 4995 return false;
4996
4997 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4998 reachable from E. */
17ed8337 4999 if (live_on_edge (e, name)
bed8bec4 5000 && !has_single_use (name))
5001 {
5002 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
5003 retval = true;
5004 }
5005
5006 /* In the case of NAME <= CST and NAME being defined as
5007 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5008 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5009 This catches range and anti-range tests. */
5010 if ((comp_code == LE_EXPR
5011 || comp_code == GT_EXPR)
5012 && TREE_CODE (val) == INTEGER_CST
5013 && TYPE_UNSIGNED (TREE_TYPE (val)))
5014 {
75a70cf9 5015 gimple def_stmt = SSA_NAME_DEF_STMT (name);
22cdb855 5016 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
bed8bec4 5017
5018 /* Extract CST2 from the (optional) addition. */
75a70cf9 5019 if (is_gimple_assign (def_stmt)
5020 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
bed8bec4 5021 {
75a70cf9 5022 name2 = gimple_assign_rhs1 (def_stmt);
5023 cst2 = gimple_assign_rhs2 (def_stmt);
bed8bec4 5024 if (TREE_CODE (name2) == SSA_NAME
5025 && TREE_CODE (cst2) == INTEGER_CST)
5026 def_stmt = SSA_NAME_DEF_STMT (name2);
5027 }
5028
22cdb855 5029 /* Extract NAME2 from the (optional) sign-changing cast. */
75a70cf9 5030 if (gimple_assign_cast_p (def_stmt))
22cdb855 5031 {
d9659041 5032 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
75a70cf9 5033 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5034 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5035 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5036 name3 = gimple_assign_rhs1 (def_stmt);
22cdb855 5037 }
bed8bec4 5038
22cdb855 5039 /* If name3 is used later, create an ASSERT_EXPR for it. */
5040 if (name3 != NULL_TREE
5041 && TREE_CODE (name3) == SSA_NAME
bed8bec4 5042 && (cst2 == NULL_TREE
5043 || TREE_CODE (cst2) == INTEGER_CST)
22cdb855 5044 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
17ed8337 5045 && live_on_edge (e, name3)
22cdb855 5046 && !has_single_use (name3))
5047 {
5048 tree tmp;
5049
5050 /* Build an expression for the range test. */
5051 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5052 if (cst2 != NULL_TREE)
5053 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5054
5055 if (dump_file)
5056 {
5057 fprintf (dump_file, "Adding assert for ");
5058 print_generic_expr (dump_file, name3, 0);
5059 fprintf (dump_file, " from ");
5060 print_generic_expr (dump_file, tmp, 0);
5061 fprintf (dump_file, "\n");
5062 }
5063
5064 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
5065
5066 retval = true;
5067 }
5068
5069 /* If name2 is used later, create an ASSERT_EXPR for it. */
5070 if (name2 != NULL_TREE
5071 && TREE_CODE (name2) == SSA_NAME
5072 && TREE_CODE (cst2) == INTEGER_CST
5073 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
17ed8337 5074 && live_on_edge (e, name2)
bed8bec4 5075 && !has_single_use (name2))
5076 {
5077 tree tmp;
5078
5079 /* Build an expression for the range test. */
5080 tmp = name2;
5081 if (TREE_TYPE (name) != TREE_TYPE (name2))
5082 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5083 if (cst2 != NULL_TREE)
5084 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5085
5086 if (dump_file)
5087 {
5088 fprintf (dump_file, "Adding assert for ");
5089 print_generic_expr (dump_file, name2, 0);
5090 fprintf (dump_file, " from ");
5091 print_generic_expr (dump_file, tmp, 0);
5092 fprintf (dump_file, "\n");
5093 }
5094
5095 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
5096
5097 retval = true;
5098 }
5099 }
5100
1e24c0c9 5101 /* In the case of post-in/decrement tests like if (i++) ... and uses
5102 of the in/decremented value on the edge the extra name we want to
5103 assert for is not on the def chain of the name compared. Instead
5104 it is in the set of use stmts. */
5105 if ((comp_code == NE_EXPR
5106 || comp_code == EQ_EXPR)
5107 && TREE_CODE (val) == INTEGER_CST)
5108 {
5109 imm_use_iterator ui;
5110 gimple use_stmt;
5111 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5112 {
5113 /* Cut off to use-stmts that are in the predecessor. */
5114 if (gimple_bb (use_stmt) != e->src)
5115 continue;
5116
5117 if (!is_gimple_assign (use_stmt))
5118 continue;
5119
5120 enum tree_code code = gimple_assign_rhs_code (use_stmt);
5121 if (code != PLUS_EXPR
5122 && code != MINUS_EXPR)
5123 continue;
5124
5125 tree cst = gimple_assign_rhs2 (use_stmt);
5126 if (TREE_CODE (cst) != INTEGER_CST)
5127 continue;
5128
5129 tree name2 = gimple_assign_lhs (use_stmt);
5130 if (live_on_edge (e, name2))
5131 {
5132 cst = int_const_binop (code, val, cst);
5133 register_new_assert_for (name2, name2, comp_code, cst,
5134 NULL, e, bsi);
5135 retval = true;
5136 }
5137 }
5138 }
5139
98f00c5b 5140 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5141 && TREE_CODE (val) == INTEGER_CST)
5142 {
5143 gimple def_stmt = SSA_NAME_DEF_STMT (name);
7139adf8 5144 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
98f00c5b 5145 tree val2 = NULL_TREE;
6b48fd25 5146 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
796b6678 5147 wide_int mask = wi::zero (prec);
0bec0083 5148 unsigned int nprec = prec;
5149 enum tree_code rhs_code = ERROR_MARK;
5150
5151 if (is_gimple_assign (def_stmt))
5152 rhs_code = gimple_assign_rhs_code (def_stmt);
98f00c5b 5153
22676c8f 5154 /* Add asserts for NAME cmp CST and NAME being defined
5155 as NAME = (int) NAME2. */
5156 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5157 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5158 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5159 && gimple_assign_cast_p (def_stmt))
5160 {
5161 name2 = gimple_assign_rhs1 (def_stmt);
0bec0083 5162 if (CONVERT_EXPR_CODE_P (rhs_code)
22676c8f 5163 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5164 && TYPE_UNSIGNED (TREE_TYPE (name2))
5165 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5166 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5167 || !tree_int_cst_equal (val,
5168 TYPE_MIN_VALUE (TREE_TYPE (val))))
5169 && live_on_edge (e, name2)
5170 && !has_single_use (name2))
5171 {
5172 tree tmp, cst;
5173 enum tree_code new_comp_code = comp_code;
5174
5175 cst = fold_convert (TREE_TYPE (name2),
5176 TYPE_MIN_VALUE (TREE_TYPE (val)));
5177 /* Build an expression for the range test. */
5178 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5179 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5180 fold_convert (TREE_TYPE (name2), val));
5181 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5182 {
5183 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5184 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5185 build_int_cst (TREE_TYPE (name2), 1));
5186 }
5187
5188 if (dump_file)
5189 {
5190 fprintf (dump_file, "Adding assert for ");
5191 print_generic_expr (dump_file, name2, 0);
5192 fprintf (dump_file, " from ");
5193 print_generic_expr (dump_file, tmp, 0);
5194 fprintf (dump_file, "\n");
5195 }
5196
5197 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5198 e, bsi);
5199
5200 retval = true;
5201 }
5202 }
5203
5204 /* Add asserts for NAME cmp CST and NAME being defined as
5205 NAME = NAME2 >> CST2.
5206
5207 Extract CST2 from the right shift. */
0bec0083 5208 if (rhs_code == RSHIFT_EXPR)
98f00c5b 5209 {
5210 name2 = gimple_assign_rhs1 (def_stmt);
5211 cst2 = gimple_assign_rhs2 (def_stmt);
5212 if (TREE_CODE (name2) == SSA_NAME
e913b5cd 5213 && tree_fits_uhwi_p (cst2)
98f00c5b 5214 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
e913b5cd 5215 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
27d5d67b 5216 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
98f00c5b 5217 && live_on_edge (e, name2)
5218 && !has_single_use (name2))
5219 {
796b6678 5220 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
98f00c5b 5221 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5222 }
5223 }
98f00c5b 5224 if (val2 != NULL_TREE
5225 && TREE_CODE (val2) == INTEGER_CST
5226 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5227 TREE_TYPE (val),
5228 val2, cst2), val))
5229 {
5230 enum tree_code new_comp_code = comp_code;
5231 tree tmp, new_val;
5232
5233 tmp = name2;
5234 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5235 {
5236 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5237 {
98f00c5b 5238 tree type = build_nonstandard_integer_type (prec, 1);
5239 tmp = build1 (NOP_EXPR, type, name2);
5240 val2 = fold_convert (type, val2);
5241 }
5242 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
e913b5cd 5243 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
98f00c5b 5244 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5245 }
5246 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
7c4be923 5247 {
e913b5cd 5248 wide_int minval
796b6678 5249 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
7c4be923 5250 new_val = val2;
6da74b21 5251 if (minval == new_val)
7c4be923 5252 new_val = NULL_TREE;
5253 }
98f00c5b 5254 else
5255 {
e913b5cd 5256 wide_int maxval
796b6678 5257 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
6da74b21 5258 mask |= val2;
cf8f0e63 5259 if (mask == maxval)
6b48fd25 5260 new_val = NULL_TREE;
5261 else
e913b5cd 5262 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
98f00c5b 5263 }
5264
6b48fd25 5265 if (new_val)
98f00c5b 5266 {
6b48fd25 5267 if (dump_file)
5268 {
5269 fprintf (dump_file, "Adding assert for ");
5270 print_generic_expr (dump_file, name2, 0);
5271 fprintf (dump_file, " from ");
5272 print_generic_expr (dump_file, tmp, 0);
5273 fprintf (dump_file, "\n");
5274 }
98f00c5b 5275
6b48fd25 5276 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5277 NULL, e, bsi);
5278 retval = true;
5279 }
98f00c5b 5280 }
7139adf8 5281
5282 /* Add asserts for NAME cmp CST and NAME being defined as
5283 NAME = NAME2 & CST2.
5284
0bec0083 5285 Extract CST2 from the and.
5286
5287 Also handle
5288 NAME = (unsigned) NAME2;
5289 casts where NAME's type is unsigned and has smaller precision
5290 than NAME2's type as if it was NAME = NAME2 & MASK. */
7139adf8 5291 names[0] = NULL_TREE;
5292 names[1] = NULL_TREE;
5293 cst2 = NULL_TREE;
0bec0083 5294 if (rhs_code == BIT_AND_EXPR
5295 || (CONVERT_EXPR_CODE_P (rhs_code)
5296 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5297 && TYPE_UNSIGNED (TREE_TYPE (val))
5298 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5299 > prec
5300 && !retval))
7139adf8 5301 {
5302 name2 = gimple_assign_rhs1 (def_stmt);
0bec0083 5303 if (rhs_code == BIT_AND_EXPR)
5304 cst2 = gimple_assign_rhs2 (def_stmt);
5305 else
5306 {
5307 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5308 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5309 }
7139adf8 5310 if (TREE_CODE (name2) == SSA_NAME
5311 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5312 && TREE_CODE (cst2) == INTEGER_CST
5313 && !integer_zerop (cst2)
0bec0083 5314 && (nprec > 1
7139adf8 5315 || TYPE_UNSIGNED (TREE_TYPE (val))))
5316 {
5317 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
5318 if (gimple_assign_cast_p (def_stmt2))
5319 {
5320 names[1] = gimple_assign_rhs1 (def_stmt2);
5321 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5322 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5323 || (TYPE_PRECISION (TREE_TYPE (name2))
5324 != TYPE_PRECISION (TREE_TYPE (names[1])))
5325 || !live_on_edge (e, names[1])
5326 || has_single_use (names[1]))
5327 names[1] = NULL_TREE;
5328 }
5329 if (live_on_edge (e, name2)
5330 && !has_single_use (name2))
5331 names[0] = name2;
5332 }
5333 }
5334 if (names[0] || names[1])
5335 {
796b6678 5336 wide_int minv, maxv, valv, cst2v;
e913b5cd 5337 wide_int tem, sgnbit;
3ac3d905 5338 bool valid_p = false, valn, cst2n;
7139adf8 5339 enum tree_code ccode = comp_code;
5340
796b6678 5341 valv = wide_int::from (val, nprec, UNSIGNED);
5342 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
3ac3d905 5343 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5344 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
7139adf8 5345 /* If CST2 doesn't have most significant bit set,
5346 but VAL is negative, we have comparison like
5347 if ((x & 0x123) > -4) (always true). Just give up. */
5348 if (!cst2n && valn)
5349 ccode = ERROR_MARK;
5350 if (cst2n)
796b6678 5351 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
7139adf8 5352 else
796b6678 5353 sgnbit = wi::zero (nprec);
cf8f0e63 5354 minv = valv & cst2v;
7139adf8 5355 switch (ccode)
5356 {
5357 case EQ_EXPR:
5358 /* Minimum unsigned value for equality is VAL & CST2
5359 (should be equal to VAL, otherwise we probably should
5360 have folded the comparison into false) and
5361 maximum unsigned value is VAL | ~CST2. */
cf8f0e63 5362 maxv = valv | ~cst2v;
7139adf8 5363 valid_p = true;
5364 break;
e913b5cd 5365
7139adf8 5366 case NE_EXPR:
cf8f0e63 5367 tem = valv | ~cst2v;
7139adf8 5368 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
796b6678 5369 if (valv == 0)
7139adf8 5370 {
5371 cst2n = false;
796b6678 5372 sgnbit = wi::zero (nprec);
7139adf8 5373 goto gt_expr;
5374 }
5375 /* If (VAL | ~CST2) is all ones, handle it as
5376 (X & CST2) < VAL. */
e913b5cd 5377 if (tem == -1)
7139adf8 5378 {
5379 cst2n = false;
5380 valn = false;
796b6678 5381 sgnbit = wi::zero (nprec);
7139adf8 5382 goto lt_expr;
5383 }
3ac3d905 5384 if (!cst2n && wi::neg_p (cst2v))
796b6678 5385 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5386 if (sgnbit != 0)
7139adf8 5387 {
cf8f0e63 5388 if (valv == sgnbit)
7139adf8 5389 {
5390 cst2n = true;
5391 valn = true;
5392 goto gt_expr;
5393 }
796b6678 5394 if (tem == wi::mask (nprec - 1, false, nprec))
7139adf8 5395 {
5396 cst2n = true;
5397 goto lt_expr;
5398 }
5399 if (!cst2n)
796b6678 5400 sgnbit = wi::zero (nprec);
7139adf8 5401 }
5402 break;
e913b5cd 5403
7139adf8 5404 case GE_EXPR:
5405 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5406 is VAL and maximum unsigned value is ~0. For signed
5407 comparison, if CST2 doesn't have most significant bit
5408 set, handle it similarly. If CST2 has MSB set,
5409 the minimum is the same, and maximum is ~0U/2. */
cf8f0e63 5410 if (minv != valv)
7139adf8 5411 {
5412 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5413 VAL. */
0bec0083 5414 minv = masked_increment (valv, cst2v, sgnbit, nprec);
cf8f0e63 5415 if (minv == valv)
7139adf8 5416 break;
5417 }
796b6678 5418 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
7139adf8 5419 valid_p = true;
5420 break;
e913b5cd 5421
7139adf8 5422 case GT_EXPR:
5423 gt_expr:
5424 /* Find out smallest MINV where MINV > VAL
5425 && (MINV & CST2) == MINV, if any. If VAL is signed and
0bec0083 5426 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5427 minv = masked_increment (valv, cst2v, sgnbit, nprec);
cf8f0e63 5428 if (minv == valv)
7139adf8 5429 break;
796b6678 5430 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
7139adf8 5431 valid_p = true;
5432 break;
e913b5cd 5433
7139adf8 5434 case LE_EXPR:
5435 /* Minimum unsigned value for <= is 0 and maximum
5436 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5437 Otherwise, find smallest VAL2 where VAL2 > VAL
5438 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5439 as maximum.
5440 For signed comparison, if CST2 doesn't have most
5441 significant bit set, handle it similarly. If CST2 has
5442 MSB set, the maximum is the same and minimum is INT_MIN. */
cf8f0e63 5443 if (minv == valv)
7139adf8 5444 maxv = valv;
5445 else
5446 {
0bec0083 5447 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
cf8f0e63 5448 if (maxv == valv)
7139adf8 5449 break;
e913b5cd 5450 maxv -= 1;
7139adf8 5451 }
cf8f0e63 5452 maxv |= ~cst2v;
7139adf8 5453 minv = sgnbit;
5454 valid_p = true;
5455 break;
e913b5cd 5456
7139adf8 5457 case LT_EXPR:
5458 lt_expr:
5459 /* Minimum unsigned value for < is 0 and maximum
5460 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5461 Otherwise, find smallest VAL2 where VAL2 > VAL
5462 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5463 as maximum.
5464 For signed comparison, if CST2 doesn't have most
5465 significant bit set, handle it similarly. If CST2 has
5466 MSB set, the maximum is the same and minimum is INT_MIN. */
cf8f0e63 5467 if (minv == valv)
7139adf8 5468 {
cf8f0e63 5469 if (valv == sgnbit)
7139adf8 5470 break;
5471 maxv = valv;
5472 }
5473 else
5474 {
0bec0083 5475 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
cf8f0e63 5476 if (maxv == valv)
7139adf8 5477 break;
5478 }
e913b5cd 5479 maxv -= 1;
cf8f0e63 5480 maxv |= ~cst2v;
7139adf8 5481 minv = sgnbit;
5482 valid_p = true;
5483 break;
e913b5cd 5484
7139adf8 5485 default:
5486 break;
5487 }
5488 if (valid_p
3ac3d905 5489 && (maxv - minv) != -1)
7139adf8 5490 {
5491 tree tmp, new_val, type;
5492 int i;
5493
5494 for (i = 0; i < 2; i++)
5495 if (names[i])
5496 {
e913b5cd 5497 wide_int maxv2 = maxv;
7139adf8 5498 tmp = names[i];
5499 type = TREE_TYPE (names[i]);
5500 if (!TYPE_UNSIGNED (type))
5501 {
0bec0083 5502 type = build_nonstandard_integer_type (nprec, 1);
7139adf8 5503 tmp = build1 (NOP_EXPR, type, names[i]);
5504 }
796b6678 5505 if (minv != 0)
7139adf8 5506 {
5507 tmp = build2 (PLUS_EXPR, type, tmp,
e913b5cd 5508 wide_int_to_tree (type, -minv));
cf8f0e63 5509 maxv2 = maxv - minv;
7139adf8 5510 }
e913b5cd 5511 new_val = wide_int_to_tree (type, maxv2);
7139adf8 5512
5513 if (dump_file)
5514 {
5515 fprintf (dump_file, "Adding assert for ");
5516 print_generic_expr (dump_file, names[i], 0);
5517 fprintf (dump_file, " from ");
5518 print_generic_expr (dump_file, tmp, 0);
5519 fprintf (dump_file, "\n");
5520 }
5521
5522 register_new_assert_for (names[i], tmp, LE_EXPR,
5523 new_val, NULL, e, bsi);
5524 retval = true;
5525 }
5526 }
5527 }
98f00c5b 5528 }
5529
bed8bec4 5530 return retval;
5531}
5532
fecf3b39 5533/* OP is an operand of a truth value expression which is known to have
5534 a particular value. Register any asserts for OP and for any
48e1416a 5535 operands in OP's defining statement.
fecf3b39 5536
5537 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5538 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5539
5540static bool
5541register_edge_assert_for_1 (tree op, enum tree_code code,
75a70cf9 5542 edge e, gimple_stmt_iterator bsi)
fecf3b39 5543{
13f7fd91 5544 bool retval = false;
75a70cf9 5545 gimple op_def;
5546 tree val;
a00913c7 5547 enum tree_code rhs_code;
eea12c72 5548
fecf3b39 5549 /* We only care about SSA_NAMEs. */
5550 if (TREE_CODE (op) != SSA_NAME)
eea12c72 5551 return false;
5552
fecf3b39 5553 /* We know that OP will have a zero or nonzero value. If OP is used
5a0d3f9f 5554 more than once go ahead and register an assert for OP. */
5555 if (live_on_edge (e, op)
5556 && !has_single_use (op))
fecf3b39 5557 {
5558 val = build_int_cst (TREE_TYPE (op), 0);
bed8bec4 5559 register_new_assert_for (op, op, code, val, NULL, e, bsi);
fecf3b39 5560 retval = true;
5561 }
5562
5563 /* Now look at how OP is set. If it's set from a comparison,
5564 a truth operation or some bit operations, then we may be able
5565 to register information about the operands of that assignment. */
5566 op_def = SSA_NAME_DEF_STMT (op);
75a70cf9 5567 if (gimple_code (op_def) != GIMPLE_ASSIGN)
fecf3b39 5568 return retval;
5569
75a70cf9 5570 rhs_code = gimple_assign_rhs_code (op_def);
fecf3b39 5571
75a70cf9 5572 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
eea12c72 5573 {
13f7fd91 5574 bool invert = (code == EQ_EXPR ? true : false);
75a70cf9 5575 tree op0 = gimple_assign_rhs1 (op_def);
5576 tree op1 = gimple_assign_rhs2 (op_def);
eea12c72 5577
bed8bec4 5578 if (TREE_CODE (op0) == SSA_NAME)
a00913c7 5579 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
5580 invert);
bed8bec4 5581 if (TREE_CODE (op1) == SSA_NAME)
a00913c7 5582 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
5583 invert);
fecf3b39 5584 }
5585 else if ((code == NE_EXPR
cfd7906e 5586 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
fecf3b39 5587 || (code == EQ_EXPR
cfd7906e 5588 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
fecf3b39 5589 {
5590 /* Recurse on each operand. */
c2ff4a23 5591 tree op0 = gimple_assign_rhs1 (op_def);
5592 tree op1 = gimple_assign_rhs2 (op_def);
5593 if (TREE_CODE (op0) == SSA_NAME
5594 && has_single_use (op0))
5595 retval |= register_edge_assert_for_1 (op0, code, e, bsi);
5596 if (TREE_CODE (op1) == SSA_NAME
5597 && has_single_use (op1))
5598 retval |= register_edge_assert_for_1 (op1, code, e, bsi);
fecf3b39 5599 }
eea7f7eb 5600 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5601 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
fecf3b39 5602 {
13f7fd91 5603 /* Recurse, flipping CODE. */
5604 code = invert_tree_comparison (code, false);
75a70cf9 5605 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
13f7fd91 5606 code, e, bsi);
fecf3b39 5607 }
75a70cf9 5608 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
fecf3b39 5609 {
13f7fd91 5610 /* Recurse through the copy. */
75a70cf9 5611 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5612 code, e, bsi);
fecf3b39 5613 }
d9659041 5614 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
48e1416a 5615 {
f1dc1ab1 5616 /* Recurse through the type conversion, unless it is a narrowing
5617 conversion or conversion from non-integral type. */
5618 tree rhs = gimple_assign_rhs1 (op_def);
5619 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5620 && (TYPE_PRECISION (TREE_TYPE (rhs))
5621 <= TYPE_PRECISION (TREE_TYPE (op))))
5622 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
fecf3b39 5623 }
eea12c72 5624
fecf3b39 5625 return retval;
5626}
072e921b 5627
fecf3b39 5628/* Try to register an edge assertion for SSA name NAME on edge E for
5629 the condition COND contributing to the conditional jump pointed to by SI.
