]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/unroll.c
Merge from gcc-2.8
[thirdparty/gcc.git] / gcc / unroll.c
CommitLineData
67f2de41 1/* Try to unroll loops, and split induction variables.
e9a25f70 2 Copyright (C) 1992, 1993, 1994, 1995, 1997 Free Software Foundation, Inc.
67f2de41
RK
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
e9fa0c7c
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
67f2de41
RK
21
22/* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55/* Possible improvements follow: */
56
57/* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
6dc42e49 63 memory addresses can be split, and hence giv increments can be
67f2de41
RK
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69/* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74/* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91/* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118/* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133/* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140#define NUM_FACTORS 4
141
142struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145/* Describes the different types of loop unrolling performed. */
146
147enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149#include "config.h"
e9a25f70 150#include <stdio.h>
67f2de41
RK
151#include "rtl.h"
152#include "insn-config.h"
153#include "integrate.h"
154#include "regs.h"
e9a25f70 155#include "recog.h"
67f2de41
RK
156#include "flags.h"
157#include "expr.h"
67f2de41
RK
158#include "loop.h"
159
160/* This controls which loops are unrolled, and by how much we unroll
161 them. */
162
163#ifndef MAX_UNROLLED_INSNS
164#define MAX_UNROLLED_INSNS 100
165#endif
166
167/* Indexed by register number, if non-zero, then it contains a pointer
168 to a struct induction for a DEST_REG giv which has been combined with
169 one of more address givs. This is needed because whenever such a DEST_REG
170 giv is modified, we must modify the value of all split address givs
171 that were combined with this DEST_REG giv. */
172
173static struct induction **addr_combined_regs;
174
175/* Indexed by register number, if this is a splittable induction variable,
176 then this will hold the current value of the register, which depends on the
177 iteration number. */
178
179static rtx *splittable_regs;
180
181/* Indexed by register number, if this is a splittable induction variable,
182 then this will hold the number of instructions in the loop that modify
183 the induction variable. Used to ensure that only the last insn modifying
184 a split iv will update the original iv of the dest. */
185
186static int *splittable_regs_updates;
187
188/* Values describing the current loop's iteration variable. These are set up
189 by loop_iterations, and used by precondition_loop_p. */
190
191static rtx loop_iteration_var;
192static rtx loop_initial_value;
193static rtx loop_increment;
194static rtx loop_final_value;
1dcfa896 195static enum rtx_code loop_comparison_code;
67f2de41
RK
196
197/* Forward declarations. */
198
7f5b8ca7
RK
199static void init_reg_map PROTO((struct inline_remap *, int));
200static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
201static rtx calculate_giv_inc PROTO((rtx, rtx, int));
202static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
203static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
204static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
205 enum unroll_types, rtx, rtx, rtx, rtx));
8c660648 206void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
7f5b8ca7
RK
207static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
208static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
209static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
210 rtx, rtx, rtx, int));
211static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
212static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
213static rtx remap_split_bivs PROTO((rtx));
67f2de41
RK
214
215/* Try to unroll one loop and split induction variables in the loop.
216
217 The loop is described by the arguments LOOP_END, INSN_COUNT, and
6dc42e49 218 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
67f2de41
RK
219 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
220 indicates whether information generated in the strength reduction pass
221 is available.
222
223 This function is intended to be called from within `strength_reduce'
224 in loop.c. */
225
226void
227unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
228 strength_reduce_p)
229 rtx loop_end;
230 int insn_count;
231 rtx loop_start;
232 rtx end_insert_before;
233 int strength_reduce_p;
234{
235 int i, j, temp;
236 int unroll_number = 1;
237 rtx copy_start, copy_end;
238 rtx insn, copy, sequence, pattern, tem;
239 int max_labelno, max_insnno;
240 rtx insert_before;
241 struct inline_remap *map;
242 char *local_label;
7f5b8ca7 243 char *local_regno;
67f2de41
RK
244 int maxregnum;
245 int new_maxregnum;
246 rtx exit_label = 0;
247 rtx start_label;
248 struct iv_class *bl;
67f2de41
RK
249 int splitting_not_safe = 0;
250 enum unroll_types unroll_type;
251 int loop_preconditioned = 0;
252 rtx safety_label;
253 /* This points to the last real insn in the loop, which should be either
254 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
255 jumps). */
256 rtx last_loop_insn;
257
258 /* Don't bother unrolling huge loops. Since the minimum factor is
259 two, loops greater than one half of MAX_UNROLLED_INSNS will never
260 be unrolled. */
261 if (insn_count > MAX_UNROLLED_INSNS / 2)
262 {
263 if (loop_dump_stream)
264 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
265 return;
266 }
267
268 /* When emitting debugger info, we can't unroll loops with unequal numbers
269 of block_beg and block_end notes, because that would unbalance the block
270 structure of the function. This can happen as a result of the
271 "if (foo) bar; else break;" optimization in jump.c. */
d1b9c52c
JW
272 /* ??? Gcc has a general policy that -g is never supposed to change the code
273 that the compiler emits, so we must disable this optimization always,
274 even if debug info is not being output. This is rare, so this should
275 not be a significant performance problem. */
67f2de41 276
d1b9c52c 277 if (1 /* write_symbols != NO_DEBUG */)
67f2de41
RK
278 {
279 int block_begins = 0;
280 int block_ends = 0;
281
282 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
283 {
284 if (GET_CODE (insn) == NOTE)
285 {
286 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
287 block_begins++;
288 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
289 block_ends++;
290 }
291 }
292
293 if (block_begins != block_ends)
294 {
295 if (loop_dump_stream)
296 fprintf (loop_dump_stream,
297 "Unrolling failure: Unbalanced block notes.\n");
298 return;
299 }
300 }
301
302 /* Determine type of unroll to perform. Depends on the number of iterations
303 and the size of the loop. */
304
305 /* If there is no strength reduce info, then set loop_n_iterations to zero.
306 This can happen if strength_reduce can't find any bivs in the loop.
307 A value of zero indicates that the number of iterations could not be
308 calculated. */
309
310 if (! strength_reduce_p)
311 loop_n_iterations = 0;
312
313 if (loop_dump_stream && loop_n_iterations > 0)
314 fprintf (loop_dump_stream,
315 "Loop unrolling: %d iterations.\n", loop_n_iterations);
316
317 /* Find and save a pointer to the last nonnote insn in the loop. */
318
319 last_loop_insn = prev_nonnote_insn (loop_end);
320
321 /* Calculate how many times to unroll the loop. Indicate whether or
322 not the loop is being completely unrolled. */
323
324 if (loop_n_iterations == 1)
325 {
326 /* If number of iterations is exactly 1, then eliminate the compare and
327 branch at the end of the loop since they will never be taken.
328 Then return, since no other action is needed here. */
329
330 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
331 don't do anything. */
332
333 if (GET_CODE (last_loop_insn) == BARRIER)
334 {
335 /* Delete the jump insn. This will delete the barrier also. */
336 delete_insn (PREV_INSN (last_loop_insn));
337 }
338 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
339 {
340#ifdef HAVE_cc0
b4ac57ab 341 /* The immediately preceding insn is a compare which must be
67f2de41
RK
342 deleted. */
343 delete_insn (last_loop_insn);
344 delete_insn (PREV_INSN (last_loop_insn));
345#else
b4ac57ab 346 /* The immediately preceding insn may not be the compare, so don't
67f2de41
RK
347 delete it. */
348 delete_insn (last_loop_insn);
349#endif
350 }
351 return;
352 }
353 else if (loop_n_iterations > 0
354 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
355 {
356 unroll_number = loop_n_iterations;
357 unroll_type = UNROLL_COMPLETELY;
358 }
359 else if (loop_n_iterations > 0)
360 {
361 /* Try to factor the number of iterations. Don't bother with the
362 general case, only using 2, 3, 5, and 7 will get 75% of all
363 numbers theoretically, and almost all in practice. */
364
365 for (i = 0; i < NUM_FACTORS; i++)
366 factors[i].count = 0;
367
368 temp = loop_n_iterations;
369 for (i = NUM_FACTORS - 1; i >= 0; i--)
370 while (temp % factors[i].factor == 0)
371 {
372 factors[i].count++;
373 temp = temp / factors[i].factor;
374 }
375
376 /* Start with the larger factors first so that we generally
377 get lots of unrolling. */
378
379 unroll_number = 1;
380 temp = insn_count;
381 for (i = 3; i >= 0; i--)
382 while (factors[i].count--)
383 {
384 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
385 {
386 unroll_number *= factors[i].factor;
387 temp *= factors[i].factor;
388 }
389 else
390 break;
391 }
392
393 /* If we couldn't find any factors, then unroll as in the normal
394 case. */
395 if (unroll_number == 1)
396 {
397 if (loop_dump_stream)
398 fprintf (loop_dump_stream,
399 "Loop unrolling: No factors found.\n");
400 }
401 else
402 unroll_type = UNROLL_MODULO;
403 }
404
405
406 /* Default case, calculate number of times to unroll loop based on its
407 size. */
408 if (unroll_number == 1)
409 {
410 if (8 * insn_count < MAX_UNROLLED_INSNS)
411 unroll_number = 8;
412 else if (4 * insn_count < MAX_UNROLLED_INSNS)
413 unroll_number = 4;
414 else
415 unroll_number = 2;
416
417 unroll_type = UNROLL_NAIVE;
418 }
419
420 /* Now we know how many times to unroll the loop. */
421
422 if (loop_dump_stream)
423 fprintf (loop_dump_stream,
424 "Unrolling loop %d times.\n", unroll_number);
425
426
427 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
428 {
429 /* Loops of these types should never start with a jump down to
430 the exit condition test. For now, check for this case just to
431 be sure. UNROLL_NAIVE loops can be of this form, this case is
432 handled below. */
433 insn = loop_start;
434 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
435 insn = NEXT_INSN (insn);
436 if (GET_CODE (insn) == JUMP_INSN)
437 abort ();
438 }
439
440 if (unroll_type == UNROLL_COMPLETELY)
441 {
442 /* Completely unrolling the loop: Delete the compare and branch at
443 the end (the last two instructions). This delete must done at the
444 very end of loop unrolling, to avoid problems with calls to
445 back_branch_in_range_p, which is called by find_splittable_regs.
