]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/tree-vrp.c
java-gimplify.c (java_gimplify_block): New argument to build_empty_stmt.
[thirdparty/gcc.git] / gcc / tree-vrp.c
CommitLineData
0bca51f0 1/* Support routines for Value Range Propagation (VRP).
66647d44 2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
0bca51f0
DN
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9dcd6f09 9the Free Software Foundation; either version 3, or (at your option)
0bca51f0
DN
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
0bca51f0
DN
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "tm.h"
25#include "ggc.h"
26#include "flags.h"
27#include "tree.h"
28#include "basic-block.h"
29#include "tree-flow.h"
30#include "tree-pass.h"
31#include "tree-dump.h"
32#include "timevar.h"
33#include "diagnostic.h"
590b1f2d 34#include "toplev.h"
0c948c27 35#include "intl.h"
0bca51f0
DN
36#include "cfgloop.h"
37#include "tree-scalar-evolution.h"
38#include "tree-ssa-propagate.h"
39#include "tree-chrec.h"
40
726a989a 41
c4ab2baa
RG
42/* Set of SSA names found live during the RPO traversal of the function
43 for still active basic-blocks. */
44static sbitmap *live;
45
46/* Return true if the SSA name NAME is live on the edge E. */
47
48static bool
49live_on_edge (edge e, tree name)
50{
51 return (live[e->dest->index]
52 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
53}
0bca51f0 54
0bca51f0
DN
55/* Local functions. */
56static int compare_values (tree val1, tree val2);
12df8a7e 57static int compare_values_warnv (tree val1, tree val2, bool *);
f255541f 58static void vrp_meet (value_range_t *, value_range_t *);
2d3cd5d5 59static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
6b99f156
JH
60 tree, tree, bool, bool *,
61 bool *);
0bca51f0 62
227858d1
DN
63/* Location information for ASSERT_EXPRs. Each instance of this
64 structure describes an ASSERT_EXPR for an SSA name. Since a single
65 SSA name may have more than one assertion associated with it, these
66 locations are kept in a linked list attached to the corresponding
67 SSA name. */
68struct assert_locus_d
0bca51f0 69{
227858d1
DN
70 /* Basic block where the assertion would be inserted. */
71 basic_block bb;
72
73 /* Some assertions need to be inserted on an edge (e.g., assertions
74 generated by COND_EXPRs). In those cases, BB will be NULL. */
75 edge e;
76
77 /* Pointer to the statement that generated this assertion. */
726a989a 78 gimple_stmt_iterator si;
227858d1
DN
79
80 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
81 enum tree_code comp_code;
82
83 /* Value being compared against. */
84 tree val;
85
2ab8dbf4
RG
86 /* Expression to compare. */
87 tree expr;
88
227858d1
DN
89 /* Next node in the linked list. */
90 struct assert_locus_d *next;
91};
92
93typedef struct assert_locus_d *assert_locus_t;
94
95/* If bit I is present, it means that SSA name N_i has a list of
96 assertions that should be inserted in the IL. */
97static bitmap need_assert_for;
98
99/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
100 holds a list of ASSERT_LOCUS_T nodes that describe where
101 ASSERT_EXPRs for SSA name N_I should be inserted. */
102static assert_locus_t *asserts_for;
103
227858d1
DN
104/* Value range array. After propagation, VR_VALUE[I] holds the range
105 of values that SSA name N_I may take. */
106static value_range_t **vr_value;
0bca51f0 107
fc6827fe
ILT
108/* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
109 number of executable edges we saw the last time we visited the
110 node. */
111static int *vr_phi_edge_counts;
112
b7814a18 113typedef struct {
726a989a 114 gimple stmt;
b7814a18
RG
115 tree vec;
116} switch_update;
117
118static VEC (edge, heap) *to_remove_edges;
119DEF_VEC_O(switch_update);
120DEF_VEC_ALLOC_O(switch_update, heap);
121static VEC (switch_update, heap) *to_update_switch_stmts;
122
0bca51f0 123
84fb43a1 124/* Return the maximum value for TYPE. */
70b7b037
RG
125
126static inline tree
127vrp_val_max (const_tree type)
128{
129 if (!INTEGRAL_TYPE_P (type))
130 return NULL_TREE;
131
70b7b037
RG
132 return TYPE_MAX_VALUE (type);
133}
134
84fb43a1 135/* Return the minimum value for TYPE. */
70b7b037
RG
136
137static inline tree
138vrp_val_min (const_tree type)
139{
140 if (!INTEGRAL_TYPE_P (type))
141 return NULL_TREE;
142
70b7b037
RG
143 return TYPE_MIN_VALUE (type);
144}
145
146/* Return whether VAL is equal to the maximum value of its type. This
147 will be true for a positive overflow infinity. We can't do a
148 simple equality comparison with TYPE_MAX_VALUE because C typedefs
149 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
150 to the integer constant with the same value in the type. */
151
152static inline bool
153vrp_val_is_max (const_tree val)
154{
155 tree type_max = vrp_val_max (TREE_TYPE (val));
156 return (val == type_max
157 || (type_max != NULL_TREE
158 && operand_equal_p (val, type_max, 0)));
159}
160
161/* Return whether VAL is equal to the minimum value of its type. This
162 will be true for a negative overflow infinity. */
163
164static inline bool
165vrp_val_is_min (const_tree val)
166{
167 tree type_min = vrp_val_min (TREE_TYPE (val));
168 return (val == type_min
169 || (type_min != NULL_TREE
170 && operand_equal_p (val, type_min, 0)));
171}
172
173
12df8a7e
ILT
174/* Return whether TYPE should use an overflow infinity distinct from
175 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
176 represent a signed overflow during VRP computations. An infinity
177 is distinct from a half-range, which will go from some number to
178 TYPE_{MIN,MAX}_VALUE. */
179
180static inline bool
58f9752a 181needs_overflow_infinity (const_tree type)
12df8a7e 182{
84fb43a1 183 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
12df8a7e
ILT
184}
185
186/* Return whether TYPE can support our overflow infinity
187 representation: we use the TREE_OVERFLOW flag, which only exists
188 for constants. If TYPE doesn't support this, we don't optimize
189 cases which would require signed overflow--we drop them to
190 VARYING. */
191
192static inline bool
58f9752a 193supports_overflow_infinity (const_tree type)
12df8a7e 194{
70b7b037 195 tree min = vrp_val_min (type), max = vrp_val_max (type);
12df8a7e
ILT
196#ifdef ENABLE_CHECKING
197 gcc_assert (needs_overflow_infinity (type));
198#endif
70b7b037
RG
199 return (min != NULL_TREE
200 && CONSTANT_CLASS_P (min)
201 && max != NULL_TREE
202 && CONSTANT_CLASS_P (max));
12df8a7e
ILT
203}
204
205/* VAL is the maximum or minimum value of a type. Return a
206 corresponding overflow infinity. */
207
208static inline tree
209make_overflow_infinity (tree val)
210{
211#ifdef ENABLE_CHECKING
212 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
213#endif
214 val = copy_node (val);
215 TREE_OVERFLOW (val) = 1;
216 return val;
217}
218
219/* Return a negative overflow infinity for TYPE. */
220
221static inline tree
222negative_overflow_infinity (tree type)
223{
224#ifdef ENABLE_CHECKING
225 gcc_assert (supports_overflow_infinity (type));
226#endif
70b7b037 227 return make_overflow_infinity (vrp_val_min (type));
12df8a7e
ILT
228}
229
230/* Return a positive overflow infinity for TYPE. */
231
232static inline tree
233positive_overflow_infinity (tree type)
234{
235#ifdef ENABLE_CHECKING
236 gcc_assert (supports_overflow_infinity (type));
237#endif
70b7b037 238 return make_overflow_infinity (vrp_val_max (type));
12df8a7e
ILT
239}
240
241/* Return whether VAL is a negative overflow infinity. */
242
243static inline bool
58f9752a 244is_negative_overflow_infinity (const_tree val)
12df8a7e
ILT
245{
246 return (needs_overflow_infinity (TREE_TYPE (val))
247 && CONSTANT_CLASS_P (val)
248 && TREE_OVERFLOW (val)
70b7b037 249 && vrp_val_is_min (val));
12df8a7e
ILT
250}
251
252/* Return whether VAL is a positive overflow infinity. */
253
254static inline bool
58f9752a 255is_positive_overflow_infinity (const_tree val)
12df8a7e
ILT
256{
257 return (needs_overflow_infinity (TREE_TYPE (val))
258 && CONSTANT_CLASS_P (val)
259 && TREE_OVERFLOW (val)
70b7b037 260 && vrp_val_is_max (val));
12df8a7e
ILT
261}
262
263/* Return whether VAL is a positive or negative overflow infinity. */
264
265static inline bool
58f9752a 266is_overflow_infinity (const_tree val)
12df8a7e
ILT
267{
268 return (needs_overflow_infinity (TREE_TYPE (val))
269 && CONSTANT_CLASS_P (val)
270 && TREE_OVERFLOW (val)
70b7b037 271 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
12df8a7e
ILT
272}
273
726a989a
RB
274/* Return whether STMT has a constant rhs that is_overflow_infinity. */
275
276static inline bool
277stmt_overflow_infinity (gimple stmt)
278{
279 if (is_gimple_assign (stmt)
280 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
281 GIMPLE_SINGLE_RHS)
282 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
283 return false;
284}
285
b80cca7b
ILT
286/* If VAL is now an overflow infinity, return VAL. Otherwise, return
287 the same value with TREE_OVERFLOW clear. This can be used to avoid
288 confusing a regular value with an overflow value. */
289
290static inline tree
291avoid_overflow_infinity (tree val)
292{
293 if (!is_overflow_infinity (val))
294 return val;
295
70b7b037
RG
296 if (vrp_val_is_max (val))
297 return vrp_val_max (TREE_TYPE (val));
b80cca7b
ILT
298 else
299 {
300#ifdef ENABLE_CHECKING
70b7b037 301 gcc_assert (vrp_val_is_min (val));
b80cca7b 302#endif
70b7b037 303 return vrp_val_min (TREE_TYPE (val));
b80cca7b
ILT
304 }
305}
306
12df8a7e 307
462508dd
DN
308/* Return true if ARG is marked with the nonnull attribute in the
309 current function signature. */
310
311static bool
58f9752a 312nonnull_arg_p (const_tree arg)
462508dd
DN
313{
314 tree t, attrs, fntype;
315 unsigned HOST_WIDE_INT arg_num;
316
317 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
318
7954dc21
AP
319 /* The static chain decl is always non null. */
320 if (arg == cfun->static_chain_decl)
321 return true;
322
462508dd
DN
323 fntype = TREE_TYPE (current_function_decl);
324 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
325
326 /* If "nonnull" wasn't specified, we know nothing about the argument. */
327 if (attrs == NULL_TREE)
328 return false;
329
330 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
331 if (TREE_VALUE (attrs) == NULL_TREE)
332 return true;
333
334 /* Get the position number for ARG in the function signature. */
335 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
336 t;
337 t = TREE_CHAIN (t), arg_num++)
338 {
339 if (t == arg)
340 break;
341 }
342
343 gcc_assert (t == arg);
344
345 /* Now see if ARG_NUM is mentioned in the nonnull list. */
346 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
347 {
348 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
349 return true;
350 }
351
352 return false;
353}
354
355
2ab8dbf4
RG
356/* Set value range VR to VR_VARYING. */
357
358static inline void
359set_value_range_to_varying (value_range_t *vr)
360{
361 vr->type = VR_VARYING;
362 vr->min = vr->max = NULL_TREE;
363 if (vr->equiv)
364 bitmap_clear (vr->equiv);
365}
366
367
227858d1
DN
368/* Set value range VR to {T, MIN, MAX, EQUIV}. */
369
370static void
371set_value_range (value_range_t *vr, enum value_range_type t, tree min,
372 tree max, bitmap equiv)
0bca51f0
DN
373{
374#if defined ENABLE_CHECKING
227858d1 375 /* Check the validity of the range. */
0bca51f0
DN
376 if (t == VR_RANGE || t == VR_ANTI_RANGE)
377 {
378 int cmp;
379
380 gcc_assert (min && max);
381
382 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
e1f28918 383 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
0bca51f0
DN
384
385 cmp = compare_values (min, max);
386 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
8cf781f0
ILT
387
388 if (needs_overflow_infinity (TREE_TYPE (min)))
389 gcc_assert (!is_overflow_infinity (min)
390 || !is_overflow_infinity (max));
0bca51f0 391 }
0bca51f0 392
227858d1
DN
393 if (t == VR_UNDEFINED || t == VR_VARYING)
394 gcc_assert (min == NULL_TREE && max == NULL_TREE);
395
396 if (t == VR_UNDEFINED || t == VR_VARYING)
397 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
398#endif
0bca51f0
DN
399
400 vr->type = t;
401 vr->min = min;
402 vr->max = max;
227858d1
DN
403
404 /* Since updating the equivalence set involves deep copying the
405 bitmaps, only do it if absolutely necessary. */
f5052e29
RG
406 if (vr->equiv == NULL
407 && equiv != NULL)
227858d1
DN
408 vr->equiv = BITMAP_ALLOC (NULL);
409
410 if (equiv != vr->equiv)
411 {
412 if (equiv && !bitmap_empty_p (equiv))
413 bitmap_copy (vr->equiv, equiv);
414 else
415 bitmap_clear (vr->equiv);
416 }
0bca51f0
DN
417}
418
419
2ab8dbf4
RG
420/* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
421 This means adjusting T, MIN and MAX representing the case of a
422 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
423 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
424 In corner cases where MAX+1 or MIN-1 wraps this will fall back
425 to varying.
426 This routine exists to ease canonicalization in the case where we
427 extract ranges from var + CST op limit. */
0bca51f0 428
2ab8dbf4
RG
429static void
430set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
431 tree min, tree max, bitmap equiv)
0bca51f0 432{
70b7b037 433 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
2ab8dbf4
RG
434 if ((t != VR_RANGE
435 && t != VR_ANTI_RANGE)
436 || TREE_CODE (min) != INTEGER_CST
70b7b037 437 || TREE_CODE (max) != INTEGER_CST)
2ab8dbf4
RG
438 {
439 set_value_range (vr, t, min, max, equiv);
440 return;
441 }
12df8a7e 442
2ab8dbf4
RG
443 /* Wrong order for min and max, to swap them and the VR type we need
444 to adjust them. */
2ab8dbf4
RG
445 if (tree_int_cst_lt (max, min))
446 {
70b7b037
RG
447 tree one = build_int_cst (TREE_TYPE (min), 1);
448 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
449 max = int_const_binop (MINUS_EXPR, min, one, 0);
450 min = tmp;
451
452 /* There's one corner case, if we had [C+1, C] before we now have
453 that again. But this represents an empty value range, so drop
454 to varying in this case. */
455 if (tree_int_cst_lt (max, min))
456 {
457 set_value_range_to_varying (vr);
458 return;
459 }
460
461 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
462 }
463
464 /* Anti-ranges that can be represented as ranges should be so. */
465 if (t == VR_ANTI_RANGE)
466 {
467 bool is_min = vrp_val_is_min (min);
468 bool is_max = vrp_val_is_max (max);
469
470 if (is_min && is_max)
471 {
472 /* We cannot deal with empty ranges, drop to varying. */
473 set_value_range_to_varying (vr);
474 return;
475 }
476 else if (is_min
477 /* As a special exception preserve non-null ranges. */
478 && !(TYPE_UNSIGNED (TREE_TYPE (min))
479 && integer_zerop (max)))
480 {
481 tree one = build_int_cst (TREE_TYPE (max), 1);
482 min = int_const_binop (PLUS_EXPR, max, one, 0);
483 max = vrp_val_max (TREE_TYPE (max));
484 t = VR_RANGE;
485 }
486 else if (is_max)
487 {
488 tree one = build_int_cst (TREE_TYPE (min), 1);
489 max = int_const_binop (MINUS_EXPR, min, one, 0);
490 min = vrp_val_min (TREE_TYPE (min));
491 t = VR_RANGE;
492 }
2ab8dbf4
RG
493 }
494
2ab8dbf4
RG
495 set_value_range (vr, t, min, max, equiv);
496}
497
498/* Copy value range FROM into value range TO. */
b16caf72
JL
499
500static inline void
2ab8dbf4 501copy_value_range (value_range_t *to, value_range_t *from)
b16caf72 502{
2ab8dbf4 503 set_value_range (to, from->type, from->min, from->max, from->equiv);
12df8a7e
ILT
504}
505
8cf781f0
ILT
506/* Set value range VR to a single value. This function is only called
507 with values we get from statements, and exists to clear the
508 TREE_OVERFLOW flag so that we don't think we have an overflow
509 infinity when we shouldn't. */
510
511static inline void
b60b4711 512set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
8cf781f0
ILT
513{
514 gcc_assert (is_gimple_min_invariant (val));
b80cca7b 515 val = avoid_overflow_infinity (val);
b60b4711 516 set_value_range (vr, VR_RANGE, val, val, equiv);
8cf781f0
ILT
517}
518
12df8a7e 519/* Set value range VR to a non-negative range of type TYPE.
110abdbc 520 OVERFLOW_INFINITY indicates whether to use an overflow infinity
12df8a7e
ILT
521 rather than TYPE_MAX_VALUE; this should be true if we determine
522 that the range is nonnegative based on the assumption that signed
523 overflow does not occur. */
524
525static inline void
526set_value_range_to_nonnegative (value_range_t *vr, tree type,
527 bool overflow_infinity)
528{
529 tree zero;
530
531 if (overflow_infinity && !supports_overflow_infinity (type))
532 {
533 set_value_range_to_varying (vr);
534 return;
535 }
536
537 zero = build_int_cst (type, 0);
538 set_value_range (vr, VR_RANGE, zero,
539 (overflow_infinity
540 ? positive_overflow_infinity (type)
541 : TYPE_MAX_VALUE (type)),
542 vr->equiv);
b16caf72 543}
227858d1
DN
544
545/* Set value range VR to a non-NULL range of type TYPE. */
546
547static inline void
548set_value_range_to_nonnull (value_range_t *vr, tree type)
549{
550 tree zero = build_int_cst (type, 0);
551 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
552}
553
554
555/* Set value range VR to a NULL range of type TYPE. */
556
557static inline void
558set_value_range_to_null (value_range_t *vr, tree type)
559{
b60b4711 560 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
227858d1
DN
561}
562
563
31ab1cc9
RG
564/* Set value range VR to a range of a truthvalue of type TYPE. */
565
566static inline void
567set_value_range_to_truthvalue (value_range_t *vr, tree type)
568{
569 if (TYPE_PRECISION (type) == 1)
570 set_value_range_to_varying (vr);
571 else
572 set_value_range (vr, VR_RANGE,
573 build_int_cst (type, 0), build_int_cst (type, 1),
574 vr->equiv);
575}
576
577
227858d1
DN
578/* Set value range VR to VR_UNDEFINED. */
579
580static inline void
581set_value_range_to_undefined (value_range_t *vr)
582{
583 vr->type = VR_UNDEFINED;
584 vr->min = vr->max = NULL_TREE;
585 if (vr->equiv)
586 bitmap_clear (vr->equiv);
0bca51f0
DN
587}
588
589
193a3681
JJ
590/* If abs (min) < abs (max), set VR to [-max, max], if
591 abs (min) >= abs (max), set VR to [-min, min]. */
592
593static void
594abs_extent_range (value_range_t *vr, tree min, tree max)
595{
596 int cmp;
597
598 gcc_assert (TREE_CODE (min) == INTEGER_CST);
599 gcc_assert (TREE_CODE (max) == INTEGER_CST);
600 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
601 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
602 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
603 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
604 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
605 {
606 set_value_range_to_varying (vr);
607 return;
608 }
609 cmp = compare_values (min, max);
610 if (cmp == -1)
611 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
612 else if (cmp == 0 || cmp == 1)
613 {
614 max = min;
615 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
616 }
617 else
618 {
619 set_value_range_to_varying (vr);
620 return;
621 }
622 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
623}
624
625
b16caf72
JL
626/* Return value range information for VAR.
627
628 If we have no values ranges recorded (ie, VRP is not running), then
629 return NULL. Otherwise create an empty range if none existed for VAR. */
0bca51f0 630
227858d1 631static value_range_t *
58f9752a 632get_value_range (const_tree var)
0bca51f0 633{
227858d1 634 value_range_t *vr;
0bca51f0 635 tree sym;
227858d1 636 unsigned ver = SSA_NAME_VERSION (var);
0bca51f0 637
b16caf72
JL
638 /* If we have no recorded ranges, then return NULL. */
639 if (! vr_value)
640 return NULL;
641
227858d1 642 vr = vr_value[ver];
0bca51f0
DN
643 if (vr)
644 return vr;
645
646 /* Create a default value range. */
b9eae1a9 647 vr_value[ver] = vr = XCNEW (value_range_t);
0bca51f0 648
f5052e29
RG
649 /* Defer allocating the equivalence set. */
650 vr->equiv = NULL;
227858d1
DN
651
652 /* If VAR is a default definition, the variable can take any value
653 in VAR's type. */
0bca51f0 654 sym = SSA_NAME_VAR (var);
cfaab3a9 655 if (SSA_NAME_IS_DEFAULT_DEF (var))
462508dd
DN
656 {
657 /* Try to use the "nonnull" attribute to create ~[0, 0]
658 anti-ranges for pointers. Note that this is only valid with
659 default definitions of PARM_DECLs. */
660 if (TREE_CODE (sym) == PARM_DECL
661 && POINTER_TYPE_P (TREE_TYPE (sym))
662 && nonnull_arg_p (sym))
663 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
664 else
665 set_value_range_to_varying (vr);
666 }
0bca51f0
DN
667
668 return vr;
669}
670
1ce35d26
RG
671/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
672
673static inline bool
58f9752a 674vrp_operand_equal_p (const_tree val1, const_tree val2)
1ce35d26 675{
12df8a7e
ILT
676 if (val1 == val2)
677 return true;
678 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
679 return false;
680 if (is_overflow_infinity (val1))
681 return is_overflow_infinity (val2);
682 return true;
1ce35d26
RG
683}
684
685/* Return true, if the bitmaps B1 and B2 are equal. */
686
687static inline bool
22ea9ec0 688vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
1ce35d26
RG
689{
690 return (b1 == b2
691 || (b1 && b2
692 && bitmap_equal_p (b1, b2)));
693}
0bca51f0 694
227858d1
DN
695/* Update the value range and equivalence set for variable VAR to
696 NEW_VR. Return true if NEW_VR is different from VAR's previous
697 value.
698
699 NOTE: This function assumes that NEW_VR is a temporary value range
700 object created for the sole purpose of updating VAR's range. The
701 storage used by the equivalence set from NEW_VR will be freed by
702 this function. Do not call update_value_range when NEW_VR
703 is the range object associated with another SSA name. */
0bca51f0
DN
704
705static inline bool
58f9752a 706update_value_range (const_tree var, value_range_t *new_vr)
0bca51f0 707{
227858d1
DN
708 value_range_t *old_vr;
709 bool is_new;
710
711 /* Update the value range, if necessary. */
712 old_vr = get_value_range (var);
713 is_new = old_vr->type != new_vr->type
1ce35d26
RG
714 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
715 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
716 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
0bca51f0 717
227858d1
DN
718 if (is_new)
719 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
720 new_vr->equiv);
0bca51f0 721
227858d1 722 BITMAP_FREE (new_vr->equiv);
0bca51f0 723
227858d1
DN
724 return is_new;
725}
0bca51f0 726
0bca51f0 727
f5052e29
RG
728/* Add VAR and VAR's equivalence set to EQUIV. This is the central
729 point where equivalence processing can be turned on/off. */
0bca51f0 730
227858d1 731static void
58f9752a 732add_equivalence (bitmap *equiv, const_tree var)
227858d1
DN
733{
734 unsigned ver = SSA_NAME_VERSION (var);
735 value_range_t *vr = vr_value[ver];
0bca51f0 736
f5052e29
RG
737 if (*equiv == NULL)
738 *equiv = BITMAP_ALLOC (NULL);
739 bitmap_set_bit (*equiv, ver);
227858d1 740 if (vr && vr->equiv)
f5052e29 741 bitmap_ior_into (*equiv, vr->equiv);
0bca51f0
DN
742}
743
744
745/* Return true if VR is ~[0, 0]. */
746
747static inline bool
227858d1 748range_is_nonnull (value_range_t *vr)
0bca51f0
DN
749{
750 return vr->type == VR_ANTI_RANGE
751 && integer_zerop (vr->min)
752 && integer_zerop (vr->max);
753}
754
755
756/* Return true if VR is [0, 0]. */
757
758static inline bool
227858d1 759range_is_null (value_range_t *vr)
0bca51f0
DN
760{
761 return vr->type == VR_RANGE
762 && integer_zerop (vr->min)
763 && integer_zerop (vr->max);
764}
765
766
227858d1 767/* Return true if value range VR involves at least one symbol. */
0bca51f0 768
227858d1
DN
769static inline bool
770symbolic_range_p (value_range_t *vr)
0bca51f0 771{
227858d1
DN
772 return (!is_gimple_min_invariant (vr->min)
773 || !is_gimple_min_invariant (vr->max));
0bca51f0
DN
774}
775
110abdbc 776/* Return true if value range VR uses an overflow infinity. */
b16caf72 777
12df8a7e
ILT
778static inline bool
779overflow_infinity_range_p (value_range_t *vr)
b16caf72 780{
12df8a7e
ILT
781 return (vr->type == VR_RANGE
782 && (is_overflow_infinity (vr->min)
783 || is_overflow_infinity (vr->max)));
784}
6ac01510 785
0c948c27
ILT
786/* Return false if we can not make a valid comparison based on VR;
787 this will be the case if it uses an overflow infinity and overflow
788 is not undefined (i.e., -fno-strict-overflow is in effect).
789 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
790 uses an overflow infinity. */
791
792static bool
793usable_range_p (value_range_t *vr, bool *strict_overflow_p)
794{
795 gcc_assert (vr->type == VR_RANGE);
796 if (is_overflow_infinity (vr->min))
797 {
798 *strict_overflow_p = true;
799 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
800 return false;
801 }
802 if (is_overflow_infinity (vr->max))
803 {
804 *strict_overflow_p = true;
805 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
806 return false;
807 }
808 return true;
809}
810
811
12df8a7e
ILT
812/* Like tree_expr_nonnegative_warnv_p, but this function uses value
813 ranges obtained so far. */
814
815static bool
816vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
817{
39f8a3b0
RG
818 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
819 || (TREE_CODE (expr) == SSA_NAME
820 && ssa_name_nonnegative_p (expr)));
b16caf72 821}
0bca51f0 822
726a989a
RB
823/* Return true if the result of assignment STMT is know to be non-negative.
824 If the return value is based on the assumption that signed overflow is
825 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
826 *STRICT_OVERFLOW_P.*/
827
828static bool
829gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
830{
831 enum tree_code code = gimple_assign_rhs_code (stmt);
832 switch (get_gimple_rhs_class (code))
833 {
834 case GIMPLE_UNARY_RHS:
835 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
836 gimple_expr_type (stmt),
837 gimple_assign_rhs1 (stmt),
838 strict_overflow_p);
839 case GIMPLE_BINARY_RHS:
840 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
841 gimple_expr_type (stmt),
842 gimple_assign_rhs1 (stmt),
843 gimple_assign_rhs2 (stmt),
844 strict_overflow_p);
845 case GIMPLE_SINGLE_RHS:
846 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
847 strict_overflow_p);
848 case GIMPLE_INVALID_RHS:
849 gcc_unreachable ();
850 default:
851 gcc_unreachable ();
852 }
853}
854
855/* Return true if return value of call STMT is know to be non-negative.
856 If the return value is based on the assumption that signed overflow is
857 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
858 *STRICT_OVERFLOW_P.*/
859
860static bool
861gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
862{
863 tree arg0 = gimple_call_num_args (stmt) > 0 ?
864 gimple_call_arg (stmt, 0) : NULL_TREE;
865 tree arg1 = gimple_call_num_args (stmt) > 1 ?
866 gimple_call_arg (stmt, 1) : NULL_TREE;
867
868 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
869 gimple_call_fndecl (stmt),
870 arg0,
871 arg1,
872 strict_overflow_p);
873}
874
875/* Return true if STMT is know to to compute a non-negative value.
876 If the return value is based on the assumption that signed overflow is
877 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
878 *STRICT_OVERFLOW_P.*/
879
880static bool
881gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
882{
883 switch (gimple_code (stmt))
884 {
885 case GIMPLE_ASSIGN:
886 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
887 case GIMPLE_CALL:
888 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
889 default:
890 gcc_unreachable ();
891 }
892}
893
894/* Return true if the result of assignment STMT is know to be non-zero.
895 If the return value is based on the assumption that signed overflow is
896 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
897 *STRICT_OVERFLOW_P.*/
898
899static bool
900gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
901{
902 enum tree_code code = gimple_assign_rhs_code (stmt);
903 switch (get_gimple_rhs_class (code))
904 {
905 case GIMPLE_UNARY_RHS:
906 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
907 gimple_expr_type (stmt),
908 gimple_assign_rhs1 (stmt),
909 strict_overflow_p);
910 case GIMPLE_BINARY_RHS:
911 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
912 gimple_expr_type (stmt),
913 gimple_assign_rhs1 (stmt),
914 gimple_assign_rhs2 (stmt),
915 strict_overflow_p);
916 case GIMPLE_SINGLE_RHS:
917 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
918 strict_overflow_p);
919 case GIMPLE_INVALID_RHS:
920 gcc_unreachable ();
921 default:
922 gcc_unreachable ();
923 }
924}
925
926/* Return true if STMT is know to to compute a non-zero value.
927 If the return value is based on the assumption that signed overflow is
928 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
929 *STRICT_OVERFLOW_P.*/
930
931static bool
932gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
933{
934 switch (gimple_code (stmt))
935 {
936 case GIMPLE_ASSIGN:
937 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
938 case GIMPLE_CALL:
939 return gimple_alloca_call_p (stmt);
940 default:
941 gcc_unreachable ();
942 }
943}
944
12df8a7e 945/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
227858d1 946 obtained so far. */
0bca51f0 947
227858d1 948static bool
726a989a 949vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
0bca51f0 950{
726a989a 951 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
227858d1 952 return true;
0bca51f0 953
227858d1
DN
954 /* If we have an expression of the form &X->a, then the expression
955 is nonnull if X is nonnull. */
726a989a
RB
956 if (is_gimple_assign (stmt)
957 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
227858d1 958 {
726a989a 959 tree expr = gimple_assign_rhs1 (stmt);
227858d1 960 tree base = get_base_address (TREE_OPERAND (expr, 0));
0bca51f0 961
227858d1
DN
962 if (base != NULL_TREE
963 && TREE_CODE (base) == INDIRECT_REF
964 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
965 {
966 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
967 if (range_is_nonnull (vr))
968 return true;
969 }
970 }
b565d777 971
227858d1 972 return false;
b565d777
DN
973}
974
04dce5a4
ZD
975/* Returns true if EXPR is a valid value (as expected by compare_values) --
976 a gimple invariant, or SSA_NAME +- CST. */
977
978static bool
979valid_value_p (tree expr)
980{
981 if (TREE_CODE (expr) == SSA_NAME)
982 return true;
983
984 if (TREE_CODE (expr) == PLUS_EXPR
985 || TREE_CODE (expr) == MINUS_EXPR)
986 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
987 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
988
989 return is_gimple_min_invariant (expr);
990}
b565d777 991
6b3c76a9
JH
992/* Return
993 1 if VAL < VAL2
994 0 if !(VAL < VAL2)
995 -2 if those are incomparable. */
996static inline int
997operand_less_p (tree val, tree val2)
998{
6b3c76a9
JH
999 /* LT is folded faster than GE and others. Inline the common case. */
1000 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1001 {
1002 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1003 return INT_CST_LT_UNSIGNED (val, val2);
1004 else
12df8a7e
ILT
1005 {
1006 if (INT_CST_LT (val, val2))
1007 return 1;
1008 }
6b3c76a9
JH
1009 }
1010 else
12df8a7e
ILT
1011 {
1012 tree tcmp;
1013
c8539275
ILT
1014 fold_defer_overflow_warnings ();
1015
12df8a7e 1016 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
c8539275
ILT
1017
1018 fold_undefer_and_ignore_overflow_warnings ();
1019
bd03c084
RG
1020 if (!tcmp
1021 || TREE_CODE (tcmp) != INTEGER_CST)
12df8a7e
ILT
1022 return -2;
1023
1024 if (!integer_zerop (tcmp))
1025 return 1;
1026 }
1027
1028 /* val >= val2, not considering overflow infinity. */
1029 if (is_negative_overflow_infinity (val))
1030 return is_negative_overflow_infinity (val2) ? 0 : 1;
1031 else if (is_positive_overflow_infinity (val2))
1032 return is_positive_overflow_infinity (val) ? 0 : 1;
1033
1034 return 0;
6b3c76a9
JH
1035}
1036
0bca51f0
DN
1037/* Compare two values VAL1 and VAL2. Return
1038
1039 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1040 -1 if VAL1 < VAL2,
1041 0 if VAL1 == VAL2,
1042 +1 if VAL1 > VAL2, and
1043 +2 if VAL1 != VAL2
1044
1045 This is similar to tree_int_cst_compare but supports pointer values
12df8a7e
ILT
1046 and values that cannot be compared at compile time.