5630 Return true if an assertion for NAME could be registered. */
072e921b 5631
fecf3b39 5632static bool
75a70cf9 5633register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
a00913c7 5634 enum tree_code cond_code, tree cond_op0,
5635 tree cond_op1)
fecf3b39 5636{
5637 tree val;
5638 enum tree_code comp_code;
5639 bool retval = false;
5640 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5641
5642 /* Do not attempt to infer anything in names that flow through
5643 abnormal edges. */
5644 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5645 return false;
5646
a00913c7 5647 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5648 cond_op0, cond_op1,
5649 is_else_edge,
5650 &comp_code, &val))
fecf3b39 5651 return false;
5652
bed8bec4 5653 /* Register ASSERT_EXPRs for name. */
a00913c7 5654 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5655 cond_op1, is_else_edge);
bed8bec4 5656
fecf3b39 5657
5658 /* If COND is effectively an equality test of an SSA_NAME against
5659 the value zero or one, then we may be able to assert values
5660 for SSA_NAMEs which flow into COND. */
5661
cfd7906e 5662 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5663 statement of NAME we can assert both operands of the BIT_AND_EXPR
fa7637bd 5664 have nonzero value. */
fecf3b39 5665 if (((comp_code == EQ_EXPR && integer_onep (val))
5666 || (comp_code == NE_EXPR && integer_zerop (val))))
5667 {
75a70cf9 5668 gimple def_stmt = SSA_NAME_DEF_STMT (name);
fecf3b39 5669
75a70cf9 5670 if (is_gimple_assign (def_stmt)
cfd7906e 5671 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
fecf3b39 5672 {
75a70cf9 5673 tree op0 = gimple_assign_rhs1 (def_stmt);
5674 tree op1 = gimple_assign_rhs2 (def_stmt);
fecf3b39 5675 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5676 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
eea12c72 5677 }
5678 }
fecf3b39 5679
cfd7906e 5680 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5681 statement of NAME we can assert both operands of the BIT_IOR_EXPR
fecf3b39 5682 have zero value. */
5683 if (((comp_code == EQ_EXPR && integer_zerop (val))
5684 || (comp_code == NE_EXPR && integer_onep (val))))
eea12c72 5685 {
75a70cf9 5686 gimple def_stmt = SSA_NAME_DEF_STMT (name);
fecf3b39 5687
cfd7906e 5688 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5689 necessarily zero value, or if type-precision is one. */
75a70cf9 5690 if (is_gimple_assign (def_stmt)
cfd7906e 5691 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5692 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5693 || comp_code == EQ_EXPR)))
fecf3b39 5694 {
75a70cf9 5695 tree op0 = gimple_assign_rhs1 (def_stmt);
5696 tree op1 = gimple_assign_rhs2 (def_stmt);
fecf3b39 5697 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5698 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5699 }
eea12c72 5700 }
5701
fecf3b39 5702 return retval;
eea12c72 5703}
5704
5705
eea12c72 5706/* Determine whether the outgoing edges of BB should receive an
fecf3b39 5707 ASSERT_EXPR for each of the operands of BB's LAST statement.
f3d56fef 5708 The last statement of BB must be a COND_EXPR.
eea12c72 5709
5710 If any of the sub-graphs rooted at BB have an interesting use of
5711 the predicate operands, an assert location node is added to the
5712 list of assertions for the corresponding operands. */
5713
5714static bool
75a70cf9 5715find_conditional_asserts (basic_block bb, gimple last)
eea12c72 5716{
5717 bool need_assert;
75a70cf9 5718 gimple_stmt_iterator bsi;
fecf3b39 5719 tree op;
eea12c72 5720 edge_iterator ei;
5721 edge e;
5722 ssa_op_iter iter;
5723
5724 need_assert = false;
75a70cf9 5725 bsi = gsi_for_stmt (last);
eea12c72 5726
5727 /* Look for uses of the operands in each of the sub-graphs
5728 rooted at BB. We need to check each of the outgoing edges
5729 separately, so that we know what kind of ASSERT_EXPR to
5730 insert. */
5731 FOR_EACH_EDGE (e, ei, bb->succs)
5732 {
5733 if (e->dest == bb)
5734 continue;
5735
eea12c72 5736 /* Register the necessary assertions for each operand in the
5737 conditional predicate. */
5738 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
a00913c7 5739 {
75a70cf9 5740 need_assert |= register_edge_assert_for (op, e, bsi,
5741 gimple_cond_code (last),
5742 gimple_cond_lhs (last),
5743 gimple_cond_rhs (last));
a00913c7 5744 }
eea12c72 5745 }
5746
eea12c72 5747 return need_assert;
5748}
5749
8b318348 5750struct case_info
5751{
5752 tree expr;
5753 basic_block bb;
5754};
5755
5756/* Compare two case labels sorting first by the destination bb index
f3d56fef 5757 and then by the case value. */
5758
5759static int
5760compare_case_labels (const void *p1, const void *p2)
5761{
8b318348 5762 const struct case_info *ci1 = (const struct case_info *) p1;
5763 const struct case_info *ci2 = (const struct case_info *) p2;
5764 int idx1 = ci1->bb->index;
5765 int idx2 = ci2->bb->index;
f3d56fef 5766
8b318348 5767 if (idx1 < idx2)
f3d56fef 5768 return -1;
8b318348 5769 else if (idx1 == idx2)
f3d56fef 5770 {
5771 /* Make sure the default label is first in a group. */
8b318348 5772 if (!CASE_LOW (ci1->expr))
f3d56fef 5773 return -1;
8b318348 5774 else if (!CASE_LOW (ci2->expr))
f3d56fef 5775 return 1;
5776 else
8b318348 5777 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5778 CASE_LOW (ci2->expr));
f3d56fef 5779 }
5780 else
5781 return 1;
5782}
5783
5784/* Determine whether the outgoing edges of BB should receive an
5785 ASSERT_EXPR for each of the operands of BB's LAST statement.
5786 The last statement of BB must be a SWITCH_EXPR.
5787
5788 If any of the sub-graphs rooted at BB have an interesting use of
5789 the predicate operands, an assert location node is added to the
5790 list of assertions for the corresponding operands. */
5791
5792static bool
75a70cf9 5793find_switch_asserts (basic_block bb, gimple last)
f3d56fef 5794{
5795 bool need_assert;
75a70cf9 5796 gimple_stmt_iterator bsi;
a00913c7 5797 tree op;
f3d56fef 5798 edge e;
8b318348 5799 struct case_info *ci;
5800 size_t n = gimple_switch_num_labels (last);
1c7857f5 5801#if GCC_VERSION >= 4000
f3d56fef 5802 unsigned int idx;
1c7857f5 5803#else
5804 /* Work around GCC 3.4 bug (PR 37086). */
5805 volatile unsigned int idx;
5806#endif
f3d56fef 5807
5808 need_assert = false;
75a70cf9 5809 bsi = gsi_for_stmt (last);
5810 op = gimple_switch_index (last);
f3d56fef 5811 if (TREE_CODE (op) != SSA_NAME)
5812 return false;
5813
5814 /* Build a vector of case labels sorted by destination label. */
8b318348 5815 ci = XNEWVEC (struct case_info, n);
f3d56fef 5816 for (idx = 0; idx < n; ++idx)
8b318348 5817 {
5818 ci[idx].expr = gimple_switch_label (last, idx);
5819 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5820 }
5821 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
f3d56fef 5822
5823 for (idx = 0; idx < n; ++idx)
5824 {
5825 tree min, max;
8b318348 5826 tree cl = ci[idx].expr;
5827 basic_block cbb = ci[idx].bb;
f3d56fef 5828
5829 min = CASE_LOW (cl);
5830 max = CASE_HIGH (cl);
5831
5832 /* If there are multiple case labels with the same destination
5833 we need to combine them to a single value range for the edge. */
8b318348 5834 if (idx + 1 < n && cbb == ci[idx + 1].bb)
f3d56fef 5835 {
5836 /* Skip labels until the last of the group. */
5837 do {
5838 ++idx;
8b318348 5839 } while (idx < n && cbb == ci[idx].bb);
f3d56fef 5840 --idx;
5841
5842 /* Pick up the maximum of the case label range. */
8b318348 5843 if (CASE_HIGH (ci[idx].expr))
5844 max = CASE_HIGH (ci[idx].expr);
f3d56fef 5845 else
8b318348 5846 max = CASE_LOW (ci[idx].expr);
f3d56fef 5847 }
5848
5849 /* Nothing to do if the range includes the default label until we
5850 can register anti-ranges. */
5851 if (min == NULL_TREE)
5852 continue;
5853
5854 /* Find the edge to register the assert expr on. */
8b318348 5855 e = find_edge (bb, cbb);
f3d56fef 5856
f3d56fef 5857 /* Register the necessary assertions for the operand in the
5858 SWITCH_EXPR. */
a00913c7 5859 need_assert |= register_edge_assert_for (op, e, bsi,
5860 max ? GE_EXPR : EQ_EXPR,
5861 op,
5862 fold_convert (TREE_TYPE (op),
5863 min));
f3d56fef 5864 if (max)
5865 {
a00913c7 5866 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
5867 op,
5868 fold_convert (TREE_TYPE (op),
5869 max));
f3d56fef 5870 }
5871 }
5872
8b318348 5873 XDELETEVEC (ci);
f3d56fef 5874 return need_assert;
5875}
5876
eea12c72 5877
5878/* Traverse all the statements in block BB looking for statements that
5879 may generate useful assertions for the SSA names in their operand.
5880 If a statement produces a useful assertion A for name N_i, then the
5881 list of assertions already generated for N_i is scanned to
5882 determine if A is actually needed.
48e1416a 5883
eea12c72 5884 If N_i already had the assertion A at a location dominating the
5885 current location, then nothing needs to be done. Otherwise, the
5886 new location for A is recorded instead.
5887
5888 1- For every statement S in BB, all the variables used by S are
5889 added to bitmap FOUND_IN_SUBGRAPH.
5890
5891 2- If statement S uses an operand N in a way that exposes a known
5892 value range for N, then if N was not already generated by an
5893 ASSERT_EXPR, create a new assert location for N. For instance,
5894 if N is a pointer and the statement dereferences it, we can
5895 assume that N is not NULL.
5896
5897 3- COND_EXPRs are a special case of #2. We can derive range
5898 information from the predicate but need to insert different
5899 ASSERT_EXPRs for each of the sub-graphs rooted at the
5900 conditional block. If the last statement of BB is a conditional
5901 expression of the form 'X op Y', then
5902
5903 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5904
5905 b) If the conditional is the only entry point to the sub-graph
5906 corresponding to the THEN_CLAUSE, recurse into it. On
5907 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5908 an ASSERT_EXPR is added for the corresponding variable.
5909
5910 c) Repeat step (b) on the ELSE_CLAUSE.
5911
5912 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5913
5914 For instance,
5915
5916 if (a == 9)
5917 b = a;
5918 else
5919 b = c + 1;
5920
5921 In this case, an assertion on the THEN clause is useful to
5922 determine that 'a' is always 9 on that edge. However, an assertion
5923 on the ELSE clause would be unnecessary.
5924
5925 4- If BB does not end in a conditional expression, then we recurse
5926 into BB's dominator children.
48e1416a 5927
eea12c72 5928 At the end of the recursive traversal, every SSA name will have a
5929 list of locations where ASSERT_EXPRs should be added. When a new
5930 location for name N is found, it is registered by calling
5931 register_new_assert_for. That function keeps track of all the
5932 registered assertions to prevent adding unnecessary assertions.
5933 For instance, if a pointer P_4 is dereferenced more than once in a
5934 dominator tree, only the location dominating all the dereference of
5935 P_4 will receive an ASSERT_EXPR.
5936
5937 If this function returns true, then it means that there are names
5938 for which we need to generate ASSERT_EXPRs. Those assertions are
f3d56fef 5939 inserted by process_assert_insertions. */
eea12c72 5940
5941static bool
17ed8337 5942find_assert_locations_1 (basic_block bb, sbitmap live)
eea12c72 5943{
75a70cf9 5944 gimple_stmt_iterator si;
5945 gimple last;
eea12c72 5946 bool need_assert;
eea12c72 5947
5948 need_assert = false;
17ed8337 5949 last = last_stmt (bb);
eea12c72 5950
17ed8337 5951 /* If BB's last statement is a conditional statement involving integer
5952 operands, determine if we need to add ASSERT_EXPRs. */
5953 if (last
5954 && gimple_code (last) == GIMPLE_COND
5955 && !fp_predicate (last)
5956 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5957 need_assert |= find_conditional_asserts (bb, last);
eea12c72 5958
17ed8337 5959 /* If BB's last statement is a switch statement involving integer
5960 operands, determine if we need to add ASSERT_EXPRs. */
5961 if (last
5962 && gimple_code (last) == GIMPLE_SWITCH
5963 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5964 need_assert |= find_switch_asserts (bb, last);
eea12c72 5965
5966 /* Traverse all the statements in BB marking used names and looking
5967 for statements that may infer assertions for their used operands. */
d6f10e50 5968 for (si = gsi_last_bb (bb); !gsi_end_p (si); gsi_prev (&si))
eea12c72 5969 {
75a70cf9 5970 gimple stmt;
5971 tree op;
eea12c72 5972 ssa_op_iter i;
5973
75a70cf9 5974 stmt = gsi_stmt (si);
eea12c72 5975
9845d120 5976 if (is_gimple_debug (stmt))
5977 continue;
5978
eea12c72 5979 /* See if we can derive an assertion for any of STMT's operands. */
5980 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5981 {
5982 tree value;
5983 enum tree_code comp_code;
5984
d6f10e50 5985 /* If op is not live beyond this stmt, do not bother to insert
5986 asserts for it. */
08b7917c 5987 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
d6f10e50 5988 continue;
eea12c72 5989
eea12c72 5990 /* If OP is used in such a way that we can infer a value
5991 range for it, and we don't find a previous assertion for
5992 it, create a new assertion location node for OP. */
5993 if (infer_value_range (stmt, op, &comp_code, &value))
5994 {
9ca2c29a 5995 /* If we are able to infer a nonzero value range for OP,
581f1885 5996 then walk backwards through the use-def chain to see if OP
5997 was set via a typecast.
5998
5999 If so, then we can also infer a nonzero value range
6000 for the operand of the NOP_EXPR. */
6001 if (comp_code == NE_EXPR && integer_zerop (value))
6002 {
6003 tree t = op;
75a70cf9 6004 gimple def_stmt = SSA_NAME_DEF_STMT (t);
48e1416a 6005
75a70cf9 6006 while (is_gimple_assign (def_stmt)
6007 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
35cc02b5 6008 && TREE_CODE
75a70cf9 6009 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
35cc02b5 6010 && POINTER_TYPE_P
75a70cf9 6011 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
581f1885 6012 {
75a70cf9 6013 t = gimple_assign_rhs1 (def_stmt);
581f1885 6014 def_stmt = SSA_NAME_DEF_STMT (t);
6015
6016 /* Note we want to register the assert for the
6017 operand of the NOP_EXPR after SI, not after the
6018 conversion. */
6019 if (! has_single_use (t))
6020 {
bed8bec4 6021 register_new_assert_for (t, t, comp_code, value,
581f1885 6022 bb, NULL, si);
6023 need_assert = true;
6024 }
6025 }
6026 }
6027
d6f10e50 6028 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6029 need_assert = true;
88dbf20f 6030 }
6031 }
d6f10e50 6032
6033 /* Update live. */
6034 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
08b7917c 6035 bitmap_set_bit (live, SSA_NAME_VERSION (op));
d6f10e50 6036 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
08b7917c 6037 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
88dbf20f 6038 }
6039
d6f10e50 6040 /* Traverse all PHI nodes in BB, updating live. */
9af5ce0c 6041 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
17ed8337 6042 {
6043 use_operand_p arg_p;
6044 ssa_op_iter i;
d6f10e50 6045 gimple phi = gsi_stmt (si);
6046 tree res = gimple_phi_result (phi);
6047
6048 if (virtual_operand_p (res))
6049 continue;
f3d56fef 6050
17ed8337 6051 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6052 {
6053 tree arg = USE_FROM_PTR (arg_p);
6054 if (TREE_CODE (arg) == SSA_NAME)
08b7917c 6055 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
17ed8337 6056 }
d6f10e50 6057
08b7917c 6058 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
17ed8337 6059 }
eea12c72 6060
6061 return need_assert;
6062}
6063
17ed8337 6064/* Do an RPO walk over the function computing SSA name liveness
6065 on-the-fly and deciding on assert expressions to insert.
6066 Returns true if there are assert expressions to be inserted. */
6067
6068static bool
6069find_assert_locations (void)
6070{
fe672ac0 6071 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6072 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6073 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
17ed8337 6074 int rpo_cnt, i;
6075 bool need_asserts;
6076
fe672ac0 6077 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
17ed8337 6078 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6079 for (i = 0; i < rpo_cnt; ++i)
6080 bb_rpo[rpo[i]] = i;
6081
92decb41 6082 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6083 the order we compute liveness and insert asserts we otherwise
6084 fail to insert asserts into the loop latch. */
6085 loop_p loop;
f21d4d00 6086 FOR_EACH_LOOP (loop, 0)
92decb41 6087 {
6088 i = loop->latch->index;
6089 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6090 for (gimple_stmt_iterator gsi = gsi_start_phis (loop->header);
6091 !gsi_end_p (gsi); gsi_next (&gsi))
6092 {
6093 gimple phi = gsi_stmt (gsi);
6094 if (virtual_operand_p (gimple_phi_result (phi)))
6095 continue;
6096 tree arg = gimple_phi_arg_def (phi, j);
6097 if (TREE_CODE (arg) == SSA_NAME)
6098 {
6099 if (live[i] == NULL)
6100 {
6101 live[i] = sbitmap_alloc (num_ssa_names);
6102 bitmap_clear (live[i]);
6103 }
6104 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6105 }
6106 }
6107 }
6108
17ed8337 6109 need_asserts = false;
ed7e2206 6110 for (i = rpo_cnt - 1; i >= 0; --i)
17ed8337 6111 {
f5a6b05f 6112 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
17ed8337 6113 edge e;
6114 edge_iterator ei;
6115
6116 if (!live[rpo[i]])
6117 {
6118 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
53c5d9d4 6119 bitmap_clear (live[rpo[i]]);
17ed8337 6120 }
6121
6122 /* Process BB and update the live information with uses in
6123 this block. */
6124 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
6125
6126 /* Merge liveness into the predecessor blocks and free it. */
53c5d9d4 6127 if (!bitmap_empty_p (live[rpo[i]]))
17ed8337 6128 {
6129 int pred_rpo = i;
6130 FOR_EACH_EDGE (e, ei, bb->preds)
6131 {
6132 int pred = e->src->index;
706567b8 6133 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
17ed8337 6134 continue;
6135
6136 if (!live[pred])
6137 {
6138 live[pred] = sbitmap_alloc (num_ssa_names);
53c5d9d4 6139 bitmap_clear (live[pred]);
17ed8337 6140 }
53c5d9d4 6141 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
17ed8337 6142
6143 if (bb_rpo[pred] < pred_rpo)
6144 pred_rpo = bb_rpo[pred];
6145 }
6146
6147 /* Record the RPO number of the last visited block that needs
6148 live information from this block. */
6149 last_rpo[rpo[i]] = pred_rpo;
6150 }
6151 else
6152 {
6153 sbitmap_free (live[rpo[i]]);
6154 live[rpo[i]] = NULL;
6155 }
6156
6157 /* We can free all successors live bitmaps if all their
6158 predecessors have been visited already. */
6159 FOR_EACH_EDGE (e, ei, bb->succs)
6160 if (last_rpo[e->dest->index] == i
6161 && live[e->dest->index])
6162 {
6163 sbitmap_free (live[e->dest->index]);
6164 live[e->dest->index] = NULL;
6165 }
6166 }
6167
6168 XDELETEVEC (rpo);
6169 XDELETEVEC (bb_rpo);
6170 XDELETEVEC (last_rpo);
fe672ac0 6171 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
17ed8337 6172 if (live[i])
6173 sbitmap_free (live[i]);
6174 XDELETEVEC (live);
6175
6176 return need_asserts;
6177}
eea12c72 6178
6179/* Create an ASSERT_EXPR for NAME and insert it in the location
6180 indicated by LOC. Return true if we made any edge insertions. */
6181
6182static bool
6183process_assert_insertions_for (tree name, assert_locus_t loc)
6184{
6185 /* Build the comparison expression NAME_i COMP_CODE VAL. */
75a70cf9 6186 gimple stmt;
6187 tree cond;
6188 gimple assert_stmt;
eea12c72 6189 edge_iterator ei;
6190 edge e;
6191
4fac6da9 6192 /* If we have X <=> X do not insert an assert expr for that. */
6193 if (loc->expr == loc->val)
6194 return false;
6195
bed8bec4 6196 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
75a70cf9 6197 assert_stmt = build_assert_expr_for (cond, name);
eea12c72 6198 if (loc->e)
88dbf20f 6199 {
eea12c72 6200 /* We have been asked to insert the assertion on an edge. This
6201 is used only by COND_EXPR and SWITCH_EXPR assertions. */
1b4345f7 6202 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6203 || (gimple_code (gsi_stmt (loc->si))
6204 == GIMPLE_SWITCH));
88dbf20f 6205
75a70cf9 6206 gsi_insert_on_edge (loc->e, assert_stmt);
eea12c72 6207 return true;
6208 }
2b6719e9 6209
eea12c72 6210 /* Otherwise, we can insert right after LOC->SI iff the
6211 statement must not be the last statement in the block. */
75a70cf9 6212 stmt = gsi_stmt (loc->si);
eea12c72 6213 if (!stmt_ends_bb_p (stmt))
6214 {
75a70cf9 6215 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
eea12c72 6216 return false;
6217 }
2b6719e9 6218
eea12c72 6219 /* If STMT must be the last statement in BB, we can only insert new
6220 assertions on the non-abnormal edge out of BB. Note that since
6221 STMT is not control flow, there may only be one non-abnormal edge
6222 out of BB. */
6223 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6224 if (!(e->flags & EDGE_ABNORMAL))
6225 {
75a70cf9 6226 gsi_insert_on_edge (e, assert_stmt);
eea12c72 6227 return true;
6228 }
88dbf20f 6229
eea12c72 6230 gcc_unreachable ();
6231}
88dbf20f 6232
88dbf20f 6233
eea12c72 6234/* Process all the insertions registered for every name N_i registered
6235 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6236 found in ASSERTS_FOR[i]. */
88dbf20f 6237
eea12c72 6238static void
6239process_assert_insertions (void)
6240{
6241 unsigned i;
6242 bitmap_iterator bi;
6243 bool update_edges_p = false;
6244 int num_asserts = 0;
88dbf20f 6245
eea12c72 6246 if (dump_file && (dump_flags & TDF_DETAILS))
6247 dump_all_asserts (dump_file);
4efa33ae 6248
eea12c72 6249 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6250 {
6251 assert_locus_t loc = asserts_for[i];
6252 gcc_assert (loc);
6253
6254 while (loc)
4efa33ae 6255 {
eea12c72 6256 assert_locus_t next = loc->next;
6257 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6258 free (loc);
6259 loc = next;
6260 num_asserts++;
4efa33ae 6261 }
88dbf20f 6262 }
88dbf20f 6263
eea12c72 6264 if (update_edges_p)
75a70cf9 6265 gsi_commit_edge_inserts ();
88dbf20f 6266
581f8050 6267 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6268 num_asserts);
88dbf20f 6269}
6270
6271
6272/* Traverse the flowgraph looking for conditional jumps to insert range
6273 expressions. These range expressions are meant to provide information
6274 to optimizations that need to reason in terms of value ranges. They
6275 will not be expanded into RTL. For instance, given:
6276
6277 x = ...