446 All increments of splittable bivs/givs are changed to load constant
447 instructions. */
448
449 copy_start = loop_start;
450
451 /* Set insert_before to the instruction immediately after the JUMP_INSN
452 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
453 the loop will be correctly handled by copy_loop_body. */
454 insert_before = NEXT_INSN (last_loop_insn);
455
456 /* Set copy_end to the insn before the jump at the end of the loop. */
457 if (GET_CODE (last_loop_insn) == BARRIER)
458 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
459 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
460 {
461#ifdef HAVE_cc0
462 /* The instruction immediately before the JUMP_INSN is a compare
463 instruction which we do not want to copy. */
464 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
465#else
466 /* The instruction immediately before the JUMP_INSN may not be the
467 compare, so we must copy it. */
468 copy_end = PREV_INSN (last_loop_insn);
469#endif
470 }
471 else
472 {
473 /* We currently can't unroll a loop if it doesn't end with a
474 JUMP_INSN. There would need to be a mechanism that recognizes
475 this case, and then inserts a jump after each loop body, which
476 jumps to after the last loop body. */
477 if (loop_dump_stream)
478 fprintf (loop_dump_stream,
479 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
480 return;
481 }
482 }
483 else if (unroll_type == UNROLL_MODULO)
484 {
485 /* Partially unrolling the loop: The compare and branch at the end
486 (the last two instructions) must remain. Don't copy the compare
487 and branch instructions at the end of the loop. Insert the unrolled
488 code immediately before the compare/branch at the end so that the
489 code will fall through to them as before. */
490
491 copy_start = loop_start;
492
493 /* Set insert_before to the jump insn at the end of the loop.
494 Set copy_end to before the jump insn at the end of the loop. */
495 if (GET_CODE (last_loop_insn) == BARRIER)
496 {
497 insert_before = PREV_INSN (last_loop_insn);
498 copy_end = PREV_INSN (insert_before);
499 }
500 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
501 {
502#ifdef HAVE_cc0
503 /* The instruction immediately before the JUMP_INSN is a compare
504 instruction which we do not want to copy or delete. */
505 insert_before = PREV_INSN (last_loop_insn);
506 copy_end = PREV_INSN (insert_before);
507#else
508 /* The instruction immediately before the JUMP_INSN may not be the
509 compare, so we must copy it. */
510 insert_before = last_loop_insn;
511 copy_end = PREV_INSN (last_loop_insn);
512#endif
513 }
514 else
515 {
516 /* We currently can't unroll a loop if it doesn't end with a
517 JUMP_INSN. There would need to be a mechanism that recognizes
518 this case, and then inserts a jump after each loop body, which
519 jumps to after the last loop body. */
520 if (loop_dump_stream)
521 fprintf (loop_dump_stream,
522 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
523 return;
524 }
525 }
526 else
527 {
528 /* Normal case: Must copy the compare and branch instructions at the
529 end of the loop. */
530
531 if (GET_CODE (last_loop_insn) == BARRIER)
532 {
533 /* Loop ends with an unconditional jump and a barrier.
534 Handle this like above, don't copy jump and barrier.
535 This is not strictly necessary, but doing so prevents generating
536 unconditional jumps to an immediately following label.
537
538 This will be corrected below if the target of this jump is
539 not the start_label. */
540
541 insert_before = PREV_INSN (last_loop_insn);
542 copy_end = PREV_INSN (insert_before);
543 }
544 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
545 {
546 /* Set insert_before to immediately after the JUMP_INSN, so that
547 NOTEs at the end of the loop will be correctly handled by
548 copy_loop_body. */
549 insert_before = NEXT_INSN (last_loop_insn);
550 copy_end = last_loop_insn;
551 }
552 else
553 {
554 /* We currently can't unroll a loop if it doesn't end with a
555 JUMP_INSN. There would need to be a mechanism that recognizes
556 this case, and then inserts a jump after each loop body, which
557 jumps to after the last loop body. */
558 if (loop_dump_stream)
559 fprintf (loop_dump_stream,
560 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
561 return;
562 }
563
564 /* If copying exit test branches because they can not be eliminated,
565 then must convert the fall through case of the branch to a jump past
566 the end of the loop. Create a label to emit after the loop and save
567 it for later use. Do not use the label after the loop, if any, since
568 it might be used by insns outside the loop, or there might be insns
569 added before it later by final_[bg]iv_value which must be after
570 the real exit label. */
571 exit_label = gen_label_rtx ();
572
573 insn = loop_start;
574 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
575 insn = NEXT_INSN (insn);
576
577 if (GET_CODE (insn) == JUMP_INSN)
578 {
579 /* The loop starts with a jump down to the exit condition test.
580 Start copying the loop after the barrier following this
581 jump insn. */
582 copy_start = NEXT_INSN (insn);
583
584 /* Splitting induction variables doesn't work when the loop is
585 entered via a jump to the bottom, because then we end up doing
586 a comparison against a new register for a split variable, but
587 we did not execute the set insn for the new register because
588 it was skipped over. */
589 splitting_not_safe = 1;
590 if (loop_dump_stream)
591 fprintf (loop_dump_stream,
592 "Splitting not safe, because loop not entered at top.\n");
593 }
594 else
595 copy_start = loop_start;
596 }
597
598 /* This should always be the first label in the loop. */
599 start_label = NEXT_INSN (copy_start);
600 /* There may be a line number note and/or a loop continue note here. */
601 while (GET_CODE (start_label) == NOTE)
602 start_label = NEXT_INSN (start_label);
603 if (GET_CODE (start_label) != CODE_LABEL)
604 {
605 /* This can happen as a result of jump threading. If the first insns in
606 the loop test the same condition as the loop's backward jump, or the
607 opposite condition, then the backward jump will be modified to point
608 to elsewhere, and the loop's start label is deleted.
609
610 This case currently can not be handled by the loop unrolling code. */
611
612 if (loop_dump_stream)
613 fprintf (loop_dump_stream,
614 "Unrolling failure: unknown insns between BEG note and loop label.\n");
615 return;
616 }
b9b817f0
RS
617 if (LABEL_NAME (start_label))
618 {
619 /* The jump optimization pass must have combined the original start label
620 with a named label for a goto. We can't unroll this case because
621 jumps which go to the named label must be handled differently than
622 jumps to the loop start, and it is impossible to differentiate them
623 in this case. */
624 if (loop_dump_stream)
625 fprintf (loop_dump_stream,
626 "Unrolling failure: loop start label is gone\n");
627 return;
628 }
67f2de41
RK
629
630 if (unroll_type == UNROLL_NAIVE
631 && GET_CODE (last_loop_insn) == BARRIER
632 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
633 {
634 /* In this case, we must copy the jump and barrier, because they will
635 not be converted to jumps to an immediately following label. */
636
637 insert_before = NEXT_INSN (last_loop_insn);
638 copy_end = last_loop_insn;
639 }
640
92905582
JW
641 if (unroll_type == UNROLL_NAIVE
642 && GET_CODE (last_loop_insn) == JUMP_INSN
643 && start_label != JUMP_LABEL (last_loop_insn))
644 {
645 /* ??? The loop ends with a conditional branch that does not branch back
646 to the loop start label. In this case, we must emit an unconditional
647 branch to the loop exit after emitting the final branch.
