]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/unroll.c
Merge basic-improvements-branch to trunk
[thirdparty/gcc.git] / gcc / unroll.c
CommitLineData
cdbd2a92 1/* Try to unroll loops, and split induction variables.
ac0c7fb1 2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002
6da6f625 3 Free Software Foundation, Inc.
cdbd2a92 4 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
5
f12b58b3 6This file is part of GCC.
cdbd2a92 7
f12b58b3 8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
cdbd2a92 12
f12b58b3 13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
cdbd2a92 17
18You should have received a copy of the GNU General Public License
f12b58b3 19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
cdbd2a92 22
23/* Try to unroll a loop, and split induction variables.
24
25 Loops for which the number of iterations can be calculated exactly are
26 handled specially. If the number of iterations times the insn_count is
27 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28 Otherwise, we try to unroll the loop a number of times modulo the number
29 of iterations, so that only one exit test will be needed. It is unrolled
30 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31 the insn count.
32
33 Otherwise, if the number of iterations can be calculated exactly at
34 run time, and the loop is always entered at the top, then we try to
35 precondition the loop. That is, at run time, calculate how many times
36 the loop will execute, and then execute the loop body a few times so
37 that the remaining iterations will be some multiple of 4 (or 2 if the
38 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
39 with only one exit test needed at the end of the loop.
40
41 Otherwise, if the number of iterations can not be calculated exactly,
42 not even at run time, then we still unroll the loop a number of times
43 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44 but there must be an exit test after each copy of the loop body.
45
46 For each induction variable, which is dead outside the loop (replaceable)
47 or for which we can easily calculate the final value, if we can easily
48 calculate its value at each place where it is set as a function of the
49 current loop unroll count and the variable's value at loop entry, then
50 the induction variable is split into `N' different variables, one for
51 each copy of the loop body. One variable is live across the backward
52 branch, and the others are all calculated as a function of this variable.
53 This helps eliminate data dependencies, and leads to further opportunities
54 for cse. */
55
56/* Possible improvements follow: */
57
58/* ??? Add an extra pass somewhere to determine whether unrolling will
59 give any benefit. E.g. after generating all unrolled insns, compute the
60 cost of all insns and compare against cost of insns in rolled loop.
61
62 - On traditional architectures, unrolling a non-constant bound loop
63 is a win if there is a giv whose only use is in memory addresses, the
4bbea254 64 memory addresses can be split, and hence giv increments can be
cdbd2a92 65 eliminated.
66 - It is also a win if the loop is executed many times, and preconditioning
67 can be performed for the loop.
68 Add code to check for these and similar cases. */
69
70/* ??? Improve control of which loops get unrolled. Could use profiling
71 info to only unroll the most commonly executed loops. Perhaps have
72 a user specifyable option to control the amount of code expansion,
73 or the percent of loops to consider for unrolling. Etc. */
74
75/* ??? Look at the register copies inside the loop to see if they form a
76 simple permutation. If so, iterate the permutation until it gets back to
77 the start state. This is how many times we should unroll the loop, for
78 best results, because then all register copies can be eliminated.
79 For example, the lisp nreverse function should be unrolled 3 times
80 while (this)
81 {
82 next = this->cdr;
83 this->cdr = prev;
84 prev = this;
85 this = next;
86 }
87
88 ??? The number of times to unroll the loop may also be based on data
89 references in the loop. For example, if we have a loop that references
90 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
91
92/* ??? Add some simple linear equation solving capability so that we can
93 determine the number of loop iterations for more complex loops.
94 For example, consider this loop from gdb
95 #define SWAP_TARGET_AND_HOST(buffer,len)
96 {
97 char tmp;
98 char *p = (char *) buffer;
99 char *q = ((char *) buffer) + len - 1;
100 int iterations = (len + 1) >> 1;
101 int i;
102 for (p; p < q; p++, q--;)
9058b363 103 {
104 tmp = *q;
105 *q = *p;
106 *p = tmp;
107 }
cdbd2a92 108 }
109 Note that:
110 start value = p = &buffer + current_iteration
111 end value = q = &buffer + len - 1 - current_iteration
112 Given the loop exit test of "p < q", then there must be "q - p" iterations,
113 set equal to zero and solve for number of iterations:
114 q - p = len - 1 - 2*current_iteration = 0
115 current_iteration = (len - 1) / 2
116 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117 iterations of this loop. */
118
119/* ??? Currently, no labels are marked as loop invariant when doing loop
120 unrolling. This is because an insn inside the loop, that loads the address
121 of a label inside the loop into a register, could be moved outside the loop
122 by the invariant code motion pass if labels were invariant. If the loop
123 is subsequently unrolled, the code will be wrong because each unrolled
124 body of the loop will use the same address, whereas each actually needs a
125 different address. A case where this happens is when a loop containing
126 a switch statement is unrolled.
127
128 It would be better to let labels be considered invariant. When we
129 unroll loops here, check to see if any insns using a label local to the
130 loop were moved before the loop. If so, then correct the problem, by
131 moving the insn back into the loop, or perhaps replicate the insn before
132 the loop, one copy for each time the loop is unrolled. */
133
45a72df8 134#include "config.h"
135#include "system.h"
805e22b2 136#include "coretypes.h"
137#include "tm.h"
45a72df8 138#include "rtl.h"
139#include "tm_p.h"
140#include "insn-config.h"
141#include "integrate.h"
142#include "regs.h"
143#include "recog.h"
144#include "flags.h"
145#include "function.h"
146#include "expr.h"
147#include "loop.h"
148#include "toplev.h"
149#include "hard-reg-set.h"
150#include "basic-block.h"
151#include "predict.h"
0b11ae2e 152#include "params.h"
45a72df8 153
cdbd2a92 154/* The prime factors looked for when trying to unroll a loop by some
155 number which is modulo the total number of iterations. Just checking
156 for these 4 prime factors will find at least one factor for 75% of
157 all numbers theoretically. Practically speaking, this will succeed
158 almost all of the time since loops are generally a multiple of 2
159 and/or 5. */
160
161#define NUM_FACTORS 4
162
33b57a7b 163static struct _factor { const int factor; int count; }
6da6f625 164factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
9058b363 165
cdbd2a92 166/* Describes the different types of loop unrolling performed. */
167
6da6f625 168enum unroll_types
169{
170 UNROLL_COMPLETELY,
171 UNROLL_MODULO,
172 UNROLL_NAIVE
173};
cdbd2a92 174
f712a0dc 175/* Indexed by register number, if nonzero, then it contains a pointer
cdbd2a92 176 to a struct induction for a DEST_REG giv which has been combined with
177 one of more address givs. This is needed because whenever such a DEST_REG
178 giv is modified, we must modify the value of all split address givs
179 that were combined with this DEST_REG giv. */
180
181static struct induction **addr_combined_regs;
182
183/* Indexed by register number, if this is a splittable induction variable,
184 then this will hold the current value of the register, which depends on the
185 iteration number. */
186
187static rtx *splittable_regs;
188
189/* Indexed by register number, if this is a splittable induction variable,
190 then this will hold the number of instructions in the loop that modify
191 the induction variable. Used to ensure that only the last insn modifying
192 a split iv will update the original iv of the dest. */
193
194static int *splittable_regs_updates;
195
cdbd2a92 196/* Forward declarations. */
197
fff101de 198static rtx simplify_cmp_and_jump_insns PARAMS ((enum rtx_code,
199 enum machine_mode,
200 rtx, rtx, rtx));
e0909be9 201static void init_reg_map PARAMS ((struct inline_remap *, int));
02e7a332 202static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
e0909be9 203static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
59e339e9 204static void final_reg_note_copy PARAMS ((rtx *, struct inline_remap *));
8ec5f078 205static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
206 struct inline_remap *, rtx, int,
207 enum unroll_types, rtx, rtx, rtx, rtx));
15fc3eb7 208static int find_splittable_regs PARAMS ((const struct loop *,
89e8d34f 209 enum unroll_types, int));
6da6f625 210static int find_splittable_givs PARAMS ((const struct loop *,
15fc3eb7 211 struct iv_class *, enum unroll_types,
212 rtx, int));
213static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
e0909be9 214static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
8ec5f078 215static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
e0909be9 216static rtx find_common_reg_term PARAMS ((rtx, rtx));
217static rtx subtract_reg_term PARAMS ((rtx, rtx));
15fc3eb7 218static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
3ff5e1f7 219static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
cdbd2a92 220
221/* Try to unroll one loop and split induction variables in the loop.
222
15fc3eb7 223 The loop is described by the arguments LOOP and INSN_COUNT.
89e8d34f 224 STRENGTH_REDUCTION_P indicates whether information generated in the
225 strength reduction pass is available.
cdbd2a92 226
227 This function is intended to be called from within `strength_reduce'
228 in loop.c. */
229
230void
89e8d34f 231unroll_loop (loop, insn_count, strength_reduce_p)
ec7d7ef9 232 struct loop *loop;
cdbd2a92 233 int insn_count;
cdbd2a92 234 int strength_reduce_p;
235{
8ec5f078 236 struct loop_info *loop_info = LOOP_INFO (loop);
237 struct loop_ivs *ivs = LOOP_IVS (loop);
abdd0549 238 int i, j;
02e7a332 239 unsigned int r;
abdd0549 240 unsigned HOST_WIDE_INT temp;
29768226 241 int unroll_number = 1;
cdbd2a92 242 rtx copy_start, copy_end;
7bd36830 243 rtx insn, sequence, pattern, tem;
cdbd2a92 244 int max_labelno, max_insnno;
245 rtx insert_before;
246 struct inline_remap *map;
df9f2bb6 247 char *local_label = NULL;
d14771e1 248 char *local_regno;
02e7a332 249 unsigned int max_local_regnum;
250 unsigned int maxregnum;
cdbd2a92 251 rtx exit_label = 0;
252 rtx start_label;
253 struct iv_class *bl;
cdbd2a92 254 int splitting_not_safe = 0;
641b112b 255 enum unroll_types unroll_type = UNROLL_NAIVE;
cdbd2a92 256 int loop_preconditioned = 0;
257 rtx safety_label;
258 /* This points to the last real insn in the loop, which should be either
259 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
260 jumps). */
261 rtx last_loop_insn;
ec7d7ef9 262 rtx loop_start = loop->start;
263 rtx loop_end = loop->end;
cdbd2a92 264
265 /* Don't bother unrolling huge loops. Since the minimum factor is
266 two, loops greater than one half of MAX_UNROLLED_INSNS will never
267 be unrolled. */
268 if (insn_count > MAX_UNROLLED_INSNS / 2)
269 {
270 if (loop_dump_stream)
271 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
272 return;
273 }
274
cdbd2a92 275 /* Determine type of unroll to perform. Depends on the number of iterations
276 and the size of the loop. */
277
ec5d911a 278 /* If there is no strength reduce info, then set
279 loop_info->n_iterations to zero. This can happen if
280 strength_reduce can't find any bivs in the loop. A value of zero
281 indicates that the number of iterations could not be calculated. */
cdbd2a92 282
283 if (! strength_reduce_p)
ec5d911a 284 loop_info->n_iterations = 0;
cdbd2a92 285
ec5d911a 286 if (loop_dump_stream && loop_info->n_iterations > 0)
77d71bdb 287 {
288 fputs ("Loop unrolling: ", loop_dump_stream);
9058b363 289 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
ec5d911a 290 loop_info->n_iterations);
77d71bdb 291 fputs (" iterations.\n", loop_dump_stream);
292 }
cdbd2a92 293
294 /* Find and save a pointer to the last nonnote insn in the loop. */
295
296 last_loop_insn = prev_nonnote_insn (loop_end);
297
298 /* Calculate how many times to unroll the loop. Indicate whether or
299 not the loop is being completely unrolled. */
300
ec5d911a 301 if (loop_info->n_iterations == 1)
cdbd2a92 302 {
3ff5e1f7 303 /* Handle the case where the loop begins with an unconditional
304 jump to the loop condition. Make sure to delete the jump
305 insn, otherwise the loop body will never execute. */
306
307 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
308 if (ujump)
e4bf866d 309 delete_related_insns (ujump);
6da6f625 310
cdbd2a92 311 /* If number of iterations is exactly 1, then eliminate the compare and
312 branch at the end of the loop since they will never be taken.
313 Then return, since no other action is needed here. */
314
315 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
316 don't do anything. */
317
318 if (GET_CODE (last_loop_insn) == BARRIER)
319 {
320 /* Delete the jump insn. This will delete the barrier also. */
e4bf866d 321 delete_related_insns (PREV_INSN (last_loop_insn));
cdbd2a92 322 }
323 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
324 {
9b7006ea 325#ifdef HAVE_cc0
1a29b174 326 rtx prev = PREV_INSN (last_loop_insn);
9b7006ea 327#endif
e4bf866d 328 delete_related_insns (last_loop_insn);
cdbd2a92 329#ifdef HAVE_cc0
1a29b174 330 /* The immediately preceding insn may be a compare which must be
cdbd2a92 331 deleted. */
2dcd83ba 332 if (only_sets_cc0_p (prev))
e4bf866d 333 delete_related_insns (prev);
cdbd2a92 334#endif
335 }
b21ba441 336
337 /* Remove the loop notes since this is no longer a loop. */
ec7d7ef9 338 if (loop->vtop)
e4bf866d 339 delete_related_insns (loop->vtop);
ec7d7ef9 340 if (loop->cont)
e4bf866d 341 delete_related_insns (loop->cont);
b21ba441 342 if (loop_start)
e4bf866d 343 delete_related_insns (loop_start);
b21ba441 344 if (loop_end)
e4bf866d 345 delete_related_insns (loop_end);
b21ba441 346
cdbd2a92 347 return;
348 }
ec5d911a 349 else if (loop_info->n_iterations > 0
addcf1fa 350 /* Avoid overflow in the next expression. */
be58ed1d 351 && loop_info->n_iterations < (unsigned) MAX_UNROLLED_INSNS
352 && loop_info->n_iterations * insn_count < (unsigned) MAX_UNROLLED_INSNS)
cdbd2a92 353 {
ec5d911a 354 unroll_number = loop_info->n_iterations;
cdbd2a92 355 unroll_type = UNROLL_COMPLETELY;
356 }
ec5d911a 357 else if (loop_info->n_iterations > 0)
cdbd2a92 358 {
359 /* Try to factor the number of iterations. Don't bother with the
360 general case, only using 2, 3, 5, and 7 will get 75% of all
361 numbers theoretically, and almost all in practice. */
362
363 for (i = 0; i < NUM_FACTORS; i++)
364 factors[i].count = 0;
365
ec5d911a 366 temp = loop_info->n_iterations;
cdbd2a92 367 for (i = NUM_FACTORS - 1; i >= 0; i--)
368 while (temp % factors[i].factor == 0)
369 {
370 factors[i].count++;
371 temp = temp / factors[i].factor;
372 }
373
374 /* Start with the larger factors first so that we generally
375 get lots of unrolling. */
376
377 unroll_number = 1;
378 temp = insn_count;
379 for (i = 3; i >= 0; i--)
380 while (factors[i].count--)
381 {
be58ed1d 382 if (temp * factors[i].factor < (unsigned) MAX_UNROLLED_INSNS)
cdbd2a92 383 {
384 unroll_number *= factors[i].factor;
385 temp *= factors[i].factor;
386 }
387 else
388 break;
389 }
390
391 /* If we couldn't find any factors, then unroll as in the normal
392 case. */
393 if (unroll_number == 1)
394 {
395 if (loop_dump_stream)
6da6f625 396 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
cdbd2a92 397 }
398 else
399 unroll_type = UNROLL_MODULO;
400 }
401
cdbd2a92 402 /* Default case, calculate number of times to unroll loop based on its
403 size. */
641b112b 404 if (unroll_type == UNROLL_NAIVE)
cdbd2a92 405 {
406 if (8 * insn_count < MAX_UNROLLED_INSNS)
407 unroll_number = 8;
408 else if (4 * insn_count < MAX_UNROLLED_INSNS)
409 unroll_number = 4;
410 else
411 unroll_number = 2;
cdbd2a92 412 }
413
414 /* Now we know how many times to unroll the loop. */
415
416 if (loop_dump_stream)
6da6f625 417 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
cdbd2a92 418
419 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
420 {
03cb2aac 421 /* Loops of these types can start with jump down to the exit condition
422 in rare circumstances.
423
424 Consider a pair of nested loops where the inner loop is part
425 of the exit code for the outer loop.
426
427 In this case jump.c will not duplicate the exit test for the outer
428 loop, so it will start with a jump to the exit code.
429
430 Then consider if the inner loop turns out to iterate once and
431 only once. We will end up deleting the jumps associated with
432 the inner loop. However, the loop notes are not removed from
433 the instruction stream.
434
435 And finally assume that we can compute the number of iterations
436 for the outer loop.
437
438 In this case unroll may want to unroll the outer loop even though
439 it starts with a jump to the outer loop's exit code.
440
441 We could try to optimize this case, but it hardly seems worth it.
442 Just return without unrolling the loop in such cases. */
443
cdbd2a92 444 insn = loop_start;
445 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
446 insn = NEXT_INSN (insn);
447 if (GET_CODE (insn) == JUMP_INSN)
03cb2aac 448 return;
cdbd2a92 449 }
450
451 if (unroll_type == UNROLL_COMPLETELY)
452 {
453 /* Completely unrolling the loop: Delete the compare and branch at
454 the end (the last two instructions). This delete must done at the
455 very end of loop unrolling, to avoid problems with calls to
456 back_branch_in_range_p, which is called by find_splittable_regs.
457 All increments of splittable bivs/givs are changed to load constant
458 instructions. */
459
460 copy_start = loop_start;
461
462 /* Set insert_before to the instruction immediately after the JUMP_INSN
463 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
464 the loop will be correctly handled by copy_loop_body. */
465 insert_before = NEXT_INSN (last_loop_insn);
466
467 /* Set copy_end to the insn before the jump at the end of the loop. */
468 if (GET_CODE (last_loop_insn) == BARRIER)
469 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
470 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
471 {
1a29b174 472 copy_end = PREV_INSN (last_loop_insn);
cdbd2a92 473#ifdef HAVE_cc0
1a29b174 474 /* The instruction immediately before the JUMP_INSN may be a compare
cdbd2a92 475 instruction which we do not want to copy. */
1a29b174 476 if (sets_cc0_p (PREV_INSN (copy_end)))
477 copy_end = PREV_INSN (copy_end);
cdbd2a92 478#endif
479 }
480 else
481 {
482 /* We currently can't unroll a loop if it doesn't end with a
483 JUMP_INSN. There would need to be a mechanism that recognizes
484 this case, and then inserts a jump after each loop body, which
485 jumps to after the last loop body. */
486 if (loop_dump_stream)
487 fprintf (loop_dump_stream,
488 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
489 return;
490 }
491 }
492 else if (unroll_type == UNROLL_MODULO)
493 {
494 /* Partially unrolling the loop: The compare and branch at the end
495 (the last two instructions) must remain. Don't copy the compare
496 and branch instructions at the end of the loop. Insert the unrolled
497 code immediately before the compare/branch at the end so that the
498 code will fall through to them as before. */
499
500 copy_start = loop_start;
501
502 /* Set insert_before to the jump insn at the end of the loop.