1047
1048 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1049 true if the return value is only valid if we assume that signed
1050 overflow is undefined. */
0bca51f0
DN
1051
1052static int
12df8a7e 1053compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
0bca51f0
DN
1054{
1055 if (val1 == val2)
1056 return 0;
1057
30abf793
KH
1058 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1059 both integers. */
1060 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1061 == POINTER_TYPE_P (TREE_TYPE (val2)));
5be014d5
AP
1062 /* Convert the two values into the same type. This is needed because
1063 sizetype causes sign extension even for unsigned types. */
1064 val2 = fold_convert (TREE_TYPE (val1), val2);
1065 STRIP_USELESS_TYPE_CONVERSION (val2);
30abf793 1066
0bca51f0
DN
1067 if ((TREE_CODE (val1) == SSA_NAME
1068 || TREE_CODE (val1) == PLUS_EXPR
1069 || TREE_CODE (val1) == MINUS_EXPR)
1070 && (TREE_CODE (val2) == SSA_NAME
1071 || TREE_CODE (val2) == PLUS_EXPR
1072 || TREE_CODE (val2) == MINUS_EXPR))
1073 {
1074 tree n1, c1, n2, c2;
67ac6e63 1075 enum tree_code code1, code2;
0bca51f0
DN
1076
1077 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1078 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1079 same name, return -2. */
1080 if (TREE_CODE (val1) == SSA_NAME)
1081 {
67ac6e63 1082 code1 = SSA_NAME;
0bca51f0
DN
1083 n1 = val1;
1084 c1 = NULL_TREE;
1085 }
1086 else
1087 {
67ac6e63 1088 code1 = TREE_CODE (val1);
0bca51f0
DN
1089 n1 = TREE_OPERAND (val1, 0);
1090 c1 = TREE_OPERAND (val1, 1);
67ac6e63
RG
1091 if (tree_int_cst_sgn (c1) == -1)
1092 {
12df8a7e
ILT
1093 if (is_negative_overflow_infinity (c1))
1094 return -2;
67ac6e63
RG
1095 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1096 if (!c1)
1097 return -2;
1098 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1099 }
0bca51f0
DN
1100 }
1101
1102 if (TREE_CODE (val2) == SSA_NAME)
1103 {
67ac6e63 1104 code2 = SSA_NAME;
0bca51f0
DN
1105 n2 = val2;
1106 c2 = NULL_TREE;
1107 }
1108 else
1109 {
67ac6e63 1110 code2 = TREE_CODE (val2);
0bca51f0
DN
1111 n2 = TREE_OPERAND (val2, 0);
1112 c2 = TREE_OPERAND (val2, 1);
67ac6e63
RG
1113 if (tree_int_cst_sgn (c2) == -1)
1114 {
12df8a7e
ILT
1115 if (is_negative_overflow_infinity (c2))
1116 return -2;
67ac6e63
RG
1117 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1118 if (!c2)
1119 return -2;
1120 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1121 }
0bca51f0
DN
1122 }
1123
1124 /* Both values must use the same name. */
1125 if (n1 != n2)
1126 return -2;
1127
67ac6e63
RG
1128 if (code1 == SSA_NAME
1129 && code2 == SSA_NAME)
1130 /* NAME == NAME */
1131 return 0;
1132
1133 /* If overflow is defined we cannot simplify more. */
eeef0e45 1134 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
67ac6e63
RG
1135 return -2;
1136
3fe5bcaf
ILT
1137 if (strict_overflow_p != NULL
1138 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1139 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
12df8a7e
ILT
1140 *strict_overflow_p = true;
1141
67ac6e63 1142 if (code1 == SSA_NAME)
0bca51f0 1143 {
67ac6e63 1144 if (code2 == PLUS_EXPR)
0bca51f0
DN
1145 /* NAME < NAME + CST */
1146 return -1;
67ac6e63 1147 else if (code2 == MINUS_EXPR)
0bca51f0
DN
1148 /* NAME > NAME - CST */
1149 return 1;
1150 }
67ac6e63 1151 else if (code1 == PLUS_EXPR)
0bca51f0 1152 {
67ac6e63 1153 if (code2 == SSA_NAME)
0bca51f0
DN
1154 /* NAME + CST > NAME */
1155 return 1;
67ac6e63 1156 else if (code2 == PLUS_EXPR)
0bca51f0 1157 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
12df8a7e 1158 return compare_values_warnv (c1, c2, strict_overflow_p);
67ac6e63 1159 else if (code2 == MINUS_EXPR)
0bca51f0
DN
1160 /* NAME + CST1 > NAME - CST2 */
1161 return 1;
1162 }
67ac6e63 1163 else if (code1 == MINUS_EXPR)
0bca51f0 1164 {
67ac6e63 1165 if (code2 == SSA_NAME)
0bca51f0
DN
1166 /* NAME - CST < NAME */
1167 return -1;
67ac6e63 1168 else if (code2 == PLUS_EXPR)
0bca51f0
DN
1169 /* NAME - CST1 < NAME + CST2 */
1170 return -1;
67ac6e63 1171 else if (code2 == MINUS_EXPR)
0bca51f0
DN
1172 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1173 C1 and C2 are swapped in the call to compare_values. */
12df8a7e 1174 return compare_values_warnv (c2, c1, strict_overflow_p);
0bca51f0
DN
1175 }
1176
1177 gcc_unreachable ();
1178 }
1179
1180 /* We cannot compare non-constants. */
1181 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1182 return -2;
1183
30abf793 1184 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
87f2a9f5 1185 {
12df8a7e
ILT
1186 /* We cannot compare overflowed values, except for overflow
1187 infinities. */
87f2a9f5 1188 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
12df8a7e 1189 {
0c948c27
ILT
1190 if (strict_overflow_p != NULL)
1191 *strict_overflow_p = true;
12df8a7e
ILT
1192 if (is_negative_overflow_infinity (val1))
1193 return is_negative_overflow_infinity (val2) ? 0 : -1;
1194 else if (is_negative_overflow_infinity (val2))
1195 return 1;
1196 else if (is_positive_overflow_infinity (val1))
1197 return is_positive_overflow_infinity (val2) ? 0 : 1;
1198 else if (is_positive_overflow_infinity (val2))
1199 return -1;
1200 return -2;
1201 }
87f2a9f5
RS
1202
1203 return tree_int_cst_compare (val1, val2);
1204 }
0bca51f0
DN
1205 else
1206 {
1207 tree t;
1208
1209 /* First see if VAL1 and VAL2 are not the same. */
1210 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1211 return 0;
1212
1213 /* If VAL1 is a lower address than VAL2, return -1. */
6b3c76a9 1214 if (operand_less_p (val1, val2) == 1)
0bca51f0
DN
1215 return -1;
1216
1217 /* If VAL1 is a higher address than VAL2, return +1. */
6b3c76a9 1218 if (operand_less_p (val2, val1) == 1)
0bca51f0
DN
1219 return 1;
1220
5daffcc7
JH
1221 /* If VAL1 is different than VAL2, return +2.
1222 For integer constants we either have already returned -1 or 1
2e226e66
KH
1223 or they are equivalent. We still might succeed in proving
1224 something about non-trivial operands. */
5daffcc7
JH
1225 if (TREE_CODE (val1) != INTEGER_CST
1226 || TREE_CODE (val2) != INTEGER_CST)
1227 {
1228 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
bd03c084 1229 if (t && integer_onep (t))
5daffcc7
JH
1230 return 2;
1231 }
0bca51f0
DN
1232
1233 return -2;
1234 }
1235}
1236
0c948c27
ILT
1237/* Compare values like compare_values_warnv, but treat comparisons of
1238 nonconstants which rely on undefined overflow as incomparable. */
12df8a7e
ILT
1239
1240static int
1241compare_values (tree val1, tree val2)
1242{
1243 bool sop;
1244 int ret;
1245
1246 sop = false;
1247 ret = compare_values_warnv (val1, val2, &sop);
0c948c27
ILT
1248 if (sop
1249 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
12df8a7e
ILT
1250 ret = -2;
1251 return ret;
1252}
1253
0bca51f0
DN
1254
1255/* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1256 0 if VAL is not inside VR,
c83033e7
DN
1257 -2 if we cannot tell either way.
1258
1259 FIXME, the current semantics of this functions are a bit quirky
1260 when taken in the context of VRP. In here we do not care
1261 about VR's type. If VR is the anti-range ~[3, 5] the call
1262 value_inside_range (4, VR) will return 1.
1263
1264 This is counter-intuitive in a strict sense, but the callers
1265 currently expect this. They are calling the function
1266 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1267 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1268 themselves.
1269
1270 This also applies to value_ranges_intersect_p and
1271 range_includes_zero_p. The semantics of VR_RANGE and
1272 VR_ANTI_RANGE should be encoded here, but that also means
6b3c76a9
JH
1273 adapting the users of these functions to the new semantics.
1274
1275 Benchmark compile/20001226-1.c compilation time after changing this
1276 function. */
0bca51f0
DN
1277
1278static inline int
6b3c76a9 1279value_inside_range (tree val, value_range_t * vr)
0bca51f0 1280{
6b3c76a9 1281 int cmp1, cmp2;
0bca51f0 1282
6b3c76a9
JH
1283 cmp1 = operand_less_p (val, vr->min);
1284 if (cmp1 == -2)
0bca51f0 1285 return -2;
6b3c76a9
JH
1286 if (cmp1 == 1)
1287 return 0;
0bca51f0 1288
6b3c76a9
JH
1289 cmp2 = operand_less_p (vr->max, val);
1290 if (cmp2 == -2)
0bca51f0
DN
1291 return -2;
1292
6b3c76a9 1293 return !cmp2;
0bca51f0
DN
1294}
1295
1296
1297/* Return true if value ranges VR0 and VR1 have a non-empty
6b3c76a9
JH
1298 intersection.
1299
1300 Benchmark compile/20001226-1.c compilation time after changing this
1301 function.
1302 */
0bca51f0
DN
1303
1304static inline bool
227858d1 1305value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
0bca51f0 1306{
5daffcc7
JH
1307 /* The value ranges do not intersect if the maximum of the first range is
1308 less than the minimum of the second range or vice versa.
1309 When those relations are unknown, we can't do any better. */
1310 if (operand_less_p (vr0->max, vr1->min) != 0)
1311 return false;
1312 if (operand_less_p (vr1->max, vr0->min) != 0)
1313 return false;
1314 return true;
0bca51f0
DN
1315}
1316
1317
c83033e7
DN
1318/* Return true if VR includes the value zero, false otherwise. FIXME,
1319 currently this will return false for an anti-range like ~[-4, 3].
1320 This will be wrong when the semantics of value_inside_range are
1321 modified (currently the users of this function expect these
1322 semantics). */
227858d1
DN
1323
1324static inline bool
1325range_includes_zero_p (value_range_t *vr)
1326{
1327 tree zero;
1328
1329 gcc_assert (vr->type != VR_UNDEFINED
1330 && vr->type != VR_VARYING
1331 && !symbolic_range_p (vr));
1332
1333 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1334 return (value_inside_range (zero, vr) == 1);
1335}
1336
b16caf72
JL
1337/* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1338 false otherwise or if no value range information is available. */
1339
1340bool
58f9752a 1341ssa_name_nonnegative_p (const_tree t)
b16caf72
JL
1342{
1343 value_range_t *vr = get_value_range (t);
1344
1345 if (!vr)
1346 return false;
1347
1348 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1349 which would return a useful value should be encoded as a VR_RANGE. */
1350 if (vr->type == VR_RANGE)
1351 {
1352 int result = compare_values (vr->min, integer_zero_node);
1353
1354 return (result == 0 || result == 1);
1355 }
1356 return false;
1357}
1358
73019a42
RG
1359/* If OP has a value range with a single constant value return that,
1360 otherwise return NULL_TREE. This returns OP itself if OP is a
1361 constant. */
1362
1363static tree
1364op_with_constant_singleton_value_range (tree op)
1365{
1366 value_range_t *vr;
1367
1368 if (is_gimple_min_invariant (op))
1369 return op;
1370
1371 if (TREE_CODE (op) != SSA_NAME)
1372 return NULL_TREE;
1373
1374 vr = get_value_range (op);
1375 if (vr->type == VR_RANGE
1376 && operand_equal_p (vr->min, vr->max, 0)
1377 && is_gimple_min_invariant (vr->min))
1378 return vr->min;
1379
1380 return NULL_TREE;
1381}
1382
227858d1 1383
0bca51f0
DN
1384/* Extract value range information from an ASSERT_EXPR EXPR and store
1385 it in *VR_P. */
1386
1387static void
227858d1 1388extract_range_from_assert (value_range_t *vr_p, tree expr)
0bca51f0 1389{
227858d1
DN
1390 tree var, cond, limit, min, max, type;
1391 value_range_t *var_vr, *limit_vr;
b565d777 1392 enum tree_code cond_code;
0bca51f0
DN
1393
1394 var = ASSERT_EXPR_VAR (expr);
1395 cond = ASSERT_EXPR_COND (expr);
1396
7da4bf7d 1397 gcc_assert (COMPARISON_CLASS_P (cond));
0bca51f0
DN
1398
1399 /* Find VAR in the ASSERT_EXPR conditional. */
2ab8dbf4
RG
1400 if (var == TREE_OPERAND (cond, 0)
1401 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1402 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
227858d1
DN
1403 {
1404 /* If the predicate is of the form VAR COMP LIMIT, then we just
1405 take LIMIT from the RHS and use the same comparison code. */
227858d1 1406 cond_code = TREE_CODE (cond);
2ab8dbf4
RG
1407 limit = TREE_OPERAND (cond, 1);
1408 cond = TREE_OPERAND (cond, 0);
227858d1
DN
1409 }
1410 else
1411 {
1412 /* If the predicate is of the form LIMIT COMP VAR, then we need
1413 to flip around the comparison code to create the proper range
1414 for VAR. */
09b2f9e8 1415 cond_code = swap_tree_comparison (TREE_CODE (cond));
2ab8dbf4
RG
1416 limit = TREE_OPERAND (cond, 0);
1417 cond = TREE_OPERAND (cond, 1);
227858d1 1418 }
0bca51f0 1419
b80cca7b
ILT
1420 limit = avoid_overflow_infinity (limit);
1421
227858d1 1422 type = TREE_TYPE (limit);
0bca51f0
DN
1423 gcc_assert (limit != var);
1424
227858d1
DN
1425 /* For pointer arithmetic, we only keep track of pointer equality
1426 and inequality. */
1427 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
0bca51f0 1428 {
b565d777 1429 set_value_range_to_varying (vr_p);
0bca51f0
DN
1430 return;
1431 }
1432
227858d1
DN
1433 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1434 try to use LIMIT's range to avoid creating symbolic ranges
1435 unnecessarily. */
1436 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1437
1438 /* LIMIT's range is only interesting if it has any useful information. */
1439 if (limit_vr
1440 && (limit_vr->type == VR_UNDEFINED
1441 || limit_vr->type == VR_VARYING
1442 || symbolic_range_p (limit_vr)))
1443 limit_vr = NULL;
1444
db3d5328
DN
1445 /* Initially, the new range has the same set of equivalences of
1446 VAR's range. This will be revised before returning the final
1447 value. Since assertions may be chained via mutually exclusive
1448 predicates, we will need to trim the set of equivalences before
1449 we are done. */
227858d1 1450 gcc_assert (vr_p->equiv == NULL);
f5052e29 1451 add_equivalence (&vr_p->equiv, var);
227858d1
DN
1452
1453 /* Extract a new range based on the asserted comparison for VAR and
1454 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1455 will only use it for equality comparisons (EQ_EXPR). For any
1456 other kind of assertion, we cannot derive a range from LIMIT's
1457 anti-range that can be used to describe the new range. For
1458 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1459 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1460 no single range for x_2 that could describe LE_EXPR, so we might
2ab8dbf4
RG
1461 as well build the range [b_4, +INF] for it.
1462 One special case we handle is extracting a range from a
1463 range test encoded as (unsigned)var + CST <= limit. */
1464 if (TREE_CODE (cond) == NOP_EXPR
1465 || TREE_CODE (cond) == PLUS_EXPR)
1466 {
2ab8dbf4
RG
1467 if (TREE_CODE (cond) == PLUS_EXPR)
1468 {
70b7b037
RG
1469 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1470 TREE_OPERAND (cond, 1));
1471 max = int_const_binop (PLUS_EXPR, limit, min, 0);
2ab8dbf4
RG
1472 cond = TREE_OPERAND (cond, 0);
1473 }
1474 else
70b7b037
RG
1475 {
1476 min = build_int_cst (TREE_TYPE (var), 0);
1477 max = limit;
1478 }
2ab8dbf4 1479
70b7b037
RG
1480 /* Make sure to not set TREE_OVERFLOW on the final type
1481 conversion. We are willingly interpreting large positive
1482 unsigned values as negative singed values here. */
1483 min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
1484 TREE_INT_CST_HIGH (min), 0, false);
1485 max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
1486 TREE_INT_CST_HIGH (max), 0, false);
2ab8dbf4
RG
1487
1488 /* We can transform a max, min range to an anti-range or
1489 vice-versa. Use set_and_canonicalize_value_range which does
1490 this for us. */
1491 if (cond_code == LE_EXPR)
1492 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1493 min, max, vr_p->equiv);
1494 else if (cond_code == GT_EXPR)
1495 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1496 min, max, vr_p->equiv);
1497 else
1498 gcc_unreachable ();
1499 }
1500 else if (cond_code == EQ_EXPR)
227858d1
DN
1501 {
1502 enum value_range_type range_type;
1503
1504 if (limit_vr)
1505 {
1506 range_type = limit_vr->type;
1507 min = limit_vr->min;
1508 max = limit_vr->max;
1509 }
1510 else
1511 {
1512 range_type = VR_RANGE;
1513 min = limit;
1514 max = limit;
1515 }
1516
1517 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1518
1519 /* When asserting the equality VAR == LIMIT and LIMIT is another
1520 SSA name, the new range will also inherit the equivalence set
1521 from LIMIT. */
1522 if (TREE_CODE (limit) == SSA_NAME)
f5052e29 1523 add_equivalence (&vr_p->equiv, limit);
227858d1
DN
1524 }
1525 else if (cond_code == NE_EXPR)
1526 {
1527 /* As described above, when LIMIT's range is an anti-range and
1528 this assertion is an inequality (NE_EXPR), then we cannot
1529 derive anything from the anti-range. For instance, if
1530 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1531 not imply that VAR's range is [0, 0]. So, in the case of
1532 anti-ranges, we just assert the inequality using LIMIT and
fde5c44c
JM
1533 not its anti-range.
1534
1535 If LIMIT_VR is a range, we can only use it to build a new
1536 anti-range if LIMIT_VR is a single-valued range. For
1537 instance, if LIMIT_VR is [0, 1], the predicate
1538 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1539 Rather, it means that for value 0 VAR should be ~[0, 0]
1540 and for value 1, VAR should be ~[1, 1]. We cannot
1541 represent these ranges.
1542
1543 The only situation in which we can build a valid
1544 anti-range is when LIMIT_VR is a single-valued range
1545 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1546 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1547 if (limit_vr
1548 && limit_vr->type == VR_RANGE
1549 && compare_values (limit_vr->min, limit_vr->max) == 0)
227858d1 1550 {
fde5c44c
JM
1551 min = limit_vr->min;
1552 max = limit_vr->max;
227858d1
DN
1553 }
1554 else
1555 {
fde5c44c
JM
1556 /* In any other case, we cannot use LIMIT's range to build a
1557 valid anti-range. */
1558 min = max = limit;
227858d1
DN
1559 }
1560
1561 /* If MIN and MAX cover the whole range for their type, then
1562 just use the original LIMIT. */
1563 if (INTEGRAL_TYPE_P (type)
e1f28918
ILT
1564 && vrp_val_is_min (min)
1565 && vrp_val_is_max (max))
227858d1
DN
1566 min = max = limit;
1567
1568 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1569 }
1570 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
0bca51f0 1571 {
227858d1
DN
1572 min = TYPE_MIN_VALUE (type);
1573
1574 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1575 max = limit;
1576 else
1577 {
1578 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1579 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1580 LT_EXPR. */
1581 max = limit_vr->max;
1582 }
1583
9d6eefd5
EB
1584 /* If the maximum value forces us to be out of bounds, simply punt.
1585 It would be pointless to try and do anything more since this
1586 all should be optimized away above us. */
7343ff45
ILT
1587 if ((cond_code == LT_EXPR
1588 && compare_values (max, min) == 0)
a9d386a1 1589 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
9d6eefd5
EB
1590 set_value_range_to_varying (vr_p);
1591 else
227858d1 1592 {
9d6eefd5 1593 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
7343ff45 1594 if (cond_code == LT_EXPR)
9d6eefd5
EB
1595 {
1596 tree one = build_int_cst (type, 1);
1597 max = fold_build2 (MINUS_EXPR, type, max, one);
3fe5bcaf
ILT
1598 if (EXPR_P (max))
1599 TREE_NO_WARNING (max) = 1;
9d6eefd5 1600 }
227858d1 1601
9d6eefd5
EB
1602 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1603 }
0bca51f0 1604 }
227858d1 1605 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
0bca51f0 1606 {
227858d1
DN
1607 max = TYPE_MAX_VALUE (type);
1608
1609 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1610 min = limit;
1611 else
1612 {
1613 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1614 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1615 GT_EXPR. */
1616 min = limit_vr->min;
1617 }
1618
9d6eefd5
EB
1619 /* If the minimum value forces us to be out of bounds, simply punt.
1620 It would be pointless to try and do anything more since this
1621 all should be optimized away above us. */
7343ff45
ILT
1622 if ((cond_code == GT_EXPR
1623 && compare_values (min, max) == 0)
a9d386a1 1624 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
9d6eefd5
EB
1625 set_value_range_to_varying (vr_p);
1626 else
227858d1 1627 {
9d6eefd5 1628 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
7343ff45 1629 if (cond_code == GT_EXPR)
9d6eefd5
EB
1630 {
1631 tree one = build_int_cst (type, 1);
1632 min = fold_build2 (PLUS_EXPR, type, min, one);
3fe5bcaf
ILT
1633 if (EXPR_P (min))
1634 TREE_NO_WARNING (min) = 1;
9d6eefd5 1635 }
227858d1 1636
9d6eefd5
EB
1637 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1638 }
0bca51f0
DN
1639 }
1640 else
1641 gcc_unreachable ();
1642
012a7a78
DN
1643 /* If VAR already had a known range, it may happen that the new
1644 range we have computed and VAR's range are not compatible. For
1645 instance,
1646
1647 if (p_5 == NULL)
1648 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1649 x_7 = p_6->fld;
1650 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1651
1652 While the above comes from a faulty program, it will cause an ICE
1653 later because p_8 and p_6 will have incompatible ranges and at
1654 the same time will be considered equivalent. A similar situation
1655 would arise from
1656
1657 if (i_5 > 10)
1658 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1659 if (i_5 < 5)
1660 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1661
1662 Again i_6 and i_7 will have incompatible ranges. It would be
1663 pointless to try and do anything with i_7's range because
1664 anything dominated by 'if (i_5 < 5)' will be optimized away.
1665 Note, due to the wa in which simulation proceeds, the statement
1666 i_7 = ASSERT_EXPR <...> we would never be visited because the
c83eecad 1667 conditional 'if (i_5 < 5)' always evaluates to false. However,
012a7a78
DN
1668 this extra check does not hurt and may protect against future
1669 changes to VRP that may get into a situation similar to the
1670 NULL pointer dereference example.
1671
1672 Note that these compatibility tests are only needed when dealing
1673 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1674 are both anti-ranges, they will always be compatible, because two
1675 anti-ranges will always have a non-empty intersection. */
1676
0bca51f0 1677 var_vr = get_value_range (var);
0bca51f0 1678
012a7a78
DN
1679 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1680 ranges or anti-ranges. */
1681 if (vr_p->type == VR_VARYING
1682 || vr_p->type == VR_UNDEFINED
1683 || var_vr->type == VR_VARYING
1684 || var_vr->type == VR_UNDEFINED
1685 || symbolic_range_p (vr_p)
1686 || symbolic_range_p (var_vr))
96644aba 1687 return;
012a7a78
DN
1688
1689 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1690 {
1691 /* If the two ranges have a non-empty intersection, we can
1692 refine the resulting range. Since the assert expression
1693 creates an equivalency and at the same time it asserts a
1694 predicate, we can take the intersection of the two ranges to
1695 get better precision. */
1696 if (value_ranges_intersect_p (var_vr, vr_p))
1697 {
1698 /* Use the larger of the two minimums. */
1699 if (compare_values (vr_p->min, var_vr->min) == -1)
1700 min = var_vr->min;
1701 else
1702 min = vr_p->min;
1703
1704 /* Use the smaller of the two maximums. */
1705 if (compare_values (vr_p->max, var_vr->max) == 1)
1706 max = var_vr->max;
1707 else
1708 max = vr_p->max;
1709
1710 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1711 }
0bca51f0 1712 else
012a7a78
DN
1713 {
1714 /* The two ranges do not intersect, set the new range to
1715 VARYING, because we will not be able to do anything
1716 meaningful with it. */
1717 set_value_range_to_varying (vr_p);
1718 }
1719 }
1720 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1721 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1722 {
1723 /* A range and an anti-range will cancel each other only if
1724 their ends are the same. For instance, in the example above,
1725 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1726 so VR_P should be set to VR_VARYING. */
1727 if (compare_values (var_vr->min, vr_p->min) == 0
1728 && compare_values (var_vr->max, vr_p->max) == 0)
1729 set_value_range_to_varying (vr_p);
307d19fe
JL
1730 else
1731 {
1732 tree min, max, anti_min, anti_max, real_min, real_max;
b881887e 1733 int cmp;
307d19fe
JL
1734
1735 /* We want to compute the logical AND of the two ranges;
1736 there are three cases to consider.
1737
1738
c0220ea4 1739 1. The VR_ANTI_RANGE range is completely within the
307d19fe
JL
1740 VR_RANGE and the endpoints of the ranges are
1741 different. In that case the resulting range
4f67dfcf
JL
1742 should be whichever range is more precise.
1743 Typically that will be the VR_RANGE.
307d19fe
JL
1744
1745 2. The VR_ANTI_RANGE is completely disjoint from
1746 the VR_RANGE. In this case the resulting range
1747 should be the VR_RANGE.
1748
1749 3. There is some overlap between the VR_ANTI_RANGE
1750 and the VR_RANGE.
1751
1752 3a. If the high limit of the VR_ANTI_RANGE resides
1753 within the VR_RANGE, then the result is a new
1754 VR_RANGE starting at the high limit of the
fa10beec 1755 VR_ANTI_RANGE + 1 and extending to the
307d19fe
JL
1756 high limit of the original VR_RANGE.
1757
1758 3b. If the low limit of the VR_ANTI_RANGE resides
1759 within the VR_RANGE, then the result is a new
1760 VR_RANGE starting at the low limit of the original
1761 VR_RANGE and extending to the low limit of the
1762 VR_ANTI_RANGE - 1. */
1763 if (vr_p->type == VR_ANTI_RANGE)
1764 {
1765 anti_min = vr_p->min;
1766 anti_max = vr_p->max;
1767 real_min = var_vr->min;
1768 real_max = var_vr->max;
1769 }
1770 else
1771 {
1772 anti_min = var_vr->min;
1773 anti_max = var_vr->max;
1774 real_min = vr_p->min;
1775 real_max = vr_p->max;
1776 }
1777
1778
1779 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1780 not including any endpoints. */
1781 if (compare_values (anti_max, real_max) == -1
1782 && compare_values (anti_min, real_min) == 1)
1783 {
70b7b037
RG
1784 /* If the range is covering the whole valid range of
1785 the type keep the anti-range. */
1786 if (!vrp_val_is_min (real_min)
1787 || !vrp_val_is_max (real_max))
1788 set_value_range (vr_p, VR_RANGE, real_min,
1789 real_max, vr_p->equiv);
307d19fe
JL
1790 }
1791 /* Case 2, VR_ANTI_RANGE completely disjoint from
1792 VR_RANGE. */
1793 else if (compare_values (anti_min, real_max) == 1
1794 || compare_values (anti_max, real_min) == -1)
1795 {
1796 set_value_range (vr_p, VR_RANGE, real_min,
1797 real_max, vr_p->equiv);
1798 }
1799 /* Case 3a, the anti-range extends into the low
1800 part of the real range. Thus creating a new
917f1b7e 1801 low for the real range. */
b881887e
RG
1802 else if (((cmp = compare_values (anti_max, real_min)) == 1
1803 || cmp == 0)
307d19fe
JL
1804 && compare_values (anti_max, real_max) == -1)
1805 {
12df8a7e
ILT
1806 gcc_assert (!is_positive_overflow_infinity (anti_max));
1807 if (needs_overflow_infinity (TREE_TYPE (anti_max))
e1f28918 1808 && vrp_val_is_max (anti_max))
12df8a7e
ILT
1809 {
1810 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1811 {
1812 set_value_range_to_varying (vr_p);
1813 return;
1814 }
1815 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1816 }
42289977 1817 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
12df8a7e
ILT
1818 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1819 anti_max,
1820 build_int_cst (TREE_TYPE (var_vr->min), 1));
42289977
RG
1821 else
1822 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1823 anti_max, size_int (1));
307d19fe
JL
1824 max = real_max;
1825 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1826 }
1827 /* Case 3b, the anti-range extends into the high
1828 part of the real range. Thus creating a new
917f1b7e 1829 higher for the real range. */
307d19fe 1830 else if (compare_values (anti_min, real_min) == 1
b881887e
RG
1831 && ((cmp = compare_values (anti_min, real_max)) == -1
1832 || cmp == 0))
307d19fe 1833 {
12df8a7e
ILT
1834 gcc_assert (!is_negative_overflow_infinity (anti_min));
1835 if (needs_overflow_infinity (TREE_TYPE (anti_min))
e1f28918 1836 && vrp_val_is_min (anti_min))
12df8a7e
ILT
1837 {
1838 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1839 {
1840 set_value_range_to_varying (vr_p);
1841 return;
1842 }
1843 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1844 }
5be014d5 1845 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
12df8a7e
ILT
1846 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1847 anti_min,
1848 build_int_cst (TREE_TYPE (var_vr->min), 1));
5be014d5
AP
1849 else
1850 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1851 anti_min,
1852 size_int (-1));
307d19fe
JL
1853 min = real_min;
1854 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1855 }
1856 }
0bca51f0
DN
1857 }
1858}
1859
1860
1861/* Extract range information from SSA name VAR and store it in VR. If
1862 VAR has an interesting range, use it. Otherwise, create the
1863 range [VAR, VAR] and return it. This is useful in situations where
1864 we may have conditionals testing values of VARYING names. For
1865 instance,
1866
1867 x_3 = y_5;
1868 if (x_3 > y_5)
1869 ...
1870
1871 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1872 always false. */
1873
1874static void
227858d1 1875extract_range_from_ssa_name (value_range_t *vr, tree var)
0bca51f0 1876{
227858d1 1877 value_range_t *var_vr = get_value_range (var);
0bca51f0
DN
1878
1879 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
227858d1 1880 copy_value_range (vr, var_vr);
0bca51f0 1881 else
227858d1
DN
1882 set_value_range (vr, VR_RANGE, var, var, NULL);
1883
f5052e29 1884 add_equivalence (&vr->equiv, var);
0bca51f0
DN
1885}
1886
1887
9983270b
DN
1888/* Wrapper around int_const_binop. If the operation overflows and we
1889 are not using wrapping arithmetic, then adjust the result to be
12df8a7e
ILT
1890 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1891 NULL_TREE if we need to use an overflow infinity representation but
1892 the type does not support it. */
9983270b 1893
12df8a7e 1894static tree
9983270b
DN
1895vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1896{
1897 tree res;
1898
377d569b 1899 res = int_const_binop (code, val1, val2, 0);
9983270b
DN
1900
1901 /* If we are not using wrapping arithmetic, operate symbolically
1902 on -INF and +INF. */
eeef0e45 1903 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
b17775ab
JM
1904 {
1905 int checkz = compare_values (res, val1);
26ef4301 1906 bool overflow = false;
b17775ab 1907
7dc32197 1908 /* Ensure that res = val1 [+*] val2 >= val1
b17775ab 1909 or that res = val1 - val2 <= val1. */
26ef4301 1910 if ((code == PLUS_EXPR
7dc32197
DN
1911 && !(checkz == 1 || checkz == 0))
1912 || (code == MINUS_EXPR
1913 && !(checkz == 0 || checkz == -1)))
26ef4301
JL
1914 {
1915 overflow = true;
1916 }
1917 /* Checking for multiplication overflow is done by dividing the
1918 output of the multiplication by the first input of the
1919 multiplication. If the result of that division operation is
1920 not equal to the second input of the multiplication, then the
1921 multiplication overflowed. */
1922 else if (code == MULT_EXPR && !integer_zerop (val1))
1923 {
1924 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
3ea0e1e4 1925 res,
26ef4301
JL
1926 val1, 0);
1927 int check = compare_values (tmp, val2);
1928
1929 if (check != 0)
1930 overflow = true;
1931 }
1932
1933 if (overflow)
b17775ab
JM
1934 {
1935 res = copy_node (res);
1936 TREE_OVERFLOW (res) = 1;
1937 }
26ef4301 1938
b17775ab 1939 }
12df8a7e
ILT
1940 else if ((TREE_OVERFLOW (res)
1941 && !TREE_OVERFLOW (val1)
1942 && !TREE_OVERFLOW (val2))
1943 || is_overflow_infinity (val1)
1944 || is_overflow_infinity (val2))
9983270b 1945 {
7dc32197
DN
1946 /* If the operation overflowed but neither VAL1 nor VAL2 are
1947 overflown, return -INF or +INF depending on the operation
1948 and the combination of signs of the operands. */
9983270b
DN
1949 int sgn1 = tree_int_cst_sgn (val1);
1950 int sgn2 = tree_int_cst_sgn (val2);
1951
12df8a7e
ILT
1952 if (needs_overflow_infinity (TREE_TYPE (res))
1953 && !supports_overflow_infinity (TREE_TYPE (res)))
1954 return NULL_TREE;
1955
d7419dec
ILT
1956 /* We have to punt on adding infinities of different signs,
1957 since we can't tell what the sign of the result should be.