6278 y = ...
6279 if (x < y)
6280 y = x - 2;
6281 else
6282 x = y + 3;
6283
6284 this pass will transform the code into:
6285
6286 x = ...
6287 y = ...
6288 if (x < y)
6289 {
6290 x = ASSERT_EXPR <x, x < y>
6291 y = x - 2
6292 }
6293 else
6294 {
54751bcf 6295 y = ASSERT_EXPR <y, x >= y>
88dbf20f 6296 x = y + 3
6297 }
6298
6299 The idea is that once copy and constant propagation have run, other
6300 optimizations will be able to determine what ranges of values can 'x'
6301 take in different paths of the code, simply by checking the reaching
6302 definition of 'x'. */
6303
6304static void
6305insert_range_assertions (void)
6306{
eea12c72 6307 need_assert_for = BITMAP_ALLOC (NULL);
43959b95 6308 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
88dbf20f 6309
6310 calculate_dominance_info (CDI_DOMINATORS);
6311
17ed8337 6312 if (find_assert_locations ())
88dbf20f 6313 {
eea12c72 6314 process_assert_insertions ();
88dbf20f 6315 update_ssa (TODO_update_ssa_no_phi);
6316 }
6317
6318 if (dump_file && (dump_flags & TDF_DETAILS))
6319 {
6320 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6321 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6322 }
6323
eea12c72 6324 free (asserts_for);
6325 BITMAP_FREE (need_assert_for);
88dbf20f 6326}
6327
5bc96398 6328/* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6329 and "struct" hacks. If VRP can determine that the
f2b32076 6330 array subscript is a constant, check if it is outside valid
5bc96398 6331 range. If the array subscript is a RANGE, warn if it is
6332 non-overlapping with valid range.
6333 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6334
6335static void
e60a6f7b 6336check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5bc96398 6337{
6338 value_range_t* vr = NULL;
6339 tree low_sub, up_sub;
c26ce8a9 6340 tree low_bound, up_bound, up_bound_p1;
6341 tree base;
6342
6343 if (TREE_NO_WARNING (ref))
6344 return;
5bc96398 6345
6346 low_sub = up_sub = TREE_OPERAND (ref, 1);
c26ce8a9 6347 up_bound = array_ref_up_bound (ref);
5bc96398 6348
c26ce8a9 6349 /* Can not check flexible arrays. */
6350 if (!up_bound
6351 || TREE_CODE (up_bound) != INTEGER_CST)
5bc96398 6352 return;
6353
c26ce8a9 6354 /* Accesses to trailing arrays via pointers may access storage
6355 beyond the types array bounds. */
6356 base = get_base_address (ref);
182cf5a9 6357 if (base && TREE_CODE (base) == MEM_REF)
c26ce8a9 6358 {
6359 tree cref, next = NULL_TREE;
6360
6361 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6362 return;
6363
6364 cref = TREE_OPERAND (ref, 0);
6365 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
1767a056 6366 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
c26ce8a9 6367 next && TREE_CODE (next) != FIELD_DECL;
1767a056 6368 next = DECL_CHAIN (next))
c26ce8a9 6369 ;
6370
6371 /* If this is the last field in a struct type or a field in a
6372 union type do not warn. */
6373 if (!next)
6374 return;
6375 }
6376
5bc96398 6377 low_bound = array_ref_low_bound (ref);
ddb1be65 6378 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
e913b5cd 6379 build_int_cst (TREE_TYPE (up_bound), 1));
5bc96398 6380
6381 if (TREE_CODE (low_sub) == SSA_NAME)
6382 {
6383 vr = get_value_range (low_sub);
6384 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6385 {
6386 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6387 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6388 }
6389 }
6390
6391 if (vr && vr->type == VR_ANTI_RANGE)
6392 {
6393 if (TREE_CODE (up_sub) == INTEGER_CST
6394 && tree_int_cst_lt (up_bound, up_sub)
6395 && TREE_CODE (low_sub) == INTEGER_CST
6396 && tree_int_cst_lt (low_sub, low_bound))
6397 {
496ffe87 6398 warning_at (location, OPT_Warray_bounds,
6399 "array subscript is outside array bounds");
5bc96398 6400 TREE_NO_WARNING (ref) = 1;
6401 }
6402 }
6403 else if (TREE_CODE (up_sub) == INTEGER_CST
c26ce8a9 6404 && (ignore_off_by_one
6405 ? (tree_int_cst_lt (up_bound, up_sub)
6406 && !tree_int_cst_equal (up_bound_p1, up_sub))
6407 : (tree_int_cst_lt (up_bound, up_sub)
6408 || tree_int_cst_equal (up_bound_p1, up_sub))))
5bc96398 6409 {
1e24c0c9 6410 if (dump_file && (dump_flags & TDF_DETAILS))
6411 {
6412 fprintf (dump_file, "Array bound warning for ");
6413 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4d739378 6414 fprintf (dump_file, "\n");
1e24c0c9 6415 }
496ffe87 6416 warning_at (location, OPT_Warray_bounds,
6417 "array subscript is above array bounds");
5bc96398 6418 TREE_NO_WARNING (ref) = 1;
6419 }
6420 else if (TREE_CODE (low_sub) == INTEGER_CST
6421 && tree_int_cst_lt (low_sub, low_bound))
6422 {
1e24c0c9 6423 if (dump_file && (dump_flags & TDF_DETAILS))
6424 {
6425 fprintf (dump_file, "Array bound warning for ");
6426 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4d739378 6427 fprintf (dump_file, "\n");
1e24c0c9 6428 }
496ffe87 6429 warning_at (location, OPT_Warray_bounds,
6430 "array subscript is below array bounds");
5bc96398 6431 TREE_NO_WARNING (ref) = 1;
6432 }
6433}
6434
7988a017 6435/* Searches if the expr T, located at LOCATION computes
6436 address of an ARRAY_REF, and call check_array_ref on it. */
6437
6438static void
496ffe87 6439search_for_addr_array (tree t, location_t location)
7988a017 6440{
6441 while (TREE_CODE (t) == SSA_NAME)
6442 {
75a70cf9 6443 gimple g = SSA_NAME_DEF_STMT (t);
6444
6445 if (gimple_code (g) != GIMPLE_ASSIGN)
7988a017 6446 return;
75a70cf9 6447
48e1416a 6448 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
8fa85fc5 6449 != GIMPLE_SINGLE_RHS)
75a70cf9 6450 return;
6451
6452 t = gimple_assign_rhs1 (g);
7988a017 6453 }
6454
6455
6456 /* We are only interested in addresses of ARRAY_REF's. */
48e1416a 6457 if (TREE_CODE (t) != ADDR_EXPR)
7988a017 6458 return;
6459
6460 /* Check each ARRAY_REFs in the reference chain. */
48e1416a 6461 do
7988a017 6462 {
6463 if (TREE_CODE (t) == ARRAY_REF)
e60a6f7b 6464 check_array_ref (location, t, true /*ignore_off_by_one*/);
7988a017 6465
8fa85fc5 6466 t = TREE_OPERAND (t, 0);
7988a017 6467 }
6468 while (handled_component_p (t));
182cf5a9 6469
6470 if (TREE_CODE (t) == MEM_REF
6471 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6472 && !TREE_NO_WARNING (t))
6473 {
6474 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6475 tree low_bound, up_bound, el_sz;
5de9d3ed 6476 offset_int idx;
182cf5a9 6477 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6478 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6479 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6480 return;
6481
6482 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6483 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6484 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6485 if (!low_bound
6486 || TREE_CODE (low_bound) != INTEGER_CST
6487 || !up_bound
6488 || TREE_CODE (up_bound) != INTEGER_CST
6489 || !el_sz
6490 || TREE_CODE (el_sz) != INTEGER_CST)
6491 return;
6492
6493 idx = mem_ref_offset (t);
5de9d3ed 6494 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
796b6678 6495 if (wi::lts_p (idx, 0))
182cf5a9 6496 {
1e24c0c9 6497 if (dump_file && (dump_flags & TDF_DETAILS))
6498 {
6499 fprintf (dump_file, "Array bound warning for ");
6500 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4d739378 6501 fprintf (dump_file, "\n");
1e24c0c9 6502 }
182cf5a9 6503 warning_at (location, OPT_Warray_bounds,
6504 "array subscript is below array bounds");
6505 TREE_NO_WARNING (t) = 1;
6506 }
5de9d3ed 6507 else if (wi::gts_p (idx, (wi::to_offset (up_bound)
6508 - wi::to_offset (low_bound) + 1)))
182cf5a9 6509 {
1e24c0c9 6510 if (dump_file && (dump_flags & TDF_DETAILS))
6511 {
6512 fprintf (dump_file, "Array bound warning for ");
6513 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4d739378 6514 fprintf (dump_file, "\n");
1e24c0c9 6515 }
182cf5a9 6516 warning_at (location, OPT_Warray_bounds,
6517 "array subscript is above array bounds");
6518 TREE_NO_WARNING (t) = 1;
6519 }
6520 }
7988a017 6521}
6522
5bc96398 6523/* walk_tree() callback that checks if *TP is
6524 an ARRAY_REF inside an ADDR_EXPR (in which an array
6525 subscript one outside the valid range is allowed). Call
48e1416a 6526 check_array_ref for each ARRAY_REF found. The location is
5bc96398 6527 passed in DATA. */
6528
6529static tree
6530check_array_bounds (tree *tp, int *walk_subtree, void *data)
6531{
6532 tree t = *tp;
75a70cf9 6533 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
e60a6f7b 6534 location_t location;
6535
6536 if (EXPR_HAS_LOCATION (t))
6537 location = EXPR_LOCATION (t);
6538 else
6539 {
6540 location_t *locp = (location_t *) wi->info;
6541 location = *locp;
6542 }
5d19e882 6543
5bc96398 6544 *walk_subtree = TRUE;
6545
6546 if (TREE_CODE (t) == ARRAY_REF)
e60a6f7b 6547 check_array_ref (location, t, false /*ignore_off_by_one*/);
533a9fbc 6548
182cf5a9 6549 if (TREE_CODE (t) == MEM_REF
7988a017 6550 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
e60a6f7b 6551 search_for_addr_array (TREE_OPERAND (t, 0), location);
5bc96398 6552
7988a017 6553 if (TREE_CODE (t) == ADDR_EXPR)
6554 *walk_subtree = FALSE;
6555
5bc96398 6556 return NULL_TREE;
6557}
6558
6559/* Walk over all statements of all reachable BBs and call check_array_bounds
6560 on them. */
6561
6562static void
6563check_all_array_refs (void)
6564{
6565 basic_block bb;
75a70cf9 6566 gimple_stmt_iterator si;
5bc96398 6567
fc00614f 6568 FOR_EACH_BB_FN (bb, cfun)
5bc96398 6569 {
8b938617 6570 edge_iterator ei;
6571 edge e;
6572 bool executable = false;
496ffe87 6573
8b938617 6574 /* Skip blocks that were found to be unreachable. */
6575 FOR_EACH_EDGE (e, ei, bb->preds)
6576 executable |= !!(e->flags & EDGE_EXECUTABLE);
6577 if (!executable)
6578 continue;
5bc96398 6579
75a70cf9 6580 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6581 {
6582 gimple stmt = gsi_stmt (si);
75a70cf9 6583 struct walk_stmt_info wi;
6584 if (!gimple_has_location (stmt))
6585 continue;
6586
6587 if (is_gimple_call (stmt))
6588 {
6589 size_t i;
6590 size_t n = gimple_call_num_args (stmt);
6591 for (i = 0; i < n; i++)
6592 {
6593 tree arg = gimple_call_arg (stmt, i);
496ffe87 6594 search_for_addr_array (arg, gimple_location (stmt));
75a70cf9 6595 }
6596 }
6597 else
6598 {
6599 memset (&wi, 0, sizeof (wi));
496ffe87 6600 wi.info = CONST_CAST (void *, (const void *)
6601 gimple_location_ptr (stmt));
75a70cf9 6602
6603 walk_gimple_op (gsi_stmt (si),
6604 check_array_bounds,
6605 &wi);
6606 }
6607 }
5bc96398 6608 }
6609}
88dbf20f 6610
d9d5743f 6611/* Return true if all imm uses of VAR are either in STMT, or
6612 feed (optionally through a chain of single imm uses) GIMPLE_COND
6613 in basic block COND_BB. */
6614
6615static bool
6616all_imm_uses_in_stmt_or_feed_cond (tree var, gimple stmt, basic_block cond_bb)
6617{
6618 use_operand_p use_p, use2_p;
6619 imm_use_iterator iter;
6620
6621 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6622 if (USE_STMT (use_p) != stmt)
6623 {
5c8091dd 6624 gimple use_stmt = USE_STMT (use_p), use_stmt2;
d9d5743f 6625 if (is_gimple_debug (use_stmt))
6626 continue;
6627 while (is_gimple_assign (use_stmt)
5c8091dd 6628 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
d9d5743f 6629 && single_imm_use (gimple_assign_lhs (use_stmt),
5c8091dd 6630 &use2_p, &use_stmt2))
6631 use_stmt = use_stmt2;
d9d5743f 6632 if (gimple_code (use_stmt) != GIMPLE_COND
6633 || gimple_bb (use_stmt) != cond_bb)
6634 return false;
6635 }
6636 return true;
6637}
6638
2d6ffc28 6639/* Handle
6640 _4 = x_3 & 31;
6641 if (_4 != 0)
6642 goto <bb 6>;
6643 else
6644 goto <bb 7>;
6645 <bb 6>:
6646 __builtin_unreachable ();
6647 <bb 7>:
6648 x_5 = ASSERT_EXPR <x_3, ...>;
6649 If x_3 has no other immediate uses (checked by caller),
6650 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6651 from the non-zero bitmask. */
6652
6653static void
6654maybe_set_nonzero_bits (basic_block bb, tree var)
6655{
6656 edge e = single_pred_edge (bb);
6657 basic_block cond_bb = e->src;
6658 gimple stmt = last_stmt (cond_bb);
6659 tree cst;
6660
6661 if (stmt == NULL
6662 || gimple_code (stmt) != GIMPLE_COND
6663 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6664 ? EQ_EXPR : NE_EXPR)
6665 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6666 || !integer_zerop (gimple_cond_rhs (stmt)))
6667 return;
6668
6669 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6670 if (!is_gimple_assign (stmt)
6671 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6672 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6673 return;
6674 if (gimple_assign_rhs1 (stmt) != var)
6675 {
6676 gimple stmt2;
6677
6678 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6679 return;
6680 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6681 if (!gimple_assign_cast_p (stmt2)
6682 || gimple_assign_rhs1 (stmt2) != var
6683 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6684 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6685 != TYPE_PRECISION (TREE_TYPE (var))))
6686 return;
6687 }
6688 cst = gimple_assign_rhs2 (stmt);
9c1be15e 6689 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
2d6ffc28 6690}
6691
4dd9ed13 6692/* Convert range assertion expressions into the implied copies and
6693 copy propagate away the copies. Doing the trivial copy propagation
6694 here avoids the need to run the full copy propagation pass after
48e1416a 6695 VRP.
6696
eea12c72 6697 FIXME, this will eventually lead to copy propagation removing the
6698 names that had useful range information attached to them. For
6699 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6700 then N_i will have the range [3, +INF].
48e1416a 6701
eea12c72 6702 However, by converting the assertion into the implied copy
6703 operation N_i = N_j, we will then copy-propagate N_j into the uses
6704 of N_i and lose the range information. We may want to hold on to
6705 ASSERT_EXPRs a little while longer as the ranges could be used in
6706 things like jump threading.
48e1416a 6707
eea12c72 6708 The problem with keeping ASSERT_EXPRs around is that passes after
48e1416a 6709 VRP need to handle them appropriately.
4dd9ed13 6710
6711 Another approach would be to make the range information a first
6712 class property of the SSA_NAME so that it can be queried from
6713 any pass. This is made somewhat more complex by the need for
6714 multiple ranges to be associated with one SSA_NAME. */
88dbf20f 6715
6716static void
6717remove_range_assertions (void)
6718{
6719 basic_block bb;
75a70cf9 6720 gimple_stmt_iterator si;
d9d5743f 6721 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6722 a basic block preceeded by GIMPLE_COND branching to it and
6723 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6724 int is_unreachable;
88dbf20f 6725
4dd9ed13 6726 /* Note that the BSI iterator bump happens at the bottom of the
6727 loop and no bump is necessary if we're removing the statement
6728 referenced by the current BSI. */
fc00614f 6729 FOR_EACH_BB_FN (bb, cfun)
d9d5743f 6730 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
88dbf20f 6731 {
75a70cf9 6732 gimple stmt = gsi_stmt (si);
6733 gimple use_stmt;
88dbf20f 6734
75a70cf9 6735 if (is_gimple_assign (stmt)
6736 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
88dbf20f 6737 {
d9d5743f 6738 tree lhs = gimple_assign_lhs (stmt);
75a70cf9 6739 tree rhs = gimple_assign_rhs1 (stmt);
6740 tree var;
88dbf20f 6741 tree cond = fold (ASSERT_EXPR_COND (rhs));
4dd9ed13 6742 use_operand_p use_p;
6743 imm_use_iterator iter;
6744
88dbf20f 6745 gcc_assert (cond != boolean_false_node);
4dd9ed13 6746
63945aec 6747 var = ASSERT_EXPR_VAR (rhs);
d9d5743f 6748 gcc_assert (TREE_CODE (var) == SSA_NAME);
6749
6750 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6751 && SSA_NAME_RANGE_INFO (lhs))
6752 {
6753 if (is_unreachable == -1)
6754 {
6755 is_unreachable = 0;
6756 if (single_pred_p (bb)
6757 && assert_unreachable_fallthru_edge_p
6758 (single_pred_edge (bb)))
6759 is_unreachable = 1;
6760 }
6761 /* Handle
6762 if (x_7 >= 10 && x_7 < 20)
6763 __builtin_unreachable ();
6764 x_8 = ASSERT_EXPR <x_7, ...>;
6765 if the only uses of x_7 are in the ASSERT_EXPR and
6766 in the condition. In that case, we can copy the
6767 range info from x_8 computed in this pass also
6768 for x_7. */
6769 if (is_unreachable
6770 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6771 single_pred (bb)))
2d6ffc28 6772 {
0c20fe49 6773 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
9c1be15e 6774 SSA_NAME_RANGE_INFO (lhs)->get_min (),
6775 SSA_NAME_RANGE_INFO (lhs)->get_max ());
2d6ffc28 6776 maybe_set_nonzero_bits (bb, var);
6777 }
d9d5743f 6778 }
6779
6780 /* Propagate the RHS into every use of the LHS. */
6781 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
09aca5bc 6782 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
d9d5743f 6783 SET_USE (use_p, var);
4dd9ed13 6784
6785 /* And finally, remove the copy, it is not needed. */
75a70cf9 6786 gsi_remove (&si, true);
48e1416a 6787 release_defs (stmt);
88dbf20f 6788 }
4dd9ed13 6789 else
d9d5743f 6790 {
519aed8f 6791 if (!is_gimple_debug (gsi_stmt (si)))
6792 is_unreachable = 0;
d9d5743f 6793 gsi_next (&si);
d9d5743f 6794 }
88dbf20f 6795 }
6796}
6797
6798
6799/* Return true if STMT is interesting for VRP. */
6800
6801static bool
75a70cf9 6802stmt_interesting_for_vrp (gimple stmt)
88dbf20f 6803{
7c782c9b 6804 if (gimple_code (stmt) == GIMPLE_PHI)
6805 {
6806 tree res = gimple_phi_result (stmt);
6807 return (!virtual_operand_p (res)
6808 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6809 || POINTER_TYPE_P (TREE_TYPE (res))));
6810 }
75a70cf9 6811 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
88dbf20f 6812 {
75a70cf9 6813 tree lhs = gimple_get_lhs (stmt);
88dbf20f 6814
04dde933 6815 /* In general, assignments with virtual operands are not useful
6816 for deriving ranges, with the obvious exception of calls to
6817 builtin functions. */
75a70cf9 6818 if (lhs && TREE_CODE (lhs) == SSA_NAME
88dbf20f 6819 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6820 || POINTER_TYPE_P (TREE_TYPE (lhs)))
d7dcba40 6821 && (is_gimple_call (stmt)
dd277d48 6822 || !gimple_vuse (stmt)))
88dbf20f 6823 return true;
6824 }
75a70cf9 6825 else if (gimple_code (stmt) == GIMPLE_COND
6826 || gimple_code (stmt) == GIMPLE_SWITCH)
88dbf20f 6827 return true;
6828
6829 return false;
6830}
6831
6832
011528fc 6833/* Initialize local data structures for VRP. */
88dbf20f 6834
eea12c72 6835static void
88dbf20f 6836vrp_initialize (void)
6837{
6838 basic_block bb;
88dbf20f 6839
e0186710 6840 values_propagated = false;
6841 num_vr_values = num_ssa_names;
6842 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
5c7155ca 6843 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
88dbf20f 6844
fc00614f 6845 FOR_EACH_BB_FN (bb, cfun)
88dbf20f 6846 {
75a70cf9 6847 gimple_stmt_iterator si;
88dbf20f 6848
75a70cf9 6849 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
88dbf20f 6850 {
75a70cf9 6851 gimple phi = gsi_stmt (si);
88dbf20f 6852 if (!stmt_interesting_for_vrp (phi))
6853 {
6854 tree lhs = PHI_RESULT (phi);
e7d43f99 6855 set_value_range_to_varying (get_value_range (lhs));
75a70cf9 6856 prop_set_simulate_again (phi, false);
88dbf20f 6857 }
6858 else
75a70cf9 6859 prop_set_simulate_again (phi, true);
88dbf20f 6860 }
6861
75a70cf9 6862 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
88dbf20f 6863 {
75a70cf9 6864 gimple stmt = gsi_stmt (si);
88dbf20f 6865
2193544e 6866 /* If the statement is a control insn, then we do not
6867 want to avoid simulating the statement once. Failure
6868 to do so means that those edges will never get added. */
6869 if (stmt_ends_bb_p (stmt))
6870 prop_set_simulate_again (stmt, true);
6871 else if (!stmt_interesting_for_vrp (stmt))
88dbf20f 6872 {
6873 ssa_op_iter i;
6874 tree def;
6875 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
e7d43f99 6876 set_value_range_to_varying (get_value_range (def));
75a70cf9 6877 prop_set_simulate_again (stmt, false);
88dbf20f 6878 }
6879 else
2193544e 6880 prop_set_simulate_again (stmt, true);
88dbf20f 6881 }
6882 }
88dbf20f 6883}
6884
1d0b727d 6885/* Return the singleton value-range for NAME or NAME. */
6886
6887static inline tree
6888vrp_valueize (tree name)
6889{
6890 if (TREE_CODE (name) == SSA_NAME)
6891 {
6892 value_range_t *vr = get_value_range (name);
6893 if (vr->type == VR_RANGE
6894 && (vr->min == vr->max
6895 || operand_equal_p (vr->min, vr->max, 0)))
6896 return vr->min;
6897 }
6898 return name;