503 Set copy_end to before the jump insn at the end of the loop. */
504 if (GET_CODE (last_loop_insn) == BARRIER)
505 {
506 insert_before = PREV_INSN (last_loop_insn);
507 copy_end = PREV_INSN (insert_before);
508 }
509 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
510 {
1a29b174 511 insert_before = last_loop_insn;
cdbd2a92 512#ifdef HAVE_cc0
1a29b174 513 /* The instruction immediately before the JUMP_INSN may be a compare
cdbd2a92 514 instruction which we do not want to copy or delete. */
1a29b174 515 if (sets_cc0_p (PREV_INSN (insert_before)))
516 insert_before = PREV_INSN (insert_before);
cdbd2a92 517#endif
1a29b174 518 copy_end = PREV_INSN (insert_before);
cdbd2a92 519 }
520 else
521 {
522 /* We currently can't unroll a loop if it doesn't end with a
523 JUMP_INSN. There would need to be a mechanism that recognizes
524 this case, and then inserts a jump after each loop body, which
525 jumps to after the last loop body. */
526 if (loop_dump_stream)
527 fprintf (loop_dump_stream,
528 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
529 return;
530 }
531 }
532 else
533 {
534 /* Normal case: Must copy the compare and branch instructions at the
535 end of the loop. */
536
537 if (GET_CODE (last_loop_insn) == BARRIER)
538 {
539 /* Loop ends with an unconditional jump and a barrier.
540 Handle this like above, don't copy jump and barrier.
541 This is not strictly necessary, but doing so prevents generating
542 unconditional jumps to an immediately following label.
543
544 This will be corrected below if the target of this jump is
545 not the start_label. */
546
547 insert_before = PREV_INSN (last_loop_insn);
548 copy_end = PREV_INSN (insert_before);
549 }
550 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
551 {
552 /* Set insert_before to immediately after the JUMP_INSN, so that
553 NOTEs at the end of the loop will be correctly handled by
554 copy_loop_body. */
555 insert_before = NEXT_INSN (last_loop_insn);
556 copy_end = last_loop_insn;
557 }
558 else
559 {
560 /* We currently can't unroll a loop if it doesn't end with a
561 JUMP_INSN. There would need to be a mechanism that recognizes
562 this case, and then inserts a jump after each loop body, which
563 jumps to after the last loop body. */
564 if (loop_dump_stream)
565 fprintf (loop_dump_stream,
566 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
567 return;
568 }
569
570 /* If copying exit test branches because they can not be eliminated,
571 then must convert the fall through case of the branch to a jump past
572 the end of the loop. Create a label to emit after the loop and save
573 it for later use. Do not use the label after the loop, if any, since
574 it might be used by insns outside the loop, or there might be insns
575 added before it later by final_[bg]iv_value which must be after
576 the real exit label. */
577 exit_label = gen_label_rtx ();
578
579 insn = loop_start;
580 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
581 insn = NEXT_INSN (insn);
582
583 if (GET_CODE (insn) == JUMP_INSN)
584 {
585 /* The loop starts with a jump down to the exit condition test.
586 Start copying the loop after the barrier following this
587 jump insn. */
588 copy_start = NEXT_INSN (insn);
589
590 /* Splitting induction variables doesn't work when the loop is
591 entered via a jump to the bottom, because then we end up doing
592 a comparison against a new register for a split variable, but
593 we did not execute the set insn for the new register because
594 it was skipped over. */
595 splitting_not_safe = 1;
596 if (loop_dump_stream)
597 fprintf (loop_dump_stream,
598 "Splitting not safe, because loop not entered at top.\n");
599 }
600 else
601 copy_start = loop_start;
602 }
603
604 /* This should always be the first label in the loop. */
605 start_label = NEXT_INSN (copy_start);
606 /* There may be a line number note and/or a loop continue note here. */
607 while (GET_CODE (start_label) == NOTE)
608 start_label = NEXT_INSN (start_label);
609 if (GET_CODE (start_label) != CODE_LABEL)
610 {
611 /* This can happen as a result of jump threading. If the first insns in
612 the loop test the same condition as the loop's backward jump, or the
613 opposite condition, then the backward jump will be modified to point
614 to elsewhere, and the loop's start label is deleted.
615
616 This case currently can not be handled by the loop unrolling code. */
617
618 if (loop_dump_stream)
619 fprintf (loop_dump_stream,
620 "Unrolling failure: unknown insns between BEG note and loop label.\n");
621 return;
622 }
4529e7a1 623 if (LABEL_NAME (start_label))
624 {
625 /* The jump optimization pass must have combined the original start label
626 with a named label for a goto. We can't unroll this case because
627 jumps which go to the named label must be handled differently than
628 jumps to the loop start, and it is impossible to differentiate them
629 in this case. */
630 if (loop_dump_stream)
631 fprintf (loop_dump_stream,
632 "Unrolling failure: loop start label is gone\n");
633 return;
634 }
cdbd2a92 635
636 if (unroll_type == UNROLL_NAIVE
637 && GET_CODE (last_loop_insn) == BARRIER
c2e94b25 638 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
cdbd2a92 639 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
640 {
641 /* In this case, we must copy the jump and barrier, because they will
642 not be converted to jumps to an immediately following label. */
643
644 insert_before = NEXT_INSN (last_loop_insn);
645 copy_end = last_loop_insn;
646 }
647
3cd052ae 648 if (unroll_type == UNROLL_NAIVE
649 && GET_CODE (last_loop_insn) == JUMP_INSN
650 && start_label != JUMP_LABEL (last_loop_insn))
651 {
652 /* ??? The loop ends with a conditional branch that does not branch back
653 to the loop start label. In this case, we must emit an unconditional
654 branch to the loop exit after emitting the final branch.
655 copy_loop_body does not have support for this currently, so we
656 give up. It doesn't seem worthwhile to unroll anyways since
657 unrolling would increase the number of branch instructions
658 executed. */
659 if (loop_dump_stream)
660 fprintf (loop_dump_stream,
661 "Unrolling failure: final conditional branch not to loop start\n");
662 return;
663 }
664
cdbd2a92 665 /* Allocate a translation table for the labels and insn numbers.
666 They will be filled in as we copy the insns in the loop. */
667
668 max_labelno = max_label_num ();
669 max_insnno = get_max_uid ();
670
84a259b4 671 /* Various paths through the unroll code may reach the "egress" label
672 without initializing fields within the map structure.
cdbd2a92 673
84a259b4 674 To be safe, we use xcalloc to zero the memory. */
675 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
b9d0ebd3 676
cdbd2a92 677 /* Allocate the label map. */
678
679 if (max_labelno > 0)
680 {
0458bddc 681 map->label_map = (rtx *) xcalloc (max_labelno, sizeof (rtx));
8b861be4 682 local_label = (char *) xcalloc (max_labelno, sizeof (char));
cdbd2a92 683 }
cdbd2a92 684
685 /* Search the loop and mark all local labels, i.e. the ones which have to
686 be distinct labels when copied. For all labels which might be
687 non-local, set their label_map entries to point to themselves.
688 If they happen to be local their label_map entries will be overwritten
689 before the loop body is copied. The label_map entries for local labels
690 will be set to a different value each time the loop body is copied. */
691
692 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
693 {
322b2436 694 rtx note;
695
cdbd2a92 696 if (GET_CODE (insn) == CODE_LABEL)
697 local_label[CODE_LABEL_NUMBER (insn)] = 1;
698 else if (GET_CODE (insn) == JUMP_INSN)
699 {
700 if (JUMP_LABEL (insn))
c3dfa4e8 701 set_label_in_map (map,
702 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
703 JUMP_LABEL (insn));
cdbd2a92 704 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
705 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
706 {
707 rtx pat = PATTERN (insn);
708 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
709 int len = XVECLEN (pat, diff_vec_p);
710 rtx label;
711
712 for (i = 0; i < len; i++)
713 {
714 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
6da6f625 715 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
cdbd2a92 716 }
717 }
718 }
d3ff0f75 719 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
322b2436 720 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
721 XEXP (note, 0));
cdbd2a92 722 }
723
724 /* Allocate space for the insn map. */
725
8b861be4 726 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
cdbd2a92 727
728 /* Set this to zero, to indicate that we are doing loop unrolling,
729 not function inlining. */
730 map->inline_target = 0;
731
732 /* The register and constant maps depend on the number of registers
733 present, so the final maps can't be created until after
734 find_splittable_regs is called. However, they are needed for
735 preconditioning, so we create temporary maps when preconditioning
736 is performed. */
737
738 /* The preconditioning code may allocate two new pseudo registers. */
739 maxregnum = max_reg_num ();
740
90006a38 741 /* local_regno is only valid for regnos < max_local_regnum. */
742 max_local_regnum = maxregnum;
743
cdbd2a92 744 /* Allocate and zero out the splittable_regs and addr_combined_regs
745 arrays. These must be zeroed here because they will be used if
746 loop preconditioning is performed, and must be zero for that case.
747
748 It is safe to do this here, since the extra registers created by the
749 preconditioning code and find_splittable_regs will never be used
4bbea254 750 to access the splittable_regs[] and addr_combined_regs[] arrays. */
cdbd2a92 751
8b861be4 752 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
8b861be4 753 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
cdbd2a92 754 addr_combined_regs
8b861be4 755 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
756 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
d14771e1 757
758 /* Mark all local registers, i.e. the ones which are referenced only
bbef98ff 759 inside the loop. */
760 if (INSN_UID (copy_end) < max_uid_for_loop)
c7c7572a 761 {
762 int copy_start_luid = INSN_LUID (copy_start);
763 int copy_end_luid = INSN_LUID (copy_end);
d14771e1 764
c7c7572a 765 /* If a register is used in the jump insn, we must not duplicate it
766 since it will also be used outside the loop. */
767 if (GET_CODE (copy_end) == JUMP_INSN)
768 copy_end_luid--;
8a040e41 769
c7c7572a 770 /* If we have a target that uses cc0, then we also must not duplicate
1a29b174 771 the insn that sets cc0 before the jump insn, if one is present. */
8a040e41 772#ifdef HAVE_cc0
6da6f625 773 if (GET_CODE (copy_end) == JUMP_INSN
774 && sets_cc0_p (PREV_INSN (copy_end)))
c7c7572a 775 copy_end_luid--;
8a040e41 776#endif
777
c7c7572a 778 /* If copy_start points to the NOTE that starts the loop, then we must
779 use the next luid, because invariant pseudo-regs moved out of the loop
780 have their lifetimes modified to start here, but they are not safe
781 to duplicate. */
782 if (copy_start == loop_start)
783 copy_start_luid++;
784
785 /* If a pseudo's lifetime is entirely contained within this loop, then we
786 can use a different pseudo in each unrolled copy of the loop. This
787 results in better code. */
788 /* We must limit the generic test to max_reg_before_loop, because only
789 these pseudo registers have valid regno_first_uid info. */
02e7a332 790 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
791 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
23e52523 792 && REGNO_FIRST_LUID (r) >= copy_start_luid
02e7a332 793 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
23e52523 794 && REGNO_LAST_LUID (r) <= copy_end_luid)
c7c7572a 795 {
796 /* However, we must also check for loop-carried dependencies.
797 If the value the pseudo has at the end of iteration X is
798 used by iteration X+1, then we can not use a different pseudo
799 for each unrolled copy of the loop. */
800 /* A pseudo is safe if regno_first_uid is a set, and this
801 set dominates all instructions from regno_first_uid to
802 regno_last_uid. */
803 /* ??? This check is simplistic. We would get better code if
804 this check was more sophisticated. */
02e7a332 805 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
c7c7572a 806 copy_start, copy_end))
02e7a332 807 local_regno[r] = 1;
c7c7572a 808
809 if (loop_dump_stream)
810 {
02e7a332 811 if (local_regno[r])
812 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
c7c7572a 813 else
814 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
02e7a332 815 r);
c7c7572a 816 }
817 }
c7c7572a 818 }
cdbd2a92 819
820 /* If this loop requires exit tests when unrolled, check to see if we
821 can precondition the loop so as to make the exit tests unnecessary.
822 Just like variable splitting, this is not safe if the loop is entered
823 via a jump to the bottom. Also, can not do this if no strength
824 reduce info, because precondition_loop_p uses this info. */
825
826 /* Must copy the loop body for preconditioning before the following
827 find_splittable_regs call since that will emit insns which need to
828 be after the preconditioned loop copies, but immediately before the
829 unrolled loop copies. */
830
831 /* Also, it is not safe to split induction variables for the preconditioned
832 copies of the loop body. If we split induction variables, then the code
833 assumes that each induction variable can be represented as a function
834 of its initial value and the loop iteration number. This is not true
835 in this case, because the last preconditioned copy of the loop body
836 could be any iteration from the first up to the `unroll_number-1'th,
837 depending on the initial value of the iteration variable. Therefore
838 we can not split induction variables here, because we can not calculate
839 their value. Hence, this code must occur before find_splittable_regs
840 is called. */
841
842 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
843 {
844 rtx initial_value, final_value, increment;
7bb29472 845 enum machine_mode mode;
cdbd2a92 846
15fc3eb7 847 if (precondition_loop_p (loop,
7bb29472 848 &initial_value, &final_value, &increment,
849 &mode))
cdbd2a92 850 {
fff101de 851 rtx diff, insn;
cdbd2a92 852 rtx *labels;
853 int abs_inc, neg_inc;
0cb3e18b 854 enum rtx_code cc = loop_info->comparison_code;
855 int less_p = (cc == LE || cc == LEU || cc == LT || cc == LTU);
856 int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
cdbd2a92 857
8b861be4 858 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
cdbd2a92 859
433c8fce 860 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
addcf1fa 861 "unroll_loop_precondition");
433c8fce 862 global_const_equiv_varray = map->const_equiv_varray;
cdbd2a92 863
864 init_reg_map (map, maxregnum);
865
866 /* Limit loop unrolling to 4, since this will make 7 copies of
867 the loop body. */
868 if (unroll_number > 4)
869 unroll_number = 4;
870
871 /* Save the absolute value of the increment, and also whether or
872 not it is negative. */
873 neg_inc = 0;
874 abs_inc = INTVAL (increment);
875 if (abs_inc < 0)
876 {
6da6f625 877 abs_inc = -abs_inc;
cdbd2a92 878 neg_inc = 1;
879 }
880
881 start_sequence ();
882
fff101de 883 /* We must copy the final and initial values here to avoid
884 improperly shared rtl. */
885 final_value = copy_rtx (final_value);
886 initial_value = copy_rtx (initial_value);
887
4aa863f8 888 /* Final value may have form of (PLUS val1 const1_rtx). We need
889 to convert it into general operand, so compute the real value. */
890
fff101de 891 final_value = force_operand (final_value, NULL_RTX);
4aa863f8 892 if (!nonmemory_operand (final_value, VOIDmode))
fff101de 893 final_value = force_reg (mode, final_value);
4aa863f8 894
cdbd2a92 895 /* Calculate the difference between the final and initial values.
896 Final value may be a (plus (reg x) (const_int 1)) rtx.
0cb3e18b 897
898 We have to deal with for (i = 0; --i < 6;) type loops.
899 For such loops the real final value is the first time the
900 loop variable overflows, so the diff we calculate is the
901 distance from the overflow value. This is 0 or ~0 for
902 unsigned loops depending on the direction, or INT_MAX,
903 INT_MAX+1 for signed loops. We really do not need the
904 exact value, since we are only interested in the diff
905 modulo the increment, and the increment is a power of 2,
906 so we can pretend that the overflow value is 0/~0. */
907
908 if (cc == NE || less_p != neg_inc)
fff101de 909 diff = simplify_gen_binary (MINUS, mode, final_value,
910 initial_value);
0cb3e18b 911 else
fff101de 912 diff = simplify_gen_unary (neg_inc ? NOT : NEG, mode,
913 initial_value, mode);
914 diff = force_operand (diff, NULL_RTX);
cdbd2a92 915
916 /* Now calculate (diff % (unroll * abs (increment))) by using an
917 and instruction. */
fff101de 918 diff = simplify_gen_binary (AND, mode, diff,
919 GEN_INT (unroll_number*abs_inc - 1));
920 diff = force_operand (diff, NULL_RTX);
cdbd2a92 921
922 /* Now emit a sequence of branches to jump to the proper precond
923 loop entry point. */
924
8b861be4 925 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
cdbd2a92 926 for (i = 0; i < unroll_number; i++)
927 labels[i] = gen_label_rtx ();
928
22a93b8e 929 /* Check for the case where the initial value is greater than or
930 equal to the final value. In that case, we want to execute
931 exactly one loop iteration. The code below will fail for this
932 case. This check does not apply if the loop has a NE
933 comparison at the end. */
4e66cb23 934
0cb3e18b 935 if (cc != NE)
22a93b8e 936 {
0cb3e18b 937 rtx incremented_initval;
fff101de 938 enum rtx_code cmp_code;
939
940 incremented_initval
941 = simplify_gen_binary (PLUS, mode, initial_value, increment);
942 incremented_initval
943 = force_operand (incremented_initval, NULL_RTX);
944
945 cmp_code = (less_p
946 ? (unsigned_p ? GEU : GE)
947 : (unsigned_p ? LEU : LE));
948
949 insn = simplify_cmp_and_jump_insns (cmp_code, mode,
950 incremented_initval,
951 final_value, labels[1]);
952 if (insn)
953 predict_insn_def (insn, PRED_LOOP_CONDITION, TAKEN);
22a93b8e 954 }
4e66cb23 955
cdbd2a92 956 /* Assuming the unroll_number is 4, and the increment is 2, then
957 for a negative increment: for a positive increment:
958 diff = 0,1 precond 0 diff = 0,7 precond 0
959 diff = 2,3 precond 3 diff = 1,2 precond 1
960 diff = 4,5 precond 2 diff = 3,4 precond 2
961 diff = 6,7 precond 1 diff = 5,6 precond 3 */
962
963 /* We only need to emit (unroll_number - 1) branches here, the
964 last case just falls through to the following code. */
965
966 /* ??? This would give better code if we emitted a tree of branches
967 instead of the current linear list of branches. */
968
969 for (i = 0; i < unroll_number - 1; i++)
970 {
971 int cmp_const;
4e66cb23 972 enum rtx_code cmp_code;
cdbd2a92 973
974 /* For negative increments, must invert the constant compared
975 against, except when comparing against zero. */
976 if (i == 0)
4e66cb23 977 {
978 cmp_const = 0;
979 cmp_code = EQ;
980 }
cdbd2a92 981 else if (neg_inc)
4e66cb23 982 {
983 cmp_const = unroll_number - i;
984 cmp_code = GE;
985 }
cdbd2a92 986 else
4e66cb23 987 {
988 cmp_const = i;
989 cmp_code = LE;
990 }
cdbd2a92 991
fff101de 992 insn = simplify_cmp_and_jump_insns (cmp_code, mode, diff,
993 GEN_INT (abs_inc*cmp_const),
994 labels[i]);
995 if (insn)
996 predict_insn (insn, PRED_LOOP_PRECONDITIONING,
997 REG_BR_PROB_BASE / (unroll_number - i));
cdbd2a92 998 }
999
1000 /* If the increment is greater than one, then we need another branch,
1001 to handle other cases equivalent to 0. */
1002
1003 /* ??? This should be merged into the code above somehow to help
1004 simplify the code here, and reduce the number of branches emitted.