648 copy_loop_body does not have support for this currently, so we
649 give up. It doesn't seem worthwhile to unroll anyways since
650 unrolling would increase the number of branch instructions
651 executed. */
652 if (loop_dump_stream)
653 fprintf (loop_dump_stream,
654 "Unrolling failure: final conditional branch not to loop start\n");
655 return;
656 }
657
67f2de41
RK
658 /* Allocate a translation table for the labels and insn numbers.
659 They will be filled in as we copy the insns in the loop. */
660
661 max_labelno = max_label_num ();
662 max_insnno = get_max_uid ();
663
664 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
665
bae12186
JW
666 map->integrating = 0;
667
67f2de41
RK
668 /* Allocate the label map. */
669
670 if (max_labelno > 0)
671 {
672 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
673
674 local_label = (char *) alloca (max_labelno);
675 bzero (local_label, max_labelno);
676 }
677 else
678 map->label_map = 0;
679
680 /* Search the loop and mark all local labels, i.e. the ones which have to
681 be distinct labels when copied. For all labels which might be
682 non-local, set their label_map entries to point to themselves.
683 If they happen to be local their label_map entries will be overwritten
684 before the loop body is copied. The label_map entries for local labels
685 will be set to a different value each time the loop body is copied. */
686
687 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
688 {
689 if (GET_CODE (insn) == CODE_LABEL)
690 local_label[CODE_LABEL_NUMBER (insn)] = 1;
691 else if (GET_CODE (insn) == JUMP_INSN)
692 {
693 if (JUMP_LABEL (insn))
694 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
695 = JUMP_LABEL (insn);
696 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
697 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
698 {
699 rtx pat = PATTERN (insn);
700 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
701 int len = XVECLEN (pat, diff_vec_p);
702 rtx label;
703
704 for (i = 0; i < len; i++)
705 {
706 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
707 map->label_map[CODE_LABEL_NUMBER (label)] = label;
708 }
709 }
710 }
711 }
712
713 /* Allocate space for the insn map. */
714
715 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
716
717 /* Set this to zero, to indicate that we are doing loop unrolling,
718 not function inlining. */
719 map->inline_target = 0;
720
721 /* The register and constant maps depend on the number of registers
722 present, so the final maps can't be created until after
723 find_splittable_regs is called. However, they are needed for
724 preconditioning, so we create temporary maps when preconditioning
725 is performed. */
726
727 /* The preconditioning code may allocate two new pseudo registers. */
728 maxregnum = max_reg_num ();
729
730 /* Allocate and zero out the splittable_regs and addr_combined_regs
731 arrays. These must be zeroed here because they will be used if
732 loop preconditioning is performed, and must be zero for that case.
733
734 It is safe to do this here, since the extra registers created by the
735 preconditioning code and find_splittable_regs will never be used
6dc42e49 736 to access the splittable_regs[] and addr_combined_regs[] arrays. */
67f2de41
RK
737
738 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
4c9a05bc 739 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
67f2de41 740 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
4c9a05bc 741 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
67f2de41
RK
742 addr_combined_regs
743 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
4c9a05bc 744 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
ba68fc32
JW
745 /* We must limit it to max_reg_before_loop, because only these pseudo
746 registers have valid regno_first_uid info. Any register created after
747 that is unlikely to be local to the loop anyways. */
748 local_regno = (char *) alloca (max_reg_before_loop);
749 bzero (local_regno, max_reg_before_loop);
7f5b8ca7
RK
750
751 /* Mark all local registers, i.e. the ones which are referenced only
ba68fc32
JW
752 inside the loop. */
753 if (INSN_UID (copy_end) < max_uid_for_loop)
7f5b8ca7
RK
754 {
755 int copy_start_luid = INSN_LUID (copy_start);
756 int copy_end_luid = INSN_LUID (copy_end);
757
b5f89788
RK
758 /* If a register is used in the jump insn, we must not duplicate it
759 since it will also be used outside the loop. */
760 if (GET_CODE (copy_end) == JUMP_INSN)
761 copy_end_luid--;
01e7bd9a
JW
762 /* If copy_start points to the NOTE that starts the loop, then we must
763 use the next luid, because invariant pseudo-regs moved out of the loop
764 have their lifetimes modified to start here, but they are not safe
765 to duplicate. */
766 if (copy_start == loop_start)
767 copy_start_luid++;
b5f89788 768
1fe33d17
JW
769 /* If a pseudo's lifetime is entirely contained within this loop, then we
770 can use a different pseudo in each unrolled copy of the loop. This
771 results in better code. */
ba68fc32 772 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
b1f21e0a
MM
773 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
774 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
775 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
776 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
1fe33d17
JW
777 {
778 /* However, we must also check for loop-carried dependencies.
779 If the value the pseudo has at the end of iteration X is
780 used by iteration X+1, then we can not use a different pseudo
781 for each unrolled copy of the loop. */
782 /* A pseudo is safe if regno_first_uid is a set, and this
783 set dominates all instructions from regno_first_uid to
784 regno_last_uid. */
785 /* ??? This check is simplistic. We would get better code if
786 this check was more sophisticated. */
b1f21e0a 787 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
1fe33d17
JW
788 copy_start, copy_end))
789 local_regno[j] = 1;
790
791 if (loop_dump_stream)
792 {
793 if (local_regno[j])
794 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
795 else
796 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
797 j);
798 }
799 }
7f5b8ca7 800 }
67f2de41
RK
801
802 /* If this loop requires exit tests when unrolled, check to see if we
803 can precondition the loop so as to make the exit tests unnecessary.
804 Just like variable splitting, this is not safe if the loop is entered
805 via a jump to the bottom. Also, can not do this if no strength
806 reduce info, because precondition_loop_p uses this info. */
807
808 /* Must copy the loop body for preconditioning before the following
809 find_splittable_regs call since that will emit insns which need to
810 be after the preconditioned loop copies, but immediately before the
811 unrolled loop copies. */
812
813 /* Also, it is not safe to split induction variables for the preconditioned
814 copies of the loop body. If we split induction variables, then the code
815 assumes that each induction variable can be represented as a function
816 of its initial value and the loop iteration number. This is not true
817 in this case, because the last preconditioned copy of the loop body
818 could be any iteration from the first up to the `unroll_number-1'th,
819 depending on the initial value of the iteration variable. Therefore
820 we can not split induction variables here, because we can not calculate
821 their value. Hence, this code must occur before find_splittable_regs
822 is called. */
823
824 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
825 {
826 rtx initial_value, final_value, increment;
827
828 if (precondition_loop_p (&initial_value, &final_value, &increment,
829 loop_start, loop_end))
830 {
831 register rtx diff, temp;
832 enum machine_mode mode;
833 rtx *labels;
834 int abs_inc, neg_inc;
835
836 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
837
838 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
839 map->const_age_map = (unsigned *) alloca (maxregnum
840 * sizeof (unsigned));
841 map->const_equiv_map_size = maxregnum;
842 global_const_equiv_map = map->const_equiv_map;
e39bf2d9 843 global_const_equiv_map_size = maxregnum;
67f2de41
RK
844
845 init_reg_map (map, maxregnum);
846
847 /* Limit loop unrolling to 4, since this will make 7 copies of
848 the loop body. */
849 if (unroll_number > 4)
850 unroll_number = 4;
851
852 /* Save the absolute value of the increment, and also whether or
853 not it is negative. */
854 neg_inc = 0;
855 abs_inc = INTVAL (increment);
856 if (abs_inc < 0)
857 {
858 abs_inc = - abs_inc;
859 neg_inc = 1;
860 }
861
862 start_sequence ();
863
864 /* Decide what mode to do these calculations in. Choose the larger
865 of final_value's mode and initial_value's mode, or a full-word if
866 both are constants. */
867 mode = GET_MODE (final_value);
868 if (mode == VOIDmode)
869 {
870 mode = GET_MODE (initial_value);
871 if (mode == VOIDmode)
872 mode = word_mode;
873 }
874 else if (mode != GET_MODE (initial_value)
875 && (GET_MODE_SIZE (mode)
876 < GET_MODE_SIZE (GET_MODE (initial_value))))
877 mode = GET_MODE (initial_value);
878
879 /* Calculate the difference between the final and initial values.