6899}
88dbf20f 6900
6901/* Visit assignment STMT. If it produces an interesting range, record
6902 the SSA name in *OUTPUT_P. */
6903
6904static enum ssa_prop_result
75a70cf9 6905vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
88dbf20f 6906{
75a70cf9 6907 tree def, lhs;
88dbf20f 6908 ssa_op_iter iter;
75a70cf9 6909 enum gimple_code code = gimple_code (stmt);
6910 lhs = gimple_get_lhs (stmt);
88dbf20f 6911
6912 /* We only keep track of ranges in integral and pointer types. */
6913 if (TREE_CODE (lhs) == SSA_NAME
f064ebd1 6914 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6915 /* It is valid to have NULL MIN/MAX values on a type. See
6916 build_range_type. */
6917 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
6918 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
88dbf20f 6919 || POINTER_TYPE_P (TREE_TYPE (lhs))))
6920 {
748eb1f9 6921 value_range_t new_vr = VR_INITIALIZER;
eea12c72 6922
1d0b727d 6923 /* Try folding the statement to a constant first. */
6924 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
3dad27e9 6925 if (tem)
6926 set_value_range_to_value (&new_vr, tem, NULL);
1d0b727d 6927 /* Then dispatch to value-range extracting functions. */
6928 else if (code == GIMPLE_CALL)
75a70cf9 6929 extract_range_basic (&new_vr, stmt);
6930 else
6931 extract_range_from_assignment (&new_vr, stmt);
88dbf20f 6932
eea12c72 6933 if (update_value_range (lhs, &new_vr))
88dbf20f 6934 {
6935 *output_p = lhs;
6936
6937 if (dump_file && (dump_flags & TDF_DETAILS))
6938 {
eea12c72 6939 fprintf (dump_file, "Found new range for ");
88dbf20f 6940 print_generic_expr (dump_file, lhs, 0);
eea12c72 6941 fprintf (dump_file, ": ");
6942 dump_value_range (dump_file, &new_vr);
0d4c8cda 6943 fprintf (dump_file, "\n");
88dbf20f 6944 }
6945
6946 if (new_vr.type == VR_VARYING)
6947 return SSA_PROP_VARYING;
6948
6949 return SSA_PROP_INTERESTING;
6950 }
6951
6952 return SSA_PROP_NOT_INTERESTING;
6953 }
48e1416a 6954
eea12c72 6955 /* Every other statement produces no useful ranges. */
88dbf20f 6956 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
e7d43f99 6957 set_value_range_to_varying (get_value_range (def));
88dbf20f 6958
6959 return SSA_PROP_VARYING;
6960}
6961
fbcece5e 6962/* Helper that gets the value range of the SSA_NAME with version I
310d2511 6963 or a symbolic range containing the SSA_NAME only if the value range
fbcece5e 6964 is varying or undefined. */
6965
6966static inline value_range_t
6967get_vr_for_comparison (int i)
6968{
e0186710 6969 value_range_t vr = *get_value_range (ssa_name (i));
fbcece5e 6970
6971 /* If name N_i does not have a valid range, use N_i as its own
6972 range. This allows us to compare against names that may
6973 have N_i in their ranges. */
6974 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
6975 {
6976 vr.type = VR_RANGE;
6977 vr.min = ssa_name (i);
6978 vr.max = ssa_name (i);
6979 }
6980
6981 return vr;
6982}
88dbf20f 6983
eea12c72 6984/* Compare all the value ranges for names equivalent to VAR with VAL
6985 using comparison code COMP. Return the same value returned by
c3783c3b 6986 compare_range_with_value, including the setting of
6987 *STRICT_OVERFLOW_P. */
eea12c72 6988
6989static tree
c3783c3b 6990compare_name_with_value (enum tree_code comp, tree var, tree val,
6991 bool *strict_overflow_p)
eea12c72 6992{
6993 bitmap_iterator bi;
6994 unsigned i;
6995 bitmap e;
6996 tree retval, t;
c3783c3b 6997 int used_strict_overflow;
fbcece5e 6998 bool sop;
6999 value_range_t equiv_vr;
eea12c72 7000
7001 /* Get the set of equivalences for VAR. */
7002 e = get_value_range (var)->equiv;
7003
c3783c3b 7004 /* Start at -1. Set it to 0 if we do a comparison without relying
7005 on overflow, or 1 if all comparisons rely on overflow. */
7006 used_strict_overflow = -1;
7007
fbcece5e 7008 /* Compare vars' value range with val. */
7009 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7010 sop = false;
7011 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7192d2a6 7012 if (retval)
7013 used_strict_overflow = sop ? 1 : 0;
eea12c72 7014
fbcece5e 7015 /* If the equiv set is empty we have done all work we need to do. */
7016 if (e == NULL)
7017 {
7018 if (retval
7019 && used_strict_overflow > 0)
7020 *strict_overflow_p = true;
7021 return retval;
7022 }
eea12c72 7023
fbcece5e 7024 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7025 {
7026 equiv_vr = get_vr_for_comparison (i);
c3783c3b 7027 sop = false;
7028 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
eea12c72 7029 if (t)
7030 {
79f0a894 7031 /* If we get different answers from different members
7032 of the equivalence set this check must be in a dead
7033 code region. Folding it to a trap representation
7034 would be correct here. For now just return don't-know. */
7035 if (retval != NULL
7036 && t != retval)
7037 {
7038 retval = NULL_TREE;
7039 break;
7040 }
eea12c72 7041 retval = t;
c3783c3b 7042
7043 if (!sop)
7044 used_strict_overflow = 0;
7045 else if (used_strict_overflow < 0)
7046 used_strict_overflow = 1;
eea12c72 7047 }
7048 }
7049
fbcece5e 7050 if (retval
7051 && used_strict_overflow > 0)
7052 *strict_overflow_p = true;
eea12c72 7053
fbcece5e 7054 return retval;
eea12c72 7055}
7056
7057
7058/* Given a comparison code COMP and names N1 and N2, compare all the
9aff9709 7059 ranges equivalent to N1 against all the ranges equivalent to N2
eea12c72 7060 to determine the value of N1 COMP N2. Return the same value
c3783c3b 7061 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7062 whether we relied on an overflow infinity in the comparison. */
7063
88dbf20f 7064
7065static tree
c3783c3b 7066compare_names (enum tree_code comp, tree n1, tree n2,
7067 bool *strict_overflow_p)
eea12c72 7068{
7069 tree t, retval;
7070 bitmap e1, e2;
7071 bitmap_iterator bi1, bi2;
7072 unsigned i1, i2;
c3783c3b 7073 int used_strict_overflow;
fbcece5e 7074 static bitmap_obstack *s_obstack = NULL;
7075 static bitmap s_e1 = NULL, s_e2 = NULL;
eea12c72 7076
7077 /* Compare the ranges of every name equivalent to N1 against the
7078 ranges of every name equivalent to N2. */
7079 e1 = get_value_range (n1)->equiv;
7080 e2 = get_value_range (n2)->equiv;
7081
fbcece5e 7082 /* Use the fake bitmaps if e1 or e2 are not available. */
7083 if (s_obstack == NULL)
7084 {
7085 s_obstack = XNEW (bitmap_obstack);
7086 bitmap_obstack_initialize (s_obstack);
7087 s_e1 = BITMAP_ALLOC (s_obstack);
7088 s_e2 = BITMAP_ALLOC (s_obstack);
7089 }
7090 if (e1 == NULL)
7091 e1 = s_e1;
7092 if (e2 == NULL)
7093 e2 = s_e2;
7094
eea12c72 7095 /* Add N1 and N2 to their own set of equivalences to avoid
7096 duplicating the body of the loop just to check N1 and N2
7097 ranges. */
7098 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7099 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7100
7101 /* If the equivalence sets have a common intersection, then the two
7102 names can be compared without checking their ranges. */
7103 if (bitmap_intersect_p (e1, e2))
7104 {
7105 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7106 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7107
7108 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7109 ? boolean_true_node
7110 : boolean_false_node;
7111 }
7112
c3783c3b 7113 /* Start at -1. Set it to 0 if we do a comparison without relying
7114 on overflow, or 1 if all comparisons rely on overflow. */
7115 used_strict_overflow = -1;
7116
eea12c72 7117 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7118 N2 to their own set of equivalences to avoid duplicating the body
7119 of the loop just to check N1 and N2 ranges. */
7120 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7121 {
fbcece5e 7122 value_range_t vr1 = get_vr_for_comparison (i1);
eea12c72 7123
7124 t = retval = NULL_TREE;
7125 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7126 {
29188799 7127 bool sop = false;
c3783c3b 7128
fbcece5e 7129 value_range_t vr2 = get_vr_for_comparison (i2);
eea12c72 7130
c3783c3b 7131 t = compare_ranges (comp, &vr1, &vr2, &sop);
eea12c72 7132 if (t)
7133 {
79f0a894 7134 /* If we get different answers from different members
7135 of the equivalence set this check must be in a dead
7136 code region. Folding it to a trap representation
7137 would be correct here. For now just return don't-know. */
7138 if (retval != NULL
7139 && t != retval)
7140 {
7141 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7142 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7143 return NULL_TREE;
7144 }
eea12c72 7145 retval = t;
c3783c3b 7146
7147 if (!sop)
7148 used_strict_overflow = 0;
7149 else if (used_strict_overflow < 0)
7150 used_strict_overflow = 1;
eea12c72 7151 }
7152 }
7153
7154 if (retval)
7155 {
7156 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7157 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
c3783c3b 7158 if (used_strict_overflow > 0)
7159 *strict_overflow_p = true;
eea12c72 7160 return retval;
7161 }
7162 }
7163
7164 /* None of the equivalent ranges are useful in computing this
7165 comparison. */
7166 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7167 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7168 return NULL_TREE;
7169}
7170
e0ad89bd 7171/* Helper function for vrp_evaluate_conditional_warnv. */
7172
7173static tree
7174vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7175 tree op0, tree op1,
7176 bool * strict_overflow_p)
7177{
7178 value_range_t *vr0, *vr1;
7179
7180 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7181 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7182
949d4c6f 7183 tree res = NULL_TREE;
e0ad89bd 7184 if (vr0 && vr1)
949d4c6f 7185 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7186 if (!res && vr0)
7187 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7188 if (!res && vr1)
7189 res = (compare_range_with_value
e0ad89bd 7190 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
949d4c6f 7191 return res;
e0ad89bd 7192}
7193
93116081 7194/* Helper function for vrp_evaluate_conditional_warnv. */
7195
7196static tree
7197vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7198 tree op1, bool use_equiv_p,
e0ad89bd 7199 bool *strict_overflow_p, bool *only_ranges)
93116081 7200{
e0ad89bd 7201 tree ret;
7202 if (only_ranges)
7203 *only_ranges = true;
7204
93116081 7205 /* We only deal with integral and pointer types. */
7206 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7207 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7208 return NULL_TREE;
7209
7210 if (use_equiv_p)
7211 {
e0ad89bd 7212 if (only_ranges
7213 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7214 (code, op0, op1, strict_overflow_p)))
7215 return ret;
7216 *only_ranges = false;
93116081 7217 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
75a70cf9 7218 return compare_names (code, op0, op1, strict_overflow_p);
93116081 7219 else if (TREE_CODE (op0) == SSA_NAME)
75a70cf9 7220 return compare_name_with_value (code, op0, op1, strict_overflow_p);
93116081 7221 else if (TREE_CODE (op1) == SSA_NAME)
7222 return (compare_name_with_value
75a70cf9 7223 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
93116081 7224 }
7225 else
e0ad89bd 7226 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
7227 strict_overflow_p);
93116081 7228 return NULL_TREE;
7229}
eea12c72 7230
ced5bc56 7231/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
a2a1fde2 7232 information. Return NULL if the conditional can not be evaluated.
7233 The ranges of all the names equivalent with the operands in COND
7234 will be used when trying to compute the value. If the result is
7235 based on undefined signed overflow, issue a warning if
7236 appropriate. */
7237
07aee51b 7238static tree
75a70cf9 7239vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
a2a1fde2 7240{
7241 bool sop;
7242 tree ret;
e0ad89bd 7243 bool only_ranges;
a2a1fde2 7244
a000e0d1 7245 /* Some passes and foldings leak constants with overflow flag set
7246 into the IL. Avoid doing wrong things with these and bail out. */
7247 if ((TREE_CODE (op0) == INTEGER_CST
7248 && TREE_OVERFLOW (op0))
7249 || (TREE_CODE (op1) == INTEGER_CST
7250 && TREE_OVERFLOW (op1)))
7251 return NULL_TREE;
7252
a2a1fde2 7253 sop = false;
e0ad89bd 7254 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7255 &only_ranges);
a2a1fde2 7256
7257 if (ret && sop)
7258 {
7259 enum warn_strict_overflow_code wc;
7260 const char* warnmsg;
7261
7262 if (is_gimple_min_invariant (ret))
7263 {
7264 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7265 warnmsg = G_("assuming signed overflow does not occur when "
7266 "simplifying conditional to constant");
7267 }
7268 else
7269 {
7270 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7271 warnmsg = G_("assuming signed overflow does not occur when "
7272 "simplifying conditional");
7273 }
7274
7275 if (issue_strict_overflow_warning (wc))
7276 {
75a70cf9 7277 location_t location;
a2a1fde2 7278
75a70cf9 7279 if (!gimple_has_location (stmt))
7280 location = input_location;
a2a1fde2 7281 else
75a70cf9 7282 location = gimple_location (stmt);
5fb6a912 7283 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
a2a1fde2 7284 }
7285 }
7286
100b67da 7287 if (warn_type_limits
e0ad89bd 7288 && ret && only_ranges
ced5bc56 7289 && TREE_CODE_CLASS (code) == tcc_comparison
7290 && TREE_CODE (op0) == SSA_NAME)
100b67da 7291 {
7292 /* If the comparison is being folded and the operand on the LHS
7293 is being compared against a constant value that is outside of
7294 the natural range of OP0's type, then the predicate will
7295 always fold regardless of the value of OP0. If -Wtype-limits
7296 was specified, emit a warning. */
100b67da 7297 tree type = TREE_TYPE (op0);
7298 value_range_t *vr0 = get_value_range (op0);
7299
7300 if (vr0->type != VR_VARYING
7301 && INTEGRAL_TYPE_P (type)
7302 && vrp_val_is_min (vr0->min)
7303 && vrp_val_is_max (vr0->max)
7304 && is_gimple_min_invariant (op1))
100b67da 7305 {
75a70cf9 7306 location_t location;
100b67da 7307
75a70cf9 7308 if (!gimple_has_location (stmt))
7309 location = input_location;
100b67da 7310 else
75a70cf9 7311 location = gimple_location (stmt);
100b67da 7312
48e1416a 7313 warning_at (location, OPT_Wtype_limits,
5fb6a912 7314 integer_zerop (ret)
0aec0de8 7315 ? G_("comparison always false "
7316 "due to limited range of data type")
7317 : G_("comparison always true "
7318 "due to limited range of data type"));
100b67da 7319 }
7320 }
7321
a2a1fde2 7322 return ret;
7323}
7324
88dbf20f 7325
7326/* Visit conditional statement STMT. If we can determine which edge
7327 will be taken out of STMT's basic block, record it in
7328 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7329 SSA_PROP_VARYING. */
7330
7331static enum ssa_prop_result
75a70cf9 7332vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
88dbf20f 7333{
75a70cf9 7334 tree val;
c3783c3b 7335 bool sop;
88dbf20f 7336
7337 *taken_edge_p = NULL;
88dbf20f 7338
7339 if (dump_file && (dump_flags & TDF_DETAILS))
7340 {
7341 tree use;
7342 ssa_op_iter i;
7343
7344 fprintf (dump_file, "\nVisiting conditional with predicate: ");
75a70cf9 7345 print_gimple_stmt (dump_file, stmt, 0, 0);
88dbf20f 7346 fprintf (dump_file, "\nWith known ranges\n");
48e1416a 7347
88dbf20f 7348 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7349 {
7350 fprintf (dump_file, "\t");
7351 print_generic_expr (dump_file, use, 0);
7352 fprintf (dump_file, ": ");
eea12c72 7353 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
88dbf20f 7354 }
7355
7356 fprintf (dump_file, "\n");
7357 }
7358
7359 /* Compute the value of the predicate COND by checking the known
eea12c72 7360 ranges of each of its operands.
48e1416a 7361
eea12c72 7362 Note that we cannot evaluate all the equivalent ranges here
7363 because those ranges may not yet be final and with the current
7364 propagation strategy, we cannot determine when the value ranges
7365 of the names in the equivalence set have changed.
7366
7367 For instance, given the following code fragment
7368
7369 i_5 = PHI <8, i_13>
7370 ...
7371 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7372 if (i_14 == 1)
7373 ...
7374
7375 Assume that on the first visit to i_14, i_5 has the temporary
7376 range [8, 8] because the second argument to the PHI function is
7377 not yet executable. We derive the range ~[0, 0] for i_14 and the
7378 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7379 the first time, since i_14 is equivalent to the range [8, 8], we
7380 determine that the predicate is always false.
7381
7382 On the next round of propagation, i_13 is determined to be
7383 VARYING, which causes i_5 to drop down to VARYING. So, another
7384 visit to i_14 is scheduled. In this second visit, we compute the
7385 exact same range and equivalence set for i_14, namely ~[0, 0] and
7386 { i_5 }. But we did not have the previous range for i_5
7387 registered, so vrp_visit_assignment thinks that the range for
7388 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7389 is not visited again, which stops propagation from visiting
7390 statements in the THEN clause of that if().
7391
7392 To properly fix this we would need to keep the previous range
7393 value for the names in the equivalence set. This way we would've
7394 discovered that from one visit to the other i_5 changed from
7395 range [8, 8] to VR_VARYING.
7396
7397 However, fixing this apparent limitation may not be worth the
7398 additional checking. Testing on several code bases (GCC, DLV,
7399 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7400 4 more predicates folded in SPEC. */
c3783c3b 7401 sop = false;
ced5bc56 7402
75a70cf9 7403 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7404 gimple_cond_lhs (stmt),
7405 gimple_cond_rhs (stmt),
e0ad89bd 7406 false, &sop, NULL);
88dbf20f 7407 if (val)
c3783c3b 7408 {
7409 if (!sop)
75a70cf9 7410 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
c3783c3b 7411 else
7412 {
7413 if (dump_file && (dump_flags & TDF_DETAILS))
7414 fprintf (dump_file,
7415 "\nIgnoring predicate evaluation because "
7416 "it assumes that signed overflow is undefined");
7417 val = NULL_TREE;
7418 }
7419 }
88dbf20f 7420
7421 if (dump_file && (dump_flags & TDF_DETAILS))
7422 {
7423 fprintf (dump_file, "\nPredicate evaluates to: ");
7424 if (val == NULL_TREE)
7425 fprintf (dump_file, "DON'T KNOW\n");
7426 else
7427 print_generic_stmt (dump_file, val, 0);
7428 }
7429
7430 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7431}
7432
d31e54f1 7433/* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7434 that includes the value VAL. The search is restricted to the range
75a70cf9 7435 [START_IDX, n - 1] where n is the size of VEC.
88dbf20f 7436
d31e54f1 7437 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7438 returned.
7439
496ffe87 7440 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
d31e54f1 7441 it is placed in IDX and false is returned.
7442
75a70cf9 7443 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
d31e54f1 7444 returned. */
b6d7b6c5 7445
7446static bool
75a70cf9 7447find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
b6d7b6c5 7448{
75a70cf9 7449 size_t n = gimple_switch_num_labels (stmt);
d31e54f1 7450 size_t low, high;
7451
7452 /* Find case label for minimum of the value range or the next one.
7453 At each iteration we are searching in [low, high - 1]. */
b6d7b6c5 7454
75a70cf9 7455 for (low = start_idx, high = n; high != low; )
b6d7b6c5 7456 {
7457 tree t;
7458 int cmp;
75a70cf9 7459 /* Note that i != high, so we never ask for n. */
d31e54f1 7460 size_t i = (high + low) / 2;
75a70cf9 7461 t = gimple_switch_label (stmt, i);
b6d7b6c5 7462
7463 /* Cache the result of comparing CASE_LOW and val. */
7464 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7465
d31e54f1 7466 if (cmp == 0)
7467 {
7468 /* Ranges cannot be empty. */
7469 *idx = i;
7470 return true;
7471 }
7472 else if (cmp > 0)
b6d7b6c5 7473 high = i;
7474 else
d31e54f1 7475 {
7476 low = i + 1;
7477 if (CASE_HIGH (t) != NULL
7478 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
b6d7b6c5 7479 {
7480 *idx = i;
7481 return true;
7482 }
7483 }
7484 }
7485
d31e54f1 7486 *idx = high;
b6d7b6c5 7487 return false;
7488}
7489
d31e54f1 7490/* Searches the case label vector VEC for the range of CASE_LABELs that is used
7491 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7492 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7493 then MAX_IDX < MIN_IDX.