1005 For the negative increment case, the branch here could easily
1006 be merged with the `0' case branch above. For the positive
1007 increment case, it is not clear how this can be simplified. */
9058b363 1008
cdbd2a92 1009 if (abs_inc != 1)
1010 {
1011 int cmp_const;
4e66cb23 1012 enum rtx_code cmp_code;
cdbd2a92 1013
1014 if (neg_inc)
4e66cb23 1015 {
1016 cmp_const = abs_inc - 1;
1017 cmp_code = LE;
1018 }
cdbd2a92 1019 else
4e66cb23 1020 {
1021 cmp_const = abs_inc * (unroll_number - 1) + 1;
1022 cmp_code = GE;
1023 }
cdbd2a92 1024
fff101de 1025 simplify_cmp_and_jump_insns (cmp_code, mode, diff,
1026 GEN_INT (cmp_const), labels[0]);
cdbd2a92 1027 }
1028
31d3e01c 1029 sequence = get_insns ();
cdbd2a92 1030 end_sequence ();
89e8d34f 1031 loop_insn_hoist (loop, sequence);
9058b363 1032
cdbd2a92 1033 /* Only the last copy of the loop body here needs the exit
1034 test, so set copy_end to exclude the compare/branch here,
1035 and then reset it inside the loop when get to the last
1036 copy. */
1037
1038 if (GET_CODE (last_loop_insn) == BARRIER)
1039 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1040 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1041 {
1a29b174 1042 copy_end = PREV_INSN (last_loop_insn);
cdbd2a92 1043#ifdef HAVE_cc0
6da6f625 1044 /* The immediately preceding insn may be a compare which
1045 we do not want to copy. */
1a29b174 1046 if (sets_cc0_p (PREV_INSN (copy_end)))
1047 copy_end = PREV_INSN (copy_end);
cdbd2a92 1048#endif
1049 }
1050 else
1051 abort ();
1052
1053 for (i = 1; i < unroll_number; i++)
1054 {
1055 emit_label_after (labels[unroll_number - i],
1056 PREV_INSN (loop_start));
1057
93d3b7de 1058 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1059 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1060 0, (VARRAY_SIZE (map->const_equiv_varray)
1061 * sizeof (struct const_equiv_data)));
cdbd2a92 1062 map->const_age = 0;
1063
1064 for (j = 0; j < max_labelno; j++)
1065 if (local_label[j])
c3dfa4e8 1066 set_label_in_map (map, j, gen_label_rtx ());
cdbd2a92 1067
02e7a332 1068 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1069 if (local_regno[r])
ea0cb7ae 1070 {
02e7a332 1071 map->reg_map[r]
1072 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1073 record_base_value (REGNO (map->reg_map[r]),
1074 regno_reg_rtx[r], 0);
ea0cb7ae 1075 }
cdbd2a92 1076 /* The last copy needs the compare/branch insns at the end,
1077 so reset copy_end here if the loop ends with a conditional
1078 branch. */
1079
1080 if (i == unroll_number - 1)
1081 {
1082 if (GET_CODE (last_loop_insn) == BARRIER)
1083 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1084 else
1085 copy_end = last_loop_insn;
1086 }
1087
1088 /* None of the copies are the `last_iteration', so just
1089 pass zero for that parameter. */
8ec5f078 1090 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
cdbd2a92 1091 unroll_type, start_label, loop_end,
1092 loop_start, copy_end);
1093 }
1094 emit_label_after (labels[0], PREV_INSN (loop_start));
1095
1096 if (GET_CODE (last_loop_insn) == BARRIER)
1097 {
1098 insert_before = PREV_INSN (last_loop_insn);
1099 copy_end = PREV_INSN (insert_before);
1100 }
1101 else
1102 {
cdbd2a92 1103 insert_before = last_loop_insn;
1a29b174 1104#ifdef HAVE_cc0
6da6f625 1105 /* The instruction immediately before the JUMP_INSN may
1106 be a compare instruction which we do not want to copy
1107 or delete. */
1a29b174 1108 if (sets_cc0_p (PREV_INSN (insert_before)))
1109 insert_before = PREV_INSN (insert_before);
cdbd2a92 1110#endif
1a29b174 1111 copy_end = PREV_INSN (insert_before);
cdbd2a92 1112 }
1113
1114 /* Set unroll type to MODULO now. */
1115 unroll_type = UNROLL_MODULO;
1116 loop_preconditioned = 1;
8b861be4 1117
1118 /* Clean up. */
1119 free (labels);
cdbd2a92 1120 }
1121 }
1122
1123 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1124 the loop unless all loops are being unrolled. */
1125 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1126 {
1127 if (loop_dump_stream)
6da6f625 1128 fprintf (loop_dump_stream,
1129 "Unrolling failure: Naive unrolling not being done.\n");
433c8fce 1130 goto egress;
cdbd2a92 1131 }
1132
1133 /* At this point, we are guaranteed to unroll the loop. */
1134
ec5d911a 1135 /* Keep track of the unroll factor for the loop. */
1f8922d4 1136 loop_info->unroll_number = unroll_number;
3eb9a99d 1137
4db1469f 1138 /* And whether the loop has been preconditioned. */
1139 loop_info->preconditioned = loop_preconditioned;
1140
45498ea1 1141 /* Remember whether it was preconditioned for the second loop pass. */
d090276e 1142 NOTE_PRECONDITIONED (loop->end) = loop_preconditioned;
1143
cdbd2a92 1144 /* For each biv and giv, determine whether it can be safely split into
1145 a different variable for each unrolled copy of the loop body.
1146 We precalculate and save this info here, since computing it is
1147 expensive.
1148
1149 Do this before deleting any instructions from the loop, so that
1150 back_branch_in_range_p will work correctly. */
1151
1152 if (splitting_not_safe)
1153 temp = 0;
1154 else
89e8d34f 1155 temp = find_splittable_regs (loop, unroll_type, unroll_number);
cdbd2a92 1156
1157 /* find_splittable_regs may have created some new registers, so must
1158 reallocate the reg_map with the new larger size, and must realloc
1159 the constant maps also. */
1160
1161 maxregnum = max_reg_num ();
8b861be4 1162 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
cdbd2a92 1163
1164 init_reg_map (map, maxregnum);
1165
433c8fce 1166 if (map->const_equiv_varray == 0)
1167 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1168 maxregnum + temp * unroll_number * 2,
1169 "unroll_loop");
1170 global_const_equiv_varray = map->const_equiv_varray;
cdbd2a92 1171
1172 /* Search the list of bivs and givs to find ones which need to be remapped
1173 when split, and set their reg_map entry appropriately. */
1174
6f812a51 1175 for (bl = ivs->list; bl; bl = bl->next)
cdbd2a92 1176 {
1177 if (REGNO (bl->biv->src_reg) != bl->regno)
1178 map->reg_map[bl->regno] = bl->biv->src_reg;
1179#if 0
1180 /* Currently, non-reduced/final-value givs are never split. */
1181 for (v = bl->giv; v; v = v->next_iv)
1182 if (REGNO (v->src_reg) != bl->regno)
1183 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1184#endif
1185 }
1186
130e4d41 1187 /* Use our current register alignment and pointer flags. */
08513b52 1188 map->regno_pointer_align = cfun->emit->regno_pointer_align;
e61a0a7f 1189 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
130e4d41 1190
cdbd2a92 1191 /* If the loop is being partially unrolled, and the iteration variables
1192 are being split, and are being renamed for the split, then must fix up
ee2ce5c0 1193 the compare/jump instruction at the end of the loop to refer to the new
cdbd2a92 1194 registers. This compare isn't copied, so the registers used in it
1195 will never be replaced if it isn't done here. */
1196
1197 if (unroll_type == UNROLL_MODULO)
1198 {
1199 insn = NEXT_INSN (copy_end);
ee2ce5c0 1200 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
8ec5f078 1201 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
cdbd2a92 1202 }
1203
a490489b 1204 /* For unroll_number times, make a copy of each instruction
cdbd2a92 1205 between copy_start and copy_end, and insert these new instructions
1206 before the end of the loop. */
1207
1208 for (i = 0; i < unroll_number; i++)
1209 {
93d3b7de 1210 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1211 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1212 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
cdbd2a92 1213 map->const_age = 0;
1214
1215 for (j = 0; j < max_labelno; j++)
1216 if (local_label[j])
c3dfa4e8 1217 set_label_in_map (map, j, gen_label_rtx ());
cdbd2a92 1218
02e7a332 1219 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1220 if (local_regno[r])
ea0cb7ae 1221 {
02e7a332 1222 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1223 record_base_value (REGNO (map->reg_map[r]),
1224 regno_reg_rtx[r], 0);
ea0cb7ae 1225 }
d14771e1 1226
cdbd2a92 1227 /* If loop starts with a branch to the test, then fix it so that
1228 it points to the test of the first unrolled copy of the loop. */
1229 if (i == 0 && loop_start != copy_start)
1230 {
1231 insn = PREV_INSN (copy_start);
1232 pattern = PATTERN (insn);
9058b363 1233
c3dfa4e8 1234 tem = get_label_from_map (map,
1235 CODE_LABEL_NUMBER
1236 (XEXP (SET_SRC (pattern), 0)));
941522d6 1237 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
cdbd2a92 1238
1239 /* Set the jump label so that it can be used by later loop unrolling
1240 passes. */
1241 JUMP_LABEL (insn) = tem;
1242 LABEL_NUSES (tem)++;
1243 }
1244
8ec5f078 1245 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
cdbd2a92 1246 i == unroll_number - 1, unroll_type, start_label,
1247 loop_end, insert_before, insert_before);
1248 }
1249
1250 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1251 insn to be deleted. This prevents any runaway delete_insn call from
1252 more insns that it should, as it always stops at a CODE_LABEL. */
1253
1254 /* Delete the compare and branch at the end of the loop if completely
1255 unrolling the loop. Deleting the backward branch at the end also
1256 deletes the code label at the start of the loop. This is done at
1257 the very end to avoid problems with back_branch_in_range_p. */
1258
1259 if (unroll_type == UNROLL_COMPLETELY)
1260 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1261 else
1262 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1263
9058b363 1264 /* Delete all of the original loop instructions. Don't delete the
cdbd2a92 1265 LOOP_BEG note, or the first code label in the loop. */
1266
1267 insn = NEXT_INSN (copy_start);
1268 while (insn != safety_label)
1269 {
2922db0c 1270 /* ??? Don't delete named code labels. They will be deleted when the
1271 jump that references them is deleted. Otherwise, we end up deleting
1272 them twice, which causes them to completely disappear instead of turn
1273 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1274 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1275 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1276 associated LABEL_DECL to point to one of the new label instances. */
1277 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
45ae8273 1278 if (insn != start_label
2922db0c 1279 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
45ae8273 1280 && ! (GET_CODE (insn) == NOTE
1281 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
e4bf866d 1282 insn = delete_related_insns (insn);
cdbd2a92 1283 else
1284 insn = NEXT_INSN (insn);
1285 }
1286
1287 /* Can now delete the 'safety' label emitted to protect us from runaway
e4bf866d 1288 delete_related_insns calls. */
cdbd2a92 1289 if (INSN_DELETED_P (safety_label))
1290 abort ();
e4bf866d 1291 delete_related_insns (safety_label);
cdbd2a92 1292
1293 /* If exit_label exists, emit it after the loop. Doing the emit here
1294 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1295 This is needed so that mostly_true_jump in reorg.c will treat jumps
1296 to this loop end label correctly, i.e. predict that they are usually
1297 not taken. */
1298 if (exit_label)
1299 emit_label_after (exit_label, loop_end);
433c8fce 1300
1301 egress:
b21ba441 1302 if (unroll_type == UNROLL_COMPLETELY)
1303 {
1304 /* Remove the loop notes since this is no longer a loop. */
ec7d7ef9 1305 if (loop->vtop)
e4bf866d 1306 delete_related_insns (loop->vtop);
ec7d7ef9 1307 if (loop->cont)
e4bf866d 1308 delete_related_insns (loop->cont);
b21ba441 1309 if (loop_start)
e4bf866d 1310 delete_related_insns (loop_start);
b21ba441 1311 if (loop_end)
e4bf866d 1312 delete_related_insns (loop_end);
b21ba441 1313 }
1314
8b861be4 1315 if (map->const_equiv_varray)
433c8fce 1316 VARRAY_FREE (map->const_equiv_varray);
8b861be4 1317 if (map->label_map)
1318 {
1319 free (map->label_map);
1320 free (local_label);
1321 }
1322 free (map->insn_map);
1323 free (splittable_regs);
8b861be4 1324 free (splittable_regs_updates);
1325 free (addr_combined_regs);
1326 free (local_regno);
1327 if (map->reg_map)
1328 free (map->reg_map);
1329 free (map);
cdbd2a92 1330}
fff101de 1331
1332/* A helper function for unroll_loop. Emit a compare and branch to
1333 satisfy (CMP OP1 OP2), but pass this through the simplifier first.
1334 If the branch turned out to be conditional, return it, otherwise
1335 return NULL. */
1336
1337static rtx
1338simplify_cmp_and_jump_insns (code, mode, op0, op1, label)
1339 enum rtx_code code;
1340 enum machine_mode mode;
1341 rtx op0, op1, label;
1342{
1343 rtx t, insn;
1344
1345 t = simplify_relational_operation (code, mode, op0, op1);
1346 if (!t)
1347 {
1348 enum rtx_code scode = signed_condition (code);
1349 emit_cmp_and_jump_insns (op0, op1, scode, NULL_RTX, mode,
1350 code != scode, label);
1351 insn = get_last_insn ();
1352
1353 JUMP_LABEL (insn) = label;
1354 LABEL_NUSES (label) += 1;
1355
1356 return insn;
1357 }
1358 else if (t == const_true_rtx)
1359 {
1360 insn = emit_jump_insn (gen_jump (label));
1361 emit_barrier ();
1362 JUMP_LABEL (insn) = label;
1363 LABEL_NUSES (label) += 1;
1364 }
1365
1366 return NULL_RTX;
1367}
cdbd2a92 1368\f
1369/* Return true if the loop can be safely, and profitably, preconditioned
1370 so that the unrolled copies of the loop body don't need exit tests.
1371
1372 This only works if final_value, initial_value and increment can be
1373 determined, and if increment is a constant power of 2.
1374 If increment is not a power of 2, then the preconditioning modulo
1375 operation would require a real modulo instead of a boolean AND, and this
1376 is not considered `profitable'. */
1377
1378/* ??? If the loop is known to be executed very many times, or the machine
1379 has a very cheap divide instruction, then preconditioning is a win even
1380 when the increment is not a power of 2. Use RTX_COST to compute
a490489b 1381 whether divide is cheap.
1382 ??? A divide by constant doesn't actually need a divide, look at
1383 expand_divmod. The reduced cost of this optimized modulo is not
1384 reflected in RTX_COST. */
cdbd2a92 1385
ec5d911a 1386int
15fc3eb7 1387precondition_loop_p (loop, initial_value, final_value, increment, mode)
1388 const struct loop *loop;
ec5d911a 1389 rtx *initial_value, *final_value, *increment;
7bb29472 1390 enum machine_mode *mode;
cdbd2a92 1391{
15fc3eb7 1392 rtx loop_start = loop->start;
1393 struct loop_info *loop_info = LOOP_INFO (loop);
cdbd2a92 1394
ec5d911a 1395 if (loop_info->n_iterations > 0)
cdbd2a92 1396 {
ba26e2a7 1397 if (INTVAL (loop_info->increment) > 0)
1398 {
1399 *initial_value = const0_rtx;
1400 *increment = const1_rtx;
1401 *final_value = GEN_INT (loop_info->n_iterations);
1402 }
1403 else
1404 {
1405 *initial_value = GEN_INT (loop_info->n_iterations);
1406 *increment = constm1_rtx;
1407 *final_value = const0_rtx;
1408 }
7bb29472 1409 *mode = word_mode;
cdbd2a92 1410
1411 if (loop_dump_stream)
77d71bdb 1412 {
1413 fputs ("Preconditioning: Success, number of iterations known, ",
1414 loop_dump_stream);
1415 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
ec5d911a 1416 loop_info->n_iterations);
77d71bdb 1417 fputs (".\n", loop_dump_stream);
1418 }
cdbd2a92 1419 return 1;
1420 }
1421
794f30af 1422 if (loop_info->iteration_var == 0)
1423 {
1424 if (loop_dump_stream)
1425 fprintf (loop_dump_stream,
1426 "Preconditioning: Could not find iteration variable.\n");
1427 return 0;
1428 }
1429 else if (loop_info->initial_value == 0)
cdbd2a92 1430 {
1431 if (loop_dump_stream)
1432 fprintf (loop_dump_stream,
1433 "Preconditioning: Could not find initial value.\n");
1434 return 0;
1435 }
ec5d911a 1436 else if (loop_info->increment == 0)
cdbd2a92 1437 {
1438 if (loop_dump_stream)
1439 fprintf (loop_dump_stream,
1440 "Preconditioning: Could not find increment value.\n");
1441 return 0;
1442 }
ec5d911a 1443 else if (GET_CODE (loop_info->increment) != CONST_INT)
cdbd2a92 1444 {
1445 if (loop_dump_stream)
1446 fprintf (loop_dump_stream,
1447 "Preconditioning: Increment not a constant.\n");
1448 return 0;
1449 }
ec5d911a 1450 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
6da6f625 1451 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
cdbd2a92 1452 {
1453 if (loop_dump_stream)
1454 fprintf (loop_dump_stream,
1455 "Preconditioning: Increment not a constant power of 2.\n");
1456 return 0;
1457 }
1458
1459 /* Unsigned_compare and compare_dir can be ignored here, since they do
1460 not matter for preconditioning. */
1461
ec5d911a 1462 if (loop_info->final_value == 0)
cdbd2a92 1463 {
1464 if (loop_dump_stream)
1465 fprintf (loop_dump_stream,
1466 "Preconditioning: EQ comparison loop.\n");
1467 return 0;
1468 }
1469
15fc3eb7 1470 /* Must ensure that final_value is invariant, so call
1471 loop_invariant_p to check. Before doing so, must check regno
1472 against max_reg_before_loop to make sure that the register is in
1473 the range covered by loop_invariant_p. If it isn't, then it is
1474 most likely a biv/giv which by definition are not invariant. */
ec5d911a 1475 if ((GET_CODE (loop_info->final_value) == REG
1476 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1477 || (GET_CODE (loop_info->final_value) == PLUS
1478 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
15fc3eb7 1479 || ! loop_invariant_p (loop, loop_info->final_value))
cdbd2a92 1480 {
1481 if (loop_dump_stream)
1482 fprintf (loop_dump_stream,
1483 "Preconditioning: Final value not invariant.\n");
1484 return 0;
1485 }
1486
1487 /* Fail for floating point values, since the caller of this function
1488 does not have code to deal with them. */
ec5d911a 1489 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1490 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
cdbd2a92 1491 {
1492 if (loop_dump_stream)
1493 fprintf (loop_dump_stream,
1494 "Preconditioning: Floating point final or initial value.\n");
1495 return 0;
1496 }
1497
ec5d911a 1498 /* Fail if loop_info->iteration_var is not live before loop_start,
1499 since we need to test its value in the preconditioning code. */
cdbd2a92 1500
23e52523 1501 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
cdbd2a92 1502 > INSN_LUID (loop_start))
1503 {
1504 if (loop_dump_stream)
1505 fprintf (loop_dump_stream,
1506 "Preconditioning: Iteration var not live before loop start.\n");
1507 return 0;
1508 }
1509
b109aca9 1510 /* Note that loop_iterations biases the initial value for GIV iterators
37d52343 1511 such as "while (i-- > 0)" so that we can calculate the number of
1512 iterations just like for BIV iterators.
