]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/unroll.c
alias.c (nonlocal_mentioned_p, [...]): Use, LABEL_P, JUMP_P, CALL_P, NONJUMP_INSN_P...
[thirdparty/gcc.git] / gcc / unroll.c
CommitLineData
67f2de41 1/* Try to unroll loops, and split induction variables.
2e1eedd6 2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001,
ec8e098d 3 2002, 2003, 2004
a86dc4a3 4 Free Software Foundation, Inc.
67f2de41
RK
5 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6
1322177d 7This file is part of GCC.
67f2de41 8
1322177d
LB
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
11Software Foundation; either version 2, or (at your option) any later
12version.
67f2de41 13
1322177d
LB
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
67f2de41
RK
18
19You should have received a copy of the GNU General Public License
1322177d
LB
20along with GCC; see the file COPYING. If not, write to the Free
21Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2202111-1307, USA. */
67f2de41
RK
23
24/* Try to unroll a loop, and split induction variables.
25
26 Loops for which the number of iterations can be calculated exactly are
27 handled specially. If the number of iterations times the insn_count is
28 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
29 Otherwise, we try to unroll the loop a number of times modulo the number
30 of iterations, so that only one exit test will be needed. It is unrolled
31 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
32 the insn count.
33
34 Otherwise, if the number of iterations can be calculated exactly at
35 run time, and the loop is always entered at the top, then we try to
36 precondition the loop. That is, at run time, calculate how many times
37 the loop will execute, and then execute the loop body a few times so
38 that the remaining iterations will be some multiple of 4 (or 2 if the
39 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
40 with only one exit test needed at the end of the loop.
41
42 Otherwise, if the number of iterations can not be calculated exactly,
43 not even at run time, then we still unroll the loop a number of times
44 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
45 but there must be an exit test after each copy of the loop body.
46
47 For each induction variable, which is dead outside the loop (replaceable)
48 or for which we can easily calculate the final value, if we can easily
49 calculate its value at each place where it is set as a function of the
50 current loop unroll count and the variable's value at loop entry, then
51 the induction variable is split into `N' different variables, one for
52 each copy of the loop body. One variable is live across the backward
53 branch, and the others are all calculated as a function of this variable.
54 This helps eliminate data dependencies, and leads to further opportunities
55 for cse. */
56
57/* Possible improvements follow: */
58
59/* ??? Add an extra pass somewhere to determine whether unrolling will
60 give any benefit. E.g. after generating all unrolled insns, compute the
61 cost of all insns and compare against cost of insns in rolled loop.
62
63 - On traditional architectures, unrolling a non-constant bound loop
64 is a win if there is a giv whose only use is in memory addresses, the
6dc42e49 65 memory addresses can be split, and hence giv increments can be
67f2de41
RK
66 eliminated.
67 - It is also a win if the loop is executed many times, and preconditioning
68 can be performed for the loop.
69 Add code to check for these and similar cases. */
70
71/* ??? Improve control of which loops get unrolled. Could use profiling
72 info to only unroll the most commonly executed loops. Perhaps have
14b493d6 73 a user specifiable option to control the amount of code expansion,
67f2de41
RK
74 or the percent of loops to consider for unrolling. Etc. */
75
76/* ??? Look at the register copies inside the loop to see if they form a
77 simple permutation. If so, iterate the permutation until it gets back to
78 the start state. This is how many times we should unroll the loop, for
79 best results, because then all register copies can be eliminated.
80 For example, the lisp nreverse function should be unrolled 3 times
81 while (this)
82 {
83 next = this->cdr;
84 this->cdr = prev;
85 prev = this;
86 this = next;
87 }
88
89 ??? The number of times to unroll the loop may also be based on data
90 references in the loop. For example, if we have a loop that references
91 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
92
93/* ??? Add some simple linear equation solving capability so that we can
94 determine the number of loop iterations for more complex loops.
95 For example, consider this loop from gdb
96 #define SWAP_TARGET_AND_HOST(buffer,len)
97 {
98 char tmp;
99 char *p = (char *) buffer;
100 char *q = ((char *) buffer) + len - 1;
101 int iterations = (len + 1) >> 1;
102 int i;
103 for (p; p < q; p++, q--;)
a5af23fe
R
104 {
105 tmp = *q;
106 *q = *p;
107 *p = tmp;
108 }
67f2de41
RK
109 }
110 Note that:
111 start value = p = &buffer + current_iteration
112 end value = q = &buffer + len - 1 - current_iteration
113 Given the loop exit test of "p < q", then there must be "q - p" iterations,
114 set equal to zero and solve for number of iterations:
115 q - p = len - 1 - 2*current_iteration = 0
116 current_iteration = (len - 1) / 2
117 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
118 iterations of this loop. */
119
120/* ??? Currently, no labels are marked as loop invariant when doing loop
121 unrolling. This is because an insn inside the loop, that loads the address
122 of a label inside the loop into a register, could be moved outside the loop
123 by the invariant code motion pass if labels were invariant. If the loop
124 is subsequently unrolled, the code will be wrong because each unrolled
125 body of the loop will use the same address, whereas each actually needs a
126 different address. A case where this happens is when a loop containing
127 a switch statement is unrolled.
128
129 It would be better to let labels be considered invariant. When we
130 unroll loops here, check to see if any insns using a label local to the
131 loop were moved before the loop. If so, then correct the problem, by
132 moving the insn back into the loop, or perhaps replicate the insn before
133 the loop, one copy for each time the loop is unrolled. */
134
f6e67fa5
KG
135#include "config.h"
136#include "system.h"
4977bab6
ZW
137#include "coretypes.h"
138#include "tm.h"
f6e67fa5
KG
139#include "rtl.h"
140#include "tm_p.h"
141#include "insn-config.h"
142#include "integrate.h"
143#include "regs.h"
144#include "recog.h"
145#include "flags.h"
146#include "function.h"
147#include "expr.h"
148#include "loop.h"
149#include "toplev.h"
150#include "hard-reg-set.h"
151#include "basic-block.h"
152#include "predict.h"
03e9dbc9 153#include "params.h"
3d436d2a 154#include "cfgloop.h"
f6e67fa5 155
67f2de41
RK
156/* The prime factors looked for when trying to unroll a loop by some
157 number which is modulo the total number of iterations. Just checking
158 for these 4 prime factors will find at least one factor for 75% of
159 all numbers theoretically. Practically speaking, this will succeed
160 almost all of the time since loops are generally a multiple of 2
161 and/or 5. */
162
163#define NUM_FACTORS 4
164
c083a819 165static struct _factor { const int factor; int count; }
a86dc4a3 166factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
a5af23fe 167
67f2de41
RK
168/* Describes the different types of loop unrolling performed. */
169
a86dc4a3
KH
170enum unroll_types
171{
172 UNROLL_COMPLETELY,
173 UNROLL_MODULO,
174 UNROLL_NAIVE
175};
67f2de41 176
0e9e1e0a 177/* Indexed by register number, if nonzero, then it contains a pointer
67f2de41
RK
178 to a struct induction for a DEST_REG giv which has been combined with
179 one of more address givs. This is needed because whenever such a DEST_REG
180 giv is modified, we must modify the value of all split address givs
181 that were combined with this DEST_REG giv. */
182
183static struct induction **addr_combined_regs;
184
185/* Indexed by register number, if this is a splittable induction variable,
186 then this will hold the current value of the register, which depends on the
187 iteration number. */
188
189static rtx *splittable_regs;
190
191/* Indexed by register number, if this is a splittable induction variable,
192 then this will hold the number of instructions in the loop that modify
193 the induction variable. Used to ensure that only the last insn modifying
194 a split iv will update the original iv of the dest. */
195
196static int *splittable_regs_updates;
197
67f2de41
RK
198/* Forward declarations. */
199
2e1eedd6
AJ
200static rtx simplify_cmp_and_jump_insns (enum rtx_code, enum machine_mode,
201 rtx, rtx, rtx);
202static void init_reg_map (struct inline_remap *, int);
203static rtx calculate_giv_inc (rtx, rtx, unsigned int);
204static rtx initial_reg_note_copy (rtx, struct inline_remap *);
205static void final_reg_note_copy (rtx *, struct inline_remap *);
206static void copy_loop_body (struct loop *, rtx, rtx,
207 struct inline_remap *, rtx, int,
208 enum unroll_types, rtx, rtx, rtx, rtx);
209static int find_splittable_regs (const struct loop *, enum unroll_types,
210 int);
211static int find_splittable_givs (const struct loop *, struct iv_class *,
212 enum unroll_types, rtx, int);
213static int reg_dead_after_loop (const struct loop *, rtx);
214static rtx fold_rtx_mult_add (rtx, rtx, rtx, enum machine_mode);
215static rtx remap_split_bivs (struct loop *, rtx);
216static rtx find_common_reg_term (rtx, rtx);
217static rtx subtract_reg_term (rtx, rtx);
218static rtx loop_find_equiv_value (const struct loop *, rtx);
219static rtx ujump_to_loop_cont (rtx, rtx);
67f2de41
RK
220
221/* Try to unroll one loop and split induction variables in the loop.
222
0534b804 223 The loop is described by the arguments LOOP and INSN_COUNT.
96a45535
MH
224 STRENGTH_REDUCTION_P indicates whether information generated in the
225 strength reduction pass is available.
67f2de41
RK
226
227 This function is intended to be called from within `strength_reduce'
228 in loop.c. */
229
230void
2e1eedd6 231unroll_loop (struct loop *loop, int insn_count, int strength_reduce_p)
67f2de41 232{
ed5bb68d
MH
233 struct loop_info *loop_info = LOOP_INFO (loop);
234 struct loop_ivs *ivs = LOOP_IVS (loop);
1953b2a3 235 int i, j;
770ae6cc 236 unsigned int r;
1953b2a3 237 unsigned HOST_WIDE_INT temp;
c8d8ed65 238 int unroll_number = 1;
67f2de41 239 rtx copy_start, copy_end;
29a82058 240 rtx insn, sequence, pattern, tem;
67f2de41
RK
241 int max_labelno, max_insnno;
242 rtx insert_before;
243 struct inline_remap *map;
6a651371 244 char *local_label = NULL;
7f5b8ca7 245 char *local_regno;
770ae6cc
RK
246 unsigned int max_local_regnum;
247 unsigned int maxregnum;
67f2de41
RK
248 rtx exit_label = 0;
249 rtx start_label;
250 struct iv_class *bl;
67f2de41 251 int splitting_not_safe = 0;
78a0d70c 252 enum unroll_types unroll_type = UNROLL_NAIVE;
67f2de41
RK
253 int loop_preconditioned = 0;
254 rtx safety_label;
255 /* This points to the last real insn in the loop, which should be either
256 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
257 jumps). */
258 rtx last_loop_insn;
a2be868f
MH
259 rtx loop_start = loop->start;
260 rtx loop_end = loop->end;
67f2de41
RK
261
262 /* Don't bother unrolling huge loops. Since the minimum factor is
263 two, loops greater than one half of MAX_UNROLLED_INSNS will never
264 be unrolled. */
265 if (insn_count > MAX_UNROLLED_INSNS / 2)
266 {
267 if (loop_dump_stream)
268 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
269 return;
270 }
271
67f2de41
RK
272 /* Determine type of unroll to perform. Depends on the number of iterations
273 and the size of the loop. */
274
302670f3
MH
275 /* If there is no strength reduce info, then set
276 loop_info->n_iterations to zero. This can happen if
277 strength_reduce can't find any bivs in the loop. A value of zero
278 indicates that the number of iterations could not be calculated. */
67f2de41
RK
279
280 if (! strength_reduce_p)
302670f3 281 loop_info->n_iterations = 0;
67f2de41 282
302670f3 283 if (loop_dump_stream && loop_info->n_iterations > 0)
90ff44cf
KG
284 fprintf (loop_dump_stream, "Loop unrolling: " HOST_WIDE_INT_PRINT_DEC
285 " iterations.\n", loop_info->n_iterations);
67f2de41
RK
286
287 /* Find and save a pointer to the last nonnote insn in the loop. */
288
289 last_loop_insn = prev_nonnote_insn (loop_end);
290
291 /* Calculate how many times to unroll the loop. Indicate whether or
292 not the loop is being completely unrolled. */
293
302670f3 294 if (loop_info->n_iterations == 1)
67f2de41 295 {
4598ffe9
CM
296 /* Handle the case where the loop begins with an unconditional
297 jump to the loop condition. Make sure to delete the jump
298 insn, otherwise the loop body will never execute. */
299
2e2255ff
JM
300 /* FIXME this actually checks for a jump to the continue point, which
301 is not the same as the condition in a for loop. As a result, this
302 optimization fails for most for loops. We should really use flow
303 information rather than instruction pattern matching. */
4598ffe9 304 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
a86dc4a3 305
67f2de41
RK
306 /* If number of iterations is exactly 1, then eliminate the compare and
307 branch at the end of the loop since they will never be taken.
308 Then return, since no other action is needed here. */
309
310 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
311 don't do anything. */
312
4b4bf941 313 if (BARRIER_P (last_loop_insn))
67f2de41
RK
314 {
315 /* Delete the jump insn. This will delete the barrier also. */
2e2255ff 316 last_loop_insn = PREV_INSN (last_loop_insn);
67f2de41 317 }
2e2255ff 318
4b4bf941 319 if (ujump && JUMP_P (last_loop_insn))
67f2de41 320 {
da09e317 321#ifdef HAVE_cc0
b30f05db 322 rtx prev = PREV_INSN (last_loop_insn);
da09e317 323#endif
53c17031 324 delete_related_insns (last_loop_insn);
67f2de41 325#ifdef HAVE_cc0
b30f05db 326 /* The immediately preceding insn may be a compare which must be
67f2de41 327 deleted. */
44ce0063 328 if (only_sets_cc0_p (prev))
53c17031 329 delete_related_insns (prev);
67f2de41 330#endif
f5da5c87 331
2e2255ff 332 delete_related_insns (ujump);
f5da5c87 333
2e2255ff
JM
334 /* Remove the loop notes since this is no longer a loop. */
335 if (loop->vtop)
336 delete_related_insns (loop->vtop);
337 if (loop->cont)
338 delete_related_insns (loop->cont);
339 if (loop_start)
340 delete_related_insns (loop_start);
341 if (loop_end)
342 delete_related_insns (loop_end);
343
344 return;
345 }
67f2de41 346 }
2e2255ff
JM
347
348 if (loop_info->n_iterations > 0
349 /* Avoid overflow in the next expression. */
350 && loop_info->n_iterations < (unsigned) MAX_UNROLLED_INSNS
351 && loop_info->n_iterations * insn_count < (unsigned) MAX_UNROLLED_INSNS)
67f2de41 352 {
302670f3 353 unroll_number = loop_info->n_iterations;
67f2de41
RK
354 unroll_type = UNROLL_COMPLETELY;
355 }
302670f3 356 else if (loop_info->n_iterations > 0)
67f2de41
RK
357 {
358 /* Try to factor the number of iterations. Don't bother with the
359 general case, only using 2, 3, 5, and 7 will get 75% of all
360 numbers theoretically, and almost all in practice. */
361
362 for (i = 0; i < NUM_FACTORS; i++)
363 factors[i].count = 0;
364
302670f3 365 temp = loop_info->n_iterations;
67f2de41
RK
366 for (i = NUM_FACTORS - 1; i >= 0; i--)
367 while (temp % factors[i].factor == 0)
368 {
369 factors[i].count++;
370 temp = temp / factors[i].factor;
371 }
372
373 /* Start with the larger factors first so that we generally
374 get lots of unrolling. */
375
376 unroll_number = 1;
377 temp = insn_count;
378 for (i = 3; i >= 0; i--)
379 while (factors[i].count--)
380 {
a4b5414c 381 if (temp * factors[i].factor < (unsigned) MAX_UNROLLED_INSNS)
67f2de41
RK
382 {
383 unroll_number *= factors[i].factor;
384 temp *= factors[i].factor;
385 }
386 else
387 break;
388 }
389
390 /* If we couldn't find any factors, then unroll as in the normal
391 case. */
392 if (unroll_number == 1)
393 {
394 if (loop_dump_stream)
a86dc4a3 395 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
67f2de41
RK
396 }
397 else
398 unroll_type = UNROLL_MODULO;
399 }
400
67f2de41
RK
401 /* Default case, calculate number of times to unroll loop based on its
402 size. */
78a0d70c 403 if (unroll_type == UNROLL_NAIVE)
67f2de41
RK
404 {
405 if (8 * insn_count < MAX_UNROLLED_INSNS)
406 unroll_number = 8;
407 else if (4 * insn_count < MAX_UNROLLED_INSNS)
408 unroll_number = 4;
409 else
410 unroll_number = 2;
67f2de41
RK
411 }
412
413 /* Now we know how many times to unroll the loop. */
414
415 if (loop_dump_stream)
a86dc4a3 416 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
67f2de41
RK
417
418 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
419 {
15fec413
JL
420 /* Loops of these types can start with jump down to the exit condition
421 in rare circumstances.
422
423 Consider a pair of nested loops where the inner loop is part
424 of the exit code for the outer loop.
425
426 In this case jump.c will not duplicate the exit test for the outer
427 loop, so it will start with a jump to the exit code.
428
429 Then consider if the inner loop turns out to iterate once and
430 only once. We will end up deleting the jumps associated with
431 the inner loop. However, the loop notes are not removed from
432 the instruction stream.
433
434 And finally assume that we can compute the number of iterations
435 for the outer loop.
436
437 In this case unroll may want to unroll the outer loop even though
438 it starts with a jump to the outer loop's exit code.
439
440 We could try to optimize this case, but it hardly seems worth it.
441 Just return without unrolling the loop in such cases. */
442
67f2de41 443 insn = loop_start;
4b4bf941 444 while (!LABEL_P (insn) && !JUMP_P (insn))
67f2de41 445 insn = NEXT_INSN (insn);
4b4bf941 446 if (JUMP_P (insn))
15fec413 447 return;
67f2de41
RK
448 }
449
450 if (unroll_type == UNROLL_COMPLETELY)
451 {
452 /* Completely unrolling the loop: Delete the compare and branch at
453 the end (the last two instructions). This delete must done at the
454 very end of loop unrolling, to avoid problems with calls to
455 back_branch_in_range_p, which is called by find_splittable_regs.
456 All increments of splittable bivs/givs are changed to load constant
457 instructions. */
458
459 copy_start = loop_start;
460
461 /* Set insert_before to the instruction immediately after the JUMP_INSN
462 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
463 the loop will be correctly handled by copy_loop_body. */
464 insert_before = NEXT_INSN (last_loop_insn);
465
466 /* Set copy_end to the insn before the jump at the end of the loop. */
4b4bf941 467 if (BARRIER_P (last_loop_insn))
67f2de41 468 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
4b4bf941 469 else if (JUMP_P (last_loop_insn))
67f2de41 470 {
b30f05db 471 copy_end = PREV_INSN (last_loop_insn);
67f2de41 472#ifdef HAVE_cc0
b30f05db 473 /* The instruction immediately before the JUMP_INSN may be a compare
67f2de41 474 instruction which we do not want to copy. */
b30f05db
BS
475 if (sets_cc0_p (PREV_INSN (copy_end)))
476 copy_end = PREV_INSN (copy_end);
67f2de41
RK
477#endif
478 }
479 else
480 {
481 /* We currently can't unroll a loop if it doesn't end with a
482 JUMP_INSN. There would need to be a mechanism that recognizes
483 this case, and then inserts a jump after each loop body, which
484 jumps to after the last loop body. */
485 if (loop_dump_stream)
486 fprintf (loop_dump_stream,
487 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
488 return;
489 }
490 }
491 else if (unroll_type == UNROLL_MODULO)
492 {
493 /* Partially unrolling the loop: The compare and branch at the end
494 (the last two instructions) must remain. Don't copy the compare
495 and branch instructions at the end of the loop. Insert the unrolled
496 code immediately before the compare/branch at the end so that the
497 code will fall through to them as before. */
498
499 copy_start = loop_start;
500
501 /* Set insert_before to the jump insn at the end of the loop.