880 Final value may be a (plus (reg x) (const_int 1)) rtx.
881 Let the following cse pass simplify this if initial value is
882 a constant.
883
884 We must copy the final and initial values here to avoid
885 improperly shared rtl. */
886
887 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
c166a311 888 copy_rtx (initial_value), NULL_RTX, 0,
67f2de41
RK
889 OPTAB_LIB_WIDEN);
890
891 /* Now calculate (diff % (unroll * abs (increment))) by using an
892 and instruction. */
893 diff = expand_binop (GET_MODE (diff), and_optab, diff,
c166a311
CH
894 GEN_INT (unroll_number * abs_inc - 1),
895 NULL_RTX, 0, OPTAB_LIB_WIDEN);
67f2de41
RK
896
897 /* Now emit a sequence of branches to jump to the proper precond
898 loop entry point. */
899
900 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
901 for (i = 0; i < unroll_number; i++)
902 labels[i] = gen_label_rtx ();
903
1dcfa896
JW
904 /* Check for the case where the initial value is greater than or
905 equal to the final value. In that case, we want to execute
906 exactly one loop iteration. The code below will fail for this
907 case. This check does not apply if the loop has a NE
908 comparison at the end. */
7edd39eb 909
1dcfa896
JW
910 if (loop_comparison_code != NE)
911 {
912 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
913 NULL_RTX, mode, 0, 0);
914 if (neg_inc)
915 emit_jump_insn (gen_ble (labels[1]));
916 else
917 emit_jump_insn (gen_bge (labels[1]));
918 JUMP_LABEL (get_last_insn ()) = labels[1];
919 LABEL_NUSES (labels[1])++;
920 }
7edd39eb 921
67f2de41
RK
922 /* Assuming the unroll_number is 4, and the increment is 2, then
923 for a negative increment: for a positive increment:
924 diff = 0,1 precond 0 diff = 0,7 precond 0
925 diff = 2,3 precond 3 diff = 1,2 precond 1
926 diff = 4,5 precond 2 diff = 3,4 precond 2
927 diff = 6,7 precond 1 diff = 5,6 precond 3 */
928
929 /* We only need to emit (unroll_number - 1) branches here, the
930 last case just falls through to the following code. */
931
932 /* ??? This would give better code if we emitted a tree of branches
933 instead of the current linear list of branches. */
934
935 for (i = 0; i < unroll_number - 1; i++)
936 {
937 int cmp_const;
7edd39eb 938 enum rtx_code cmp_code;
67f2de41
RK
939
940 /* For negative increments, must invert the constant compared
941 against, except when comparing against zero. */
942 if (i == 0)
7edd39eb
RK
943 {
944 cmp_const = 0;
945 cmp_code = EQ;
946 }
67f2de41 947 else if (neg_inc)
7edd39eb
RK
948 {
949 cmp_const = unroll_number - i;
950 cmp_code = GE;
951 }
67f2de41 952 else
7edd39eb
RK
953 {
954 cmp_const = i;
955 cmp_code = LE;
956 }
67f2de41 957
c166a311 958 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
7edd39eb 959 cmp_code, NULL_RTX, mode, 0, 0);
67f2de41
RK
960
961 if (i == 0)
962 emit_jump_insn (gen_beq (labels[i]));
963 else if (neg_inc)
964 emit_jump_insn (gen_bge (labels[i]));
965 else
966 emit_jump_insn (gen_ble (labels[i]));
967 JUMP_LABEL (get_last_insn ()) = labels[i];
968 LABEL_NUSES (labels[i])++;
969 }
970
971 /* If the increment is greater than one, then we need another branch,
972 to handle other cases equivalent to 0. */
973
974 /* ??? This should be merged into the code above somehow to help
975 simplify the code here, and reduce the number of branches emitted.
976 For the negative increment case, the branch here could easily
977 be merged with the `0' case branch above. For the positive
978 increment case, it is not clear how this can be simplified. */
979
980 if (abs_inc != 1)
981 {
982 int cmp_const;
7edd39eb 983 enum rtx_code cmp_code;
67f2de41
RK
984
985 if (neg_inc)
7edd39eb
RK
986 {
987 cmp_const = abs_inc - 1;
988 cmp_code = LE;
989 }
67f2de41 990 else
7edd39eb
RK
991 {
992 cmp_const = abs_inc * (unroll_number - 1) + 1;
993 cmp_code = GE;
994 }
67f2de41 995
7edd39eb 996 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
c166a311 997 mode, 0, 0);
67f2de41
RK
998
999 if (neg_inc)
1000 emit_jump_insn (gen_ble (labels[0]));
1001 else
1002 emit_jump_insn (gen_bge (labels[0]));
1003 JUMP_LABEL (get_last_insn ()) = labels[0];
1004 LABEL_NUSES (labels[0])++;
1005 }
1006
1007 sequence = gen_sequence ();
1008 end_sequence ();
1009 emit_insn_before (sequence, loop_start);
1010
1011 /* Only the last copy of the loop body here needs the exit
1012 test, so set copy_end to exclude the compare/branch here,
1013 and then reset it inside the loop when get to the last
1014 copy. */
1015
1016 if (GET_CODE (last_loop_insn) == BARRIER)
1017 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1018 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1019 {
1020#ifdef HAVE_cc0
b4ac57ab 1021 /* The immediately preceding insn is a compare which we do not
67f2de41
RK
1022 want to copy. */
1023 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1024#else
b4ac57ab 1025 /* The immediately preceding insn may not be a compare, so we
67f2de41
RK
1026 must copy it. */
1027 copy_end = PREV_INSN (last_loop_insn);
1028#endif
1029 }
1030 else
1031 abort ();
1032
1033 for (i = 1; i < unroll_number; i++)
1034 {
1035 emit_label_after (labels[unroll_number - i],
1036 PREV_INSN (loop_start));
1037
4c9a05bc
RK
1038 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1039 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1040 bzero ((char *) map->const_age_map,
1041 maxregnum * sizeof (unsigned));
67f2de41
RK
1042 map->const_age = 0;
1043
1044 for (j = 0; j < max_labelno; j++)
1045 if (local_label[j])
1046 map->label_map[j] = gen_label_rtx ();
1047
ba68fc32 1048 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
7f5b8ca7 1049 if (local_regno[j])
9ae8ffe7
JL
1050 {
1051 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1052 record_base_value (REGNO (map->reg_map[j]),
1053 regno_reg_rtx[j]);
1054 }
67f2de41
RK
1055 /* The last copy needs the compare/branch insns at the end,
1056 so reset copy_end here if the loop ends with a conditional
1057 branch. */
1058
1059 if (i == unroll_number - 1)
1060 {
1061 if (GET_CODE (last_loop_insn) == BARRIER)
1062 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1063 else
1064 copy_end = last_loop_insn;
1065 }
1066
1067 /* None of the copies are the `last_iteration', so just
1068 pass zero for that parameter. */
1069 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1070 unroll_type, start_label, loop_end,
1071 loop_start, copy_end);
1072 }
1073 emit_label_after (labels[0], PREV_INSN (loop_start));
1074
1075 if (GET_CODE (last_loop_insn) == BARRIER)
1076 {
1077 insert_before = PREV_INSN (last_loop_insn);
1078 copy_end = PREV_INSN (insert_before);
1079 }
1080 else
1081 {
1082#ifdef HAVE_cc0
b4ac57ab 1083 /* The immediately preceding insn is a compare which we do not
67f2de41
RK
1084 want to copy. */
1085 insert_before = PREV_INSN (last_loop_insn);
1086 copy_end = PREV_INSN (insert_before);
1087#else
b4ac57ab 1088 /* The immediately preceding insn may not be a compare, so we
67f2de41
RK
1089 must copy it. */
1090 insert_before = last_loop_insn;
1091 copy_end = PREV_INSN (last_loop_insn);
1092#endif
1093 }
1094
1095 /* Set unroll type to MODULO now. */
1096 unroll_type = UNROLL_MODULO;
1097 loop_preconditioned = 1;
237a9795 1098
8c660648 1099#ifdef HAIFA
237a9795
JL
1100 /* Fix the initial value for the loop as needed. */
1101 if (loop_n_iterations <= 0)
37aa45a2 1102 loop_start_value [uid_loop_num [INSN_UID (loop_start)]]
237a9795 1103 = initial_value;
8c660648 1104#endif
67f2de41
RK
1105 }
1106 }
1107
1108 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1109 the loop unless all loops are being unrolled. */
1110 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1111 {
1112 if (loop_dump_stream)
1113 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1114 return;
1115 }
1116
1117 /* At this point, we are guaranteed to unroll the loop. */
1118
237a9795 1119 /* Keep track of the unroll factor for each loop. */
8c660648 1120 if (unroll_type == UNROLL_COMPLETELY)
37aa45a2 1121 loop_unroll_factor [uid_loop_num [INSN_UID (loop_start)]] = -1;
8c660648 1122 else
37aa45a2 1123 loop_unroll_factor [uid_loop_num [INSN_UID (loop_start)]] = unroll_number;
8c660648
JL
1124
1125
67f2de41
RK
1126 /* For each biv and giv, determine whether it can be safely split into
1127 a different variable for each unrolled copy of the loop body.