9058b363 1513
46134d72 1514 Also note that the absolute values of initial_value and
1515 final_value are unimportant as only their difference is used for
1516 calculating the number of loop iterations. */
ec5d911a 1517 *initial_value = loop_info->initial_value;
1518 *increment = loop_info->increment;
1519 *final_value = loop_info->final_value;
cdbd2a92 1520
7bb29472 1521 /* Decide what mode to do these calculations in. Choose the larger
1522 of final_value's mode and initial_value's mode, or a full-word if
1523 both are constants. */
1524 *mode = GET_MODE (*final_value);
1525 if (*mode == VOIDmode)
1526 {
1527 *mode = GET_MODE (*initial_value);
1528 if (*mode == VOIDmode)
1529 *mode = word_mode;
1530 }
1531 else if (*mode != GET_MODE (*initial_value)
1532 && (GET_MODE_SIZE (*mode)
1533 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1534 *mode = GET_MODE (*initial_value);
1535
ec7d7ef9 1536 /* Success! */
cdbd2a92 1537 if (loop_dump_stream)
1538 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1539 return 1;
1540}
1541
cdbd2a92 1542/* All pseudo-registers must be mapped to themselves. Two hard registers
1543 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1544 REGNUM, to avoid function-inlining specific conversions of these
1545 registers. All other hard regs can not be mapped because they may be
1546 used with different
1547 modes. */
1548
1549static void
1550init_reg_map (map, maxregnum)
1551 struct inline_remap *map;
1552 int maxregnum;
1553{
1554 int i;
1555
1556 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1557 map->reg_map[i] = regno_reg_rtx[i];
1558 /* Just clear the rest of the entries. */
1559 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1560 map->reg_map[i] = 0;
1561
1562 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1563 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1564 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1565 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1566}
1567\f
1568/* Strength-reduction will often emit code for optimized biv/givs which
1569 calculates their value in a temporary register, and then copies the result
1570 to the iv. This procedure reconstructs the pattern computing the iv;
1571 verifying that all operands are of the proper form.
1572
997d68fe 1573 PATTERN must be the result of single_set.
cdbd2a92 1574 The return value is the amount that the giv is incremented by. */
1575
1576static rtx
1577calculate_giv_inc (pattern, src_insn, regno)
1578 rtx pattern, src_insn;
02e7a332 1579 unsigned int regno;
cdbd2a92 1580{
1581 rtx increment;
9fdb4293 1582 rtx increment_total = 0;
1583 int tries = 0;
cdbd2a92 1584
9fdb4293 1585 retry:
cdbd2a92 1586 /* Verify that we have an increment insn here. First check for a plus
1587 as the set source. */
1588 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1589 {
1590 /* SR sometimes computes the new giv value in a temp, then copies it
1591 to the new_reg. */
1592 src_insn = PREV_INSN (src_insn);
78494636 1593 pattern = single_set (src_insn);
cdbd2a92 1594 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1595 abort ();
9058b363 1596
cdbd2a92 1597 /* The last insn emitted is not needed, so delete it to avoid confusing
1598 the second cse pass. This insn sets the giv unnecessarily. */
e4bf866d 1599 delete_related_insns (get_last_insn ());
cdbd2a92 1600 }
1601
1602 /* Verify that we have a constant as the second operand of the plus. */
1603 increment = XEXP (SET_SRC (pattern), 1);
1604 if (GET_CODE (increment) != CONST_INT)
1605 {
1606 /* SR sometimes puts the constant in a register, especially if it is
1607 too big to be an add immed operand. */
78494636 1608 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
cdbd2a92 1609
1610 /* SR may have used LO_SUM to compute the constant if it is too large
1611 for a load immed operand. In this case, the constant is in operand
1612 one of the LO_SUM rtx. */
1613 if (GET_CODE (increment) == LO_SUM)
1614 increment = XEXP (increment, 1);
9342f8f0 1615
1616 /* Some ports store large constants in memory and add a REG_EQUAL
1617 note to the store insn. */
1618 else if (GET_CODE (increment) == MEM)
9058b363 1619 {
1620 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1621 if (note)
1622 increment = XEXP (note, 0);
1623 }
9342f8f0 1624
d5ce3443 1625 else if (GET_CODE (increment) == IOR
c1c664b2 1626 || GET_CODE (increment) == ASHIFT
1627 || GET_CODE (increment) == PLUS)
bd18220b 1628 {
d5ce3443 1629 /* The rs6000 port loads some constants with IOR.
c1c664b2 1630 The alpha port loads some constants with ASHIFT and PLUS. */
bd18220b 1631 rtx second_part = XEXP (increment, 1);
d5ce3443 1632 enum rtx_code code = GET_CODE (increment);
bd18220b 1633
6c34d0c2 1634 increment = find_last_value (XEXP (increment, 0),
78494636 1635 &src_insn, NULL_RTX, 0);
bd18220b 1636 /* Don't need the last insn anymore. */
e4bf866d 1637 delete_related_insns (get_last_insn ());
bd18220b 1638
1639 if (GET_CODE (second_part) != CONST_INT
1640 || GET_CODE (increment) != CONST_INT)
1641 abort ();
1642
d5ce3443 1643 if (code == IOR)
1644 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
c1c664b2 1645 else if (code == PLUS)
1646 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
d5ce3443 1647 else
1648 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
bd18220b 1649 }
cdbd2a92 1650
1651 if (GET_CODE (increment) != CONST_INT)
1652 abort ();
9058b363 1653
bd18220b 1654 /* The insn loading the constant into a register is no longer needed,
cdbd2a92 1655 so delete it. */
e4bf866d 1656 delete_related_insns (get_last_insn ());
cdbd2a92 1657 }
1658
9fdb4293 1659 if (increment_total)
1660 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1661 else
1662 increment_total = increment;
1663
1664 /* Check that the source register is the same as the register we expected
1665 to see as the source. If not, something is seriously wrong. */
cdbd2a92 1666 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1667 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
9fdb4293 1668 {
1669 /* Some machines (e.g. the romp), may emit two add instructions for
1670 certain constants, so lets try looking for another add immediately
1671 before this one if we have only seen one add insn so far. */
1672
1673 if (tries == 0)
1674 {
1675 tries++;
1676
1677 src_insn = PREV_INSN (src_insn);
78494636 1678 pattern = single_set (src_insn);
9fdb4293 1679
e4bf866d 1680 delete_related_insns (get_last_insn ());
9fdb4293 1681
1682 goto retry;
1683 }
1684
1685 abort ();
1686 }
cdbd2a92 1687
9fdb4293 1688 return increment_total;
cdbd2a92 1689}
1690
375e70d1 1691/* Copy REG_NOTES, except for insn references, because not all insn_map
1692 entries are valid yet. We do need to copy registers now though, because
1693 the reg_map entries can change during copying. */
1694
1695static rtx
1696initial_reg_note_copy (notes, map)
1697 rtx notes;
1698 struct inline_remap *map;
1699{
1700 rtx copy;
1701
1702 if (notes == 0)
1703 return 0;
1704
1705 copy = rtx_alloc (GET_CODE (notes));
59e339e9 1706 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
375e70d1 1707
1708 if (GET_CODE (notes) == EXPR_LIST)
155b05dc 1709 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
375e70d1 1710 else if (GET_CODE (notes) == INSN_LIST)
1711 /* Don't substitute for these yet. */
e9107d97 1712 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
375e70d1 1713 else
1714 abort ();
1715
1716 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1717
1718 return copy;
1719}
1720
1721/* Fixup insn references in copied REG_NOTES. */
1722
1723static void
59e339e9 1724final_reg_note_copy (notesp, map)
1725 rtx *notesp;
375e70d1 1726 struct inline_remap *map;
1727{
59e339e9 1728 while (*notesp)
1729 {
1730 rtx note = *notesp;
6c34d0c2 1731
59e339e9 1732 if (GET_CODE (note) == INSN_LIST)
1733 {
1734 /* Sometimes, we have a REG_WAS_0 note that points to a
1735 deleted instruction. In that case, we can just delete the
1736 note. */
1737 if (REG_NOTE_KIND (note) == REG_WAS_0)
1738 {
1739 *notesp = XEXP (note, 1);
1740 continue;
1741 }
1742 else
1743 {
1744 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1745
d1d13567 1746 /* If we failed to remap the note, something is awry.
1747 Allow REG_LABEL as it may reference label outside
1748 the unrolled loop. */
59e339e9 1749 if (!insn)
d1d13567 1750 {
1751 if (REG_NOTE_KIND (note) != REG_LABEL)
1752 abort ();
1753 }
1754 else
1755 XEXP (note, 0) = insn;
59e339e9 1756 }
1757 }
375e70d1 1758
59e339e9 1759 notesp = &XEXP (note, 1);
1760 }
375e70d1 1761}
cdbd2a92 1762
1763/* Copy each instruction in the loop, substituting from map as appropriate.
1764 This is very similar to a loop in expand_inline_function. */
9058b363 1765
cdbd2a92 1766static void
8ec5f078 1767copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
cdbd2a92 1768 unroll_type, start_label, loop_end, insert_before,
1769 copy_notes_from)
8ec5f078 1770 struct loop *loop;
cdbd2a92 1771 rtx copy_start, copy_end;
1772 struct inline_remap *map;
dc24bb51 1773 rtx exit_label;
cdbd2a92 1774 int last_iteration;
1775 enum unroll_types unroll_type;
1776 rtx start_label, loop_end, insert_before, copy_notes_from;
1777{
8ec5f078 1778 struct loop_ivs *ivs = LOOP_IVS (loop);
cdbd2a92 1779 rtx insn, pattern;
ef2c4a29 1780 rtx set, tem, copy = NULL_RTX;
cdbd2a92 1781 int dest_reg_was_split, i;
7d27e4c9 1782#ifdef HAVE_cc0
cdbd2a92 1783 rtx cc0_insn = 0;
7d27e4c9 1784#endif
cdbd2a92 1785 rtx final_label = 0;
1786 rtx giv_inc, giv_dest_reg, giv_src_reg;
1787
1788 /* If this isn't the last iteration, then map any references to the
1789 start_label to final_label. Final label will then be emitted immediately
1790 after the end of this loop body if it was ever used.
1791
1792 If this is the last iteration, then map references to the start_label
1793 to itself. */
1794 if (! last_iteration)
1795 {
1796 final_label = gen_label_rtx ();
6da6f625 1797 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
cdbd2a92 1798 }
1799 else
c3dfa4e8 1800 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
cdbd2a92 1801
1802 start_sequence ();
9058b363 1803
cdbd2a92 1804 insn = copy_start;
1805 do
1806 {
1807 insn = NEXT_INSN (insn);
9058b363 1808
cdbd2a92 1809 map->orig_asm_operands_vector = 0;
9058b363 1810
cdbd2a92 1811 switch (GET_CODE (insn))
1812 {
1813 case INSN:
1814 pattern = PATTERN (insn);
1815 copy = 0;
1816 giv_inc = 0;
9058b363 1817
cdbd2a92 1818 /* Check to see if this is a giv that has been combined with
9058b363 1819 some split address givs. (Combined in the sense that
cdbd2a92 1820 `combine_givs' in loop.c has put two givs in the same register.)
1821 In this case, we must search all givs based on the same biv to
1822 find the address givs. Then split the address givs.
1823 Do this before splitting the giv, since that may map the
1824 SET_DEST to a new register. */
9058b363 1825
997d68fe 1826 if ((set = single_set (insn))
1827 && GET_CODE (SET_DEST (set)) == REG
1828 && addr_combined_regs[REGNO (SET_DEST (set))])
cdbd2a92 1829 {
1830 struct iv_class *bl;
1831 struct induction *v, *tv;
02e7a332 1832 unsigned int regno = REGNO (SET_DEST (set));
9058b363 1833
997d68fe 1834 v = addr_combined_regs[REGNO (SET_DEST (set))];
b995c337 1835 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
9058b363 1836
cdbd2a92 1837 /* Although the giv_inc amount is not needed here, we must call
1838 calculate_giv_inc here since it might try to delete the
1839 last insn emitted. If we wait until later to call it,
1840 we might accidentally delete insns generated immediately
1841 below by emit_unrolled_add. */
1842
7912da71 1843 giv_inc = calculate_giv_inc (set, insn, regno);
cdbd2a92 1844
1845 /* Now find all address giv's that were combined with this
1846 giv 'v'. */
1847 for (tv = bl->giv; tv; tv = tv->next_iv)
1848 if (tv->giv_type == DEST_ADDR && tv->same == v)
1849 {
c5a80968 1850 int this_giv_inc;
1851
1852 /* If this DEST_ADDR giv was not split, then ignore it. */
1853 if (*tv->location != tv->dest_reg)
1854 continue;
9e562be2 1855
1856 /* Scale this_giv_inc if the multiplicative factors of
1857 the two givs are different. */
c5a80968 1858 this_giv_inc = INTVAL (giv_inc);
9e562be2 1859 if (tv->mult_val != v->mult_val)
1860 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1861 * INTVAL (tv->mult_val));
9058b363 1862
9e562be2 1863 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
cdbd2a92 1864 *tv->location = tv->dest_reg;
9058b363 1865
cdbd2a92 1866 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1867 {
1868 /* Must emit an insn to increment the split address
1869 giv. Add in the const_adjust field in case there
1870 was a constant eliminated from the address. */
1871 rtx value, dest_reg;
9058b363 1872
cdbd2a92 1873 /* tv->dest_reg will be either a bare register,
1874 or else a register plus a constant. */
1875 if (GET_CODE (tv->dest_reg) == REG)
1876 dest_reg = tv->dest_reg;
1877 else
1878 dest_reg = XEXP (tv->dest_reg, 0);
9058b363 1879
84f97156 1880 /* Check for shared address givs, and avoid
c3418f42 1881 incrementing the shared pseudo reg more than
84f97156 1882 once. */
ea0cb7ae 1883 if (! tv->same_insn && ! tv->shared)
84f97156 1884 {
1885 /* tv->dest_reg may actually be a (PLUS (REG)
1886 (CONST)) here, so we must call plus_constant
1887 to add the const_adjust amount before calling
1888 emit_unrolled_add below. */
1889 value = plus_constant (tv->dest_reg,
1890 tv->const_adjust);
1891
34f6bd81 1892 if (GET_CODE (value) == PLUS)
1893 {
1894 /* The constant could be too large for an add
1895 immediate, so can't directly emit an insn
1896 here. */
1897 emit_unrolled_add (dest_reg, XEXP (value, 0),
1898 XEXP (value, 1));
1899 }
84f97156 1900 }
9058b363 1901
cdbd2a92 1902 /* Reset the giv to be just the register again, in case
e45ce1bf 1903 it is used after the set we have just emitted.
1904 We must subtract the const_adjust factor added in
1905 above. */
1906 tv->dest_reg = plus_constant (dest_reg,
6da6f625 1907 -tv->const_adjust);
cdbd2a92 1908 *tv->location = tv->dest_reg;
1909 }
1910 }
1911 }
9058b363 1912
cdbd2a92 1913 /* If this is a setting of a splittable variable, then determine
1914 how to split the variable, create a new set based on this split,
1915 and set up the reg_map so that later uses of the variable will
1916 use the new split variable. */
9058b363 1917
cdbd2a92 1918 dest_reg_was_split = 0;
9058b363 1919
997d68fe 1920 if ((set = single_set (insn))
1921 && GET_CODE (SET_DEST (set)) == REG
1922 && splittable_regs[REGNO (SET_DEST (set))])
cdbd2a92 1923 {
02e7a332 1924 unsigned int regno = REGNO (SET_DEST (set));
1925 unsigned int src_regno;
9058b363 1926
cdbd2a92 1927 dest_reg_was_split = 1;
9058b363 1928
997d68fe 1929 giv_dest_reg = SET_DEST (set);
7912da71 1930 giv_src_reg = giv_dest_reg;
1931 /* Compute the increment value for the giv, if it wasn't
1932 already computed above. */
1933 if (giv_inc == 0)
1934 giv_inc = calculate_giv_inc (set, insn, regno);
1935
8bd88b68 1936 src_regno = REGNO (giv_src_reg);
cdbd2a92 1937
1938 if (unroll_type == UNROLL_COMPLETELY)
1939 {
1940 /* Completely unrolling the loop. Set the induction
1941 variable to a known constant value. */
9058b363 1942
cdbd2a92 1943 /* The value in splittable_regs may be an invariant
1944 value, so we must use plus_constant here. */
1945 splittable_regs[regno]
8bd88b68 1946 = plus_constant (splittable_regs[src_regno],
1947 INTVAL (giv_inc));
cdbd2a92 1948
1949 if (GET_CODE (splittable_regs[regno]) == PLUS)
1950 {
1951 giv_src_reg = XEXP (splittable_regs[regno], 0);
1952 giv_inc = XEXP (splittable_regs[regno], 1);
1953 }
1954 else
1955 {
1956 /* The splittable_regs value must be a REG or a
1957 CONST_INT, so put the entire value in the giv_src_reg
1958 variable. */
1959 giv_src_reg = splittable_regs[regno];
1960 giv_inc = const0_rtx;
1961 }
1962 }
1963 else
1964 {
1965 /* Partially unrolling loop. Create a new pseudo
1966 register for the iteration variable, and set it to
1967 be a constant plus the original register. Except
1968 on the last iteration, when the result has to
1969 go back into the original iteration var register. */
9058b363 1970
cdbd2a92 1971 /* Handle bivs which must be mapped to a new register
1972 when split. This happens for bivs which need their
1973 final value set before loop entry. The new register
1974 for the biv was stored in the biv's first struct
1975 induction entry by find_splittable_regs. */
1976
d1908618 1977 if (regno < ivs->n_regs
8ec5f078 1978 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
cdbd2a92 1979 {
b995c337 1980 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
cdbd2a92 1981 giv_dest_reg = giv_src_reg;
1982 }
9058b363 1983
cdbd2a92 1984#if 0
1985 /* If non-reduced/final-value givs were split, then
1986 this would have to remap those givs also. See
1987 find_splittable_regs. */
1988#endif
9058b363 1989
cdbd2a92 1990 splittable_regs[regno]
4ff73812 1991 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1992 giv_inc,
1993 splittable_regs[src_regno]);
cdbd2a92 1994 giv_inc = splittable_regs[regno];
9058b363 1995
cdbd2a92 1996 /* Now split the induction variable by changing the dest
1997 of this insn to a new register, and setting its
1998 reg_map entry to point to this new register.
1999
2000 If this is the last iteration, and this is the last insn
2001 that will update the iv, then reuse the original dest,
2002 to ensure that the iv will have the proper value when
2003 the loop exits or repeats.