502 Set copy_end to before the jump insn at the end of the loop. */
4b4bf941 503 if (BARRIER_P (last_loop_insn))
67f2de41
RK
504 {
505 insert_before = PREV_INSN (last_loop_insn);
506 copy_end = PREV_INSN (insert_before);
507 }
4b4bf941 508 else if (JUMP_P (last_loop_insn))
67f2de41 509 {
b30f05db 510 insert_before = last_loop_insn;
67f2de41 511#ifdef HAVE_cc0
b30f05db 512 /* The instruction immediately before the JUMP_INSN may be a compare
67f2de41 513 instruction which we do not want to copy or delete. */
b30f05db
BS
514 if (sets_cc0_p (PREV_INSN (insert_before)))
515 insert_before = PREV_INSN (insert_before);
67f2de41 516#endif
b30f05db 517 copy_end = PREV_INSN (insert_before);
67f2de41
RK
518 }
519 else
520 {
521 /* We currently can't unroll a loop if it doesn't end with a
522 JUMP_INSN. There would need to be a mechanism that recognizes
523 this case, and then inserts a jump after each loop body, which
524 jumps to after the last loop body. */
525 if (loop_dump_stream)
526 fprintf (loop_dump_stream,
527 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
528 return;
529 }
530 }
531 else
532 {
533 /* Normal case: Must copy the compare and branch instructions at the
534 end of the loop. */
535
4b4bf941 536 if (BARRIER_P (last_loop_insn))
67f2de41
RK
537 {
538 /* Loop ends with an unconditional jump and a barrier.
539 Handle this like above, don't copy jump and barrier.
540 This is not strictly necessary, but doing so prevents generating
541 unconditional jumps to an immediately following label.
542
543 This will be corrected below if the target of this jump is
544 not the start_label. */
545
546 insert_before = PREV_INSN (last_loop_insn);
547 copy_end = PREV_INSN (insert_before);
548 }
4b4bf941 549 else if (JUMP_P (last_loop_insn))
67f2de41
RK
550 {
551 /* Set insert_before to immediately after the JUMP_INSN, so that
552 NOTEs at the end of the loop will be correctly handled by
553 copy_loop_body. */
554 insert_before = NEXT_INSN (last_loop_insn);
555 copy_end = last_loop_insn;
556 }
557 else
558 {
559 /* We currently can't unroll a loop if it doesn't end with a
560 JUMP_INSN. There would need to be a mechanism that recognizes
561 this case, and then inserts a jump after each loop body, which
562 jumps to after the last loop body. */
563 if (loop_dump_stream)
564 fprintf (loop_dump_stream,
565 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
566 return;
567 }
568
569 /* If copying exit test branches because they can not be eliminated,
570 then must convert the fall through case of the branch to a jump past
571 the end of the loop. Create a label to emit after the loop and save
572 it for later use. Do not use the label after the loop, if any, since
573 it might be used by insns outside the loop, or there might be insns
574 added before it later by final_[bg]iv_value which must be after
575 the real exit label. */
576 exit_label = gen_label_rtx ();
577
578 insn = loop_start;
4b4bf941 579 while (!LABEL_P (insn) && !JUMP_P (insn))
67f2de41
RK
580 insn = NEXT_INSN (insn);
581
4b4bf941 582 if (JUMP_P (insn))
67f2de41
RK
583 {
584 /* The loop starts with a jump down to the exit condition test.
585 Start copying the loop after the barrier following this
586 jump insn. */
587 copy_start = NEXT_INSN (insn);
588
589 /* Splitting induction variables doesn't work when the loop is
590 entered via a jump to the bottom, because then we end up doing
591 a comparison against a new register for a split variable, but
592 we did not execute the set insn for the new register because
593 it was skipped over. */
594 splitting_not_safe = 1;
595 if (loop_dump_stream)
596 fprintf (loop_dump_stream,
597 "Splitting not safe, because loop not entered at top.\n");
598 }
599 else
600 copy_start = loop_start;
601 }
602
603 /* This should always be the first label in the loop. */
604 start_label = NEXT_INSN (copy_start);
605 /* There may be a line number note and/or a loop continue note here. */
4b4bf941 606 while (NOTE_P (start_label))
67f2de41 607 start_label = NEXT_INSN (start_label);
4b4bf941 608 if (!LABEL_P (start_label))
67f2de41
RK
609 {
610 /* This can happen as a result of jump threading. If the first insns in
611 the loop test the same condition as the loop's backward jump, or the
612 opposite condition, then the backward jump will be modified to point
613 to elsewhere, and the loop's start label is deleted.
614
615 This case currently can not be handled by the loop unrolling code. */
616
617 if (loop_dump_stream)
618 fprintf (loop_dump_stream,
619 "Unrolling failure: unknown insns between BEG note and loop label.\n");
620 return;
621 }
b9b817f0
RS
622 if (LABEL_NAME (start_label))
623 {
624 /* The jump optimization pass must have combined the original start label
625 with a named label for a goto. We can't unroll this case because
626 jumps which go to the named label must be handled differently than
627 jumps to the loop start, and it is impossible to differentiate them
628 in this case. */
629 if (loop_dump_stream)
630 fprintf (loop_dump_stream,
631 "Unrolling failure: loop start label is gone\n");
632 return;
633 }
67f2de41
RK
634
635 if (unroll_type == UNROLL_NAIVE
4b4bf941
JQ
636 && BARRIER_P (last_loop_insn)
637 && JUMP_P (PREV_INSN (last_loop_insn))
67f2de41
RK
638 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
639 {
640 /* In this case, we must copy the jump and barrier, because they will
641 not be converted to jumps to an immediately following label. */
642
643 insert_before = NEXT_INSN (last_loop_insn);
644 copy_end = last_loop_insn;
645 }
646
92905582 647 if (unroll_type == UNROLL_NAIVE
4b4bf941 648 && JUMP_P (last_loop_insn)
92905582
JW
649 && start_label != JUMP_LABEL (last_loop_insn))
650 {
651 /* ??? The loop ends with a conditional branch that does not branch back
652 to the loop start label. In this case, we must emit an unconditional
653 branch to the loop exit after emitting the final branch.
654 copy_loop_body does not have support for this currently, so we
655 give up. It doesn't seem worthwhile to unroll anyways since
656 unrolling would increase the number of branch instructions
657 executed. */
658 if (loop_dump_stream)
659 fprintf (loop_dump_stream,
660 "Unrolling failure: final conditional branch not to loop start\n");
661 return;
662 }
663
67f2de41
RK
664 /* Allocate a translation table for the labels and insn numbers.
665 They will be filled in as we copy the insns in the loop. */
666
667 max_labelno = max_label_num ();
668 max_insnno = get_max_uid ();
669
d269eb53
JL
670 /* Various paths through the unroll code may reach the "egress" label
671 without initializing fields within the map structure.
67f2de41 672
d269eb53 673 To be safe, we use xcalloc to zero the memory. */
703ad42b 674 map = xcalloc (1, sizeof (struct inline_remap));
bae12186 675
67f2de41
RK
676 /* Allocate the label map. */
677
678 if (max_labelno > 0)
679 {
703ad42b
KG
680 map->label_map = xcalloc (max_labelno, sizeof (rtx));
681 local_label = xcalloc (max_labelno, sizeof (char));
67f2de41 682 }
67f2de41
RK
683
684 /* Search the loop and mark all local labels, i.e. the ones which have to
685 be distinct labels when copied. For all labels which might be
686 non-local, set their label_map entries to point to themselves.
687 If they happen to be local their label_map entries will be overwritten
688 before the loop body is copied. The label_map entries for local labels
689 will be set to a different value each time the loop body is copied. */
690
691 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
692 {
aeb2f500
JW
693 rtx note;
694
4b4bf941 695 if (LABEL_P (insn))
67f2de41 696 local_label[CODE_LABEL_NUMBER (insn)] = 1;
4b4bf941 697 else if (JUMP_P (insn))
67f2de41
RK
698 {
699 if (JUMP_LABEL (insn))
1f3d3a31
JL
700 set_label_in_map (map,
701 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
702 JUMP_LABEL (insn));
67f2de41
RK
703 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
704 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
705 {
706 rtx pat = PATTERN (insn);
707 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
708 int len = XVECLEN (pat, diff_vec_p);
709 rtx label;
710
711 for (i = 0; i < len; i++)
712 {
713 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
a86dc4a3 714 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
67f2de41
RK
715 }
716 }
717 }
f759eb8b 718 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
aeb2f500
JW
719 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
720 XEXP (note, 0));
67f2de41
RK
721 }
722
723 /* Allocate space for the insn map. */
724
703ad42b 725 map->insn_map = xmalloc (max_insnno * sizeof (rtx));
67f2de41 726
67f2de41
RK
727 /* The register and constant maps depend on the number of registers
728 present, so the final maps can't be created until after
729 find_splittable_regs is called. However, they are needed for
730 preconditioning, so we create temporary maps when preconditioning
731 is performed. */
732
733 /* The preconditioning code may allocate two new pseudo registers. */
734 maxregnum = max_reg_num ();
735
69688f1e
R
736 /* local_regno is only valid for regnos < max_local_regnum. */
737 max_local_regnum = maxregnum;
738
67f2de41
RK
739 /* Allocate and zero out the splittable_regs and addr_combined_regs
740 arrays. These must be zeroed here because they will be used if
741 loop preconditioning is performed, and must be zero for that case.
742
743 It is safe to do this here, since the extra registers created by the
744 preconditioning code and find_splittable_regs will never be used
6dc42e49 745 to access the splittable_regs[] and addr_combined_regs[] arrays. */
67f2de41 746
703ad42b
KG
747 splittable_regs = xcalloc (maxregnum, sizeof (rtx));
748 splittable_regs_updates = xcalloc (maxregnum, sizeof (int));
749 addr_combined_regs = xcalloc (maxregnum, sizeof (struct induction *));
750 local_regno = xcalloc (maxregnum, sizeof (char));
7f5b8ca7
RK
751
752 /* Mark all local registers, i.e. the ones which are referenced only
ba68fc32
JW
753 inside the loop. */
754 if (INSN_UID (copy_end) < max_uid_for_loop)
9bb21998
BS
755 {
756 int copy_start_luid = INSN_LUID (copy_start);
757 int copy_end_luid = INSN_LUID (copy_end);
7f5b8ca7 758
9bb21998
BS
759 /* If a register is used in the jump insn, we must not duplicate it
760 since it will also be used outside the loop. */
4b4bf941 761 if (JUMP_P (copy_end))
9bb21998 762 copy_end_luid--;
47cf37f9 763
9bb21998 764 /* If we have a target that uses cc0, then we also must not duplicate
b30f05db 765 the insn that sets cc0 before the jump insn, if one is present. */
47cf37f9 766#ifdef HAVE_cc0
4b4bf941 767 if (JUMP_P (copy_end)
a86dc4a3 768 && sets_cc0_p (PREV_INSN (copy_end)))
9bb21998 769 copy_end_luid--;
47cf37f9
JL
770#endif
771
9bb21998
BS
772 /* If copy_start points to the NOTE that starts the loop, then we must
773 use the next luid, because invariant pseudo-regs moved out of the loop
774 have their lifetimes modified to start here, but they are not safe
775 to duplicate. */
776 if (copy_start == loop_start)
777 copy_start_luid++;
778
779 /* If a pseudo's lifetime is entirely contained within this loop, then we
780 can use a different pseudo in each unrolled copy of the loop. This
781 results in better code. */
782 /* We must limit the generic test to max_reg_before_loop, because only
783 these pseudo registers have valid regno_first_uid info. */
770ae6cc 784 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
5adf448c 785 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) < max_uid_for_loop
8529a489 786 && REGNO_FIRST_LUID (r) >= copy_start_luid
5adf448c 787 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) < max_uid_for_loop
8529a489 788 && REGNO_LAST_LUID (r) <= copy_end_luid)
9bb21998
BS
789 {
790 /* However, we must also check for loop-carried dependencies.
791 If the value the pseudo has at the end of iteration X is
792 used by iteration X+1, then we can not use a different pseudo
793 for each unrolled copy of the loop. */
794 /* A pseudo is safe if regno_first_uid is a set, and this
795 set dominates all instructions from regno_first_uid to
796 regno_last_uid. */
797 /* ??? This check is simplistic. We would get better code if
798 this check was more sophisticated. */
770ae6cc 799 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
9bb21998 800 copy_start, copy_end))
770ae6cc 801 local_regno[r] = 1;
9bb21998
BS
802
803 if (loop_dump_stream)
804 {
770ae6cc
RK
805 if (local_regno[r])
806 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
9bb21998
BS
807 else
808 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
770ae6cc 809 r);
9bb21998
BS
810 }
811 }
9bb21998 812 }
67f2de41
RK
813
814 /* If this loop requires exit tests when unrolled, check to see if we
815 can precondition the loop so as to make the exit tests unnecessary.
816 Just like variable splitting, this is not safe if the loop is entered
817 via a jump to the bottom. Also, can not do this if no strength
818 reduce info, because precondition_loop_p uses this info. */
819
820 /* Must copy the loop body for preconditioning before the following
821 find_splittable_regs call since that will emit insns which need to
822 be after the preconditioned loop copies, but immediately before the
823 unrolled loop copies. */
824
825 /* Also, it is not safe to split induction variables for the preconditioned
826 copies of the loop body. If we split induction variables, then the code
827 assumes that each induction variable can be represented as a function
828 of its initial value and the loop iteration number. This is not true
829 in this case, because the last preconditioned copy of the loop body
830 could be any iteration from the first up to the `unroll_number-1'th,
831 depending on the initial value of the iteration variable. Therefore
832 we can not split induction variables here, because we can not calculate
833 their value. Hence, this code must occur before find_splittable_regs
834 is called. */
835
836 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
837 {
838 rtx initial_value, final_value, increment;
e96b4d7a 839 enum machine_mode mode;
67f2de41 840
0534b804 841 if (precondition_loop_p (loop,
e96b4d7a
MH
842 &initial_value, &final_value, &increment,
843 &mode))
67f2de41 844 {
5d0f3df7 845 rtx diff, insn;
67f2de41
RK
846 rtx *labels;
847 int abs_inc, neg_inc;
d2384b42
ZH
848 enum rtx_code cc = loop_info->comparison_code;
849 int less_p = (cc == LE || cc == LEU || cc == LT || cc == LTU);
850 int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
67f2de41 851
703ad42b 852 map->reg_map = xmalloc (maxregnum * sizeof (rtx));
67f2de41 853
c68da89c 854 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
28b6b9b2 855 "unroll_loop_precondition");
c68da89c 856 global_const_equiv_varray = map->const_equiv_varray;
67f2de41
RK
857
858 init_reg_map (map, maxregnum);
859
860 /* Limit loop unrolling to 4, since this will make 7 copies of
861 the loop body. */
862 if (unroll_number > 4)
863 unroll_number = 4;
864
865 /* Save the absolute value of the increment, and also whether or
866 not it is negative. */
867 neg_inc = 0;
868 abs_inc = INTVAL (increment);
869 if (abs_inc < 0)
870 {
a86dc4a3 871 abs_inc = -abs_inc;
67f2de41
RK
872 neg_inc = 1;
873 }
874
875 start_sequence ();
876
5d0f3df7
RH
877 /* We must copy the final and initial values here to avoid
878 improperly shared rtl. */
879 final_value = copy_rtx (final_value);
880 initial_value = copy_rtx (initial_value);
881
48d79c43
JH
882 /* Final value may have form of (PLUS val1 const1_rtx). We need
883 to convert it into general operand, so compute the real value. */
884
5d0f3df7 885 final_value = force_operand (final_value, NULL_RTX);
48d79c43 886 if (!nonmemory_operand (final_value, VOIDmode))
5d0f3df7 887 final_value = force_reg (mode, final_value);
48d79c43 888
67f2de41
RK
889 /* Calculate the difference between the final and initial values.
890 Final value may be a (plus (reg x) (const_int 1)) rtx.
d2384b42
ZH
891
892 We have to deal with for (i = 0; --i < 6;) type loops.
893 For such loops the real final value is the first time the
894 loop variable overflows, so the diff we calculate is the
895 distance from the overflow value. This is 0 or ~0 for
896 unsigned loops depending on the direction, or INT_MAX,
897 INT_MAX+1 for signed loops. We really do not need the
898 exact value, since we are only interested in the diff
899 modulo the increment, and the increment is a power of 2,
900 so we can pretend that the overflow value is 0/~0. */
901
902 if (cc == NE || less_p != neg_inc)
5d0f3df7
RH
903 diff = simplify_gen_binary (MINUS, mode, final_value,
904 initial_value);
d2384b42 905 else
5d0f3df7
RH
906 diff = simplify_gen_unary (neg_inc ? NOT : NEG, mode,
907 initial_value, mode);
908 diff = force_operand (diff, NULL_RTX);
67f2de41
RK
909
910 /* Now calculate (diff % (unroll * abs (increment))) by using an
911 and instruction. */
5d0f3df7
RH
912 diff = simplify_gen_binary (AND, mode, diff,
913 GEN_INT (unroll_number*abs_inc - 1));
914 diff = force_operand (diff, NULL_RTX);
67f2de41
RK
915
916 /* Now emit a sequence of branches to jump to the proper precond
917 loop entry point. */
918
703ad42b 919 labels = xmalloc (sizeof (rtx) * unroll_number);
67f2de41
RK
920 for (i = 0; i < unroll_number; i++)
921 labels[i] = gen_label_rtx ();
922
1dcfa896
JW
923 /* Check for the case where the initial value is greater than or
924 equal to the final value. In that case, we want to execute
925 exactly one loop iteration. The code below will fail for this
926 case. This check does not apply if the loop has a NE
927 comparison at the end. */
7edd39eb 928
d2384b42 929 if (cc != NE)
1dcfa896 930 {
d2384b42 931 rtx incremented_initval;
5d0f3df7
RH
932 enum rtx_code cmp_code;
933
934 incremented_initval
935 = simplify_gen_binary (PLUS, mode, initial_value, increment);
936 incremented_initval
937 = force_operand (incremented_initval, NULL_RTX);
938
939 cmp_code = (less_p
940 ? (unsigned_p ? GEU : GE)
941 : (unsigned_p ? LEU : LE));
942
943 insn = simplify_cmp_and_jump_insns (cmp_code, mode,
944 incremented_initval,
945 final_value, labels[1]);
946 if (insn)
947 predict_insn_def (insn, PRED_LOOP_CONDITION, TAKEN);
1dcfa896 948 }
7edd39eb 949
67f2de41
RK
950 /* Assuming the unroll_number is 4, and the increment is 2, then
951 for a negative increment: for a positive increment:
952 diff = 0,1 precond 0 diff = 0,7 precond 0
953 diff = 2,3 precond 3 diff = 1,2 precond 1
954 diff = 4,5 precond 2 diff = 3,4 precond 2
955 diff = 6,7 precond 1 diff = 5,6 precond 3 */
956
957 /* We only need to emit (unroll_number - 1) branches here, the
958 last case just falls through to the following code. */
959
960 /* ??? This would give better code if we emitted a tree of branches
961 instead of the current linear list of branches. */
962
963 for (i = 0; i < unroll_number - 1; i++)
964 {
965 int cmp_const;
7edd39eb 966 enum rtx_code cmp_code;
67f2de41
RK
967
968 /* For negative increments, must invert the constant compared
969 against, except when comparing against zero. */
970 if (i == 0)
7edd39eb
RK
971 {
972 cmp_const = 0;
973 cmp_code = EQ;
974 }
67f2de41 975 else if (neg_inc)
7edd39eb
RK
976 {
977 cmp_const = unroll_number - i;
978 cmp_code = GE;
979 }
67f2de41 980 else
7edd39eb
RK
981 {
982 cmp_const = i;
983 cmp_code = LE;
984 }
67f2de41 985
5d0f3df7
RH
986 insn = simplify_cmp_and_jump_insns (cmp_code, mode, diff,
987 GEN_INT (abs_inc*cmp_const),
988 labels[i]);
989 if (insn)
990 predict_insn (insn, PRED_LOOP_PRECONDITIONING,
991 REG_BR_PROB_BASE / (unroll_number - i));
67f2de41
RK
992 }
993
994 /* If the increment is greater than one, then we need another branch,
995 to handle other cases equivalent to 0. */
996
997 /* ??? This should be merged into the code above somehow to help
998 simplify the code here, and reduce the number of branches emitted.