1958 Likewise for subtracting infinities of the same sign. */
1959 if (((code == PLUS_EXPR && sgn1 != sgn2)
1960 || (code == MINUS_EXPR && sgn1 == sgn2))
12df8a7e
ILT
1961 && is_overflow_infinity (val1)
1962 && is_overflow_infinity (val2))
1963 return NULL_TREE;
1964
d7419dec
ILT
1965 /* Don't try to handle division or shifting of infinities. */
1966 if ((code == TRUNC_DIV_EXPR
1967 || code == FLOOR_DIV_EXPR
1968 || code == CEIL_DIV_EXPR
1969 || code == EXACT_DIV_EXPR
1970 || code == ROUND_DIV_EXPR
1971 || code == RSHIFT_EXPR)
1972 && (is_overflow_infinity (val1)
1973 || is_overflow_infinity (val2)))
1974 return NULL_TREE;
1975
0d22e81f
EB
1976 /* Notice that we only need to handle the restricted set of
1977 operations handled by extract_range_from_binary_expr.
1978 Among them, only multiplication, addition and subtraction
1979 can yield overflow without overflown operands because we
1980 are working with integral types only... except in the
1981 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1982 for division too. */
1983
1984 /* For multiplication, the sign of the overflow is given
1985 by the comparison of the signs of the operands. */
1986 if ((code == MULT_EXPR && sgn1 == sgn2)
1987 /* For addition, the operands must be of the same sign
1988 to yield an overflow. Its sign is therefore that
d7419dec
ILT
1989 of one of the operands, for example the first. For
1990 infinite operands X + -INF is negative, not positive. */
1991 || (code == PLUS_EXPR
1992 && (sgn1 >= 0
1993 ? !is_negative_overflow_infinity (val2)
1994 : is_positive_overflow_infinity (val2)))
12df8a7e
ILT
1995 /* For subtraction, non-infinite operands must be of
1996 different signs to yield an overflow. Its sign is
1997 therefore that of the first operand or the opposite of
1998 that of the second operand. A first operand of 0 counts
1999 as positive here, for the corner case 0 - (-INF), which
2000 overflows, but must yield +INF. For infinite operands 0
2001 - INF is negative, not positive. */
2002 || (code == MINUS_EXPR
2003 && (sgn1 >= 0
2004 ? !is_positive_overflow_infinity (val2)
2005 : is_negative_overflow_infinity (val2)))
13338552
RG
2006 /* We only get in here with positive shift count, so the
2007 overflow direction is the same as the sign of val1.
2008 Actually rshift does not overflow at all, but we only
2009 handle the case of shifting overflowed -INF and +INF. */
2010 || (code == RSHIFT_EXPR
2011 && sgn1 >= 0)
0d22e81f
EB
2012 /* For division, the only case is -INF / -1 = +INF. */
2013 || code == TRUNC_DIV_EXPR
2014 || code == FLOOR_DIV_EXPR
2015 || code == CEIL_DIV_EXPR
2016 || code == EXACT_DIV_EXPR
2017 || code == ROUND_DIV_EXPR)
12df8a7e
ILT
2018 return (needs_overflow_infinity (TREE_TYPE (res))
2019 ? positive_overflow_infinity (TREE_TYPE (res))
2020 : TYPE_MAX_VALUE (TREE_TYPE (res)));
9983270b 2021 else
12df8a7e
ILT
2022 return (needs_overflow_infinity (TREE_TYPE (res))
2023 ? negative_overflow_infinity (TREE_TYPE (res))
2024 : TYPE_MIN_VALUE (TREE_TYPE (res)));
9983270b
DN
2025 }
2026
2027 return res;
2028}
2029
2030
0bca51f0
DN
2031/* Extract range information from a binary expression EXPR based on
2032 the ranges of each of its operands and the expression code. */
2033
2034static void
2d3cd5d5
RAE
2035extract_range_from_binary_expr (value_range_t *vr,
2036 enum tree_code code,
2037 tree expr_type, tree op0, tree op1)
0bca51f0 2038{
4e2d94a9 2039 enum value_range_type type;
2d3cd5d5 2040 tree min, max;
0bca51f0 2041 int cmp;
227858d1
DN
2042 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2043 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
0bca51f0
DN
2044
2045 /* Not all binary expressions can be applied to ranges in a
2046 meaningful way. Handle only arithmetic operations. */
2047 if (code != PLUS_EXPR
2048 && code != MINUS_EXPR
5be014d5 2049 && code != POINTER_PLUS_EXPR
0bca51f0
DN
2050 && code != MULT_EXPR
2051 && code != TRUNC_DIV_EXPR
2052 && code != FLOOR_DIV_EXPR
2053 && code != CEIL_DIV_EXPR
2054 && code != EXACT_DIV_EXPR
2055 && code != ROUND_DIV_EXPR
6569e716 2056 && code != RSHIFT_EXPR
0bca51f0 2057 && code != MIN_EXPR
227858d1 2058 && code != MAX_EXPR
29c8f8c2 2059 && code != BIT_AND_EXPR
30821654 2060 && code != BIT_IOR_EXPR
227858d1 2061 && code != TRUTH_AND_EXPR
74290e83 2062 && code != TRUTH_OR_EXPR)
0bca51f0 2063 {
73019a42 2064 /* We can still do constant propagation here. */
a4b93060
RG
2065 tree const_op0 = op_with_constant_singleton_value_range (op0);
2066 tree const_op1 = op_with_constant_singleton_value_range (op1);
2067 if (const_op0 || const_op1)
73019a42 2068 {
a4b93060
RG
2069 tree tem = fold_binary (code, expr_type,
2070 const_op0 ? const_op0 : op0,
2071 const_op1 ? const_op1 : op1);
08298a8c
RG
2072 if (tem
2073 && is_gimple_min_invariant (tem)
73019a42
RG
2074 && !is_overflow_infinity (tem))
2075 {
2076 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2077 return;
2078 }
2079 }
b565d777 2080 set_value_range_to_varying (vr);
0bca51f0
DN
2081 return;
2082 }
2083
2084 /* Get value ranges for each operand. For constant operands, create
2085 a new value range with the operand to simplify processing. */
0bca51f0
DN
2086 if (TREE_CODE (op0) == SSA_NAME)
2087 vr0 = *(get_value_range (op0));
227858d1 2088 else if (is_gimple_min_invariant (op0))
b60b4711 2089 set_value_range_to_value (&vr0, op0, NULL);
0bca51f0 2090 else
227858d1 2091 set_value_range_to_varying (&vr0);
0bca51f0 2092
0bca51f0
DN
2093 if (TREE_CODE (op1) == SSA_NAME)
2094 vr1 = *(get_value_range (op1));
227858d1 2095 else if (is_gimple_min_invariant (op1))
b60b4711 2096 set_value_range_to_value (&vr1, op1, NULL);
0bca51f0 2097 else
227858d1 2098 set_value_range_to_varying (&vr1);
0bca51f0
DN
2099
2100 /* If either range is UNDEFINED, so is the result. */
2101 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2102 {
227858d1 2103 set_value_range_to_undefined (vr);
0bca51f0
DN
2104 return;
2105 }
2106
4e2d94a9
KH
2107 /* The type of the resulting value range defaults to VR0.TYPE. */
2108 type = vr0.type;
2109
227858d1 2110 /* Refuse to operate on VARYING ranges, ranges of different kinds
29c8f8c2
KH
2111 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2112 because we may be able to derive a useful range even if one of
193a3681
JJ
2113 the operands is VR_VARYING or symbolic range. Similarly for
2114 divisions. TODO, we may be able to derive anti-ranges in
2115 some cases. */
29c8f8c2 2116 if (code != BIT_AND_EXPR
9b61327b
KH
2117 && code != TRUTH_AND_EXPR
2118 && code != TRUTH_OR_EXPR
193a3681
JJ
2119 && code != TRUNC_DIV_EXPR
2120 && code != FLOOR_DIV_EXPR
2121 && code != CEIL_DIV_EXPR
2122 && code != EXACT_DIV_EXPR
2123 && code != ROUND_DIV_EXPR
29c8f8c2
KH
2124 && (vr0.type == VR_VARYING
2125 || vr1.type == VR_VARYING
2126 || vr0.type != vr1.type
2127 || symbolic_range_p (&vr0)
2128 || symbolic_range_p (&vr1)))
0bca51f0 2129 {
b565d777 2130 set_value_range_to_varying (vr);
0bca51f0
DN
2131 return;
2132 }
2133
2134 /* Now evaluate the expression to determine the new range. */
2d3cd5d5 2135 if (POINTER_TYPE_P (expr_type)
0bca51f0
DN
2136 || POINTER_TYPE_P (TREE_TYPE (op0))
2137 || POINTER_TYPE_P (TREE_TYPE (op1)))
2138 {
5be014d5 2139 if (code == MIN_EXPR || code == MAX_EXPR)
e57f2b41 2140 {
5be014d5
AP
2141 /* For MIN/MAX expressions with pointers, we only care about
2142 nullness, if both are non null, then the result is nonnull.
2143 If both are null, then the result is null. Otherwise they
2144 are varying. */
2145 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2d3cd5d5 2146 set_value_range_to_nonnull (vr, expr_type);
e57f2b41 2147 else if (range_is_null (&vr0) && range_is_null (&vr1))
2d3cd5d5 2148 set_value_range_to_null (vr, expr_type);
e57f2b41
KH
2149 else
2150 set_value_range_to_varying (vr);
5be014d5
AP
2151
2152 return;
e57f2b41 2153 }
5be014d5
AP
2154 gcc_assert (code == POINTER_PLUS_EXPR);
2155 /* For pointer types, we are really only interested in asserting
2156 whether the expression evaluates to non-NULL. */
2157 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2d3cd5d5 2158 set_value_range_to_nonnull (vr, expr_type);
5be014d5 2159 else if (range_is_null (&vr0) && range_is_null (&vr1))
2d3cd5d5 2160 set_value_range_to_null (vr, expr_type);
0bca51f0 2161 else
5be014d5 2162 set_value_range_to_varying (vr);
0bca51f0
DN
2163
2164 return;
2165 }
2166
2167 /* For integer ranges, apply the operation to each end of the
2168 range and see what we end up with. */
2893f753 2169 if (code == TRUTH_AND_EXPR
74290e83 2170 || code == TRUTH_OR_EXPR)
227858d1 2171 {
9b61327b
KH
2172 /* If one of the operands is zero, we know that the whole
2173 expression evaluates zero. */
2174 if (code == TRUTH_AND_EXPR
2175 && ((vr0.type == VR_RANGE
2176 && integer_zerop (vr0.min)
2177 && integer_zerop (vr0.max))
2178 || (vr1.type == VR_RANGE
2179 && integer_zerop (vr1.min)
2180 && integer_zerop (vr1.max))))
2181 {
2182 type = VR_RANGE;
2d3cd5d5 2183 min = max = build_int_cst (expr_type, 0);
9b61327b
KH
2184 }
2185 /* If one of the operands is one, we know that the whole
2186 expression evaluates one. */
2187 else if (code == TRUTH_OR_EXPR
2188 && ((vr0.type == VR_RANGE
2189 && integer_onep (vr0.min)
2190 && integer_onep (vr0.max))
2191 || (vr1.type == VR_RANGE
2192 && integer_onep (vr1.min)
2193 && integer_onep (vr1.max))))
2194 {
2195 type = VR_RANGE;
2d3cd5d5 2196 min = max = build_int_cst (expr_type, 1);
9b61327b
KH
2197 }
2198 else if (vr0.type != VR_VARYING
2199 && vr1.type != VR_VARYING
2200 && vr0.type == vr1.type
2201 && !symbolic_range_p (&vr0)
12df8a7e
ILT
2202 && !overflow_infinity_range_p (&vr0)
2203 && !symbolic_range_p (&vr1)
2204 && !overflow_infinity_range_p (&vr1))
9b61327b
KH
2205 {
2206 /* Boolean expressions cannot be folded with int_const_binop. */
2d3cd5d5
RAE
2207 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2208 max = fold_binary (code, expr_type, vr0.max, vr1.max);
9b61327b
KH
2209 }
2210 else
2211 {
31ab1cc9 2212 /* The result of a TRUTH_*_EXPR is always true or false. */
2d3cd5d5 2213 set_value_range_to_truthvalue (vr, expr_type);
9b61327b
KH
2214 return;
2215 }
227858d1
DN
2216 }
2217 else if (code == PLUS_EXPR
227858d1
DN
2218 || code == MIN_EXPR
2219 || code == MAX_EXPR)
0bca51f0 2220 {
567fb660
KH
2221 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2222 VR_VARYING. It would take more effort to compute a precise
2223 range for such a case. For example, if we have op0 == 1 and
2224 op1 == -1 with their ranges both being ~[0,0], we would have
2225 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2226 Note that we are guaranteed to have vr0.type == vr1.type at
2227 this point. */
2228 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2229 {
2230 set_value_range_to_varying (vr);
2231 return;
2232 }
2233
0bca51f0
DN
2234 /* For operations that make the resulting range directly
2235 proportional to the original ranges, apply the operation to
2236 the same end of each range. */
9983270b
DN
2237 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2238 max = vrp_int_const_binop (code, vr0.max, vr1.max);
77a30264
RG
2239
2240 /* If both additions overflowed the range kind is still correct.
2241 This happens regularly with subtracting something in unsigned
2242 arithmetic.
2243 ??? See PR30318 for all the cases we do not handle. */
2244 if (code == PLUS_EXPR
2245 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2246 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2247 {
2248 min = build_int_cst_wide (TREE_TYPE (min),
2249 TREE_INT_CST_LOW (min),
2250 TREE_INT_CST_HIGH (min));
2251 max = build_int_cst_wide (TREE_TYPE (max),
2252 TREE_INT_CST_LOW (max),
2253 TREE_INT_CST_HIGH (max));
2254 }
0bca51f0 2255 }
9983270b
DN
2256 else if (code == MULT_EXPR
2257 || code == TRUNC_DIV_EXPR
227858d1
DN
2258 || code == FLOOR_DIV_EXPR
2259 || code == CEIL_DIV_EXPR
2260 || code == EXACT_DIV_EXPR
6569e716
RG
2261 || code == ROUND_DIV_EXPR
2262 || code == RSHIFT_EXPR)
0bca51f0 2263 {
9983270b
DN
2264 tree val[4];
2265 size_t i;
12df8a7e 2266 bool sop;
9983270b 2267
567fb660
KH
2268 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2269 drop to VR_VARYING. It would take more effort to compute a
2270 precise range for such a case. For example, if we have
2271 op0 == 65536 and op1 == 65536 with their ranges both being
2272 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2273 we cannot claim that the product is in ~[0,0]. Note that we
2274 are guaranteed to have vr0.type == vr1.type at this
2275 point. */
2276 if (code == MULT_EXPR
2277 && vr0.type == VR_ANTI_RANGE
eeef0e45 2278 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
567fb660
KH
2279 {
2280 set_value_range_to_varying (vr);
2281 return;
2282 }
2283
af33044f
RH
2284 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2285 then drop to VR_VARYING. Outside of this range we get undefined
7fa7289d 2286 behavior from the shift operation. We cannot even trust
af33044f
RH
2287 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2288 shifts, and the operation at the tree level may be widened. */
2289 if (code == RSHIFT_EXPR)
13338552 2290 {
af33044f
RH
2291 if (vr1.type == VR_ANTI_RANGE
2292 || !vrp_expr_computes_nonnegative (op1, &sop)
2293 || (operand_less_p
2294 (build_int_cst (TREE_TYPE (vr1.max),
2d3cd5d5 2295 TYPE_PRECISION (expr_type) - 1),
af33044f
RH
2296 vr1.max) != 0))
2297 {
2298 set_value_range_to_varying (vr);
2299 return;
2300 }
13338552
RG
2301 }
2302
193a3681
JJ
2303 else if ((code == TRUNC_DIV_EXPR
2304 || code == FLOOR_DIV_EXPR
2305 || code == CEIL_DIV_EXPR
2306 || code == EXACT_DIV_EXPR
2307 || code == ROUND_DIV_EXPR)
2308 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2309 {
2310 /* For division, if op1 has VR_RANGE but op0 does not, something
2311 can be deduced just from that range. Say [min, max] / [4, max]
2312 gives [min / 4, max / 4] range. */
2313 if (vr1.type == VR_RANGE
2314 && !symbolic_range_p (&vr1)
2315 && !range_includes_zero_p (&vr1))
2316 {
2317 vr0.type = type = VR_RANGE;
2318 vr0.min = vrp_val_min (TREE_TYPE (op0));
2319 vr0.max = vrp_val_max (TREE_TYPE (op1));
2320 }
2321 else
2322 {
2323 set_value_range_to_varying (vr);
2324 return;
2325 }
2326 }
2327
2328 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2329 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2330 include 0. */
2331 if ((code == TRUNC_DIV_EXPR
2332 || code == FLOOR_DIV_EXPR
2333 || code == CEIL_DIV_EXPR
2334 || code == EXACT_DIV_EXPR
2335 || code == ROUND_DIV_EXPR)
2336 && vr0.type == VR_RANGE
2337 && (vr1.type != VR_RANGE
2338 || symbolic_range_p (&vr1)
2339 || range_includes_zero_p (&vr1)))
2340 {
2341 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2342 int cmp;
2343
2344 sop = false;
2345 min = NULL_TREE;
2346 max = NULL_TREE;
2347 if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
2348 {
2349 /* For unsigned division or when divisor is known
2350 to be non-negative, the range has to cover
2351 all numbers from 0 to max for positive max
2352 and all numbers from min to 0 for negative min. */
2353 cmp = compare_values (vr0.max, zero);
2354 if (cmp == -1)
2355 max = zero;
2356 else if (cmp == 0 || cmp == 1)
2357 max = vr0.max;
2358 else
2359 type = VR_VARYING;
2360 cmp = compare_values (vr0.min, zero);
2361 if (cmp == 1)
2362 min = zero;
2363 else if (cmp == 0 || cmp == -1)
2364 min = vr0.min;
2365 else
2366 type = VR_VARYING;
2367 }
2368 else
2369 {
2370 /* Otherwise the range is -max .. max or min .. -min
2371 depending on which bound is bigger in absolute value,
2372 as the division can change the sign. */
2373 abs_extent_range (vr, vr0.min, vr0.max);
2374 return;
2375 }
2376 if (type == VR_VARYING)
2377 {
2378 set_value_range_to_varying (vr);
2379 return;
2380 }
2381 }
2382
9983270b
DN
2383 /* Multiplications and divisions are a bit tricky to handle,
2384 depending on the mix of signs we have in the two ranges, we
2385 need to operate on different values to get the minimum and
2386 maximum values for the new range. One approach is to figure
2387 out all the variations of range combinations and do the
2388 operations.
2389
2390 However, this involves several calls to compare_values and it
2391 is pretty convoluted. It's simpler to do the 4 operations
2392 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2393 MAX1) and then figure the smallest and largest values to form
2394 the new range. */
12df8a7e
ILT
2395 else
2396 {
193a3681
JJ
2397 gcc_assert ((vr0.type == VR_RANGE
2398 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2399 && vr0.type == vr1.type);
2400
2401 /* Compute the 4 cross operations. */
2402 sop = false;
2403 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2404 if (val[0] == NULL_TREE)
12df8a7e 2405 sop = true;
9983270b 2406
193a3681
JJ
2407 if (vr1.max == vr1.min)
2408 val[1] = NULL_TREE;
2409 else
2410 {
2411 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2412 if (val[1] == NULL_TREE)
2413 sop = true;
2414 }
9983270b 2415
193a3681
JJ
2416 if (vr0.max == vr0.min)
2417 val[2] = NULL_TREE;
2418 else
2419 {
2420 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2421 if (val[2] == NULL_TREE)
2422 sop = true;
2423 }
9983270b 2424
193a3681
JJ
2425 if (vr0.min == vr0.max || vr1.min == vr1.max)
2426 val[3] = NULL_TREE;
2427 else
2428 {
2429 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2430 if (val[3] == NULL_TREE)
2431 sop = true;
2432 }
9983270b 2433
193a3681
JJ
2434 if (sop)
2435 {
2436 set_value_range_to_varying (vr);
2437 return;
2438 }
9983270b 2439
193a3681
JJ
2440 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2441 of VAL[i]. */
2442 min = val[0];
2443 max = val[0];
2444 for (i = 1; i < 4; i++)
227858d1 2445 {
193a3681
JJ
2446 if (!is_gimple_min_invariant (min)
2447 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2448 || !is_gimple_min_invariant (max)
2449 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2450 break;
2451
2452 if (val[i])
9983270b 2453 {
193a3681
JJ
2454 if (!is_gimple_min_invariant (val[i])
2455 || (TREE_OVERFLOW (val[i])
2456 && !is_overflow_infinity (val[i])))
2457 {
2458 /* If we found an overflowed value, set MIN and MAX
2459 to it so that we set the resulting range to
2460 VARYING. */
2461 min = max = val[i];
2462 break;
2463 }
9983270b 2464
193a3681
JJ
2465 if (compare_values (val[i], min) == -1)
2466 min = val[i];
9983270b 2467
193a3681
JJ
2468 if (compare_values (val[i], max) == 1)
2469 max = val[i];
2470 }
227858d1
DN
2471 }
2472 }
2473 }
2474 else if (code == MINUS_EXPR)
2475 {
567fb660
KH
2476 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2477 VR_VARYING. It would take more effort to compute a precise
2478 range for such a case. For example, if we have op0 == 1 and
2479 op1 == 1 with their ranges both being ~[0,0], we would have
2480 op0 - op1 == 0, so we cannot claim that the difference is in
2481 ~[0,0]. Note that we are guaranteed to have
2482 vr0.type == vr1.type at this point. */
2483 if (vr0.type == VR_ANTI_RANGE)
2484 {
2485 set_value_range_to_varying (vr);
2486 return;
2487 }
2488
227858d1
DN
2489 /* For MINUS_EXPR, apply the operation to the opposite ends of
2490 each range. */
9983270b
DN
2491 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2492 max = vrp_int_const_binop (code, vr0.max, vr1.min);
227858d1 2493 }
29c8f8c2
KH
2494 else if (code == BIT_AND_EXPR)
2495 {
2496 if (vr0.type == VR_RANGE
2497 && vr0.min == vr0.max
12df8a7e
ILT
2498 && TREE_CODE (vr0.max) == INTEGER_CST
2499 && !TREE_OVERFLOW (vr0.max)
2500 && tree_int_cst_sgn (vr0.max) >= 0)
29c8f8c2 2501 {
2d3cd5d5 2502 min = build_int_cst (expr_type, 0);
29c8f8c2
KH
2503 max = vr0.max;
2504 }
2505 else if (vr1.type == VR_RANGE
12df8a7e
ILT
2506 && vr1.min == vr1.max
2507 && TREE_CODE (vr1.max) == INTEGER_CST
2508 && !TREE_OVERFLOW (vr1.max)
2509 && tree_int_cst_sgn (vr1.max) >= 0)
29c8f8c2 2510 {
4e2d94a9 2511 type = VR_RANGE;
2d3cd5d5 2512 min = build_int_cst (expr_type, 0);
29c8f8c2
KH
2513 max = vr1.max;
2514 }
2515 else
2516 {
2517 set_value_range_to_varying (vr);
2518 return;
2519 }
2520 }
30821654
PB
2521 else if (code == BIT_IOR_EXPR)
2522 {
2523 if (vr0.type == VR_RANGE
2524 && vr1.type == VR_RANGE
2525 && TREE_CODE (vr0.min) == INTEGER_CST
2526 && TREE_CODE (vr1.min) == INTEGER_CST
2527 && TREE_CODE (vr0.max) == INTEGER_CST
2528 && TREE_CODE (vr1.max) == INTEGER_CST
2529 && tree_int_cst_sgn (vr0.min) >= 0
2530 && tree_int_cst_sgn (vr1.min) >= 0)
2531 {
2532 double_int vr0_max = tree_to_double_int (vr0.max);
2533 double_int vr1_max = tree_to_double_int (vr1.max);
2534 double_int ior_max;
2535
2536 /* Set all bits to the right of the most significant one to 1.
2537 For example, [0, 4] | [4, 4] = [4, 7]. */
2538 ior_max.low = vr0_max.low | vr1_max.low;
2539 ior_max.high = vr0_max.high | vr1_max.high;
2540 if (ior_max.high != 0)
2541 {
26e4f1ba 2542 ior_max.low = ~(unsigned HOST_WIDE_INT)0u;
30821654
PB
2543 ior_max.high |= ((HOST_WIDE_INT) 1
2544 << floor_log2 (ior_max.high)) - 1;
2545 }
26e4f1ba 2546 else if (ior_max.low != 0)
30821654
PB
2547 ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
2548 << floor_log2 (ior_max.low)) - 1;
2549
2550 /* Both of these endpoints are conservative. */
2551 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2552 max = double_int_to_tree (expr_type, ior_max);
2553 }
2554 else
2555 {
2556 set_value_range_to_varying (vr);
2557 return;
2558 }
2559 }
227858d1
DN
2560 else
2561 gcc_unreachable ();
fda05890 2562
9983270b 2563 /* If either MIN or MAX overflowed, then set the resulting range to
12df8a7e
ILT
2564 VARYING. But we do accept an overflow infinity
2565 representation. */
2566 if (min == NULL_TREE
2567 || !is_gimple_min_invariant (min)
2568 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2569 || max == NULL_TREE
2570 || !is_gimple_min_invariant (max)
2571 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2572 {
2573 set_value_range_to_varying (vr);
2574 return;
2575 }
2576
fa633851
ILT
2577 /* We punt if:
2578 1) [-INF, +INF]
2579 2) [-INF, +-INF(OVF)]
2580 3) [+-INF(OVF), +INF]
2581 4) [+-INF(OVF), +-INF(OVF)]