2004
2005 Using splittable_regs_updates here like this is safe,
2006 because it can only be greater than one if all
2007 instructions modifying the iv are always executed in
2008 order. */
2009
2010 if (! last_iteration
2011 || (splittable_regs_updates[regno]-- != 1))
2012 {
2013 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
2014 giv_dest_reg = tem;
2015 map->reg_map[regno] = tem;
1a6c3add 2016 record_base_value (REGNO (tem),
2017 giv_inc == const0_rtx
2018 ? giv_src_reg
2019 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
2020 giv_src_reg, giv_inc),
2021 1);
cdbd2a92 2022 }
2023 else
2024 map->reg_map[regno] = giv_src_reg;
2025 }
2026
2027 /* The constant being added could be too large for an add
2028 immediate, so can't directly emit an insn here. */
2029 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
2030 copy = get_last_insn ();
2031 pattern = PATTERN (copy);
2032 }
2033 else
2034 {
155b05dc 2035 pattern = copy_rtx_and_substitute (pattern, map, 0);
cdbd2a92 2036 copy = emit_insn (pattern);
2037 }
375e70d1 2038 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
ab87d1bc 2039 INSN_SCOPE (copy) = INSN_SCOPE (insn);
9058b363 2040
6d470b77 2041 /* If there is a REG_EQUAL note present whose value
2042 is not loop invariant, then delete it, since it
2043 may cause problems with later optimization passes. */
2044 if ((tem = find_reg_note (copy, REG_EQUAL, NULL_RTX))
2045 && !loop_invariant_p (loop, XEXP (tem, 0)))
2046 remove_note (copy, tem);
2047
cdbd2a92 2048#ifdef HAVE_cc0
2049 /* If this insn is setting CC0, it may need to look at
2050 the insn that uses CC0 to see what type of insn it is.
2051 In that case, the call to recog via validate_change will
2052 fail. So don't substitute constants here. Instead,
2053 do it when we emit the following insn.
2054
2055 For example, see the pyr.md file. That machine has signed and
2056 unsigned compares. The compare patterns must check the
2057 following branch insn to see which what kind of compare to
2058 emit.
2059
2060 If the previous insn set CC0, substitute constants on it as
2061 well. */
5f96731e 2062 if (sets_cc0_p (PATTERN (copy)) != 0)
cdbd2a92 2063 cc0_insn = copy;
2064 else
2065 {
2066 if (cc0_insn)
2067 try_constants (cc0_insn, map);
2068 cc0_insn = 0;
2069 try_constants (copy, map);
2070 }
2071#else
2072 try_constants (copy, map);
2073#endif
2074
2075 /* Make split induction variable constants `permanent' since we
2076 know there are no backward branches across iteration variable
2077 settings which would invalidate this. */
36a561f2 2078 if (dest_reg_was_split)
cdbd2a92 2079 {
32397bcd 2080 int regno = REGNO (SET_DEST (set));
cdbd2a92 2081
df9f2bb6 2082 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
433c8fce 2083 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2084 == map->const_age))
2085 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
cdbd2a92 2086 }
2087 break;
9058b363 2088
cdbd2a92 2089 case JUMP_INSN:
155b05dc 2090 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
c5bbc9bd 2091 copy = emit_jump_insn (pattern);
375e70d1 2092 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
ab87d1bc 2093 INSN_SCOPE (copy) = INSN_SCOPE (insn);
c5bbc9bd 2094
111f982d 2095 if (JUMP_LABEL (insn))
cdbd2a92 2096 {
ba08b7e7 2097 JUMP_LABEL (copy) = get_label_from_map (map,
2098 CODE_LABEL_NUMBER
2099 (JUMP_LABEL (insn)));
cc89632f 2100 LABEL_NUSES (JUMP_LABEL (copy))++;
111f982d 2101 }
2102 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2103 && ! last_iteration)
2104 {
cc89632f 2105
cdbd2a92 2106 /* This is a branch to the beginning of the loop; this is the
2107 last insn being copied; and this is not the last iteration.
2108 In this case, we want to change the original fall through
2109 case to be a branch past the end of the loop, and the
2110 original jump label case to fall_through. */
f07354fb 2111
ba08b7e7 2112 if (!invert_jump (copy, exit_label, 0))
c8ff8daa 2113 {
2114 rtx jmp;
2115 rtx lab = gen_label_rtx ();
c3418f42 2116 /* Can't do it by reversing the jump (probably because we
2117 couldn't reverse the conditions), so emit a new
c8ff8daa 2118 jump_insn after COPY, and redirect the jump around
2119 that. */
2120 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
870d0994 2121 JUMP_LABEL (jmp) = exit_label;
0b97e93b 2122 LABEL_NUSES (exit_label)++;
c8ff8daa 2123 jmp = emit_barrier_after (jmp);
2124 emit_label_after (lab, jmp);
2125 LABEL_NUSES (lab) = 0;
ba08b7e7 2126 if (!redirect_jump (copy, lab, 0))
6da6f625 2127 abort ();
c8ff8daa 2128 }
cdbd2a92 2129 }
9058b363 2130
cdbd2a92 2131#ifdef HAVE_cc0
2132 if (cc0_insn)
2133 try_constants (cc0_insn, map);
2134 cc0_insn = 0;
2135#endif
2136 try_constants (copy, map);
2137
2138 /* Set the jump label of COPY correctly to avoid problems with
2139 later passes of unroll_loop, if INSN had jump label set. */
2140 if (JUMP_LABEL (insn))
2141 {
7c2cd568 2142 rtx label = 0;
2143
cdbd2a92 2144 /* Can't use the label_map for every insn, since this may be
2145 the backward branch, and hence the label was not mapped. */
997d68fe 2146 if ((set = single_set (copy)))
cdbd2a92 2147 {
997d68fe 2148 tem = SET_SRC (set);
cdbd2a92 2149 if (GET_CODE (tem) == LABEL_REF)
7c2cd568 2150 label = XEXP (tem, 0);
cdbd2a92 2151 else if (GET_CODE (tem) == IF_THEN_ELSE)
2152 {
2153 if (XEXP (tem, 1) != pc_rtx)
7c2cd568 2154 label = XEXP (XEXP (tem, 1), 0);
cdbd2a92 2155 else
7c2cd568 2156 label = XEXP (XEXP (tem, 2), 0);
cdbd2a92 2157 }
cdbd2a92 2158 }
7c2cd568 2159
2160 if (label && GET_CODE (label) == CODE_LABEL)
2161 JUMP_LABEL (copy) = label;
cdbd2a92 2162 else
2163 {
2164 /* An unrecognizable jump insn, probably the entry jump
2165 for a switch statement. This label must have been mapped,
2166 so just use the label_map to get the new jump label. */
8ef7054a 2167 JUMP_LABEL (copy)
9058b363 2168 = get_label_from_map (map,
2169 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
cdbd2a92 2170 }
9058b363 2171
cdbd2a92 2172 /* If this is a non-local jump, then must increase the label
2173 use count so that the label will not be deleted when the
2174 original jump is deleted. */
2175 LABEL_NUSES (JUMP_LABEL (copy))++;
2176 }
2177 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2178 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2179 {
2180 rtx pat = PATTERN (copy);
2181 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2182 int len = XVECLEN (pat, diff_vec_p);
2183 int i;
2184
2185 for (i = 0; i < len; i++)
2186 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2187 }
2188
2189 /* If this used to be a conditional jump insn but whose branch
2190 direction is now known, we must do something special. */
b2816317 2191 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
cdbd2a92 2192 {
2193#ifdef HAVE_cc0
1a29b174 2194 /* If the previous insn set cc0 for us, delete it. */
2dcd83ba 2195 if (only_sets_cc0_p (PREV_INSN (copy)))
e4bf866d 2196 delete_related_insns (PREV_INSN (copy));
cdbd2a92 2197#endif
2198
2199 /* If this is now a no-op, delete it. */
2200 if (map->last_pc_value == pc_rtx)
2201 {
b36d64df 2202 delete_insn (copy);
cdbd2a92 2203 copy = 0;
2204 }
2205 else
2206 /* Otherwise, this is unconditional jump so we must put a
2207 BARRIER after it. We could do some dead code elimination
2208 here, but jump.c will do it just as well. */
2209 emit_barrier ();
2210 }
2211 break;
9058b363 2212
cdbd2a92 2213 case CALL_INSN:
155b05dc 2214 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
cdbd2a92 2215 copy = emit_call_insn (pattern);
375e70d1 2216 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
ab87d1bc 2217 INSN_SCOPE (copy) = INSN_SCOPE (insn);
f456a8bd 2218 SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
2936db7d 2219 CONST_OR_PURE_CALL_P (copy) = CONST_OR_PURE_CALL_P (insn);
cdbd2a92 2220
819e2036 2221 /* Because the USAGE information potentially contains objects other
2222 than hard registers, we need to copy it. */
0bc644e0 2223 CALL_INSN_FUNCTION_USAGE (copy)
155b05dc 2224 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2225 map, 0);
819e2036 2226
cdbd2a92 2227#ifdef HAVE_cc0
2228 if (cc0_insn)
2229 try_constants (cc0_insn, map);
2230 cc0_insn = 0;
2231#endif
2232 try_constants (copy, map);
2233
2234 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2235 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
433c8fce 2236 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
cdbd2a92 2237 break;
9058b363 2238
cdbd2a92 2239 case CODE_LABEL:
2240 /* If this is the loop start label, then we don't need to emit a
2241 copy of this label since no one will use it. */
2242
2243 if (insn != start_label)
2244 {
c3dfa4e8 2245 copy = emit_label (get_label_from_map (map,
2246 CODE_LABEL_NUMBER (insn)));
cdbd2a92 2247 map->const_age++;
2248 }
2249 break;
9058b363 2250
cdbd2a92 2251 case BARRIER:
2252 copy = emit_barrier ();
2253 break;
9058b363 2254
cdbd2a92 2255 case NOTE:
5d28e08b 2256 /* VTOP and CONT notes are valid only before the loop exit test.
2257 If placed anywhere else, loop may generate bad code. */
71caadc0 2258 /* BASIC_BLOCK notes exist to stabilize basic block structures with
6da6f625 2259 the associated rtl. We do not want to share the structure in
71caadc0 2260 this new block. */
9058b363 2261
6e79311f 2262 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
74b0991d 2263 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
71caadc0 2264 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
5d28e08b 2265 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2266 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
6e79311f 2267 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
cdbd2a92 2268 copy = emit_note (NOTE_SOURCE_FILE (insn),
2269 NOTE_LINE_NUMBER (insn));
2270 else
2271 copy = 0;
2272 break;
9058b363 2273
cdbd2a92 2274 default:
2275 abort ();
cdbd2a92 2276 }
9058b363 2277
cdbd2a92 2278 map->insn_map[INSN_UID (insn)] = copy;
2279 }
2280 while (insn != copy_end);
9058b363 2281
375e70d1 2282 /* Now finish coping the REG_NOTES. */
76ab4c9e 2283 insn = copy_start;
2284 do
2285 {
2286 insn = NEXT_INSN (insn);
2287 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2288 || GET_CODE (insn) == CALL_INSN)
2289 && map->insn_map[INSN_UID (insn)])
59e339e9 2290 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
76ab4c9e 2291 }
2292 while (insn != copy_end);
2293
cdbd2a92 2294 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2295 each of these notes here, since there may be some important ones, such as
2296 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2297 iteration, because the original notes won't be deleted.
2298
2299 We can't use insert_before here, because when from preconditioning,
2300 insert_before points before the loop. We can't use copy_end, because
2301 there may be insns already inserted after it (which we don't want to
2302 copy) when not from preconditioning code. */
2303
2304 if (! last_iteration)
2305 {
2306 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2307 {
dffae35b 2308 /* VTOP notes are valid only before the loop exit test.
2309 If placed anywhere else, loop may generate bad code.
349e0af1 2310 Although COPY_NOTES_FROM will be at most one or two (for cc0)
2311 instructions before the last insn in the loop, COPY_NOTES_FROM
2312 can be a NOTE_INSN_LOOP_CONT note if there is no VTOP note,
2313 as in a do .. while loop. */
cdbd2a92 2314 if (GET_CODE (insn) == NOTE
71caadc0 2315 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
dffae35b 2316 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
349e0af1 2317 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2318 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
cdbd2a92 2319 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2320 }
2321 }
2322
2323 if (final_label && LABEL_NUSES (final_label) > 0)
2324 emit_label (final_label);
2325
31d3e01c 2326 tem = get_insns ();
cdbd2a92 2327 end_sequence ();
0ab94f0c 2328 loop_insn_emit_before (loop, 0, insert_before, tem);
cdbd2a92 2329}
2330\f
2331/* Emit an insn, using the expand_binop to ensure that a valid insn is
2332 emitted. This will correctly handle the case where the increment value
2333 won't fit in the immediate field of a PLUS insns. */
2334
2335void
2336emit_unrolled_add (dest_reg, src_reg, increment)
2337 rtx dest_reg, src_reg, increment;
2338{
2339 rtx result;
2340
ad99e708 2341 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2342 dest_reg, 0, OPTAB_LIB_WIDEN);
cdbd2a92 2343
2344 if (dest_reg != result)
2345 emit_move_insn (dest_reg, result);
2346}
2347\f
15fc3eb7 2348/* Searches the insns between INSN and LOOP->END. Returns 1 if there
cdbd2a92 2349 is a backward branch in that range that branches to somewhere between
15fc3eb7 2350 LOOP->START and INSN. Returns 0 otherwise. */
cdbd2a92 2351
4bbea254 2352/* ??? This is quadratic algorithm. Could be rewritten to be linear.
cdbd2a92 2353 In practice, this is not a problem, because this function is seldom called,
2354 and uses a negligible amount of CPU time on average. */
2355
06f19437 2356int
15fc3eb7 2357back_branch_in_range_p (loop, insn)
2358 const struct loop *loop;
cdbd2a92 2359 rtx insn;
cdbd2a92 2360{
2361 rtx p, q, target_insn;
15fc3eb7 2362 rtx loop_start = loop->start;
2363 rtx loop_end = loop->end;
2364 rtx orig_loop_end = loop->end;
cdbd2a92 2365
2366 /* Stop before we get to the backward branch at the end of the loop. */
2367 loop_end = prev_nonnote_insn (loop_end);
2368 if (GET_CODE (loop_end) == BARRIER)
2369 loop_end = PREV_INSN (loop_end);
2370
2371 /* Check in case insn has been deleted, search forward for first non
2372 deleted insn following it. */
2373 while (INSN_DELETED_P (insn))
2374 insn = NEXT_INSN (insn);
2375
ad87de1e 2376 /* Check for the case where insn is the last insn in the loop. Deal
2377 with the case where INSN was a deleted loop test insn, in which case
2378 it will now be the NOTE_LOOP_END. */
2379 if (insn == loop_end || insn == orig_loop_end)
cdbd2a92 2380 return 0;
2381
2382 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2383 {
2384 if (GET_CODE (p) == JUMP_INSN)
2385 {
2386 target_insn = JUMP_LABEL (p);
9058b363 2387
cdbd2a92 2388 /* Search from loop_start to insn, to see if one of them is
2389 the target_insn. We can't use INSN_LUID comparisons here,
2390 since insn may not have an LUID entry. */
2391 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2392 if (q == target_insn)
2393 return 1;
2394 }
2395 }
2396
2397 return 0;
2398}
2399
2400/* Try to generate the simplest rtx for the expression
2401 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2402 value of giv's. */
2403
2404static rtx
2405fold_rtx_mult_add (mult1, mult2, add1, mode)
2406 rtx mult1, mult2, add1;
2407 enum machine_mode mode;
2408{
2409 rtx temp, mult_res;
2410 rtx result;
2411
2412 /* The modes must all be the same. This should always be true. For now,
2413 check to make sure. */
2414 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2415 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2416 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2417 abort ();
2418
2419 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2420 will be a constant. */
2421 if (GET_CODE (mult1) == CONST_INT)
2422 {
2423 temp = mult2;
2424 mult2 = mult1;
2425 mult1 = temp;
2426 }
2427
2428 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2429 if (! mult_res)
941522d6 2430 mult_res = gen_rtx_MULT (mode, mult1, mult2);
cdbd2a92 2431
2432 /* Again, put the constant second. */
2433 if (GET_CODE (add1) == CONST_INT)
2434 {
2435 temp = add1;
2436 add1 = mult_res;
2437 mult_res = temp;
2438 }
2439
2440 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2441 if (! result)
941522d6 2442 result = gen_rtx_PLUS (mode, add1, mult_res);
cdbd2a92 2443
2444 return result;
2445}
2446
2447/* Searches the list of induction struct's for the biv BL, to try to calculate
2448 the total increment value for one iteration of the loop as a constant.
2449
2450 Returns the increment value as an rtx, simplified as much as possible,
2451 if it can be calculated. Otherwise, returns 0. */
2452
9058b363 2453rtx
15fc3eb7 2454biv_total_increment (bl)
3b853ab8 2455 const struct iv_class *bl;
cdbd2a92 2456{
2457 struct induction *v;
2458 rtx result;
2459
2460 /* For increment, must check every instruction that sets it. Each
2461 instruction must be executed only once each time through the loop.
3398e91d 2462 To verify this, we check that the insn is always executed, and that
cdbd2a92 2463 there are no backward branches after the insn that branch to before it.
2464 Also, the insn must have a mult_val of one (to make sure it really is
2465 an increment). */
2466
2467 result = const0_rtx;
2468 for (v = bl->biv; v; v = v->next_iv)
2469 {
2470 if (v->always_computable && v->mult_val == const1_rtx
0da71ef8 2471 && ! v->maybe_multiple
2472 && SCALAR_INT_MODE_P (v->mode))
cdbd2a92 2473 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2474 else
2475 return 0;
2476 }
2477
2478 return result;
2479}
2480
cdbd2a92 2481/* For each biv and giv, determine whether it can be safely split into
2482 a different variable for each unrolled copy of the loop body. If it
2483 is safe to split, then indicate that by saving some useful info
2484 in the splittable_regs array.
2485
2486 If the loop is being completely unrolled, then splittable_regs will hold
2487 the current value of the induction variable while the loop is unrolled.
2488 It must be set to the initial value of the induction variable here.
2489 Otherwise, splittable_regs will hold the difference between the current
2490 value of the induction variable and the value the induction variable had
a433411e 2491 at the top of the loop. It must be set to the value 0 here.