999 For the negative increment case, the branch here could easily
1000 be merged with the `0' case branch above. For the positive
1001 increment case, it is not clear how this can be simplified. */
a5af23fe 1002
67f2de41
RK
1003 if (abs_inc != 1)
1004 {
1005 int cmp_const;
7edd39eb 1006 enum rtx_code cmp_code;
67f2de41
RK
1007
1008 if (neg_inc)
7edd39eb
RK
1009 {
1010 cmp_const = abs_inc - 1;
1011 cmp_code = LE;
1012 }
67f2de41 1013 else
7edd39eb
RK
1014 {
1015 cmp_const = abs_inc * (unroll_number - 1) + 1;
1016 cmp_code = GE;
1017 }
67f2de41 1018
5d0f3df7
RH
1019 simplify_cmp_and_jump_insns (cmp_code, mode, diff,
1020 GEN_INT (cmp_const), labels[0]);
67f2de41
RK
1021 }
1022
2f937369 1023 sequence = get_insns ();
67f2de41 1024 end_sequence ();
96a45535 1025 loop_insn_hoist (loop, sequence);
a5af23fe 1026
67f2de41
RK
1027 /* Only the last copy of the loop body here needs the exit
1028 test, so set copy_end to exclude the compare/branch here,
1029 and then reset it inside the loop when get to the last
1030 copy. */
1031
4b4bf941 1032 if (BARRIER_P (last_loop_insn))
67f2de41 1033 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
4b4bf941 1034 else if (JUMP_P (last_loop_insn))
67f2de41 1035 {
b30f05db 1036 copy_end = PREV_INSN (last_loop_insn);
67f2de41 1037#ifdef HAVE_cc0
a86dc4a3
KH
1038 /* The immediately preceding insn may be a compare which
1039 we do not want to copy. */
b30f05db
BS
1040 if (sets_cc0_p (PREV_INSN (copy_end)))
1041 copy_end = PREV_INSN (copy_end);
67f2de41
RK
1042#endif
1043 }
1044 else
1045 abort ();
1046
1047 for (i = 1; i < unroll_number; i++)
1048 {
1049 emit_label_after (labels[unroll_number - i],
1050 PREV_INSN (loop_start));
1051
703ad42b
KG
1052 memset (map->insn_map, 0, max_insnno * sizeof (rtx));
1053 memset (&VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
961192e1
JM
1054 0, (VARRAY_SIZE (map->const_equiv_varray)
1055 * sizeof (struct const_equiv_data)));
67f2de41
RK
1056 map->const_age = 0;
1057
1058 for (j = 0; j < max_labelno; j++)
1059 if (local_label[j])
1f3d3a31 1060 set_label_in_map (map, j, gen_label_rtx ());
67f2de41 1061
770ae6cc
RK
1062 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1063 if (local_regno[r])
9ae8ffe7 1064 {
770ae6cc
RK
1065 map->reg_map[r]
1066 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1067 record_base_value (REGNO (map->reg_map[r]),
1068 regno_reg_rtx[r], 0);
9ae8ffe7 1069 }
67f2de41
RK
1070 /* The last copy needs the compare/branch insns at the end,
1071 so reset copy_end here if the loop ends with a conditional
1072 branch. */
1073
1074 if (i == unroll_number - 1)
1075 {
4b4bf941 1076 if (BARRIER_P (last_loop_insn))
67f2de41
RK
1077 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1078 else
1079 copy_end = last_loop_insn;
1080 }
1081
1082 /* None of the copies are the `last_iteration', so just
1083 pass zero for that parameter. */
ed5bb68d 1084 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
67f2de41
RK
1085 unroll_type, start_label, loop_end,
1086 loop_start, copy_end);
1087 }
1088 emit_label_after (labels[0], PREV_INSN (loop_start));
1089
4b4bf941 1090 if (BARRIER_P (last_loop_insn))
67f2de41
RK
1091 {
1092 insert_before = PREV_INSN (last_loop_insn);
1093 copy_end = PREV_INSN (insert_before);
1094 }
1095 else
1096 {
67f2de41 1097 insert_before = last_loop_insn;
b30f05db 1098#ifdef HAVE_cc0
a86dc4a3
KH
1099 /* The instruction immediately before the JUMP_INSN may
1100 be a compare instruction which we do not want to copy
1101 or delete. */
b30f05db
BS
1102 if (sets_cc0_p (PREV_INSN (insert_before)))
1103 insert_before = PREV_INSN (insert_before);
67f2de41 1104#endif
b30f05db 1105 copy_end = PREV_INSN (insert_before);
67f2de41
RK
1106 }
1107
1108 /* Set unroll type to MODULO now. */
1109 unroll_type = UNROLL_MODULO;
1110 loop_preconditioned = 1;
67289ea6
MM
1111
1112 /* Clean up. */
1113 free (labels);
67f2de41
RK
1114 }
1115 }
1116
1117 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1118 the loop unless all loops are being unrolled. */
b17d5d7c 1119 if (unroll_type == UNROLL_NAIVE && ! flag_old_unroll_all_loops)
67f2de41
RK
1120 {
1121 if (loop_dump_stream)
a86dc4a3
KH
1122 fprintf (loop_dump_stream,
1123 "Unrolling failure: Naive unrolling not being done.\n");
c68da89c 1124 goto egress;
67f2de41
RK
1125 }
1126
1127 /* At this point, we are guaranteed to unroll the loop. */
1128
302670f3 1129 /* Keep track of the unroll factor for the loop. */
3c748bb6 1130 loop_info->unroll_number = unroll_number;
8c660648 1131
8b583747
AM
1132 /* And whether the loop has been preconditioned. */
1133 loop_info->preconditioned = loop_preconditioned;
1134
3eae4643 1135 /* Remember whether it was preconditioned for the second loop pass. */
dad482e6
DJ
1136 NOTE_PRECONDITIONED (loop->end) = loop_preconditioned;
1137
67f2de41
RK
1138 /* For each biv and giv, determine whether it can be safely split into
1139 a different variable for each unrolled copy of the loop body.
1140 We precalculate and save this info here, since computing it is
1141 expensive.
1142
1143 Do this before deleting any instructions from the loop, so that
1144 back_branch_in_range_p will work correctly. */
1145
1146 if (splitting_not_safe)
1147 temp = 0;
1148 else
96a45535 1149 temp = find_splittable_regs (loop, unroll_type, unroll_number);
67f2de41
RK
1150
1151 /* find_splittable_regs may have created some new registers, so must
1152 reallocate the reg_map with the new larger size, and must realloc
1153 the constant maps also. */
1154
1155 maxregnum = max_reg_num ();
703ad42b 1156 map->reg_map = xmalloc (maxregnum * sizeof (rtx));
67f2de41
RK
1157
1158 init_reg_map (map, maxregnum);
1159
c68da89c
KR
1160 if (map->const_equiv_varray == 0)
1161 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1162 maxregnum + temp * unroll_number * 2,
1163 "unroll_loop");
1164 global_const_equiv_varray = map->const_equiv_varray;
67f2de41
RK
1165
1166 /* Search the list of bivs and givs to find ones which need to be remapped
1167 when split, and set their reg_map entry appropriately. */
1168
14be28e5 1169 for (bl = ivs->list; bl; bl = bl->next)
67f2de41
RK
1170 {
1171 if (REGNO (bl->biv->src_reg) != bl->regno)
1172 map->reg_map[bl->regno] = bl->biv->src_reg;
1173#if 0
1174 /* Currently, non-reduced/final-value givs are never split. */
1175 for (v = bl->giv; v; v = v->next_iv)
1176 if (REGNO (v->src_reg) != bl->regno)
1177 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1178#endif
1179 }
1180
8b4904a3 1181 /* Use our current register alignment and pointer flags. */
01d939e8 1182 map->regno_pointer_align = cfun->emit->regno_pointer_align;
3502dc9c 1183 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
8b4904a3 1184
67f2de41
RK
1185 /* If the loop is being partially unrolled, and the iteration variables
1186 are being split, and are being renamed for the split, then must fix up
2b59419a 1187 the compare/jump instruction at the end of the loop to refer to the new
67f2de41
RK
1188 registers. This compare isn't copied, so the registers used in it
1189 will never be replaced if it isn't done here. */
1190
1191 if (unroll_type == UNROLL_MODULO)
1192 {
1193 insn = NEXT_INSN (copy_end);
4b4bf941 1194 if (NONJUMP_INSN_P (insn) || JUMP_P (insn))
ed5bb68d 1195 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
67f2de41
RK
1196 }
1197
5353610b 1198 /* For unroll_number times, make a copy of each instruction
67f2de41
RK
1199 between copy_start and copy_end, and insert these new instructions
1200 before the end of the loop. */
1201
1202 for (i = 0; i < unroll_number; i++)
1203 {
703ad42b
KG
1204 memset (map->insn_map, 0, max_insnno * sizeof (rtx));
1205 memset (&VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
961192e1 1206 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
67f2de41
RK
1207 map->const_age = 0;
1208
1209 for (j = 0; j < max_labelno; j++)
1210 if (local_label[j])
1f3d3a31 1211 set_label_in_map (map, j, gen_label_rtx ());
67f2de41 1212
770ae6cc
RK
1213 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1214 if (local_regno[r])
9ae8ffe7 1215 {
770ae6cc
RK
1216 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1217 record_base_value (REGNO (map->reg_map[r]),
1218 regno_reg_rtx[r], 0);
9ae8ffe7 1219 }
7f5b8ca7 1220
67f2de41
RK
1221 /* If loop starts with a branch to the test, then fix it so that
1222 it points to the test of the first unrolled copy of the loop. */
1223 if (i == 0 && loop_start != copy_start)
1224 {
1225 insn = PREV_INSN (copy_start);
1226 pattern = PATTERN (insn);
a5af23fe 1227
1f3d3a31
JL
1228 tem = get_label_from_map (map,
1229 CODE_LABEL_NUMBER
1230 (XEXP (SET_SRC (pattern), 0)));
38a448ca 1231 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
67f2de41
RK
1232
1233 /* Set the jump label so that it can be used by later loop unrolling
1234 passes. */
1235 JUMP_LABEL (insn) = tem;
1236 LABEL_NUSES (tem)++;
1237 }
1238
ed5bb68d 1239 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
67f2de41
RK
1240 i == unroll_number - 1, unroll_type, start_label,
1241 loop_end, insert_before, insert_before);
1242 }
1243
1244 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1245 insn to be deleted. This prevents any runaway delete_insn call from
1246 more insns that it should, as it always stops at a CODE_LABEL. */
1247
1248 /* Delete the compare and branch at the end of the loop if completely
1249 unrolling the loop. Deleting the backward branch at the end also
1250 deletes the code label at the start of the loop. This is done at
1251 the very end to avoid problems with back_branch_in_range_p. */
1252
1253 if (unroll_type == UNROLL_COMPLETELY)
1254 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1255 else
1256 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1257
a5af23fe 1258 /* Delete all of the original loop instructions. Don't delete the
67f2de41
RK
1259 LOOP_BEG note, or the first code label in the loop. */
1260
1261 insn = NEXT_INSN (copy_start);
1262 while (insn != safety_label)
1263 {
570621d5
JW
1264 /* ??? Don't delete named code labels. They will be deleted when the
1265 jump that references them is deleted. Otherwise, we end up deleting
1266 them twice, which causes them to completely disappear instead of turn
1267 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1268 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1269 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1270 associated LABEL_DECL to point to one of the new label instances. */
1271 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
22f8dffc 1272 if (insn != start_label
4b4bf941
JQ
1273 && ! (LABEL_P (insn) && LABEL_NAME (insn))
1274 && ! (NOTE_P (insn)
22f8dffc 1275 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
53c17031 1276 insn = delete_related_insns (insn);
67f2de41
RK
1277 else
1278 insn = NEXT_INSN (insn);
1279 }
1280
1281 /* Can now delete the 'safety' label emitted to protect us from runaway
53c17031 1282 delete_related_insns calls. */
67f2de41
RK
1283 if (INSN_DELETED_P (safety_label))
1284 abort ();
53c17031 1285 delete_related_insns (safety_label);
67f2de41
RK
1286
1287 /* If exit_label exists, emit it after the loop. Doing the emit here
1288 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1289 This is needed so that mostly_true_jump in reorg.c will treat jumps
1290 to this loop end label correctly, i.e. predict that they are usually
1291 not taken. */
1292 if (exit_label)
1293 emit_label_after (exit_label, loop_end);
c68da89c
KR
1294
1295 egress:
f5da5c87
JH
1296 if (unroll_type == UNROLL_COMPLETELY)
1297 {
1298 /* Remove the loop notes since this is no longer a loop. */
a2be868f 1299 if (loop->vtop)
53c17031 1300 delete_related_insns (loop->vtop);
a2be868f 1301 if (loop->cont)
53c17031 1302 delete_related_insns (loop->cont);
f5da5c87 1303 if (loop_start)
53c17031 1304 delete_related_insns (loop_start);
f5da5c87 1305 if (loop_end)
53c17031 1306 delete_related_insns (loop_end);
f5da5c87
JH
1307 }
1308
67289ea6 1309 if (map->const_equiv_varray)
c68da89c 1310 VARRAY_FREE (map->const_equiv_varray);
67289ea6
MM
1311 if (map->label_map)
1312 {
1313 free (map->label_map);
1314 free (local_label);
1315 }
1316 free (map->insn_map);
1317 free (splittable_regs);
67289ea6
MM
1318 free (splittable_regs_updates);
1319 free (addr_combined_regs);
1320 free (local_regno);
1321 if (map->reg_map)
1322 free (map->reg_map);
1323 free (map);
67f2de41 1324}
5d0f3df7 1325
2e1eedd6 1326/* A helper function for unroll_loop. Emit a compare and branch to
5d0f3df7
RH
1327 satisfy (CMP OP1 OP2), but pass this through the simplifier first.
1328 If the branch turned out to be conditional, return it, otherwise
1329 return NULL. */
1330
1331static rtx
2e1eedd6
AJ
1332simplify_cmp_and_jump_insns (enum rtx_code code, enum machine_mode mode,
1333 rtx op0, rtx op1, rtx label)
5d0f3df7
RH
1334{
1335 rtx t, insn;
1336
7ce3e360 1337 t = simplify_const_relational_operation (code, mode, op0, op1);
5d0f3df7
RH
1338 if (!t)
1339 {
1340 enum rtx_code scode = signed_condition (code);
1341 emit_cmp_and_jump_insns (op0, op1, scode, NULL_RTX, mode,
1342 code != scode, label);
1343 insn = get_last_insn ();
1344
1345 JUMP_LABEL (insn) = label;
1346 LABEL_NUSES (label) += 1;
1347
1348 return insn;
1349 }
1350 else if (t == const_true_rtx)
1351 {
1352 insn = emit_jump_insn (gen_jump (label));
1353 emit_barrier ();
1354 JUMP_LABEL (insn) = label;
1355 LABEL_NUSES (label) += 1;
1356 }
1357
1358 return NULL_RTX;
1359}
67f2de41
RK
1360\f
1361/* Return true if the loop can be safely, and profitably, preconditioned
1362 so that the unrolled copies of the loop body don't need exit tests.
1363
1364 This only works if final_value, initial_value and increment can be
1365 determined, and if increment is a constant power of 2.
1366 If increment is not a power of 2, then the preconditioning modulo
1367 operation would require a real modulo instead of a boolean AND, and this
1368 is not considered `profitable'. */
1369
1370/* ??? If the loop is known to be executed very many times, or the machine
1371 has a very cheap divide instruction, then preconditioning is a win even
1372 when the increment is not a power of 2. Use RTX_COST to compute
5353610b
R
1373 whether divide is cheap.
1374 ??? A divide by constant doesn't actually need a divide, look at
1375 expand_divmod. The reduced cost of this optimized modulo is not
1376 reflected in RTX_COST. */
67f2de41 1377
302670f3 1378int
2e1eedd6
AJ
1379precondition_loop_p (const struct loop *loop, rtx *initial_value,
1380 rtx *final_value, rtx *increment,
1381 enum machine_mode *mode)
67f2de41 1382{
0534b804
MH
1383 rtx loop_start = loop->start;
1384 struct loop_info *loop_info = LOOP_INFO (loop);
67f2de41 1385
302670f3 1386 if (loop_info->n_iterations > 0)
67f2de41 1387 {
04894c5a
DJ
1388 if (INTVAL (loop_info->increment) > 0)
1389 {
1390 *initial_value = const0_rtx;
1391 *increment = const1_rtx;
1392 *final_value = GEN_INT (loop_info->n_iterations);
1393 }
1394 else
1395 {
1396 *initial_value = GEN_INT (loop_info->n_iterations);
1397 *increment = constm1_rtx;
1398 *final_value = const0_rtx;
1399 }
e96b4d7a 1400 *mode = word_mode;
67f2de41
RK
1401
1402 if (loop_dump_stream)
90ff44cf
KG
1403 fprintf (loop_dump_stream,
1404 "Preconditioning: Success, number of iterations known, "
1405 HOST_WIDE_INT_PRINT_DEC ".\n",
1406 loop_info->n_iterations);
67f2de41
RK
1407 return 1;
1408 }
1409
c55fa4d6
RH
1410 if (loop_info->iteration_var == 0)
1411 {
1412 if (loop_dump_stream)
1413 fprintf (loop_dump_stream,
1414 "Preconditioning: Could not find iteration variable.\n");
1415 return 0;
1416 }
1417 else if (loop_info->initial_value == 0)
67f2de41
RK
1418 {
1419 if (loop_dump_stream)
1420 fprintf (loop_dump_stream,
1421 "Preconditioning: Could not find initial value.\n");
1422 return 0;
1423 }
302670f3 1424 else if (loop_info->increment == 0)
67f2de41
RK
1425 {
1426 if (loop_dump_stream)
1427 fprintf (loop_dump_stream,
1428 "Preconditioning: Could not find increment value.\n");
1429 return 0;
1430 }
302670f3 1431 else if (GET_CODE (loop_info->increment) != CONST_INT)
67f2de41
RK
1432 {
1433 if (loop_dump_stream)
1434 fprintf (loop_dump_stream,
1435 "Preconditioning: Increment not a constant.\n");
1436 return 0;
1437 }
302670f3 1438 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
a86dc4a3 1439 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
67f2de41
RK
1440 {
1441 if (loop_dump_stream)
1442 fprintf (loop_dump_stream,
1443 "Preconditioning: Increment not a constant power of 2.\n");
1444 return 0;
1445 }
1446
1447 /* Unsigned_compare and compare_dir can be ignored here, since they do
1448 not matter for preconditioning. */
1449
302670f3 1450 if (loop_info->final_value == 0)
67f2de41
RK
1451 {
1452 if (loop_dump_stream)
1453 fprintf (loop_dump_stream,
1454 "Preconditioning: EQ comparison loop.\n");
1455 return 0;
1456 }
1457
0534b804
MH
1458 /* Must ensure that final_value is invariant, so call
1459 loop_invariant_p to check. Before doing so, must check regno
1460 against max_reg_before_loop to make sure that the register is in
1461 the range covered by loop_invariant_p. If it isn't, then it is
1462 most likely a biv/giv which by definition are not invariant. */
f8cfc6aa 1463 if ((REG_P (loop_info->final_value)
302670f3
MH
1464 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1465 || (GET_CODE (loop_info->final_value) == PLUS
1466 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
0534b804 1467 || ! loop_invariant_p (loop, loop_info->final_value))
67f2de41
RK
1468 {
1469 if (loop_dump_stream)
1470 fprintf (loop_dump_stream,
1471 "Preconditioning: Final value not invariant.\n");
1472 return 0;
1473 }
1474
1475 /* Fail for floating point values, since the caller of this function
1476 does not have code to deal with them. */
302670f3
MH
1477 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1478 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
67f2de41
RK
1479 {
1480 if (loop_dump_stream)
1481 fprintf (loop_dump_stream,
1482 "Preconditioning: Floating point final or initial value.\n");
1483 return 0;
1484 }
1485
302670f3
MH
1486 /* Fail if loop_info->iteration_var is not live before loop_start,
1487 since we need to test its value in the preconditioning code. */
67f2de41 1488
8529a489 1489 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
67f2de41
RK
1490 > INSN_LUID (loop_start))
1491 {
1492 if (loop_dump_stream)
1493 fprintf (loop_dump_stream,
1494 "Preconditioning: Iteration var not live before loop start.\n");
1495 return 0;
1496 }
1497
0a5b41f2 1498 /* Note that loop_iterations biases the initial value for GIV iterators
c99f8c2a
R
1499 such as "while (i-- > 0)" so that we can calculate the number of
1500 iterations just like for BIV iterators.
a5af23fe 1501
a7060368
MH
1502 Also note that the absolute values of initial_value and
1503 final_value are unimportant as only their difference is used for
1504 calculating the number of loop iterations. */
302670f3
MH
1505 *initial_value = loop_info->initial_value;
1506 *increment = loop_info->increment;
1507 *final_value = loop_info->final_value;
67f2de41 1508
e96b4d7a
MH
1509 /* Decide what mode to do these calculations in. Choose the larger
1510 of final_value's mode and initial_value's mode, or a full-word if
1511 both are constants. */
1512 *mode = GET_MODE (*final_value);
1513 if (*mode == VOIDmode)
1514 {
1515 *mode = GET_MODE (*initial_value);
1516 if (*mode == VOIDmode)
1517 *mode = word_mode;
1518 }
1519 else if (*mode != GET_MODE (*initial_value)
1520 && (GET_MODE_SIZE (*mode)
1521 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1522 *mode = GET_MODE (*initial_value);
1523
a2be868f 1524 /* Success! */
67f2de41
RK
1525 if (loop_dump_stream)
1526 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1527 return 1;
1528}
1529
67f2de41
RK
1530/* All pseudo-registers must be mapped to themselves. Two hard registers
1531 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1532 REGNUM, to avoid function-inlining specific conversions of these
1533 registers. All other hard regs can not be mapped because they may be
1534 used with different
1535 modes. */
1536
1537static void
2e1eedd6 1538init_reg_map (struct inline_remap *map, int maxregnum)
67f2de41
RK
1539{
1540 int i;
1541
1542 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1543 map->reg_map[i] = regno_reg_rtx[i];
1544 /* Just clear the rest of the entries. */
1545 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1546 map->reg_map[i] = 0;
1547
1548 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1549 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1550 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1551 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1552}
1553\f
1554/* Strength-reduction will often emit code for optimized biv/givs which
1555 calculates their value in a temporary register, and then copies the result
1556 to the iv. This procedure reconstructs the pattern computing the iv;
1557 verifying that all operands are of the proper form.