2582 We learn nothing when we have INF and INF(OVF) on both sides.
2583 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2584 overflow. */
e1f28918
ILT
2585 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2586 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
227858d1 2587 {
9983270b
DN
2588 set_value_range_to_varying (vr);
2589 return;
fda05890
KH
2590 }
2591
227858d1
DN
2592 cmp = compare_values (min, max);
2593 if (cmp == -2 || cmp == 1)
2594 {
2595 /* If the new range has its limits swapped around (MIN > MAX),
2596 then the operation caused one of them to wrap around, mark
2597 the new range VARYING. */
2598 set_value_range_to_varying (vr);
2599 }
2600 else
4e2d94a9 2601 set_value_range (vr, type, min, max, NULL);
fda05890
KH
2602}
2603
2604
0bca51f0
DN
2605/* Extract range information from a unary expression EXPR based on
2606 the range of its operand and the expression code. */
2607
2608static void
2d3cd5d5
RAE
2609extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2610 tree type, tree op0)
0bca51f0 2611{
2d3cd5d5 2612 tree min, max;
0bca51f0 2613 int cmp;
227858d1
DN
2614 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2615
2616 /* Refuse to operate on certain unary expressions for which we
2617 cannot easily determine a resulting range. */
2618 if (code == FIX_TRUNC_EXPR
227858d1
DN
2619 || code == FLOAT_EXPR
2620 || code == BIT_NOT_EXPR
227858d1
DN
2621 || code == CONJ_EXPR)
2622 {
73019a42
RG
2623 /* We can still do constant propagation here. */
2624 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2625 {
2626 tree tem = fold_unary (code, type, op0);
08298a8c
RG
2627 if (tem
2628 && is_gimple_min_invariant (tem)
73019a42
RG
2629 && !is_overflow_infinity (tem))
2630 {
2631 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2632 return;
2633 }
2634 }
227858d1
DN
2635 set_value_range_to_varying (vr);
2636 return;
2637 }
0bca51f0
DN
2638
2639 /* Get value ranges for the operand. For constant operands, create
2640 a new value range with the operand to simplify processing. */
0bca51f0
DN
2641 if (TREE_CODE (op0) == SSA_NAME)
2642 vr0 = *(get_value_range (op0));
227858d1 2643 else if (is_gimple_min_invariant (op0))
b60b4711 2644 set_value_range_to_value (&vr0, op0, NULL);
0bca51f0 2645 else
227858d1 2646 set_value_range_to_varying (&vr0);
0bca51f0
DN
2647
2648 /* If VR0 is UNDEFINED, so is the result. */
2649 if (vr0.type == VR_UNDEFINED)
2650 {
227858d1 2651 set_value_range_to_undefined (vr);
0bca51f0
DN
2652 return;
2653 }
2654
a3b196e3
JL
2655 /* Refuse to operate on symbolic ranges, or if neither operand is
2656 a pointer or integral type. */
2657 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2658 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2659 || (vr0.type != VR_VARYING
2660 && symbolic_range_p (&vr0)))
0bca51f0 2661 {
b565d777 2662 set_value_range_to_varying (vr);
0bca51f0
DN
2663 return;
2664 }
2665
2666 /* If the expression involves pointers, we are only interested in
2667 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2d3cd5d5 2668 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
0bca51f0 2669 {
12df8a7e 2670 bool sop;
6ac01510 2671
12df8a7e
ILT
2672 sop = false;
2673 if (range_is_nonnull (&vr0)
2d3cd5d5 2674 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
12df8a7e 2675 && !sop))
2d3cd5d5 2676 set_value_range_to_nonnull (vr, type);
0bca51f0 2677 else if (range_is_null (&vr0))
2d3cd5d5 2678 set_value_range_to_null (vr, type);
0bca51f0 2679 else
b565d777 2680 set_value_range_to_varying (vr);
0bca51f0
DN
2681
2682 return;
2683 }
2684
2685 /* Handle unary expressions on integer ranges. */
1a87cf0c 2686 if (CONVERT_EXPR_CODE_P (code)
b47ee386
RG
2687 && INTEGRAL_TYPE_P (type)
2688 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
0bca51f0 2689 {
441e96b5 2690 tree inner_type = TREE_TYPE (op0);
2d3cd5d5 2691 tree outer_type = type;
441e96b5 2692
b47ee386
RG
2693 /* If VR0 is varying and we increase the type precision, assume
2694 a full range for the following transformation. */
2695 if (vr0.type == VR_VARYING
2696 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2735e93e 2697 {
b47ee386
RG
2698 vr0.type = VR_RANGE;
2699 vr0.min = TYPE_MIN_VALUE (inner_type);
2700 vr0.max = TYPE_MAX_VALUE (inner_type);
2735e93e
JL
2701 }
2702
b47ee386
RG
2703 /* If VR0 is a constant range or anti-range and the conversion is
2704 not truncating we can convert the min and max values and
2705 canonicalize the resulting range. Otherwise we can do the
2706 conversion if the size of the range is less than what the
2707 precision of the target type can represent and the range is
2708 not an anti-range. */
2709 if ((vr0.type == VR_RANGE
2710 || vr0.type == VR_ANTI_RANGE)
2711 && TREE_CODE (vr0.min) == INTEGER_CST
2712 && TREE_CODE (vr0.max) == INTEGER_CST
2713 && !is_overflow_infinity (vr0.min)
2714 && !is_overflow_infinity (vr0.max)
2715 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2716 || (vr0.type == VR_RANGE
2717 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2718 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2719 size_int (TYPE_PRECISION (outer_type)), 0)))))
441e96b5 2720 {
b47ee386
RG
2721 tree new_min, new_max;
2722 new_min = force_fit_type_double (outer_type,
2723 TREE_INT_CST_LOW (vr0.min),
2724 TREE_INT_CST_HIGH (vr0.min), 0, 0);
2725 new_max = force_fit_type_double (outer_type,
2726 TREE_INT_CST_LOW (vr0.max),
2727 TREE_INT_CST_HIGH (vr0.max), 0, 0);
2728 set_and_canonicalize_value_range (vr, vr0.type,
2729 new_min, new_max, NULL);
441e96b5
DN
2730 return;
2731 }
b47ee386
RG
2732
2733 set_value_range_to_varying (vr);
2734 return;
0bca51f0
DN
2735 }
2736
a3b196e3
JL
2737 /* Conversion of a VR_VARYING value to a wider type can result
2738 in a usable range. So wait until after we've handled conversions
2739 before dropping the result to VR_VARYING if we had a source
2740 operand that is VR_VARYING. */
2741 if (vr0.type == VR_VARYING)
2742 {
2743 set_value_range_to_varying (vr);
2744 return;
2745 }
2746
0bca51f0
DN
2747 /* Apply the operation to each end of the range and see what we end
2748 up with. */
227858d1 2749 if (code == NEGATE_EXPR
2d3cd5d5 2750 && !TYPE_UNSIGNED (type))
227858d1 2751 {
96b2034b 2752 /* NEGATE_EXPR flips the range around. We need to treat
12df8a7e
ILT
2753 TYPE_MIN_VALUE specially. */
2754 if (is_positive_overflow_infinity (vr0.max))
2d3cd5d5 2755 min = negative_overflow_infinity (type);
12df8a7e 2756 else if (is_negative_overflow_infinity (vr0.max))
2d3cd5d5 2757 min = positive_overflow_infinity (type);
e1f28918 2758 else if (!vrp_val_is_min (vr0.max))
2d3cd5d5
RAE
2759 min = fold_unary_to_constant (code, type, vr0.max);
2760 else if (needs_overflow_infinity (type))
12df8a7e 2761 {
2d3cd5d5 2762 if (supports_overflow_infinity (type)
8cf781f0 2763 && !is_overflow_infinity (vr0.min)
e1f28918 2764 && !vrp_val_is_min (vr0.min))
2d3cd5d5 2765 min = positive_overflow_infinity (type);
12df8a7e
ILT
2766 else
2767 {
2768 set_value_range_to_varying (vr);
2769 return;
2770 }
2771 }
2772 else
2d3cd5d5 2773 min = TYPE_MIN_VALUE (type);
12df8a7e
ILT
2774
2775 if (is_positive_overflow_infinity (vr0.min))
2d3cd5d5 2776 max = negative_overflow_infinity (type);
12df8a7e 2777 else if (is_negative_overflow_infinity (vr0.min))
2d3cd5d5 2778 max = positive_overflow_infinity (type);
e1f28918 2779 else if (!vrp_val_is_min (vr0.min))
2d3cd5d5
RAE
2780 max = fold_unary_to_constant (code, type, vr0.min);
2781 else if (needs_overflow_infinity (type))
12df8a7e 2782 {
2d3cd5d5
RAE
2783 if (supports_overflow_infinity (type))
2784 max = positive_overflow_infinity (type);
12df8a7e
ILT
2785 else
2786 {
2787 set_value_range_to_varying (vr);
2788 return;
2789 }
2790 }
2791 else
2d3cd5d5 2792 max = TYPE_MIN_VALUE (type);
c1a70a3c
RS
2793 }
2794 else if (code == NEGATE_EXPR
2d3cd5d5 2795 && TYPE_UNSIGNED (type))
c1a70a3c
RS
2796 {
2797 if (!range_includes_zero_p (&vr0))
2798 {
2d3cd5d5
RAE
2799 max = fold_unary_to_constant (code, type, vr0.min);
2800 min = fold_unary_to_constant (code, type, vr0.max);
c1a70a3c
RS
2801 }
2802 else
2803 {
2804 if (range_is_null (&vr0))
2d3cd5d5 2805 set_value_range_to_null (vr, type);
c1a70a3c
RS
2806 else
2807 set_value_range_to_varying (vr);
2808 return;
2809 }
227858d1
DN
2810 }
2811 else if (code == ABS_EXPR
2d3cd5d5 2812 && !TYPE_UNSIGNED (type))
227858d1 2813 {
ff08cbee
JM
2814 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2815 useful range. */
2d3cd5d5 2816 if (!TYPE_OVERFLOW_UNDEFINED (type)
ff08cbee 2817 && ((vr0.type == VR_RANGE
e1f28918 2818 && vrp_val_is_min (vr0.min))
ff08cbee 2819 || (vr0.type == VR_ANTI_RANGE
e1f28918 2820 && !vrp_val_is_min (vr0.min)
ff08cbee
JM
2821 && !range_includes_zero_p (&vr0))))
2822 {
2823 set_value_range_to_varying (vr);
2824 return;
2825 }
2826
227858d1
DN
2827 /* ABS_EXPR may flip the range around, if the original range
2828 included negative values. */
12df8a7e 2829 if (is_overflow_infinity (vr0.min))
2d3cd5d5 2830 min = positive_overflow_infinity (type);
e1f28918 2831 else if (!vrp_val_is_min (vr0.min))
2d3cd5d5
RAE
2832 min = fold_unary_to_constant (code, type, vr0.min);
2833 else if (!needs_overflow_infinity (type))
2834 min = TYPE_MAX_VALUE (type);
2835 else if (supports_overflow_infinity (type))
2836 min = positive_overflow_infinity (type);
12df8a7e
ILT
2837 else
2838 {
2839 set_value_range_to_varying (vr);
2840 return;
2841 }
227858d1 2842
12df8a7e 2843 if (is_overflow_infinity (vr0.max))
2d3cd5d5 2844 max = positive_overflow_infinity (type);
e1f28918 2845 else if (!vrp_val_is_min (vr0.max))
2d3cd5d5
RAE
2846 max = fold_unary_to_constant (code, type, vr0.max);
2847 else if (!needs_overflow_infinity (type))
2848 max = TYPE_MAX_VALUE (type);
d3cbd7de
RG
2849 else if (supports_overflow_infinity (type)
2850 /* We shouldn't generate [+INF, +INF] as set_value_range
2851 doesn't like this and ICEs. */
2852 && !is_positive_overflow_infinity (min))
2d3cd5d5 2853 max = positive_overflow_infinity (type);
12df8a7e
ILT
2854 else
2855 {
2856 set_value_range_to_varying (vr);
2857 return;
2858 }
227858d1 2859
ff08cbee
JM
2860 cmp = compare_values (min, max);
2861
2862 /* If a VR_ANTI_RANGEs contains zero, then we have
2863 ~[-INF, min(MIN, MAX)]. */
2864 if (vr0.type == VR_ANTI_RANGE)
2865 {
2866 if (range_includes_zero_p (&vr0))
2867 {
ff08cbee
JM
2868 /* Take the lower of the two values. */
2869 if (cmp != 1)
2870 max = min;
2871
2872 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2873 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2874 flag_wrapv is set and the original anti-range doesn't include
2875 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2d3cd5d5 2876 if (TYPE_OVERFLOW_WRAPS (type))
12df8a7e 2877 {
2d3cd5d5 2878 tree type_min_value = TYPE_MIN_VALUE (type);
12df8a7e
ILT
2879
2880 min = (vr0.min != type_min_value
2881 ? int_const_binop (PLUS_EXPR, type_min_value,
2882 integer_one_node, 0)
2883 : type_min_value);
2884 }
2885 else
2886 {
2887 if (overflow_infinity_range_p (&vr0))
2d3cd5d5 2888 min = negative_overflow_infinity (type);
12df8a7e 2889 else
2d3cd5d5 2890 min = TYPE_MIN_VALUE (type);
12df8a7e 2891 }
ff08cbee
JM
2892 }
2893 else
2894 {
2895 /* All else has failed, so create the range [0, INF], even for
2896 flag_wrapv since TYPE_MIN_VALUE is in the original
2897 anti-range. */
2898 vr0.type = VR_RANGE;
2d3cd5d5
RAE
2899 min = build_int_cst (type, 0);
2900 if (needs_overflow_infinity (type))
12df8a7e 2901 {
2d3cd5d5
RAE
2902 if (supports_overflow_infinity (type))
2903 max = positive_overflow_infinity (type);
12df8a7e
ILT
2904 else
2905 {
2906 set_value_range_to_varying (vr);
2907 return;
2908 }
2909 }
2910 else
2d3cd5d5 2911 max = TYPE_MAX_VALUE (type);
ff08cbee
JM
2912 }
2913 }
2914
2915 /* If the range contains zero then we know that the minimum value in the
2916 range will be zero. */
2917 else if (range_includes_zero_p (&vr0))
2918 {
2919 if (cmp == 1)
2920 max = min;
2d3cd5d5 2921 min = build_int_cst (type, 0);
ff08cbee
JM
2922 }
2923 else
227858d1 2924 {
ff08cbee
JM
2925 /* If the range was reversed, swap MIN and MAX. */
2926 if (cmp == 1)
2927 {
2928 tree t = min;
2929 min = max;
2930 max = t;
2931 }
227858d1
DN
2932 }
2933 }
2934 else
2935 {
2936 /* Otherwise, operate on each end of the range. */
2d3cd5d5
RAE
2937 min = fold_unary_to_constant (code, type, vr0.min);
2938 max = fold_unary_to_constant (code, type, vr0.max);
12df8a7e 2939
2d3cd5d5 2940 if (needs_overflow_infinity (type))
12df8a7e
ILT
2941 {
2942 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
8cf781f0
ILT
2943
2944 /* If both sides have overflowed, we don't know
2945 anything. */
2946 if ((is_overflow_infinity (vr0.min)
2947 || TREE_OVERFLOW (min))
2948 && (is_overflow_infinity (vr0.max)
2949 || TREE_OVERFLOW (max)))
2950 {
2951 set_value_range_to_varying (vr);
2952 return;
2953 }
2954
12df8a7e
ILT
2955 if (is_overflow_infinity (vr0.min))
2956 min = vr0.min;
2957 else if (TREE_OVERFLOW (min))
2958 {
2d3cd5d5 2959 if (supports_overflow_infinity (type))
12df8a7e
ILT
2960 min = (tree_int_cst_sgn (min) >= 0
2961 ? positive_overflow_infinity (TREE_TYPE (min))
2962 : negative_overflow_infinity (TREE_TYPE (min)));
2963 else
2964 {
2965 set_value_range_to_varying (vr);
2966 return;
2967 }
2968 }
2969
2970 if (is_overflow_infinity (vr0.max))
2971 max = vr0.max;
2972 else if (TREE_OVERFLOW (max))
2973 {
2d3cd5d5 2974 if (supports_overflow_infinity (type))
12df8a7e
ILT
2975 max = (tree_int_cst_sgn (max) >= 0
2976 ? positive_overflow_infinity (TREE_TYPE (max))
2977 : negative_overflow_infinity (TREE_TYPE (max)));
2978 else
2979 {
2980 set_value_range_to_varying (vr);
2981 return;
2982 }
2983 }
2984 }
227858d1 2985 }
0bca51f0
DN
2986
2987 cmp = compare_values (min, max);
2988 if (cmp == -2 || cmp == 1)
2989 {
2990 /* If the new range has its limits swapped around (MIN > MAX),
2991 then the operation caused one of them to wrap around, mark
2992 the new range VARYING. */
b565d777 2993 set_value_range_to_varying (vr);
0bca51f0
DN
2994 }
2995 else
227858d1
DN
2996 set_value_range (vr, vr0.type, min, max, NULL);
2997}
2998
2999
f255541f
RC
3000/* Extract range information from a conditional expression EXPR based on
3001 the ranges of each of its operands and the expression code. */
3002
3003static void
3004extract_range_from_cond_expr (value_range_t *vr, tree expr)
3005{
3006 tree op0, op1;
3007 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3008 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3009
3010 /* Get value ranges for each operand. For constant operands, create
3011 a new value range with the operand to simplify processing. */
3012 op0 = COND_EXPR_THEN (expr);
3013 if (TREE_CODE (op0) == SSA_NAME)
3014 vr0 = *(get_value_range (op0));
3015 else if (is_gimple_min_invariant (op0))
b60b4711 3016 set_value_range_to_value (&vr0, op0, NULL);
f255541f
RC
3017 else
3018 set_value_range_to_varying (&vr0);
3019
3020 op1 = COND_EXPR_ELSE (expr);
3021 if (TREE_CODE (op1) == SSA_NAME)
3022 vr1 = *(get_value_range (op1));
3023 else if (is_gimple_min_invariant (op1))
b60b4711 3024 set_value_range_to_value (&vr1, op1, NULL);
f255541f
RC
3025 else
3026 set_value_range_to_varying (&vr1);
3027
3028 /* The resulting value range is the union of the operand ranges */
3029 vrp_meet (&vr0, &vr1);
3030 copy_value_range (vr, &vr0);
3031}
3032
3033
227858d1
DN
3034/* Extract range information from a comparison expression EXPR based
3035 on the range of its operand and the expression code. */
3036
3037static void
2d3cd5d5
RAE
3038extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3039 tree type, tree op0, tree op1)
227858d1 3040{
12df8a7e 3041 bool sop = false;
726a989a
RB
3042 tree val;
3043
6b99f156
JH
3044 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3045 NULL);
12df8a7e
ILT
3046
3047 /* A disadvantage of using a special infinity as an overflow
3048 representation is that we lose the ability to record overflow
3049 when we don't have an infinity. So we have to ignore a result
3050 which relies on overflow. */
3051
3052 if (val && !is_overflow_infinity (val) && !sop)
227858d1
DN
3053 {
3054 /* Since this expression was found on the RHS of an assignment,
3055 its type may be different from _Bool. Convert VAL to EXPR's
3056 type. */
2d3cd5d5 3057 val = fold_convert (type, val);
b60b4711
ILT
3058 if (is_gimple_min_invariant (val))
3059 set_value_range_to_value (vr, val, vr->equiv);
3060 else
3061 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
227858d1
DN
3062 }
3063 else
31ab1cc9 3064 /* The result of a comparison is always true or false. */
2d3cd5d5 3065 set_value_range_to_truthvalue (vr, type);
0bca51f0
DN
3066}
3067
726a989a
RB
3068/* Try to derive a nonnegative or nonzero range out of STMT relying
3069 primarily on generic routines in fold in conjunction with range data.
3070 Store the result in *VR */
0bca51f0 3071
726a989a
RB
3072static void
3073extract_range_basic (value_range_t *vr, gimple stmt)
3074{
3075 bool sop = false;
3076 tree type = gimple_expr_type (stmt);
3077
3078 if (INTEGRAL_TYPE_P (type)
3079 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3080 set_value_range_to_nonnegative (vr, type,
3081 sop || stmt_overflow_infinity (stmt));
3082 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3083 && !sop)
3084 set_value_range_to_nonnull (vr, type);
3085 else
3086 set_value_range_to_varying (vr);
3087}
3088
3089
3090/* Try to compute a useful range out of assignment STMT and store it
227858d1 3091 in *VR. */
0bca51f0
DN
3092
3093static void
726a989a 3094extract_range_from_assignment (value_range_t *vr, gimple stmt)
0bca51f0 3095{
726a989a 3096 enum tree_code code = gimple_assign_rhs_code (stmt);
0bca51f0
DN
3097
3098 if (code == ASSERT_EXPR)
726a989a 3099 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
0bca51f0 3100 else if (code == SSA_NAME)
726a989a 3101 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
227858d1 3102 else if (TREE_CODE_CLASS (code) == tcc_binary
227858d1
DN
3103 || code == TRUTH_AND_EXPR
3104 || code == TRUTH_OR_EXPR
3105 || code == TRUTH_XOR_EXPR)
726a989a
RB
3106 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3107 gimple_expr_type (stmt),
3108 gimple_assign_rhs1 (stmt),
3109 gimple_assign_rhs2 (stmt));
0bca51f0 3110 else if (TREE_CODE_CLASS (code) == tcc_unary)
726a989a
RB
3111 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3112 gimple_expr_type (stmt),
3113 gimple_assign_rhs1 (stmt));
f255541f 3114 else if (code == COND_EXPR)
726a989a 3115 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
227858d1 3116 else if (TREE_CODE_CLASS (code) == tcc_comparison)
726a989a
RB
3117 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3118 gimple_expr_type (stmt),
3119 gimple_assign_rhs1 (stmt),
3120 gimple_assign_rhs2 (stmt));
3121 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3122 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3123 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
0bca51f0 3124 else
b565d777 3125 set_value_range_to_varying (vr);
b16caf72 3126
b16caf72 3127 if (vr->type == VR_VARYING)
726a989a 3128 extract_range_basic (vr, stmt);
0bca51f0
DN
3129}
3130
1e8552eb 3131/* Given a range VR, a LOOP and a variable VAR, determine whether it
0bca51f0
DN
3132 would be profitable to adjust VR using scalar evolution information
3133 for VAR. If so, update VR with the new limits. */
3134
3135static void
726a989a
RB
3136adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3137 gimple stmt, tree var)
0bca51f0 3138{
20527215 3139 tree init, step, chrec, tmin, tmax, min, max, type;
d7f5de76 3140 enum ev_direction dir;
0bca51f0
DN
3141
3142 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3143 better opportunities than a regular range, but I'm not sure. */
3144 if (vr->type == VR_ANTI_RANGE)
3145 return;
3146
d7770457 3147 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
6f1c9cd0
SP
3148
3149 /* Like in PR19590, scev can return a constant function. */
3150 if (is_gimple_min_invariant (chrec))
3151 {
cdc64612 3152 set_value_range_to_value (vr, chrec, vr->equiv);
6f1c9cd0
SP
3153 return;
3154 }
3155
0bca51f0
DN
3156 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3157 return;
3158
d7770457
SP
3159 init = initial_condition_in_loop_num (chrec, loop->num);
3160 step = evolution_part_in_loop_num (chrec, loop->num);
0bca51f0
DN
3161
3162 /* If STEP is symbolic, we can't know whether INIT will be the
04dce5a4
ZD
3163 minimum or maximum value in the range. Also, unless INIT is
3164 a simple expression, compare_values and possibly other functions
3165 in tree-vrp won't be able to handle it. */
d7770457 3166 if (step == NULL_TREE
04dce5a4
ZD
3167 || !is_gimple_min_invariant (step)
3168 || !valid_value_p (init))
0bca51f0
DN
3169 return;
3170
d7f5de76
ZD
3171 dir = scev_direction (chrec);
3172 if (/* Do not adjust ranges if we do not know whether the iv increases
3173 or decreases, ... */
3174 dir == EV_DIR_UNKNOWN
3175 /* ... or if it may wrap. */
42fd6772 3176 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
d7f5de76 3177 true))
227858d1
DN
3178 return;
3179
12df8a7e
ILT
3180 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3181 negative_overflow_infinity and positive_overflow_infinity,
3182 because we have concluded that the loop probably does not
3183 wrap. */
3184
20527215
ZD
3185 type = TREE_TYPE (var);
3186 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3187 tmin = lower_bound_in_type (type, type);
3188 else
3189 tmin = TYPE_MIN_VALUE (type);
3190 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3191 tmax = upper_bound_in_type (type, type);
3192 else
3193 tmax = TYPE_MAX_VALUE (type);
3194
3195 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
0bca51f0 3196 {
20527215
ZD
3197 min = tmin;
3198 max = tmax;
3199
0bca51f0
DN
3200 /* For VARYING or UNDEFINED ranges, just about anything we get
3201 from scalar evolutions should be better. */
4f67dfcf 3202
d7f5de76 3203 if (dir == EV_DIR_DECREASES)
4f67dfcf 3204 max = init;
0bca51f0 3205 else
4f67dfcf
JL
3206 min = init;
3207
3208 /* If we would create an invalid range, then just assume we
3209 know absolutely nothing. This may be over-conservative,
20527215
ZD
3210 but it's clearly safe, and should happen only in unreachable
3211 parts of code, or for invalid programs. */
4f67dfcf
JL
3212 if (compare_values (min, max) == 1)
3213 return;
3214
3215 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
0bca51f0
DN
3216 }
3217 else if (vr->type == VR_RANGE)
3218 {
20527215
ZD
3219 min = vr->min;
3220 max = vr->max;
d5448566 3221
d7f5de76 3222 if (dir == EV_DIR_DECREASES)
0bca51f0 3223 {
d5448566
KH
3224 /* INIT is the maximum value. If INIT is lower than VR->MAX
3225 but no smaller than VR->MIN, set VR->MAX to INIT. */
3226 if (compare_values (init, max) == -1)
3227 {
3228 max = init;
3229
3230 /* If we just created an invalid range with the minimum
20527215
ZD
3231 greater than the maximum, we fail conservatively.
3232 This should happen only in unreachable
3233 parts of code, or for invalid programs. */
d5448566 3234 if (compare_values (min, max) == 1)
20527215 3235 return;
d5448566 3236 }
9a46cc16
ILT
3237
3238 /* According to the loop information, the variable does not
3239 overflow. If we think it does, probably because of an
3240 overflow due to arithmetic on a different INF value,
3241 reset now. */
3242 if (is_negative_overflow_infinity (min))
3243 min = tmin;
0bca51f0
DN
3244 }
3245 else
3246 {
3247 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
d5448566
KH
3248 if (compare_values (init, min) == 1)
3249 {
3250 min = init;
3251
20527215 3252 /* Again, avoid creating invalid range by failing. */
d5448566 3253 if (compare_values (min, max) == 1)
20527215 3254 return;
d5448566 3255 }
9a46cc16
ILT
3256
3257 if (is_positive_overflow_infinity (max))
3258 max = tmax;
0bca51f0 3259 }
d5448566 3260
227858d1 3261 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
0bca51f0
DN
3262 }
3263}
3264
9a46cc16
ILT
3265/* Return true if VAR may overflow at STMT. This checks any available
3266 loop information to see if we can determine that VAR does not
3267 overflow. */
3268
3269static bool
726a989a 3270vrp_var_may_overflow (tree var, gimple stmt)
9a46cc16
ILT
3271{
3272 struct loop *l;
3273 tree chrec, init, step;
3274
3275 if (current_loops == NULL)
3276 return true;
3277
3278 l = loop_containing_stmt (stmt);
3279 if (l == NULL)
3280 return true;
3281
3282 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3283 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3284 return true;
3285
3286 init = initial_condition_in_loop_num (chrec, l->num);
3287 step = evolution_part_in_loop_num (chrec, l->num);
3288
3289 if (step == NULL_TREE
3290 || !is_gimple_min_invariant (step)
3291 || !valid_value_p (init))
3292 return true;
3293
3294 /* If we get here, we know something useful about VAR based on the
3295 loop information. If it wraps, it may overflow. */
3296
3297 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3298 true))
3299 return true;
3300
3301 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3302 {
3303 print_generic_expr (dump_file, var, 0);
3304 fprintf (dump_file, ": loop information indicates does not overflow\n");
3305 }
3306
3307 return false;
3308}
3309
0bca51f0
DN
3310
3311/* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3312
227858d1
DN
3313 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3314 all the values in the ranges.
0bca51f0
DN
3315
3316 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3317
227858d1 3318 - Return NULL_TREE if it is not always possible to determine the
12df8a7e
ILT
3319 value of the comparison.
3320
3321 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3322 overflow infinity was used in the test. */
227858d1 3323
0bca51f0
DN
3324
3325static tree
12df8a7e
ILT
3326compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3327 bool *strict_overflow_p)
0bca51f0
DN
3328{
3329 /* VARYING or UNDEFINED ranges cannot be compared. */
3330 if (vr0->type == VR_VARYING
3331 || vr0->type == VR_UNDEFINED
3332 || vr1->type == VR_VARYING
3333 || vr1->type == VR_UNDEFINED)
3334 return NULL_TREE;
3335
3336 /* Anti-ranges need to be handled separately. */
3337 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3338 {
3339 /* If both are anti-ranges, then we cannot compute any
3340 comparison. */
3341 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3342 return NULL_TREE;
3343
3344 /* These comparisons are never statically computable. */
3345 if (comp == GT_EXPR
3346 || comp == GE_EXPR
3347 || comp == LT_EXPR
3348 || comp == LE_EXPR)
3349 return NULL_TREE;
3350
3351 /* Equality can be computed only between a range and an
3352 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3353 if (vr0->type == VR_RANGE)
3354 {
3355 /* To simplify processing, make VR0 the anti-range. */
227858d1 3356 value_range_t *tmp = vr0;
0bca51f0
DN
3357 vr0 = vr1;
3358 vr1 = tmp;
3359 }
3360
3361 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3362
12df8a7e
ILT
3363 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3364 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
0bca51f0
DN
3365 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3366
3367 return NULL_TREE;
3368 }
3369
0c948c27
ILT
3370 if (!usable_range_p (vr0, strict_overflow_p)
3371 || !usable_range_p (vr1, strict_overflow_p))
3372 return NULL_TREE;
3373
0bca51f0
DN
3374 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3375 operands around and change the comparison code. */
3376 if (comp == GT_EXPR || comp == GE_EXPR)
3377 {
227858d1 3378 value_range_t *tmp;
0bca51f0
DN
3379 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3380 tmp = vr0;
3381 vr0 = vr1;
3382 vr1 = tmp;
3383 }
3384
3385 if (comp == EQ_EXPR)
3386 {
3387 /* Equality may only be computed if both ranges represent
3388 exactly one value. */
12df8a7e
ILT
3389 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3390 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
0bca51f0 3391 {
12df8a7e
ILT
3392 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3393 strict_overflow_p);
3394 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3395 strict_overflow_p);
0bca51f0
DN
3396 if (cmp_min == 0 && cmp_max == 0)
3397 return boolean_true_node;
3398 else if (cmp_min != -2 && cmp_max != -2)
3399 return boolean_false_node;
3400 }
7ab1122a 3401 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
12df8a7e
ILT
3402 else if (compare_values_warnv (vr0->min, vr1->max,
3403 strict_overflow_p) == 1
3404 || compare_values_warnv (vr1->min, vr0->max,
3405 strict_overflow_p) == 1)
7ab1122a 3406 return boolean_false_node;
0bca51f0
DN
3407
3408 return NULL_TREE;
3409 }
3410 else if (comp == NE_EXPR)
3411 {
3412 int cmp1, cmp2;
3413
3414 /* If VR0 is completely to the left or completely to the right
3415 of VR1, they are always different. Notice that we need to
3416 make sure that both comparisons yield similar results to
3417 avoid comparing values that cannot be compared at
3418 compile-time. */
12df8a7e
ILT
3419 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3420 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
0bca51f0
DN
3421 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3422 return boolean_true_node;
3423
3424 /* If VR0 and VR1 represent a single value and are identical,
3425 return false. */
12df8a7e
ILT
3426 else if (compare_values_warnv (vr0->min, vr0->max,
3427 strict_overflow_p) == 0
3428 && compare_values_warnv (vr1->min, vr1->max,
3429 strict_overflow_p) == 0
3430 && compare_values_warnv (vr0->min, vr1->min,
3431 strict_overflow_p) == 0
3432 && compare_values_warnv (vr0->max, vr1->max,
3433 strict_overflow_p) == 0)
0bca51f0
DN
3434 return boolean_false_node;
3435
3436 /* Otherwise, they may or may not be different. */
3437 else
3438 return NULL_TREE;
3439 }
3440 else if (comp == LT_EXPR || comp == LE_EXPR)
3441 {
3442 int tst;
3443
3444 /* If VR0 is to the left of VR1, return true. */
12df8a7e 3445 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
0bca51f0
DN
3446 if ((comp == LT_EXPR && tst == -1)
3447 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
12df8a7e
ILT
3448 {
3449 if (overflow_infinity_range_p (vr0)
3450 || overflow_infinity_range_p (vr1))
3451 *strict_overflow_p = true;
3452 return boolean_true_node;
3453 }
0bca51f0
DN
3454
3455 /* If VR0 is to the right of VR1, return false. */
12df8a7e 3456 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
0bca51f0
DN
3457 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3458 || (comp == LE_EXPR && tst == 1))
12df8a7e
ILT
3459 {
3460 if (overflow_infinity_range_p (vr0)
3461 || overflow_infinity_range_p (vr1))
3462 *strict_overflow_p = true;
3463 return boolean_false_node;
3464 }
0bca51f0
DN
3465
3466 /* Otherwise, we don't know. */
3467 return NULL_TREE;
3468 }
3469
3470 gcc_unreachable ();
3471}
3472
3473
3474/* Given a value range VR, a value VAL and a comparison code COMP, return
227858d1 3475 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
0bca51f0
DN
3476 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3477 always returns false. Return NULL_TREE if it is not always
12df8a7e
ILT
3478 possible to determine the value of the comparison. Also set
3479 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3480 infinity was used in the test. */
0bca51f0
DN
3481
3482static tree
12df8a7e
ILT
3483compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3484 bool *strict_overflow_p)
0bca51f0
DN
3485{
3486 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3487 return NULL_TREE;
3488
3489 /* Anti-ranges need to be handled separately. */
3490 if (vr->type == VR_ANTI_RANGE)
3491 {
3492 /* For anti-ranges, the only predicates that we can compute at
3493 compile time are equality and inequality. */
3494 if (comp == GT_EXPR
3495 || comp == GE_EXPR
3496 || comp == LT_EXPR
3497 || comp == LE_EXPR)
3498 return NULL_TREE;
3499
d2f3ffba
JM
3500 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3501 if (value_inside_range (val, vr) == 1)
0bca51f0
DN
3502 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3503
3504 return NULL_TREE;
3505 }
3506
0c948c27
ILT
3507 if (!usable_range_p (vr, strict_overflow_p))
3508 return NULL_TREE;
3509
0bca51f0
DN
3510 if (comp == EQ_EXPR)
3511 {
3512 /* EQ_EXPR may only be computed if VR represents exactly
3513 one value. */
12df8a7e 3514 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
0bca51f0 3515 {
12df8a7e 3516 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
0bca51f0
DN
3517 if (cmp == 0)
3518 return boolean_true_node;
3519 else if (cmp == -1 || cmp == 1 || cmp == 2)
3520 return boolean_false_node;
3521 }
12df8a7e
ILT
3522 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3523 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
5de2df7b 3524 return boolean_false_node;
0bca51f0
DN
3525
3526 return NULL_TREE;
3527 }
3528 else if (comp == NE_EXPR)
3529 {
3530 /* If VAL is not inside VR, then they are always different. */
12df8a7e
ILT
3531 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3532 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
0bca51f0
DN
3533 return boolean_true_node;
3534
3535 /* If VR represents exactly one value equal to VAL, then return
3536 false. */
12df8a7e
ILT
3537 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3538 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
0bca51f0
DN
3539 return boolean_false_node;
3540
3541 /* Otherwise, they may or may not be different. */
3542 return NULL_TREE;
3543 }
3544 else if (comp == LT_EXPR || comp == LE_EXPR)
3545 {
3546 int tst;
3547
3548 /* If VR is to the left of VAL, return true. */
12df8a7e 3549 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
0bca51f0
DN
3550 if ((comp == LT_EXPR && tst == -1)
3551 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
12df8a7e
ILT
3552 {
3553 if (overflow_infinity_range_p (vr))
3554 *strict_overflow_p = true;
3555 return boolean_true_node;
3556 }
0bca51f0
DN
3557
3558 /* If VR is to the right of VAL, return false. */
12df8a7e 3559 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
0bca51f0
DN
3560 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3561 || (comp == LE_EXPR && tst == 1))
12df8a7e
ILT
3562 {
3563 if (overflow_infinity_range_p (vr))