2492
2493 Returns the total number of instructions that set registers that are
2494 splittable. */
cdbd2a92 2495
2496/* ?? If the loop is only unrolled twice, then most of the restrictions to
2497 constant values are unnecessary, since we can easily calculate increment
2498 values in this case even if nothing is constant. The increment value
2499 should not involve a multiply however. */
2500
2501/* ?? Even if the biv/giv increment values aren't constant, it may still
2502 be beneficial to split the variable if the loop is only unrolled a few
2503 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2504
2505static int
89e8d34f 2506find_splittable_regs (loop, unroll_type, unroll_number)
15fc3eb7 2507 const struct loop *loop;
cdbd2a92 2508 enum unroll_types unroll_type;
cdbd2a92 2509 int unroll_number;
2510{
8ec5f078 2511 struct loop_ivs *ivs = LOOP_IVS (loop);
cdbd2a92 2512 struct iv_class *bl;
625294a0 2513 struct induction *v;
cdbd2a92 2514 rtx increment, tem;
2515 rtx biv_final_value;
2516 int biv_splittable;
2517 int result = 0;
2518
6f812a51 2519 for (bl = ivs->list; bl; bl = bl->next)
cdbd2a92 2520 {
2521 /* Biv_total_increment must return a constant value,
2522 otherwise we can not calculate the split values. */
2523
15fc3eb7 2524 increment = biv_total_increment (bl);
cdbd2a92 2525 if (! increment || GET_CODE (increment) != CONST_INT)
2526 continue;
2527
2528 /* The loop must be unrolled completely, or else have a known number
2529 of iterations and only one exit, or else the biv must be dead
2530 outside the loop, or else the final value must be known. Otherwise,
2531 it is unsafe to split the biv since it may not have the proper
2532 value on loop exit. */
2533
f712a0dc 2534 /* loop_number_exit_count is nonzero if the loop has an exit other than
cdbd2a92 2535 a fall through at the end. */
2536
2537 biv_splittable = 1;
2538 biv_final_value = 0;
2539 if (unroll_type != UNROLL_COMPLETELY
15fc3eb7 2540 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
89e8d34f 2541 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
cdbd2a92 2542 || ! bl->init_insn
2543 || INSN_UID (bl->init_insn) >= max_uid_for_loop
23e52523 2544 || (REGNO_FIRST_LUID (bl->regno)
cdbd2a92 2545 < INSN_LUID (bl->init_insn))
2546 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
15fc3eb7 2547 && ! (biv_final_value = final_biv_value (loop, bl)))
cdbd2a92 2548 biv_splittable = 0;
2549
625294a0 2550 /* If any of the insns setting the BIV don't do so with a simple
2551 PLUS, we don't know how to split it. */
2552 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2553 if ((tem = single_set (v->insn)) == 0
2554 || GET_CODE (SET_DEST (tem)) != REG
2555 || REGNO (SET_DEST (tem)) != bl->regno
2556 || GET_CODE (SET_SRC (tem)) != PLUS)
2557 biv_splittable = 0;
2558
f712a0dc 2559 /* If final value is nonzero, then must emit an instruction which sets
cdbd2a92 2560 the value of the biv to the proper value. This is done after
2561 handling all of the givs, since some of them may need to use the
2562 biv's value in their initialization code. */
2563
2564 /* This biv is splittable. If completely unrolling the loop, save
2565 the biv's initial value. Otherwise, save the constant zero. */
2566
2567 if (biv_splittable == 1)
2568 {
2569 if (unroll_type == UNROLL_COMPLETELY)
2570 {
2571 /* If the initial value of the biv is itself (i.e. it is too
2572 complicated for strength_reduce to compute), or is a hard
8909da5f 2573 register, or it isn't invariant, then we must create a new
2574 pseudo reg to hold the initial value of the biv. */
cdbd2a92 2575
2576 if (GET_CODE (bl->initial_value) == REG
2577 && (REGNO (bl->initial_value) == bl->regno
8909da5f 2578 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
15fc3eb7 2579 || ! loop_invariant_p (loop, bl->initial_value)))
cdbd2a92 2580 {
2581 rtx tem = gen_reg_rtx (bl->biv->mode);
ea0cb7ae 2582
1a6c3add 2583 record_base_value (REGNO (tem), bl->biv->add_val, 0);
6c34d0c2 2584 loop_insn_hoist (loop,
89e8d34f 2585 gen_move_insn (tem, bl->biv->src_reg));
cdbd2a92 2586
2587 if (loop_dump_stream)
6da6f625 2588 fprintf (loop_dump_stream,
2589 "Biv %d initial value remapped to %d.\n",
cdbd2a92 2590 bl->regno, REGNO (tem));
2591
2592 splittable_regs[bl->regno] = tem;
2593 }
2594 else
2595 splittable_regs[bl->regno] = bl->initial_value;
2596 }
2597 else
2598 splittable_regs[bl->regno] = const0_rtx;
2599
2600 /* Save the number of instructions that modify the biv, so that
2601 we can treat the last one specially. */
2602
2603 splittable_regs_updates[bl->regno] = bl->biv_count;
a433411e 2604 result += bl->biv_count;
cdbd2a92 2605
2606 if (loop_dump_stream)
2607 fprintf (loop_dump_stream,
2608 "Biv %d safe to split.\n", bl->regno);
2609 }
2610
2611 /* Check every giv that depends on this biv to see whether it is
2612 splittable also. Even if the biv isn't splittable, givs which
2613 depend on it may be splittable if the biv is live outside the
2614 loop, and the givs aren't. */
2615
6da6f625 2616 result += find_splittable_givs (loop, bl, unroll_type, increment,
15fc3eb7 2617 unroll_number);
cdbd2a92 2618
f712a0dc 2619 /* If final value is nonzero, then must emit an instruction which sets
cdbd2a92 2620 the value of the biv to the proper value. This is done after
2621 handling all of the givs, since some of them may need to use the
2622 biv's value in their initialization code. */
2623 if (biv_final_value)
2624 {
2625 /* If the loop has multiple exits, emit the insns before the
2626 loop to ensure that it will always be executed no matter
2627 how the loop exits. Otherwise emit the insn after the loop,
2628 since this is slightly more efficient. */
15fc3eb7 2629 if (! loop->exit_count)
89e8d34f 2630 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2631 biv_final_value));
cdbd2a92 2632 else
2633 {
2634 /* Create a new register to hold the value of the biv, and then
2635 set the biv to its final value before the loop start. The biv
2636 is set to its final value before loop start to ensure that
2637 this insn will always be executed, no matter how the loop
2638 exits. */
2639 rtx tem = gen_reg_rtx (bl->biv->mode);
1a6c3add 2640 record_base_value (REGNO (tem), bl->biv->add_val, 0);
ea0cb7ae 2641
89e8d34f 2642 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2643 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2644 biv_final_value));
cdbd2a92 2645
2646 if (loop_dump_stream)
2647 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2648 REGNO (bl->biv->src_reg), REGNO (tem));
2649
2650 /* Set up the mapping from the original biv register to the new
2651 register. */
2652 bl->biv->src_reg = tem;
2653 }
2654 }
2655 }
2656 return result;
2657}
2658
2659/* For every giv based on the biv BL, check to determine whether it is
a433411e 2660 splittable. This is a subroutine to find_splittable_regs ().
2661
2662 Return the number of instructions that set splittable registers. */
cdbd2a92 2663
2664static int
15fc3eb7 2665find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2666 const struct loop *loop;
cdbd2a92 2667 struct iv_class *bl;
2668 enum unroll_types unroll_type;
cdbd2a92 2669 rtx increment;
d6484866 2670 int unroll_number ATTRIBUTE_UNUSED;
cdbd2a92 2671{
8ec5f078 2672 struct loop_ivs *ivs = LOOP_IVS (loop);
b5b239db 2673 struct induction *v, *v2;
cdbd2a92 2674 rtx final_value;
2675 rtx tem;
a433411e 2676 int result = 0;
cdbd2a92 2677
b5b239db 2678 /* Scan the list of givs, and set the same_insn field when there are
2679 multiple identical givs in the same insn. */
2680 for (v = bl->giv; v; v = v->next_iv)
2681 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2682 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2683 && ! v2->same_insn)
2684 v2->same_insn = v;
2685
cdbd2a92 2686 for (v = bl->giv; v; v = v->next_iv)
2687 {
2688 rtx giv_inc, value;
2689
2690 /* Only split the giv if it has already been reduced, or if the loop is
2691 being completely unrolled. */
2692 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2693 continue;
2694
2695 /* The giv can be split if the insn that sets the giv is executed once
2696 and only once on every iteration of the loop. */
2697 /* An address giv can always be split. v->insn is just a use not a set,
2698 and hence it does not matter whether it is always executed. All that
2699 matters is that all the biv increments are always executed, and we
2700 won't reach here if they aren't. */
2701 if (v->giv_type != DEST_ADDR
2702 && (! v->always_computable
15fc3eb7 2703 || back_branch_in_range_p (loop, v->insn)))
cdbd2a92 2704 continue;
9058b363 2705
cdbd2a92 2706 /* The giv increment value must be a constant. */
2707 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2708 v->mode);
2709 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2710 continue;
2711
2712 /* The loop must be unrolled completely, or else have a known number of
2713 iterations and only one exit, or else the giv must be dead outside
2714 the loop, or else the final value of the giv must be known.
2715 Otherwise, it is not safe to split the giv since it may not have the
2716 proper value on loop exit. */
9058b363 2717
cdbd2a92 2718 /* The used outside loop test will fail for DEST_ADDR givs. They are
2719 never used outside the loop anyways, so it is always safe to split a
2720 DEST_ADDR giv. */
2721
2722 final_value = 0;
2723 if (unroll_type != UNROLL_COMPLETELY
15fc3eb7 2724 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
cdbd2a92 2725 && v->giv_type != DEST_ADDR
91f09a1b 2726 /* The next part is true if the pseudo is used outside the loop.
2727 We assume that this is true for any pseudo created after loop
2728 starts, because we don't have a reg_n_info entry for them. */
2729 && (REGNO (v->dest_reg) >= max_reg_before_loop
2730 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2731 /* Check for the case where the pseudo is set by a shift/add
2732 sequence, in which case the first insn setting the pseudo
2733 is the first insn of the shift/add sequence. */
2734 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2735 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2736 != INSN_UID (XEXP (tem, 0)))))
cdbd2a92 2737 /* Line above always fails if INSN was moved by loop opt. */
23e52523 2738 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
15fc3eb7 2739 >= INSN_LUID (loop->end)))
cdbd2a92 2740 && ! (final_value = v->final_value))
2741 continue;
2742
2743#if 0
2744 /* Currently, non-reduced/final-value givs are never split. */
2745 /* Should emit insns after the loop if possible, as the biv final value
2746 code below does. */
2747
f712a0dc 2748 /* If the final value is nonzero, and the giv has not been reduced,
cdbd2a92 2749 then must emit an instruction to set the final value. */
2750 if (final_value && !v->new_reg)
2751 {
2752 /* Create a new register to hold the value of the giv, and then set
2753 the giv to its final value before the loop start. The giv is set
2754 to its final value before loop start to ensure that this insn
2755 will always be executed, no matter how we exit. */
2756 tem = gen_reg_rtx (v->mode);
89e8d34f 2757 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2758 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
9058b363 2759
cdbd2a92 2760 if (loop_dump_stream)
2761 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2762 REGNO (v->dest_reg), REGNO (tem));
9058b363 2763
cdbd2a92 2764 v->src_reg = tem;
2765 }
2766#endif
2767
2768 /* This giv is splittable. If completely unrolling the loop, save the
2769 giv's initial value. Otherwise, save the constant zero for it. */
2770
2771 if (unroll_type == UNROLL_COMPLETELY)
625294a0 2772 {
2773 /* It is not safe to use bl->initial_value here, because it may not
2774 be invariant. It is safe to use the initial value stored in
2775 the splittable_regs array if it is set. In rare cases, it won't
2776 be set, so then we do exactly the same thing as
2777 find_splittable_regs does to get a safe value. */
2778 rtx biv_initial_value;
2779
2780 if (splittable_regs[bl->regno])
2781 biv_initial_value = splittable_regs[bl->regno];
2782 else if (GET_CODE (bl->initial_value) != REG
2783 || (REGNO (bl->initial_value) != bl->regno
2784 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2785 biv_initial_value = bl->initial_value;
2786 else
2787 {
2788 rtx tem = gen_reg_rtx (bl->biv->mode);
2789
1a6c3add 2790 record_base_value (REGNO (tem), bl->biv->add_val, 0);
89e8d34f 2791 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
625294a0 2792 biv_initial_value = tem;
2793 }
ff57e249 2794 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
625294a0 2795 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2796 v->add_val, v->mode);
2797 }
cdbd2a92 2798 else
2799 value = const0_rtx;
2800
2801 if (v->new_reg)
2802 {
0f0b4dbc 2803 /* If a giv was combined with another giv, then we can only split
2804 this giv if the giv it was combined with was reduced. This
2805 is because the value of v->new_reg is meaningless in this
2806 case. */
2807 if (v->same && ! v->same->new_reg)
cdbd2a92 2808 {
2809 if (loop_dump_stream)
2810 fprintf (loop_dump_stream,
0f0b4dbc 2811 "giv combined with unreduced giv not split.\n");
2812 continue;
cdbd2a92 2813 }
0f0b4dbc 2814 /* If the giv is an address destination, it could be something other
2815 than a simple register, these have to be treated differently. */
2816 else if (v->giv_type == DEST_REG)
03cdbc29 2817 {
2818 /* If value is not a constant, register, or register plus
2819 constant, then compute its value into a register before
67c92c26 2820 loop start. This prevents invalid rtx sharing, and should
03cdbc29 2821 generate better code. We can use bl->initial_value here
2822 instead of splittable_regs[bl->regno] because this code
2823 is going before the loop start. */
2824 if (unroll_type == UNROLL_COMPLETELY
2825 && GET_CODE (value) != CONST_INT
2826 && GET_CODE (value) != REG
2827 && (GET_CODE (value) != PLUS
2828 || GET_CODE (XEXP (value, 0)) != REG
2829 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2830 {
2831 rtx tem = gen_reg_rtx (v->mode);
1a6c3add 2832 record_base_value (REGNO (tem), v->add_val, 0);
89e8d34f 2833 loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
2834 v->add_val, tem);
03cdbc29 2835 value = tem;
2836 }
9058b363 2837
b627bae7 2838 splittable_regs[reg_or_subregno (v->new_reg)] = value;
03cdbc29 2839 }
cdbd2a92 2840 else
d6484866 2841 continue;
cdbd2a92 2842 }
2843 else
2844 {
2845#if 0
2846 /* Currently, unreduced giv's can't be split. This is not too much
2847 of a problem since unreduced giv's are not live across loop
2848 iterations anyways. When unrolling a loop completely though,
2849 it makes sense to reduce&split givs when possible, as this will
2850 result in simpler instructions, and will not require that a reg
2851 be live across loop iterations. */
9058b363 2852
cdbd2a92 2853 splittable_regs[REGNO (v->dest_reg)] = value;
2854 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2855 REGNO (v->dest_reg), INSN_UID (v->insn));
2856#else
2857 continue;
2858#endif
2859 }
9058b363 2860
6232e173 2861 /* Unreduced givs are only updated once by definition. Reduced givs
2862 are updated as many times as their biv is. Mark it so if this is
cdbd2a92 2863 a splittable register. Don't need to do anything for address givs
2864 where this may not be a register. */
2865
2866 if (GET_CODE (v->new_reg) == REG)
6232e173 2867 {
2868 int count = 1;
2869 if (! v->ignore)
b995c337 2870 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
6232e173 2871
b627bae7 2872 splittable_regs_updates[reg_or_subregno (v->new_reg)] = count;
6232e173 2873 }
cdbd2a92 2874
2875 result++;
9058b363 2876
cdbd2a92 2877 if (loop_dump_stream)
2878 {
2879 int regnum;
9058b363 2880
cdbd2a92 2881 if (GET_CODE (v->dest_reg) == CONST_INT)
2882 regnum = -1;
2883 else if (GET_CODE (v->dest_reg) != REG)
2884 regnum = REGNO (XEXP (v->dest_reg, 0));
2885 else
2886 regnum = REGNO (v->dest_reg);
2887 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2888 regnum, INSN_UID (v->insn));
2889 }
2890 }
2891
2892 return result;
2893}
2894\f
2895/* Try to prove that the register is dead after the loop exits. Trace every
2896 loop exit looking for an insn that will always be executed, which sets
2897 the register to some value, and appears before the first use of the register
2898 is found. If successful, then return 1, otherwise return 0. */
2899
2900/* ?? Could be made more intelligent in the handling of jumps, so that
2901 it can search past if statements and other similar structures. */
2902
2903static int
15fc3eb7 2904reg_dead_after_loop (loop, reg)
2905 const struct loop *loop;
2906 rtx reg;
cdbd2a92 2907{
2908 rtx insn, label;
2909 enum rtx_code code;
e45ce1bf 2910 int jump_count = 0;
cdb56c74 2911 int label_count = 0;
cdb56c74 2912
2913 /* In addition to checking all exits of this loop, we must also check
2914 all exits of inner nested loops that would exit this loop. We don't
2915 have any way to identify those, so we just give up if there are any
2916 such inner loop exits. */
9058b363 2917
ec7d7ef9 2918 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
cdb56c74 2919 label_count++;
2920
ec7d7ef9 2921 if (label_count != loop->exit_count)
cdb56c74 2922 return 0;
cdbd2a92 2923
2924 /* HACK: Must also search the loop fall through exit, create a label_ref
15fc3eb7 2925 here which points to the loop->end, and append the loop_number_exit_labels
cdbd2a92 2926 list to it. */
15fc3eb7 2927 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
ec7d7ef9 2928 LABEL_NEXTREF (label) = loop->exit_labels;
cdbd2a92 2929
6da6f625 2930 for (; label; label = LABEL_NEXTREF (label))
cdbd2a92 2931 {
2932 /* Succeed if find an insn which sets the biv or if reach end of
2933 function. Fail if find an insn that uses the biv, or if come to
2934 a conditional jump. */
2935
2936 insn = NEXT_INSN (XEXP (label, 0));
e45ce1bf 2937 while (insn)
cdbd2a92 2938 {
e45ce1bf 2939 code = GET_CODE (insn);
2940 if (GET_RTX_CLASS (code) == 'i')
cdbd2a92 2941 {
e45ce1bf 2942 rtx set;
2943
2944 if (reg_referenced_p (reg, PATTERN (insn)))
cdbd2a92 2945 return 0;
e45ce1bf 2946
2947 set = single_set (insn);
2948 if (set && rtx_equal_p (SET_DEST (set), reg))
2949 break;
cdbd2a92 2950 }
e45ce1bf 2951
cdbd2a92 2952 if (code == JUMP_INSN)
2953 {
2954 if (GET_CODE (PATTERN (insn)) == RETURN)
2955 break;
b2816317 2956 else if (!any_uncondjump_p (insn)
a92771b8 2957 /* Prevent infinite loop following infinite loops. */
e45ce1bf 2958 || jump_count++ > 20)
cdbd2a92 2959 return 0;
2960 else
e45ce1bf 2961 insn = JUMP_LABEL (insn);
cdbd2a92 2962 }
e45ce1bf 2963
cdbd2a92 2964 insn = NEXT_INSN (insn);
2965 }
2966 }
2967
2968 /* Success, the register is dead on all loop exits. */
2969 return 1;
2970}
2971
2972/* Try to calculate the final value of the biv, the value it will have at
2973 the end of the loop. If we can do it, return that value. */
9058b363 2974
cdbd2a92 2975rtx
15fc3eb7 2976final_biv_value (loop, bl)
2977 const struct loop *loop;
cdbd2a92 2978 struct iv_class *bl;
cdbd2a92 2979{
15fc3eb7 2980 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
cdbd2a92 2981 rtx increment, tem;
2982
bdf74c8a 2983 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2984
2985 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2986 return 0;
2987
cdbd2a92 2988 /* The final value for reversed bivs must be calculated differently than
6da6f625 2989 for ordinary bivs. In this case, there is already an insn after the
cdbd2a92 2990 loop which sets this biv's final value (if necessary), and there are
2991 no other loop exits, so we can return any value. */
2992 if (bl->reversed)
2993 {
2994 if (loop_dump_stream)
2995 fprintf (loop_dump_stream,
2996 "Final biv value for %d, reversed biv.\n", bl->regno);
9058b363 2997
cdbd2a92 2998 return const0_rtx;
2999 }
3000
3001 /* Try to calculate the final value as initial value + (number of iterations
3002 * increment). For this to work, increment must be invariant, the only
3003 exit from the loop must be the fall through at the bottom (otherwise
3004 it may not have its final value when the loop exits), and the initial
3005 value of the biv must be invariant. */
3006
ec5d911a 3007 if (n_iterations != 0
15fc3eb7 3008 && ! loop->exit_count
3009 && loop_invariant_p (loop, bl->initial_value))
cdbd2a92 3010 {
15fc3eb7 3011 increment = biv_total_increment (bl);
9058b363 3012
15fc3eb7 3013 if (increment && loop_invariant_p (loop, increment))
cdbd2a92 3014 {
3015 /* Can calculate the loop exit value, emit insns after loop
3016 end to calculate this value into a temporary register in
3017 case it is needed later. */
3018
3019 tem = gen_reg_rtx (bl->biv->mode);
1a6c3add 3020 record_base_value (REGNO (tem), bl->biv->add_val, 0);
89e8d34f 3021 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
3022 bl->initial_value, tem);
cdbd2a92 3023
3024 if (loop_dump_stream)
3025 fprintf (loop_dump_stream,
3026 "Final biv value for %d, calculated.\n", bl->regno);
9058b363 3027
cdbd2a92 3028 return tem;
3029 }
3030 }
3031
3032 /* Check to see if the biv is dead at all loop exits. */
15fc3eb7 3033 if (reg_dead_after_loop (loop, bl->biv->src_reg))
cdbd2a92 3034 {
3035 if (loop_dump_stream)
3036 fprintf (loop_dump_stream,
3037 "Final biv value for %d, biv dead after loop exit.\n",
3038 bl->regno);
3039
3040 return const0_rtx;
3041 }
3042
3043 return 0;
3044}
3045
3046/* Try to calculate the final value of the giv, the value it will have at
3047 the end of the loop. If we can do it, return that value. */
3048
3049rtx
15fc3eb7 3050final_giv_value (loop, v)
3051 const struct loop *loop;
cdbd2a92 3052 struct induction *v;
cdbd2a92 3053{
8ec5f078 3054 struct loop_ivs *ivs = LOOP_IVS (loop);
cdbd2a92 3055 struct iv_class *bl;
625294a0 3056 rtx insn;
cdbd2a92 3057 rtx increment, tem;
89e8d34f 3058 rtx seq;
15fc3eb7 3059 rtx loop_end = loop->end;
3060 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
cdbd2a92 3061
b995c337 3062 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
cdbd2a92 3063
3064 /* The final value for givs which depend on reversed bivs must be calculated
3065 differently than for ordinary givs. In this case, there is already an
3066 insn after the loop which sets this giv's final value (if necessary),
3067 and there are no other loop exits, so we can return any value. */
3068 if (bl->reversed)
3069 {
3070 if (loop_dump_stream)
3071 fprintf (loop_dump_stream,
3072 "Final giv value for %d, depends on reversed biv\n",
3073 REGNO (v->dest_reg));
3074 return const0_rtx;
3075 }
3076
3077 /* Try to calculate the final value as a function of the biv it depends
3078 upon. The only exit from the loop must be the fall through at the bottom
a22e3dfa 3079 and the insn that sets the giv must be executed on every iteration
3080 (otherwise the giv may not have its final value when the loop exits). */
9058b363 3081
cdbd2a92 3082 /* ??? Can calculate the final giv value by subtracting off the
3083 extra biv increments times the giv's mult_val. The loop must have
3084 only one exit for this to work, but the loop iterations does not need
3085 to be known. */
3086
ec5d911a 3087 if (n_iterations != 0
a22e3dfa 3088 && ! loop->exit_count
3089 && v->always_executed)
cdbd2a92 3090 {
3091 /* ?? It is tempting to use the biv's value here since these insns will
3092 be put after the loop, and hence the biv will have its final value
3093 then. However, this fails if the biv is subsequently eliminated.