1558
e5e809f4 1559 PATTERN must be the result of single_set.
67f2de41
RK
1560 The return value is the amount that the giv is incremented by. */
1561
1562static rtx
2e1eedd6 1563calculate_giv_inc (rtx pattern, rtx src_insn, unsigned int regno)
67f2de41
RK
1564{
1565 rtx increment;
6511b4f8
RS
1566 rtx increment_total = 0;
1567 int tries = 0;
67f2de41 1568
6511b4f8 1569 retry:
67f2de41
RK
1570 /* Verify that we have an increment insn here. First check for a plus
1571 as the set source. */
1572 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1573 {
1574 /* SR sometimes computes the new giv value in a temp, then copies it
1575 to the new_reg. */
1576 src_insn = PREV_INSN (src_insn);
27d80140 1577 pattern = single_set (src_insn);
67f2de41
RK
1578 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1579 abort ();
a5af23fe 1580
67f2de41
RK
1581 /* The last insn emitted is not needed, so delete it to avoid confusing
1582 the second cse pass. This insn sets the giv unnecessarily. */
53c17031 1583 delete_related_insns (get_last_insn ());
67f2de41
RK
1584 }
1585
1586 /* Verify that we have a constant as the second operand of the plus. */
1587 increment = XEXP (SET_SRC (pattern), 1);
1588 if (GET_CODE (increment) != CONST_INT)
1589 {
1590 /* SR sometimes puts the constant in a register, especially if it is
1591 too big to be an add immed operand. */
27d80140 1592 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
67f2de41
RK
1593
1594 /* SR may have used LO_SUM to compute the constant if it is too large
1595 for a load immed operand. In this case, the constant is in operand
1596 one of the LO_SUM rtx. */
1597 if (GET_CODE (increment) == LO_SUM)
1598 increment = XEXP (increment, 1);
efb84aa5
GK
1599
1600 /* Some ports store large constants in memory and add a REG_EQUAL
1601 note to the store insn. */
3c0cb5de 1602 else if (MEM_P (increment))
a5af23fe
R
1603 {
1604 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1605 if (note)
1606 increment = XEXP (note, 0);
1607 }
efb84aa5 1608
92065e1f 1609 else if (GET_CODE (increment) == IOR
ed97aa66 1610 || GET_CODE (increment) == PLUS
2599dcc7 1611 || GET_CODE (increment) == ASHIFT
ed97aa66 1612 || GET_CODE (increment) == LSHIFTRT)
8700c494 1613 {
92065e1f 1614 /* The rs6000 port loads some constants with IOR.
ed97aa66
EB
1615 The alpha port loads some constants with ASHIFT and PLUS.
1616 The sparc64 port loads some constants with LSHIFTRT. */
8700c494 1617 rtx second_part = XEXP (increment, 1);
92065e1f 1618 enum rtx_code code = GET_CODE (increment);
8700c494 1619
41077ce4 1620 increment = find_last_value (XEXP (increment, 0),
27d80140 1621 &src_insn, NULL_RTX, 0);
8700c494 1622 /* Don't need the last insn anymore. */
53c17031 1623 delete_related_insns (get_last_insn ());
8700c494
JW
1624
1625 if (GET_CODE (second_part) != CONST_INT
1626 || GET_CODE (increment) != CONST_INT)
1627 abort ();
1628
92065e1f
RK
1629 if (code == IOR)
1630 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
2599dcc7
JW
1631 else if (code == PLUS)
1632 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
ed97aa66 1633 else if (code == ASHIFT)
92065e1f 1634 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
ed97aa66
EB
1635 else
1636 increment = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (increment) >> INTVAL (second_part));
8700c494 1637 }
67f2de41
RK
1638
1639 if (GET_CODE (increment) != CONST_INT)
1640 abort ();
a5af23fe 1641
8700c494 1642 /* The insn loading the constant into a register is no longer needed,
67f2de41 1643 so delete it. */
53c17031 1644 delete_related_insns (get_last_insn ());
67f2de41
RK
1645 }
1646
6511b4f8
RS
1647 if (increment_total)
1648 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1649 else
1650 increment_total = increment;
1651
1652 /* Check that the source register is the same as the register we expected
1653 to see as the source. If not, something is seriously wrong. */
f8cfc6aa 1654 if (!REG_P (XEXP (SET_SRC (pattern), 0))
67f2de41 1655 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
6511b4f8
RS
1656 {
1657 /* Some machines (e.g. the romp), may emit two add instructions for
1658 certain constants, so lets try looking for another add immediately
1659 before this one if we have only seen one add insn so far. */
1660
1661 if (tries == 0)
1662 {
1663 tries++;
1664
1665 src_insn = PREV_INSN (src_insn);
27d80140 1666 pattern = single_set (src_insn);
6511b4f8 1667
53c17031 1668 delete_related_insns (get_last_insn ());
6511b4f8
RS
1669
1670 goto retry;
1671 }
1672
1673 abort ();
1674 }
67f2de41 1675
6511b4f8 1676 return increment_total;
67f2de41
RK
1677}
1678
6bd43524
RS
1679/* Copy REG_NOTES, except for insn references, because not all insn_map
1680 entries are valid yet. We do need to copy registers now though, because
1681 the reg_map entries can change during copying. */
1682
1683static rtx
2e1eedd6 1684initial_reg_note_copy (rtx notes, struct inline_remap *map)
6bd43524
RS
1685{
1686 rtx copy;
1687
1688 if (notes == 0)
1689 return 0;
1690
1691 copy = rtx_alloc (GET_CODE (notes));
b59a386b 1692 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
6bd43524
RS
1693
1694 if (GET_CODE (notes) == EXPR_LIST)
14a774a9 1695 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
6bd43524
RS
1696 else if (GET_CODE (notes) == INSN_LIST)
1697 /* Don't substitute for these yet. */
e8c8470b 1698 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
6bd43524
RS
1699 else
1700 abort ();
1701
1702 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1703
1704 return copy;
1705}
1706
1707/* Fixup insn references in copied REG_NOTES. */
1708
1709static void
2e1eedd6 1710final_reg_note_copy (rtx *notesp, struct inline_remap *map)
6bd43524 1711{
b59a386b
MM
1712 while (*notesp)
1713 {
1714 rtx note = *notesp;
41077ce4 1715
b59a386b
MM
1716 if (GET_CODE (note) == INSN_LIST)
1717 {
6001794d
KH
1718 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1719
1720 /* If we failed to remap the note, something is awry.
1721 Allow REG_LABEL as it may reference label outside
1722 the unrolled loop. */
1723 if (!insn)
b59a386b 1724 {
6001794d
KH
1725 if (REG_NOTE_KIND (note) != REG_LABEL)
1726 abort ();
b59a386b
MM
1727 }
1728 else
6001794d 1729 XEXP (note, 0) = insn;
b59a386b 1730 }
6bd43524 1731
b59a386b
MM
1732 notesp = &XEXP (note, 1);
1733 }
6bd43524 1734}
67f2de41
RK
1735
1736/* Copy each instruction in the loop, substituting from map as appropriate.
1737 This is very similar to a loop in expand_inline_function. */
a5af23fe 1738
67f2de41 1739static void
2e1eedd6
AJ
1740copy_loop_body (struct loop *loop, rtx copy_start, rtx copy_end,
1741 struct inline_remap *map, rtx exit_label,
1742 int last_iteration, enum unroll_types unroll_type,
1743 rtx start_label, rtx loop_end, rtx insert_before,
1744 rtx copy_notes_from)
67f2de41 1745{
ed5bb68d 1746 struct loop_ivs *ivs = LOOP_IVS (loop);
67f2de41 1747 rtx insn, pattern;
a544cfd2 1748 rtx set, tem, copy = NULL_RTX;
67f2de41 1749 int dest_reg_was_split, i;
51723711 1750#ifdef HAVE_cc0
67f2de41 1751 rtx cc0_insn = 0;
51723711 1752#endif
67f2de41
RK
1753 rtx final_label = 0;
1754 rtx giv_inc, giv_dest_reg, giv_src_reg;
1755
1756 /* If this isn't the last iteration, then map any references to the
1757 start_label to final_label. Final label will then be emitted immediately
1758 after the end of this loop body if it was ever used.
1759
1760 If this is the last iteration, then map references to the start_label
1761 to itself. */
1762 if (! last_iteration)
1763 {
1764 final_label = gen_label_rtx ();
a86dc4a3 1765 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
67f2de41
RK
1766 }
1767 else
1f3d3a31 1768 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
67f2de41
RK
1769
1770 start_sequence ();
a5af23fe 1771
67f2de41
RK
1772 insn = copy_start;
1773 do
1774 {
1775 insn = NEXT_INSN (insn);
a5af23fe 1776
67f2de41 1777 map->orig_asm_operands_vector = 0;
a5af23fe 1778
67f2de41
RK
1779 switch (GET_CODE (insn))
1780 {
1781 case INSN:
1782 pattern = PATTERN (insn);
1783 copy = 0;
1784 giv_inc = 0;
a5af23fe 1785
67f2de41 1786 /* Check to see if this is a giv that has been combined with
a5af23fe 1787 some split address givs. (Combined in the sense that
67f2de41
RK
1788 `combine_givs' in loop.c has put two givs in the same register.)
1789 In this case, we must search all givs based on the same biv to
1790 find the address givs. Then split the address givs.
1791 Do this before splitting the giv, since that may map the
1792 SET_DEST to a new register. */
a5af23fe 1793
e5e809f4 1794 if ((set = single_set (insn))
f8cfc6aa 1795 && REG_P (SET_DEST (set))
e5e809f4 1796 && addr_combined_regs[REGNO (SET_DEST (set))])
67f2de41
RK
1797 {
1798 struct iv_class *bl;
1799 struct induction *v, *tv;
770ae6cc 1800 unsigned int regno = REGNO (SET_DEST (set));
a5af23fe 1801
e5e809f4 1802 v = addr_combined_regs[REGNO (SET_DEST (set))];
8b634749 1803 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
a5af23fe 1804
67f2de41
RK
1805 /* Although the giv_inc amount is not needed here, we must call
1806 calculate_giv_inc here since it might try to delete the
1807 last insn emitted. If we wait until later to call it,
1808 we might accidentally delete insns generated immediately
1809 below by emit_unrolled_add. */
1810
b4f75276 1811 giv_inc = calculate_giv_inc (set, insn, regno);
67f2de41
RK
1812
1813 /* Now find all address giv's that were combined with this
1814 giv 'v'. */
1815 for (tv = bl->giv; tv; tv = tv->next_iv)
1816 if (tv->giv_type == DEST_ADDR && tv->same == v)
1817 {
7085bad3
JW
1818 int this_giv_inc;
1819
1820 /* If this DEST_ADDR giv was not split, then ignore it. */
1821 if (*tv->location != tv->dest_reg)
1822 continue;
2b4bd1bc
JW
1823
1824 /* Scale this_giv_inc if the multiplicative factors of
1825 the two givs are different. */
7085bad3 1826 this_giv_inc = INTVAL (giv_inc);
2b4bd1bc
JW
1827 if (tv->mult_val != v->mult_val)
1828 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1829 * INTVAL (tv->mult_val));
a5af23fe 1830
2b4bd1bc 1831 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
67f2de41 1832 *tv->location = tv->dest_reg;
a5af23fe 1833
67f2de41
RK
1834 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1835 {
1836 /* Must emit an insn to increment the split address
1837 giv. Add in the const_adjust field in case there
1838 was a constant eliminated from the address. */
1839 rtx value, dest_reg;
a5af23fe 1840
67f2de41
RK
1841 /* tv->dest_reg will be either a bare register,
1842 or else a register plus a constant. */
f8cfc6aa 1843 if (REG_P (tv->dest_reg))
67f2de41
RK
1844 dest_reg = tv->dest_reg;
1845 else
1846 dest_reg = XEXP (tv->dest_reg, 0);
a5af23fe 1847
8d092274 1848 /* Check for shared address givs, and avoid
9faa82d8 1849 incrementing the shared pseudo reg more than
8d092274 1850 once. */
9ae8ffe7 1851 if (! tv->same_insn && ! tv->shared)
8d092274
JW
1852 {
1853 /* tv->dest_reg may actually be a (PLUS (REG)
1854 (CONST)) here, so we must call plus_constant
1855 to add the const_adjust amount before calling
1856 emit_unrolled_add below. */
1857 value = plus_constant (tv->dest_reg,
1858 tv->const_adjust);
1859
3f0aabf2
R
1860 if (GET_CODE (value) == PLUS)
1861 {
1862 /* The constant could be too large for an add
1863 immediate, so can't directly emit an insn
1864 here. */
1865 emit_unrolled_add (dest_reg, XEXP (value, 0),
1866 XEXP (value, 1));
1867 }
8d092274 1868 }
a5af23fe 1869
67f2de41 1870 /* Reset the giv to be just the register again, in case
412dc348
RK
1871 it is used after the set we have just emitted.
1872 We must subtract the const_adjust factor added in
1873 above. */
1874 tv->dest_reg = plus_constant (dest_reg,
a86dc4a3 1875 -tv->const_adjust);
67f2de41
RK
1876 *tv->location = tv->dest_reg;
1877 }
1878 }
1879 }
a5af23fe 1880
67f2de41
RK
1881 /* If this is a setting of a splittable variable, then determine
1882 how to split the variable, create a new set based on this split,
1883 and set up the reg_map so that later uses of the variable will
1884 use the new split variable. */
a5af23fe 1885
67f2de41 1886 dest_reg_was_split = 0;
a5af23fe 1887
e5e809f4 1888 if ((set = single_set (insn))
f8cfc6aa 1889 && REG_P (SET_DEST (set))
e5e809f4 1890 && splittable_regs[REGNO (SET_DEST (set))])
67f2de41 1891 {
770ae6cc
RK
1892 unsigned int regno = REGNO (SET_DEST (set));
1893 unsigned int src_regno;
a5af23fe 1894
67f2de41 1895 dest_reg_was_split = 1;
a5af23fe 1896
e5e809f4 1897 giv_dest_reg = SET_DEST (set);
b4f75276
BS
1898 giv_src_reg = giv_dest_reg;
1899 /* Compute the increment value for the giv, if it wasn't
1900 already computed above. */
1901 if (giv_inc == 0)
1902 giv_inc = calculate_giv_inc (set, insn, regno);
1903
3ec2b590 1904 src_regno = REGNO (giv_src_reg);
67f2de41
RK
1905
1906 if (unroll_type == UNROLL_COMPLETELY)
1907 {
1908 /* Completely unrolling the loop. Set the induction
1909 variable to a known constant value. */
a5af23fe 1910
67f2de41
RK
1911 /* The value in splittable_regs may be an invariant
1912 value, so we must use plus_constant here. */
1913 splittable_regs[regno]
3ec2b590
R
1914 = plus_constant (splittable_regs[src_regno],
1915 INTVAL (giv_inc));
67f2de41
RK
1916
1917 if (GET_CODE (splittable_regs[regno]) == PLUS)
1918 {
1919 giv_src_reg = XEXP (splittable_regs[regno], 0);
1920 giv_inc = XEXP (splittable_regs[regno], 1);
1921 }
1922 else
1923 {
1924 /* The splittable_regs value must be a REG or a
1925 CONST_INT, so put the entire value in the giv_src_reg
1926 variable. */
1927 giv_src_reg = splittable_regs[regno];
1928 giv_inc = const0_rtx;
1929 }
1930 }
1931 else
1932 {
1933 /* Partially unrolling loop. Create a new pseudo
1934 register for the iteration variable, and set it to
1935 be a constant plus the original register. Except
1936 on the last iteration, when the result has to
1937 go back into the original iteration var register. */
a5af23fe 1938
67f2de41
RK
1939 /* Handle bivs which must be mapped to a new register
1940 when split. This happens for bivs which need their
1941 final value set before loop entry. The new register
1942 for the biv was stored in the biv's first struct
1943 induction entry by find_splittable_regs. */
1944
86fee241 1945 if (regno < ivs->n_regs
ed5bb68d 1946 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
67f2de41 1947 {
8b634749 1948 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
67f2de41
RK
1949 giv_dest_reg = giv_src_reg;
1950 }
a5af23fe 1951
67f2de41
RK
1952#if 0
1953 /* If non-reduced/final-value givs were split, then
1954 this would have to remap those givs also. See
1955 find_splittable_regs. */
1956#endif
a5af23fe 1957
67f2de41 1958 splittable_regs[regno]
5b1a6de4
GK
1959 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1960 giv_inc,
1961 splittable_regs[src_regno]);
67f2de41 1962 giv_inc = splittable_regs[regno];
a5af23fe 1963
67f2de41
RK
1964 /* Now split the induction variable by changing the dest
1965 of this insn to a new register, and setting its
1966 reg_map entry to point to this new register.
1967
1968 If this is the last iteration, and this is the last insn
1969 that will update the iv, then reuse the original dest,
1970 to ensure that the iv will have the proper value when
1971 the loop exits or repeats.