7494 Returns true if the default label is not needed. */
7495
7496static bool
75a70cf9 7497find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
7498 size_t *max_idx)
d31e54f1 7499{
7500 size_t i, j;
75a70cf9 7501 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7502 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
d31e54f1 7503
7504 if (i == j
7505 && min_take_default
7506 && max_take_default)
7507 {
48e1416a 7508 /* Only the default case label reached.
d31e54f1 7509 Return an empty range. */
7510 *min_idx = 1;
7511 *max_idx = 0;
7512 return false;
7513 }
7514 else
7515 {
7516 bool take_default = min_take_default || max_take_default;
7517 tree low, high;
7518 size_t k;
7519
7520 if (max_take_default)
7521 j--;
7522
7523 /* If the case label range is continuous, we do not need
7524 the default case label. Verify that. */
75a70cf9 7525 high = CASE_LOW (gimple_switch_label (stmt, i));
7526 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7527 high = CASE_HIGH (gimple_switch_label (stmt, i));
d31e54f1 7528 for (k = i + 1; k <= j; ++k)
7529 {
75a70cf9 7530 low = CASE_LOW (gimple_switch_label (stmt, k));
317e2a67 7531 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
d31e54f1 7532 {
7533 take_default = true;
7534 break;
7535 }
7536 high = low;
75a70cf9 7537 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7538 high = CASE_HIGH (gimple_switch_label (stmt, k));
d31e54f1 7539 }
7540
7541 *min_idx = i;
7542 *max_idx = j;
7543 return !take_default;
7544 }
7545}
7546
98a8539f 7547/* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7548 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7549 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7550 Returns true if the default label is not needed. */
7551
7552static bool
7553find_case_label_ranges (gimple stmt, value_range_t *vr, size_t *min_idx1,
7554 size_t *max_idx1, size_t *min_idx2,
7555 size_t *max_idx2)
7556{
7557 size_t i, j, k, l;
7558 unsigned int n = gimple_switch_num_labels (stmt);
7559 bool take_default;
7560 tree case_low, case_high;
7561 tree min = vr->min, max = vr->max;
7562
7563 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7564
7565 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7566
7567 /* Set second range to emtpy. */
7568 *min_idx2 = 1;
7569 *max_idx2 = 0;
7570
7571 if (vr->type == VR_RANGE)
7572 {
7573 *min_idx1 = i;
7574 *max_idx1 = j;
7575 return !take_default;
7576 }
7577
7578 /* Set first range to all case labels. */
7579 *min_idx1 = 1;
7580 *max_idx1 = n - 1;
7581
7582 if (i > j)
7583 return false;
7584
7585 /* Make sure all the values of case labels [i , j] are contained in
7586 range [MIN, MAX]. */
7587 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7588 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7589 if (tree_int_cst_compare (case_low, min) < 0)
7590 i += 1;
7591 if (case_high != NULL_TREE
7592 && tree_int_cst_compare (max, case_high) < 0)
7593 j -= 1;
7594
7595 if (i > j)
7596 return false;
7597
7598 /* If the range spans case labels [i, j], the corresponding anti-range spans
7599 the labels [1, i - 1] and [j + 1, n - 1]. */
7600 k = j + 1;
7601 l = n - 1;
7602 if (k > l)
7603 {
7604 k = 1;
7605 l = 0;
7606 }
7607
7608 j = i - 1;
7609 i = 1;
7610 if (i > j)
7611 {
7612 i = k;
7613 j = l;
7614 k = 1;
7615 l = 0;
7616 }
7617
7618 *min_idx1 = i;
7619 *max_idx1 = j;
7620 *min_idx2 = k;
7621 *max_idx2 = l;
7622 return false;
7623}
7624
b6d7b6c5 7625/* Visit switch statement STMT. If we can determine which edge
7626 will be taken out of STMT's basic block, record it in
7627 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7628 SSA_PROP_VARYING. */
7629
7630static enum ssa_prop_result
75a70cf9 7631vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
b6d7b6c5 7632{
7633 tree op, val;
7634 value_range_t *vr;
98a8539f 7635 size_t i = 0, j = 0, k, l;
d31e54f1 7636 bool take_default;
b6d7b6c5 7637
7638 *taken_edge_p = NULL;
75a70cf9 7639 op = gimple_switch_index (stmt);
b6d7b6c5 7640 if (TREE_CODE (op) != SSA_NAME)
7641 return SSA_PROP_VARYING;
7642
7643 vr = get_value_range (op);
7644 if (dump_file && (dump_flags & TDF_DETAILS))
7645 {
7646 fprintf (dump_file, "\nVisiting switch expression with operand ");
7647 print_generic_expr (dump_file, op, 0);
7648 fprintf (dump_file, " with known range ");
7649 dump_value_range (dump_file, vr);
7650 fprintf (dump_file, "\n");
7651 }
7652
98a8539f 7653 if ((vr->type != VR_RANGE
7654 && vr->type != VR_ANTI_RANGE)
b6d7b6c5 7655 || symbolic_range_p (vr))
7656 return SSA_PROP_VARYING;
7657
7658 /* Find the single edge that is taken from the switch expression. */
98a8539f 7659 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
b6d7b6c5 7660
d31e54f1 7661 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7662 label */
b6d7b6c5 7663 if (j < i)
d31e54f1 7664 {
7665 gcc_assert (take_default);
75a70cf9 7666 val = gimple_switch_default_label (stmt);
d31e54f1 7667 }
b6d7b6c5 7668 else
7669 {
d31e54f1 7670 /* Check if labels with index i to j and maybe the default label
7671 are all reaching the same label. */
7672
75a70cf9 7673 val = gimple_switch_label (stmt, i);
d31e54f1 7674 if (take_default
75a70cf9 7675 && CASE_LABEL (gimple_switch_default_label (stmt))
7676 != CASE_LABEL (val))
b6d7b6c5 7677 {
7678 if (dump_file && (dump_flags & TDF_DETAILS))
7679 fprintf (dump_file, " not a single destination for this "
7680 "range\n");
7681 return SSA_PROP_VARYING;
7682 }
7683 for (++i; i <= j; ++i)
7684 {
75a70cf9 7685 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
b6d7b6c5 7686 {
7687 if (dump_file && (dump_flags & TDF_DETAILS))
7688 fprintf (dump_file, " not a single destination for this "
7689 "range\n");
7690 return SSA_PROP_VARYING;
7691 }
7692 }
98a8539f 7693 for (; k <= l; ++k)
7694 {
7695 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7696 {
7697 if (dump_file && (dump_flags & TDF_DETAILS))
7698 fprintf (dump_file, " not a single destination for this "
7699 "range\n");
7700 return SSA_PROP_VARYING;
7701 }
7702 }
b6d7b6c5 7703 }
7704
75a70cf9 7705 *taken_edge_p = find_edge (gimple_bb (stmt),
b6d7b6c5 7706 label_to_block (CASE_LABEL (val)));
7707
7708 if (dump_file && (dump_flags & TDF_DETAILS))
7709 {
7710 fprintf (dump_file, " will take edge to ");
7711 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7712 }
7713
7714 return SSA_PROP_INTERESTING;
7715}
7716
7717
88dbf20f 7718/* Evaluate statement STMT. If the statement produces a useful range,
7719 return SSA_PROP_INTERESTING and record the SSA name with the
7720 interesting range into *OUTPUT_P.
7721
7722 If STMT is a conditional branch and we can determine its truth
7723 value, the taken edge is recorded in *TAKEN_EDGE_P.
7724
7725 If STMT produces a varying value, return SSA_PROP_VARYING. */
7726
7727static enum ssa_prop_result
75a70cf9 7728vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
88dbf20f 7729{
7730 tree def;
7731 ssa_op_iter iter;
88dbf20f 7732
7733 if (dump_file && (dump_flags & TDF_DETAILS))
7734 {
7735 fprintf (dump_file, "\nVisiting statement:\n");
75a70cf9 7736 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
88dbf20f 7737 }
7738
2193544e 7739 if (!stmt_interesting_for_vrp (stmt))
7740 gcc_assert (stmt_ends_bb_p (stmt));
7741 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
0b7282f1 7742 return vrp_visit_assignment_or_call (stmt, output_p);
75a70cf9 7743 else if (gimple_code (stmt) == GIMPLE_COND)
88dbf20f 7744 return vrp_visit_cond_stmt (stmt, taken_edge_p);
75a70cf9 7745 else if (gimple_code (stmt) == GIMPLE_SWITCH)
b6d7b6c5 7746 return vrp_visit_switch_stmt (stmt, taken_edge_p);
88dbf20f 7747
7748 /* All other statements produce nothing of interest for VRP, so mark
7749 their outputs varying and prevent further simulation. */
7750 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
e7d43f99 7751 set_value_range_to_varying (get_value_range (def));
88dbf20f 7752
7753 return SSA_PROP_VARYING;
7754}
7755
9c0a48ce 7756/* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7757 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7758 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7759 possible such range. The resulting range is not canonicalized. */
7760
7761static void
7762union_ranges (enum value_range_type *vr0type,
7763 tree *vr0min, tree *vr0max,
7764 enum value_range_type vr1type,
7765 tree vr1min, tree vr1max)
7766{
7767 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7768 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7769
7770 /* [] is vr0, () is vr1 in the following classification comments. */
7771 if (mineq && maxeq)
7772 {
7773 /* [( )] */
7774 if (*vr0type == vr1type)
7775 /* Nothing to do for equal ranges. */
7776 ;
7777 else if ((*vr0type == VR_RANGE
7778 && vr1type == VR_ANTI_RANGE)
7779 || (*vr0type == VR_ANTI_RANGE
7780 && vr1type == VR_RANGE))
7781 {
7782 /* For anti-range with range union the result is varying. */
7783 goto give_up;
7784 }
7785 else
7786 gcc_unreachable ();
7787 }
7788 else if (operand_less_p (*vr0max, vr1min) == 1
7789 || operand_less_p (vr1max, *vr0min) == 1)
7790 {
7791 /* [ ] ( ) or ( ) [ ]
7792 If the ranges have an empty intersection, result of the union
7793 operation is the anti-range or if both are anti-ranges
7794 it covers all. */
7795 if (*vr0type == VR_ANTI_RANGE
7796 && vr1type == VR_ANTI_RANGE)
7797 goto give_up;
7798 else if (*vr0type == VR_ANTI_RANGE
7799 && vr1type == VR_RANGE)
7800 ;
7801 else if (*vr0type == VR_RANGE
7802 && vr1type == VR_ANTI_RANGE)
7803 {
7804 *vr0type = vr1type;
7805 *vr0min = vr1min;
7806 *vr0max = vr1max;
7807 }
7808 else if (*vr0type == VR_RANGE
7809 && vr1type == VR_RANGE)
7810 {
7811 /* The result is the convex hull of both ranges. */
7812 if (operand_less_p (*vr0max, vr1min) == 1)
7813 {
7814 /* If the result can be an anti-range, create one. */
7815 if (TREE_CODE (*vr0max) == INTEGER_CST
7816 && TREE_CODE (vr1min) == INTEGER_CST
7817 && vrp_val_is_min (*vr0min)
7818 && vrp_val_is_max (vr1max))
7819 {
7820 tree min = int_const_binop (PLUS_EXPR,
ddb1be65 7821 *vr0max,
e913b5cd 7822 build_int_cst (TREE_TYPE (*vr0max), 1));
9c0a48ce 7823 tree max = int_const_binop (MINUS_EXPR,
ddb1be65 7824 vr1min,
e913b5cd 7825 build_int_cst (TREE_TYPE (vr1min), 1));
9c0a48ce 7826 if (!operand_less_p (max, min))
7827 {
7828 *vr0type = VR_ANTI_RANGE;
7829 *vr0min = min;
7830 *vr0max = max;
7831 }
7832 else
7833 *vr0max = vr1max;
7834 }
7835 else
7836 *vr0max = vr1max;
7837 }
7838 else
7839 {
7840 /* If the result can be an anti-range, create one. */
7841 if (TREE_CODE (vr1max) == INTEGER_CST
7842 && TREE_CODE (*vr0min) == INTEGER_CST
7843 && vrp_val_is_min (vr1min)
7844 && vrp_val_is_max (*vr0max))
7845 {
7846 tree min = int_const_binop (PLUS_EXPR,
e913b5cd 7847 vr1max,
7848 build_int_cst (TREE_TYPE (vr1max), 1));
9c0a48ce 7849 tree max = int_const_binop (MINUS_EXPR,
e913b5cd 7850 *vr0min,
7851 build_int_cst (TREE_TYPE (*vr0min), 1));
9c0a48ce 7852 if (!operand_less_p (max, min))
7853 {
7854 *vr0type = VR_ANTI_RANGE;
7855 *vr0min = min;
7856 *vr0max = max;
7857 }
7858 else
7859 *vr0min = vr1min;
7860 }
7861 else
7862 *vr0min = vr1min;
7863 }
7864 }
7865 else
7866 gcc_unreachable ();
7867 }
7868 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7869 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7870 {
7871 /* [ ( ) ] or [( ) ] or [ ( )] */
7872 if (*vr0type == VR_RANGE
7873 && vr1type == VR_RANGE)
7874 ;
7875 else if (*vr0type == VR_ANTI_RANGE
7876 && vr1type == VR_ANTI_RANGE)
7877 {
7878 *vr0type = vr1type;
7879 *vr0min = vr1min;
7880 *vr0max = vr1max;
7881 }
7882 else if (*vr0type == VR_ANTI_RANGE
7883 && vr1type == VR_RANGE)
7884 {
7885 /* Arbitrarily choose the right or left gap. */
7886 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
ddb1be65 7887 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
e913b5cd 7888 build_int_cst (TREE_TYPE (vr1min), 1));
9c0a48ce 7889 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
e913b5cd 7890 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
7891 build_int_cst (TREE_TYPE (vr1max), 1));
9c0a48ce 7892 else
7893 goto give_up;
7894 }
7895 else if (*vr0type == VR_RANGE
7896 && vr1type == VR_ANTI_RANGE)
7897 /* The result covers everything. */
7898 goto give_up;
7899 else
7900 gcc_unreachable ();
7901 }
7902 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7903 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7904 {
7905 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7906 if (*vr0type == VR_RANGE
7907 && vr1type == VR_RANGE)
7908 {
7909 *vr0type = vr1type;
7910 *vr0min = vr1min;
7911 *vr0max = vr1max;
7912 }
7913 else if (*vr0type == VR_ANTI_RANGE
7914 && vr1type == VR_ANTI_RANGE)
7915 ;
7916 else if (*vr0type == VR_RANGE
7917 && vr1type == VR_ANTI_RANGE)
7918 {
7919 *vr0type = VR_ANTI_RANGE;
7920 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
7921 {
e913b5cd 7922 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
7923 build_int_cst (TREE_TYPE (*vr0min), 1));
9c0a48ce 7924 *vr0min = vr1min;
7925 }
7926 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
7927 {
e913b5cd 7928 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7929 build_int_cst (TREE_TYPE (*vr0max), 1));
9c0a48ce 7930 *vr0max = vr1max;
7931 }
7932 else
7933 goto give_up;
7934 }
7935 else if (*vr0type == VR_ANTI_RANGE
7936 && vr1type == VR_RANGE)
7937 /* The result covers everything. */
7938 goto give_up;
7939 else
7940 gcc_unreachable ();
7941 }
7942 else if ((operand_less_p (vr1min, *vr0max) == 1
7943 || operand_equal_p (vr1min, *vr0max, 0))
7fb9d91f 7944 && operand_less_p (*vr0min, vr1min) == 1
7945 && operand_less_p (*vr0max, vr1max) == 1)
9c0a48ce 7946 {
7947 /* [ ( ] ) or [ ]( ) */
7948 if (*vr0type == VR_RANGE
7949 && vr1type == VR_RANGE)
7950 *vr0max = vr1max;
7951 else if (*vr0type == VR_ANTI_RANGE
7952 && vr1type == VR_ANTI_RANGE)
7953 *vr0min = vr1min;
7954 else if (*vr0type == VR_ANTI_RANGE
7955 && vr1type == VR_RANGE)
7956 {
7957 if (TREE_CODE (vr1min) == INTEGER_CST)
ddb1be65 7958 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
e913b5cd 7959 build_int_cst (TREE_TYPE (vr1min), 1));
9c0a48ce 7960 else
7961 goto give_up;
7962 }
7963 else if (*vr0type == VR_RANGE
7964 && vr1type == VR_ANTI_RANGE)
7965 {
7966 if (TREE_CODE (*vr0max) == INTEGER_CST)
7967 {
7968 *vr0type = vr1type;
e913b5cd 7969 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
7970 build_int_cst (TREE_TYPE (*vr0max), 1));
9c0a48ce 7971 *vr0max = vr1max;
7972 }
7973 else
7974 goto give_up;
7975 }
7976 else
7977 gcc_unreachable ();
7978 }
7979 else if ((operand_less_p (*vr0min, vr1max) == 1
7980 || operand_equal_p (*vr0min, vr1max, 0))
7fb9d91f 7981 && operand_less_p (vr1min, *vr0min) == 1
7982 && operand_less_p (vr1max, *vr0max) == 1)
9c0a48ce 7983 {
7984 /* ( [ ) ] or ( )[ ] */
7985 if (*vr0type == VR_RANGE
7986 && vr1type == VR_RANGE)
7987 *vr0min = vr1min;
7988 else if (*vr0type == VR_ANTI_RANGE
7989 && vr1type == VR_ANTI_RANGE)
7990 *vr0max = vr1max;
7991 else if (*vr0type == VR_ANTI_RANGE
7992 && vr1type == VR_RANGE)
7993 {
7994 if (TREE_CODE (vr1max) == INTEGER_CST)
e913b5cd 7995 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
7996 build_int_cst (TREE_TYPE (vr1max), 1));
9c0a48ce 7997 else
7998 goto give_up;
7999 }
8000 else if (*vr0type == VR_RANGE
8001 && vr1type == VR_ANTI_RANGE)
8002 {
8003 if (TREE_CODE (*vr0min) == INTEGER_CST)
8004 {
8005 *vr0type = vr1type;
8006 *vr0min = vr1min;
e913b5cd 8007 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8008 build_int_cst (TREE_TYPE (*vr0min), 1));
9c0a48ce 8009 }
8010 else
8011 goto give_up;
8012 }
8013 else
8014 gcc_unreachable ();
8015 }
8016 else
8017 goto give_up;
8018
8019 return;
8020
8021give_up:
8022 *vr0type = VR_VARYING;
8023 *vr0min = NULL_TREE;
8024 *vr0max = NULL_TREE;
8025}
8026
04dbf3c4 8027/* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8028 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8029 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8030 possible such range. The resulting range is not canonicalized. */
8031
8032static void
8033intersect_ranges (enum value_range_type *vr0type,
8034 tree *vr0min, tree *vr0max,
8035 enum value_range_type vr1type,
8036 tree vr1min, tree vr1max)
8037{
a339107e 8038 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
8039 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
8040
04dbf3c4 8041 /* [] is vr0, () is vr1 in the following classification comments. */
a339107e 8042 if (mineq && maxeq)
8043 {
8044 /* [( )] */
8045 if (*vr0type == vr1type)
8046 /* Nothing to do for equal ranges. */
8047 ;
8048 else if ((*vr0type == VR_RANGE
8049 && vr1type == VR_ANTI_RANGE)
8050 || (*vr0type == VR_ANTI_RANGE
8051 && vr1type == VR_RANGE))
8052 {
8053 /* For anti-range with range intersection the result is empty. */
8054 *vr0type = VR_UNDEFINED;
8055 *vr0min = NULL_TREE;
8056 *vr0max = NULL_TREE;
8057 }
8058 else
8059 gcc_unreachable ();
8060 }
8061 else if (operand_less_p (*vr0max, vr1min) == 1
8062 || operand_less_p (vr1max, *vr0min) == 1)
04dbf3c4 8063 {
8064 /* [ ] ( ) or ( ) [ ]
8065 If the ranges have an empty intersection, the result of the
8066 intersect operation is the range for intersecting an
ac4a8000 8067 anti-range with a range or empty when intersecting two ranges. */
04dbf3c4 8068 if (*vr0type == VR_RANGE
8069 && vr1type == VR_ANTI_RANGE)
8070 ;
8071 else if (*vr0type == VR_ANTI_RANGE
8072 && vr1type == VR_RANGE)
8073 {
8074 *vr0type = vr1type;
8075 *vr0min = vr1min;
8076 *vr0max = vr1max;
8077 }
8078 else if (*vr0type == VR_RANGE
8079 && vr1type == VR_RANGE)
8080 {
8081 *vr0type = VR_UNDEFINED;
8082 *vr0min = NULL_TREE;
8083 *vr0max = NULL_TREE;
8084 }
8085 else if (*vr0type == VR_ANTI_RANGE
8086 && vr1type == VR_ANTI_RANGE)
8087 {
ac4a8000 8088 /* If the anti-ranges are adjacent to each other merge them. */
8089 if (TREE_CODE (*vr0max) == INTEGER_CST
8090 && TREE_CODE (vr1min) == INTEGER_CST
8091 && operand_less_p (*vr0max, vr1min) == 1
8092 && integer_onep (int_const_binop (MINUS_EXPR,
8093 vr1min, *vr0max)))
8094 *vr0max = vr1max;
8095 else if (TREE_CODE (vr1max) == INTEGER_CST
8096 && TREE_CODE (*vr0min) == INTEGER_CST
8097 && operand_less_p (vr1max, *vr0min) == 1
8098 && integer_onep (int_const_binop (MINUS_EXPR,
8099 *vr0min, vr1max)))
8100 *vr0min = vr1min;
8101 /* Else arbitrarily take VR0. */
04dbf3c4 8102 }
8103 }
a339107e 8104 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8105 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
04dbf3c4 8106 {
a339107e 8107 /* [ ( ) ] or [( ) ] or [ ( )] */
8108 if (*vr0type == VR_RANGE
8109 && vr1type == VR_RANGE)
04dbf3c4 8110 {
a339107e 8111 /* If both are ranges the result is the inner one. */
04dbf3c4 8112 *vr0type = vr1type;
8113 *vr0min = vr1min;
8114 *vr0max = vr1max;
8115 }
a339107e 8116 else if (*vr0type == VR_RANGE
8117 && vr1type == VR_ANTI_RANGE)
8118 {
8119 /* Choose the right gap if the left one is empty. */
8120 if (mineq)
8121 {
8122 if (TREE_CODE (vr1max) == INTEGER_CST)
e913b5cd 8123 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8124 build_int_cst (TREE_TYPE (vr1max), 1));
a339107e 8125 else
8126 *vr0min = vr1max;
8127 }
8128 /* Choose the left gap if the right one is empty. */
8129 else if (maxeq)
8130 {
8131 if (TREE_CODE (vr1min) == INTEGER_CST)
8132 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
e913b5cd 8133 build_int_cst (TREE_TYPE (vr1min), 1));
a339107e 8134 else
8135 *vr0max = vr1min;
8136 }
8137 /* Choose the anti-range if the range is effectively varying. */
8138 else if (vrp_val_is_min (*vr0min)
8139 && vrp_val_is_max (*vr0max))
8140 {
8141 *vr0type = vr1type;
8142 *vr0min = vr1min;
8143 *vr0max = vr1max;
8144 }
8145 /* Else choose the range. */
8146 }
04dbf3c4 8147 else if (*vr0type == VR_ANTI_RANGE
8148 && vr1type == VR_ANTI_RANGE)
8149 /* If both are anti-ranges the result is the outer one. */
8150 ;
8151 else if (*vr0type == VR_ANTI_RANGE
8152 && vr1type == VR_RANGE)
8153 {
8154 /* The intersection is empty. */
8155 *vr0type = VR_UNDEFINED;
8156 *vr0min = NULL_TREE;
8157 *vr0max = NULL_TREE;
8158 }
8159 else
8160 gcc_unreachable ();
8161 }
a339107e 8162 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8163 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
04dbf3c4 8164 {
a339107e 8165 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8166 if (*vr0type == VR_RANGE
8167 && vr1type == VR_RANGE)
8168 /* Choose the inner range. */
04dbf3c4 8169 ;
a339107e 8170 else if (*vr0type == VR_ANTI_RANGE
8171 && vr1type == VR_RANGE)
8172 {
8173 /* Choose the right gap if the left is empty. */
8174 if (mineq)
8175 {
8176 *vr0type = VR_RANGE;
8177 if (TREE_CODE (*vr0max) == INTEGER_CST)
8178 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
e913b5cd 8179 build_int_cst (TREE_TYPE (*vr0max), 1));
a339107e 8180 else
8181 *vr0min = *vr0max;
8182 *vr0max = vr1max;
8183 }
8184 /* Choose the left gap if the right is empty. */
8185 else if (maxeq)
8186 {
8187 *vr0type = VR_RANGE;
8188 if (TREE_CODE (*vr0min) == INTEGER_CST)
8189 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
e913b5cd 8190 build_int_cst (TREE_TYPE (*vr0min), 1));
a339107e 8191 else
8192 *vr0max = *vr0min;
8193 *vr0min = vr1min;
8194 }
8195 /* Choose the anti-range if the range is effectively varying. */
8196 else if (vrp_val_is_min (vr1min)
8197 && vrp_val_is_max (vr1max))
8198 ;
8199 /* Else choose the range. */
8200 else
8201 {
8202 *vr0type = vr1type;
8203 *vr0min = vr1min;
8204 *vr0max = vr1max;
8205 }
8206 }
04dbf3c4 8207 else if (*vr0type == VR_ANTI_RANGE
8208 && vr1type == VR_ANTI_RANGE)
8209 {
8210 /* If both are anti-ranges the result is the outer one. */
8211 *vr0type = vr1type;
8212 *vr0min = vr1min;
8213 *vr0max = vr1max;
8214 }
8215 else if (vr1type == VR_ANTI_RANGE
8216 && *vr0type == VR_RANGE)
8217 {
8218 /* The intersection is empty. */
8219 *vr0type = VR_UNDEFINED;
8220 *vr0min = NULL_TREE;
8221 *vr0max = NULL_TREE;
8222 }
8223 else
8224 gcc_unreachable ();
8225 }
8226 else if ((operand_less_p (vr1min, *vr0max) == 1
8227 || operand_equal_p (vr1min, *vr0max, 0))
a339107e 8228 && operand_less_p (*vr0min, vr1min) == 1)
04dbf3c4 8229 {
a339107e 8230 /* [ ( ] ) or [ ]( ) */
04dbf3c4 8231 if (*vr0type == VR_ANTI_RANGE
8232 && vr1type == VR_ANTI_RANGE)
8233 *vr0max = vr1max;
8234 else if (*vr0type == VR_RANGE
8235 && vr1type == VR_RANGE)
8236 *vr0min = vr1min;
8237 else if (*vr0type == VR_RANGE
8238 && vr1type == VR_ANTI_RANGE)
8239 {
8240 if (TREE_CODE (vr1min) == INTEGER_CST)
8241 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
e913b5cd 8242 build_int_cst (TREE_TYPE (vr1min), 1));
04dbf3c4 8243 else
8244 *vr0max = vr1min;
8245 }
8246 else if (*vr0type == VR_ANTI_RANGE
8247 && vr1type == VR_RANGE)
8248 {
8249 *vr0type = VR_RANGE;
8250 if (TREE_CODE (*vr0max) == INTEGER_CST)
8251 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
e913b5cd 8252 build_int_cst (TREE_TYPE (*vr0max), 1));
04dbf3c4 8253 else
8254 *vr0min = *vr0max;
8255 *vr0max = vr1max;
8256 }
8257 else
8258 gcc_unreachable ();
8259 }