3094 Perhaps determine whether biv's are eliminable before trying to
3095 determine whether giv's are replaceable so that we can use the
3096 biv value here if it is not eliminable. */
3097
95b81401 3098 /* We are emitting code after the end of the loop, so we must make
3099 sure that bl->initial_value is still valid then. It will still
3100 be valid if it is invariant. */
3101
15fc3eb7 3102 increment = biv_total_increment (bl);
cdbd2a92 3103
15fc3eb7 3104 if (increment && loop_invariant_p (loop, increment)
3105 && loop_invariant_p (loop, bl->initial_value))
cdbd2a92 3106 {
3107 /* Can calculate the loop exit value of its biv as
ec5d911a 3108 (n_iterations * increment) + initial_value */
9058b363 3109
cdbd2a92 3110 /* The loop exit value of the giv is then
3111 (final_biv_value - extra increments) * mult_val + add_val.
3112 The extra increments are any increments to the biv which
3113 occur in the loop after the giv's value is calculated.
3114 We must search from the insn that sets the giv to the end
3115 of the loop to calculate this value. */
3116
cdbd2a92 3117 /* Put the final biv value in tem. */
ff57e249 3118 tem = gen_reg_rtx (v->mode);
1a6c3add 3119 record_base_value (REGNO (tem), bl->biv->add_val, 0);
89e8d34f 3120 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3121 GEN_INT (n_iterations),
3122 extend_value_for_giv (v, bl->initial_value),
3123 tem);
cdbd2a92 3124
3125 /* Subtract off extra increments as we find them. */
3126 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3127 insn = NEXT_INSN (insn))
3128 {
625294a0 3129 struct induction *biv;
3130
3131 for (biv = bl->biv; biv; biv = biv->next_iv)
3132 if (biv->insn == insn)
3133 {
3134 start_sequence ();
ad99e708 3135 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3136 biv->add_val, NULL_RTX, 0,
3137 OPTAB_LIB_WIDEN);
31d3e01c 3138 seq = get_insns ();
625294a0 3139 end_sequence ();
89e8d34f 3140 loop_insn_sink (loop, seq);
625294a0 3141 }
cdbd2a92 3142 }
9058b363 3143
cdbd2a92 3144 /* Now calculate the giv's final value. */
89e8d34f 3145 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
9058b363 3146
cdbd2a92 3147 if (loop_dump_stream)
3148 fprintf (loop_dump_stream,
3149 "Final giv value for %d, calc from biv's value.\n",
3150 REGNO (v->dest_reg));
3151
3152 return tem;
3153 }
3154 }
3155
3156 /* Replaceable giv's should never reach here. */
3157 if (v->replaceable)
3158 abort ();
3159
3160 /* Check to see if the biv is dead at all loop exits. */
15fc3eb7 3161 if (reg_dead_after_loop (loop, v->dest_reg))
cdbd2a92 3162 {
3163 if (loop_dump_stream)
3164 fprintf (loop_dump_stream,
3165 "Final giv value for %d, giv dead after loop exit.\n",
3166 REGNO (v->dest_reg));
3167
3168 return const0_rtx;
3169 }
3170
3171 return 0;
3172}
3173
dae39efc 3174/* Look back before LOOP->START for the insn that sets REG and return
7bb29472 3175 the equivalent constant if there is a REG_EQUAL note otherwise just
3176 the SET_SRC of REG. */
3177
3178static rtx
15fc3eb7 3179loop_find_equiv_value (loop, reg)
3180 const struct loop *loop;
7bb29472 3181 rtx reg;
3182{
15fc3eb7 3183 rtx loop_start = loop->start;
7bb29472 3184 rtx insn, set;
3185 rtx ret;
9058b363 3186
7bb29472 3187 ret = reg;
6da6f625 3188 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
7bb29472 3189 {
3190 if (GET_CODE (insn) == CODE_LABEL)
3191 break;
9058b363 3192
9204e736 3193 else if (INSN_P (insn) && reg_set_p (reg, insn))
7bb29472 3194 {
3195 /* We found the last insn before the loop that sets the register.
3196 If it sets the entire register, and has a REG_EQUAL note,
3197 then use the value of the REG_EQUAL note. */
3198 if ((set = single_set (insn))
6da6f625 3199 && (SET_DEST (set) == reg))
7bb29472 3200 {
3201 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
9058b363 3202
7bb29472 3203 /* Only use the REG_EQUAL note if it is a constant.
3204 Other things, divide in particular, will cause
3205 problems later if we use them. */
3206 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3207 && CONSTANT_P (XEXP (note, 0)))
3208 ret = XEXP (note, 0);
3209 else
3210 ret = SET_SRC (set);
6bc21dca 3211
3212 /* We cannot do this if it changes between the
3213 assignment and loop start though. */
3214 if (modified_between_p (ret, insn, loop_start))
3215 ret = reg;
7bb29472 3216 }
3217 break;
3218 }
3219 }
3220 return ret;
3221}
3222
d888299d 3223/* Return a simplified rtx for the expression OP - REG.
3224
3225 REG must appear in OP, and OP must be a register or the sum of a register
3226 and a second term.
3227
3228 Thus, the return value must be const0_rtx or the second term.
3229
3230 The caller is responsible for verifying that REG appears in OP and OP has
3231 the proper form. */
3232
3233static rtx
3234subtract_reg_term (op, reg)
3235 rtx op, reg;
3236{
3237 if (op == reg)
3238 return const0_rtx;
3239 if (GET_CODE (op) == PLUS)
3240 {
3241 if (XEXP (op, 0) == reg)
3242 return XEXP (op, 1);
3243 else if (XEXP (op, 1) == reg)
3244 return XEXP (op, 0);
3245 }
3246 /* OP does not contain REG as a term. */
3247 abort ();
3248}
3249
d888299d 3250/* Find and return register term common to both expressions OP0 and
3251 OP1 or NULL_RTX if no such term exists. Each expression must be a
3252 REG or a PLUS of a REG. */
3253
3254static rtx
3255find_common_reg_term (op0, op1)
3256 rtx op0, op1;
3257{
3258 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3259 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3260 {
3261 rtx op00;
3262 rtx op01;
3263 rtx op10;
3264 rtx op11;
3265
3266 if (GET_CODE (op0) == PLUS)
3267 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3268 else
3269 op01 = const0_rtx, op00 = op0;
3270
3271 if (GET_CODE (op1) == PLUS)
3272 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3273 else
3274 op11 = const0_rtx, op10 = op1;
3275
3276 /* Find and return common register term if present. */
3277 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3278 return op00;
3279 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3280 return op01;
3281 }
3282
3283 /* No common register term found. */
3284 return NULL_RTX;
3285}
3286
b109aca9 3287/* Determine the loop iterator and calculate the number of loop
3288 iterations. Returns the exact number of loop iterations if it can
3289 be calculated, otherwise returns zero. */
cdbd2a92 3290
d3115c90 3291unsigned HOST_WIDE_INT
ec7d7ef9 3292loop_iterations (loop)
3293 struct loop *loop;
cdbd2a92 3294{
8ec5f078 3295 struct loop_info *loop_info = LOOP_INFO (loop);
3296 struct loop_ivs *ivs = LOOP_IVS (loop);
cdbd2a92 3297 rtx comparison, comparison_value;
3298 rtx iteration_var, initial_value, increment, final_value;
3299 enum rtx_code comparison_code;
9c3da436 3300 HOST_WIDE_INT inc;
3301 unsigned HOST_WIDE_INT abs_inc;
7bb29472 3302 unsigned HOST_WIDE_INT abs_diff;
3303 int off_by_one;
d3115c90 3304 int increment_dir;
7bb29472 3305 int unsigned_p, compare_dir, final_larger;
cdbd2a92 3306 rtx last_loop_insn;
d888299d 3307 rtx reg_term;
b109aca9 3308 struct iv_class *bl;
cdbd2a92 3309
7bb29472 3310 loop_info->n_iterations = 0;
ec5d911a 3311 loop_info->initial_value = 0;
7bb29472 3312 loop_info->initial_equiv_value = 0;
3313 loop_info->comparison_value = 0;
ec5d911a 3314 loop_info->final_value = 0;
7bb29472 3315 loop_info->final_equiv_value = 0;
3316 loop_info->increment = 0;
ec5d911a 3317 loop_info->iteration_var = 0;
7bb29472 3318 loop_info->unroll_number = 1;
b109aca9 3319 loop_info->iv = 0;
cdbd2a92 3320
7bb29472 3321 /* We used to use prev_nonnote_insn here, but that fails because it might
d3361f22 3322 accidentally get the branch for a contained loop if the branch for this
3323 loop was deleted. We can only trust branches immediately before the
3324 loop_end. */
603590db 3325 last_loop_insn = PREV_INSN (loop->end);
cdbd2a92 3326
8758222c 3327 /* ??? We should probably try harder to find the jump insn
9058b363 3328 at the end of the loop. The following code assumes that
8758222c 3329 the last loop insn is a jump to the top of the loop. */
3330 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3331 {
3332 if (loop_dump_stream)
3333 fprintf (loop_dump_stream,
3334 "Loop iterations: No final conditional branch found.\n");
3335 return 0;
3336 }
3337
3338 /* If there is a more than a single jump to the top of the loop
3339 we cannot (easily) determine the iteration count. */
3340 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3341 {
3342 if (loop_dump_stream)
3343 fprintf (loop_dump_stream,
3344 "Loop iterations: Loop has multiple back edges.\n");
3345 return 0;
3346 }
3347
ef40dec5 3348 /* If there are multiple conditionalized loop exit tests, they may jump
3349 back to differing CODE_LABELs. */
3350 if (loop->top && loop->cont)
3351 {
3352 rtx temp = PREV_INSN (last_loop_insn);
3353
3354 do
3355 {
a3ed7887 3356 if (GET_CODE (temp) == JUMP_INSN)
ef40dec5 3357 {
a3ed7887 3358 /* There are some kinds of jumps we can't deal with easily. */
3359 if (JUMP_LABEL (temp) == 0)
3360 {
3361 if (loop_dump_stream)
3362 fprintf
3363 (loop_dump_stream,
3364 "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3365 return 0;
3366 }
3367
3368 if (/* Previous unrolling may have generated new insns not
3369 covered by the uid_luid array. */
3370 INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3371 /* Check if we jump back into the loop body. */
3372 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3373 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3374 {
3375 if (loop_dump_stream)
6c34d0c2 3376 fprintf
a3ed7887 3377 (loop_dump_stream,
3378 "Loop iterations: Loop has multiple back edges.\n");
3379 return 0;
3380 }
ef40dec5 3381 }
3382 }
3383 while ((temp = PREV_INSN (temp)) != loop->cont);
3384 }
3385
8758222c 3386 /* Find the iteration variable. If the last insn is a conditional
3387 branch, and the insn before tests a register value, make that the
3388 iteration variable. */
9058b363 3389
15fc3eb7 3390 comparison = get_condition_for_loop (loop, last_loop_insn);
cdbd2a92 3391 if (comparison == 0)
3392 {
3393 if (loop_dump_stream)
3394 fprintf (loop_dump_stream,
8758222c 3395 "Loop iterations: No final comparison found.\n");
cdbd2a92 3396 return 0;
3397 }
3398
3399 /* ??? Get_condition may switch position of induction variable and
3400 invariant register when it canonicalizes the comparison. */
3401
3402 comparison_code = GET_CODE (comparison);
3403 iteration_var = XEXP (comparison, 0);
3404 comparison_value = XEXP (comparison, 1);
9058b363 3405
cdbd2a92 3406 if (GET_CODE (iteration_var) != REG)
3407 {
3408 if (loop_dump_stream)
3409 fprintf (loop_dump_stream,
7bb29472 3410 "Loop iterations: Comparison not against register.\n");
cdbd2a92 3411 return 0;
3412 }
3413
c5aaf45f 3414 /* The only new registers that are created before loop iterations
3415 are givs made from biv increments or registers created by
3416 load_mems. In the latter case, it is possible that try_copy_prop
3417 will propagate a new pseudo into the old iteration register but
3418 this will be marked by having the REG_USERVAR_P bit set. */
3419
6f812a51 3420 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
c5aaf45f 3421 && ! REG_USERVAR_P (iteration_var))
ec7d7ef9 3422 abort ();
cdbd2a92 3423
b109aca9 3424 /* Determine the initial value of the iteration variable, and the amount
3425 that it is incremented each loop. Use the tables constructed by
3426 the strength reduction pass to calculate these values. */
3427
3428 /* Clear the result values, in case no answer can be found. */
3429 initial_value = 0;
3430 increment = 0;
3431
3432 /* The iteration variable can be either a giv or a biv. Check to see
3433 which it is, and compute the variable's initial value, and increment
3434 value if possible. */
3435
3436 /* If this is a new register, can't handle it since we don't have any
3437 reg_iv_type entry for it. */
6f812a51 3438 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
b109aca9 3439 {
3440 if (loop_dump_stream)
3441 fprintf (loop_dump_stream,
3442 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3443 return 0;
3444 }
3445
3446 /* Reject iteration variables larger than the host wide int size, since they
3447 could result in a number of iterations greater than the range of our
3448 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3449 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3450 > HOST_BITS_PER_WIDE_INT))
3451 {
3452 if (loop_dump_stream)
3453 fprintf (loop_dump_stream,
3454 "Loop iterations: Iteration var rejected because mode too large.\n");
3455 return 0;
3456 }
3457 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3458 {
3459 if (loop_dump_stream)
3460 fprintf (loop_dump_stream,
3461 "Loop iterations: Iteration var not an integer.\n");
3462 return 0;
3463 }
8ec5f078 3464 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
b109aca9 3465 {
d1908618 3466 if (REGNO (iteration_var) >= ivs->n_regs)
b109aca9 3467 abort ();
3468
3469 /* Grab initial value, only useful if it is a constant. */
b995c337 3470 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
b109aca9 3471 initial_value = bl->initial_value;
e7d93d2e 3472 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3473 {
3474 if (loop_dump_stream)
3475 fprintf (loop_dump_stream,
3476 "Loop iterations: Basic induction var not set once in each iteration.\n");
3477 return 0;
3478 }
b109aca9 3479
3480 increment = biv_total_increment (bl);
3481 }
8ec5f078 3482 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
b109aca9 3483 {
3484 HOST_WIDE_INT offset = 0;
8ec5f078 3485 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
b109aca9 3486 rtx biv_initial_value;
3487
d1908618 3488 if (REGNO (v->src_reg) >= ivs->n_regs)
b109aca9 3489 abort ();
3490
e7d93d2e 3491 if (!v->always_executed || v->maybe_multiple)
3492 {
3493 if (loop_dump_stream)
3494 fprintf (loop_dump_stream,
3495 "Loop iterations: General induction var not set once in each iteration.\n");
3496 return 0;
3497 }
3498
b995c337 3499 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
b109aca9 3500
3501 /* Increment value is mult_val times the increment value of the biv. */
3502
3503 increment = biv_total_increment (bl);
3504 if (increment)
3505 {
3506 struct induction *biv_inc;
3507
deb2362f 3508 increment = fold_rtx_mult_add (v->mult_val,
3509 extend_value_for_giv (v, increment),
3510 const0_rtx, v->mode);
424da949 3511 /* The caller assumes that one full increment has occurred at the
b109aca9 3512 first loop test. But that's not true when the biv is incremented
3513 after the giv is set (which is the usual case), e.g.:
3514 i = 6; do {;} while (i++ < 9) .