1128 We precalculate and save this info here, since computing it is
1129 expensive.
1130
1131 Do this before deleting any instructions from the loop, so that
1132 back_branch_in_range_p will work correctly. */
1133
1134 if (splitting_not_safe)
1135 temp = 0;
1136 else
1137 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1138 end_insert_before, unroll_number);
1139
1140 /* find_splittable_regs may have created some new registers, so must
1141 reallocate the reg_map with the new larger size, and must realloc
1142 the constant maps also. */
1143
1144 maxregnum = max_reg_num ();
1145 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1146
1147 init_reg_map (map, maxregnum);
1148
1149 /* Space is needed in some of the map for new registers, so new_maxregnum
1150 is an (over)estimate of how many registers will exist at the end. */
1151 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1152
1153 /* Must realloc space for the constant maps, because the number of registers
1154 may have changed. */
1155
1156 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1157 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1158
8dc0b179 1159 map->const_equiv_map_size = new_maxregnum;
67f2de41 1160 global_const_equiv_map = map->const_equiv_map;
e39bf2d9 1161 global_const_equiv_map_size = new_maxregnum;
67f2de41
RK
1162
1163 /* Search the list of bivs and givs to find ones which need to be remapped
1164 when split, and set their reg_map entry appropriately. */
1165
1166 for (bl = loop_iv_list; bl; bl = bl->next)
1167 {
1168 if (REGNO (bl->biv->src_reg) != bl->regno)
1169 map->reg_map[bl->regno] = bl->biv->src_reg;
1170#if 0
1171 /* Currently, non-reduced/final-value givs are never split. */
1172 for (v = bl->giv; v; v = v->next_iv)
1173 if (REGNO (v->src_reg) != bl->regno)
1174 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1175#endif
1176 }
1177
8b4904a3
RK
1178 /* Use our current register alignment and pointer flags. */
1179 map->regno_pointer_flag = regno_pointer_flag;
1180 map->regno_pointer_align = regno_pointer_align;
1181
67f2de41
RK
1182 /* If the loop is being partially unrolled, and the iteration variables
1183 are being split, and are being renamed for the split, then must fix up
2b59419a 1184 the compare/jump instruction at the end of the loop to refer to the new
67f2de41
RK
1185 registers. This compare isn't copied, so the registers used in it
1186 will never be replaced if it isn't done here. */
1187
1188 if (unroll_type == UNROLL_MODULO)
1189 {
1190 insn = NEXT_INSN (copy_end);
2b59419a
JW
1191 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1192 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
67f2de41
RK
1193 }
1194
1195 /* For unroll_number - 1 times, make a copy of each instruction
1196 between copy_start and copy_end, and insert these new instructions
1197 before the end of the loop. */
1198
1199 for (i = 0; i < unroll_number; i++)
1200 {
4c9a05bc
RK
1201 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1202 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1203 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
67f2de41
RK
1204 map->const_age = 0;
1205
1206 for (j = 0; j < max_labelno; j++)
1207 if (local_label[j])
1208 map->label_map[j] = gen_label_rtx ();
1209
ba68fc32 1210 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
7f5b8ca7 1211 if (local_regno[j])
9ae8ffe7
JL
1212 {
1213 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1214 record_base_value (REGNO (map->reg_map[j]),
1215 regno_reg_rtx[j]);
1216 }
7f5b8ca7 1217
67f2de41
RK
1218 /* If loop starts with a branch to the test, then fix it so that
1219 it points to the test of the first unrolled copy of the loop. */
1220 if (i == 0 && loop_start != copy_start)
1221 {
1222 insn = PREV_INSN (copy_start);
1223 pattern = PATTERN (insn);
1224
1225 tem = map->label_map[CODE_LABEL_NUMBER
1226 (XEXP (SET_SRC (pattern), 0))];
1227 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1228
1229 /* Set the jump label so that it can be used by later loop unrolling
1230 passes. */
1231 JUMP_LABEL (insn) = tem;
1232 LABEL_NUSES (tem)++;
1233 }
1234
1235 copy_loop_body (copy_start, copy_end, map, exit_label,
1236 i == unroll_number - 1, unroll_type, start_label,
1237 loop_end, insert_before, insert_before);
1238 }
1239
1240 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1241 insn to be deleted. This prevents any runaway delete_insn call from
1242 more insns that it should, as it always stops at a CODE_LABEL. */
1243
1244 /* Delete the compare and branch at the end of the loop if completely
1245 unrolling the loop. Deleting the backward branch at the end also
1246 deletes the code label at the start of the loop. This is done at
1247 the very end to avoid problems with back_branch_in_range_p. */
1248
1249 if (unroll_type == UNROLL_COMPLETELY)
1250 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1251 else
1252 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1253
1254 /* Delete all of the original loop instructions. Don't delete the
1255 LOOP_BEG note, or the first code label in the loop. */
1256
1257 insn = NEXT_INSN (copy_start);
1258 while (insn != safety_label)
1259 {
1260 if (insn != start_label)
1261 insn = delete_insn (insn);
1262 else
1263 insn = NEXT_INSN (insn);
1264 }
1265
1266 /* Can now delete the 'safety' label emitted to protect us from runaway
1267 delete_insn calls. */
1268 if (INSN_DELETED_P (safety_label))
1269 abort ();
1270 delete_insn (safety_label);
1271
1272 /* If exit_label exists, emit it after the loop. Doing the emit here
1273 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1274 This is needed so that mostly_true_jump in reorg.c will treat jumps
1275 to this loop end label correctly, i.e. predict that they are usually
1276 not taken. */
1277 if (exit_label)
1278 emit_label_after (exit_label, loop_end);
67f2de41
RK
1279}
1280\f
1281/* Return true if the loop can be safely, and profitably, preconditioned
1282 so that the unrolled copies of the loop body don't need exit tests.
1283
1284 This only works if final_value, initial_value and increment can be
1285 determined, and if increment is a constant power of 2.
1286 If increment is not a power of 2, then the preconditioning modulo
1287 operation would require a real modulo instead of a boolean AND, and this
1288 is not considered `profitable'. */
1289
1290/* ??? If the loop is known to be executed very many times, or the machine
1291 has a very cheap divide instruction, then preconditioning is a win even
1292 when the increment is not a power of 2. Use RTX_COST to compute
1293 whether divide is cheap. */
1294
1295static int
1296precondition_loop_p (initial_value, final_value, increment, loop_start,
1297 loop_end)
1298 rtx *initial_value, *final_value, *increment;
1299 rtx loop_start, loop_end;
1300{
67f2de41
RK
1301
1302 if (loop_n_iterations > 0)
1303 {
1304 *initial_value = const0_rtx;
1305 *increment = const1_rtx;
c166a311 1306 *final_value = GEN_INT (loop_n_iterations);
67f2de41
RK
1307
1308 if (loop_dump_stream)
1309 fprintf (loop_dump_stream,
1310 "Preconditioning: Success, number of iterations known, %d.\n",
1311 loop_n_iterations);
1312 return 1;
1313 }
1314
1315 if (loop_initial_value == 0)
1316 {
1317 if (loop_dump_stream)
1318 fprintf (loop_dump_stream,
1319 "Preconditioning: Could not find initial value.\n");
1320 return 0;
1321 }
1322 else if (loop_increment == 0)
1323 {
1324 if (loop_dump_stream)
1325 fprintf (loop_dump_stream,
1326 "Preconditioning: Could not find increment value.\n");
1327 return 0;
1328 }
1329 else if (GET_CODE (loop_increment) != CONST_INT)
1330 {
1331 if (loop_dump_stream)
1332 fprintf (loop_dump_stream,
1333 "Preconditioning: Increment not a constant.\n");
1334 return 0;
1335 }
1336 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1337 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1338 {
1339 if (loop_dump_stream)
1340 fprintf (loop_dump_stream,
1341 "Preconditioning: Increment not a constant power of 2.\n");
1342 return 0;
1343 }
1344
1345 /* Unsigned_compare and compare_dir can be ignored here, since they do
1346 not matter for preconditioning. */
1347
1348 if (loop_final_value == 0)
1349 {
1350 if (loop_dump_stream)
1351 fprintf (loop_dump_stream,
1352 "Preconditioning: EQ comparison loop.\n");
1353 return 0;
1354 }
1355
1356 /* Must ensure that final_value is invariant, so call invariant_p to
1357 check. Before doing so, must check regno against max_reg_before_loop
6dc42e49 1358 to make sure that the register is in the range covered by invariant_p.