1972
1973 Using splittable_regs_updates here like this is safe,
1974 because it can only be greater than one if all
1975 instructions modifying the iv are always executed in
1976 order. */
1977
1978 if (! last_iteration
1979 || (splittable_regs_updates[regno]-- != 1))
1980 {
1981 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1982 giv_dest_reg = tem;
1983 map->reg_map[regno] = tem;
de12be17
JC
1984 record_base_value (REGNO (tem),
1985 giv_inc == const0_rtx
1986 ? giv_src_reg
1987 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1988 giv_src_reg, giv_inc),
1989 1);
67f2de41
RK
1990 }
1991 else
1992 map->reg_map[regno] = giv_src_reg;
1993 }
1994
1995 /* The constant being added could be too large for an add
1996 immediate, so can't directly emit an insn here. */
1997 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1998 copy = get_last_insn ();
1999 pattern = PATTERN (copy);
2000 }
2001 else
2002 {
14a774a9 2003 pattern = copy_rtx_and_substitute (pattern, map, 0);
67f2de41
RK
2004 copy = emit_insn (pattern);
2005 }
6bd43524 2006 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
0435312e 2007 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
a5af23fe 2008
f7a21c70
DE
2009 /* If there is a REG_EQUAL note present whose value
2010 is not loop invariant, then delete it, since it
2011 may cause problems with later optimization passes. */
2012 if ((tem = find_reg_note (copy, REG_EQUAL, NULL_RTX))
2013 && !loop_invariant_p (loop, XEXP (tem, 0)))
2014 remove_note (copy, tem);
2015
67f2de41
RK
2016#ifdef HAVE_cc0
2017 /* If this insn is setting CC0, it may need to look at
2018 the insn that uses CC0 to see what type of insn it is.
2019 In that case, the call to recog via validate_change will
2020 fail. So don't substitute constants here. Instead,
2021 do it when we emit the following insn.
2022
2023 For example, see the pyr.md file. That machine has signed and
2024 unsigned compares. The compare patterns must check the
2025 following branch insn to see which what kind of compare to
2026 emit.
2027
2028 If the previous insn set CC0, substitute constants on it as
2029 well. */
e65886db 2030 if (sets_cc0_p (PATTERN (copy)) != 0)
67f2de41
RK
2031 cc0_insn = copy;
2032 else
2033 {
2034 if (cc0_insn)
2035 try_constants (cc0_insn, map);
2036 cc0_insn = 0;
2037 try_constants (copy, map);
2038 }
2039#else
2040 try_constants (copy, map);
2041#endif
2042
2043 /* Make split induction variable constants `permanent' since we
2044 know there are no backward branches across iteration variable
2045 settings which would invalidate this. */
0bae0184 2046 if (dest_reg_was_split)
67f2de41 2047 {
65c8a03d 2048 int regno = REGNO (SET_DEST (set));
67f2de41 2049
6a651371 2050 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
c68da89c
KR
2051 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2052 == map->const_age))
2053 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
67f2de41
RK
2054 }
2055 break;
a5af23fe 2056
67f2de41 2057 case JUMP_INSN:
14a774a9 2058 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
483404b6 2059 copy = emit_jump_insn (pattern);
6bd43524 2060 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
0435312e 2061 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
483404b6 2062
6ba4d630 2063 if (JUMP_LABEL (insn))
67f2de41 2064 {
742dff15
JH
2065 JUMP_LABEL (copy) = get_label_from_map (map,
2066 CODE_LABEL_NUMBER
2067 (JUMP_LABEL (insn)));
8aa0e194 2068 LABEL_NUSES (JUMP_LABEL (copy))++;
6ba4d630
JH
2069 }
2070 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2071 && ! last_iteration)
2072 {
8aa0e194 2073
67f2de41
RK
2074 /* This is a branch to the beginning of the loop; this is the
2075 last insn being copied; and this is not the last iteration.
2076 In this case, we want to change the original fall through
2077 case to be a branch past the end of the loop, and the
2078 original jump label case to fall_through. */
a9d27cb2 2079
742dff15 2080 if (!invert_jump (copy, exit_label, 0))
ca72f752
RE
2081 {
2082 rtx jmp;
2083 rtx lab = gen_label_rtx ();
9faa82d8
RK
2084 /* Can't do it by reversing the jump (probably because we
2085 couldn't reverse the conditions), so emit a new
ca72f752
RE
2086 jump_insn after COPY, and redirect the jump around
2087 that. */
2088 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
bcb07710 2089 JUMP_LABEL (jmp) = exit_label;
1b735a57 2090 LABEL_NUSES (exit_label)++;
ca72f752
RE
2091 jmp = emit_barrier_after (jmp);
2092 emit_label_after (lab, jmp);
2093 LABEL_NUSES (lab) = 0;
742dff15 2094 if (!redirect_jump (copy, lab, 0))
a86dc4a3 2095 abort ();
ca72f752 2096 }
67f2de41 2097 }
a5af23fe 2098
67f2de41
RK
2099#ifdef HAVE_cc0
2100 if (cc0_insn)
2101 try_constants (cc0_insn, map);
2102 cc0_insn = 0;
2103#endif
2104 try_constants (copy, map);
2105
2106 /* Set the jump label of COPY correctly to avoid problems with
2107 later passes of unroll_loop, if INSN had jump label set. */
2108 if (JUMP_LABEL (insn))
2109 {
57467646
JW
2110 rtx label = 0;
2111
67f2de41
RK
2112 /* Can't use the label_map for every insn, since this may be
2113 the backward branch, and hence the label was not mapped. */
e5e809f4 2114 if ((set = single_set (copy)))
67f2de41 2115 {
e5e809f4 2116 tem = SET_SRC (set);
67f2de41 2117 if (GET_CODE (tem) == LABEL_REF)
57467646 2118 label = XEXP (tem, 0);
67f2de41
RK
2119 else if (GET_CODE (tem) == IF_THEN_ELSE)
2120 {
2121 if (XEXP (tem, 1) != pc_rtx)
57467646 2122 label = XEXP (XEXP (tem, 1), 0);
67f2de41 2123 else
57467646 2124 label = XEXP (XEXP (tem, 2), 0);
67f2de41 2125 }
67f2de41 2126 }
57467646 2127
4b4bf941 2128 if (label && LABEL_P (label))
57467646 2129 JUMP_LABEL (copy) = label;
67f2de41
RK
2130 else
2131 {
2132 /* An unrecognizable jump insn, probably the entry jump
2133 for a switch statement. This label must have been mapped,
2134 so just use the label_map to get the new jump label. */
4ac75a4e 2135 JUMP_LABEL (copy)
a5af23fe
R
2136 = get_label_from_map (map,
2137 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
67f2de41 2138 }
a5af23fe 2139
67f2de41
RK
2140 /* If this is a non-local jump, then must increase the label
2141 use count so that the label will not be deleted when the
2142 original jump is deleted. */
2143 LABEL_NUSES (JUMP_LABEL (copy))++;
2144 }
2145 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2146 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2147 {
2148 rtx pat = PATTERN (copy);
2149 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2150 int len = XVECLEN (pat, diff_vec_p);
2151 int i;
2152
2153 for (i = 0; i < len; i++)
2154 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2155 }
2156
2157 /* If this used to be a conditional jump insn but whose branch
2158 direction is now known, we must do something special. */
7f1c097d 2159 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
67f2de41
RK
2160 {
2161#ifdef HAVE_cc0
b30f05db 2162 /* If the previous insn set cc0 for us, delete it. */
44ce0063 2163 if (only_sets_cc0_p (PREV_INSN (copy)))
53c17031 2164 delete_related_insns (PREV_INSN (copy));
67f2de41
RK
2165#endif
2166
2167 /* If this is now a no-op, delete it. */
2168 if (map->last_pc_value == pc_rtx)
2169 {
ca6c03ca 2170 delete_insn (copy);
67f2de41
RK
2171 copy = 0;
2172 }
2173 else
2174 /* Otherwise, this is unconditional jump so we must put a
2175 BARRIER after it. We could do some dead code elimination
2176 here, but jump.c will do it just as well. */
2177 emit_barrier ();
2178 }
2179 break;
a5af23fe 2180
67f2de41 2181 case CALL_INSN:
14a774a9 2182 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
67f2de41 2183 copy = emit_call_insn (pattern);
6bd43524 2184 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
0435312e 2185 INSN_LOCATOR (copy) = INSN_LOCATOR (insn);
f2f4927e 2186 SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
4ff38cd5 2187 CONST_OR_PURE_CALL_P (copy) = CONST_OR_PURE_CALL_P (insn);
67f2de41 2188
2d98fe23
JW
2189 /* Because the USAGE information potentially contains objects other
2190 than hard registers, we need to copy it. */
db3cf6fb 2191 CALL_INSN_FUNCTION_USAGE (copy)
14a774a9
RK
2192 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2193 map, 0);
2d98fe23 2194
67f2de41
RK
2195#ifdef HAVE_cc0
2196 if (cc0_insn)
2197 try_constants (cc0_insn, map);
2198 cc0_insn = 0;
2199#endif
2200 try_constants (copy, map);
2201
2202 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2203 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
c68da89c 2204 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
67f2de41 2205 break;
a5af23fe 2206
67f2de41
RK
2207 case CODE_LABEL:
2208 /* If this is the loop start label, then we don't need to emit a
2209 copy of this label since no one will use it. */
2210
2211 if (insn != start_label)
2212 {
1f3d3a31
JL
2213 copy = emit_label (get_label_from_map (map,
2214 CODE_LABEL_NUMBER (insn)));
67f2de41
RK
2215 map->const_age++;
2216 }
2217 break;
a5af23fe 2218
67f2de41
RK
2219 case BARRIER:
2220 copy = emit_barrier ();
2221 break;
a5af23fe 2222
67f2de41 2223 case NOTE:
c956720a
R
2224 /* VTOP and CONT notes are valid only before the loop exit test.
2225 If placed anywhere else, loop may generate bad code. */
e881bb1b 2226 /* BASIC_BLOCK notes exist to stabilize basic block structures with
a86dc4a3 2227 the associated rtl. We do not want to share the structure in
e881bb1b 2228 this new block. */
a5af23fe 2229
5f2fc772 2230 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
fd3acbb3
NS
2231 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2232 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2233 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2234 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2235 || (last_iteration
2236 && unroll_type != UNROLL_COMPLETELY)))
5f2fc772 2237 copy = emit_note_copy (insn);
67f2de41
RK
2238 else
2239 copy = 0;
2240 break;
a5af23fe 2241
67f2de41
RK
2242 default:
2243 abort ();
67f2de41 2244 }
a5af23fe 2245
67f2de41
RK
2246 map->insn_map[INSN_UID (insn)] = copy;
2247 }
2248 while (insn != copy_end);
a5af23fe 2249
6bd43524 2250 /* Now finish coping the REG_NOTES. */
ef39bb95
JW
2251 insn = copy_start;
2252 do
2253 {
2254 insn = NEXT_INSN (insn);
4b4bf941 2255 if (INSN_P (insn)
ef39bb95 2256 && map->insn_map[INSN_UID (insn)])
b59a386b 2257 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
ef39bb95
JW
2258 }
2259 while (insn != copy_end);
2260
67f2de41
RK
2261 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2262 each of these notes here, since there may be some important ones, such as
2263 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2264 iteration, because the original notes won't be deleted.
2265
2266 We can't use insert_before here, because when from preconditioning,
2267 insert_before points before the loop. We can't use copy_end, because
2268 there may be insns already inserted after it (which we don't want to
2269 copy) when not from preconditioning code. */
2270
2271 if (! last_iteration)
2272 {
2273 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2274 {
36e9ee91
R
2275 /* VTOP notes are valid only before the loop exit test.
2276 If placed anywhere else, loop may generate bad code.
0a756401
R
2277 Although COPY_NOTES_FROM will be at most one or two (for cc0)
2278 instructions before the last insn in the loop, COPY_NOTES_FROM
2279 can be a NOTE_INSN_LOOP_CONT note if there is no VTOP note,
2280 as in a do .. while loop. */
4b4bf941 2281 if (NOTE_P (insn)
5f2fc772 2282 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
fd3acbb3
NS
2283 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2284 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
5f2fc772
NS
2285 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)))
2286 emit_note_copy (insn);
67f2de41
RK
2287 }
2288 }
2289
2290 if (final_label && LABEL_NUSES (final_label) > 0)
2291 emit_label (final_label);
2292
2f937369 2293 tem = get_insns ();
67f2de41 2294 end_sequence ();
86e21212 2295 loop_insn_emit_before (loop, 0, insert_before, tem);
67f2de41
RK
2296}
2297\f
2298/* Emit an insn, using the expand_binop to ensure that a valid insn is
2299 emitted. This will correctly handle the case where the increment value
2300 won't fit in the immediate field of a PLUS insns. */
2301
2302void
2e1eedd6 2303emit_unrolled_add (rtx dest_reg, rtx src_reg, rtx increment)
67f2de41
RK
2304{
2305 rtx result;
2306
ef89d648
ZW
2307 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2308 dest_reg, 0, OPTAB_LIB_WIDEN);
67f2de41
RK
2309
2310 if (dest_reg != result)
2311 emit_move_insn (dest_reg, result);
2312}
2313\f
0534b804 2314/* Searches the insns between INSN and LOOP->END. Returns 1 if there
67f2de41 2315 is a backward branch in that range that branches to somewhere between
0534b804 2316 LOOP->START and INSN. Returns 0 otherwise. */
67f2de41 2317
6dc42e49 2318/* ??? This is quadratic algorithm. Could be rewritten to be linear.
67f2de41
RK
2319 In practice, this is not a problem, because this function is seldom called,
2320 and uses a negligible amount of CPU time on average. */
2321
9923a30d 2322int
2e1eedd6 2323back_branch_in_range_p (const struct loop *loop, rtx insn)
67f2de41
RK
2324{
2325 rtx p, q, target_insn;
0534b804
MH
2326 rtx loop_start = loop->start;
2327 rtx loop_end = loop->end;
2328 rtx orig_loop_end = loop->end;
67f2de41
RK
2329
2330 /* Stop before we get to the backward branch at the end of the loop. */
2331 loop_end = prev_nonnote_insn (loop_end);
4b4bf941 2332 if (BARRIER_P (loop_end))
67f2de41
RK
2333 loop_end = PREV_INSN (loop_end);
2334
2335 /* Check in case insn has been deleted, search forward for first non
2336 deleted insn following it. */
2337 while (INSN_DELETED_P (insn))
2338 insn = NEXT_INSN (insn);
2339
956d6950
JL
2340 /* Check for the case where insn is the last insn in the loop. Deal
2341 with the case where INSN was a deleted loop test insn, in which case
2342 it will now be the NOTE_LOOP_END. */
2343 if (insn == loop_end || insn == orig_loop_end)
67f2de41
RK
2344 return 0;
2345
2346 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2347 {
4b4bf941 2348 if (JUMP_P (p))
67f2de41
RK
2349 {
2350 target_insn = JUMP_LABEL (p);
a5af23fe 2351
67f2de41
RK
2352 /* Search from loop_start to insn, to see if one of them is
2353 the target_insn. We can't use INSN_LUID comparisons here,
2354 since insn may not have an LUID entry. */
2355 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2356 if (q == target_insn)
2357 return 1;
2358 }
2359 }
2360
2361 return 0;
2362}
2363
2364/* Try to generate the simplest rtx for the expression
2365 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2366 value of giv's. */
2367
2368static rtx
2e1eedd6 2369fold_rtx_mult_add (rtx mult1, rtx mult2, rtx add1, enum machine_mode mode)
67f2de41
RK
2370{
2371 rtx temp, mult_res;
2372 rtx result;
2373
2374 /* The modes must all be the same. This should always be true. For now,
2375 check to make sure. */
2376 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2377 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2378 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2379 abort ();
2380
2381 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2382 will be a constant. */
2383 if (GET_CODE (mult1) == CONST_INT)
2384 {
2385 temp = mult2;
2386 mult2 = mult1;
2387 mult1 = temp;
2388 }
2389
2390 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2391 if (! mult_res)
38a448ca 2392 mult_res = gen_rtx_MULT (mode, mult1, mult2);
67f2de41
RK
2393
2394 /* Again, put the constant second. */
2395 if (GET_CODE (add1) == CONST_INT)
2396 {
2397 temp = add1;
2398 add1 = mult_res;
2399 mult_res = temp;
2400 }
2401
2402 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2403 if (! result)
38a448ca 2404 result = gen_rtx_PLUS (mode, add1, mult_res);
67f2de41
RK
2405
2406 return result;
2407}
2408
2409/* Searches the list of induction struct's for the biv BL, to try to calculate
2410 the total increment value for one iteration of the loop as a constant.
2411
2412 Returns the increment value as an rtx, simplified as much as possible,
2413 if it can be calculated. Otherwise, returns 0. */
2414
a5af23fe 2415rtx
2e1eedd6 2416biv_total_increment (const struct iv_class *bl)
67f2de41
RK
2417{
2418 struct induction *v;
2419 rtx result;
2420
2421 /* For increment, must check every instruction that sets it. Each
2422 instruction must be executed only once each time through the loop.
38e01259 2423 To verify this, we check that the insn is always executed, and that
67f2de41
RK
2424 there are no backward branches after the insn that branch to before it.
2425 Also, the insn must have a mult_val of one (to make sure it really is
2426 an increment). */
2427
2428 result = const0_rtx;
2429 for (v = bl->biv; v; v = v->next_iv)
2430 {
2431 if (v->always_computable && v->mult_val == const1_rtx
3823f0b2
GK
2432 && ! v->maybe_multiple
2433 && SCALAR_INT_MODE_P (v->mode))
e8226879
EB
2434 {
2435 /* If we have already counted it, skip it. */
2436 if (v->same)
2437 continue;
2438
2439 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2440 }
67f2de41
RK
2441 else
2442 return 0;
2443 }
2444
2445 return result;
2446}
2447
67f2de41
RK
2448/* For each biv and giv, determine whether it can be safely split into
2449 a different variable for each unrolled copy of the loop body. If it
2450 is safe to split, then indicate that by saving some useful info
2451 in the splittable_regs array.
2452
2453 If the loop is being completely unrolled, then splittable_regs will hold
2454 the current value of the induction variable while the loop is unrolled.
2455 It must be set to the initial value of the induction variable here.
2456 Otherwise, splittable_regs will hold the difference between the current
2457 value of the induction variable and the value the induction variable had
8dc0b179
RS
2458 at the top of the loop. It must be set to the value 0 here.