3564 *strict_overflow_p = true;
3565 return boolean_false_node;
3566 }
0bca51f0
DN
3567
3568 /* Otherwise, we don't know. */
3569 return NULL_TREE;
3570 }
3571 else if (comp == GT_EXPR || comp == GE_EXPR)
3572 {
3573 int tst;
3574
3575 /* If VR is to the right of VAL, return true. */
12df8a7e 3576 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
0bca51f0
DN
3577 if ((comp == GT_EXPR && tst == 1)
3578 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
12df8a7e
ILT
3579 {
3580 if (overflow_infinity_range_p (vr))
3581 *strict_overflow_p = true;
3582 return boolean_true_node;
3583 }
0bca51f0
DN
3584
3585 /* If VR is to the left of VAL, return false. */
12df8a7e 3586 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
0bca51f0
DN
3587 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3588 || (comp == GE_EXPR && tst == -1))
12df8a7e
ILT
3589 {
3590 if (overflow_infinity_range_p (vr))
3591 *strict_overflow_p = true;
3592 return boolean_false_node;
3593 }
0bca51f0
DN
3594
3595 /* Otherwise, we don't know. */
3596 return NULL_TREE;
3597 }
3598
3599 gcc_unreachable ();
3600}
3601
3602
3603/* Debugging dumps. */
3604
227858d1
DN
3605void dump_value_range (FILE *, value_range_t *);
3606void debug_value_range (value_range_t *);
3607void dump_all_value_ranges (FILE *);
3608void debug_all_value_ranges (void);
3609void dump_vr_equiv (FILE *, bitmap);
3610void debug_vr_equiv (bitmap);
3611
3612
3613/* Dump value range VR to FILE. */
3614
0bca51f0 3615void
227858d1 3616dump_value_range (FILE *file, value_range_t *vr)
0bca51f0
DN
3617{
3618 if (vr == NULL)
3619 fprintf (file, "[]");
3620 else if (vr->type == VR_UNDEFINED)
3621 fprintf (file, "UNDEFINED");
3622 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3623 {
227858d1
DN
3624 tree type = TREE_TYPE (vr->min);
3625
0bca51f0 3626 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
227858d1 3627
e1f28918 3628 if (is_negative_overflow_infinity (vr->min))
12df8a7e 3629 fprintf (file, "-INF(OVF)");
e1f28918
ILT
3630 else if (INTEGRAL_TYPE_P (type)
3631 && !TYPE_UNSIGNED (type)
3632 && vrp_val_is_min (vr->min))
3633 fprintf (file, "-INF");
227858d1
DN
3634 else
3635 print_generic_expr (file, vr->min, 0);
3636
0bca51f0 3637 fprintf (file, ", ");
227858d1 3638
e1f28918 3639 if (is_positive_overflow_infinity (vr->max))
12df8a7e 3640 fprintf (file, "+INF(OVF)");
e1f28918
ILT
3641 else if (INTEGRAL_TYPE_P (type)
3642 && vrp_val_is_max (vr->max))
3643 fprintf (file, "+INF");
227858d1
DN
3644 else
3645 print_generic_expr (file, vr->max, 0);
3646
0bca51f0 3647 fprintf (file, "]");
227858d1
DN
3648
3649 if (vr->equiv)
3650 {
3651 bitmap_iterator bi;
3652 unsigned i, c = 0;
3653
3654 fprintf (file, " EQUIVALENCES: { ");
3655
3656 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3657 {
3658 print_generic_expr (file, ssa_name (i), 0);
3659 fprintf (file, " ");
3660 c++;
3661 }
3662
3663 fprintf (file, "} (%u elements)", c);
3664 }
0bca51f0
DN
3665 }
3666 else if (vr->type == VR_VARYING)
3667 fprintf (file, "VARYING");
3668 else
3669 fprintf (file, "INVALID RANGE");
3670}
3671
3672
3673/* Dump value range VR to stderr. */
3674
3675void
227858d1 3676debug_value_range (value_range_t *vr)
0bca51f0
DN
3677{
3678 dump_value_range (stderr, vr);
96644aba 3679 fprintf (stderr, "\n");
0bca51f0
DN
3680}
3681
3682
3683/* Dump value ranges of all SSA_NAMEs to FILE. */
3684
3685void
3686dump_all_value_ranges (FILE *file)
3687{
3688 size_t i;
3689
3690 for (i = 0; i < num_ssa_names; i++)
3691 {
227858d1 3692 if (vr_value[i])
0bca51f0 3693 {
227858d1 3694 print_generic_expr (file, ssa_name (i), 0);
0bca51f0 3695 fprintf (file, ": ");
227858d1 3696 dump_value_range (file, vr_value[i]);
0bca51f0
DN
3697 fprintf (file, "\n");
3698 }
3699 }
3700
3701 fprintf (file, "\n");
3702}
3703
3704
3705/* Dump all value ranges to stderr. */
3706
3707void
3708debug_all_value_ranges (void)
3709{
3710 dump_all_value_ranges (stderr);
3711}
3712
3713
0bca51f0
DN
3714/* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3715 create a new SSA name N and return the assertion assignment
3716 'V = ASSERT_EXPR <V, V OP W>'. */
3717
726a989a 3718static gimple
0bca51f0
DN
3719build_assert_expr_for (tree cond, tree v)
3720{
726a989a
RB
3721 tree n;
3722 gimple assertion;
0bca51f0
DN
3723
3724 gcc_assert (TREE_CODE (v) == SSA_NAME);
726a989a 3725 n = duplicate_ssa_name (v, NULL);
0bca51f0 3726
7da4bf7d 3727 if (COMPARISON_CLASS_P (cond))
0bca51f0 3728 {
0d451405 3729 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
726a989a 3730 assertion = gimple_build_assign (n, a);
0bca51f0
DN
3731 }
3732 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3733 {
3734 /* Given !V, build the assignment N = false. */
3735 tree op0 = TREE_OPERAND (cond, 0);
3736 gcc_assert (op0 == v);
726a989a 3737 assertion = gimple_build_assign (n, boolean_false_node);
0bca51f0
DN
3738 }
3739 else if (TREE_CODE (cond) == SSA_NAME)
3740 {
3741 /* Given V, build the assignment N = true. */
3742 gcc_assert (v == cond);
726a989a 3743 assertion = gimple_build_assign (n, boolean_true_node);
0bca51f0
DN
3744 }
3745 else
3746 gcc_unreachable ();
3747
3748 SSA_NAME_DEF_STMT (n) = assertion;
3749
3750 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3751 operand of the ASSERT_EXPR. Register the new name and the old one
3752 in the replacement table so that we can fix the SSA web after
3753 adding all the ASSERT_EXPRs. */
3754 register_new_name_mapping (n, v);
3755
3756 return assertion;
3757}
3758
3759
3760/* Return false if EXPR is a predicate expression involving floating
3761 point values. */
3762
3763static inline bool
726a989a 3764fp_predicate (gimple stmt)
0bca51f0 3765{
726a989a
RB
3766 GIMPLE_CHECK (stmt, GIMPLE_COND);
3767
3768 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
0bca51f0
DN
3769}
3770
3771
227858d1
DN
3772/* If the range of values taken by OP can be inferred after STMT executes,
3773 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3774 describes the inferred range. Return true if a range could be
3775 inferred. */
0bca51f0 3776
227858d1 3777static bool
726a989a 3778infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
0bca51f0 3779{
227858d1
DN
3780 *val_p = NULL_TREE;
3781 *comp_code_p = ERROR_MARK;
3782
9fabf0d4
DN
3783 /* Do not attempt to infer anything in names that flow through
3784 abnormal edges. */
3785 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
227858d1
DN
3786 return false;
3787
3788 /* Similarly, don't infer anything from statements that may throw
3789 exceptions. */
726a989a 3790 if (stmt_could_throw_p (stmt))
227858d1 3791 return false;
9fabf0d4 3792
8c5285e1
DN
3793 /* If STMT is the last statement of a basic block with no
3794 successors, there is no point inferring anything about any of its
3795 operands. We would not be able to find a proper insertion point
3796 for the assertion, anyway. */
726a989a 3797 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
8c5285e1
DN
3798 return false;
3799
60c9ad46
JL
3800 /* We can only assume that a pointer dereference will yield
3801 non-NULL if -fdelete-null-pointer-checks is enabled. */
11522353
ILT
3802 if (flag_delete_null_pointer_checks
3803 && POINTER_TYPE_P (TREE_TYPE (op))
726a989a 3804 && gimple_code (stmt) != GIMPLE_ASM)
0bca51f0 3805 {
e9e0aa2c 3806 unsigned num_uses, num_loads, num_stores;
0bca51f0 3807
e9e0aa2c
DN
3808 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3809 if (num_loads + num_stores > 0)
0bca51f0 3810 {
227858d1
DN
3811 *val_p = build_int_cst (TREE_TYPE (op), 0);
3812 *comp_code_p = NE_EXPR;
3813 return true;
0bca51f0
DN
3814 }
3815 }
3816
227858d1 3817 return false;
0bca51f0
DN
3818}
3819
3820
227858d1
DN
3821void dump_asserts_for (FILE *, tree);
3822void debug_asserts_for (tree);
3823void dump_all_asserts (FILE *);
3824void debug_all_asserts (void);
3825
3826/* Dump all the registered assertions for NAME to FILE. */
3827
3828void
3829dump_asserts_for (FILE *file, tree name)
3830{
3831 assert_locus_t loc;
3832
3833 fprintf (file, "Assertions to be inserted for ");
3834 print_generic_expr (file, name, 0);
3835 fprintf (file, "\n");
3836
3837 loc = asserts_for[SSA_NAME_VERSION (name)];
3838 while (loc)
3839 {
3840 fprintf (file, "\t");
726a989a 3841 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
227858d1
DN
3842 fprintf (file, "\n\tBB #%d", loc->bb->index);
3843 if (loc->e)
3844 {
3845 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3846 loc->e->dest->index);
3847 dump_edge_info (file, loc->e, 0);
3848 }
3849 fprintf (file, "\n\tPREDICATE: ");
3850 print_generic_expr (file, name, 0);
3851 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3852 print_generic_expr (file, loc->val, 0);
3853 fprintf (file, "\n\n");
3854 loc = loc->next;
3855 }
3856
3857 fprintf (file, "\n");
3858}
3859
3860
3861/* Dump all the registered assertions for NAME to stderr. */
3862
3863void
3864debug_asserts_for (tree name)
3865{
3866 dump_asserts_for (stderr, name);
3867}
3868
3869
3870/* Dump all the registered assertions for all the names to FILE. */
3871
3872void
3873dump_all_asserts (FILE *file)
3874{
3875 unsigned i;
3876 bitmap_iterator bi;
3877
3878 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3879 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3880 dump_asserts_for (file, ssa_name (i));
3881 fprintf (file, "\n");
3882}
3883
3884
3885/* Dump all the registered assertions for all the names to stderr. */
3886
3887void
3888debug_all_asserts (void)
3889{
3890 dump_all_asserts (stderr);
3891}
3892
3893
3894/* If NAME doesn't have an ASSERT_EXPR registered for asserting
2ab8dbf4 3895 'EXPR COMP_CODE VAL' at a location that dominates block BB or
227858d1 3896 E->DEST, then register this location as a possible insertion point
2ab8dbf4 3897 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
227858d1
DN
3898
3899 BB, E and SI provide the exact insertion point for the new
3900 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3901 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3902 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3903 must not be NULL. */
3904
3905static void
2ab8dbf4 3906register_new_assert_for (tree name, tree expr,
227858d1
DN
3907 enum tree_code comp_code,
3908 tree val,
3909 basic_block bb,
3910 edge e,
726a989a 3911 gimple_stmt_iterator si)
227858d1
DN
3912{
3913 assert_locus_t n, loc, last_loc;
3914 bool found;
3915 basic_block dest_bb;
3916
3917#if defined ENABLE_CHECKING
3918 gcc_assert (bb == NULL || e == NULL);
3919
3920 if (e == NULL)
726a989a
RB
3921 gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
3922 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
227858d1
DN
3923#endif
3924
a1b969a0
RG
3925 /* Never build an assert comparing against an integer constant with
3926 TREE_OVERFLOW set. This confuses our undefined overflow warning
3927 machinery. */
3928 if (TREE_CODE (val) == INTEGER_CST
3929 && TREE_OVERFLOW (val))
3930 val = build_int_cst_wide (TREE_TYPE (val),
3931 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
3932
227858d1
DN
3933 /* The new assertion A will be inserted at BB or E. We need to
3934 determine if the new location is dominated by a previously
3935 registered location for A. If we are doing an edge insertion,
3936 assume that A will be inserted at E->DEST. Note that this is not
3937 necessarily true.
3938
3939 If E is a critical edge, it will be split. But even if E is
3940 split, the new block will dominate the same set of blocks that
3941 E->DEST dominates.
3942
3943 The reverse, however, is not true, blocks dominated by E->DEST
3944 will not be dominated by the new block created to split E. So,
3945 if the insertion location is on a critical edge, we will not use
3946 the new location to move another assertion previously registered
3947 at a block dominated by E->DEST. */
3948 dest_bb = (bb) ? bb : e->dest;
3949
3950 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3951 VAL at a block dominating DEST_BB, then we don't need to insert a new
3952 one. Similarly, if the same assertion already exists at a block
3953 dominated by DEST_BB and the new location is not on a critical
3954 edge, then update the existing location for the assertion (i.e.,
3955 move the assertion up in the dominance tree).
3956
3957 Note, this is implemented as a simple linked list because there
3958 should not be more than a handful of assertions registered per
3959 name. If this becomes a performance problem, a table hashed by
3960 COMP_CODE and VAL could be implemented. */
3961 loc = asserts_for[SSA_NAME_VERSION (name)];
3962 last_loc = loc;
3963 found = false;
3964 while (loc)
3965 {
3966 if (loc->comp_code == comp_code
3967 && (loc->val == val
2ab8dbf4
RG
3968 || operand_equal_p (loc->val, val, 0))
3969 && (loc->expr == expr
3970 || operand_equal_p (loc->expr, expr, 0)))
227858d1
DN
3971 {
3972 /* If the assertion NAME COMP_CODE VAL has already been
3973 registered at a basic block that dominates DEST_BB, then
3974 we don't need to insert the same assertion again. Note
3975 that we don't check strict dominance here to avoid
3976 replicating the same assertion inside the same basic
3977 block more than once (e.g., when a pointer is
3978 dereferenced several times inside a block).
3979
3980 An exception to this rule are edge insertions. If the
3981 new assertion is to be inserted on edge E, then it will
3982 dominate all the other insertions that we may want to
3983 insert in DEST_BB. So, if we are doing an edge
3984 insertion, don't do this dominance check. */
3985 if (e == NULL
3986 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3987 return;
3988
3989 /* Otherwise, if E is not a critical edge and DEST_BB
3990 dominates the existing location for the assertion, move
3991 the assertion up in the dominance tree by updating its
3992 location information. */
3993 if ((e == NULL || !EDGE_CRITICAL_P (e))
3994 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3995 {
3996 loc->bb = dest_bb;
3997 loc->e = e;
3998 loc->si = si;
3999 return;
4000 }
4001 }
4002
4003 /* Update the last node of the list and move to the next one. */
4004 last_loc = loc;
4005 loc = loc->next;
4006 }
4007
4008 /* If we didn't find an assertion already registered for
4009 NAME COMP_CODE VAL, add a new one at the end of the list of
4010 assertions associated with NAME. */
5ed6ace5 4011 n = XNEW (struct assert_locus_d);
227858d1
DN
4012 n->bb = dest_bb;
4013 n->e = e;
4014 n->si = si;
4015 n->comp_code = comp_code;
4016 n->val = val;
2ab8dbf4 4017 n->expr = expr;
227858d1
DN
4018 n->next = NULL;
4019
4020 if (last_loc)
4021 last_loc->next = n;
4022 else
4023 asserts_for[SSA_NAME_VERSION (name)] = n;
4024
4025 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4026}
4027
a26a02d7
RAE
4028/* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4029 Extract a suitable test code and value and store them into *CODE_P and
4030 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4031
4032 If no extraction was possible, return FALSE, otherwise return TRUE.
4033
4034 If INVERT is true, then we invert the result stored into *CODE_P. */
764a79ed
RAE
4035
4036static bool
4037extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4038 tree cond_op0, tree cond_op1,
4039 bool invert, enum tree_code *code_p,
4040 tree *val_p)
4041{
4042 enum tree_code comp_code;
4043 tree val;
4044
4045 /* Otherwise, we have a comparison of the form NAME COMP VAL
4046 or VAL COMP NAME. */
4047 if (name == cond_op1)
4048 {
4049 /* If the predicate is of the form VAL COMP NAME, flip
4050 COMP around because we need to register NAME as the
4051 first operand in the predicate. */
4052 comp_code = swap_tree_comparison (cond_code);
4053 val = cond_op0;
4054 }
4055 else
4056 {
4057 /* The comparison is of the form NAME COMP VAL, so the
4058 comparison code remains unchanged. */
4059 comp_code = cond_code;
4060 val = cond_op1;
4061 }
4062
4063 /* Invert the comparison code as necessary. */
4064 if (invert)
4065 comp_code = invert_tree_comparison (comp_code, 0);
4066
4067 /* VRP does not handle float types. */
4068 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4069 return false;
4070
4071 /* Do not register always-false predicates.
4072 FIXME: this works around a limitation in fold() when dealing with
4073 enumerations. Given 'enum { N1, N2 } x;', fold will not
4074 fold 'if (x > N2)' to 'if (0)'. */
4075 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4076 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4077 {
4078 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4079 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4080
4081 if (comp_code == GT_EXPR
4082 && (!max
4083 || compare_values (val, max) == 0))
4084 return false;
4085
4086 if (comp_code == LT_EXPR
4087 && (!min
4088 || compare_values (val, min) == 0))
4089 return false;
4090 }
4091 *code_p = comp_code;
4092 *val_p = val;
4093 return true;
4094}
279f3eb5 4095
2ab8dbf4
RG
4096/* Try to register an edge assertion for SSA name NAME on edge E for
4097 the condition COND contributing to the conditional jump pointed to by BSI.
4098 Invert the condition COND if INVERT is true.
4099 Return true if an assertion for NAME could be registered. */
4100
4101static bool
726a989a 4102register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
a26a02d7
RAE
4103 enum tree_code cond_code,
4104 tree cond_op0, tree cond_op1, bool invert)
2ab8dbf4
RG
4105{
4106 tree val;
4107 enum tree_code comp_code;
4108 bool retval = false;
4109
a26a02d7
RAE
4110 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4111 cond_op0,
4112 cond_op1,
4113 invert, &comp_code, &val))
2ab8dbf4
RG
4114 return false;
4115
4116 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4117 reachable from E. */
c4ab2baa 4118 if (live_on_edge (e, name)
2ab8dbf4
RG
4119 && !has_single_use (name))
4120 {
4121 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4122 retval = true;
4123 }
4124
4125 /* In the case of NAME <= CST and NAME being defined as
4126 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4127 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4128 This catches range and anti-range tests. */
4129 if ((comp_code == LE_EXPR
4130 || comp_code == GT_EXPR)
4131 && TREE_CODE (val) == INTEGER_CST
4132 && TYPE_UNSIGNED (TREE_TYPE (val)))
4133 {
726a989a 4134 gimple def_stmt = SSA_NAME_DEF_STMT (name);
70b7b037 4135 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
2ab8dbf4
RG
4136
4137 /* Extract CST2 from the (optional) addition. */
726a989a
RB
4138 if (is_gimple_assign (def_stmt)
4139 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
2ab8dbf4 4140 {
726a989a
RB
4141 name2 = gimple_assign_rhs1 (def_stmt);
4142 cst2 = gimple_assign_rhs2 (def_stmt);
2ab8dbf4
RG
4143 if (TREE_CODE (name2) == SSA_NAME
4144 && TREE_CODE (cst2) == INTEGER_CST)
4145 def_stmt = SSA_NAME_DEF_STMT (name2);
4146 }
4147
70b7b037 4148 /* Extract NAME2 from the (optional) sign-changing cast. */
726a989a 4149 if (gimple_assign_cast_p (def_stmt))
70b7b037 4150 {
1a87cf0c 4151 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
726a989a
RB
4152 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4153 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4154 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4155 name3 = gimple_assign_rhs1 (def_stmt);
70b7b037 4156 }
2ab8dbf4 4157
70b7b037
RG
4158 /* If name3 is used later, create an ASSERT_EXPR for it. */
4159 if (name3 != NULL_TREE
4160 && TREE_CODE (name3) == SSA_NAME
2ab8dbf4
RG
4161 && (cst2 == NULL_TREE
4162 || TREE_CODE (cst2) == INTEGER_CST)
70b7b037 4163 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
c4ab2baa 4164 && live_on_edge (e, name3)
70b7b037
RG
4165 && !has_single_use (name3))
4166 {
4167 tree tmp;
4168
4169 /* Build an expression for the range test. */
4170 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4171 if (cst2 != NULL_TREE)
4172 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4173
4174 if (dump_file)
4175 {
4176 fprintf (dump_file, "Adding assert for ");
4177 print_generic_expr (dump_file, name3, 0);
4178 fprintf (dump_file, " from ");
4179 print_generic_expr (dump_file, tmp, 0);
4180 fprintf (dump_file, "\n");
4181 }
4182
4183 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4184
4185 retval = true;
4186 }
4187
4188 /* If name2 is used later, create an ASSERT_EXPR for it. */
4189 if (name2 != NULL_TREE
4190 && TREE_CODE (name2) == SSA_NAME
4191 && TREE_CODE (cst2) == INTEGER_CST
4192 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
c4ab2baa 4193 && live_on_edge (e, name2)
2ab8dbf4
RG
4194 && !has_single_use (name2))
4195 {
4196 tree tmp;
4197
4198 /* Build an expression for the range test. */
4199 tmp = name2;
4200 if (TREE_TYPE (name) != TREE_TYPE (name2))
4201 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4202 if (cst2 != NULL_TREE)
4203 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4204
4205 if (dump_file)
4206 {
4207 fprintf (dump_file, "Adding assert for ");
4208 print_generic_expr (dump_file, name2, 0);
4209 fprintf (dump_file, " from ");
4210 print_generic_expr (dump_file, tmp, 0);
4211 fprintf (dump_file, "\n");
4212 }
4213
4214 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4215
4216 retval = true;
4217 }
4218 }
4219
4220 return retval;
4221}
4222
279f3eb5
JL
4223/* OP is an operand of a truth value expression which is known to have
4224 a particular value. Register any asserts for OP and for any
4225 operands in OP's defining statement.
4226
4227 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4228 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4229
4230static bool
4231register_edge_assert_for_1 (tree op, enum tree_code code,
726a989a 4232 edge e, gimple_stmt_iterator bsi)
279f3eb5 4233{
34fc5065 4234 bool retval = false;
726a989a
RB
4235 gimple op_def;
4236 tree val;
a26a02d7 4237 enum tree_code rhs_code;
227858d1 4238
279f3eb5
JL
4239 /* We only care about SSA_NAMEs. */
4240 if (TREE_CODE (op) != SSA_NAME)
227858d1
DN
4241 return false;
4242
279f3eb5
JL
4243 /* We know that OP will have a zero or nonzero value. If OP is used
4244 more than once go ahead and register an assert for OP.
4245
4246 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4247 it will always be set for OP (because OP is used in a COND_EXPR in
4248 the subgraph). */
4249 if (!has_single_use (op))
4250 {
4251 val = build_int_cst (TREE_TYPE (op), 0);
2ab8dbf4 4252 register_new_assert_for (op, op, code, val, NULL, e, bsi);
279f3eb5
JL
4253 retval = true;
4254 }
4255
4256 /* Now look at how OP is set. If it's set from a comparison,
4257 a truth operation or some bit operations, then we may be able
4258 to register information about the operands of that assignment. */
4259 op_def = SSA_NAME_DEF_STMT (op);
726a989a 4260 if (gimple_code (op_def) != GIMPLE_ASSIGN)
279f3eb5
JL
4261 return retval;
4262
726a989a 4263 rhs_code = gimple_assign_rhs_code (op_def);
279f3eb5 4264
726a989a 4265 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
227858d1 4266 {
34fc5065 4267 bool invert = (code == EQ_EXPR ? true : false);
726a989a
RB
4268 tree op0 = gimple_assign_rhs1 (op_def);
4269 tree op1 = gimple_assign_rhs2 (op_def);
227858d1 4270
2ab8dbf4 4271 if (TREE_CODE (op0) == SSA_NAME)
a26a02d7
RAE
4272 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4273 invert);
2ab8dbf4 4274 if (TREE_CODE (op1) == SSA_NAME)
a26a02d7
RAE
4275 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4276 invert);
279f3eb5
JL
4277 }
4278 else if ((code == NE_EXPR
726a989a
RB
4279 && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
4280 || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
279f3eb5 4281 || (code == EQ_EXPR
726a989a
RB
4282 && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
4283 || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
279f3eb5
JL
4284 {
4285 /* Recurse on each operand. */
726a989a 4286 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
279f3eb5 4287 code, e, bsi);
726a989a 4288 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
279f3eb5
JL
4289 code, e, bsi);
4290 }
726a989a 4291 else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
279f3eb5 4292 {
34fc5065
RG
4293 /* Recurse, flipping CODE. */
4294 code = invert_tree_comparison (code, false);
726a989a 4295 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
34fc5065 4296 code, e, bsi);
279f3eb5 4297 }
726a989a 4298 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
279f3eb5 4299 {
34fc5065 4300 /* Recurse through the copy. */
726a989a
RB
4301 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4302 code, e, bsi);
279f3eb5 4303 }
1a87cf0c 4304 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
279f3eb5 4305 {
34fc5065 4306 /* Recurse through the type conversion. */
726a989a 4307 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
279f3eb5
JL
4308 code, e, bsi);
4309 }
227858d1 4310
279f3eb5
JL
4311 return retval;
4312}
da11c5d2 4313
279f3eb5
JL
4314/* Try to register an edge assertion for SSA name NAME on edge E for
4315 the condition COND contributing to the conditional jump pointed to by SI.
4316 Return true if an assertion for NAME could be registered. */
da11c5d2 4317
279f3eb5 4318static bool
726a989a 4319register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
a26a02d7
RAE
4320 enum tree_code cond_code, tree cond_op0,
4321 tree cond_op1)
279f3eb5
JL
4322{
4323 tree val;
4324 enum tree_code comp_code;
4325 bool retval = false;
4326 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4327
4328 /* Do not attempt to infer anything in names that flow through
4329 abnormal edges. */
4330 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4331 return false;
4332
a26a02d7
RAE
4333 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4334 cond_op0, cond_op1,
4335 is_else_edge,
4336 &comp_code, &val))
279f3eb5
JL
4337 return false;
4338
2ab8dbf4 4339 /* Register ASSERT_EXPRs for name. */
a26a02d7
RAE
4340 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4341 cond_op1, is_else_edge);
2ab8dbf4 4342
279f3eb5
JL
4343
4344 /* If COND is effectively an equality test of an SSA_NAME against
4345 the value zero or one, then we may be able to assert values
4346 for SSA_NAMEs which flow into COND. */
4347
4348 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4349 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
2f8e468b 4350 have nonzero value. */
279f3eb5
JL
4351 if (((comp_code == EQ_EXPR && integer_onep (val))
4352 || (comp_code == NE_EXPR && integer_zerop (val))))
4353 {
726a989a 4354 gimple def_stmt = SSA_NAME_DEF_STMT (name);
279f3eb5 4355
726a989a
RB
4356 if (is_gimple_assign (def_stmt)
4357 && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
4358 || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
279f3eb5 4359 {
726a989a
RB
4360 tree op0 = gimple_assign_rhs1 (def_stmt);
4361 tree op1 = gimple_assign_rhs2 (def_stmt);
279f3eb5
JL
4362 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4363 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
227858d1
DN
4364 }
4365 }
279f3eb5
JL
4366
4367 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4368 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4369 have zero value. */
4370 if (((comp_code == EQ_EXPR && integer_zerop (val))
4371 || (comp_code == NE_EXPR && integer_onep (val))))
227858d1 4372 {
726a989a 4373 gimple def_stmt = SSA_NAME_DEF_STMT (name);
279f3eb5 4374
726a989a
RB
4375 if (is_gimple_assign (def_stmt)
4376 && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
e09deb14
RG
4377 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4378 necessarily zero value. */
4379 || (comp_code == EQ_EXPR
726a989a 4380 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
279f3eb5 4381 {
726a989a
RB
4382 tree op0 = gimple_assign_rhs1 (def_stmt);
4383 tree op1 = gimple_assign_rhs2 (def_stmt);
279f3eb5
JL
4384 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4385 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4386 }
227858d1
DN
4387 }
4388
279f3eb5 4389 return retval;
227858d1
DN
4390}
4391
4392
227858d1 4393/* Determine whether the outgoing edges of BB should receive an
279f3eb5 4394 ASSERT_EXPR for each of the operands of BB's LAST statement.
9bb6aa43 4395 The last statement of BB must be a COND_EXPR.
227858d1
DN
4396
4397 If any of the sub-graphs rooted at BB have an interesting use of
4398 the predicate operands, an assert location node is added to the
4399 list of assertions for the corresponding operands. */
4400
4401static bool
726a989a 4402find_conditional_asserts (basic_block bb, gimple last)
227858d1
DN
4403{
4404 bool need_assert;
726a989a 4405 gimple_stmt_iterator bsi;
279f3eb5 4406 tree op;
227858d1
DN
4407 edge_iterator ei;
4408 edge e;
4409 ssa_op_iter iter;
4410
4411 need_assert = false;
726a989a 4412 bsi = gsi_for_stmt (last);
227858d1
DN
4413
4414 /* Look for uses of the operands in each of the sub-graphs
4415 rooted at BB. We need to check each of the outgoing edges
4416 separately, so that we know what kind of ASSERT_EXPR to
4417 insert. */
4418 FOR_EACH_EDGE (e, ei, bb->succs)
4419 {
4420 if (e->dest == bb)
4421 continue;
4422
227858d1
DN
4423 /* Register the necessary assertions for each operand in the
4424 conditional predicate. */
4425 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
a26a02d7 4426 {
726a989a
RB
4427 need_assert |= register_edge_assert_for (op, e, bsi,
4428 gimple_cond_code (last),
4429 gimple_cond_lhs (last),
4430 gimple_cond_rhs (last));
a26a02d7 4431 }
227858d1
DN
4432 }
4433
227858d1
DN
4434 return need_assert;
4435}
4436
9bb6aa43
RG
4437/* Compare two case labels sorting first by the destination label uid
4438 and then by the case value. */
4439
4440static int
4441compare_case_labels (const void *p1, const void *p2)
4442{
741ac903
KG
4443 const_tree const case1 = *(const_tree const*)p1;
4444 const_tree const case2 = *(const_tree const*)p2;
9bb6aa43
RG
4445 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4446 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4447
4448 if (uid1 < uid2)
4449 return -1;
4450 else if (uid1 == uid2)
4451 {
4452 /* Make sure the default label is first in a group. */
4453 if (!CASE_LOW (case1))
4454 return -1;
4455 else if (!CASE_LOW (case2))
4456 return 1;
4457 else
4458 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4459 }
4460 else
4461 return 1;
4462}
4463
4464/* Determine whether the outgoing edges of BB should receive an
4465 ASSERT_EXPR for each of the operands of BB's LAST statement.
4466 The last statement of BB must be a SWITCH_EXPR.
4467
4468 If any of the sub-graphs rooted at BB have an interesting use of
4469 the predicate operands, an assert location node is added to the
4470 list of assertions for the corresponding operands. */
4471
4472static bool
726a989a 4473find_switch_asserts (basic_block bb, gimple last)
9bb6aa43
RG
4474{
4475 bool need_assert;
726a989a 4476 gimple_stmt_iterator bsi;
a26a02d7 4477 tree op;
9bb6aa43 4478 edge e;
726a989a
RB
4479 tree vec2;
4480 size_t n = gimple_switch_num_labels(last);
109e637b 4481#if GCC_VERSION >= 4000
9bb6aa43 4482 unsigned int idx;
109e637b
JM
4483#else
4484 /* Work around GCC 3.4 bug (PR 37086). */
4485 volatile unsigned int idx;
4486#endif
9bb6aa43
RG
4487
4488 need_assert = false;
726a989a
RB
4489 bsi = gsi_for_stmt (last);
4490 op = gimple_switch_index (last);
9bb6aa43
RG
4491 if (TREE_CODE (op) != SSA_NAME)
4492 return false;
4493
4494 /* Build a vector of case labels sorted by destination label. */
4495 vec2 = make_tree_vec (n);
4496 for (idx = 0; idx < n; ++idx)
726a989a 4497 TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
9bb6aa43
RG
4498 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4499
4500 for (idx = 0; idx < n; ++idx)
4501 {
4502 tree min, max;
4503 tree cl = TREE_VEC_ELT (vec2, idx);
4504
4505 min = CASE_LOW (cl);
4506 max = CASE_HIGH (cl);
4507
4508 /* If there are multiple case labels with the same destination
4509 we need to combine them to a single value range for the edge. */
4510 if (idx + 1 < n
4511 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4512 {
4513 /* Skip labels until the last of the group. */
4514 do {
4515 ++idx;
4516 } while (idx < n
4517 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4518 --idx;
4519
4520 /* Pick up the maximum of the case label range. */
4521 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4522 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4523 else
4524 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4525 }
4526
4527 /* Nothing to do if the range includes the default label until we
4528 can register anti-ranges. */
4529 if (min == NULL_TREE)
4530 continue;
4531
4532 /* Find the edge to register the assert expr on. */
4533 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4534
9bb6aa43
RG
4535 /* Register the necessary assertions for the operand in the
4536 SWITCH_EXPR. */
a26a02d7
RAE
4537 need_assert |= register_edge_assert_for (op, e, bsi,
4538 max ? GE_EXPR : EQ_EXPR,
4539 op,
4540 fold_convert (TREE_TYPE (op),
4541 min));
9bb6aa43
RG
4542 if (max)
4543 {
a26a02d7
RAE
4544 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4545 op,
4546 fold_convert (TREE_TYPE (op),
4547 max));
9bb6aa43
RG
4548 }
4549 }
4550
9bb6aa43
RG
4551 return need_assert;
4552}
4553
227858d1
DN
4554
4555/* Traverse all the statements in block BB looking for statements that
4556 may generate useful assertions for the SSA names in their operand.
4557 If a statement produces a useful assertion A for name N_i, then the
4558 list of assertions already generated for N_i is scanned to
4559 determine if A is actually needed.
4560
4561 If N_i already had the assertion A at a location dominating the
4562 current location, then nothing needs to be done. Otherwise, the
4563 new location for A is recorded instead.
4564
4565 1- For every statement S in BB, all the variables used by S are
4566 added to bitmap FOUND_IN_SUBGRAPH.
4567
4568 2- If statement S uses an operand N in a way that exposes a known
4569 value range for N, then if N was not already generated by an
4570 ASSERT_EXPR, create a new assert location for N. For instance,
4571 if N is a pointer and the statement dereferences it, we can
4572 assume that N is not NULL.