67f2de41
RK
1359 If it isn't, then it is most likely a biv/giv which by definition are
1360 not invariant. */
1361 if ((GET_CODE (loop_final_value) == REG
1362 && REGNO (loop_final_value) >= max_reg_before_loop)
1363 || (GET_CODE (loop_final_value) == PLUS
1364 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1365 || ! invariant_p (loop_final_value))
1366 {
1367 if (loop_dump_stream)
1368 fprintf (loop_dump_stream,
1369 "Preconditioning: Final value not invariant.\n");
1370 return 0;
1371 }
1372
1373 /* Fail for floating point values, since the caller of this function
1374 does not have code to deal with them. */
1375 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
412dc348 1376 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
67f2de41
RK
1377 {
1378 if (loop_dump_stream)
1379 fprintf (loop_dump_stream,
1380 "Preconditioning: Floating point final or initial value.\n");
1381 return 0;
1382 }
1383
1384 /* Now set initial_value to be the iteration_var, since that may be a
1385 simpler expression, and is guaranteed to be correct if all of the
1386 above tests succeed.
1387
1388 We can not use the initial_value as calculated, because it will be
1389 one too small for loops of the form "while (i-- > 0)". We can not
1390 emit code before the loop_skip_over insns to fix this problem as this
1391 will then give a number one too large for loops of the form
1392 "while (--i > 0)".
1393
1394 Note that all loops that reach here are entered at the top, because
1395 this function is not called if the loop starts with a jump. */
1396
1397 /* Fail if loop_iteration_var is not live before loop_start, since we need
1398 to test its value in the preconditioning code. */
1399
b1f21e0a 1400 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
67f2de41
RK
1401 > INSN_LUID (loop_start))
1402 {
1403 if (loop_dump_stream)
1404 fprintf (loop_dump_stream,
1405 "Preconditioning: Iteration var not live before loop start.\n");
1406 return 0;
1407 }
1408
1409 *initial_value = loop_iteration_var;
1410 *increment = loop_increment;
1411 *final_value = loop_final_value;
1412
1413 /* Success! */
1414 if (loop_dump_stream)
1415 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1416 return 1;
1417}
1418
1419
1420/* All pseudo-registers must be mapped to themselves. Two hard registers
1421 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1422 REGNUM, to avoid function-inlining specific conversions of these
1423 registers. All other hard regs can not be mapped because they may be
1424 used with different
1425 modes. */
1426
1427static void
1428init_reg_map (map, maxregnum)
1429 struct inline_remap *map;
1430 int maxregnum;
1431{
1432 int i;
1433
1434 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1435 map->reg_map[i] = regno_reg_rtx[i];
1436 /* Just clear the rest of the entries. */
1437 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1438 map->reg_map[i] = 0;
1439
1440 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1441 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1442 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1443 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1444}
1445\f
1446/* Strength-reduction will often emit code for optimized biv/givs which
1447 calculates their value in a temporary register, and then copies the result
1448 to the iv. This procedure reconstructs the pattern computing the iv;
1449 verifying that all operands are of the proper form.
1450
1451 The return value is the amount that the giv is incremented by. */
1452
1453static rtx
1454calculate_giv_inc (pattern, src_insn, regno)
1455 rtx pattern, src_insn;
1456 int regno;
1457{
1458 rtx increment;
6511b4f8
RS
1459 rtx increment_total = 0;
1460 int tries = 0;
67f2de41 1461
6511b4f8 1462 retry:
67f2de41
RK
1463 /* Verify that we have an increment insn here. First check for a plus
1464 as the set source. */
1465 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1466 {
1467 /* SR sometimes computes the new giv value in a temp, then copies it
1468 to the new_reg. */
1469 src_insn = PREV_INSN (src_insn);
1470 pattern = PATTERN (src_insn);
1471 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1472 abort ();
1473
1474 /* The last insn emitted is not needed, so delete it to avoid confusing
1475 the second cse pass. This insn sets the giv unnecessarily. */
1476 delete_insn (get_last_insn ());
1477 }
1478
1479 /* Verify that we have a constant as the second operand of the plus. */
1480 increment = XEXP (SET_SRC (pattern), 1);
1481 if (GET_CODE (increment) != CONST_INT)
1482 {
1483 /* SR sometimes puts the constant in a register, especially if it is
1484 too big to be an add immed operand. */
6511b4f8
RS
1485 src_insn = PREV_INSN (src_insn);
1486 increment = SET_SRC (PATTERN (src_insn));
67f2de41
RK
1487
1488 /* SR may have used LO_SUM to compute the constant if it is too large
1489 for a load immed operand. In this case, the constant is in operand
1490 one of the LO_SUM rtx. */
1491 if (GET_CODE (increment) == LO_SUM)
1492 increment = XEXP (increment, 1);
92065e1f 1493 else if (GET_CODE (increment) == IOR
2599dcc7
JW
1494 || GET_CODE (increment) == ASHIFT
1495 || GET_CODE (increment) == PLUS)
8700c494 1496 {
92065e1f 1497 /* The rs6000 port loads some constants with IOR.
2599dcc7 1498 The alpha port loads some constants with ASHIFT and PLUS. */
8700c494 1499 rtx second_part = XEXP (increment, 1);
92065e1f 1500 enum rtx_code code = GET_CODE (increment);
8700c494
JW
1501
1502 src_insn = PREV_INSN (src_insn);
1503 increment = SET_SRC (PATTERN (src_insn));
1504 /* Don't need the last insn anymore. */
1505 delete_insn (get_last_insn ());
1506
1507 if (GET_CODE (second_part) != CONST_INT
1508 || GET_CODE (increment) != CONST_INT)
1509 abort ();
1510
92065e1f
RK
1511 if (code == IOR)
1512 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
2599dcc7
JW
1513 else if (code == PLUS)
1514 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
92065e1f
RK
1515 else
1516 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
8700c494 1517 }
67f2de41
RK
1518
1519 if (GET_CODE (increment) != CONST_INT)
1520 abort ();
1521
8700c494 1522 /* The insn loading the constant into a register is no longer needed,
67f2de41
RK
1523 so delete it. */
1524 delete_insn (get_last_insn ());
1525 }
1526
6511b4f8
RS
1527 if (increment_total)
1528 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1529 else
1530 increment_total = increment;
1531
1532 /* Check that the source register is the same as the register we expected
1533 to see as the source. If not, something is seriously wrong. */
67f2de41
RK
1534 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1535 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
6511b4f8
RS
1536 {
1537 /* Some machines (e.g. the romp), may emit two add instructions for
1538 certain constants, so lets try looking for another add immediately
1539 before this one if we have only seen one add insn so far. */
1540
1541 if (tries == 0)
1542 {
1543 tries++;
1544
1545 src_insn = PREV_INSN (src_insn);
1546 pattern = PATTERN (src_insn);
1547
1548 delete_insn (get_last_insn ());
1549
1550 goto retry;
1551 }
1552
1553 abort ();
1554 }
67f2de41 1555
6511b4f8 1556 return increment_total;
67f2de41
RK
1557}
1558
6bd43524
RS
1559/* Copy REG_NOTES, except for insn references, because not all insn_map
1560 entries are valid yet. We do need to copy registers now though, because
1561 the reg_map entries can change during copying. */
1562
1563static rtx
1564initial_reg_note_copy (notes, map)
1565 rtx notes;
1566 struct inline_remap *map;
1567{
1568 rtx copy;
1569
1570 if (notes == 0)
1571 return 0;
1572
1573 copy = rtx_alloc (GET_CODE (notes));
1574 PUT_MODE (copy, GET_MODE (notes));
1575
1576 if (GET_CODE (notes) == EXPR_LIST)
1577 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1578 else if (GET_CODE (notes) == INSN_LIST)
1579 /* Don't substitute for these yet. */
1580 XEXP (copy, 0) = XEXP (notes, 0);
1581 else
1582 abort ();
1583
1584 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1585
1586 return copy;
1587}
1588
1589/* Fixup insn references in copied REG_NOTES. */
1590
1591static void
1592final_reg_note_copy (notes, map)
1593 rtx notes;
1594 struct inline_remap *map;
1595{
1596 rtx note;
1597
1598 for (note = notes; note; note = XEXP (note, 1))
1599 if (GET_CODE (note) == INSN_LIST)
1600 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1601}
67f2de41
RK
1602
1603/* Copy each instruction in the loop, substituting from map as appropriate.