2459
2460 Returns the total number of instructions that set registers that are
2461 splittable. */
67f2de41
RK
2462
2463/* ?? If the loop is only unrolled twice, then most of the restrictions to
2464 constant values are unnecessary, since we can easily calculate increment
2465 values in this case even if nothing is constant. The increment value
2466 should not involve a multiply however. */
2467
2468/* ?? Even if the biv/giv increment values aren't constant, it may still
2469 be beneficial to split the variable if the loop is only unrolled a few
2470 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2471
2472static int
2e1eedd6
AJ
2473find_splittable_regs (const struct loop *loop,
2474 enum unroll_types unroll_type, int unroll_number)
67f2de41 2475{
ed5bb68d 2476 struct loop_ivs *ivs = LOOP_IVS (loop);
67f2de41 2477 struct iv_class *bl;
0e91429a 2478 struct induction *v;
67f2de41
RK
2479 rtx increment, tem;
2480 rtx biv_final_value;
2481 int biv_splittable;
2482 int result = 0;
2483
14be28e5 2484 for (bl = ivs->list; bl; bl = bl->next)
67f2de41
RK
2485 {
2486 /* Biv_total_increment must return a constant value,
2487 otherwise we can not calculate the split values. */
2488
0534b804 2489 increment = biv_total_increment (bl);
67f2de41
RK
2490 if (! increment || GET_CODE (increment) != CONST_INT)
2491 continue;
2492
2493 /* The loop must be unrolled completely, or else have a known number
2494 of iterations and only one exit, or else the biv must be dead
2495 outside the loop, or else the final value must be known. Otherwise,
2496 it is unsafe to split the biv since it may not have the proper
2497 value on loop exit. */
2498
0e9e1e0a 2499 /* loop_number_exit_count is nonzero if the loop has an exit other than
67f2de41
RK
2500 a fall through at the end. */
2501
2502 biv_splittable = 1;
2503 biv_final_value = 0;
2504 if (unroll_type != UNROLL_COMPLETELY
0534b804 2505 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
96a45535 2506 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
67f2de41
RK
2507 || ! bl->init_insn
2508 || INSN_UID (bl->init_insn) >= max_uid_for_loop
8529a489 2509 || (REGNO_FIRST_LUID (bl->regno)
67f2de41
RK
2510 < INSN_LUID (bl->init_insn))
2511 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
0534b804 2512 && ! (biv_final_value = final_biv_value (loop, bl)))
67f2de41
RK
2513 biv_splittable = 0;
2514
0e91429a
RK
2515 /* If any of the insns setting the BIV don't do so with a simple
2516 PLUS, we don't know how to split it. */
2517 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2518 if ((tem = single_set (v->insn)) == 0
f8cfc6aa 2519 || !REG_P (SET_DEST (tem))
0e91429a
RK
2520 || REGNO (SET_DEST (tem)) != bl->regno
2521 || GET_CODE (SET_SRC (tem)) != PLUS)
2522 biv_splittable = 0;
2523
0e9e1e0a 2524 /* If final value is nonzero, then must emit an instruction which sets
67f2de41
RK
2525 the value of the biv to the proper value. This is done after
2526 handling all of the givs, since some of them may need to use the
2527 biv's value in their initialization code. */
2528
2529 /* This biv is splittable. If completely unrolling the loop, save
2530 the biv's initial value. Otherwise, save the constant zero. */
2531
2532 if (biv_splittable == 1)
2533 {
2534 if (unroll_type == UNROLL_COMPLETELY)
2535 {
2536 /* If the initial value of the biv is itself (i.e. it is too
2537 complicated for strength_reduce to compute), or is a hard
f47f2c17
RK
2538 register, or it isn't invariant, then we must create a new
2539 pseudo reg to hold the initial value of the biv. */
67f2de41 2540
f8cfc6aa 2541 if (REG_P (bl->initial_value)
67f2de41 2542 && (REGNO (bl->initial_value) == bl->regno
f47f2c17 2543 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
0534b804 2544 || ! loop_invariant_p (loop, bl->initial_value)))
67f2de41
RK
2545 {
2546 rtx tem = gen_reg_rtx (bl->biv->mode);
9ae8ffe7 2547
de12be17 2548 record_base_value (REGNO (tem), bl->biv->add_val, 0);
41077ce4 2549 loop_insn_hoist (loop,
96a45535 2550 gen_move_insn (tem, bl->biv->src_reg));
67f2de41
RK
2551
2552 if (loop_dump_stream)
a86dc4a3
KH
2553 fprintf (loop_dump_stream,
2554 "Biv %d initial value remapped to %d.\n",
67f2de41
RK
2555 bl->regno, REGNO (tem));
2556
2557 splittable_regs[bl->regno] = tem;
2558 }
2559 else
2560 splittable_regs[bl->regno] = bl->initial_value;
2561 }
2562 else
2563 splittable_regs[bl->regno] = const0_rtx;
2564
2565 /* Save the number of instructions that modify the biv, so that
2566 we can treat the last one specially. */
2567
2568 splittable_regs_updates[bl->regno] = bl->biv_count;
8dc0b179 2569 result += bl->biv_count;
67f2de41
RK
2570
2571 if (loop_dump_stream)
2572 fprintf (loop_dump_stream,
2573 "Biv %d safe to split.\n", bl->regno);
2574 }
2575
2576 /* Check every giv that depends on this biv to see whether it is
2577 splittable also. Even if the biv isn't splittable, givs which
2578 depend on it may be splittable if the biv is live outside the
2579 loop, and the givs aren't. */
2580
a86dc4a3 2581 result += find_splittable_givs (loop, bl, unroll_type, increment,
0534b804 2582 unroll_number);
67f2de41 2583
0e9e1e0a 2584 /* If final value is nonzero, then must emit an instruction which sets
67f2de41
RK
2585 the value of the biv to the proper value. This is done after
2586 handling all of the givs, since some of them may need to use the
2587 biv's value in their initialization code. */
2588 if (biv_final_value)
2589 {
2590 /* If the loop has multiple exits, emit the insns before the
2591 loop to ensure that it will always be executed no matter
2592 how the loop exits. Otherwise emit the insn after the loop,
2593 since this is slightly more efficient. */
0534b804 2594 if (! loop->exit_count)
96a45535
MH
2595 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2596 biv_final_value));
67f2de41
RK
2597 else
2598 {
2599 /* Create a new register to hold the value of the biv, and then
2600 set the biv to its final value before the loop start. The biv
2601 is set to its final value before loop start to ensure that
2602 this insn will always be executed, no matter how the loop
2603 exits. */
2604 rtx tem = gen_reg_rtx (bl->biv->mode);
de12be17 2605 record_base_value (REGNO (tem), bl->biv->add_val, 0);
9ae8ffe7 2606
96a45535
MH
2607 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2608 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2609 biv_final_value));
67f2de41
RK
2610
2611 if (loop_dump_stream)
2612 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2613 REGNO (bl->biv->src_reg), REGNO (tem));
2614
2615 /* Set up the mapping from the original biv register to the new
2616 register. */
2617 bl->biv->src_reg = tem;
2618 }
2619 }
2620 }
2621 return result;
2622}
2623
2624/* For every giv based on the biv BL, check to determine whether it is
8dc0b179
RS
2625 splittable. This is a subroutine to find_splittable_regs ().
2626
2627 Return the number of instructions that set splittable registers. */
67f2de41
RK
2628
2629static int
2e1eedd6
AJ
2630find_splittable_givs (const struct loop *loop, struct iv_class *bl,
2631 enum unroll_types unroll_type, rtx increment,
2632 int unroll_number ATTRIBUTE_UNUSED)
67f2de41 2633{
ed5bb68d 2634 struct loop_ivs *ivs = LOOP_IVS (loop);
3fc347fa 2635 struct induction *v, *v2;
67f2de41
RK
2636 rtx final_value;
2637 rtx tem;
8dc0b179 2638 int result = 0;
67f2de41 2639
3fc347fa
JW
2640 /* Scan the list of givs, and set the same_insn field when there are
2641 multiple identical givs in the same insn. */
2642 for (v = bl->giv; v; v = v->next_iv)
2643 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2644 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2645 && ! v2->same_insn)
2646 v2->same_insn = v;
2647
67f2de41
RK
2648 for (v = bl->giv; v; v = v->next_iv)
2649 {
2650 rtx giv_inc, value;
2651
2652 /* Only split the giv if it has already been reduced, or if the loop is
2653 being completely unrolled. */
2654 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2655 continue;
2656
2657 /* The giv can be split if the insn that sets the giv is executed once
2658 and only once on every iteration of the loop. */
2659 /* An address giv can always be split. v->insn is just a use not a set,
2660 and hence it does not matter whether it is always executed. All that
2661 matters is that all the biv increments are always executed, and we
2662 won't reach here if they aren't. */
2663 if (v->giv_type != DEST_ADDR
2664 && (! v->always_computable
0534b804 2665 || back_branch_in_range_p (loop, v->insn)))
67f2de41 2666 continue;
a5af23fe 2667
67f2de41
RK
2668 /* The giv increment value must be a constant. */
2669 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2670 v->mode);
2671 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2672 continue;
2673
2674 /* The loop must be unrolled completely, or else have a known number of
2675 iterations and only one exit, or else the giv must be dead outside
2676 the loop, or else the final value of the giv must be known.
2677 Otherwise, it is not safe to split the giv since it may not have the
2678 proper value on loop exit. */
a5af23fe 2679
67f2de41
RK
2680 /* The used outside loop test will fail for DEST_ADDR givs. They are
2681 never used outside the loop anyways, so it is always safe to split a
2682 DEST_ADDR giv. */
2683
2684 final_value = 0;
2685 if (unroll_type != UNROLL_COMPLETELY
0534b804 2686 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
67f2de41 2687 && v->giv_type != DEST_ADDR
9fb82071
JW
2688 /* The next part is true if the pseudo is used outside the loop.
2689 We assume that this is true for any pseudo created after loop
2690 starts, because we don't have a reg_n_info entry for them. */
2691 && (REGNO (v->dest_reg) >= max_reg_before_loop
2692 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2693 /* Check for the case where the pseudo is set by a shift/add
2694 sequence, in which case the first insn setting the pseudo
2695 is the first insn of the shift/add sequence. */
2696 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2697 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2698 != INSN_UID (XEXP (tem, 0)))))
67f2de41 2699 /* Line above always fails if INSN was moved by loop opt. */
8529a489 2700 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
0534b804 2701 >= INSN_LUID (loop->end)))
67f2de41
RK
2702 && ! (final_value = v->final_value))
2703 continue;
2704
2705#if 0
2706 /* Currently, non-reduced/final-value givs are never split. */
2707 /* Should emit insns after the loop if possible, as the biv final value
2708 code below does. */
2709
0e9e1e0a 2710 /* If the final value is nonzero, and the giv has not been reduced,
67f2de41
RK
2711 then must emit an instruction to set the final value. */
2712 if (final_value && !v->new_reg)
2713 {
2714 /* Create a new register to hold the value of the giv, and then set
2715 the giv to its final value before the loop start. The giv is set
2716 to its final value before loop start to ensure that this insn
2717 will always be executed, no matter how we exit. */
2718 tem = gen_reg_rtx (v->mode);
96a45535
MH
2719 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2720 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
a5af23fe 2721
67f2de41
RK
2722 if (loop_dump_stream)
2723 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2724 REGNO (v->dest_reg), REGNO (tem));
a5af23fe 2725
67f2de41
RK
2726 v->src_reg = tem;
2727 }
2728#endif
2729
2730 /* This giv is splittable. If completely unrolling the loop, save the
2731 giv's initial value. Otherwise, save the constant zero for it. */
2732
2733 if (unroll_type == UNROLL_COMPLETELY)
0e91429a
RK
2734 {
2735 /* It is not safe to use bl->initial_value here, because it may not
2736 be invariant. It is safe to use the initial value stored in
2737 the splittable_regs array if it is set. In rare cases, it won't
2738 be set, so then we do exactly the same thing as
2739 find_splittable_regs does to get a safe value. */
2740 rtx biv_initial_value;
2741
2742 if (splittable_regs[bl->regno])
2743 biv_initial_value = splittable_regs[bl->regno];
f8cfc6aa 2744 else if (!REG_P (bl->initial_value)
0e91429a
RK
2745 || (REGNO (bl->initial_value) != bl->regno
2746 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2747 biv_initial_value = bl->initial_value;
2748 else
2749 {
2750 rtx tem = gen_reg_rtx (bl->biv->mode);
2751
de12be17 2752 record_base_value (REGNO (tem), bl->biv->add_val, 0);
96a45535 2753 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
0e91429a
RK
2754 biv_initial_value = tem;
2755 }
e8cb4873 2756 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
0e91429a
RK
2757 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2758 v->add_val, v->mode);
2759 }
67f2de41
RK
2760 else
2761 value = const0_rtx;
2762
2763 if (v->new_reg)
2764 {
bf1c6940
JW
2765 /* If a giv was combined with another giv, then we can only split
2766 this giv if the giv it was combined with was reduced. This
2767 is because the value of v->new_reg is meaningless in this
2768 case. */
2769 if (v->same && ! v->same->new_reg)
67f2de41
RK
2770 {
2771 if (loop_dump_stream)
2772 fprintf (loop_dump_stream,
bf1c6940
JW
2773 "giv combined with unreduced giv not split.\n");
2774 continue;
67f2de41 2775 }
bf1c6940
JW
2776 /* If the giv is an address destination, it could be something other
2777 than a simple register, these have to be treated differently. */
2778 else if (v->giv_type == DEST_REG)
2b9a9aea
JW
2779 {
2780 /* If value is not a constant, register, or register plus
2781 constant, then compute its value into a register before
181c6568 2782 loop start. This prevents invalid rtx sharing, and should
2b9a9aea
JW
2783 generate better code. We can use bl->initial_value here
2784 instead of splittable_regs[bl->regno] because this code
2785 is going before the loop start. */
2786 if (unroll_type == UNROLL_COMPLETELY
2787 && GET_CODE (value) != CONST_INT
f8cfc6aa 2788 && !REG_P (value)
2b9a9aea 2789 && (GET_CODE (value) != PLUS
f8cfc6aa 2790 || !REG_P (XEXP (value, 0))
2b9a9aea
JW
2791 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2792 {
2793 rtx tem = gen_reg_rtx (v->mode);
de12be17 2794 record_base_value (REGNO (tem), v->add_val, 0);
1bcec223
UW
2795 loop_iv_add_mult_hoist (loop,
2796 extend_value_for_giv (v, bl->initial_value),
2797 v->mult_val, v->add_val, tem);
2b9a9aea
JW
2798 value = tem;
2799 }
a5af23fe 2800
344b78b8 2801 splittable_regs[reg_or_subregno (v->new_reg)] = value;
2b9a9aea 2802 }
67f2de41 2803 else
b642261e 2804 continue;
67f2de41
RK
2805 }
2806 else
2807 {
2808#if 0
2809 /* Currently, unreduced giv's can't be split. This is not too much
2810 of a problem since unreduced giv's are not live across loop
2811 iterations anyways. When unrolling a loop completely though,
2812 it makes sense to reduce&split givs when possible, as this will
2813 result in simpler instructions, and will not require that a reg
2814 be live across loop iterations. */
a5af23fe 2815
67f2de41
RK
2816 splittable_regs[REGNO (v->dest_reg)] = value;
2817 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2818 REGNO (v->dest_reg), INSN_UID (v->insn));
2819#else
2820 continue;
2821#endif
2822 }
a5af23fe 2823
3bb24246
JW
2824 /* Unreduced givs are only updated once by definition. Reduced givs
2825 are updated as many times as their biv is. Mark it so if this is
67f2de41
RK
2826 a splittable register. Don't need to do anything for address givs
2827 where this may not be a register. */
2828
f8cfc6aa 2829 if (REG_P (v->new_reg))
3bb24246
JW
2830 {
2831 int count = 1;
2832 if (! v->ignore)
8b634749 2833 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
3bb24246 2834
344b78b8 2835 splittable_regs_updates[reg_or_subregno (v->new_reg)] = count;
3bb24246 2836 }
67f2de41
RK
2837
2838 result++;
a5af23fe 2839
67f2de41
RK
2840 if (loop_dump_stream)
2841 {
2842 int regnum;
a5af23fe 2843
67f2de41
RK
2844 if (GET_CODE (v->dest_reg) == CONST_INT)
2845 regnum = -1;
f8cfc6aa 2846 else if (!REG_P (v->dest_reg))
67f2de41
RK
2847 regnum = REGNO (XEXP (v->dest_reg, 0));
2848 else
2849 regnum = REGNO (v->dest_reg);
2850 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2851 regnum, INSN_UID (v->insn));
2852 }
2853 }
2854
2855 return result;
2856}
2857\f
2858/* Try to prove that the register is dead after the loop exits. Trace every
2859 loop exit looking for an insn that will always be executed, which sets
2860 the register to some value, and appears before the first use of the register
2861 is found. If successful, then return 1, otherwise return 0. */
2862
2863/* ?? Could be made more intelligent in the handling of jumps, so that
2864 it can search past if statements and other similar structures. */
2865
2866static int
2e1eedd6 2867reg_dead_after_loop (const struct loop *loop, rtx reg)
67f2de41
RK
2868{
2869 rtx insn, label;
412dc348 2870 int jump_count = 0;
3669e646 2871 int label_count = 0;
3669e646
RK
2872
2873 /* In addition to checking all exits of this loop, we must also check
2874 all exits of inner nested loops that would exit this loop. We don't
2875 have any way to identify those, so we just give up if there are any
2876 such inner loop exits. */
a5af23fe 2877
a2be868f 2878 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3669e646
RK
2879 label_count++;
2880
a2be868f 2881 if (label_count != loop->exit_count)
3669e646 2882 return 0;
67f2de41
RK
2883
2884 /* HACK: Must also search the loop fall through exit, create a label_ref
0534b804 2885 here which points to the loop->end, and append the loop_number_exit_labels
67f2de41 2886 list to it. */
0534b804 2887 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
a2be868f 2888 LABEL_NEXTREF (label) = loop->exit_labels;
67f2de41 2889
a86dc4a3 2890 for (; label; label = LABEL_NEXTREF (label))
67f2de41
RK
2891 {
2892 /* Succeed if find an insn which sets the biv or if reach end of
2893 function. Fail if find an insn that uses the biv, or if come to
2894 a conditional jump. */
2895
2896 insn = NEXT_INSN (XEXP (label, 0));
412dc348 2897 while (insn)
67f2de41 2898 {
ec8e098d 2899 if (INSN_P (insn))
67f2de41 2900 {
8df63efa 2901 rtx set, note;
412dc348
RK
2902
2903 if (reg_referenced_p (reg, PATTERN (insn)))
67f2de41 2904 return 0;
412dc348 2905
8df63efa
JJ
2906 note = find_reg_equal_equiv_note (insn);
2907 if (note && reg_overlap_mentioned_p (reg, XEXP (note, 0)))
2908 return 0;
2909
412dc348
RK
2910 set = single_set (insn);
2911 if (set && rtx_equal_p (SET_DEST (set), reg))
2912 break;
412dc348 2913
4b4bf941 2914 if (JUMP_P (insn))
ec8e098d
PB
2915 {
2916 if (GET_CODE (PATTERN (insn)) == RETURN)
2917 break;
2918 else if (!any_uncondjump_p (insn)
2919 /* Prevent infinite loop following infinite loops. */
2920 || jump_count++ > 20)
2921 return 0;
2922 else
2923 insn = JUMP_LABEL (insn);
2924 }
67f2de41 2925 }
412dc348 2926
67f2de41
RK
2927 insn = NEXT_INSN (insn);
2928 }
2929 }
2930
2931 /* Success, the register is dead on all loop exits. */
2932 return 1;
2933}
2934
2935/* Try to calculate the final value of the biv, the value it will have at
2936 the end of the loop. If we can do it, return that value. */
a5af23fe 2937
67f2de41 2938rtx
2e1eedd6 2939final_biv_value (const struct loop *loop, struct iv_class *bl)
67f2de41 2940{
0534b804 2941 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
67f2de41
RK
2942 rtx increment, tem;
2943
b4ac57ab
RS
2944 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2945
2946 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2947 return 0;
2948
67f2de41 2949 /* The final value for reversed bivs must be calculated differently than
a86dc4a3 2950 for ordinary bivs. In this case, there is already an insn after the
67f2de41
RK
2951 loop which sets this biv's final value (if necessary), and there are
2952 no other loop exits, so we can return any value. */
2953 if (bl->reversed)
2954 {
2955 if (loop_dump_stream)
2956 fprintf (loop_dump_stream,
2957 "Final biv value for %d, reversed biv.\n", bl->regno);
a5af23fe 2958
67f2de41
RK
2959 return const0_rtx;
2960 }
2961
2962 /* Try to calculate the final value as initial value + (number of iterations
2963 * increment). For this to work, increment must be invariant, the only
2964 exit from the loop must be the fall through at the bottom (otherwise
2965 it may not have its final value when the loop exits), and the initial
2966 value of the biv must be invariant. */
2967
302670f3 2968 if (n_iterations != 0
0534b804
MH
2969 && ! loop->exit_count
2970 && loop_invariant_p (loop, bl->initial_value))
67f2de41 2971 {
0534b804 2972 increment = biv_total_increment (bl);
a5af23fe 2973
0534b804 2974 if (increment && loop_invariant_p (loop, increment))
67f2de41
RK
2975 {
2976 /* Can calculate the loop exit value, emit insns after loop
2977 end to calculate this value into a temporary register in
2978 case it is needed later. */
2979
2980 tem = gen_reg_rtx (bl->biv->mode);
de12be17 2981 record_base_value (REGNO (tem), bl->biv->add_val, 0);
96a45535
MH
2982 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
2983 bl->initial_value, tem);
67f2de41
RK
2984
2985 if (loop_dump_stream)
2986 fprintf (loop_dump_stream,
2987 "Final biv value for %d, calculated.\n", bl->regno);
a5af23fe 2988
67f2de41
RK
2989 return tem;
2990 }
2991 }
2992
2993 /* Check to see if the biv is dead at all loop exits. */
0534b804 2994 if (reg_dead_after_loop (loop, bl->biv->src_reg))
67f2de41
RK
2995 {
2996 if (loop_dump_stream)
2997 fprintf (loop_dump_stream,
2998 "Final biv value for %d, biv dead after loop exit.\n",
2999 bl->regno);
3000
3001 return const0_rtx;
3002 }
3003
3004 return 0;
3005}
3006
3007/* Try to calculate the final value of the giv, the value it will have at
3008 the end of the loop. If we can do it, return that value. */
3009
3010rtx
2e1eedd6 3011final_giv_value (const struct loop *loop, struct induction *v)
67f2de41 3012{
ed5bb68d 3013 struct loop_ivs *ivs = LOOP_IVS (loop);
67f2de41 3014 struct iv_class *bl;
0e91429a 3015 rtx insn;
67f2de41 3016 rtx increment, tem;
96a45535 3017 rtx seq;
0534b804
MH
3018 rtx loop_end = loop->end;
3019 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
67f2de41 3020
8b634749 3021 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
67f2de41
RK
3022
3023 /* The final value for givs which depend on reversed bivs must be calculated
3024 differently than for ordinary givs. In this case, there is already an
3025 insn after the loop which sets this giv's final value (if necessary),
3026 and there are no other loop exits, so we can return any value. */
3027 if (bl->reversed)
3028 {
3029 if (loop_dump_stream)
3030 fprintf (loop_dump_stream,
3031 "Final giv value for %d, depends on reversed biv\n",
3032 REGNO (v->dest_reg));
3033 return const0_rtx;
3034 }
3035
3036 /* Try to calculate the final value as a function of the biv it depends
3037 upon. The only exit from the loop must be the fall through at the bottom
045d7161
EB
3038 and the insn that sets the giv must be executed on every iteration
3039 (otherwise the giv may not have its final value when the loop exits). */
a5af23fe 3040
67f2de41
RK
3041 /* ??? Can calculate the final giv value by subtracting off the
3042 extra biv increments times the giv's mult_val. The loop must have
3043 only one exit for this to work, but the loop iterations does not need
3044 to be known. */
3045
302670f3 3046 if (n_iterations != 0
045d7161
EB
3047 && ! loop->exit_count
3048 && v->always_executed)
67f2de41
RK
3049 {
3050 /* ?? It is tempting to use the biv's value here since these insns will
3051 be put after the loop, and hence the biv will have its final value
3052 then. However, this fails if the biv is subsequently eliminated.