4573
4574 3- COND_EXPRs are a special case of #2. We can derive range
4575 information from the predicate but need to insert different
4576 ASSERT_EXPRs for each of the sub-graphs rooted at the
4577 conditional block. If the last statement of BB is a conditional
4578 expression of the form 'X op Y', then
4579
4580 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4581
4582 b) If the conditional is the only entry point to the sub-graph
4583 corresponding to the THEN_CLAUSE, recurse into it. On
4584 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4585 an ASSERT_EXPR is added for the corresponding variable.
4586
4587 c) Repeat step (b) on the ELSE_CLAUSE.
4588
4589 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4590
4591 For instance,
4592
4593 if (a == 9)
4594 b = a;
4595 else
4596 b = c + 1;
4597
4598 In this case, an assertion on the THEN clause is useful to
4599 determine that 'a' is always 9 on that edge. However, an assertion
4600 on the ELSE clause would be unnecessary.
4601
4602 4- If BB does not end in a conditional expression, then we recurse
4603 into BB's dominator children.
4604
4605 At the end of the recursive traversal, every SSA name will have a
4606 list of locations where ASSERT_EXPRs should be added. When a new
4607 location for name N is found, it is registered by calling
4608 register_new_assert_for. That function keeps track of all the
4609 registered assertions to prevent adding unnecessary assertions.
4610 For instance, if a pointer P_4 is dereferenced more than once in a
4611 dominator tree, only the location dominating all the dereference of
4612 P_4 will receive an ASSERT_EXPR.
4613
4614 If this function returns true, then it means that there are names
4615 for which we need to generate ASSERT_EXPRs. Those assertions are
9bb6aa43 4616 inserted by process_assert_insertions. */
227858d1
DN
4617
4618static bool
c4ab2baa 4619find_assert_locations_1 (basic_block bb, sbitmap live)
227858d1 4620{
726a989a
RB
4621 gimple_stmt_iterator si;
4622 gimple last;
4623 gimple phi;
227858d1 4624 bool need_assert;
227858d1
DN
4625
4626 need_assert = false;
c4ab2baa 4627 last = last_stmt (bb);
227858d1 4628
c4ab2baa
RG
4629 /* If BB's last statement is a conditional statement involving integer
4630 operands, determine if we need to add ASSERT_EXPRs. */
4631 if (last
4632 && gimple_code (last) == GIMPLE_COND
4633 && !fp_predicate (last)
4634 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4635 need_assert |= find_conditional_asserts (bb, last);
227858d1 4636
c4ab2baa
RG
4637 /* If BB's last statement is a switch statement involving integer
4638 operands, determine if we need to add ASSERT_EXPRs. */
4639 if (last
4640 && gimple_code (last) == GIMPLE_SWITCH
4641 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4642 need_assert |= find_switch_asserts (bb, last);
227858d1
DN
4643
4644 /* Traverse all the statements in BB marking used names and looking
4645 for statements that may infer assertions for their used operands. */
726a989a 4646 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
227858d1 4647 {
726a989a
RB
4648 gimple stmt;
4649 tree op;
227858d1
DN
4650 ssa_op_iter i;
4651
726a989a 4652 stmt = gsi_stmt (si);
227858d1
DN
4653
4654 /* See if we can derive an assertion for any of STMT's operands. */
4655 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4656 {
4657 tree value;
4658 enum tree_code comp_code;
4659
c4ab2baa
RG
4660 /* Mark OP in our live bitmap. */
4661 SET_BIT (live, SSA_NAME_VERSION (op));
227858d1 4662
227858d1
DN
4663 /* If OP is used in such a way that we can infer a value
4664 range for it, and we don't find a previous assertion for
4665 it, create a new assertion location node for OP. */
4666 if (infer_value_range (stmt, op, &comp_code, &value))
4667 {
917f1b7e 4668 /* If we are able to infer a nonzero value range for OP,
60c9ad46
JL
4669 then walk backwards through the use-def chain to see if OP
4670 was set via a typecast.
4671
4672 If so, then we can also infer a nonzero value range
4673 for the operand of the NOP_EXPR. */
4674 if (comp_code == NE_EXPR && integer_zerop (value))
4675 {
4676 tree t = op;
726a989a 4677 gimple def_stmt = SSA_NAME_DEF_STMT (t);
60c9ad46 4678
726a989a
RB
4679 while (is_gimple_assign (def_stmt)
4680 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
07beea0d 4681 && TREE_CODE
726a989a 4682 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
07beea0d 4683 && POINTER_TYPE_P
726a989a 4684 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
60c9ad46 4685 {
726a989a 4686 t = gimple_assign_rhs1 (def_stmt);
60c9ad46
JL
4687 def_stmt = SSA_NAME_DEF_STMT (t);
4688
4689 /* Note we want to register the assert for the
4690 operand of the NOP_EXPR after SI, not after the
4691 conversion. */
4692 if (! has_single_use (t))
4693 {
2ab8dbf4 4694 register_new_assert_for (t, t, comp_code, value,
60c9ad46
JL
4695 bb, NULL, si);
4696 need_assert = true;
4697 }
4698 }
4699 }
4700
4701 /* If OP is used only once, namely in this STMT, don't
4702 bother creating an ASSERT_EXPR for it. Such an
4703 ASSERT_EXPR would do nothing but increase compile time. */
4704 if (!has_single_use (op))
4705 {
2ab8dbf4
RG
4706 register_new_assert_for (op, op, comp_code, value,
4707 bb, NULL, si);
60c9ad46
JL
4708 need_assert = true;
4709 }
0bca51f0
DN
4710 }
4711 }
0bca51f0
DN
4712 }
4713
c4ab2baa
RG
4714 /* Traverse all PHI nodes in BB marking used operands. */
4715 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4716 {
4717 use_operand_p arg_p;
4718 ssa_op_iter i;
4719 phi = gsi_stmt (si);
9bb6aa43 4720
c4ab2baa
RG
4721 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4722 {
4723 tree arg = USE_FROM_PTR (arg_p);
4724 if (TREE_CODE (arg) == SSA_NAME)
4725 SET_BIT (live, SSA_NAME_VERSION (arg));
4726 }
4727 }
227858d1
DN
4728
4729 return need_assert;
4730}
4731
c4ab2baa
RG
4732/* Do an RPO walk over the function computing SSA name liveness
4733 on-the-fly and deciding on assert expressions to insert.
4734 Returns true if there are assert expressions to be inserted. */
4735
4736static bool
4737find_assert_locations (void)
4738{
4739 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4740 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4741 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4742 int rpo_cnt, i;
4743 bool need_asserts;
4744
4745 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4746 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4747 for (i = 0; i < rpo_cnt; ++i)
4748 bb_rpo[rpo[i]] = i;
4749
4750 need_asserts = false;
4751 for (i = rpo_cnt-1; i >= 0; --i)
4752 {
4753 basic_block bb = BASIC_BLOCK (rpo[i]);
4754 edge e;
4755 edge_iterator ei;
4756
4757 if (!live[rpo[i]])
4758 {
4759 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
4760 sbitmap_zero (live[rpo[i]]);
4761 }
4762
4763 /* Process BB and update the live information with uses in
4764 this block. */
4765 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
4766
4767 /* Merge liveness into the predecessor blocks and free it. */
4768 if (!sbitmap_empty_p (live[rpo[i]]))
4769 {
4770 int pred_rpo = i;
4771 FOR_EACH_EDGE (e, ei, bb->preds)
4772 {
4773 int pred = e->src->index;
4774 if (e->flags & EDGE_DFS_BACK)
4775 continue;
4776
4777 if (!live[pred])
4778 {
4779 live[pred] = sbitmap_alloc (num_ssa_names);
4780 sbitmap_zero (live[pred]);
4781 }
4782 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
4783
4784 if (bb_rpo[pred] < pred_rpo)
4785 pred_rpo = bb_rpo[pred];
4786 }
4787
4788 /* Record the RPO number of the last visited block that needs
4789 live information from this block. */
4790 last_rpo[rpo[i]] = pred_rpo;
4791 }
4792 else
4793 {
4794 sbitmap_free (live[rpo[i]]);
4795 live[rpo[i]] = NULL;
4796 }
4797
4798 /* We can free all successors live bitmaps if all their
4799 predecessors have been visited already. */
4800 FOR_EACH_EDGE (e, ei, bb->succs)
4801 if (last_rpo[e->dest->index] == i
4802 && live[e->dest->index])
4803 {
4804 sbitmap_free (live[e->dest->index]);
4805 live[e->dest->index] = NULL;
4806 }
4807 }
4808
4809 XDELETEVEC (rpo);
4810 XDELETEVEC (bb_rpo);
4811 XDELETEVEC (last_rpo);
4812 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
4813 if (live[i])
4814 sbitmap_free (live[i]);
4815 XDELETEVEC (live);
4816
4817 return need_asserts;
4818}
227858d1
DN
4819
4820/* Create an ASSERT_EXPR for NAME and insert it in the location
4821 indicated by LOC. Return true if we made any edge insertions. */
4822
4823static bool
4824process_assert_insertions_for (tree name, assert_locus_t loc)
4825{
4826 /* Build the comparison expression NAME_i COMP_CODE VAL. */
726a989a
RB
4827 gimple stmt;
4828 tree cond;
4829 gimple assert_stmt;
227858d1
DN
4830 edge_iterator ei;
4831 edge e;
4832
2ab8dbf4 4833 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
726a989a 4834 assert_stmt = build_assert_expr_for (cond, name);
227858d1 4835 if (loc->e)
0bca51f0 4836 {
227858d1
DN
4837 /* We have been asked to insert the assertion on an edge. This
4838 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4839#if defined ENABLE_CHECKING
726a989a
RB
4840 gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4841 || gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
227858d1 4842#endif
0bca51f0 4843
726a989a 4844 gsi_insert_on_edge (loc->e, assert_stmt);
227858d1
DN
4845 return true;
4846 }
9fabf0d4 4847
227858d1
DN
4848 /* Otherwise, we can insert right after LOC->SI iff the
4849 statement must not be the last statement in the block. */
726a989a 4850 stmt = gsi_stmt (loc->si);
227858d1
DN
4851 if (!stmt_ends_bb_p (stmt))
4852 {
726a989a 4853 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
227858d1
DN
4854 return false;
4855 }
9fabf0d4 4856
227858d1
DN
4857 /* If STMT must be the last statement in BB, we can only insert new
4858 assertions on the non-abnormal edge out of BB. Note that since
4859 STMT is not control flow, there may only be one non-abnormal edge
4860 out of BB. */
4861 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4862 if (!(e->flags & EDGE_ABNORMAL))
4863 {
726a989a 4864 gsi_insert_on_edge (e, assert_stmt);
227858d1
DN
4865 return true;
4866 }
0bca51f0 4867
227858d1
DN
4868 gcc_unreachable ();
4869}
0bca51f0 4870
0bca51f0 4871
227858d1
DN
4872/* Process all the insertions registered for every name N_i registered
4873 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4874 found in ASSERTS_FOR[i]. */
0bca51f0 4875
227858d1
DN
4876static void
4877process_assert_insertions (void)
4878{
4879 unsigned i;
4880 bitmap_iterator bi;
4881 bool update_edges_p = false;
4882 int num_asserts = 0;
0bca51f0 4883
227858d1
DN
4884 if (dump_file && (dump_flags & TDF_DETAILS))
4885 dump_all_asserts (dump_file);
60b4ccde 4886
227858d1
DN
4887 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4888 {
4889 assert_locus_t loc = asserts_for[i];
4890 gcc_assert (loc);
4891
4892 while (loc)
60b4ccde 4893 {
227858d1
DN
4894 assert_locus_t next = loc->next;
4895 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4896 free (loc);
4897 loc = next;
4898 num_asserts++;
60b4ccde 4899 }
0bca51f0 4900 }
0bca51f0 4901
227858d1 4902 if (update_edges_p)
726a989a 4903 gsi_commit_edge_inserts ();
0bca51f0 4904
01902653
RG
4905 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4906 num_asserts);
0bca51f0
DN
4907}
4908
4909
4910/* Traverse the flowgraph looking for conditional jumps to insert range
4911 expressions. These range expressions are meant to provide information
4912 to optimizations that need to reason in terms of value ranges. They
4913 will not be expanded into RTL. For instance, given:
4914
4915 x = ...
4916 y = ...
4917 if (x < y)
4918 y = x - 2;
4919 else
4920 x = y + 3;
4921
4922 this pass will transform the code into:
4923
4924 x = ...
4925 y = ...
4926 if (x < y)
4927 {
4928 x = ASSERT_EXPR <x, x < y>
4929 y = x - 2
4930 }
4931 else
4932 {
4933 y = ASSERT_EXPR <y, x <= y>
4934 x = y + 3
4935 }
4936
4937 The idea is that once copy and constant propagation have run, other
4938 optimizations will be able to determine what ranges of values can 'x'
4939 take in different paths of the code, simply by checking the reaching
4940 definition of 'x'. */
4941
4942static void
4943insert_range_assertions (void)
4944{
227858d1 4945 need_assert_for = BITMAP_ALLOC (NULL);
b9eae1a9 4946 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
0bca51f0
DN
4947
4948 calculate_dominance_info (CDI_DOMINATORS);
4949
c4ab2baa 4950 if (find_assert_locations ())
0bca51f0 4951 {
227858d1 4952 process_assert_insertions ();
0bca51f0
DN
4953 update_ssa (TODO_update_ssa_no_phi);
4954 }
4955
4956 if (dump_file && (dump_flags & TDF_DETAILS))
4957 {
4958 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4959 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4960 }
4961
227858d1
DN
4962 free (asserts_for);
4963 BITMAP_FREE (need_assert_for);
0bca51f0
DN
4964}
4965
590b1f2d
DM
4966/* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4967 and "struct" hacks. If VRP can determine that the
9f5ed61a 4968 array subscript is a constant, check if it is outside valid
590b1f2d
DM
4969 range. If the array subscript is a RANGE, warn if it is
4970 non-overlapping with valid range.
4971 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4972
4973static void
c2255bc4 4974check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
590b1f2d
DM
4975{
4976 value_range_t* vr = NULL;
4977 tree low_sub, up_sub;
4978 tree low_bound, up_bound = array_ref_up_bound (ref);
4979
4980 low_sub = up_sub = TREE_OPERAND (ref, 1);
4981
88df9da1 4982 if (!up_bound || TREE_NO_WARNING (ref)
590b1f2d
DM
4983 || TREE_CODE (up_bound) != INTEGER_CST
4984 /* Can not check flexible arrays. */
4985 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4986 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4987 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4988 /* Accesses after the end of arrays of size 0 (gcc
4989 extension) and 1 are likely intentional ("struct
e4d35515
SB
4990 hack"). */
4991 || compare_tree_int (up_bound, 1) <= 0)
590b1f2d
DM
4992 return;
4993
4994 low_bound = array_ref_low_bound (ref);
4995
4996 if (TREE_CODE (low_sub) == SSA_NAME)
4997 {
4998 vr = get_value_range (low_sub);
4999 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5000 {
5001 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5002 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5003 }
5004 }
5005
5006 if (vr && vr->type == VR_ANTI_RANGE)
5007 {
5008 if (TREE_CODE (up_sub) == INTEGER_CST
5009 && tree_int_cst_lt (up_bound, up_sub)
5010 && TREE_CODE (low_sub) == INTEGER_CST
5011 && tree_int_cst_lt (low_sub, low_bound))
5012 {
92ef7fb1
MLI
5013 warning_at (location, OPT_Warray_bounds,
5014 "array subscript is outside array bounds");
590b1f2d
DM
5015 TREE_NO_WARNING (ref) = 1;
5016 }
5017 }
5018 else if (TREE_CODE (up_sub) == INTEGER_CST
5019 && tree_int_cst_lt (up_bound, up_sub)
5020 && !tree_int_cst_equal (up_bound, up_sub)
5021 && (!ignore_off_by_one
5022 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
5023 up_bound,
5024 integer_one_node,
5025 0),
5026 up_sub)))
5027 {
92ef7fb1
MLI
5028 warning_at (location, OPT_Warray_bounds,
5029 "array subscript is above array bounds");
590b1f2d
DM
5030 TREE_NO_WARNING (ref) = 1;
5031 }
5032 else if (TREE_CODE (low_sub) == INTEGER_CST
5033 && tree_int_cst_lt (low_sub, low_bound))
5034 {
92ef7fb1
MLI
5035 warning_at (location, OPT_Warray_bounds,
5036 "array subscript is below array bounds");
590b1f2d
DM
5037 TREE_NO_WARNING (ref) = 1;
5038 }
5039}
5040
05fb69e4
DM
5041/* Searches if the expr T, located at LOCATION computes
5042 address of an ARRAY_REF, and call check_array_ref on it. */
5043
5044static void
92ef7fb1 5045search_for_addr_array (tree t, location_t location)
05fb69e4
DM
5046{
5047 while (TREE_CODE (t) == SSA_NAME)
5048 {
726a989a
RB
5049 gimple g = SSA_NAME_DEF_STMT (t);
5050
5051 if (gimple_code (g) != GIMPLE_ASSIGN)
05fb69e4 5052 return;
726a989a 5053
9968d233
SP
5054 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5055 != GIMPLE_SINGLE_RHS)
726a989a
RB
5056 return;
5057
5058 t = gimple_assign_rhs1 (g);
05fb69e4
DM
5059 }
5060
5061
5062 /* We are only interested in addresses of ARRAY_REF's. */
5063 if (TREE_CODE (t) != ADDR_EXPR)
5064 return;
5065
5066 /* Check each ARRAY_REFs in the reference chain. */
5067 do
5068 {
5069 if (TREE_CODE (t) == ARRAY_REF)
c2255bc4 5070 check_array_ref (location, t, true /*ignore_off_by_one*/);
05fb69e4 5071
9968d233 5072 t = TREE_OPERAND (t, 0);
05fb69e4
DM
5073 }
5074 while (handled_component_p (t));
5075}
5076
590b1f2d
DM
5077/* walk_tree() callback that checks if *TP is
5078 an ARRAY_REF inside an ADDR_EXPR (in which an array
5079 subscript one outside the valid range is allowed). Call
5080 check_array_ref for each ARRAY_REF found. The location is
5081 passed in DATA. */
5082
5083static tree
5084check_array_bounds (tree *tp, int *walk_subtree, void *data)
5085{
5086 tree t = *tp;
726a989a 5087 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
c2255bc4
AH
5088 location_t location;
5089
5090 if (EXPR_HAS_LOCATION (t))
5091 location = EXPR_LOCATION (t);
5092 else
5093 {
5094 location_t *locp = (location_t *) wi->info;
5095 location = *locp;
5096 }
88df9da1 5097
590b1f2d
DM
5098 *walk_subtree = TRUE;
5099
5100 if (TREE_CODE (t) == ARRAY_REF)
c2255bc4 5101 check_array_ref (location, t, false /*ignore_off_by_one*/);
1eb7b049 5102
05fb69e4
DM
5103 if (TREE_CODE (t) == INDIRECT_REF
5104 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
c2255bc4 5105 search_for_addr_array (TREE_OPERAND (t, 0), location);
590b1f2d 5106
05fb69e4
DM
5107 if (TREE_CODE (t) == ADDR_EXPR)
5108 *walk_subtree = FALSE;
5109
590b1f2d
DM
5110 return NULL_TREE;
5111}
5112
5113/* Walk over all statements of all reachable BBs and call check_array_bounds
5114 on them. */
5115
5116static void
5117check_all_array_refs (void)
5118{
5119 basic_block bb;
726a989a 5120 gimple_stmt_iterator si;
590b1f2d
DM
5121
5122 FOR_EACH_BB (bb)
5123 {
5124 /* Skip bb's that are clearly unreachable. */
5125 if (single_pred_p (bb))
5126 {
92ef7fb1
MLI
5127 int i;
5128 bool reachable = true;
5129 edge e2;
5130 edge e = EDGE_PRED (bb, 0);
5131 basic_block pred_bb = e->src;
726a989a 5132 gimple ls = NULL;
590b1f2d 5133
92ef7fb1
MLI
5134 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e2); ++i)
5135 if (e == e2)
5136 {
5137 reachable = false;
5138 break;
5139 }
5140
5141 if (!reachable)
5142 continue;
5143
726a989a
RB
5144 if (!gsi_end_p (gsi_last_bb (pred_bb)))
5145 ls = gsi_stmt (gsi_last_bb (pred_bb));
590b1f2d 5146
726a989a
RB
5147 if (ls && gimple_code (ls) == GIMPLE_COND
5148 && ((gimple_cond_false_p (ls)
590b1f2d 5149 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
726a989a 5150 || (gimple_cond_true_p (ls)
590b1f2d
DM
5151 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
5152 continue;
5153 }
726a989a
RB
5154 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5155 {
5156 gimple stmt = gsi_stmt (si);
726a989a
RB
5157 struct walk_stmt_info wi;
5158 if (!gimple_has_location (stmt))
5159 continue;
5160
5161 if (is_gimple_call (stmt))
5162 {
5163 size_t i;
5164 size_t n = gimple_call_num_args (stmt);
5165 for (i = 0; i < n; i++)
5166 {
5167 tree arg = gimple_call_arg (stmt, i);
92ef7fb1 5168 search_for_addr_array (arg, gimple_location (stmt));
726a989a
RB
5169 }
5170 }
5171 else
5172 {
5173 memset (&wi, 0, sizeof (wi));
92ef7fb1
MLI
5174 wi.info = CONST_CAST (void *, (const void *)
5175 gimple_location_ptr (stmt));
726a989a
RB
5176
5177 walk_gimple_op (gsi_stmt (si),
5178 check_array_bounds,
5179 &wi);
5180 }
5181 }
590b1f2d
DM
5182 }
5183}
0bca51f0 5184
94908762
JL
5185/* Convert range assertion expressions into the implied copies and
5186 copy propagate away the copies. Doing the trivial copy propagation
5187 here avoids the need to run the full copy propagation pass after
5188 VRP.
227858d1
DN
5189
5190 FIXME, this will eventually lead to copy propagation removing the
5191 names that had useful range information attached to them. For
5192 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5193 then N_i will have the range [3, +INF].
5194
5195 However, by converting the assertion into the implied copy
5196 operation N_i = N_j, we will then copy-propagate N_j into the uses
5197 of N_i and lose the range information. We may want to hold on to
5198 ASSERT_EXPRs a little while longer as the ranges could be used in
5199 things like jump threading.
5200
5201 The problem with keeping ASSERT_EXPRs around is that passes after
94908762
JL
5202 VRP need to handle them appropriately.
5203
5204 Another approach would be to make the range information a first
5205 class property of the SSA_NAME so that it can be queried from
5206 any pass. This is made somewhat more complex by the need for
5207 multiple ranges to be associated with one SSA_NAME. */
0bca51f0
DN
5208
5209static void
5210remove_range_assertions (void)
5211{
5212 basic_block bb;
726a989a 5213 gimple_stmt_iterator si;
0bca51f0 5214
94908762
JL
5215 /* Note that the BSI iterator bump happens at the bottom of the
5216 loop and no bump is necessary if we're removing the statement
5217 referenced by the current BSI. */
0bca51f0 5218 FOR_EACH_BB (bb)
726a989a 5219 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
0bca51f0 5220 {
726a989a
RB
5221 gimple stmt = gsi_stmt (si);
5222 gimple use_stmt;
0bca51f0 5223
726a989a
RB
5224 if (is_gimple_assign (stmt)
5225 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
0bca51f0 5226 {
726a989a
RB
5227 tree rhs = gimple_assign_rhs1 (stmt);
5228 tree var;
0bca51f0 5229 tree cond = fold (ASSERT_EXPR_COND (rhs));
94908762
JL
5230 use_operand_p use_p;
5231 imm_use_iterator iter;
5232
0bca51f0 5233 gcc_assert (cond != boolean_false_node);
94908762 5234
701b8964
ZD
5235 /* Propagate the RHS into every use of the LHS. */
5236 var = ASSERT_EXPR_VAR (rhs);
07beea0d 5237 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
726a989a 5238 gimple_assign_lhs (stmt))
6c00f606
AM
5239 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5240 {
5241 SET_USE (use_p, var);
5242 gcc_assert (TREE_CODE (var) == SSA_NAME);
5243 }
94908762
JL
5244
5245 /* And finally, remove the copy, it is not needed. */
726a989a 5246 gsi_remove (&si, true);
ca15e365 5247 release_defs (stmt);
0bca51f0 5248 }
94908762 5249 else
726a989a 5250 gsi_next (&si);
0bca51f0
DN
5251 }
5252}
5253
5254
5255/* Return true if STMT is interesting for VRP. */
5256
5257static bool
726a989a 5258stmt_interesting_for_vrp (gimple stmt)
0bca51f0 5259{
726a989a
RB
5260 if (gimple_code (stmt) == GIMPLE_PHI
5261 && is_gimple_reg (gimple_phi_result (stmt))
5262 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5263 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
0bca51f0 5264 return true;
726a989a 5265 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
0bca51f0 5266 {
726a989a 5267 tree lhs = gimple_get_lhs (stmt);
0bca51f0 5268
2bbec6d9
JL
5269 /* In general, assignments with virtual operands are not useful
5270 for deriving ranges, with the obvious exception of calls to
5271 builtin functions. */
726a989a 5272 if (lhs && TREE_CODE (lhs) == SSA_NAME
0bca51f0
DN
5273 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5274 || POINTER_TYPE_P (TREE_TYPE (lhs)))
726a989a
RB
5275 && ((is_gimple_call (stmt)
5276 && gimple_call_fndecl (stmt) != NULL_TREE
5277 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5006671f 5278 || !gimple_vuse (stmt)))
0bca51f0
DN
5279 return true;
5280 }
726a989a
RB
5281 else if (gimple_code (stmt) == GIMPLE_COND
5282 || gimple_code (stmt) == GIMPLE_SWITCH)
0bca51f0
DN
5283 return true;
5284
5285 return false;
5286}
5287
5288
87e71ff4 5289/* Initialize local data structures for VRP. */
0bca51f0 5290
227858d1 5291static void
0bca51f0
DN
5292vrp_initialize (void)
5293{
5294 basic_block bb;
0bca51f0 5295
b9eae1a9 5296 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
fc6827fe 5297 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
0bca51f0
DN
5298
5299 FOR_EACH_BB (bb)
5300 {
726a989a 5301 gimple_stmt_iterator si;
0bca51f0 5302
726a989a 5303 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
0bca51f0 5304 {
726a989a 5305 gimple phi = gsi_stmt (si);
0bca51f0
DN
5306 if (!stmt_interesting_for_vrp (phi))
5307 {
5308 tree lhs = PHI_RESULT (phi);
b565d777 5309 set_value_range_to_varying (get_value_range (lhs));
726a989a 5310 prop_set_simulate_again (phi, false);
0bca51f0
DN
5311 }
5312 else
726a989a 5313 prop_set_simulate_again (phi, true);
0bca51f0
DN
5314 }
5315
726a989a 5316 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
0bca51f0 5317 {
726a989a 5318 gimple stmt = gsi_stmt (si);
0bca51f0
DN
5319
5320 if (!stmt_interesting_for_vrp (stmt))
5321 {
5322 ssa_op_iter i;
5323 tree def;
5324 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
b565d777 5325 set_value_range_to_varying (get_value_range (def));
726a989a 5326 prop_set_simulate_again (stmt, false);
0bca51f0
DN
5327 }
5328 else
5329 {
726a989a 5330 prop_set_simulate_again (stmt, true);
0bca51f0
DN
5331 }
5332 }
5333 }
0bca51f0
DN
5334}
5335
5336
5337/* Visit assignment STMT. If it produces an interesting range, record
5338 the SSA name in *OUTPUT_P. */
5339
5340static enum ssa_prop_result
726a989a 5341vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
0bca51f0 5342{
726a989a 5343 tree def, lhs;
0bca51f0 5344 ssa_op_iter iter;
726a989a
RB
5345 enum gimple_code code = gimple_code (stmt);
5346 lhs = gimple_get_lhs (stmt);
0bca51f0
DN
5347
5348 /* We only keep track of ranges in integral and pointer types. */
5349 if (TREE_CODE (lhs) == SSA_NAME
e260a614
JL
5350 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5351 /* It is valid to have NULL MIN/MAX values on a type. See
5352 build_range_type. */
5353 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5354 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
0bca51f0
DN
5355 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5356 {
0bca51f0 5357 struct loop *l;
227858d1
DN
5358 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5359
726a989a
RB
5360 if (code == GIMPLE_CALL)
5361 extract_range_basic (&new_vr, stmt);
5362 else
5363 extract_range_from_assignment (&new_vr, stmt);
0bca51f0
DN
5364
5365 /* If STMT is inside a loop, we may be able to know something
5366 else about the range of LHS by examining scalar evolution
5367 information. */
d78f3f78 5368 if (current_loops && (l = loop_containing_stmt (stmt)))
1e8552eb 5369 adjust_range_with_scev (&new_vr, l, stmt, lhs);
0bca51f0 5370
227858d1 5371 if (update_value_range (lhs, &new_vr))
0bca51f0
DN
5372 {
5373 *output_p = lhs;
5374
5375 if (dump_file && (dump_flags & TDF_DETAILS))
5376 {
227858d1 5377 fprintf (dump_file, "Found new range for ");
0bca51f0 5378 print_generic_expr (dump_file, lhs, 0);
227858d1
DN
5379 fprintf (dump_file, ": ");
5380 dump_value_range (dump_file, &new_vr);
0bca51f0
DN
5381 fprintf (dump_file, "\n\n");
5382 }
5383
5384 if (new_vr.type == VR_VARYING)
5385 return SSA_PROP_VARYING;
5386
5387 return SSA_PROP_INTERESTING;
5388 }
5389
5390 return SSA_PROP_NOT_INTERESTING;
5391 }
5392
227858d1 5393 /* Every other statement produces no useful ranges. */
0bca51f0 5394 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
b565d777 5395 set_value_range_to_varying (get_value_range (def));
0bca51f0
DN
5396
5397 return SSA_PROP_VARYING;
5398}
5399
f5052e29 5400/* Helper that gets the value range of the SSA_NAME with version I
c80b4100 5401 or a symbolic range containing the SSA_NAME only if the value range
f5052e29
RG
5402 is varying or undefined. */
5403
5404static inline value_range_t
5405get_vr_for_comparison (int i)
5406{
5407 value_range_t vr = *(vr_value[i]);
5408
5409 /* If name N_i does not have a valid range, use N_i as its own
5410 range. This allows us to compare against names that may
5411 have N_i in their ranges. */
5412 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5413 {
5414 vr.type = VR_RANGE;
5415 vr.min = ssa_name (i);
5416 vr.max = ssa_name (i);
5417 }
5418
5419 return vr;
5420}
0bca51f0 5421
227858d1
DN
5422/* Compare all the value ranges for names equivalent to VAR with VAL
5423 using comparison code COMP. Return the same value returned by
12df8a7e
ILT
5424 compare_range_with_value, including the setting of
5425 *STRICT_OVERFLOW_P. */
227858d1
DN
5426
5427static tree
12df8a7e
ILT
5428compare_name_with_value (enum tree_code comp, tree var, tree val,
5429 bool *strict_overflow_p)
227858d1
DN
5430{
5431 bitmap_iterator bi;
5432 unsigned i;
5433 bitmap e;
5434 tree retval, t;
12df8a7e 5435 int used_strict_overflow;
f5052e29
RG
5436 bool sop;
5437 value_range_t equiv_vr;
227858d1
DN
5438
5439 /* Get the set of equivalences for VAR. */
5440 e = get_value_range (var)->equiv;
5441
12df8a7e
ILT
5442 /* Start at -1. Set it to 0 if we do a comparison without relying
5443 on overflow, or 1 if all comparisons rely on overflow. */
5444 used_strict_overflow = -1;
5445
f5052e29
RG
5446 /* Compare vars' value range with val. */
5447 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5448 sop = false;
5449 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
e07e405d
ILT
5450 if (retval)
5451 used_strict_overflow = sop ? 1 : 0;
227858d1 5452
f5052e29
RG
5453 /* If the equiv set is empty we have done all work we need to do. */
5454 if (e == NULL)
5455 {
5456 if (retval
5457 && used_strict_overflow > 0)
5458 *strict_overflow_p = true;
5459 return retval;
5460 }
227858d1 5461
f5052e29
RG
5462 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5463 {
5464 equiv_vr = get_vr_for_comparison (i);
12df8a7e
ILT
5465 sop = false;
5466 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
227858d1
DN
5467 if (t)
5468 {
96644aba
RG
5469 /* If we get different answers from different members
5470 of the equivalence set this check must be in a dead
5471 code region. Folding it to a trap representation
5472 would be correct here. For now just return don't-know. */
5473 if (retval != NULL
5474 && t != retval)
5475 {
5476 retval = NULL_TREE;
5477 break;
5478 }
227858d1 5479 retval = t;
12df8a7e
ILT
5480
5481 if (!sop)
5482 used_strict_overflow = 0;
5483 else if (used_strict_overflow < 0)
5484 used_strict_overflow = 1;
227858d1
DN
5485 }
5486 }
5487
f5052e29
RG
5488 if (retval
5489 && used_strict_overflow > 0)
5490 *strict_overflow_p = true;
227858d1 5491
f5052e29 5492 return retval;
227858d1
DN
5493}
5494
5495
5496/* Given a comparison code COMP and names N1 and N2, compare all the
8ab5f5c9 5497 ranges equivalent to N1 against all the ranges equivalent to N2
227858d1 5498 to determine the value of N1 COMP N2. Return the same value
12df8a7e
ILT
5499 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5500 whether we relied on an overflow infinity in the comparison. */
5501
0bca51f0
DN
5502
5503static tree
12df8a7e
ILT
5504compare_names (enum tree_code comp, tree n1, tree n2,
5505 bool *strict_overflow_p)
227858d1
DN
5506{
5507 tree t, retval;
5508 bitmap e1, e2;
5509 bitmap_iterator bi1, bi2;
5510 unsigned i1, i2;
12df8a7e 5511 int used_strict_overflow;
f5052e29
RG
5512 static bitmap_obstack *s_obstack = NULL;
5513 static bitmap s_e1 = NULL, s_e2 = NULL;
227858d1
DN
5514
5515 /* Compare the ranges of every name equivalent to N1 against the
5516 ranges of every name equivalent to N2. */
5517 e1 = get_value_range (n1)->equiv;
5518 e2 = get_value_range (n2)->equiv;
5519
f5052e29
RG
5520 /* Use the fake bitmaps if e1 or e2 are not available. */
5521 if (s_obstack == NULL)
5522 {
5523 s_obstack = XNEW (bitmap_obstack);
5524 bitmap_obstack_initialize (s_obstack);
5525 s_e1 = BITMAP_ALLOC (s_obstack);
5526 s_e2 = BITMAP_ALLOC (s_obstack);
5527 }
5528 if (e1 == NULL)
5529 e1 = s_e1;
5530 if (e2 == NULL)
5531 e2 = s_e2;
5532
227858d1
DN
5533 /* Add N1 and N2 to their own set of equivalences to avoid
5534 duplicating the body of the loop just to check N1 and N2
5535 ranges. */
5536 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5537 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5538
5539 /* If the equivalence sets have a common intersection, then the two
5540 names can be compared without checking their ranges. */
5541 if (bitmap_intersect_p (e1, e2))
5542 {
5543 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5544 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5545
5546 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5547 ? boolean_true_node
5548 : boolean_false_node;
5549 }
5550
12df8a7e
ILT
5551 /* Start at -1. Set it to 0 if we do a comparison without relying
5552 on overflow, or 1 if all comparisons rely on overflow. */
5553 used_strict_overflow = -1;
5554
227858d1
DN
5555 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5556 N2 to their own set of equivalences to avoid duplicating the body
5557 of the loop just to check N1 and N2 ranges. */
5558 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5559 {
f5052e29 5560 value_range_t vr1 = get_vr_for_comparison (i1);
227858d1
DN
5561
5562 t = retval = NULL_TREE;
5563 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5564 {
3b7bab4d 5565 bool sop = false;
12df8a7e 5566
f5052e29 5567 value_range_t vr2 = get_vr_for_comparison (i2);
227858d1 5568
12df8a7e 5569 t = compare_ranges (comp, &vr1, &vr2, &sop);
227858d1
DN
5570 if (t)
5571 {
96644aba
RG
5572 /* If we get different answers from different members
5573 of the equivalence set this check must be in a dead
5574 code region. Folding it to a trap representation
5575 would be correct here. For now just return don't-know. */
5576 if (retval != NULL
5577 && t != retval)
5578 {
5579 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5580 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5581 return NULL_TREE;
5582 }
227858d1 5583 retval = t;
12df8a7e
ILT
5584
5585 if (!sop)
5586 used_strict_overflow = 0;
5587 else if (used_strict_overflow < 0)
5588 used_strict_overflow = 1;
227858d1
DN
5589 }
5590 }
5591
5592 if (retval)
5593 {
5594 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5595 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
12df8a7e
ILT
5596 if (used_strict_overflow > 0)
5597 *strict_overflow_p = true;
227858d1
DN
5598 return retval;
5599 }
5600 }
5601
5602 /* None of the equivalent ranges are useful in computing this
5603 comparison. */
5604 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5605 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5606 return NULL_TREE;
5607}
5608
6b99f156
JH
5609/* Helper function for vrp_evaluate_conditional_warnv. */
5610
5611static tree
5612vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5613 tree op0, tree op1,
5614 bool * strict_overflow_p)
5615{
5616 value_range_t *vr0, *vr1;
5617
5618 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5619 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5620
5621 if (vr0 && vr1)
5622 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5623 else if (vr0 && vr1 == NULL)
5624 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5625 else if (vr0 == NULL && vr1)
5626 return (compare_range_with_value
5627 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5628 return NULL;
5629}
5630
2d3cd5d5
RAE
5631/* Helper function for vrp_evaluate_conditional_warnv. */
5632
5633static tree
5634vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5635 tree op1, bool use_equiv_p,
6b99f156 5636 bool *strict_overflow_p, bool *only_ranges)
2d3cd5d5 5637{
6b99f156
JH
5638 tree ret;
5639 if (only_ranges)
5640 *only_ranges = true;
5641
2d3cd5d5
RAE
5642 /* We only deal with integral and pointer types. */
5643 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5644 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5645 return NULL_TREE;
5646
5647 if (use_equiv_p)
5648 {
6b99f156
JH
5649 if (only_ranges
5650 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5651 (code, op0, op1, strict_overflow_p)))
5652 return ret;
5653 *only_ranges = false;
2d3cd5d5 5654 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
726a989a 5655 return compare_names (code, op0, op1, strict_overflow_p);
2d3cd5d5 5656 else if (TREE_CODE (op0) == SSA_NAME)
726a989a 5657 return compare_name_with_value (code, op0, op1, strict_overflow_p);
2d3cd5d5
RAE
5658 else if (TREE_CODE (op1) == SSA_NAME)
5659 return (compare_name_with_value
726a989a 5660 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
2d3cd5d5
RAE
5661 }
5662 else
6b99f156
JH
5663 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5664 strict_overflow_p);
2d3cd5d5
RAE
5665 return NULL_TREE;
5666}
227858d1 5667
e80d7580 5668/* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
0c948c27
ILT
5669 information. Return NULL if the conditional can not be evaluated.