1604 This is very similar to a loop in expand_inline_function. */
1605
1606static void
1607copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1608 unroll_type, start_label, loop_end, insert_before,
1609 copy_notes_from)
1610 rtx copy_start, copy_end;
1611 struct inline_remap *map;
87f60669 1612 rtx exit_label;
67f2de41
RK
1613 int last_iteration;
1614 enum unroll_types unroll_type;
1615 rtx start_label, loop_end, insert_before, copy_notes_from;
1616{
1617 rtx insn, pattern;
1618 rtx tem, copy;
1619 int dest_reg_was_split, i;
1620 rtx cc0_insn = 0;
1621 rtx final_label = 0;
1622 rtx giv_inc, giv_dest_reg, giv_src_reg;
1623
1624 /* If this isn't the last iteration, then map any references to the
1625 start_label to final_label. Final label will then be emitted immediately
1626 after the end of this loop body if it was ever used.
1627
1628 If this is the last iteration, then map references to the start_label
1629 to itself. */
1630 if (! last_iteration)
1631 {
1632 final_label = gen_label_rtx ();
1633 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1634 }
1635 else
1636 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1637
1638 start_sequence ();
1639
1640 insn = copy_start;
1641 do
1642 {
1643 insn = NEXT_INSN (insn);
1644
1645 map->orig_asm_operands_vector = 0;
1646
1647 switch (GET_CODE (insn))
1648 {
1649 case INSN:
1650 pattern = PATTERN (insn);
1651 copy = 0;
1652 giv_inc = 0;
1653
1654 /* Check to see if this is a giv that has been combined with
1655 some split address givs. (Combined in the sense that
1656 `combine_givs' in loop.c has put two givs in the same register.)
1657 In this case, we must search all givs based on the same biv to
1658 find the address givs. Then split the address givs.
1659 Do this before splitting the giv, since that may map the
1660 SET_DEST to a new register. */
1661
1662 if (GET_CODE (pattern) == SET
1663 && GET_CODE (SET_DEST (pattern)) == REG
1664 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1665 {
1666 struct iv_class *bl;
1667 struct induction *v, *tv;
1668 int regno = REGNO (SET_DEST (pattern));
1669
1670 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1671 bl = reg_biv_class[REGNO (v->src_reg)];
1672
1673 /* Although the giv_inc amount is not needed here, we must call
1674 calculate_giv_inc here since it might try to delete the
1675 last insn emitted. If we wait until later to call it,
1676 we might accidentally delete insns generated immediately
1677 below by emit_unrolled_add. */
1678
1679 giv_inc = calculate_giv_inc (pattern, insn, regno);
1680
1681 /* Now find all address giv's that were combined with this
1682 giv 'v'. */
1683 for (tv = bl->giv; tv; tv = tv->next_iv)
1684 if (tv->giv_type == DEST_ADDR && tv->same == v)
1685 {
7085bad3
JW
1686 int this_giv_inc;
1687
1688 /* If this DEST_ADDR giv was not split, then ignore it. */
1689 if (*tv->location != tv->dest_reg)
1690 continue;
2b4bd1bc
JW
1691
1692 /* Scale this_giv_inc if the multiplicative factors of
1693 the two givs are different. */
7085bad3 1694 this_giv_inc = INTVAL (giv_inc);
2b4bd1bc
JW
1695 if (tv->mult_val != v->mult_val)
1696 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1697 * INTVAL (tv->mult_val));
1698
1699 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
67f2de41
RK
1700 *tv->location = tv->dest_reg;
1701
1702 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1703 {
1704 /* Must emit an insn to increment the split address
1705 giv. Add in the const_adjust field in case there
1706 was a constant eliminated from the address. */
1707 rtx value, dest_reg;
1708
1709 /* tv->dest_reg will be either a bare register,
1710 or else a register plus a constant. */
1711 if (GET_CODE (tv->dest_reg) == REG)
1712 dest_reg = tv->dest_reg;
1713 else
1714 dest_reg = XEXP (tv->dest_reg, 0);
1715
8d092274 1716 /* Check for shared address givs, and avoid
9faa82d8 1717 incrementing the shared pseudo reg more than
8d092274 1718 once. */
9ae8ffe7 1719 if (! tv->same_insn && ! tv->shared)
8d092274
JW
1720 {
1721 /* tv->dest_reg may actually be a (PLUS (REG)
1722 (CONST)) here, so we must call plus_constant
1723 to add the const_adjust amount before calling
1724 emit_unrolled_add below. */
1725 value = plus_constant (tv->dest_reg,
1726 tv->const_adjust);
1727
1728 /* The constant could be too large for an add
1729 immediate, so can't directly emit an insn
1730 here. */
1731 emit_unrolled_add (dest_reg, XEXP (value, 0),
1732 XEXP (value, 1));
1733 }
67f2de41
RK
1734
1735 /* Reset the giv to be just the register again, in case
412dc348
RK
1736 it is used after the set we have just emitted.
1737 We must subtract the const_adjust factor added in
1738 above. */
1739 tv->dest_reg = plus_constant (dest_reg,
1740 - tv->const_adjust);
67f2de41
RK
1741 *tv->location = tv->dest_reg;
1742 }
1743 }
1744 }
1745
1746 /* If this is a setting of a splittable variable, then determine
1747 how to split the variable, create a new set based on this split,
1748 and set up the reg_map so that later uses of the variable will
1749 use the new split variable. */
1750
1751 dest_reg_was_split = 0;
1752
1753 if (GET_CODE (pattern) == SET
1754 && GET_CODE (SET_DEST (pattern)) == REG
1755 && splittable_regs[REGNO (SET_DEST (pattern))])
1756 {
1757 int regno = REGNO (SET_DEST (pattern));
1758
1759 dest_reg_was_split = 1;
1760
1761 /* Compute the increment value for the giv, if it wasn't
1762 already computed above. */
1763
1764 if (giv_inc == 0)
1765 giv_inc = calculate_giv_inc (pattern, insn, regno);
1766 giv_dest_reg = SET_DEST (pattern);
1767 giv_src_reg = SET_DEST (pattern);
1768
1769 if (unroll_type == UNROLL_COMPLETELY)
1770 {
1771 /* Completely unrolling the loop. Set the induction
1772 variable to a known constant value. */
1773
1774 /* The value in splittable_regs may be an invariant
1775 value, so we must use plus_constant here. */
1776 splittable_regs[regno]
1777 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1778
1779 if (GET_CODE (splittable_regs[regno]) == PLUS)
1780 {
1781 giv_src_reg = XEXP (splittable_regs[regno], 0);
1782 giv_inc = XEXP (splittable_regs[regno], 1);
1783 }
1784 else
1785 {
1786 /* The splittable_regs value must be a REG or a
1787 CONST_INT, so put the entire value in the giv_src_reg
1788 variable. */
1789 giv_src_reg = splittable_regs[regno];
1790 giv_inc = const0_rtx;
1791 }
1792 }
1793 else
1794 {
1795 /* Partially unrolling loop. Create a new pseudo
1796 register for the iteration variable, and set it to
1797 be a constant plus the original register. Except
1798 on the last iteration, when the result has to
1799 go back into the original iteration var register. */
1800
1801 /* Handle bivs which must be mapped to a new register
1802 when split. This happens for bivs which need their
1803 final value set before loop entry. The new register
1804 for the biv was stored in the biv's first struct
1805 induction entry by find_splittable_regs. */
1806
1807 if (regno < max_reg_before_loop
1808 && reg_iv_type[regno] == BASIC_INDUCT)
1809 {
1810 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1811 giv_dest_reg = giv_src_reg;
1812 }
1813
1814#if 0
1815 /* If non-reduced/final-value givs were split, then
1816 this would have to remap those givs also. See
1817 find_splittable_regs. */
1818#endif
1819
1820 splittable_regs[regno]
c166a311 1821 = GEN_INT (INTVAL (giv_inc)
67f2de41
RK
1822 + INTVAL (splittable_regs[regno]));
1823 giv_inc = splittable_regs[regno];
1824
1825 /* Now split the induction variable by changing the dest
1826 of this insn to a new register, and setting its
1827 reg_map entry to point to this new register.
1828
1829 If this is the last iteration, and this is the last insn
1830 that will update the iv, then reuse the original dest,
1831 to ensure that the iv will have the proper value when
1832 the loop exits or repeats.