3053 Perhaps determine whether biv's are eliminable before trying to
3054 determine whether giv's are replaceable so that we can use the
3055 biv value here if it is not eliminable. */
3056
db2f7559
JW
3057 /* We are emitting code after the end of the loop, so we must make
3058 sure that bl->initial_value is still valid then. It will still
3059 be valid if it is invariant. */
3060
0534b804 3061 increment = biv_total_increment (bl);
67f2de41 3062
0534b804
MH
3063 if (increment && loop_invariant_p (loop, increment)
3064 && loop_invariant_p (loop, bl->initial_value))
67f2de41
RK
3065 {
3066 /* Can calculate the loop exit value of its biv as
302670f3 3067 (n_iterations * increment) + initial_value */
a5af23fe 3068
67f2de41
RK
3069 /* The loop exit value of the giv is then
3070 (final_biv_value - extra increments) * mult_val + add_val.
3071 The extra increments are any increments to the biv which
3072 occur in the loop after the giv's value is calculated.
3073 We must search from the insn that sets the giv to the end
3074 of the loop to calculate this value. */
3075
67f2de41 3076 /* Put the final biv value in tem. */
e8cb4873 3077 tem = gen_reg_rtx (v->mode);
de12be17 3078 record_base_value (REGNO (tem), bl->biv->add_val, 0);
96a45535
MH
3079 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3080 GEN_INT (n_iterations),
3081 extend_value_for_giv (v, bl->initial_value),
3082 tem);
67f2de41
RK
3083
3084 /* Subtract off extra increments as we find them. */
3085 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3086 insn = NEXT_INSN (insn))
3087 {
0e91429a
RK
3088 struct induction *biv;
3089
3090 for (biv = bl->biv; biv; biv = biv->next_iv)
3091 if (biv->insn == insn)
3092 {
3093 start_sequence ();
ef89d648
ZW
3094 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3095 biv->add_val, NULL_RTX, 0,
3096 OPTAB_LIB_WIDEN);
2f937369 3097 seq = get_insns ();
0e91429a 3098 end_sequence ();
96a45535 3099 loop_insn_sink (loop, seq);
0e91429a 3100 }
67f2de41 3101 }
a5af23fe 3102
67f2de41 3103 /* Now calculate the giv's final value. */
96a45535 3104 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
a5af23fe 3105
67f2de41
RK
3106 if (loop_dump_stream)
3107 fprintf (loop_dump_stream,
3108 "Final giv value for %d, calc from biv's value.\n",
3109 REGNO (v->dest_reg));
3110
3111 return tem;
3112 }
3113 }
3114
3115 /* Replaceable giv's should never reach here. */
3116 if (v->replaceable)
3117 abort ();
3118
3119 /* Check to see if the biv is dead at all loop exits. */
0534b804 3120 if (reg_dead_after_loop (loop, v->dest_reg))
67f2de41
RK
3121 {
3122 if (loop_dump_stream)
3123 fprintf (loop_dump_stream,
3124 "Final giv value for %d, giv dead after loop exit.\n",
3125 REGNO (v->dest_reg));
3126
3127 return const0_rtx;
3128 }
3129
3130 return 0;
3131}
3132
fb530c07 3133/* Look back before LOOP->START for the insn that sets REG and return
e96b4d7a
MH
3134 the equivalent constant if there is a REG_EQUAL note otherwise just
3135 the SET_SRC of REG. */
3136
3137static rtx
2e1eedd6 3138loop_find_equiv_value (const struct loop *loop, rtx reg)
e96b4d7a 3139{
0534b804 3140 rtx loop_start = loop->start;
e96b4d7a
MH
3141 rtx insn, set;
3142 rtx ret;
a5af23fe 3143
e96b4d7a 3144 ret = reg;
a86dc4a3 3145 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
e96b4d7a 3146 {
4b4bf941 3147 if (LABEL_P (insn))
e96b4d7a 3148 break;
a5af23fe 3149
2c3c49de 3150 else if (INSN_P (insn) && reg_set_p (reg, insn))
e96b4d7a
MH
3151 {
3152 /* We found the last insn before the loop that sets the register.
3153 If it sets the entire register, and has a REG_EQUAL note,
3154 then use the value of the REG_EQUAL note. */
3155 if ((set = single_set (insn))
a86dc4a3 3156 && (SET_DEST (set) == reg))
e96b4d7a
MH
3157 {
3158 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
a5af23fe 3159
e96b4d7a
MH
3160 /* Only use the REG_EQUAL note if it is a constant.
3161 Other things, divide in particular, will cause
3162 problems later if we use them. */
3163 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3164 && CONSTANT_P (XEXP (note, 0)))
3165 ret = XEXP (note, 0);
3166 else
3167 ret = SET_SRC (set);
6315f068
JJ
3168
3169 /* We cannot do this if it changes between the
3170 assignment and loop start though. */
3171 if (modified_between_p (ret, insn, loop_start))
3172 ret = reg;
e96b4d7a
MH
3173 }
3174 break;
3175 }
3176 }
3177 return ret;
3178}
3179
35704c46
MH
3180/* Return a simplified rtx for the expression OP - REG.
3181
3182 REG must appear in OP, and OP must be a register or the sum of a register
3183 and a second term.
3184
3185 Thus, the return value must be const0_rtx or the second term.
3186
3187 The caller is responsible for verifying that REG appears in OP and OP has
3188 the proper form. */
3189
3190static rtx
2e1eedd6 3191subtract_reg_term (rtx op, rtx reg)
35704c46
MH
3192{
3193 if (op == reg)
3194 return const0_rtx;
3195 if (GET_CODE (op) == PLUS)
3196 {
3197 if (XEXP (op, 0) == reg)
3198 return XEXP (op, 1);
3199 else if (XEXP (op, 1) == reg)
3200 return XEXP (op, 0);
3201 }
3202 /* OP does not contain REG as a term. */
3203 abort ();
3204}
3205
35704c46
MH
3206/* Find and return register term common to both expressions OP0 and
3207 OP1 or NULL_RTX if no such term exists. Each expression must be a
3208 REG or a PLUS of a REG. */
3209
3210static rtx
2e1eedd6 3211find_common_reg_term (rtx op0, rtx op1)
35704c46 3212{
f8cfc6aa
JQ
3213 if ((REG_P (op0) || GET_CODE (op0) == PLUS)
3214 && (REG_P (op1) || GET_CODE (op1) == PLUS))
35704c46
MH
3215 {
3216 rtx op00;
3217 rtx op01;
3218 rtx op10;
3219 rtx op11;
3220
3221 if (GET_CODE (op0) == PLUS)
3222 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3223 else
3224 op01 = const0_rtx, op00 = op0;
3225
3226 if (GET_CODE (op1) == PLUS)
3227 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3228 else
3229 op11 = const0_rtx, op10 = op1;
3230
3231 /* Find and return common register term if present. */
3232 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3233 return op00;
3234 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3235 return op01;
3236 }
3237
3238 /* No common register term found. */
3239 return NULL_RTX;
3240}
3241
0a5b41f2
MH
3242/* Determine the loop iterator and calculate the number of loop
3243 iterations. Returns the exact number of loop iterations if it can
3244 be calculated, otherwise returns zero. */
67f2de41 3245
c166a311 3246unsigned HOST_WIDE_INT
2e1eedd6 3247loop_iterations (struct loop *loop)
67f2de41 3248{
ed5bb68d
MH
3249 struct loop_info *loop_info = LOOP_INFO (loop);
3250 struct loop_ivs *ivs = LOOP_IVS (loop);
67f2de41
RK
3251 rtx comparison, comparison_value;
3252 rtx iteration_var, initial_value, increment, final_value;
3253 enum rtx_code comparison_code;
b8ebd779
AO
3254 HOST_WIDE_INT inc;
3255 unsigned HOST_WIDE_INT abs_inc;
e96b4d7a
MH
3256 unsigned HOST_WIDE_INT abs_diff;
3257 int off_by_one;
c166a311 3258 int increment_dir;
e96b4d7a 3259 int unsigned_p, compare_dir, final_larger;
67f2de41 3260 rtx last_loop_insn;
35704c46 3261 rtx reg_term;
0a5b41f2 3262 struct iv_class *bl;
67f2de41 3263
e96b4d7a 3264 loop_info->n_iterations = 0;
302670f3 3265 loop_info->initial_value = 0;
e96b4d7a
MH
3266 loop_info->initial_equiv_value = 0;
3267 loop_info->comparison_value = 0;
302670f3 3268 loop_info->final_value = 0;
e96b4d7a
MH
3269 loop_info->final_equiv_value = 0;
3270 loop_info->increment = 0;
302670f3 3271 loop_info->iteration_var = 0;
e96b4d7a 3272 loop_info->unroll_number = 1;
0a5b41f2 3273 loop_info->iv = 0;
67f2de41 3274
e96b4d7a 3275 /* We used to use prev_nonnote_insn here, but that fails because it might
40e81af5
JW
3276 accidentally get the branch for a contained loop if the branch for this
3277 loop was deleted. We can only trust branches immediately before the
3278 loop_end. */
f10aac29 3279 last_loop_insn = PREV_INSN (loop->end);
67f2de41 3280
98dcbc07 3281 /* ??? We should probably try harder to find the jump insn
a5af23fe 3282 at the end of the loop. The following code assumes that
98dcbc07 3283 the last loop insn is a jump to the top of the loop. */
4b4bf941 3284 if (!JUMP_P (last_loop_insn))
98dcbc07
MH
3285 {
3286 if (loop_dump_stream)
3287 fprintf (loop_dump_stream,
3288 "Loop iterations: No final conditional branch found.\n");
3289 return 0;
3290 }
3291
3292 /* If there is a more than a single jump to the top of the loop
3293 we cannot (easily) determine the iteration count. */
3294 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3295 {
3296 if (loop_dump_stream)
3297 fprintf (loop_dump_stream,
3298 "Loop iterations: Loop has multiple back edges.\n");
3299 return 0;
3300 }
3301
9d1e9f93
FS
3302 /* If there are multiple conditionalized loop exit tests, they may jump
3303 back to differing CODE_LABELs. */
3304 if (loop->top && loop->cont)
3305 {
3306 rtx temp = PREV_INSN (last_loop_insn);
3307
3308 do
3309 {
4b4bf941 3310 if (JUMP_P (temp))
9d1e9f93 3311 {
a22455df
OH
3312 /* There are some kinds of jumps we can't deal with easily. */
3313 if (JUMP_LABEL (temp) == 0)
3314 {
3315 if (loop_dump_stream)
3316 fprintf
3317 (loop_dump_stream,
3318 "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3319 return 0;
3320 }
3321
3322 if (/* Previous unrolling may have generated new insns not
3323 covered by the uid_luid array. */
3324 INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3325 /* Check if we jump back into the loop body. */
3326 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3327 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3328 {
3329 if (loop_dump_stream)
41077ce4 3330 fprintf
a22455df
OH
3331 (loop_dump_stream,
3332 "Loop iterations: Loop has multiple back edges.\n");
3333 return 0;
3334 }
9d1e9f93
FS
3335 }
3336 }
3337 while ((temp = PREV_INSN (temp)) != loop->cont);
3338 }
3339
98dcbc07
MH
3340 /* Find the iteration variable. If the last insn is a conditional
3341 branch, and the insn before tests a register value, make that the
3342 iteration variable. */
a5af23fe 3343
0534b804 3344 comparison = get_condition_for_loop (loop, last_loop_insn);
67f2de41
RK
3345 if (comparison == 0)
3346 {
3347 if (loop_dump_stream)
3348 fprintf (loop_dump_stream,
98dcbc07 3349 "Loop iterations: No final comparison found.\n");
67f2de41
RK
3350 return 0;
3351 }
3352
3353 /* ??? Get_condition may switch position of induction variable and
3354 invariant register when it canonicalizes the comparison. */
3355
3356 comparison_code = GET_CODE (comparison);
3357 iteration_var = XEXP (comparison, 0);
3358 comparison_value = XEXP (comparison, 1);
a5af23fe 3359
f8cfc6aa 3360 if (!REG_P (iteration_var))
67f2de41
RK
3361 {
3362 if (loop_dump_stream)
3363 fprintf (loop_dump_stream,
e96b4d7a 3364 "Loop iterations: Comparison not against register.\n");
67f2de41
RK
3365 return 0;
3366 }
3367
e4b68ced
MH
3368 /* The only new registers that are created before loop iterations
3369 are givs made from biv increments or registers created by
3370 load_mems. In the latter case, it is possible that try_copy_prop
3371 will propagate a new pseudo into the old iteration register but
3372 this will be marked by having the REG_USERVAR_P bit set. */
3373
14be28e5 3374 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
e4b68ced 3375 && ! REG_USERVAR_P (iteration_var))
a2be868f 3376 abort ();
67f2de41 3377
0a5b41f2
MH
3378 /* Determine the initial value of the iteration variable, and the amount
3379 that it is incremented each loop. Use the tables constructed by
3380 the strength reduction pass to calculate these values. */
3381
3382 /* Clear the result values, in case no answer can be found. */
3383 initial_value = 0;
3384 increment = 0;
3385
3386 /* The iteration variable can be either a giv or a biv. Check to see
3387 which it is, and compute the variable's initial value, and increment
3388 value if possible. */
3389
3390 /* If this is a new register, can't handle it since we don't have any
3391 reg_iv_type entry for it. */
14be28e5 3392 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
0a5b41f2
MH
3393 {
3394 if (loop_dump_stream)
3395 fprintf (loop_dump_stream,
3396 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3397 return 0;
3398 }
3399
3400 /* Reject iteration variables larger than the host wide int size, since they
3401 could result in a number of iterations greater than the range of our
3402 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3403 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3404 > HOST_BITS_PER_WIDE_INT))
3405 {
3406 if (loop_dump_stream)
3407 fprintf (loop_dump_stream,
3408 "Loop iterations: Iteration var rejected because mode too large.\n");
3409 return 0;
3410 }
3411 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3412 {
3413 if (loop_dump_stream)
3414 fprintf (loop_dump_stream,
3415 "Loop iterations: Iteration var not an integer.\n");
3416 return 0;
3417 }
ce4191ee
RS
3418
3419 /* Try swapping the comparison to identify a suitable iv. */
3420 if (REG_IV_TYPE (ivs, REGNO (iteration_var)) != BASIC_INDUCT
3421 && REG_IV_TYPE (ivs, REGNO (iteration_var)) != GENERAL_INDUCT
f8cfc6aa 3422 && REG_P (comparison_value)
ce4191ee
RS
3423 && REGNO (comparison_value) < ivs->n_regs)
3424 {
3425 rtx temp = comparison_value;
3426 comparison_code = swap_condition (comparison_code);
3427 comparison_value = iteration_var;
3428 iteration_var = temp;
3429 }
3430
3431 if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
0a5b41f2 3432 {
86fee241 3433 if (REGNO (iteration_var) >= ivs->n_regs)
0a5b41f2
MH
3434 abort ();
3435
3436 /* Grab initial value, only useful if it is a constant. */
8b634749 3437 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
0a5b41f2 3438 initial_value = bl->initial_value;
9e2adb2a
JJ
3439 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3440 {
3441 if (loop_dump_stream)
3442 fprintf (loop_dump_stream,
3443 "Loop iterations: Basic induction var not set once in each iteration.\n");
3444 return 0;
3445 }
0a5b41f2
MH
3446
3447 increment = biv_total_increment (bl);
3448 }
ed5bb68d 3449 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
0a5b41f2
MH
3450 {
3451 HOST_WIDE_INT offset = 0;
ed5bb68d 3452 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
0a5b41f2
MH
3453 rtx biv_initial_value;
3454
86fee241 3455 if (REGNO (v->src_reg) >= ivs->n_regs)
0a5b41f2
MH
3456 abort ();
3457
9e2adb2a
JJ
3458 if (!v->always_executed || v->maybe_multiple)
3459 {
3460 if (loop_dump_stream)
3461 fprintf (loop_dump_stream,
3462 "Loop iterations: General induction var not set once in each iteration.\n");
3463 return 0;
3464 }
3465
8b634749 3466 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
0a5b41f2
MH
3467
3468 /* Increment value is mult_val times the increment value of the biv. */
3469
3470 increment = biv_total_increment (bl);
3471 if (increment)
3472 {
3473 struct induction *biv_inc;
3474
5c3c320e
JW
3475 increment = fold_rtx_mult_add (v->mult_val,
3476 extend_value_for_giv (v, increment),
3477 const0_rtx, v->mode);
ff7cc307 3478 /* The caller assumes that one full increment has occurred at the
0a5b41f2
MH
3479 first loop test. But that's not true when the biv is incremented
3480 after the giv is set (which is the usual case), e.g.:
3481 i = 6; do {;} while (i++ < 9) .