8260 else if ((operand_less_p (*vr0min, vr1max) == 1
8261 || operand_equal_p (*vr0min, vr1max, 0))
a339107e 8262 && operand_less_p (vr1min, *vr0min) == 1)
04dbf3c4 8263 {
a339107e 8264 /* ( [ ) ] or ( )[ ] */
04dbf3c4 8265 if (*vr0type == VR_ANTI_RANGE
8266 && vr1type == VR_ANTI_RANGE)
8267 *vr0min = vr1min;
8268 else if (*vr0type == VR_RANGE
8269 && vr1type == VR_RANGE)
8270 *vr0max = vr1max;
8271 else if (*vr0type == VR_RANGE
8272 && vr1type == VR_ANTI_RANGE)
8273 {
8274 if (TREE_CODE (vr1max) == INTEGER_CST)
8275 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
e913b5cd 8276 build_int_cst (TREE_TYPE (vr1max), 1));
04dbf3c4 8277 else
8278 *vr0min = vr1max;
8279 }
8280 else if (*vr0type == VR_ANTI_RANGE
8281 && vr1type == VR_RANGE)
8282 {
8283 *vr0type = VR_RANGE;
8284 if (TREE_CODE (*vr0min) == INTEGER_CST)
8285 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
e913b5cd 8286 build_int_cst (TREE_TYPE (*vr0min), 1));
04dbf3c4 8287 else
8288 *vr0max = *vr0min;
8289 *vr0min = vr1min;
8290 }
8291 else
8292 gcc_unreachable ();
8293 }
8294
8295 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8296 result for the intersection. That's always a conservative
8297 correct estimate. */
8298
8299 return;
8300}
8301
8302
8303/* Intersect the two value-ranges *VR0 and *VR1 and store the result
8304 in *VR0. This may not be the smallest possible such range. */
8305
8306static void
a339107e 8307vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
04dbf3c4 8308{
8309 value_range_t saved;
8310
8311 /* If either range is VR_VARYING the other one wins. */
8312 if (vr1->type == VR_VARYING)
8313 return;
8314 if (vr0->type == VR_VARYING)
8315 {
8316 copy_value_range (vr0, vr1);
8317 return;
8318 }
8319
8320 /* When either range is VR_UNDEFINED the resulting range is
8321 VR_UNDEFINED, too. */
8322 if (vr0->type == VR_UNDEFINED)
8323 return;
8324 if (vr1->type == VR_UNDEFINED)
8325 {
8326 set_value_range_to_undefined (vr0);
8327 return;
8328 }
8329
8330 /* Save the original vr0 so we can return it as conservative intersection
8331 result when our worker turns things to varying. */
8332 saved = *vr0;
8333 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8334 vr1->type, vr1->min, vr1->max);
8335 /* Make sure to canonicalize the result though as the inversion of a
8336 VR_RANGE can still be a VR_RANGE. */
8337 set_and_canonicalize_value_range (vr0, vr0->type,
8338 vr0->min, vr0->max, vr0->equiv);
8339 /* If that failed, use the saved original VR0. */
8340 if (vr0->type == VR_VARYING)
8341 {
8342 *vr0 = saved;
8343 return;
8344 }
8345 /* If the result is VR_UNDEFINED there is no need to mess with
8346 the equivalencies. */
8347 if (vr0->type == VR_UNDEFINED)
8348 return;
8349
8350 /* The resulting set of equivalences for range intersection is the union of
8351 the two sets. */
8352 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8353 bitmap_ior_into (vr0->equiv, vr1->equiv);
8354 else if (vr1->equiv && !vr0->equiv)
8355 bitmap_copy (vr0->equiv, vr1->equiv);
8356}
88dbf20f 8357
a339107e 8358static void
8359vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
8360{
8361 if (dump_file && (dump_flags & TDF_DETAILS))
8362 {
8363 fprintf (dump_file, "Intersecting\n ");
8364 dump_value_range (dump_file, vr0);
8365 fprintf (dump_file, "\nand\n ");
8366 dump_value_range (dump_file, vr1);
8367 fprintf (dump_file, "\n");
8368 }
8369 vrp_intersect_ranges_1 (vr0, vr1);
8370 if (dump_file && (dump_flags & TDF_DETAILS))
8371 {
8372 fprintf (dump_file, "to\n ");
8373 dump_value_range (dump_file, vr0);
8374 fprintf (dump_file, "\n");
8375 }
8376}
8377
88dbf20f 8378/* Meet operation for value ranges. Given two value ranges VR0 and
ab37e731 8379 VR1, store in VR0 a range that contains both VR0 and VR1. This
8380 may not be the smallest possible such range. */
88dbf20f 8381
8382static void
9c0a48ce 8383vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
88dbf20f 8384{
9c0a48ce 8385 value_range_t saved;
8386
88dbf20f 8387 if (vr0->type == VR_UNDEFINED)
8388 {
d590d541 8389 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
88dbf20f 8390 return;
8391 }
8392
8393 if (vr1->type == VR_UNDEFINED)
8394 {
d590d541 8395 /* VR0 already has the resulting range. */
88dbf20f 8396 return;
8397 }
8398
8399 if (vr0->type == VR_VARYING)
8400 {
8401 /* Nothing to do. VR0 already has the resulting range. */
8402 return;
8403 }
8404
8405 if (vr1->type == VR_VARYING)
88dbf20f 8406 {
e7d43f99 8407 set_value_range_to_varying (vr0);
88dbf20f 8408 return;
8409 }
8410
9c0a48ce 8411 saved = *vr0;
8412 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8413 vr1->type, vr1->min, vr1->max);
8414 if (vr0->type == VR_VARYING)
88dbf20f 8415 {
9c0a48ce 8416 /* Failed to find an efficient meet. Before giving up and setting
8417 the result to VARYING, see if we can at least derive a useful
8418 anti-range. FIXME, all this nonsense about distinguishing
8419 anti-ranges from ranges is necessary because of the odd
8420 semantics of range_includes_zero_p and friends. */
7d48cd66 8421 if (((saved.type == VR_RANGE
8422 && range_includes_zero_p (saved.min, saved.max) == 0)
8423 || (saved.type == VR_ANTI_RANGE
8424 && range_includes_zero_p (saved.min, saved.max) == 1))
8425 && ((vr1->type == VR_RANGE
8426 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8427 || (vr1->type == VR_ANTI_RANGE
8428 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
9c0a48ce 8429 {
8430 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8431
8432 /* Since this meet operation did not result from the meeting of
8433 two equivalent names, VR0 cannot have any equivalences. */
8434 if (vr0->equiv)
8435 bitmap_clear (vr0->equiv);
8436 return;
72940ce4 8437 }
eea12c72 8438
9c0a48ce 8439 set_value_range_to_varying (vr0);
8440 return;
88dbf20f 8441 }
9c0a48ce 8442 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8443 vr0->equiv);
8444 if (vr0->type == VR_VARYING)
8445 return;
eea12c72 8446
72940ce4 8447 /* The resulting set of equivalences is always the intersection of
9c0a48ce 8448 the two sets. */
72940ce4 8449 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8450 bitmap_and_into (vr0->equiv, vr1->equiv);
8451 else if (vr0->equiv && !vr1->equiv)
8452 bitmap_clear (vr0->equiv);
9c0a48ce 8453}
72940ce4 8454
9c0a48ce 8455static void
8456vrp_meet (value_range_t *vr0, value_range_t *vr1)
8457{
8458 if (dump_file && (dump_flags & TDF_DETAILS))
8459 {
8460 fprintf (dump_file, "Meeting\n ");
8461 dump_value_range (dump_file, vr0);
8462 fprintf (dump_file, "\nand\n ");
8463 dump_value_range (dump_file, vr1);
8464 fprintf (dump_file, "\n");
8465 }
8466 vrp_meet_1 (vr0, vr1);
8467 if (dump_file && (dump_flags & TDF_DETAILS))
8468 {
8469 fprintf (dump_file, "to\n ");
8470 dump_value_range (dump_file, vr0);
8471 fprintf (dump_file, "\n");
052f71a4 8472 }
88dbf20f 8473}
8474
eea12c72 8475
88dbf20f 8476/* Visit all arguments for PHI node PHI that flow through executable
8477 edges. If a valid value range can be derived from all the incoming
8478 value ranges, set a new range for the LHS of PHI. */
8479
8480static enum ssa_prop_result
75a70cf9 8481vrp_visit_phi_node (gimple phi)
88dbf20f 8482{
75a70cf9 8483 size_t i;
88dbf20f 8484 tree lhs = PHI_RESULT (phi);
eea12c72 8485 value_range_t *lhs_vr = get_value_range (lhs);
748eb1f9 8486 value_range_t vr_result = VR_INITIALIZER;
a2623f6b 8487 bool first = true;
5c7155ca 8488 int edges, old_edges;
ff486875 8489 struct loop *l;
eea12c72 8490
88dbf20f 8491 if (dump_file && (dump_flags & TDF_DETAILS))
8492 {
8493 fprintf (dump_file, "\nVisiting PHI node: ");
75a70cf9 8494 print_gimple_stmt (dump_file, phi, 0, dump_flags);
88dbf20f 8495 }
8496
5c7155ca 8497 edges = 0;
75a70cf9 8498 for (i = 0; i < gimple_phi_num_args (phi); i++)
88dbf20f 8499 {
75a70cf9 8500 edge e = gimple_phi_arg_edge (phi, i);
88dbf20f 8501
8502 if (dump_file && (dump_flags & TDF_DETAILS))
8503 {
8504 fprintf (dump_file,
0d4c8cda 8505 " Argument #%d (%d -> %d %sexecutable)\n",
75a70cf9 8506 (int) i, e->src->index, e->dest->index,
88dbf20f 8507 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8508 }
8509
8510 if (e->flags & EDGE_EXECUTABLE)
8511 {
8512 tree arg = PHI_ARG_DEF (phi, i);
eea12c72 8513 value_range_t vr_arg;
88dbf20f 8514
5c7155ca 8515 ++edges;
8516
88dbf20f 8517 if (TREE_CODE (arg) == SSA_NAME)
b9b64cb7 8518 {
8519 vr_arg = *(get_value_range (arg));
d590d541 8520 /* Do not allow equivalences or symbolic ranges to leak in from
8521 backedges. That creates invalid equivalencies.
8522 See PR53465 and PR54767. */
0d4c8cda 8523 if (e->flags & EDGE_DFS_BACK)
d590d541 8524 {
0d4c8cda 8525 if (vr_arg.type == VR_RANGE
8526 || vr_arg.type == VR_ANTI_RANGE)
d590d541 8527 {
0d4c8cda 8528 vr_arg.equiv = NULL;
8529 if (symbolic_range_p (&vr_arg))
8530 {
8531 vr_arg.type = VR_VARYING;
8532 vr_arg.min = NULL_TREE;
8533 vr_arg.max = NULL_TREE;
8534 }
8535 }
8536 }
8537 else
8538 {
8539 /* If the non-backedge arguments range is VR_VARYING then
8540 we can still try recording a simple equivalence. */
8541 if (vr_arg.type == VR_VARYING)
8542 {
8543 vr_arg.type = VR_RANGE;
8544 vr_arg.min = arg;
8545 vr_arg.max = arg;
8546 vr_arg.equiv = NULL;
d590d541 8547 }
8548 }
b9b64cb7 8549 }
88dbf20f 8550 else
8551 {
3dad27e9 8552 if (TREE_OVERFLOW_P (arg))
4a8f88ff 8553 arg = drop_tree_overflow (arg);
b700987e 8554
88dbf20f 8555 vr_arg.type = VR_RANGE;
8556 vr_arg.min = arg;
8557 vr_arg.max = arg;
eea12c72 8558 vr_arg.equiv = NULL;
88dbf20f 8559 }
8560
8561 if (dump_file && (dump_flags & TDF_DETAILS))
8562 {
8563 fprintf (dump_file, "\t");
8564 print_generic_expr (dump_file, arg, dump_flags);
0d4c8cda 8565 fprintf (dump_file, ": ");
88dbf20f 8566 dump_value_range (dump_file, &vr_arg);
8567 fprintf (dump_file, "\n");
8568 }
8569
a2623f6b 8570 if (first)
8571 copy_value_range (&vr_result, &vr_arg);
8572 else
8573 vrp_meet (&vr_result, &vr_arg);
8574 first = false;
88dbf20f 8575
8576 if (vr_result.type == VR_VARYING)
8577 break;
8578 }
8579 }
8580
8581 if (vr_result.type == VR_VARYING)
eea12c72 8582 goto varying;
fb41023e 8583 else if (vr_result.type == VR_UNDEFINED)
8584 goto update_range;
88dbf20f 8585
5c7155ca 8586 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8587 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8588
88dbf20f 8589 /* To prevent infinite iterations in the algorithm, derive ranges
8590 when the new value is slightly bigger or smaller than the
5c7155ca 8591 previous one. We don't do this if we have seen a new executable
8592 edge; this helps us avoid an overflow infinity for conditionals
bcaf4fd0 8593 which are not in a loop. If the old value-range was VR_UNDEFINED
8594 use the updated range and iterate one more time. */
9b53b827 8595 if (edges > 0
1e400367 8596 && gimple_phi_num_args (phi) > 1
bcaf4fd0 8597 && edges == old_edges
8598 && lhs_vr->type != VR_UNDEFINED)
9b53b827 8599 {
0bf90b7b 8600 /* Compare old and new ranges, fall back to varying if the
8601 values are not comparable. */
9b53b827 8602 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
0bf90b7b 8603 if (cmp_min == -2)
8604 goto varying;
9b53b827 8605 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
0bf90b7b 8606 if (cmp_max == -2)
8607 goto varying;
9b53b827 8608
8609 /* For non VR_RANGE or for pointers fall back to varying if
8610 the range changed. */
8611 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8612 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8613 && (cmp_min != 0 || cmp_max != 0))
8614 goto varying;
8615
b7f05e98 8616 /* If the new minimum is larger than than the previous one
8617 retain the old value. If the new minimum value is smaller
8618 than the previous one and not -INF go all the way to -INF + 1.
8619 In the first case, to avoid infinite bouncing between different
8620 minimums, and in the other case to avoid iterating millions of
8621 times to reach -INF. Going to -INF + 1 also lets the following
8622 iteration compute whether there will be any overflow, at the
8623 expense of one additional iteration. */
8624 if (cmp_min < 0)
8625 vr_result.min = lhs_vr->min;
8626 else if (cmp_min > 0
8627 && !vrp_val_is_min (vr_result.min))
8628 vr_result.min
8629 = int_const_binop (PLUS_EXPR,
8630 vrp_val_min (TREE_TYPE (vr_result.min)),
8631 build_int_cst (TREE_TYPE (vr_result.min), 1));
8632
8633 /* Similarly for the maximum value. */
8634 if (cmp_max > 0)
8635 vr_result.max = lhs_vr->max;
8636 else if (cmp_max < 0
8637 && !vrp_val_is_max (vr_result.max))
8638 vr_result.max
8639 = int_const_binop (MINUS_EXPR,
8640 vrp_val_max (TREE_TYPE (vr_result.min)),
8641 build_int_cst (TREE_TYPE (vr_result.min), 1));
9b53b827 8642
8643 /* If we dropped either bound to +-INF then if this is a loop
8644 PHI node SCEV may known more about its value-range. */
8645 if ((cmp_min > 0 || cmp_min < 0
8646 || cmp_max < 0 || cmp_max > 0)
9b53b827 8647 && (l = loop_containing_stmt (phi))
8648 && l->header == gimple_bb (phi))
8649 adjust_range_with_scev (&vr_result, l, phi, lhs);
8650
8651 /* If we will end up with a (-INF, +INF) range, set it to
8652 VARYING. Same if the previous max value was invalid for
8653 the type and we end up with vr_result.min > vr_result.max. */
8654 if ((vrp_val_is_max (vr_result.max)
8655 && vrp_val_is_min (vr_result.min))
8656 || compare_values (vr_result.min,
8657 vr_result.max) > 0)
8658 goto varying;
88dbf20f 8659 }
8660
8661 /* If the new range is different than the previous value, keep
8662 iterating. */
fb41023e 8663update_range:
eea12c72 8664 if (update_value_range (lhs, &vr_result))
9300c776 8665 {
8666 if (dump_file && (dump_flags & TDF_DETAILS))
8667 {
8668 fprintf (dump_file, "Found new range for ");
8669 print_generic_expr (dump_file, lhs, 0);
8670 fprintf (dump_file, ": ");
8671 dump_value_range (dump_file, &vr_result);
0d4c8cda 8672 fprintf (dump_file, "\n");
9300c776 8673 }
8674
8675 return SSA_PROP_INTERESTING;
8676 }
88dbf20f 8677
8678 /* Nothing changed, don't add outgoing edges. */
8679 return SSA_PROP_NOT_INTERESTING;
eea12c72 8680
8681 /* No match found. Set the LHS to VARYING. */
8682varying:
8683 set_value_range_to_varying (lhs_vr);
8684 return SSA_PROP_VARYING;
88dbf20f 8685}
8686
e31161b3 8687/* Simplify boolean operations if the source is known
8688 to be already a boolean. */
8689static bool
8690simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8691{
8692 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
d6f3306a 8693 tree lhs, op0, op1;
e31161b3 8694 bool need_conversion;
8695
eea7f7eb 8696 /* We handle only !=/== case here. */
8697 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8698
e31161b3 8699 op0 = gimple_assign_rhs1 (stmt);
d6f3306a 8700 if (!op_with_boolean_value_range_p (op0))
8701 return false;
e31161b3 8702
eea7f7eb 8703 op1 = gimple_assign_rhs2 (stmt);
d6f3306a 8704 if (!op_with_boolean_value_range_p (op1))
8705 return false;
eea7f7eb 8706
d6f3306a 8707 /* Reduce number of cases to handle to NE_EXPR. As there is no
8708 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8709 if (rhs_code == EQ_EXPR)
e31161b3 8710 {
d6f3306a 8711 if (TREE_CODE (op1) == INTEGER_CST)
ddb1be65 8712 op1 = int_const_binop (BIT_XOR_EXPR, op1,
e913b5cd 8713 build_int_cst (TREE_TYPE (op1), 1));
e31161b3 8714 else
d6f3306a 8715 return false;
e31161b3 8716 }
8717
d6f3306a 8718 lhs = gimple_assign_lhs (stmt);
8719 need_conversion
8720 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
e31161b3 8721
d6f3306a 8722 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
cd5ffed9 8723 if (need_conversion
8724 && !TYPE_UNSIGNED (TREE_TYPE (op0))
d6f3306a 8725 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
8726 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
e31161b3 8727 return false;
8728
d6f3306a 8729 /* For A != 0 we can substitute A itself. */
8730 if (integer_zerop (op1))
8731 gimple_assign_set_rhs_with_ops (gsi,
8732 need_conversion
8733 ? NOP_EXPR : TREE_CODE (op0),
8734 op0, NULL_TREE);
8735 /* For A != B we substitute A ^ B. Either with conversion. */
8736 else if (need_conversion)
8737 {
03d37e4e 8738 tree tem = make_ssa_name (TREE_TYPE (op0), NULL);
8739 gimple newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
d6f3306a 8740 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
d6f3306a 8741 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
8742 }
8743 /* Or without. */
8744 else
8745 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
e31161b3 8746 update_stmt (gsi_stmt (*gsi));
d6f3306a 8747
e31161b3 8748 return true;
8749}
8750
96c8d283 8751/* Simplify a division or modulo operator to a right shift or
8752 bitwise and if the first operand is unsigned or is greater
8753 than zero and the second operand is an exact power of two. */
15ea1735 8754
e31161b3 8755static bool
75a70cf9 8756simplify_div_or_mod_using_ranges (gimple stmt)
15ea1735 8757{
75a70cf9 8758 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
96c8d283 8759 tree val = NULL;
75a70cf9 8760 tree op0 = gimple_assign_rhs1 (stmt);
8761 tree op1 = gimple_assign_rhs2 (stmt);
8762 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
15ea1735 8763
75a70cf9 8764 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
96c8d283 8765 {
8766 val = integer_one_node;
8767 }
8768 else
8769 {
c3783c3b 8770 bool sop = false;
8771
92f9b59a 8772 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
a2a1fde2 8773
8774 if (val
8775 && sop
8776 && integer_onep (val)
8777 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8778 {
75a70cf9 8779 location_t location;
a2a1fde2 8780
75a70cf9 8781 if (!gimple_has_location (stmt))
8782 location = input_location;
a2a1fde2 8783 else
75a70cf9 8784 location = gimple_location (stmt);
5fb6a912 8785 warning_at (location, OPT_Wstrict_overflow,
8786 "assuming signed overflow does not occur when "
8787 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
a2a1fde2 8788 }
96c8d283 8789 }
8790
8791 if (val && integer_onep (val))
15ea1735 8792 {
96c8d283 8793 tree t;
15ea1735 8794
96c8d283 8795 if (rhs_code == TRUNC_DIV_EXPR)
8796 {
7002a1c8 8797 t = build_int_cst (integer_type_node, tree_log2 (op1));
75a70cf9 8798 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
8799 gimple_assign_set_rhs1 (stmt, op0);
8800 gimple_assign_set_rhs2 (stmt, t);
96c8d283 8801 }
8802 else
15ea1735 8803 {
96c8d283 8804 t = build_int_cst (TREE_TYPE (op1), 1);
317e2a67 8805 t = int_const_binop (MINUS_EXPR, op1, t);
96c8d283 8806 t = fold_convert (TREE_TYPE (op0), t);
75a70cf9 8807
8808 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
8809 gimple_assign_set_rhs1 (stmt, op0);
8810 gimple_assign_set_rhs2 (stmt, t);
96c8d283 8811 }
8812
96c8d283 8813 update_stmt (stmt);
e31161b3 8814 return true;
96c8d283 8815 }
e31161b3 8816
8817 return false;
96c8d283 8818}
15ea1735 8819
96c8d283 8820/* If the operand to an ABS_EXPR is >= 0, then eliminate the
8821 ABS_EXPR. If the operand is <= 0, then simplify the
8822 ABS_EXPR into a NEGATE_EXPR. */
8823
e31161b3 8824static bool
75a70cf9 8825simplify_abs_using_ranges (gimple stmt)
96c8d283 8826{
8827 tree val = NULL;
75a70cf9 8828 tree op = gimple_assign_rhs1 (stmt);
96c8d283 8829 tree type = TREE_TYPE (op);
75a70cf9 8830 value_range_t *vr = get_value_range (op);
96c8d283 8831
8832 if (TYPE_UNSIGNED (type))
8833 {
8834 val = integer_zero_node;
8835 }
8836 else if (vr)
8837 {
c3783c3b 8838 bool sop = false;
8839
8840 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
96c8d283 8841 if (!val)
8842 {
c3783c3b 8843 sop = false;
8844 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
8845 &sop);
96c8d283 8846
8847 if (val)
15ea1735 8848 {
96c8d283 8849 if (integer_zerop (val))
8850 val = integer_one_node;
8851 else if (integer_onep (val))
8852 val = integer_zero_node;
8853 }
8854 }
15ea1735 8855
96c8d283 8856 if (val
8857 && (integer_onep (val) || integer_zerop (val)))
8858 {
a2a1fde2 8859 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8860 {
75a70cf9 8861 location_t location;
a2a1fde2 8862
75a70cf9 8863 if (!gimple_has_location (stmt))
8864 location = input_location;
a2a1fde2 8865 else
75a70cf9 8866 location = gimple_location (stmt);
5fb6a912 8867 warning_at (location, OPT_Wstrict_overflow,
8868 "assuming signed overflow does not occur when "
8869 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
a2a1fde2 8870 }
8871
75a70cf9 8872 gimple_assign_set_rhs1 (stmt, op);
96c8d283 8873 if (integer_onep (val))
75a70cf9 8874 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
96c8d283 8875 else
75a70cf9 8876 gimple_assign_set_rhs_code (stmt, SSA_NAME);
96c8d283 8877 update_stmt (stmt);
e31161b3 8878 return true;
96c8d283 8879 }
8880 }
e31161b3 8881
8882 return false;
96c8d283 8883}
8884
273e780e 8885/* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8886 If all the bits that are being cleared by & are already
8887 known to be zero from VR, or all the bits that are being
8888 set by | are already known to be one from VR, the bit
8889 operation is redundant. */
8890
8891static bool
8892simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8893{
8894 tree op0 = gimple_assign_rhs1 (stmt);
8895 tree op1 = gimple_assign_rhs2 (stmt);
8896 tree op = NULL_TREE;
748eb1f9 8897 value_range_t vr0 = VR_INITIALIZER;
8898 value_range_t vr1 = VR_INITIALIZER;
e913b5cd 8899 wide_int may_be_nonzero0, may_be_nonzero1;
8900 wide_int must_be_nonzero0, must_be_nonzero1;
8901 wide_int mask;
273e780e 8902
8903 if (TREE_CODE (op0) == SSA_NAME)
8904 vr0 = *(get_value_range (op0));
8905 else if (is_gimple_min_invariant (op0))
8906 set_value_range_to_value (&vr0, op0, NULL);
8907 else
8908 return false;
8909
8910 if (TREE_CODE (op1) == SSA_NAME)
8911 vr1 = *(get_value_range (op1));
8912 else if (is_gimple_min_invariant (op1))
8913 set_value_range_to_value (&vr1, op1, NULL);
8914 else
8915 return false;
8916
3a54beaf 8917 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
8918 &must_be_nonzero0))
273e780e 8919 return false;
3a54beaf 8920 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
8921 &must_be_nonzero1))
273e780e 8922 return false;
8923
8924 switch (gimple_assign_rhs_code (stmt))
8925 {
8926 case BIT_AND_EXPR:
cf8f0e63 8927 mask = may_be_nonzero0.and_not (must_be_nonzero1);
796b6678 8928 if (mask == 0)
273e780e 8929 {
8930 op = op0;
8931 break;
8932 }
cf8f0e63 8933 mask = may_be_nonzero1.and_not (must_be_nonzero0);
796b6678 8934 if (mask == 0)
273e780e 8935 {
8936 op = op1;
8937 break;
8938 }
8939 break;
8940 case BIT_IOR_EXPR:
cf8f0e63 8941 mask = may_be_nonzero0.and_not (must_be_nonzero1);
796b6678 8942 if (mask == 0)
273e780e 8943 {
8944 op = op1;
8945 break;
8946 }
cf8f0e63 8947 mask = may_be_nonzero1.and_not (must_be_nonzero0);
796b6678 8948 if (mask == 0)
273e780e 8949 {
8950 op = op0;
8951 break;
8952 }
8953 break;
8954 default:
8955 gcc_unreachable ();
8956 }
8957
8958 if (op == NULL_TREE)
8959 return false;
8960
8961 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
8962 update_stmt (gsi_stmt (*gsi));
8963 return true;
8964}
8965
15fb6c2c 8966/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8967 a known value range VR.