5670 The ranges of all the names equivalent with the operands in COND
5671 will be used when trying to compute the value. If the result is
5672 based on undefined signed overflow, issue a warning if
5673 appropriate. */
5674
5675tree
726a989a 5676vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
0c948c27
ILT
5677{
5678 bool sop;
5679 tree ret;
6b99f156 5680 bool only_ranges;
0c948c27
ILT
5681
5682 sop = false;
6b99f156
JH
5683 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5684 &only_ranges);
0c948c27
ILT
5685
5686 if (ret && sop)
5687 {
5688 enum warn_strict_overflow_code wc;
5689 const char* warnmsg;
5690
5691 if (is_gimple_min_invariant (ret))
5692 {
5693 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5694 warnmsg = G_("assuming signed overflow does not occur when "
5695 "simplifying conditional to constant");
5696 }
5697 else
5698 {
5699 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5700 warnmsg = G_("assuming signed overflow does not occur when "
5701 "simplifying conditional");
5702 }
5703
5704 if (issue_strict_overflow_warning (wc))
5705 {
726a989a 5706 location_t location;
0c948c27 5707
726a989a
RB
5708 if (!gimple_has_location (stmt))
5709 location = input_location;
0c948c27 5710 else
726a989a
RB
5711 location = gimple_location (stmt);
5712 warning (OPT_Wstrict_overflow, "%H%s", &location, warnmsg);
0c948c27
ILT
5713 }
5714 }
5715
faebccf9 5716 if (warn_type_limits
6b99f156 5717 && ret && only_ranges
e80d7580
RAE
5718 && TREE_CODE_CLASS (code) == tcc_comparison
5719 && TREE_CODE (op0) == SSA_NAME)
faebccf9
DN
5720 {
5721 /* If the comparison is being folded and the operand on the LHS
5722 is being compared against a constant value that is outside of
5723 the natural range of OP0's type, then the predicate will
5724 always fold regardless of the value of OP0. If -Wtype-limits
5725 was specified, emit a warning. */
5726 const char *warnmsg = NULL;
faebccf9
DN
5727 tree type = TREE_TYPE (op0);
5728 value_range_t *vr0 = get_value_range (op0);
5729
5730 if (vr0->type != VR_VARYING
5731 && INTEGRAL_TYPE_P (type)
5732 && vrp_val_is_min (vr0->min)
5733 && vrp_val_is_max (vr0->max)
5734 && is_gimple_min_invariant (op1))
5735 {
5736 if (integer_zerop (ret))
5737 warnmsg = G_("comparison always false due to limited range of "
5738 "data type");
5739 else
5740 warnmsg = G_("comparison always true due to limited range of "
5741 "data type");
5742 }
5743
5744 if (warnmsg)
5745 {
726a989a 5746 location_t location;
faebccf9 5747
726a989a
RB
5748 if (!gimple_has_location (stmt))
5749 location = input_location;
faebccf9 5750 else
726a989a 5751 location = gimple_location (stmt);
faebccf9 5752
726a989a 5753 warning (OPT_Wtype_limits, "%H%s", &location, warnmsg);
faebccf9
DN
5754 }
5755 }
5756
0c948c27
ILT
5757 return ret;
5758}
5759
0bca51f0
DN
5760
5761/* Visit conditional statement STMT. If we can determine which edge
5762 will be taken out of STMT's basic block, record it in
5763 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5764 SSA_PROP_VARYING. */
5765
5766static enum ssa_prop_result
726a989a 5767vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
0bca51f0 5768{
726a989a 5769 tree val;
12df8a7e 5770 bool sop;
0bca51f0
DN
5771
5772 *taken_edge_p = NULL;
0bca51f0
DN
5773
5774 if (dump_file && (dump_flags & TDF_DETAILS))
5775 {
5776 tree use;
5777 ssa_op_iter i;
5778
5779 fprintf (dump_file, "\nVisiting conditional with predicate: ");
726a989a 5780 print_gimple_stmt (dump_file, stmt, 0, 0);
0bca51f0
DN
5781 fprintf (dump_file, "\nWith known ranges\n");
5782
5783 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5784 {
5785 fprintf (dump_file, "\t");
5786 print_generic_expr (dump_file, use, 0);
5787 fprintf (dump_file, ": ");
227858d1 5788 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
0bca51f0
DN
5789 }
5790
5791 fprintf (dump_file, "\n");
5792 }
5793
5794 /* Compute the value of the predicate COND by checking the known
227858d1
DN
5795 ranges of each of its operands.
5796
5797 Note that we cannot evaluate all the equivalent ranges here
5798 because those ranges may not yet be final and with the current
5799 propagation strategy, we cannot determine when the value ranges
5800 of the names in the equivalence set have changed.
5801
5802 For instance, given the following code fragment
5803
5804 i_5 = PHI <8, i_13>
5805 ...
5806 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5807 if (i_14 == 1)
5808 ...
5809
5810 Assume that on the first visit to i_14, i_5 has the temporary
5811 range [8, 8] because the second argument to the PHI function is
5812 not yet executable. We derive the range ~[0, 0] for i_14 and the
5813 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5814 the first time, since i_14 is equivalent to the range [8, 8], we
5815 determine that the predicate is always false.
5816
5817 On the next round of propagation, i_13 is determined to be
5818 VARYING, which causes i_5 to drop down to VARYING. So, another
5819 visit to i_14 is scheduled. In this second visit, we compute the
5820 exact same range and equivalence set for i_14, namely ~[0, 0] and
5821 { i_5 }. But we did not have the previous range for i_5
5822 registered, so vrp_visit_assignment thinks that the range for
5823 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5824 is not visited again, which stops propagation from visiting
5825 statements in the THEN clause of that if().
5826
5827 To properly fix this we would need to keep the previous range
5828 value for the names in the equivalence set. This way we would've
5829 discovered that from one visit to the other i_5 changed from
5830 range [8, 8] to VR_VARYING.
5831
5832 However, fixing this apparent limitation may not be worth the
5833 additional checking. Testing on several code bases (GCC, DLV,
5834 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5835 4 more predicates folded in SPEC. */
12df8a7e 5836 sop = false;
e80d7580 5837
726a989a
RB
5838 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
5839 gimple_cond_lhs (stmt),
5840 gimple_cond_rhs (stmt),
6b99f156 5841 false, &sop, NULL);
0bca51f0 5842 if (val)
12df8a7e
ILT
5843 {
5844 if (!sop)
726a989a 5845 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
12df8a7e
ILT
5846 else
5847 {
5848 if (dump_file && (dump_flags & TDF_DETAILS))
5849 fprintf (dump_file,
5850 "\nIgnoring predicate evaluation because "
5851 "it assumes that signed overflow is undefined");
5852 val = NULL_TREE;
5853 }
5854 }
0bca51f0
DN
5855
5856 if (dump_file && (dump_flags & TDF_DETAILS))
5857 {
5858 fprintf (dump_file, "\nPredicate evaluates to: ");
5859 if (val == NULL_TREE)
5860 fprintf (dump_file, "DON'T KNOW\n");
5861 else
5862 print_generic_stmt (dump_file, val, 0);
5863 }
5864
5865 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5866}
5867
b7d8d447
RAE
5868/* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5869 that includes the value VAL. The search is restricted to the range
726a989a 5870 [START_IDX, n - 1] where n is the size of VEC.
0bca51f0 5871
b7d8d447
RAE
5872 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5873 returned.
5874
92ef7fb1 5875 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
b7d8d447
RAE
5876 it is placed in IDX and false is returned.
5877
726a989a 5878 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
b7d8d447 5879 returned. */
8aea0bf0
RG
5880
5881static bool
726a989a 5882find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
8aea0bf0 5883{
726a989a 5884 size_t n = gimple_switch_num_labels (stmt);
b7d8d447
RAE
5885 size_t low, high;
5886
5887 /* Find case label for minimum of the value range or the next one.
5888 At each iteration we are searching in [low, high - 1]. */
8aea0bf0 5889
726a989a 5890 for (low = start_idx, high = n; high != low; )
8aea0bf0
RG
5891 {
5892 tree t;
5893 int cmp;
726a989a 5894 /* Note that i != high, so we never ask for n. */
b7d8d447 5895 size_t i = (high + low) / 2;
726a989a 5896 t = gimple_switch_label (stmt, i);
8aea0bf0
RG
5897
5898 /* Cache the result of comparing CASE_LOW and val. */
5899 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5900
b7d8d447
RAE
5901 if (cmp == 0)
5902 {
5903 /* Ranges cannot be empty. */
5904 *idx = i;
5905 return true;
5906 }
5907 else if (cmp > 0)
8aea0bf0
RG
5908 high = i;
5909 else
b7d8d447
RAE
5910 {
5911 low = i + 1;
5912 if (CASE_HIGH (t) != NULL
5913 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
8aea0bf0
RG
5914 {
5915 *idx = i;
5916 return true;
5917 }
5918 }
5919 }
5920
b7d8d447 5921 *idx = high;
8aea0bf0
RG
5922 return false;
5923}
5924
b7d8d447
RAE
5925/* Searches the case label vector VEC for the range of CASE_LABELs that is used
5926 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5927 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5928 then MAX_IDX < MIN_IDX.
5929 Returns true if the default label is not needed. */
5930
5931static bool
726a989a
RB
5932find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
5933 size_t *max_idx)
b7d8d447
RAE
5934{
5935 size_t i, j;
726a989a
RB
5936 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5937 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
b7d8d447
RAE
5938
5939 if (i == j
5940 && min_take_default
5941 && max_take_default)
5942 {
5943 /* Only the default case label reached.
5944 Return an empty range. */
5945 *min_idx = 1;
5946 *max_idx = 0;
5947 return false;
5948 }
5949 else
5950 {
5951 bool take_default = min_take_default || max_take_default;
5952 tree low, high;
5953 size_t k;
5954
5955 if (max_take_default)
5956 j--;
5957
5958 /* If the case label range is continuous, we do not need
5959 the default case label. Verify that. */
726a989a
RB
5960 high = CASE_LOW (gimple_switch_label (stmt, i));
5961 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5962 high = CASE_HIGH (gimple_switch_label (stmt, i));
b7d8d447
RAE
5963 for (k = i + 1; k <= j; ++k)
5964 {
726a989a 5965 low = CASE_LOW (gimple_switch_label (stmt, k));
b7d8d447
RAE
5966 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
5967 {
5968 take_default = true;
5969 break;
5970 }
5971 high = low;
726a989a
RB
5972 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5973 high = CASE_HIGH (gimple_switch_label (stmt, k));
b7d8d447
RAE
5974 }
5975
5976 *min_idx = i;
5977 *max_idx = j;
5978 return !take_default;
5979 }
5980}
5981
8aea0bf0
RG
5982/* Visit switch statement STMT. If we can determine which edge
5983 will be taken out of STMT's basic block, record it in
5984 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5985 SSA_PROP_VARYING. */
5986
5987static enum ssa_prop_result
726a989a 5988vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
8aea0bf0
RG
5989{
5990 tree op, val;
5991 value_range_t *vr;
5992 size_t i = 0, j = 0, n;
b7d8d447 5993 bool take_default;
8aea0bf0
RG
5994
5995 *taken_edge_p = NULL;
726a989a 5996 op = gimple_switch_index (stmt);
8aea0bf0
RG
5997 if (TREE_CODE (op) != SSA_NAME)
5998 return SSA_PROP_VARYING;
5999
6000 vr = get_value_range (op);
6001 if (dump_file && (dump_flags & TDF_DETAILS))
6002 {
6003 fprintf (dump_file, "\nVisiting switch expression with operand ");
6004 print_generic_expr (dump_file, op, 0);
6005 fprintf (dump_file, " with known range ");
6006 dump_value_range (dump_file, vr);
6007 fprintf (dump_file, "\n");
6008 }
6009
6010 if (vr->type != VR_RANGE
6011 || symbolic_range_p (vr))
6012 return SSA_PROP_VARYING;
6013
6014 /* Find the single edge that is taken from the switch expression. */
726a989a 6015 n = gimple_switch_num_labels (stmt);
8aea0bf0 6016
726a989a 6017 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
8aea0bf0 6018
b7d8d447
RAE
6019 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6020 label */
8aea0bf0 6021 if (j < i)
b7d8d447
RAE
6022 {
6023 gcc_assert (take_default);
726a989a 6024 val = gimple_switch_default_label (stmt);
b7d8d447 6025 }
8aea0bf0
RG
6026 else
6027 {
b7d8d447
RAE
6028 /* Check if labels with index i to j and maybe the default label
6029 are all reaching the same label. */
6030
726a989a 6031 val = gimple_switch_label (stmt, i);
b7d8d447 6032 if (take_default
726a989a
RB
6033 && CASE_LABEL (gimple_switch_default_label (stmt))
6034 != CASE_LABEL (val))
8aea0bf0
RG
6035 {
6036 if (dump_file && (dump_flags & TDF_DETAILS))
6037 fprintf (dump_file, " not a single destination for this "
6038 "range\n");
6039 return SSA_PROP_VARYING;
6040 }
6041 for (++i; i <= j; ++i)
6042 {
726a989a 6043 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
8aea0bf0
RG
6044 {
6045 if (dump_file && (dump_flags & TDF_DETAILS))
6046 fprintf (dump_file, " not a single destination for this "
6047 "range\n");
6048 return SSA_PROP_VARYING;
6049 }
6050 }
6051 }
6052
726a989a 6053 *taken_edge_p = find_edge (gimple_bb (stmt),
8aea0bf0
RG
6054 label_to_block (CASE_LABEL (val)));
6055
6056 if (dump_file && (dump_flags & TDF_DETAILS))
6057 {
6058 fprintf (dump_file, " will take edge to ");
6059 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6060 }
6061
6062 return SSA_PROP_INTERESTING;
6063}
6064
6065
0bca51f0
DN
6066/* Evaluate statement STMT. If the statement produces a useful range,
6067 return SSA_PROP_INTERESTING and record the SSA name with the
6068 interesting range into *OUTPUT_P.
6069
6070 If STMT is a conditional branch and we can determine its truth
6071 value, the taken edge is recorded in *TAKEN_EDGE_P.
6072
6073 If STMT produces a varying value, return SSA_PROP_VARYING. */
6074
6075static enum ssa_prop_result
726a989a 6076vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
0bca51f0
DN
6077{
6078 tree def;
6079 ssa_op_iter iter;
0bca51f0
DN
6080
6081 if (dump_file && (dump_flags & TDF_DETAILS))
6082 {
6083 fprintf (dump_file, "\nVisiting statement:\n");
726a989a 6084 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
0bca51f0
DN
6085 fprintf (dump_file, "\n");
6086 }
6087
726a989a 6088 if (is_gimple_assign (stmt) || is_gimple_call (stmt))
2bbec6d9 6089 {
2bbec6d9
JL
6090 /* In general, assignments with virtual operands are not useful
6091 for deriving ranges, with the obvious exception of calls to
6092 builtin functions. */
726a989a
RB
6093
6094 if ((is_gimple_call (stmt)
6095 && gimple_call_fndecl (stmt) != NULL_TREE
6096 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5006671f 6097 || !gimple_vuse (stmt))
726a989a 6098 return vrp_visit_assignment_or_call (stmt, output_p);
2bbec6d9 6099 }
726a989a 6100 else if (gimple_code (stmt) == GIMPLE_COND)
0bca51f0 6101 return vrp_visit_cond_stmt (stmt, taken_edge_p);
726a989a 6102 else if (gimple_code (stmt) == GIMPLE_SWITCH)
8aea0bf0 6103 return vrp_visit_switch_stmt (stmt, taken_edge_p);
0bca51f0
DN
6104
6105 /* All other statements produce nothing of interest for VRP, so mark
6106 their outputs varying and prevent further simulation. */
6107 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
b565d777 6108 set_value_range_to_varying (get_value_range (def));
0bca51f0
DN
6109
6110 return SSA_PROP_VARYING;
6111}
6112
6113
6114/* Meet operation for value ranges. Given two value ranges VR0 and
32c8bce7
DS
6115 VR1, store in VR0 a range that contains both VR0 and VR1. This
6116 may not be the smallest possible such range. */
0bca51f0
DN
6117
6118static void
227858d1 6119vrp_meet (value_range_t *vr0, value_range_t *vr1)
0bca51f0
DN
6120{
6121 if (vr0->type == VR_UNDEFINED)
6122 {
227858d1 6123 copy_value_range (vr0, vr1);
0bca51f0
DN
6124 return;
6125 }
6126
6127 if (vr1->type == VR_UNDEFINED)
6128 {
6129 /* Nothing to do. VR0 already has the resulting range. */
6130 return;
6131 }
6132
6133 if (vr0->type == VR_VARYING)
6134 {
6135 /* Nothing to do. VR0 already has the resulting range. */
6136 return;
6137 }
6138
6139 if (vr1->type == VR_VARYING)
0bca51f0 6140 {
b565d777 6141 set_value_range_to_varying (vr0);
0bca51f0
DN
6142 return;
6143 }
6144
6145 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6146 {
32c8bce7
DS
6147 int cmp;
6148 tree min, max;
6149
6150 /* Compute the convex hull of the ranges. The lower limit of
6151 the new range is the minimum of the two ranges. If they
6152 cannot be compared, then give up. */
6153 cmp = compare_values (vr0->min, vr1->min);
6154 if (cmp == 0 || cmp == 1)
6155 min = vr1->min;
6156 else if (cmp == -1)
6157 min = vr0->min;
6158 else
6159 goto give_up;
6160
6161 /* Similarly, the upper limit of the new range is the maximum
6162 of the two ranges. If they cannot be compared, then
6163 give up. */
6164 cmp = compare_values (vr0->max, vr1->max);
6165 if (cmp == 0 || cmp == -1)
6166 max = vr1->max;
6167 else if (cmp == 1)
6168 max = vr0->max;
6169 else
6170 goto give_up;
0bca51f0 6171
8cf781f0
ILT
6172 /* Check for useless ranges. */
6173 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
e1f28918
ILT
6174 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6175 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
8cf781f0
ILT
6176 goto give_up;
6177
32c8bce7
DS
6178 /* The resulting set of equivalences is the intersection of
6179 the two sets. */
6180 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6181 bitmap_and_into (vr0->equiv, vr1->equiv);
6182 else if (vr0->equiv && !vr1->equiv)
6183 bitmap_clear (vr0->equiv);
227858d1 6184
32c8bce7 6185 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
0bca51f0
DN
6186 }
6187 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6188 {
32c8bce7
DS
6189 /* Two anti-ranges meet only if their complements intersect.
6190 Only handle the case of identical ranges. */
0bca51f0
DN
6191 if (compare_values (vr0->min, vr1->min) == 0
6192 && compare_values (vr0->max, vr1->max) == 0
6193 && compare_values (vr0->min, vr0->max) == 0)
227858d1 6194 {
8ab5f5c9 6195 /* The resulting set of equivalences is the intersection of
227858d1
DN
6196 the two sets. */
6197 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6198 bitmap_and_into (vr0->equiv, vr1->equiv);
880031e1
JL
6199 else if (vr0->equiv && !vr1->equiv)
6200 bitmap_clear (vr0->equiv);
227858d1 6201 }
0bca51f0 6202 else
32c8bce7 6203 goto give_up;
0bca51f0
DN
6204 }
6205 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6206 {
32c8bce7
DS
6207 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6208 only handle the case where the ranges have an empty intersection.