3515 Therefore, we bias the initial value by subtracting the amount of
3516 the increment that occurs between the giv set and the giv test. */
3517 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3518 {
3519 if (loop_insn_first_p (v->insn, biv_inc->insn))
3a64bedc 3520 {
3521 if (REG_P (biv_inc->add_val))
3522 {
3523 if (loop_dump_stream)
3524 fprintf (loop_dump_stream,
3525 "Loop iterations: Basic induction var add_val is REG %d.\n",
3526 REGNO (biv_inc->add_val));
3527 return 0;
3528 }
3529
3530 offset -= INTVAL (biv_inc->add_val);
3531 }
b109aca9 3532 }
b109aca9 3533 }
3534 if (loop_dump_stream)
3535 fprintf (loop_dump_stream,
3536 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3537 (long) offset);
3538
3539 /* Initial value is mult_val times the biv's initial value plus
3540 add_val. Only useful if it is a constant. */
3541 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3542 initial_value
3543 = fold_rtx_mult_add (v->mult_val,
3544 plus_constant (biv_initial_value, offset),
3545 v->add_val, v->mode);
3546 }
3547 else
3548 {
3549 if (loop_dump_stream)
3550 fprintf (loop_dump_stream,
3551 "Loop iterations: Not basic or general induction var.\n");
3552 return 0;
3553 }
15fc3eb7 3554
cdbd2a92 3555 if (initial_value == 0)
cdbd2a92 3556 return 0;
3557
7bb29472 3558 unsigned_p = 0;
3559 off_by_one = 0;
3560 switch (comparison_code)
3561 {
3562 case LEU:
3563 unsigned_p = 1;
3564 case LE:
3565 compare_dir = 1;
3566 off_by_one = 1;
3567 break;
3568 case GEU:
3569 unsigned_p = 1;
3570 case GE:
3571 compare_dir = -1;
3572 off_by_one = -1;
3573 break;
3574 case EQ:
3575 /* Cannot determine loop iterations with this case. */
3576 compare_dir = 0;
3577 break;
3578 case LTU:
3579 unsigned_p = 1;
3580 case LT:
3581 compare_dir = 1;
3582 break;
3583 case GTU:
3584 unsigned_p = 1;
3585 case GT:
3586 compare_dir = -1;
3587 case NE:
3588 compare_dir = 0;
3589 break;
3590 default:
3591 abort ();
3592 }
3593
cdbd2a92 3594 /* If the comparison value is an invariant register, then try to find
3595 its value from the insns before the start of the loop. */
3596
7bb29472 3597 final_value = comparison_value;
6da6f625 3598 if (GET_CODE (comparison_value) == REG
15fc3eb7 3599 && loop_invariant_p (loop, comparison_value))
cdbd2a92 3600 {
15fc3eb7 3601 final_value = loop_find_equiv_value (loop, comparison_value);
3602
7bb29472 3603 /* If we don't get an invariant final value, we are better
3604 off with the original register. */
15fc3eb7 3605 if (! loop_invariant_p (loop, final_value))
7bb29472 3606 final_value = comparison_value;
3607 }
3608
3609 /* Calculate the approximate final value of the induction variable
3610 (on the last successful iteration). The exact final value
3611 depends on the branch operator, and increment sign. It will be
3612 wrong if the iteration variable is not incremented by one each
3613 time through the loop and (comparison_value + off_by_one -
3614 initial_value) % increment != 0.
3615 ??? Note that the final_value may overflow and thus final_larger
3616 will be bogus. A potentially infinite loop will be classified
3617 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3618 if (off_by_one)
3619 final_value = plus_constant (final_value, off_by_one);
cdbd2a92 3620
3621 /* Save the calculated values describing this loop's bounds, in case
3622 precondition_loop_p will need them later. These values can not be
3623 recalculated inside precondition_loop_p because strength reduction
9058b363 3624 optimizations may obscure the loop's structure.
cdbd2a92 3625
7bb29472 3626 These values are only required by precondition_loop_p and insert_bct
3627 whenever the number of iterations cannot be computed at compile time.
3628 Only the difference between final_value and initial_value is
3629 important. Note that final_value is only approximate. */
ec5d911a 3630 loop_info->initial_value = initial_value;
7bb29472 3631 loop_info->comparison_value = comparison_value;
3632 loop_info->final_value = plus_constant (comparison_value, off_by_one);
ec5d911a 3633 loop_info->increment = increment;
7bb29472 3634 loop_info->iteration_var = iteration_var;
ec5d911a 3635 loop_info->comparison_code = comparison_code;
b109aca9 3636 loop_info->iv = bl;
cdbd2a92 3637
d888299d 3638 /* Try to determine the iteration count for loops such
3639 as (for i = init; i < init + const; i++). When running the
3640 loop optimization twice, the first pass often converts simple
3641 loops into this form. */
7bb29472 3642
d888299d 3643 if (REG_P (initial_value))
7bb29472 3644 {
d888299d 3645 rtx reg1;
3646 rtx reg2;
3647 rtx const2;
7bb29472 3648
d888299d 3649 reg1 = initial_value;
7bb29472 3650 if (GET_CODE (final_value) == PLUS)
d888299d 3651 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
7bb29472 3652 else
d888299d 3653 reg2 = final_value, const2 = const0_rtx;
7bb29472 3654
d888299d 3655 /* Check for initial_value = reg1, final_value = reg2 + const2,
3656 where reg1 != reg2. */
3657 if (REG_P (reg2) && reg2 != reg1)
7bb29472 3658 {
d888299d 3659 rtx temp;
3660
3661 /* Find what reg1 is equivalent to. Hopefully it will
3662 either be reg2 or reg2 plus a constant. */
15fc3eb7 3663 temp = loop_find_equiv_value (loop, reg1);
3664
d888299d 3665 if (find_common_reg_term (temp, reg2))
3666 initial_value = temp;
3667 else
3668 {
3669 /* Find what reg2 is equivalent to. Hopefully it will
3670 either be reg1 or reg1 plus a constant. Let's ignore
3671 the latter case for now since it is not so common. */
15fc3eb7 3672 temp = loop_find_equiv_value (loop, reg2);
3673
d888299d 3674 if (temp == loop_info->iteration_var)
3675 temp = initial_value;
3676 if (temp == reg1)
3677 final_value = (const2 == const0_rtx)
3678 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3679 }
7bb29472 3680 }
ec7d7ef9 3681 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
7bb29472 3682 {
d888299d 3683 rtx temp;
3684
6da6f625 3685 /* When running the loop optimizer twice, check_dbra_loop
3686 further obfuscates reversible loops of the form:
3687 for (i = init; i < init + const; i++). We often end up with
3688 final_value = 0, initial_value = temp, temp = temp2 - init,
3689 where temp2 = init + const. If the loop has a vtop we
3690 can replace initial_value with const. */
d888299d 3691
15fc3eb7 3692 temp = loop_find_equiv_value (loop, reg1);
3693
d888299d 3694 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3695 {
15fc3eb7 3696 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3697
d888299d 3698 if (GET_CODE (temp2) == PLUS
3699 && XEXP (temp2, 0) == XEXP (temp, 1))
3700 initial_value = XEXP (temp2, 1);
3701 }
7bb29472 3702 }
3703 }
9058b363 3704
d888299d 3705 /* If have initial_value = reg + const1 and final_value = reg +
3706 const2, then replace initial_value with const1 and final_value
3707 with const2. This should be safe since we are protected by the
3708 initial comparison before entering the loop if we have a vtop.
3709 For example, a + b < a + c is not equivalent to b < c for all a
3710 when using modulo arithmetic.
3711
3712 ??? Without a vtop we could still perform the optimization if we check
3713 the initial and final values carefully. */
ec7d7ef9 3714 if (loop->vtop
d888299d 3715 && (reg_term = find_common_reg_term (initial_value, final_value)))
3716 {
3717 initial_value = subtract_reg_term (initial_value, reg_term);
3718 final_value = subtract_reg_term (final_value, reg_term);
3719 }
3720
7bb29472 3721 loop_info->initial_equiv_value = initial_value;
3722 loop_info->final_equiv_value = final_value;
9058b363 3723
94836c40 3724 /* For EQ comparison loops, we don't have a valid final value.
3725 Check this now so that we won't leave an invalid value if we
3726 return early for any other reason. */
3727 if (comparison_code == EQ)
6da6f625 3728 loop_info->final_equiv_value = loop_info->final_value = 0;
94836c40 3729
a3254dd2 3730 if (increment == 0)
3731 {
3732 if (loop_dump_stream)
3733 fprintf (loop_dump_stream,
7bb29472 3734 "Loop iterations: Increment value can't be calculated.\n");
a3254dd2 3735 return 0;
3736 }
7bb29472 3737
3738 if (GET_CODE (increment) != CONST_INT)
a3254dd2 3739 {
02f1afa5 3740 /* If we have a REG, check to see if REG holds a constant value. */
3741 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3742 clear if it is worthwhile to try to handle such RTL. */
3743 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
15fc3eb7 3744 increment = loop_find_equiv_value (loop, increment);
7bb29472 3745
3746 if (GET_CODE (increment) != CONST_INT)
3747 {
3748 if (loop_dump_stream)
3749 {
3750 fprintf (loop_dump_stream,
3751 "Loop iterations: Increment value not constant ");
bb6f5cc9 3752 print_simple_rtl (loop_dump_stream, increment);
7bb29472 3753 fprintf (loop_dump_stream, ".\n");
3754 }
3755 return 0;
3756 }
3757 loop_info->increment = increment;
a3254dd2 3758 }
7bb29472 3759
3760 if (GET_CODE (initial_value) != CONST_INT)
a3254dd2 3761 {
3762 if (loop_dump_stream)
7bb29472 3763 {
3764 fprintf (loop_dump_stream,
3765 "Loop iterations: Initial value not constant ");
bb6f5cc9 3766 print_simple_rtl (loop_dump_stream, initial_value);
7bb29472 3767 fprintf (loop_dump_stream, ".\n");
3768 }
a3254dd2 3769 return 0;
3770 }
cdbd2a92 3771 else if (GET_CODE (final_value) != CONST_INT)
3772 {
3773 if (loop_dump_stream)
7bb29472 3774 {
3775 fprintf (loop_dump_stream,
3776 "Loop iterations: Final value not constant ");
bb6f5cc9 3777 print_simple_rtl (loop_dump_stream, final_value);
7bb29472 3778 fprintf (loop_dump_stream, ".\n");
3779 }
cdbd2a92 3780 return 0;
3781 }
e10235cc 3782 else if (comparison_code == EQ)
3783 {
3784 rtx inc_once;
3785
3786 if (loop_dump_stream)
3787 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3788
3789 inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
3790 GET_MODE (iteration_var));
3791
3792 if (inc_once == final_value)
3793 {
3794 /* The iterator value once through the loop is equal to the
3795 comparision value. Either we have an infinite loop, or
3796 we'll loop twice. */
3797 if (increment == const0_rtx)
3798 return 0;
3799 loop_info->n_iterations = 2;
3800 }
3801 else
3802 loop_info->n_iterations = 1;
3803
3804 if (GET_CODE (loop_info->initial_value) == CONST_INT)
3805 loop_info->final_value
3806 = gen_int_mode ((INTVAL (loop_info->initial_value)
3807 + loop_info->n_iterations * INTVAL (increment)),
3808 GET_MODE (iteration_var));
3809 else
3810 loop_info->final_value
3811 = plus_constant (loop_info->initial_value,
3812 loop_info->n_iterations * INTVAL (increment));
3813 loop_info->final_equiv_value
3814 = gen_int_mode ((INTVAL (initial_value)
3815 + loop_info->n_iterations * INTVAL (increment)),
3816 GET_MODE (iteration_var));
3817 return loop_info->n_iterations;
3818 }
cdbd2a92 3819
cdbd2a92 3820 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
7bb29472 3821 if (unsigned_p)
cdbd2a92 3822 final_larger
d3115c90 3823 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3824 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3825 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3826 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
cdbd2a92 3827 else
d3115c90 3828 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3829 - (INTVAL (final_value) < INTVAL (initial_value));
cdbd2a92 3830
3831 if (INTVAL (increment) > 0)
3832 increment_dir = 1;
3833 else if (INTVAL (increment) == 0)
3834 increment_dir = 0;
3835 else
3836 increment_dir = -1;
3837
3838 /* There are 27 different cases: compare_dir = -1, 0, 1;
3839 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3840 There are 4 normal cases, 4 reverse cases (where the iteration variable
3841 will overflow before the loop exits), 4 infinite loop cases, and 15
3842 immediate exit (0 or 1 iteration depending on loop type) cases.
3843 Only try to optimize the normal cases. */
9058b363 3844
cdbd2a92 3845 /* (compare_dir/final_larger/increment_dir)
3846 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3847 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3848 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3849 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3850
3851 /* ?? If the meaning of reverse loops (where the iteration variable
3852 will overflow before the loop exits) is undefined, then could
3853 eliminate all of these special checks, and just always assume
3854 the loops are normal/immediate/infinite. Note that this means
3855 the sign of increment_dir does not have to be known. Also,
3856 since it does not really hurt if immediate exit loops or infinite loops
3857 are optimized, then that case could be ignored also, and hence all
3858 loops can be optimized.
3859
3860 According to ANSI Spec, the reverse loop case result is undefined,
3861 because the action on overflow is undefined.
3862
3863 See also the special test for NE loops below. */
3864
3865 if (final_larger == increment_dir && final_larger != 0
3866 && (final_larger == compare_dir || compare_dir == 0))
3867 /* Normal case. */
3868 ;
3869 else
3870 {
3871 if (loop_dump_stream)
6da6f625 3872 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
cdbd2a92 3873 return 0;
3874 }
3875
3876 /* Calculate the number of iterations, final_value is only an approximation,
7bb29472 3877 so correct for that. Note that abs_diff and n_iterations are
cdbd2a92 3878 unsigned, because they can be as large as 2^n - 1. */
3879
9c3da436 3880 inc = INTVAL (increment);
3881 if (inc > 0)
3882 {
3883 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3884 abs_inc = inc;
3885 }
3886 else if (inc < 0)
cdbd2a92 3887 {
7bb29472 3888 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
9c3da436 3889 abs_inc = -inc;
cdbd2a92 3890 }
3891 else
3892 abort ();
3893
9c3da436 3894 /* Given that iteration_var is going to iterate over its own mode,
3895 not HOST_WIDE_INT, disregard higher bits that might have come
3896 into the picture due to sign extension of initial and final
3897 values. */
ac0c7fb1 3898 abs_diff &= ((unsigned HOST_WIDE_INT) 1
9c3da436 3899 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
3900 << 1) - 1;
213b27c9 3901
7bb29472 3902 /* For NE tests, make sure that the iteration variable won't miss
3903 the final value. If abs_diff mod abs_incr is not zero, then the
3904 iteration variable will overflow before the loop exits, and we
3905 can not calculate the number of iterations. */
3906 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
cdbd2a92 3907 return 0;
3908
7bb29472 3909 /* Note that the number of iterations could be calculated using
3910 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3911 handle potential overflow of the summation. */
3912 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3913 return loop_info->n_iterations;
cdbd2a92 3914}
ee2ce5c0 3915
c3418f42 3916/* Replace uses of split bivs with their split pseudo register. This is
ee2ce5c0 3917 for original instructions which remain after loop unrolling without
3918 copying. */
3919
3920static rtx
8ec5f078 3921remap_split_bivs (loop, x)
3922 struct loop *loop;
ee2ce5c0 3923 rtx x;
3924{
8ec5f078 3925 struct loop_ivs *ivs = LOOP_IVS (loop);
19cb6b50 3926 enum rtx_code code;
3927 int i;
3928 const char *fmt;
ee2ce5c0 3929
3930 if (x == 0)
3931 return x;
3932
3933 code = GET_CODE (x);
3934 switch (code)
3935 {
3936 case SCRATCH:
3937 case PC:
3938 case CC0:
3939 case CONST_INT:
3940 case CONST_DOUBLE:
3941 case CONST:
3942 case SYMBOL_REF:
3943 case LABEL_REF:
3944 return x;
3945
3946 case REG:
3947#if 0
3948 /* If non-reduced/final-value givs were split, then this would also
3949 have to remap those givs also. */
3950#endif
d1908618 3951 if (REGNO (x) < ivs->n_regs
8ec5f078 3952 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
b995c337 3953 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
0dbd1c74 3954 break;
9058b363 3955
0dbd1c74 3956 default:
3957 break;
ee2ce5c0 3958 }
3959
3960 fmt = GET_RTX_FORMAT (code);
3961 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3962 {
3963 if (fmt[i] == 'e')
8ec5f078 3964 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
1bd8ca86 3965 else if (fmt[i] == 'E')
ee2ce5c0 3966 {
19cb6b50 3967 int j;
ee2ce5c0 3968 for (j = 0; j < XVECLEN (x, i); j++)
8ec5f078 3969 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
ee2ce5c0 3970 }
3971 }
3972 return x;
3973}
e5530f5b 3974
3975/* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3976 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3977 return 0. COPY_START is where we can start looking for the insns
3978 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3979 insns.
3980
3981 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3982 must dominate LAST_UID.
3983
3984 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3985 may not dominate LAST_UID.
3986
3987 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3988 must dominate LAST_UID. */
3989
3990int
3991set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3992 int regno;
3993 int first_uid;
3994 int last_uid;
3995 rtx copy_start;
3996 rtx copy_end;
3997{
3998 int passed_jump = 0;
3999 rtx p = NEXT_INSN (copy_start);
4000
4001 while (INSN_UID (p) != first_uid)
4002 {
4003 if (GET_CODE (p) == JUMP_INSN)
6da6f625 4004 passed_jump = 1;
e5530f5b 4005 /* Could not find FIRST_UID. */
4006 if (p == copy_end)
4007 return 0;
4008 p = NEXT_INSN (p);
4009 }
4010
4011 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
9204e736 4012 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
e5530f5b 4013 return 0;
4014
4015 /* FIRST_UID is always executed. */
4016 if (passed_jump == 0)
4017 return 1;
4018
4019 while (INSN_UID (p) != last_uid)
4020 {
4021 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
4022 can not be sure that FIRST_UID dominates LAST_UID. */
4023 if (GET_CODE (p) == CODE_LABEL)
4024 return 0;
51d2c1df 4025 /* Could not find LAST_UID, but we reached the end of the loop, so
4026 it must be safe. */
4027 else if (p == copy_end)
4028 return 1;
e5530f5b 4029 p = NEXT_INSN (p);
4030 }
4031
4032 /* FIRST_UID is always executed if LAST_UID is executed. */
4033 return 1;
4034}
3ff5e1f7 4035
4036/* This routine is called when the number of iterations for the unrolled
4037 loop is one. The goal is to identify a loop that begins with an
4038 unconditional branch to the loop continuation note (or a label just after).
4039 In this case, the unconditional branch that starts the loop needs to be
4040 deleted so that we execute the single iteration. */
6da6f625 4041
3ff5e1f7 4042static rtx
4043ujump_to_loop_cont (loop_start, loop_cont)
6da6f625 4044 rtx loop_start;
4045 rtx loop_cont;
3ff5e1f7 4046{
4047 rtx x, label, label_ref;
4048
4049 /* See if loop start, or the next insn is an unconditional jump. */
4050 loop_start = next_nonnote_insn (loop_start);
4051
4052 x = pc_set (loop_start);
4053 if (!x)
4054 return NULL_RTX;
4055
4056 label_ref = SET_SRC (x);
4057 if (!label_ref)
4058 return NULL_RTX;
4059
4060 /* Examine insn after loop continuation note. Return if not a label. */
4061 label = next_nonnote_insn (loop_cont);
4062 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4063 return NULL_RTX;
4064
4065 /* Return the loop start if the branch label matches the code label. */
6da6f625 4066 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
3ff5e1f7 4067 return loop_start;
4068 else
4069 return NULL_RTX;
3ff5e1f7 4070}