8968
8969 If there is one and only one value which will satisfy the
8970 conditional, then return that value. Else return NULL. */
8971
8972static tree
8973test_for_singularity (enum tree_code cond_code, tree op0,
8974 tree op1, value_range_t *vr)
8975{
8976 tree min = NULL;
8977 tree max = NULL;
8978
8979 /* Extract minimum/maximum values which satisfy the
8980 the conditional as it was written. */
8981 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
8982 {
c3783c3b 8983 /* This should not be negative infinity; there is no overflow
8984 here. */
15fb6c2c 8985 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
8986
8987 max = op1;
c3783c3b 8988 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
15fb6c2c 8989 {
8990 tree one = build_int_cst (TREE_TYPE (op0), 1);
31b55b9c 8991 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
d8f696cf 8992 if (EXPR_P (max))
8993 TREE_NO_WARNING (max) = 1;
15fb6c2c 8994 }
8995 }
8996 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
8997 {
c3783c3b 8998 /* This should not be positive infinity; there is no overflow
8999 here. */
15fb6c2c 9000 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9001
9002 min = op1;
c3783c3b 9003 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
15fb6c2c 9004 {
9005 tree one = build_int_cst (TREE_TYPE (op0), 1);
4f87bd68 9006 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
d8f696cf 9007 if (EXPR_P (min))
9008 TREE_NO_WARNING (min) = 1;
15fb6c2c 9009 }
9010 }
9011
9012 /* Now refine the minimum and maximum values using any
9013 value range information we have for op0. */
9014 if (min && max)
9015 {
f133b485 9016 if (compare_values (vr->min, min) == 1)
15fb6c2c 9017 min = vr->min;
f133b485 9018 if (compare_values (vr->max, max) == -1)
15fb6c2c 9019 max = vr->max;
9020
4f87bd68 9021 /* If the new min/max values have converged to a single value,
9022 then there is only one value which can satisfy the condition,
9023 return that value. */
9024 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
15fb6c2c 9025 return min;
9026 }
9027 return NULL;
9028}
9029
3172284a 9030/* Return whether the value range *VR fits in an integer type specified
9031 by PRECISION and UNSIGNED_P. */
9032
9033static bool
e913b5cd 9034range_fits_type_p (value_range_t *vr, unsigned dest_precision, signop dest_sgn)
3172284a 9035{
9036 tree src_type;
9037 unsigned src_precision;
5de9d3ed 9038 widest_int tem;
e913b5cd 9039 signop src_sgn;
3172284a 9040
9041 /* We can only handle integral and pointer types. */
9042 src_type = TREE_TYPE (vr->min);
9043 if (!INTEGRAL_TYPE_P (src_type)
9044 && !POINTER_TYPE_P (src_type))
9045 return false;
9046
e913b5cd 9047 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
3172284a 9048 and so is an identity transform. */
9049 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
e913b5cd 9050 src_sgn = TYPE_SIGN (src_type);
9051 if ((src_precision < dest_precision
9052 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9053 || (src_precision == dest_precision && src_sgn == dest_sgn))
3172284a 9054 return true;
9055
9056 /* Now we can only handle ranges with constant bounds. */
9057 if (vr->type != VR_RANGE
9058 || TREE_CODE (vr->min) != INTEGER_CST
9059 || TREE_CODE (vr->max) != INTEGER_CST)
9060 return false;
9061
e913b5cd 9062 /* For sign changes, the MSB of the wide_int has to be clear.
3172284a 9063 An unsigned value with its MSB set cannot be represented by
e913b5cd 9064 a signed wide_int, while a negative value cannot be represented
9065 by an unsigned wide_int. */
9066 if (src_sgn != dest_sgn
796b6678 9067 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
3172284a 9068 return false;
9069
9070 /* Then we can perform the conversion on both ends and compare
9071 the result for equality. */
5de9d3ed 9072 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9073 if (tem != wi::to_widest (vr->min))
3172284a 9074 return false;
5de9d3ed 9075 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9076 if (tem != wi::to_widest (vr->max))
3172284a 9077 return false;
9078
9079 return true;
9080}
9081
7662ff7e 9082/* Simplify a conditional using a relational operator to an equality
9083 test if the range information indicates only one value can satisfy
9084 the original conditional. */
96c8d283 9085
e31161b3 9086static bool
75a70cf9 9087simplify_cond_using_ranges (gimple stmt)
96c8d283 9088{
75a70cf9 9089 tree op0 = gimple_cond_lhs (stmt);
9090 tree op1 = gimple_cond_rhs (stmt);
9091 enum tree_code cond_code = gimple_cond_code (stmt);
96c8d283 9092
7662ff7e 9093 if (cond_code != NE_EXPR
96c8d283 9094 && cond_code != EQ_EXPR
9095 && TREE_CODE (op0) == SSA_NAME
9096 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9097 && is_gimple_min_invariant (op1))
9098 {
9099 value_range_t *vr = get_value_range (op0);
48e1416a 9100
96c8d283 9101 /* If we have range information for OP0, then we might be
9102 able to simplify this conditional. */
9103 if (vr->type == VR_RANGE)
9104 {
f4e36c33 9105 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
96c8d283 9106
f4e36c33 9107 if (new_tree)
96c8d283 9108 {
15fb6c2c 9109 if (dump_file)
96c8d283 9110 {
15fb6c2c 9111 fprintf (dump_file, "Simplified relational ");
75a70cf9 9112 print_gimple_stmt (dump_file, stmt, 0, 0);
15fb6c2c 9113 fprintf (dump_file, " into ");
15ea1735 9114 }
9115
75a70cf9 9116 gimple_cond_set_code (stmt, EQ_EXPR);
9117 gimple_cond_set_lhs (stmt, op0);
f4e36c33 9118 gimple_cond_set_rhs (stmt, new_tree);
75a70cf9 9119
15fb6c2c 9120 update_stmt (stmt);
9121
9122 if (dump_file)
15ea1735 9123 {
75a70cf9 9124 print_gimple_stmt (dump_file, stmt, 0, 0);
15fb6c2c 9125 fprintf (dump_file, "\n");
15ea1735 9126 }
15fb6c2c 9127
e31161b3 9128 return true;
15ea1735 9129 }
9130
15fb6c2c 9131 /* Try again after inverting the condition. We only deal
9132 with integral types here, so no need to worry about
9133 issues with inverting FP comparisons. */
9134 cond_code = invert_tree_comparison (cond_code, false);
f4e36c33 9135 new_tree = test_for_singularity (cond_code, op0, op1, vr);
15fb6c2c 9136
f4e36c33 9137 if (new_tree)
96c8d283 9138 {
15fb6c2c 9139 if (dump_file)
96c8d283 9140 {
15fb6c2c 9141 fprintf (dump_file, "Simplified relational ");
75a70cf9 9142 print_gimple_stmt (dump_file, stmt, 0, 0);
15fb6c2c 9143 fprintf (dump_file, " into ");
96c8d283 9144 }
15fb6c2c 9145
75a70cf9 9146 gimple_cond_set_code (stmt, NE_EXPR);
9147 gimple_cond_set_lhs (stmt, op0);
f4e36c33 9148 gimple_cond_set_rhs (stmt, new_tree);
75a70cf9 9149
15fb6c2c 9150 update_stmt (stmt);
9151
9152 if (dump_file)
9153 {
75a70cf9 9154 print_gimple_stmt (dump_file, stmt, 0, 0);
15fb6c2c 9155 fprintf (dump_file, "\n");
9156 }
15fb6c2c 9157
e31161b3 9158 return true;
96c8d283 9159 }
15ea1735 9160 }
9161 }
e31161b3 9162
3172284a 9163 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9164 see if OP0 was set by a type conversion where the source of
9165 the conversion is another SSA_NAME with a range that fits
9166 into the range of OP0's type.
813adf93 9167
3172284a 9168 If so, the conversion is redundant as the earlier SSA_NAME can be
9169 used for the comparison directly if we just massage the constant in the
9170 comparison. */
813adf93 9171 if (TREE_CODE (op0) == SSA_NAME
813adf93 9172 && TREE_CODE (op1) == INTEGER_CST)
9173 {
9174 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
9175 tree innerop;
9176
9177 if (!is_gimple_assign (def_stmt)
9178 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9179 return false;
9180
9181 innerop = gimple_assign_rhs1 (def_stmt);
9182
1c872eee 9183 if (TREE_CODE (innerop) == SSA_NAME
9184 && !POINTER_TYPE_P (TREE_TYPE (innerop)))
813adf93 9185 {
9186 value_range_t *vr = get_value_range (innerop);
9187
9188 if (range_int_cst_p (vr)
3172284a 9189 && range_fits_type_p (vr,
9190 TYPE_PRECISION (TREE_TYPE (op0)),
e913b5cd 9191 TYPE_SIGN (TREE_TYPE (op0)))
65a8f1a1 9192 && int_fits_type_p (op1, TREE_TYPE (innerop))
9193 /* The range must not have overflowed, or if it did overflow
9194 we must not be wrapping/trapping overflow and optimizing
9195 with strict overflow semantics. */
9196 && ((!is_negative_overflow_infinity (vr->min)
9197 && !is_positive_overflow_infinity (vr->max))
9198 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
813adf93 9199 {
65a8f1a1 9200 /* If the range overflowed and the user has asked for warnings
9201 when strict overflow semantics were used to optimize code,
9202 issue an appropriate warning. */
5be85c4c 9203 if (cond_code != EQ_EXPR && cond_code != NE_EXPR
9204 && (is_negative_overflow_infinity (vr->min)
9205 || is_positive_overflow_infinity (vr->max))
65a8f1a1 9206 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
9207 {
9208 location_t location;
9209
9210 if (!gimple_has_location (stmt))
9211 location = input_location;
9212 else
9213 location = gimple_location (stmt);
9214 warning_at (location, OPT_Wstrict_overflow,
9215 "assuming signed overflow does not occur when "
9216 "simplifying conditional");
9217 }
9218
813adf93 9219 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9220 gimple_cond_set_lhs (stmt, innerop);
9221 gimple_cond_set_rhs (stmt, newconst);
9222 return true;
9223 }
9224 }
9225 }
9226
e31161b3 9227 return false;
15ea1735 9228}
9229
72c30859 9230/* Simplify a switch statement using the value range of the switch
9231 argument. */
9232
e31161b3 9233static bool
75a70cf9 9234simplify_switch_using_ranges (gimple stmt)
72c30859 9235{
75a70cf9 9236 tree op = gimple_switch_index (stmt);
72c30859 9237 value_range_t *vr;
9238 bool take_default;
9239 edge e;
9240 edge_iterator ei;
9241 size_t i = 0, j = 0, n, n2;
75a70cf9 9242 tree vec2;
72c30859 9243 switch_update su;
98a8539f 9244 size_t k = 1, l = 0;
72c30859 9245
496ffe87 9246 if (TREE_CODE (op) == SSA_NAME)
9247 {
9248 vr = get_value_range (op);
72c30859 9249
496ffe87 9250 /* We can only handle integer ranges. */
98a8539f 9251 if ((vr->type != VR_RANGE
9252 && vr->type != VR_ANTI_RANGE)
496ffe87 9253 || symbolic_range_p (vr))
9254 return false;
72c30859 9255
496ffe87 9256 /* Find case label for min/max of the value range. */
98a8539f 9257 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
496ffe87 9258 }
9259 else if (TREE_CODE (op) == INTEGER_CST)
9260 {
9261 take_default = !find_case_label_index (stmt, 1, op, &i);
9262 if (take_default)
9263 {
9264 i = 1;
9265 j = 0;
9266 }
48e1416a 9267 else
496ffe87 9268 {
9269 j = i;
9270 }
9271 }
9272 else
e31161b3 9273 return false;
72c30859 9274
75a70cf9 9275 n = gimple_switch_num_labels (stmt);
72c30859 9276
9277 /* Bail out if this is just all edges taken. */
75a70cf9 9278 if (i == 1
9279 && j == n - 1
72c30859 9280 && take_default)
e31161b3 9281 return false;
72c30859 9282
9283 /* Build a new vector of taken case labels. */
98a8539f 9284 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
75a70cf9 9285 n2 = 0;
72c30859 9286
9287 /* Add the default edge, if necessary. */
9288 if (take_default)
75a70cf9 9289 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9290
9291 for (; i <= j; ++i, ++n2)
9292 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
72c30859 9293
98a8539f 9294 for (; k <= l; ++k, ++n2)
9295 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9296
72c30859 9297 /* Mark needed edges. */
9298 for (i = 0; i < n2; ++i)
9299 {
75a70cf9 9300 e = find_edge (gimple_bb (stmt),
72c30859 9301 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9302 e->aux = (void *)-1;
9303 }
9304
9305 /* Queue not needed edges for later removal. */
75a70cf9 9306 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
72c30859 9307 {
9308 if (e->aux == (void *)-1)
9309 {
9310 e->aux = NULL;
9311 continue;
9312 }
9313
9314 if (dump_file && (dump_flags & TDF_DETAILS))
9315 {
9316 fprintf (dump_file, "removing unreachable case label\n");
9317 }
f1f41a6c 9318 to_remove_edges.safe_push (e);
8b938617 9319 e->flags &= ~EDGE_EXECUTABLE;
72c30859 9320 }
9321
9322 /* And queue an update for the stmt. */
9323 su.stmt = stmt;
9324 su.vec = vec2;
f1f41a6c 9325 to_update_switch_stmts.safe_push (su);
e31161b3 9326 return false;
72c30859 9327}
9328
7430df61 9329/* Simplify an integral conversion from an SSA name in STMT. */
9330
9331static bool
9332simplify_conversion_using_ranges (gimple stmt)
9333{
b3b0dcac 9334 tree innerop, middleop, finaltype;
9335 gimple def_stmt;
9336 value_range_t *innervr;
e913b5cd 9337 signop inner_sgn, middle_sgn, final_sgn;
9298e319 9338 unsigned inner_prec, middle_prec, final_prec;
5de9d3ed 9339 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
b3b0dcac 9340
9341 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
5c3a6c62 9342 if (!INTEGRAL_TYPE_P (finaltype))
9343 return false;
b3b0dcac 9344 middleop = gimple_assign_rhs1 (stmt);
9345 def_stmt = SSA_NAME_DEF_STMT (middleop);
7430df61 9346 if (!is_gimple_assign (def_stmt)
9347 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9348 return false;
b3b0dcac 9349 innerop = gimple_assign_rhs1 (def_stmt);
3a4a5c9c 9350 if (TREE_CODE (innerop) != SSA_NAME
9351 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
7430df61 9352 return false;
b3b0dcac 9353
9354 /* Get the value-range of the inner operand. */
9355 innervr = get_value_range (innerop);
9356 if (innervr->type != VR_RANGE
9357 || TREE_CODE (innervr->min) != INTEGER_CST
9358 || TREE_CODE (innervr->max) != INTEGER_CST)
7430df61 9359 return false;
b3b0dcac 9360
9361 /* Simulate the conversion chain to check if the result is equal if
9362 the middle conversion is removed. */
5de9d3ed 9363 innermin = wi::to_widest (innervr->min);
9364 innermax = wi::to_widest (innervr->max);
9298e319 9365
9366 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9367 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9368 final_prec = TYPE_PRECISION (finaltype);
9369
9370 /* If the first conversion is not injective, the second must not
9371 be widening. */
796b6678 9372 if (wi::gtu_p (innermax - innermin,
5de9d3ed 9373 wi::mask <widest_int> (middle_prec, false))
9298e319 9374 && middle_prec < final_prec)
7430df61 9375 return false;
9298e319 9376 /* We also want a medium value so that we can track the effect that
9377 narrowing conversions with sign change have. */
e913b5cd 9378 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
9379 if (inner_sgn == UNSIGNED)
5de9d3ed 9380 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
9298e319 9381 else
e913b5cd 9382 innermed = 0;
796b6678 9383 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
9384 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
9298e319 9385 innermed = innermin;
9386
e913b5cd 9387 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
796b6678 9388 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
9389 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
9390 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
9298e319 9391
81e042f9 9392 /* Require that the final conversion applied to both the original
9393 and the intermediate range produces the same result. */
e913b5cd 9394 final_sgn = TYPE_SIGN (finaltype);
796b6678 9395 if (wi::ext (middlemin, final_prec, final_sgn)
9396 != wi::ext (innermin, final_prec, final_sgn)
9397 || wi::ext (middlemed, final_prec, final_sgn)
9398 != wi::ext (innermed, final_prec, final_sgn)
9399 || wi::ext (middlemax, final_prec, final_sgn)
9400 != wi::ext (innermax, final_prec, final_sgn))
b3b0dcac 9401 return false;
9402
9403 gimple_assign_set_rhs1 (stmt, innerop);
7430df61 9404 update_stmt (stmt);
9405 return true;
9406}
9407
f0938d2c 9408/* Simplify a conversion from integral SSA name to float in STMT. */
9409
9410static bool
9411simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9412{
9413 tree rhs1 = gimple_assign_rhs1 (stmt);
9414 value_range_t *vr = get_value_range (rhs1);
9415 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9416 enum machine_mode mode;
9417 tree tem;
9418 gimple conv;
9419
9420 /* We can only handle constant ranges. */
9421 if (vr->type != VR_RANGE
9422 || TREE_CODE (vr->min) != INTEGER_CST
9423 || TREE_CODE (vr->max) != INTEGER_CST)
9424 return false;
9425
9426 /* First check if we can use a signed type in place of an unsigned. */
9427 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9428 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9429 != CODE_FOR_nothing)
e913b5cd 9430 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
f0938d2c 9431 mode = TYPE_MODE (TREE_TYPE (rhs1));
9432 /* If we can do the conversion in the current input mode do nothing. */
9433 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
4b9630f0 9434 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
f0938d2c 9435 return false;
9436 /* Otherwise search for a mode we can use, starting from the narrowest
9437 integer mode available. */
9438 else
9439 {
9440 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9441 do
9442 {
9443 /* If we cannot do a signed conversion to float from mode
9444 or if the value-range does not fit in the signed type
9445 try with a wider mode. */
9446 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
e913b5cd 9447 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
f0938d2c 9448 break;
9449
9450 mode = GET_MODE_WIDER_MODE (mode);
9451 /* But do not widen the input. Instead leave that to the
9452 optabs expansion code. */
9453 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9454 return false;
9455 }
9456 while (mode != VOIDmode);
9457 if (mode == VOIDmode)
9458 return false;
9459 }
9460
9461 /* It works, insert a truncation or sign-change before the
9462 float conversion. */
03d37e4e 9463 tem = make_ssa_name (build_nonstandard_integer_type
f0938d2c 9464 (GET_MODE_PRECISION (mode), 0), NULL);
9465 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
f0938d2c 9466 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9467 gimple_assign_set_rhs1 (stmt, tem);
9468 update_stmt (stmt);
9469
9470 return true;
9471}
9472
509e8fea 9473/* Simplify an internal fn call using ranges if possible. */
9474
9475static bool
9476simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9477{
9478 enum tree_code subcode;
9479 switch (gimple_call_internal_fn (stmt))
9480 {
9481 case IFN_UBSAN_CHECK_ADD:
9482 subcode = PLUS_EXPR;
9483 break;
9484 case IFN_UBSAN_CHECK_SUB:
9485 subcode = MINUS_EXPR;
9486 break;
9487 case IFN_UBSAN_CHECK_MUL:
9488 subcode = MULT_EXPR;
9489 break;
9490 default:
9491 return false;
9492 }
9493
9494 value_range_t vr0 = VR_INITIALIZER;
9495 value_range_t vr1 = VR_INITIALIZER;
9496 tree op0 = gimple_call_arg (stmt, 0);
9497 tree op1 = gimple_call_arg (stmt, 1);
9498
9499 if (TREE_CODE (op0) == SSA_NAME)
9500 vr0 = *get_value_range (op0);
9501 else if (TREE_CODE (op0) == INTEGER_CST)
9502 set_value_range_to_value (&vr0, op0, NULL);
9503 else
ce8e6661 9504 set_value_range_to_varying (&vr0);
509e8fea 9505
9506 if (TREE_CODE (op1) == SSA_NAME)
9507 vr1 = *get_value_range (op1);
9508 else if (TREE_CODE (op1) == INTEGER_CST)
9509 set_value_range_to_value (&vr1, op1, NULL);
9510 else
ce8e6661 9511 set_value_range_to_varying (&vr1);
509e8fea 9512
ce8e6661 9513 if (!range_int_cst_p (&vr0))
509e8fea 9514 {
ce8e6661 9515 /* If one range is VR_ANTI_RANGE, VR_VARYING etc.,
9516 optimize at least x = y + 0; x = y - 0; x = y * 0;
9517 and x = y * 1; which never overflow. */
9518 if (!range_int_cst_p (&vr1))
9519 return false;
9520 if (tree_int_cst_sgn (vr1.min) == -1)
9521 return false;
9522 if (compare_tree_int (vr1.max, subcode == MULT_EXPR) == 1)
509e8fea 9523 return false;
9524 }
ce8e6661 9525 else if (!range_int_cst_p (&vr1))
9526 {
9527 /* If one range is VR_ANTI_RANGE, VR_VARYING etc.,
9528 optimize at least x = 0 + y; x = 0 * y; and x = 1 * y;
9529 which never overflow. */
9530 if (subcode == MINUS_EXPR)
9531 return false;
9532 if (!range_int_cst_p (&vr0))
9533 return false;
9534 if (tree_int_cst_sgn (vr0.min) == -1)
9535 return false;
9536 if (compare_tree_int (vr0.max, subcode == MULT_EXPR) == 1)
9537 return false;
9538 }
9539 else
509e8fea 9540 {
ce8e6661 9541 tree r1 = int_const_binop (subcode, vr0.min, vr1.min);
9542 tree r2 = int_const_binop (subcode, vr0.max, vr1.max);
9543 if (r1 == NULL_TREE || TREE_OVERFLOW (r1)
9544 || r2 == NULL_TREE || TREE_OVERFLOW (r2))