6209 The result of the meet operation is the anti-range. */
227858d1
DN
6210 if (!symbolic_range_p (vr0)
6211 && !symbolic_range_p (vr1)
6212 && !value_ranges_intersect_p (vr0, vr1))
0bca51f0 6213 {
2d33a2ef
DN
6214 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6215 set. We need to compute the intersection of the two
6216 equivalence sets. */
0bca51f0 6217 if (vr1->type == VR_ANTI_RANGE)
2d33a2ef 6218 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
880031e1
JL
6219
6220 /* The resulting set of equivalences is the intersection of
6221 the two sets. */
6222 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6223 bitmap_and_into (vr0->equiv, vr1->equiv);
6224 else if (vr0->equiv && !vr1->equiv)
6225 bitmap_clear (vr0->equiv);
0bca51f0
DN
6226 }
6227 else
32c8bce7 6228 goto give_up;
0bca51f0
DN
6229 }
6230 else
6231 gcc_unreachable ();
227858d1
DN
6232
6233 return;
6234
32c8bce7
DS
6235give_up:
6236 /* Failed to find an efficient meet. Before giving up and setting
6237 the result to VARYING, see if we can at least derive a useful
6238 anti-range. FIXME, all this nonsense about distinguishing
b19bb8b0
DN
6239 anti-ranges from ranges is necessary because of the odd
6240 semantics of range_includes_zero_p and friends. */
227858d1 6241 if (!symbolic_range_p (vr0)
b19bb8b0
DN
6242 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6243 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
227858d1 6244 && !symbolic_range_p (vr1)
b19bb8b0
DN
6245 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6246 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
e82d7e60
DN
6247 {
6248 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6249
6250 /* Since this meet operation did not result from the meeting of
6251 two equivalent names, VR0 cannot have any equivalences. */
6252 if (vr0->equiv)
6253 bitmap_clear (vr0->equiv);
6254 }
227858d1
DN
6255 else
6256 set_value_range_to_varying (vr0);
0bca51f0
DN
6257}
6258
227858d1 6259
0bca51f0
DN
6260/* Visit all arguments for PHI node PHI that flow through executable
6261 edges. If a valid value range can be derived from all the incoming
6262 value ranges, set a new range for the LHS of PHI. */
6263
6264static enum ssa_prop_result
726a989a 6265vrp_visit_phi_node (gimple phi)
0bca51f0 6266{
726a989a 6267 size_t i;
0bca51f0 6268 tree lhs = PHI_RESULT (phi);
227858d1
DN
6269 value_range_t *lhs_vr = get_value_range (lhs);
6270 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
fc6827fe 6271 int edges, old_edges;
227858d1
DN
6272
6273 copy_value_range (&vr_result, lhs_vr);
0bca51f0
DN
6274
6275 if (dump_file && (dump_flags & TDF_DETAILS))
6276 {
6277 fprintf (dump_file, "\nVisiting PHI node: ");
726a989a 6278 print_gimple_stmt (dump_file, phi, 0, dump_flags);
0bca51f0
DN
6279 }
6280
fc6827fe 6281 edges = 0;
726a989a 6282 for (i = 0; i < gimple_phi_num_args (phi); i++)
0bca51f0 6283 {
726a989a 6284 edge e = gimple_phi_arg_edge (phi, i);
0bca51f0
DN
6285
6286 if (dump_file && (dump_flags & TDF_DETAILS))
6287 {
6288 fprintf (dump_file,
6289 "\n Argument #%d (%d -> %d %sexecutable)\n",
726a989a 6290 (int) i, e->src->index, e->dest->index,
0bca51f0
DN
6291 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6292 }
6293
6294 if (e->flags & EDGE_EXECUTABLE)
6295 {
6296 tree arg = PHI_ARG_DEF (phi, i);
227858d1 6297 value_range_t vr_arg;
0bca51f0 6298
fc6827fe
ILT
6299 ++edges;
6300
0bca51f0 6301 if (TREE_CODE (arg) == SSA_NAME)
31ab1cc9
RG
6302 {
6303 vr_arg = *(get_value_range (arg));
31ab1cc9 6304 }
0bca51f0
DN
6305 else
6306 {
8cf781f0
ILT
6307 if (is_overflow_infinity (arg))
6308 {
6309 arg = copy_node (arg);
6310 TREE_OVERFLOW (arg) = 0;
6311 }
6312
0bca51f0
DN
6313 vr_arg.type = VR_RANGE;
6314 vr_arg.min = arg;
6315 vr_arg.max = arg;
227858d1 6316 vr_arg.equiv = NULL;
0bca51f0
DN
6317 }
6318
6319 if (dump_file && (dump_flags & TDF_DETAILS))
6320 {
6321 fprintf (dump_file, "\t");
6322 print_generic_expr (dump_file, arg, dump_flags);
6323 fprintf (dump_file, "\n\tValue: ");
6324 dump_value_range (dump_file, &vr_arg);
6325 fprintf (dump_file, "\n");
6326 }
6327
6328 vrp_meet (&vr_result, &vr_arg);
6329
6330 if (vr_result.type == VR_VARYING)
6331 break;
6332 }
6333 }
6334
6335 if (vr_result.type == VR_VARYING)
227858d1 6336 goto varying;
0bca51f0 6337
fc6827fe
ILT
6338 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6339 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6340
0bca51f0
DN
6341 /* To prevent infinite iterations in the algorithm, derive ranges
6342 when the new value is slightly bigger or smaller than the
fc6827fe
ILT
6343 previous one. We don't do this if we have seen a new executable
6344 edge; this helps us avoid an overflow infinity for conditionals
6345 which are not in a loop. */
31ab1cc9 6346 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
fc6827fe 6347 && edges <= old_edges)
0bca51f0
DN
6348 {
6349 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
6350 {
6351 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6352 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6353
6354 /* If the new minimum is smaller or larger than the previous
6355 one, go all the way to -INF. In the first case, to avoid
6356 iterating millions of times to reach -INF, and in the
6357 other case to avoid infinite bouncing between different
6358 minimums. */
6359 if (cmp_min > 0 || cmp_min < 0)
12df8a7e 6360 {
02511194
PB
6361 /* If we will end up with a (-INF, +INF) range, set it to
6362 VARYING. Same if the previous max value was invalid for
6363 the type and we'd end up with vr_result.min > vr_result.max. */
6364 if (vrp_val_is_max (vr_result.max)
6365 || compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result.min)),
6366 vr_result.max) > 0)
12df8a7e
ILT
6367 goto varying;
6368
9a46cc16
ILT
6369 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6370 || !vrp_var_may_overflow (lhs, phi))
12df8a7e
ILT
6371 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6372 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6373 vr_result.min =
6374 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6375 else
6376 goto varying;
6377 }
0bca51f0
DN
6378
6379 /* Similarly, if the new maximum is smaller or larger than
6380 the previous one, go all the way to +INF. */
6381 if (cmp_max < 0 || cmp_max > 0)
12df8a7e 6382 {
02511194
PB
6383 /* If we will end up with a (-INF, +INF) range, set it to
6384 VARYING. Same if the previous min value was invalid for
6385 the type and we'd end up with vr_result.max < vr_result.min. */
6386 if (vrp_val_is_min (vr_result.min)
6387 || compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)),
6388 vr_result.min) < 0)
12df8a7e
ILT
6389 goto varying;
6390
9a46cc16
ILT
6391 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6392 || !vrp_var_may_overflow (lhs, phi))
12df8a7e
ILT
6393 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6394 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6395 vr_result.max =
6396 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6397 else
6398 goto varying;
6399 }
0bca51f0
DN
6400 }
6401 }
6402
6403 /* If the new range is different than the previous value, keep
6404 iterating. */
227858d1 6405 if (update_value_range (lhs, &vr_result))
0bca51f0
DN
6406 return SSA_PROP_INTERESTING;
6407
6408 /* Nothing changed, don't add outgoing edges. */
6409 return SSA_PROP_NOT_INTERESTING;
227858d1
DN
6410
6411 /* No match found. Set the LHS to VARYING. */
6412varying:
6413 set_value_range_to_varying (lhs_vr);
6414 return SSA_PROP_VARYING;
0bca51f0
DN
6415}
6416
30821654
PB
6417/* Simplify boolean operations if the source is known
6418 to be already a boolean. */
6419static bool
6420simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6421{
6422 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6423 tree val = NULL;
6424 tree op0, op1;
6425 value_range_t *vr;
6426 bool sop = false;
6427 bool need_conversion;
6428
6429 op0 = gimple_assign_rhs1 (stmt);
30821654
PB
6430 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6431 {
61b70fcb
JJ
6432 if (TREE_CODE (op0) != SSA_NAME)
6433 return false;
6434 vr = get_value_range (op0);
6435
30821654
PB
6436 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6437 if (!val || !integer_onep (val))
6438 return false;
6439
6440 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6441 if (!val || !integer_onep (val))
6442 return false;
6443 }
6444
6445 if (rhs_code == TRUTH_NOT_EXPR)
6446 {
6447 rhs_code = NE_EXPR;
29442589 6448 op1 = build_int_cst (TREE_TYPE (op0), 1);
30821654 6449 }
30821654
PB
6450 else
6451 {
6452 op1 = gimple_assign_rhs2 (stmt);
6453
6454 /* Reduce number of cases to handle. */
6455 if (is_gimple_min_invariant (op1))
6456 {
6457 /* Exclude anything that should have been already folded. */
61b70fcb
JJ
6458 if (rhs_code != EQ_EXPR
6459 && rhs_code != NE_EXPR
6460 && rhs_code != TRUTH_XOR_EXPR)
6461 return false;
6462
6463 if (!integer_zerop (op1)
6464 && !integer_onep (op1)
6465 && !integer_all_onesp (op1))
6466 return false;
30821654
PB
6467
6468 /* Limit the number of cases we have to consider. */
6469 if (rhs_code == EQ_EXPR)
6470 {
6471 rhs_code = NE_EXPR;
6472 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6473 }
6474 }
6475 else
6476 {
6477 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6478 if (rhs_code == EQ_EXPR)
6479 return false;
6480
6481 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6482 {
6483 vr = get_value_range (op1);
6484 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6485 if (!val || !integer_onep (val))
6486 return false;
6487
6488 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6489 if (!val || !integer_onep (val))
6490 return false;
6491 }
6492 }
6493 }
6494
6495 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6496 {
6497 location_t location;
6498
6499 if (!gimple_has_location (stmt))
6500 location = input_location;
6501 else
6502 location = gimple_location (stmt);
6503
6504 if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
6505 warning_at (location, OPT_Wstrict_overflow,
6506 _("assuming signed overflow does not occur when "
6507 "simplifying && or || to & or |"));
6508 else
6509 warning_at (location, OPT_Wstrict_overflow,
6510 _("assuming signed overflow does not occur when "
6511 "simplifying ==, != or ! to identity or ^"));
6512 }
6513
6514 need_conversion =
6515 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6516 TREE_TYPE (op0));
6517
e61451e8
RG
6518 /* Make sure to not sign-extend -1 as a boolean value. */
6519 if (need_conversion
6520 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6521 && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
6522 return false;
6523
30821654
PB
6524 switch (rhs_code)
6525 {
6526 case TRUTH_AND_EXPR:
6527 rhs_code = BIT_AND_EXPR;
6528 break;
6529 case TRUTH_OR_EXPR:
6530 rhs_code = BIT_IOR_EXPR;
6531 break;
6532 case TRUTH_XOR_EXPR:
6533 case NE_EXPR:
6534 if (integer_zerop (op1))
6535 {
6536 gimple_assign_set_rhs_with_ops (gsi,
6537 need_conversion ? NOP_EXPR : SSA_NAME,
6538 op0, NULL);
6539 update_stmt (gsi_stmt (*gsi));
6540 return true;
6541 }
6542
6543 rhs_code = BIT_XOR_EXPR;
6544 break;
6545 default:
6546 gcc_unreachable ();
6547 }
6548
6549 if (need_conversion)
6550 return false;
6551
6552 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6553 update_stmt (gsi_stmt (*gsi));
6554 return true;
6555}
6556
1a557723
JL
6557/* Simplify a division or modulo operator to a right shift or
6558 bitwise and if the first operand is unsigned or is greater
6559 than zero and the second operand is an exact power of two. */
a513fe88 6560
30821654 6561static bool
726a989a 6562simplify_div_or_mod_using_ranges (gimple stmt)
a513fe88 6563{
726a989a 6564 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
1a557723 6565 tree val = NULL;
726a989a
RB
6566 tree op0 = gimple_assign_rhs1 (stmt);
6567 tree op1 = gimple_assign_rhs2 (stmt);
6568 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
a513fe88 6569
726a989a 6570 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
1a557723
JL
6571 {
6572 val = integer_one_node;
6573 }
6574 else
6575 {
12df8a7e
ILT
6576 bool sop = false;
6577
737b0891 6578 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
0c948c27
ILT
6579
6580 if (val
6581 && sop
6582 && integer_onep (val)
6583 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6584 {
726a989a 6585 location_t location;
0c948c27 6586
726a989a
RB
6587 if (!gimple_has_location (stmt))
6588 location = input_location;
0c948c27 6589 else
726a989a 6590 location = gimple_location (stmt);
0c948c27
ILT
6591 warning (OPT_Wstrict_overflow,
6592 ("%Hassuming signed overflow does not occur when "
6593 "simplifying / or %% to >> or &"),
726a989a 6594 &location);
0c948c27 6595 }
1a557723
JL
6596 }
6597
6598 if (val && integer_onep (val))
a513fe88 6599 {
1a557723 6600 tree t;
a513fe88 6601
1a557723
JL
6602 if (rhs_code == TRUNC_DIV_EXPR)
6603 {
6604 t = build_int_cst (NULL_TREE, tree_log2 (op1));
726a989a
RB
6605 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6606 gimple_assign_set_rhs1 (stmt, op0);
6607 gimple_assign_set_rhs2 (stmt, t);
1a557723
JL
6608 }
6609 else
a513fe88 6610 {
1a557723
JL
6611 t = build_int_cst (TREE_TYPE (op1), 1);
6612 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6613 t = fold_convert (TREE_TYPE (op0), t);
726a989a
RB
6614
6615 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6616 gimple_assign_set_rhs1 (stmt, op0);
6617 gimple_assign_set_rhs2 (stmt, t);
1a557723
JL
6618 }
6619
1a557723 6620 update_stmt (stmt);
30821654 6621 return true;
1a557723 6622 }
30821654
PB
6623
6624 return false;
1a557723 6625}
a513fe88 6626
1a557723
JL
6627/* If the operand to an ABS_EXPR is >= 0, then eliminate the
6628 ABS_EXPR. If the operand is <= 0, then simplify the
6629 ABS_EXPR into a NEGATE_EXPR. */
6630
30821654 6631static bool
726a989a 6632simplify_abs_using_ranges (gimple stmt)
1a557723
JL
6633{
6634 tree val = NULL;
726a989a 6635 tree op = gimple_assign_rhs1 (stmt);
1a557723 6636 tree type = TREE_TYPE (op);
726a989a 6637 value_range_t *vr = get_value_range (op);
1a557723
JL
6638
6639 if (TYPE_UNSIGNED (type))
6640 {
6641 val = integer_zero_node;
6642 }
6643 else if (vr)
6644 {
12df8a7e
ILT
6645 bool sop = false;
6646
6647 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
1a557723
JL
6648 if (!val)
6649 {
12df8a7e
ILT
6650 sop = false;
6651 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6652 &sop);
1a557723
JL
6653
6654 if (val)
a513fe88 6655 {
1a557723
JL
6656 if (integer_zerop (val))
6657 val = integer_one_node;
6658 else if (integer_onep (val))
6659 val = integer_zero_node;
6660 }
6661 }
a513fe88 6662
1a557723
JL
6663 if (val
6664 && (integer_onep (val) || integer_zerop (val)))
6665 {
0c948c27
ILT
6666 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6667 {
726a989a 6668 location_t location;
0c948c27 6669
726a989a
RB
6670 if (!gimple_has_location (stmt))
6671 location = input_location;
0c948c27 6672 else
726a989a 6673 location = gimple_location (stmt);
0c948c27
ILT
6674 warning (OPT_Wstrict_overflow,
6675 ("%Hassuming signed overflow does not occur when "
6676 "simplifying abs (X) to X or -X"),
726a989a 6677 &location);
0c948c27
ILT
6678 }
6679
726a989a 6680 gimple_assign_set_rhs1 (stmt, op);
1a557723 6681 if (integer_onep (val))
726a989a 6682 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
1a557723 6683 else
726a989a 6684 gimple_assign_set_rhs_code (stmt, SSA_NAME);
1a557723 6685 update_stmt (stmt);
30821654 6686 return true;
1a557723
JL
6687 }
6688 }
30821654
PB
6689
6690 return false;
1a557723
JL
6691}
6692
d579f20b
JL
6693/* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6694 a known value range VR.
6695
6696 If there is one and only one value which will satisfy the
6697 conditional, then return that value. Else return NULL. */
6698
6699static tree
6700test_for_singularity (enum tree_code cond_code, tree op0,
6701 tree op1, value_range_t *vr)
6702{
6703 tree min = NULL;
6704 tree max = NULL;
6705
6706 /* Extract minimum/maximum values which satisfy the
6707 the conditional as it was written. */
6708 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
6709 {
12df8a7e
ILT
6710 /* This should not be negative infinity; there is no overflow
6711 here. */
d579f20b
JL
6712 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
6713
6714 max = op1;
12df8a7e 6715 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
d579f20b
JL
6716 {
6717 tree one = build_int_cst (TREE_TYPE (op0), 1);
a5ad7269 6718 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
3fe5bcaf
ILT
6719 if (EXPR_P (max))
6720 TREE_NO_WARNING (max) = 1;
d579f20b
JL
6721 }
6722 }
6723 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
6724 {
12df8a7e
ILT
6725 /* This should not be positive infinity; there is no overflow
6726 here. */
d579f20b
JL
6727 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
6728
6729 min = op1;
12df8a7e 6730 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
d579f20b
JL
6731 {
6732 tree one = build_int_cst (TREE_TYPE (op0), 1);
f9fe7aed 6733 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
3fe5bcaf
ILT
6734 if (EXPR_P (min))
6735 TREE_NO_WARNING (min) = 1;
d579f20b
JL
6736 }
6737 }
6738
6739 /* Now refine the minimum and maximum values using any
6740 value range information we have for op0. */
6741 if (min && max)
6742 {
6743 if (compare_values (vr->min, min) == -1)
6744 min = min;
6745 else
6746 min = vr->min;
6747 if (compare_values (vr->max, max) == 1)
6748 max = max;
6749 else
6750 max = vr->max;
6751
f9fe7aed
JL
6752 /* If the new min/max values have converged to a single value,
6753 then there is only one value which can satisfy the condition,
6754 return that value. */
6755 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
d579f20b
JL
6756 return min;
6757 }
6758 return NULL;
6759}
6760
1a557723
JL
6761/* Simplify a conditional using a relational operator to an equality
6762 test if the range information indicates only one value can satisfy
6763 the original conditional. */
6764
30821654 6765static bool
726a989a 6766simplify_cond_using_ranges (gimple stmt)
1a557723 6767{
726a989a
RB
6768 tree op0 = gimple_cond_lhs (stmt);
6769 tree op1 = gimple_cond_rhs (stmt);
6770 enum tree_code cond_code = gimple_cond_code (stmt);
1a557723
JL
6771
6772 if (cond_code != NE_EXPR
6773 && cond_code != EQ_EXPR
6774 && TREE_CODE (op0) == SSA_NAME
6775 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
6776 && is_gimple_min_invariant (op1))
6777 {
6778 value_range_t *vr = get_value_range (op0);
6779
6780 /* If we have range information for OP0, then we might be
6781 able to simplify this conditional. */
6782 if (vr->type == VR_RANGE)
6783 {
82d6e6fc 6784 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
1a557723 6785
82d6e6fc 6786 if (new_tree)
1a557723 6787 {
d579f20b 6788 if (dump_file)
1a557723 6789 {
d579f20b 6790 fprintf (dump_file, "Simplified relational ");
726a989a 6791 print_gimple_stmt (dump_file, stmt, 0, 0);
d579f20b 6792 fprintf (dump_file, " into ");
a513fe88
JL
6793 }
6794
726a989a
RB
6795 gimple_cond_set_code (stmt, EQ_EXPR);
6796 gimple_cond_set_lhs (stmt, op0);
82d6e6fc 6797 gimple_cond_set_rhs (stmt, new_tree);
726a989a 6798
d579f20b
JL
6799 update_stmt (stmt);
6800
6801 if (dump_file)
a513fe88 6802 {
726a989a 6803 print_gimple_stmt (dump_file, stmt, 0, 0);
d579f20b 6804 fprintf (dump_file, "\n");
a513fe88 6805 }
d579f20b 6806
30821654 6807 return true;
a513fe88
JL
6808 }
6809
d579f20b
JL
6810 /* Try again after inverting the condition. We only deal
6811 with integral types here, so no need to worry about
6812 issues with inverting FP comparisons. */
6813 cond_code = invert_tree_comparison (cond_code, false);
82d6e6fc 6814 new_tree = test_for_singularity (cond_code, op0, op1, vr);
d579f20b 6815
82d6e6fc 6816 if (new_tree)
1a557723 6817 {
d579f20b 6818 if (dump_file)
1a557723 6819 {
d579f20b 6820 fprintf (dump_file, "Simplified relational ");
726a989a 6821 print_gimple_stmt (dump_file, stmt, 0, 0);
d579f20b 6822 fprintf (dump_file, " into ");
1a557723 6823 }
d579f20b 6824
726a989a
RB
6825 gimple_cond_set_code (stmt, NE_EXPR);
6826 gimple_cond_set_lhs (stmt, op0);
82d6e6fc 6827 gimple_cond_set_rhs (stmt, new_tree);
726a989a 6828
d579f20b
JL
6829 update_stmt (stmt);
6830
6831 if (dump_file)
6832 {
726a989a 6833 print_gimple_stmt (dump_file, stmt, 0, 0);
d579f20b
JL
6834 fprintf (dump_file, "\n");
6835 }
d579f20b 6836
30821654 6837 return true;
1a557723 6838 }
a513fe88
JL
6839 }
6840 }
30821654
PB
6841
6842 return false;
a513fe88
JL
6843}
6844
b7814a18
RG
6845/* Simplify a switch statement using the value range of the switch
6846 argument. */
6847
30821654 6848static bool
726a989a 6849simplify_switch_using_ranges (gimple stmt)
b7814a18 6850{
726a989a 6851 tree op = gimple_switch_index (stmt);
b7814a18
RG
6852 value_range_t *vr;
6853 bool take_default;
6854 edge e;
6855 edge_iterator ei;
6856 size_t i = 0, j = 0, n, n2;
726a989a 6857 tree vec2;
b7814a18
RG
6858 switch_update su;
6859
92ef7fb1
MLI
6860 if (TREE_CODE (op) == SSA_NAME)
6861 {
6862 vr = get_value_range (op);
b7814a18 6863
92ef7fb1
MLI
6864 /* We can only handle integer ranges. */
6865 if (vr->type != VR_RANGE
6866 || symbolic_range_p (vr))
6867 return false;
b7814a18 6868
92ef7fb1
MLI
6869 /* Find case label for min/max of the value range. */
6870 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6871 }
6872 else if (TREE_CODE (op) == INTEGER_CST)
6873 {
6874 take_default = !find_case_label_index (stmt, 1, op, &i);
6875 if (take_default)
6876 {
6877 i = 1;
6878 j = 0;
6879 }
6880 else
6881 {
6882 j = i;
6883 }
6884 }
6885 else
30821654 6886 return false;
b7814a18 6887
726a989a 6888 n = gimple_switch_num_labels (stmt);
b7814a18
RG
6889
6890 /* Bail out if this is just all edges taken. */
726a989a
RB
6891 if (i == 1
6892 && j == n - 1
b7814a18 6893 && take_default)
30821654 6894 return false;
b7814a18
RG
6895
6896 /* Build a new vector of taken case labels. */
6897 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
726a989a 6898 n2 = 0;
b7814a18
RG
6899
6900 /* Add the default edge, if necessary. */
6901 if (take_default)
726a989a
RB
6902 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
6903
6904 for (; i <= j; ++i, ++n2)
6905 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
b7814a18
RG
6906
6907 /* Mark needed edges. */
6908 for (i = 0; i < n2; ++i)
6909 {
726a989a 6910 e = find_edge (gimple_bb (stmt),
b7814a18
RG
6911 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
6912 e->aux = (void *)-1;
6913 }
6914
6915 /* Queue not needed edges for later removal. */
726a989a 6916 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
b7814a18
RG
6917 {
6918 if (e->aux == (void *)-1)
6919 {
6920 e->aux = NULL;
6921 continue;
6922 }
6923
6924 if (dump_file && (dump_flags & TDF_DETAILS))
6925 {
6926 fprintf (dump_file, "removing unreachable case label\n");
6927 }
6928 VEC_safe_push (edge, heap, to_remove_edges, e);
6929 }
6930
6931 /* And queue an update for the stmt. */
6932 su.stmt = stmt;
6933 su.vec = vec2;
6934 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
30821654 6935 return false;
b7814a18
RG
6936}
6937
1a557723
JL
6938/* Simplify STMT using ranges if possible. */
6939
30821654
PB
6940bool
6941simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
1a557723 6942{
30821654 6943 gimple stmt = gsi_stmt (*gsi);
726a989a 6944 if (is_gimple_assign (stmt))
1a557723 6945 {
726a989a 6946 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
1a557723 6947
30821654
PB
6948 switch (rhs_code)
6949 {
6950 case EQ_EXPR:
6951 case NE_EXPR:
6952 case TRUTH_NOT_EXPR:
6953 case TRUTH_AND_EXPR:
6954 case TRUTH_OR_EXPR:
6955 case TRUTH_XOR_EXPR:
6956 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
6957 or identity if the RHS is zero or one, and the LHS are known
6958 to be boolean values. Transform all TRUTH_*_EXPR into
6959 BIT_*_EXPR if both arguments are known to be boolean values. */
6960 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6961 return simplify_truth_ops_using_ranges (gsi, stmt);
6962 break;
6963
1a557723
JL
6964 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
6965 and BIT_AND_EXPR respectively if the first operand is greater
6966 than zero and the second operand is an exact power of two. */
30821654
PB
6967 case TRUNC_DIV_EXPR:
6968 case TRUNC_MOD_EXPR:
6969 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6970 && integer_pow2p (gimple_assign_rhs2 (stmt)))
6971 return simplify_div_or_mod_using_ranges (stmt);
6972 break;
1a557723
JL
6973
6974 /* Transform ABS (X) into X or -X as appropriate. */
30821654
PB
6975 case ABS_EXPR:
6976 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
6977 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6978 return simplify_abs_using_ranges (stmt);
6979 break;
6980
6981 default:
6982 break;
6983 }
1a557723 6984 }
726a989a 6985 else if (gimple_code (stmt) == GIMPLE_COND)
30821654 6986 return simplify_cond_using_ranges (stmt);
726a989a 6987 else if (gimple_code (stmt) == GIMPLE_SWITCH)
30821654
PB
6988 return simplify_switch_using_ranges (stmt);
6989
6990 return false;
1a557723
JL
6991}
6992
2090d6a0
JL
6993/* Stack of dest,src equivalency pairs that need to be restored after
6994 each attempt to thread a block's incoming edge to an outgoing edge.
6995
6996 A NULL entry is used to mark the end of pairs which need to be
6997 restored. */
6998static VEC(tree,heap) *stack;
6999
0c948c27
ILT
7000/* A trivial wrapper so that we can present the generic jump threading
7001 code with a simple API for simplifying statements. STMT is the
7002 statement we want to simplify, WITHIN_STMT provides the location
7003 for any overflow warnings. */
7004
2090d6a0 7005static tree
726a989a 7006simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
2090d6a0
JL
7007{
7008 /* We only use VRP information to simplify conditionals. This is
7009 overly conservative, but it's unclear if doing more would be
7010 worth the compile time cost. */
726a989a 7011 if (gimple_code (stmt) != GIMPLE_COND)
2090d6a0
JL
7012 return NULL;
7013
726a989a
RB
7014 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7015 gimple_cond_lhs (stmt),
7016 gimple_cond_rhs (stmt), within_stmt);
2090d6a0
JL
7017}
7018
7019/* Blocks which have more than one predecessor and more than
fa10beec 7020 one successor present jump threading opportunities, i.e.,
2090d6a0
JL
7021 when the block is reached from a specific predecessor, we
7022 may be able to determine which of the outgoing edges will
7023 be traversed. When this optimization applies, we are able
7024 to avoid conditionals at runtime and we may expose secondary
7025 optimization opportunities.
7026
7027 This routine is effectively a driver for the generic jump
7028 threading code. It basically just presents the generic code
7029 with edges that may be suitable for jump threading.
7030
7031 Unlike DOM, we do not iterate VRP if jump threading was successful.
7032 While iterating may expose new opportunities for VRP, it is expected
7033 those opportunities would be very limited and the compile time cost
7034 to expose those opportunities would be significant.
7035
7036 As jump threading opportunities are discovered, they are registered
7037 for later realization. */
7038
7039static void
7040identify_jump_threads (void)
7041{
7042 basic_block bb;
726a989a 7043 gimple dummy;
b7814a18
RG
7044 int i;
7045 edge e;
2090d6a0
JL
7046
7047 /* Ugh. When substituting values earlier in this pass we can
7048 wipe the dominance information. So rebuild the dominator
7049 information as we need it within the jump threading code. */
7050 calculate_dominance_info (CDI_DOMINATORS);
7051
7052 /* We do not allow VRP information to be used for jump threading
7053 across a back edge in the CFG. Otherwise it becomes too
7054 difficult to avoid eliminating loop exit tests. Of course
7055 EDGE_DFS_BACK is not accurate at this time so we have to
7056 recompute it. */
7057 mark_dfs_back_edges ();
7058
b7814a18
RG
7059 /* Do not thread across edges we are about to remove. Just marking
7060 them as EDGE_DFS_BACK will do. */
7061 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7062 e->flags |= EDGE_DFS_BACK;
7063
2090d6a0
JL
7064 /* Allocate our unwinder stack to unwind any temporary equivalences
7065 that might be recorded. */
7066 stack = VEC_alloc (tree, heap, 20);
7067
7068 /* To avoid lots of silly node creation, we create a single
7069 conditional and just modify it in-place when attempting to
7070 thread jumps. */
726a989a
RB
7071 dummy = gimple_build_cond (EQ_EXPR,
7072 integer_zero_node, integer_zero_node,
7073 NULL, NULL);
2090d6a0
JL
7074
7075 /* Walk through all the blocks finding those which present a
7076 potential jump threading opportunity. We could set this up
7077 as a dominator walker and record data during the walk, but
7078 I doubt it's worth the effort for the classes of jump
7079 threading opportunities we are trying to identify at this
7080 point in compilation. */
7081 FOR_EACH_BB (bb)
7082 {
726a989a 7083 gimple last;
2090d6a0
JL
7084
7085 /* If the generic jump threading code does not find this block
7086 interesting, then there is nothing to do. */
7087 if (! potentially_threadable_block (bb))
7088 continue;
7089
7090 /* We only care about blocks ending in a COND_EXPR. While there
7091 may be some value in handling SWITCH_EXPR here, I doubt it's
7092 terribly important. */
726a989a
RB
7093 last = gsi_stmt (gsi_last_bb (bb));
7094 if (gimple_code (last) != GIMPLE_COND)
2090d6a0
JL
7095 continue;
7096
7097 /* We're basically looking for any kind of conditional with
7098 integral type arguments. */
726a989a
RB
7099 if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7100 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7101 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7102 || is_gimple_min_invariant (gimple_cond_rhs (last)))
7103 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
2090d6a0
JL
7104 {
7105 edge_iterator ei;
2090d6a0
JL
7106
7107 /* We've got a block with multiple predecessors and multiple
7108 successors which also ends in a suitable conditional. For
7109 each predecessor, see if we can thread it to a specific
7110 successor. */
7111 FOR_EACH_EDGE (e, ei, bb->preds)
7112 {
7113 /* Do not thread across back edges or abnormal edges
7114 in the CFG. */
7115 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7116 continue;
7117
726a989a 7118 thread_across_edge (dummy, e, true, &stack,
2090d6a0
JL
7119 simplify_stmt_for_jump_threading);
7120 }
7121 }
7122 }
7123
7124 /* We do not actually update the CFG or SSA graphs at this point as
7125 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7126 handle ASSERT_EXPRs gracefully. */
7127}
7128
7129/* We identified all the jump threading opportunities earlier, but could
7130 not transform the CFG at that time. This routine transforms the
7131 CFG and arranges for the dominator tree to be rebuilt if necessary.
7132
7133 Note the SSA graph update will occur during the normal TODO
7134 processing by the pass manager. */
7135static void
7136finalize_jump_threads (void)
7137{
b02b9b53 7138 thread_through_all_blocks (false);
2090d6a0
JL
7139 VEC_free (tree, heap, stack);
7140}
1a557723 7141
0bca51f0
DN
7142
7143/* Traverse all the blocks folding conditionals with known ranges. */
7144
7145static void
7146vrp_finalize (void)
7147{
227858d1
DN
7148 size_t i;
7149 prop_value_t *single_val_range;
7150 bool do_value_subst_p;
0bca51f0
DN
7151
7152 if (dump_file)
7153 {
7154 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7155 dump_all_value_ranges (dump_file);
7156 fprintf (dump_file, "\n");
7157 }
7158
227858d1
DN
7159 /* We may have ended with ranges that have exactly one value. Those
7160 values can be substituted as any other copy/const propagated
7161 value using substitute_and_fold. */
b9eae1a9 7162 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
227858d1
DN
7163
7164 do_value_subst_p = false;
7165 for (i = 0; i < num_ssa_names; i++)
7166 if (vr_value[i]
7167 && vr_value[i]->type == VR_RANGE
7168 && vr_value[i]->min == vr_value[i]->max)
7169 {
7170 single_val_range[i].value = vr_value[i]->min;
7171 do_value_subst_p = true;
7172 }
7173
7174 if (!do_value_subst_p)
0bca51f0 7175 {
227858d1
DN
7176 /* We found no single-valued ranges, don't waste time trying to
7177 do single value substitution in substitute_and_fold. */
7178 free (single_val_range);
7179 single_val_range = NULL;
0bca51f0
DN
7180 }
7181
227858d1
DN
7182 substitute_and_fold (single_val_range, true);
7183
590b1f2d 7184 if (warn_array_bounds)
62e5bf5d 7185 check_all_array_refs ();
590b1f2d 7186
2090d6a0
JL
7187 /* We must identify jump threading opportunities before we release
7188 the datastructures built by VRP. */
7189 identify_jump_threads ();
7190
227858d1
DN
7191 /* Free allocated memory. */
7192 for (i = 0; i < num_ssa_names; i++)
7193 if (vr_value[i])
7194 {
7195 BITMAP_FREE (vr_value[i]->equiv);
7196 free (vr_value[i]);
7197 }
7198
7199 free (single_val_range);
7200 free (vr_value);
fc6827fe 7201 free (vr_phi_edge_counts);
b16caf72
JL
7202
7203 /* So that we can distinguish between VRP data being available
7204 and not available. */
7205 vr_value = NULL;
fc6827fe 7206 vr_phi_edge_counts = NULL;
0bca51f0
DN
7207}
7208
7209
7210/* Main entry point to VRP (Value Range Propagation). This pass is
7211 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7212 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7213 Programming Language Design and Implementation, pp. 67-78, 1995.
7214 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7215
7216 This is essentially an SSA-CCP pass modified to deal with ranges
7217 instead of constants.
7218
227858d1
DN
7219 While propagating ranges, we may find that two or more SSA name
7220 have equivalent, though distinct ranges. For instance,
7221
7222 1 x_9 = p_3->a;
7223 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7224 3 if (p_4 == q_2)
7225 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7226 5 endif
7227 6 if (q_2)
7228
7229 In the code above, pointer p_5 has range [q_2, q_2], but from the
7230 code we can also determine that p_5 cannot be NULL and, if q_2 had
7231 a non-varying range, p_5's range should also be compatible with it.
7232
8ab5f5c9 7233 These equivalences are created by two expressions: ASSERT_EXPR and
227858d1
DN
7234 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7235 result of another assertion, then we can use the fact that p_5 and
7236 p_4 are equivalent when evaluating p_5's range.
7237
8ab5f5c9 7238 Together with value ranges, we also propagate these equivalences
227858d1
DN
7239 between names so that we can take advantage of information from
7240 multiple ranges when doing final replacement. Note that this
7241 equivalency relation is transitive but not symmetric.
7242
7243 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7244 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7245 in contexts where that assertion does not hold (e.g., in line 6).
7246
0bca51f0
DN
7247 TODO, the main difference between this pass and Patterson's is that
7248 we do not propagate edge probabilities. We only compute whether
7249 edges can be taken or not. That is, instead of having a spectrum
7250 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7251 DON'T KNOW. In the future, it may be worthwhile to propagate
7252 probabilities to aid branch prediction. */
7253
c2924966 7254static unsigned int
0bca51f0
DN
7255execute_vrp (void)
7256{
b7814a18
RG
7257 int i;
7258 edge e;
7259 switch_update *su;
7260
b02b9b53 7261 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
d51157de
ZD
7262 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7263 scev_initialize ();
b02b9b53
ZD
7264
7265 insert_range_assertions ();
0bca51f0 7266
b7814a18
RG
7267 to_remove_edges = VEC_alloc (edge, heap, 10);
7268 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
448ee662 7269 threadedge_initialize_values ();
b7814a18 7270
227858d1
DN
7271 vrp_initialize ();
7272 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7273 vrp_finalize ();
0bca51f0 7274
2090d6a0
JL
7275 /* ASSERT_EXPRs must be removed before finalizing jump threads
7276 as finalizing jump threads calls the CFG cleanup code which
7277 does not properly handle ASSERT_EXPRs. */
0bca51f0 7278 remove_range_assertions ();
59c02d8a
JL
7279
7280 /* If we exposed any new variables, go ahead and put them into
7281 SSA form now, before we handle jump threading. This simplifies
7282 interactions between rewriting of _DECL nodes into SSA form
7283 and rewriting SSA_NAME nodes into SSA form after block
7284 duplication and CFG manipulation. */
7285 update_ssa (TODO_update_ssa);
7286
2090d6a0 7287 finalize_jump_threads ();
0a4bf1d3
RG
7288
7289 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7290 CFG in a broken state and requires a cfg_cleanup run. */
7291 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7292 remove_edge (e);
7293 /* Update SWITCH_EXPR case label vector. */
7294 for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
726a989a
RB
7295 {
7296 size_t j;
7297 size_t n = TREE_VEC_LENGTH (su->vec);
256f88c6 7298 tree label;
726a989a
RB
7299 gimple_switch_set_num_labels (su->stmt, n);
7300 for (j = 0; j < n; j++)
7301 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
256f88c6
RG
7302 /* As we may have replaced the default label with a regular one
7303 make sure to make it a real default label again. This ensures
7304 optimal expansion. */
7305 label = gimple_switch_default_label (su->stmt);
7306 CASE_LOW (label) = NULL_TREE;
7307 CASE_HIGH (label) = NULL_TREE;
726a989a 7308 }
0a4bf1d3
RG
7309
7310 if (VEC_length (edge, to_remove_edges) > 0)
82893cba 7311 free_dominance_info (CDI_DOMINATORS);
0a4bf1d3
RG
7312
7313 VEC_free (edge, heap, to_remove_edges);
7314 VEC_free (switch_update, heap, to_update_switch_stmts);
448ee662 7315 threadedge_finalize_values ();
0a4bf1d3 7316
d51157de
ZD
7317 scev_finalize ();
7318 loop_optimizer_finalize ();
c2924966 7319 return 0;
0bca51f0
DN
7320}
7321
7322static bool
7323gate_vrp (void)
7324{
7325 return flag_tree_vrp != 0;
7326}
7327
8ddbbcae 7328struct gimple_opt_pass pass_vrp =
0bca51f0 7329{
8ddbbcae
JH
7330 {
7331 GIMPLE_PASS,
0bca51f0
DN
7332 "vrp", /* name */
7333 gate_vrp, /* gate */
7334 execute_vrp, /* execute */
7335 NULL, /* sub */
7336 NULL, /* next */
7337 0, /* static_pass_number */
7338 TV_TREE_VRP, /* tv_id */
4effdf02 7339 PROP_ssa, /* properties_required */
0bca51f0 7340 0, /* properties_provided */
ae07b463 7341 0, /* properties_destroyed */
0bca51f0
DN
7342 0, /* todo_flags_start */
7343 TODO_cleanup_cfg
7344 | TODO_ggc_collect
7345 | TODO_verify_ssa
7346 | TODO_dump_func
8ddbbcae
JH
7347 | TODO_update_ssa /* todo_flags_finish */
7348 }
0bca51f0 7349};