3482 Therefore, we bias the initial value by subtracting the amount of
3483 the increment that occurs between the giv set and the giv test. */
3484 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3485 {
3486 if (loop_insn_first_p (v->insn, biv_inc->insn))
8ed805d2
GS
3487 {
3488 if (REG_P (biv_inc->add_val))
3489 {
3490 if (loop_dump_stream)
3491 fprintf (loop_dump_stream,
3492 "Loop iterations: Basic induction var add_val is REG %d.\n",
3493 REGNO (biv_inc->add_val));
3494 return 0;
3495 }
3496
e8226879
EB
3497 /* If we have already counted it, skip it. */
3498 if (biv_inc->same)
3499 continue;
3500
8ed805d2
GS
3501 offset -= INTVAL (biv_inc->add_val);
3502 }
0a5b41f2 3503 }
0a5b41f2
MH
3504 }
3505 if (loop_dump_stream)
3506 fprintf (loop_dump_stream,
3507 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3508 (long) offset);
3509
3510 /* Initial value is mult_val times the biv's initial value plus
3511 add_val. Only useful if it is a constant. */
3512 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3513 initial_value
3514 = fold_rtx_mult_add (v->mult_val,
3515 plus_constant (biv_initial_value, offset),
3516 v->add_val, v->mode);
3517 }
3518 else
3519 {
3520 if (loop_dump_stream)
3521 fprintf (loop_dump_stream,
3522 "Loop iterations: Not basic or general induction var.\n");
3523 return 0;
3524 }
0534b804 3525
67f2de41 3526 if (initial_value == 0)
67f2de41
RK
3527 return 0;
3528
e96b4d7a
MH
3529 unsigned_p = 0;
3530 off_by_one = 0;
3531 switch (comparison_code)
3532 {
3533 case LEU:
3534 unsigned_p = 1;
3535 case LE:
3536 compare_dir = 1;
3537 off_by_one = 1;
3538 break;
3539 case GEU:
3540 unsigned_p = 1;
3541 case GE:
3542 compare_dir = -1;
3543 off_by_one = -1;
3544 break;
3545 case EQ:
3546 /* Cannot determine loop iterations with this case. */
3547 compare_dir = 0;
3548 break;
3549 case LTU:
3550 unsigned_p = 1;
3551 case LT:
3552 compare_dir = 1;
3553 break;
3554 case GTU:
3555 unsigned_p = 1;
3556 case GT:
3557 compare_dir = -1;
337f35bb 3558 break;
e96b4d7a
MH
3559 case NE:
3560 compare_dir = 0;
3561 break;
3562 default:
3563 abort ();
3564 }
3565
67f2de41
RK
3566 /* If the comparison value is an invariant register, then try to find
3567 its value from the insns before the start of the loop. */
3568
e96b4d7a 3569 final_value = comparison_value;
f8cfc6aa 3570 if (REG_P (comparison_value)
0534b804 3571 && loop_invariant_p (loop, comparison_value))
67f2de41 3572 {
0534b804
MH
3573 final_value = loop_find_equiv_value (loop, comparison_value);
3574
e96b4d7a
MH
3575 /* If we don't get an invariant final value, we are better
3576 off with the original register. */
0534b804 3577 if (! loop_invariant_p (loop, final_value))
e96b4d7a
MH
3578 final_value = comparison_value;
3579 }
3580
3581 /* Calculate the approximate final value of the induction variable
3582 (on the last successful iteration). The exact final value
3583 depends on the branch operator, and increment sign. It will be
3584 wrong if the iteration variable is not incremented by one each
3585 time through the loop and (comparison_value + off_by_one -
3586 initial_value) % increment != 0.
3587 ??? Note that the final_value may overflow and thus final_larger
3588 will be bogus. A potentially infinite loop will be classified
3589 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3590 if (off_by_one)
3591 final_value = plus_constant (final_value, off_by_one);
67f2de41
RK
3592
3593 /* Save the calculated values describing this loop's bounds, in case
3594 precondition_loop_p will need them later. These values can not be
3595 recalculated inside precondition_loop_p because strength reduction
a5af23fe 3596 optimizations may obscure the loop's structure.
67f2de41 3597
e96b4d7a
MH
3598 These values are only required by precondition_loop_p and insert_bct
3599 whenever the number of iterations cannot be computed at compile time.
3600 Only the difference between final_value and initial_value is
3601 important. Note that final_value is only approximate. */
302670f3 3602 loop_info->initial_value = initial_value;
e96b4d7a
MH
3603 loop_info->comparison_value = comparison_value;
3604 loop_info->final_value = plus_constant (comparison_value, off_by_one);
302670f3 3605 loop_info->increment = increment;
e96b4d7a 3606 loop_info->iteration_var = iteration_var;
302670f3 3607 loop_info->comparison_code = comparison_code;
0a5b41f2 3608 loop_info->iv = bl;
67f2de41 3609
35704c46
MH
3610 /* Try to determine the iteration count for loops such
3611 as (for i = init; i < init + const; i++). When running the
3612 loop optimization twice, the first pass often converts simple
3613 loops into this form. */
e96b4d7a 3614
35704c46 3615 if (REG_P (initial_value))
e96b4d7a 3616 {
35704c46
MH
3617 rtx reg1;
3618 rtx reg2;
3619 rtx const2;
e96b4d7a 3620
35704c46 3621 reg1 = initial_value;
e96b4d7a 3622 if (GET_CODE (final_value) == PLUS)
35704c46 3623 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
e96b4d7a 3624 else
35704c46 3625 reg2 = final_value, const2 = const0_rtx;
e96b4d7a 3626
35704c46
MH
3627 /* Check for initial_value = reg1, final_value = reg2 + const2,
3628 where reg1 != reg2. */
3629 if (REG_P (reg2) && reg2 != reg1)
e96b4d7a 3630 {
35704c46
MH
3631 rtx temp;
3632
3633 /* Find what reg1 is equivalent to. Hopefully it will
3634 either be reg2 or reg2 plus a constant. */
0534b804
MH
3635 temp = loop_find_equiv_value (loop, reg1);
3636
35704c46
MH
3637 if (find_common_reg_term (temp, reg2))
3638 initial_value = temp;
bbda30a4 3639 else if (loop_invariant_p (loop, reg2))
35704c46
MH
3640 {
3641 /* Find what reg2 is equivalent to. Hopefully it will
3642 either be reg1 or reg1 plus a constant. Let's ignore
3643 the latter case for now since it is not so common. */
0534b804
MH
3644 temp = loop_find_equiv_value (loop, reg2);
3645
35704c46
MH
3646 if (temp == loop_info->iteration_var)
3647 temp = initial_value;
3648 if (temp == reg1)
3649 final_value = (const2 == const0_rtx)
3650 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3651 }
e96b4d7a 3652 }
a2be868f 3653 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
e96b4d7a 3654 {
35704c46
MH
3655 rtx temp;
3656
a86dc4a3
KH
3657 /* When running the loop optimizer twice, check_dbra_loop
3658 further obfuscates reversible loops of the form:
3659 for (i = init; i < init + const; i++). We often end up with
3660 final_value = 0, initial_value = temp, temp = temp2 - init,
3661 where temp2 = init + const. If the loop has a vtop we
3662 can replace initial_value with const. */
35704c46 3663
0534b804
MH
3664 temp = loop_find_equiv_value (loop, reg1);
3665
35704c46
MH
3666 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3667 {
0534b804
MH
3668 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3669
35704c46
MH
3670 if (GET_CODE (temp2) == PLUS
3671 && XEXP (temp2, 0) == XEXP (temp, 1))
3672 initial_value = XEXP (temp2, 1);
3673 }
e96b4d7a
MH
3674 }
3675 }
a5af23fe 3676
35704c46
MH
3677 /* If have initial_value = reg + const1 and final_value = reg +
3678 const2, then replace initial_value with const1 and final_value
3679 with const2. This should be safe since we are protected by the
3680 initial comparison before entering the loop if we have a vtop.
3681 For example, a + b < a + c is not equivalent to b < c for all a
3682 when using modulo arithmetic.
3683
3684 ??? Without a vtop we could still perform the optimization if we check
3685 the initial and final values carefully. */
a2be868f 3686 if (loop->vtop
35704c46
MH
3687 && (reg_term = find_common_reg_term (initial_value, final_value)))
3688 {
3689 initial_value = subtract_reg_term (initial_value, reg_term);
3690 final_value = subtract_reg_term (final_value, reg_term);
3691 }
3692
e96b4d7a
MH
3693 loop_info->initial_equiv_value = initial_value;
3694 loop_info->final_equiv_value = final_value;
a5af23fe 3695
d24de7d1
R
3696 /* For EQ comparison loops, we don't have a valid final value.
3697 Check this now so that we won't leave an invalid value if we
3698 return early for any other reason. */
3699 if (comparison_code == EQ)
a86dc4a3 3700 loop_info->final_equiv_value = loop_info->final_value = 0;
d24de7d1 3701
00c0c63c
JW
3702 if (increment == 0)
3703 {
3704 if (loop_dump_stream)
3705 fprintf (loop_dump_stream,
e96b4d7a 3706 "Loop iterations: Increment value can't be calculated.\n");
00c0c63c
JW
3707 return 0;
3708 }
e96b4d7a
MH
3709
3710 if (GET_CODE (increment) != CONST_INT)
00c0c63c 3711 {
66830675
JW
3712 /* If we have a REG, check to see if REG holds a constant value. */
3713 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3714 clear if it is worthwhile to try to handle such RTL. */
f8cfc6aa 3715 if (REG_P (increment) || GET_CODE (increment) == SUBREG)
0534b804 3716 increment = loop_find_equiv_value (loop, increment);
e96b4d7a
MH
3717
3718 if (GET_CODE (increment) != CONST_INT)
3719 {
3720 if (loop_dump_stream)
3721 {
3722 fprintf (loop_dump_stream,
3723 "Loop iterations: Increment value not constant ");
c804f3f8 3724 print_simple_rtl (loop_dump_stream, increment);
e96b4d7a
MH
3725 fprintf (loop_dump_stream, ".\n");
3726 }
3727 return 0;
3728 }
3729 loop_info->increment = increment;
00c0c63c 3730 }
e96b4d7a
MH
3731
3732 if (GET_CODE (initial_value) != CONST_INT)
00c0c63c
JW
3733 {
3734 if (loop_dump_stream)
e96b4d7a
MH
3735 {
3736 fprintf (loop_dump_stream,
3737 "Loop iterations: Initial value not constant ");
c804f3f8 3738 print_simple_rtl (loop_dump_stream, initial_value);
e96b4d7a
MH
3739 fprintf (loop_dump_stream, ".\n");
3740 }
00c0c63c
JW
3741 return 0;
3742 }
67f2de41
RK
3743 else if (GET_CODE (final_value) != CONST_INT)
3744 {
3745 if (loop_dump_stream)
e96b4d7a
MH
3746 {
3747 fprintf (loop_dump_stream,
3748 "Loop iterations: Final value not constant ");
c804f3f8 3749 print_simple_rtl (loop_dump_stream, final_value);
e96b4d7a
MH
3750 fprintf (loop_dump_stream, ".\n");
3751 }
67f2de41
RK
3752 return 0;
3753 }
c8b64bf2
AM
3754 else if (comparison_code == EQ)
3755 {
3756 rtx inc_once;
3757
3758 if (loop_dump_stream)
3759 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3760
3761 inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
3762 GET_MODE (iteration_var));
3763
3764 if (inc_once == final_value)
3765 {
3766 /* The iterator value once through the loop is equal to the
14b493d6 3767 comparison value. Either we have an infinite loop, or
c8b64bf2
AM
3768 we'll loop twice. */
3769 if (increment == const0_rtx)
3770 return 0;
3771 loop_info->n_iterations = 2;
3772 }
3773 else
3774 loop_info->n_iterations = 1;
3775
3776 if (GET_CODE (loop_info->initial_value) == CONST_INT)
3777 loop_info->final_value
3778 = gen_int_mode ((INTVAL (loop_info->initial_value)
3779 + loop_info->n_iterations * INTVAL (increment)),
3780 GET_MODE (iteration_var));
3781 else
3782 loop_info->final_value
3783 = plus_constant (loop_info->initial_value,
3784 loop_info->n_iterations * INTVAL (increment));
3785 loop_info->final_equiv_value
3786 = gen_int_mode ((INTVAL (initial_value)
3787 + loop_info->n_iterations * INTVAL (increment)),
3788 GET_MODE (iteration_var));
3789 return loop_info->n_iterations;
3790 }
67f2de41 3791
67f2de41 3792 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
e96b4d7a 3793 if (unsigned_p)
67f2de41 3794 final_larger
c166a311
CH
3795 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3796 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3797 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3798 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
67f2de41 3799 else
c166a311
CH
3800 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3801 - (INTVAL (final_value) < INTVAL (initial_value));
67f2de41
RK
3802
3803 if (INTVAL (increment) > 0)
3804 increment_dir = 1;
3805 else if (INTVAL (increment) == 0)
3806 increment_dir = 0;
3807 else
3808 increment_dir = -1;
3809
3810 /* There are 27 different cases: compare_dir = -1, 0, 1;
3811 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3812 There are 4 normal cases, 4 reverse cases (where the iteration variable
3813 will overflow before the loop exits), 4 infinite loop cases, and 15
3814 immediate exit (0 or 1 iteration depending on loop type) cases.
3815 Only try to optimize the normal cases. */
a5af23fe 3816
67f2de41
RK
3817 /* (compare_dir/final_larger/increment_dir)
3818 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3819 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3820 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3821 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3822
3823 /* ?? If the meaning of reverse loops (where the iteration variable
3824 will overflow before the loop exits) is undefined, then could
3825 eliminate all of these special checks, and just always assume
3826 the loops are normal/immediate/infinite. Note that this means
3827 the sign of increment_dir does not have to be known. Also,
3828 since it does not really hurt if immediate exit loops or infinite loops
3829 are optimized, then that case could be ignored also, and hence all
3830 loops can be optimized.
3831
3832 According to ANSI Spec, the reverse loop case result is undefined,
3833 because the action on overflow is undefined.
3834
3835 See also the special test for NE loops below. */
3836
3837 if (final_larger == increment_dir && final_larger != 0
3838 && (final_larger == compare_dir || compare_dir == 0))
3839 /* Normal case. */
3840 ;
3841 else
3842 {
3843 if (loop_dump_stream)
a86dc4a3 3844 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
67f2de41
RK
3845 return 0;
3846 }
3847
3848 /* Calculate the number of iterations, final_value is only an approximation,
e96b4d7a 3849 so correct for that. Note that abs_diff and n_iterations are
67f2de41
RK
3850 unsigned, because they can be as large as 2^n - 1. */
3851
b8ebd779
AO
3852 inc = INTVAL (increment);
3853 if (inc > 0)
3854 {
3855 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3856 abs_inc = inc;
3857 }
3858 else if (inc < 0)
67f2de41 3859 {
e96b4d7a 3860 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
b8ebd779 3861 abs_inc = -inc;
67f2de41
RK
3862 }
3863 else
3864 abort ();
3865
b8ebd779
AO
3866 /* Given that iteration_var is going to iterate over its own mode,
3867 not HOST_WIDE_INT, disregard higher bits that might have come
3868 into the picture due to sign extension of initial and final
3869 values. */
a01da83b 3870 abs_diff &= ((unsigned HOST_WIDE_INT) 1
b8ebd779
AO
3871 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
3872 << 1) - 1;
69107307 3873
e96b4d7a
MH
3874 /* For NE tests, make sure that the iteration variable won't miss
3875 the final value. If abs_diff mod abs_incr is not zero, then the
3876 iteration variable will overflow before the loop exits, and we
3877 can not calculate the number of iterations. */
3878 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
67f2de41
RK
3879 return 0;
3880
e96b4d7a
MH
3881 /* Note that the number of iterations could be calculated using
3882 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3883 handle potential overflow of the summation. */
3884 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3885 return loop_info->n_iterations;
67f2de41 3886}
2b59419a 3887
9faa82d8 3888/* Replace uses of split bivs with their split pseudo register. This is
2b59419a
JW
3889 for original instructions which remain after loop unrolling without
3890 copying. */
3891
3892static rtx
2e1eedd6 3893remap_split_bivs (struct loop *loop, rtx x)
2b59419a 3894{
ed5bb68d 3895 struct loop_ivs *ivs = LOOP_IVS (loop);
b3694847
SS
3896 enum rtx_code code;
3897 int i;
3898 const char *fmt;
2b59419a
JW
3899
3900 if (x == 0)
3901 return x;
3902
3903 code = GET_CODE (x);
3904 switch (code)
3905 {
3906 case SCRATCH:
3907 case PC:
3908 case CC0:
3909 case CONST_INT:
3910 case CONST_DOUBLE:
3911 case CONST:
3912 case SYMBOL_REF:
3913 case LABEL_REF:
3914 return x;
3915
3916 case REG:
3917#if 0
3918 /* If non-reduced/final-value givs were split, then this would also
3919 have to remap those givs also. */
3920#endif
86fee241 3921 if (REGNO (x) < ivs->n_regs
ed5bb68d 3922 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
8b634749 3923 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
e9a25f70 3924 break;
a5af23fe 3925
e9a25f70
JL
3926 default:
3927 break;
2b59419a
JW
3928 }
3929
3930 fmt = GET_RTX_FORMAT (code);
3931 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3932 {
3933 if (fmt[i] == 'e')
ed5bb68d 3934 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
d4757e6a 3935 else if (fmt[i] == 'E')
2b59419a 3936 {
b3694847 3937 int j;
2b59419a 3938 for (j = 0; j < XVECLEN (x, i); j++)
ed5bb68d 3939 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
2b59419a
JW
3940 }
3941 }
3942 return x;
3943}
1fe33d17
JW
3944
3945/* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3946 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3947 return 0. COPY_START is where we can start looking for the insns
3948 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3949 insns.
3950
3951 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3952 must dominate LAST_UID.
3953
3954 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3955 may not dominate LAST_UID.
3956
3957 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3958 must dominate LAST_UID. */
3959
3960int
2e1eedd6
AJ
3961set_dominates_use (int regno, int first_uid, int last_uid, rtx copy_start,
3962 rtx copy_end)
1fe33d17
JW
3963{
3964 int passed_jump = 0;
3965 rtx p = NEXT_INSN (copy_start);
3966
3967 while (INSN_UID (p) != first_uid)
3968 {
4b4bf941 3969 if (JUMP_P (p))
a86dc4a3 3970 passed_jump = 1;
1fe33d17
JW
3971 /* Could not find FIRST_UID. */
3972 if (p == copy_end)
3973 return 0;
3974 p = NEXT_INSN (p);
3975 }
3976
3977 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
2c3c49de 3978 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
1fe33d17
JW
3979 return 0;
3980
3981 /* FIRST_UID is always executed. */
3982 if (passed_jump == 0)
3983 return 1;
3984
3985 while (INSN_UID (p) != last_uid)
3986 {
3987 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3988 can not be sure that FIRST_UID dominates LAST_UID. */
4b4bf941 3989 if (LABEL_P (p))
1fe33d17 3990 return 0;
6b857f04
JW
3991 /* Could not find LAST_UID, but we reached the end of the loop, so
3992 it must be safe. */
3993 else if (p == copy_end)
3994 return 1;
1fe33d17
JW
3995 p = NEXT_INSN (p);
3996 }
3997
3998 /* FIRST_UID is always executed if LAST_UID is executed. */
3999 return 1;
4000}
4598ffe9
CM
4001
4002/* This routine is called when the number of iterations for the unrolled
4003 loop is one. The goal is to identify a loop that begins with an
4004 unconditional branch to the loop continuation note (or a label just after).
4005 In this case, the unconditional branch that starts the loop needs to be
4006 deleted so that we execute the single iteration. */
a86dc4a3 4007
4598ffe9 4008static rtx
2e1eedd6 4009ujump_to_loop_cont (rtx loop_start, rtx loop_cont)
4598ffe9
CM
4010{
4011 rtx x, label, label_ref;
4012
4013 /* See if loop start, or the next insn is an unconditional jump. */
4014 loop_start = next_nonnote_insn (loop_start);
4015
4016 x = pc_set (loop_start);
4017 if (!x)
4018 return NULL_RTX;
4019
4020 label_ref = SET_SRC (x);
4021 if (!label_ref)
4022 return NULL_RTX;
4023
4024 /* Examine insn after loop continuation note. Return if not a label. */
4025 label = next_nonnote_insn (loop_cont);
4b4bf941 4026 if (label == 0 || !LABEL_P (label))
4598ffe9
CM
4027 return NULL_RTX;
4028
4029 /* Return the loop start if the branch label matches the code label. */
a86dc4a3 4030 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4598ffe9
CM
4031 return loop_start;
4032 else
4033 return NULL_RTX;
4598ffe9 4034}