509e8fea 9545 return false;
ce8e6661 9546 if (subcode == MULT_EXPR)
9547 {
9548 tree r3 = int_const_binop (subcode, vr0.min, vr1.max);
9549 tree r4 = int_const_binop (subcode, vr0.max, vr1.min);
9550 if (r3 == NULL_TREE || TREE_OVERFLOW (r3)
9551 || r4 == NULL_TREE || TREE_OVERFLOW (r4))
9552 return false;
9553 }
509e8fea 9554 }
ce8e6661 9555
509e8fea 9556 gimple g = gimple_build_assign_with_ops (subcode, gimple_call_lhs (stmt),
9557 op0, op1);
9558 gsi_replace (gsi, g, false);
9559 return true;
9560}
9561
96c8d283 9562/* Simplify STMT using ranges if possible. */
9563
07aee51b 9564static bool
e31161b3 9565simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
96c8d283 9566{
e31161b3 9567 gimple stmt = gsi_stmt (*gsi);
75a70cf9 9568 if (is_gimple_assign (stmt))
96c8d283 9569 {
75a70cf9 9570 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7430df61 9571 tree rhs1 = gimple_assign_rhs1 (stmt);
96c8d283 9572
e31161b3 9573 switch (rhs_code)
9574 {
9575 case EQ_EXPR:
9576 case NE_EXPR:
eea7f7eb 9577 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9578 if the RHS is zero or one, and the LHS are known to be boolean
9579 values. */
7430df61 9580 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
e31161b3 9581 return simplify_truth_ops_using_ranges (gsi, stmt);
9582 break;
9583
96c8d283 9584 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9585 and BIT_AND_EXPR respectively if the first operand is greater
9586 than zero and the second operand is an exact power of two. */
e31161b3 9587 case TRUNC_DIV_EXPR:
9588 case TRUNC_MOD_EXPR:
7430df61 9589 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
e31161b3 9590 && integer_pow2p (gimple_assign_rhs2 (stmt)))
9591 return simplify_div_or_mod_using_ranges (stmt);
9592 break;
96c8d283 9593
9594 /* Transform ABS (X) into X or -X as appropriate. */
e31161b3 9595 case ABS_EXPR:
7430df61 9596 if (TREE_CODE (rhs1) == SSA_NAME
9597 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
e31161b3 9598 return simplify_abs_using_ranges (stmt);
9599 break;
9600
273e780e 9601 case BIT_AND_EXPR:
9602 case BIT_IOR_EXPR:
9603 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9604 if all the bits being cleared are already cleared or
9605 all the bits being set are already set. */
7430df61 9606 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
273e780e 9607 return simplify_bit_ops_using_ranges (gsi, stmt);
9608 break;
9609
7430df61 9610 CASE_CONVERT:
9611 if (TREE_CODE (rhs1) == SSA_NAME
9612 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9613 return simplify_conversion_using_ranges (stmt);
9614 break;
9615
f0938d2c 9616 case FLOAT_EXPR:
9617 if (TREE_CODE (rhs1) == SSA_NAME
9618 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9619 return simplify_float_conversion_using_ranges (gsi, stmt);
9620 break;
9621
e31161b3 9622 default:
9623 break;
9624 }
96c8d283 9625 }
75a70cf9 9626 else if (gimple_code (stmt) == GIMPLE_COND)
e31161b3 9627 return simplify_cond_using_ranges (stmt);
75a70cf9 9628 else if (gimple_code (stmt) == GIMPLE_SWITCH)
e31161b3 9629 return simplify_switch_using_ranges (stmt);
509e8fea 9630 else if (is_gimple_call (stmt)
9631 && gimple_call_internal_p (stmt))
9632 return simplify_internal_call_using_ranges (gsi, stmt);
e31161b3 9633
9634 return false;
96c8d283 9635}
9636
07aee51b 9637/* If the statement pointed by SI has a predicate whose value can be
9638 computed using the value range information computed by VRP, compute
9639 its value and return true. Otherwise, return false. */
9640
9641static bool
9642fold_predicate_in (gimple_stmt_iterator *si)
9643{
9644 bool assignment_p = false;
9645 tree val;
9646 gimple stmt = gsi_stmt (*si);
9647
9648 if (is_gimple_assign (stmt)
9649 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
9650 {
9651 assignment_p = true;
9652 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
9653 gimple_assign_rhs1 (stmt),
9654 gimple_assign_rhs2 (stmt),
9655 stmt);
9656 }
9657 else if (gimple_code (stmt) == GIMPLE_COND)
9658 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
9659 gimple_cond_lhs (stmt),
9660 gimple_cond_rhs (stmt),
9661 stmt);
9662 else
9663 return false;
9664
9665 if (val)
9666 {
9667 if (assignment_p)
9668 val = fold_convert (gimple_expr_type (stmt), val);
48e1416a 9669
07aee51b 9670 if (dump_file)
9671 {
9672 fprintf (dump_file, "Folding predicate ");
9673 print_gimple_expr (dump_file, stmt, 0, 0);
9674 fprintf (dump_file, " to ");
9675 print_generic_expr (dump_file, val, 0);
9676 fprintf (dump_file, "\n");
9677 }
9678
9679 if (is_gimple_assign (stmt))
9680 gimple_assign_set_rhs_from_tree (si, val);
9681 else
9682 {
9683 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
9684 if (integer_zerop (val))
9685 gimple_cond_make_false (stmt);
9686 else if (integer_onep (val))
9687 gimple_cond_make_true (stmt);
9688 else
9689 gcc_unreachable ();
9690 }
9691
9692 return true;
9693 }
9694
9695 return false;
9696}
9697
9698/* Callback for substitute_and_fold folding the stmt at *SI. */
9699
9700static bool
9701vrp_fold_stmt (gimple_stmt_iterator *si)
9702{
9703 if (fold_predicate_in (si))
9704 return true;
9705
9706 return simplify_stmt_using_ranges (si);
9707}
9708
62b180e1 9709/* Stack of dest,src equivalency pairs that need to be restored after
48e1416a 9710 each attempt to thread a block's incoming edge to an outgoing edge.
62b180e1 9711
9712 A NULL entry is used to mark the end of pairs which need to be
9713 restored. */
f1f41a6c 9714static vec<tree> equiv_stack;
62b180e1 9715
a2a1fde2 9716/* A trivial wrapper so that we can present the generic jump threading
9717 code with a simple API for simplifying statements. STMT is the
9718 statement we want to simplify, WITHIN_STMT provides the location
9719 for any overflow warnings. */
9720
62b180e1 9721static tree
75a70cf9 9722simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
62b180e1 9723{
eff54963 9724 if (gimple_code (stmt) == GIMPLE_COND)
9725 return vrp_evaluate_conditional (gimple_cond_code (stmt),
9726 gimple_cond_lhs (stmt),
9727 gimple_cond_rhs (stmt), within_stmt);
62b180e1 9728
eff54963 9729 if (gimple_code (stmt) == GIMPLE_ASSIGN)
9730 {
9731 value_range_t new_vr = VR_INITIALIZER;
9732 tree lhs = gimple_assign_lhs (stmt);
9733
9734 if (TREE_CODE (lhs) == SSA_NAME
9735 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
9736 || POINTER_TYPE_P (TREE_TYPE (lhs))))
9737 {
9738 extract_range_from_assignment (&new_vr, stmt);
9739 if (range_int_cst_singleton_p (&new_vr))
9740 return new_vr.min;
9741 }
9742 }
62b180e1 9743
eff54963 9744 return NULL_TREE;
62b180e1 9745}
9746
9747/* Blocks which have more than one predecessor and more than
f0b5f617 9748 one successor present jump threading opportunities, i.e.,
62b180e1 9749 when the block is reached from a specific predecessor, we
9750 may be able to determine which of the outgoing edges will
9751 be traversed. When this optimization applies, we are able
9752 to avoid conditionals at runtime and we may expose secondary
9753 optimization opportunities.
9754
9755 This routine is effectively a driver for the generic jump
9756 threading code. It basically just presents the generic code
9757 with edges that may be suitable for jump threading.
9758
9759 Unlike DOM, we do not iterate VRP if jump threading was successful.
9760 While iterating may expose new opportunities for VRP, it is expected
9761 those opportunities would be very limited and the compile time cost
48e1416a 9762 to expose those opportunities would be significant.
62b180e1 9763
9764 As jump threading opportunities are discovered, they are registered
9765 for later realization. */
9766
9767static void
9768identify_jump_threads (void)
9769{
9770 basic_block bb;
75a70cf9 9771 gimple dummy;
72c30859 9772 int i;
9773 edge e;
62b180e1 9774
9775 /* Ugh. When substituting values earlier in this pass we can
9776 wipe the dominance information. So rebuild the dominator
9777 information as we need it within the jump threading code. */
9778 calculate_dominance_info (CDI_DOMINATORS);
9779
9780 /* We do not allow VRP information to be used for jump threading
9781 across a back edge in the CFG. Otherwise it becomes too
9782 difficult to avoid eliminating loop exit tests. Of course
9783 EDGE_DFS_BACK is not accurate at this time so we have to
9784 recompute it. */
9785 mark_dfs_back_edges ();
9786
72c30859 9787 /* Do not thread across edges we are about to remove. Just marking
9788 them as EDGE_DFS_BACK will do. */
f1f41a6c 9789 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
72c30859 9790 e->flags |= EDGE_DFS_BACK;
9791
62b180e1 9792 /* Allocate our unwinder stack to unwind any temporary equivalences
9793 that might be recorded. */
f1f41a6c 9794 equiv_stack.create (20);
62b180e1 9795
9796 /* To avoid lots of silly node creation, we create a single
9797 conditional and just modify it in-place when attempting to
9798 thread jumps. */
75a70cf9 9799 dummy = gimple_build_cond (EQ_EXPR,
9800 integer_zero_node, integer_zero_node,
9801 NULL, NULL);
62b180e1 9802
9803 /* Walk through all the blocks finding those which present a
9804 potential jump threading opportunity. We could set this up
9805 as a dominator walker and record data during the walk, but
9806 I doubt it's worth the effort for the classes of jump
9807 threading opportunities we are trying to identify at this
9808 point in compilation. */
fc00614f 9809 FOR_EACH_BB_FN (bb, cfun)
62b180e1 9810 {
75a70cf9 9811 gimple last;
62b180e1 9812
9813 /* If the generic jump threading code does not find this block
9814 interesting, then there is nothing to do. */
9815 if (! potentially_threadable_block (bb))
9816 continue;
9817
9818 /* We only care about blocks ending in a COND_EXPR. While there
9819 may be some value in handling SWITCH_EXPR here, I doubt it's
9820 terribly important. */
75a70cf9 9821 last = gsi_stmt (gsi_last_bb (bb));
62b180e1 9822
50258e8d 9823 /* We're basically looking for a switch or any kind of conditional with
69978c67 9824 integral or pointer type arguments. Note the type of the second
9825 argument will be the same as the first argument, so no need to
9826 check it explicitly. */
50258e8d 9827 if (gimple_code (last) == GIMPLE_SWITCH
9828 || (gimple_code (last) == GIMPLE_COND
9829 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
9830 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
9831 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
9832 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
9833 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
62b180e1 9834 {
9835 edge_iterator ei;
62b180e1 9836
9837 /* We've got a block with multiple predecessors and multiple
50258e8d 9838 successors which also ends in a suitable conditional or
9839 switch statement. For each predecessor, see if we can thread
9840 it to a specific successor. */
62b180e1 9841 FOR_EACH_EDGE (e, ei, bb->preds)
9842 {
9843 /* Do not thread across back edges or abnormal edges
9844 in the CFG. */
9845 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
9846 continue;
9847
2b15d2ba 9848 thread_across_edge (dummy, e, true, &equiv_stack,
62b180e1 9849 simplify_stmt_for_jump_threading);
9850 }
9851 }
9852 }
9853
9854 /* We do not actually update the CFG or SSA graphs at this point as
9855 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9856 handle ASSERT_EXPRs gracefully. */
9857}
9858
9859/* We identified all the jump threading opportunities earlier, but could
9860 not transform the CFG at that time. This routine transforms the
9861 CFG and arranges for the dominator tree to be rebuilt if necessary.
9862
9863 Note the SSA graph update will occur during the normal TODO
9864 processing by the pass manager. */
9865static void
9866finalize_jump_threads (void)
9867{
7e0311ae 9868 thread_through_all_blocks (false);
f1f41a6c 9869 equiv_stack.release ();
62b180e1 9870}
96c8d283 9871
88dbf20f 9872
9873/* Traverse all the blocks folding conditionals with known ranges. */
9874
9875static void
9876vrp_finalize (void)
9877{
eea12c72 9878 size_t i;
e0186710 9879
9880 values_propagated = true;
88dbf20f 9881
9882 if (dump_file)
9883 {
9884 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
9885 dump_all_value_ranges (dump_file);
9886 fprintf (dump_file, "\n");
9887 }
9888
14f101cf 9889 substitute_and_fold (op_with_constant_singleton_value_range,
9890 vrp_fold_stmt, false);
eea12c72 9891
5bc96398 9892 if (warn_array_bounds)
8b938617 9893 check_all_array_refs ();
5bc96398 9894
62b180e1 9895 /* We must identify jump threading opportunities before we release
9896 the datastructures built by VRP. */
9897 identify_jump_threads ();
9898
3c59e4a7 9899 /* Set value range to non pointer SSA_NAMEs. */
9900 for (i = 0; i < num_vr_values; i++)
0cf78115 9901 if (vr_value[i])
9902 {
9903 tree name = ssa_name (i);
3c59e4a7 9904
355c7ba5 9905 if (!name
9906 || POINTER_TYPE_P (TREE_TYPE (name))
0cf78115 9907 || (vr_value[i]->type == VR_VARYING)
9908 || (vr_value[i]->type == VR_UNDEFINED))
9909 continue;
3c59e4a7 9910
0cf78115 9911 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
0c20fe49 9912 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST)
9913 && (vr_value[i]->type == VR_RANGE
9914 || vr_value[i]->type == VR_ANTI_RANGE))
9c1be15e 9915 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
9916 vr_value[i]->max);
0cf78115 9917 }
3c59e4a7 9918
eea12c72 9919 /* Free allocated memory. */
e0186710 9920 for (i = 0; i < num_vr_values; i++)
eea12c72 9921 if (vr_value[i])
9922 {
9923 BITMAP_FREE (vr_value[i]->equiv);
9924 free (vr_value[i]);
9925 }
9926
eea12c72 9927 free (vr_value);
5c7155ca 9928 free (vr_phi_edge_counts);
8dbf774a 9929
9930 /* So that we can distinguish between VRP data being available
9931 and not available. */
9932 vr_value = NULL;
5c7155ca 9933 vr_phi_edge_counts = NULL;
88dbf20f 9934}
9935
9936
9937/* Main entry point to VRP (Value Range Propagation). This pass is
9938 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9939 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9940 Programming Language Design and Implementation, pp. 67-78, 1995.
9941 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9942
9943 This is essentially an SSA-CCP pass modified to deal with ranges
9944 instead of constants.
9945
eea12c72 9946 While propagating ranges, we may find that two or more SSA name
9947 have equivalent, though distinct ranges. For instance,
9948
9949 1 x_9 = p_3->a;
9950 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9951 3 if (p_4 == q_2)
9952 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9953 5 endif
9954 6 if (q_2)
48e1416a 9955
eea12c72 9956 In the code above, pointer p_5 has range [q_2, q_2], but from the
9957 code we can also determine that p_5 cannot be NULL and, if q_2 had
9958 a non-varying range, p_5's range should also be compatible with it.
9959
9aff9709 9960 These equivalences are created by two expressions: ASSERT_EXPR and
eea12c72 9961 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9962 result of another assertion, then we can use the fact that p_5 and
9963 p_4 are equivalent when evaluating p_5's range.
9964
9aff9709 9965 Together with value ranges, we also propagate these equivalences
eea12c72 9966 between names so that we can take advantage of information from
9967 multiple ranges when doing final replacement. Note that this
9968 equivalency relation is transitive but not symmetric.
48e1416a 9969
eea12c72 9970 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9971 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9972 in contexts where that assertion does not hold (e.g., in line 6).
9973
88dbf20f 9974 TODO, the main difference between this pass and Patterson's is that
9975 we do not propagate edge probabilities. We only compute whether
9976 edges can be taken or not. That is, instead of having a spectrum
9977 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9978 DON'T KNOW. In the future, it may be worthwhile to propagate
9979 probabilities to aid branch prediction. */
9980
2a1990e9 9981static unsigned int
88dbf20f 9982execute_vrp (void)
9983{
72c30859 9984 int i;
9985 edge e;
9986 switch_update *su;
9987
7e0311ae 9988 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7a3bf727 9989 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
9990 scev_initialize ();
7e0311ae 9991
d590d541 9992 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
9993 Inserting assertions may split edges which will invalidate
9994 EDGE_DFS_BACK. */
593f9380 9995 insert_range_assertions ();
9996
f1f41a6c 9997 to_remove_edges.create (10);
9998 to_update_switch_stmts.create (5);
f003f9fd 9999 threadedge_initialize_values ();
72c30859 10000
d590d541 10001 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
10002 mark_dfs_back_edges ();
10003
eea12c72 10004 vrp_initialize ();
10005 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
10006 vrp_finalize ();
88dbf20f 10007
593f9380 10008 free_numbers_of_iterations_estimates ();
10009
62b180e1 10010 /* ASSERT_EXPRs must be removed before finalizing jump threads
10011 as finalizing jump threads calls the CFG cleanup code which
10012 does not properly handle ASSERT_EXPRs. */
88dbf20f 10013 remove_range_assertions ();
708dacc2 10014
10015 /* If we exposed any new variables, go ahead and put them into
10016 SSA form now, before we handle jump threading. This simplifies
10017 interactions between rewriting of _DECL nodes into SSA form
10018 and rewriting SSA_NAME nodes into SSA form after block
10019 duplication and CFG manipulation. */
10020 update_ssa (TODO_update_ssa);
10021
62b180e1 10022 finalize_jump_threads ();
ffeeba75 10023
10024 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
10025 CFG in a broken state and requires a cfg_cleanup run. */
f1f41a6c 10026 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
ffeeba75 10027 remove_edge (e);
10028 /* Update SWITCH_EXPR case label vector. */
f1f41a6c 10029 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
75a70cf9 10030 {
10031 size_t j;
10032 size_t n = TREE_VEC_LENGTH (su->vec);
2df2af5a 10033 tree label;
75a70cf9 10034 gimple_switch_set_num_labels (su->stmt, n);
10035 for (j = 0; j < n; j++)
10036 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
2df2af5a 10037 /* As we may have replaced the default label with a regular one
10038 make sure to make it a real default label again. This ensures
10039 optimal expansion. */
49a70175 10040 label = gimple_switch_label (su->stmt, 0);
2df2af5a 10041 CASE_LOW (label) = NULL_TREE;
10042 CASE_HIGH (label) = NULL_TREE;
75a70cf9 10043 }
ffeeba75 10044
f1f41a6c 10045 if (to_remove_edges.length () > 0)
d5459a15 10046 {
10047 free_dominance_info (CDI_DOMINATORS);
b3083327 10048 loops_state_set (LOOPS_NEED_FIXUP);
d5459a15 10049 }
ffeeba75 10050
f1f41a6c 10051 to_remove_edges.release ();
10052 to_update_switch_stmts.release ();
f003f9fd 10053 threadedge_finalize_values ();
ffeeba75 10054
7a3bf727 10055 scev_finalize ();
10056 loop_optimizer_finalize ();
2a1990e9 10057 return 0;
88dbf20f 10058}
10059
cbe8bda8 10060namespace {
10061
10062const pass_data pass_data_vrp =
10063{
10064 GIMPLE_PASS, /* type */
10065 "vrp", /* name */
10066 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 10067 TV_TREE_VRP, /* tv_id */
10068 PROP_ssa, /* properties_required */
10069 0, /* properties_provided */
10070 0, /* properties_destroyed */
10071 0, /* todo_flags_start */
8b88439e 10072 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
88dbf20f 10073};
cbe8bda8 10074
10075class pass_vrp : public gimple_opt_pass
10076{
10077public:
9af5ce0c 10078 pass_vrp (gcc::context *ctxt)
10079 : gimple_opt_pass (pass_data_vrp, ctxt)
cbe8bda8 10080 {}
10081
10082 /* opt_pass methods: */
ae84f584 10083 opt_pass * clone () { return new pass_vrp (m_ctxt); }
31315c24 10084 virtual bool gate (function *) { return flag_tree_vrp != 0; }
65b0537f 10085 virtual unsigned int execute (function *) { return execute_vrp (); }
cbe8bda8 10086
10087}; // class pass_vrp
10088
10089} // anon namespace
10090
10091gimple_opt_pass *
10092make_pass_vrp (gcc::context *ctxt)
10093{
10094 return new pass_vrp (ctxt);
10095}