1833
1834 Using splittable_regs_updates here like this is safe,
1835 because it can only be greater than one if all
1836 instructions modifying the iv are always executed in
1837 order. */
1838
1839 if (! last_iteration
1840 || (splittable_regs_updates[regno]-- != 1))
1841 {
1842 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1843 giv_dest_reg = tem;
1844 map->reg_map[regno] = tem;
9ae8ffe7 1845 record_base_value (REGNO (tem), giv_src_reg);
67f2de41
RK
1846 }
1847 else
1848 map->reg_map[regno] = giv_src_reg;
1849 }
1850
1851 /* The constant being added could be too large for an add
1852 immediate, so can't directly emit an insn here. */
1853 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1854 copy = get_last_insn ();
1855 pattern = PATTERN (copy);
1856 }
1857 else
1858 {
1859 pattern = copy_rtx_and_substitute (pattern, map);
1860 copy = emit_insn (pattern);
1861 }
6bd43524 1862 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
67f2de41
RK
1863
1864#ifdef HAVE_cc0
1865 /* If this insn is setting CC0, it may need to look at
1866 the insn that uses CC0 to see what type of insn it is.
1867 In that case, the call to recog via validate_change will
1868 fail. So don't substitute constants here. Instead,
1869 do it when we emit the following insn.
1870
1871 For example, see the pyr.md file. That machine has signed and
1872 unsigned compares. The compare patterns must check the
1873 following branch insn to see which what kind of compare to
1874 emit.
1875
1876 If the previous insn set CC0, substitute constants on it as
1877 well. */
e65886db 1878 if (sets_cc0_p (PATTERN (copy)) != 0)
67f2de41
RK
1879 cc0_insn = copy;
1880 else
1881 {
1882 if (cc0_insn)
1883 try_constants (cc0_insn, map);
1884 cc0_insn = 0;
1885 try_constants (copy, map);
1886 }
1887#else
1888 try_constants (copy, map);
1889#endif
1890
1891 /* Make split induction variable constants `permanent' since we
1892 know there are no backward branches across iteration variable
1893 settings which would invalidate this. */
1894 if (dest_reg_was_split)
1895 {
1896 int regno = REGNO (SET_DEST (pattern));
1897
8dc0b179
RS
1898 if (regno < map->const_equiv_map_size
1899 && map->const_age_map[regno] == map->const_age)
67f2de41
RK
1900 map->const_age_map[regno] = -1;
1901 }
1902 break;
1903
1904 case JUMP_INSN:
483404b6
JW
1905 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1906 copy = emit_jump_insn (pattern);
6bd43524 1907 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
483404b6 1908
67f2de41
RK
1909 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1910 && ! last_iteration)
1911 {
1912 /* This is a branch to the beginning of the loop; this is the
1913 last insn being copied; and this is not the last iteration.
1914 In this case, we want to change the original fall through
1915 case to be a branch past the end of the loop, and the
1916 original jump label case to fall_through. */
a9d27cb2 1917
ca72f752
RE
1918 if (invert_exp (pattern, copy))
1919 {
1920 if (! redirect_exp (&pattern,
1921 map->label_map[CODE_LABEL_NUMBER
1922 (JUMP_LABEL (insn))],
1923 exit_label, copy))
1924 abort ();
1925 }
1926 else
1927 {
1928 rtx jmp;
1929 rtx lab = gen_label_rtx ();
9faa82d8
RK
1930 /* Can't do it by reversing the jump (probably because we
1931 couldn't reverse the conditions), so emit a new
ca72f752
RE
1932 jump_insn after COPY, and redirect the jump around
1933 that. */
1934 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1935 jmp = emit_barrier_after (jmp);
1936 emit_label_after (lab, jmp);
1937 LABEL_NUSES (lab) = 0;
1938 if (! redirect_exp (&pattern,
1939 map->label_map[CODE_LABEL_NUMBER
1940 (JUMP_LABEL (insn))],
1941 lab, copy))
1942 abort ();
1943 }
67f2de41 1944 }
67f2de41
RK
1945
1946#ifdef HAVE_cc0
1947 if (cc0_insn)
1948 try_constants (cc0_insn, map);
1949 cc0_insn = 0;
1950#endif
1951 try_constants (copy, map);
1952
1953 /* Set the jump label of COPY correctly to avoid problems with
1954 later passes of unroll_loop, if INSN had jump label set. */
1955 if (JUMP_LABEL (insn))
1956 {
57467646
JW
1957 rtx label = 0;
1958
67f2de41
RK
1959 /* Can't use the label_map for every insn, since this may be
1960 the backward branch, and hence the label was not mapped. */
1961 if (GET_CODE (pattern) == SET)
1962 {
1963 tem = SET_SRC (pattern);
1964 if (GET_CODE (tem) == LABEL_REF)
57467646 1965 label = XEXP (tem, 0);
67f2de41
RK
1966 else if (GET_CODE (tem) == IF_THEN_ELSE)
1967 {
1968 if (XEXP (tem, 1) != pc_rtx)
57467646 1969 label = XEXP (XEXP (tem, 1), 0);
67f2de41 1970 else
57467646 1971 label = XEXP (XEXP (tem, 2), 0);
67f2de41 1972 }
67f2de41 1973 }
57467646
JW
1974
1975 if (label && GET_CODE (label) == CODE_LABEL)
1976 JUMP_LABEL (copy) = label;
67f2de41
RK
1977 else
1978 {
1979 /* An unrecognizable jump insn, probably the entry jump
1980 for a switch statement. This label must have been mapped,
1981 so just use the label_map to get the new jump label. */
4ac75a4e
JW
1982 JUMP_LABEL (copy)
1983 = map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))];
67f2de41
RK
1984 }
1985
1986 /* If this is a non-local jump, then must increase the label
1987 use count so that the label will not be deleted when the
1988 original jump is deleted. */
1989 LABEL_NUSES (JUMP_LABEL (copy))++;
1990 }
1991 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1992 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1993 {
1994 rtx pat = PATTERN (copy);
1995 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1996 int len = XVECLEN (pat, diff_vec_p);
1997 int i;
1998
1999 for (i = 0; i < len; i++)
2000 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2001 }
2002
2003 /* If this used to be a conditional jump insn but whose branch
2004 direction is now known, we must do something special. */
2005 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
2006 {
2007#ifdef HAVE_cc0
2008 /* The previous insn set cc0 for us. So delete it. */
2009 delete_insn (PREV_INSN (copy));
2010#endif
2011
2012 /* If this is now a no-op, delete it. */
2013 if (map->last_pc_value == pc_rtx)
2014 {
648a09ee
JW
2015 /* Don't let delete_insn delete the label referenced here,
2016 because we might possibly need it later for some other
2017 instruction in the loop. */
2018 if (JUMP_LABEL (copy))
2019 LABEL_NUSES (JUMP_LABEL (copy))++;
67f2de41 2020 delete_insn (copy);
648a09ee
JW
2021 if (JUMP_LABEL (copy))
2022 LABEL_NUSES (JUMP_LABEL (copy))--;
67f2de41
RK
2023 copy = 0;
2024 }
2025 else
2026 /* Otherwise, this is unconditional jump so we must put a
2027 BARRIER after it. We could do some dead code elimination
2028 here, but jump.c will do it just as well. */
2029 emit_barrier ();
2030 }
2031 break;
2032
2033 case CALL_INSN:
2034 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2035 copy = emit_call_insn (pattern);
6bd43524 2036 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
67f2de41 2037
2d98fe23
JW
2038 /* Because the USAGE information potentially contains objects other
2039 than hard registers, we need to copy it. */
db3cf6fb
MS
2040 CALL_INSN_FUNCTION_USAGE (copy)
2041 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2d98fe23 2042
67f2de41
RK
2043#ifdef HAVE_cc0
2044 if (cc0_insn)
2045 try_constants (cc0_insn, map);
2046 cc0_insn = 0;
2047#endif
2048 try_constants (copy, map);
2049
2050 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2051 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2052 map->const_equiv_map[i] = 0;
2053 break;
2054
2055 case CODE_LABEL:
2056 /* If this is the loop start label, then we don't need to emit a
2057 copy of this label since no one will use it. */
2058
2059 if (insn != start_label)
2060 {
2061 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
2062 map->const_age++;
2063 }
2064 break;
2065
2066 case BARRIER:
2067 copy = emit_barrier ();
2068 break;
2069
2070 case NOTE:
715e6efb
JW
2071 /* VTOP notes are valid only before the loop exit test. If placed
2072 anywhere else, loop may generate bad code. */
2073
2074 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2075 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2076 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
67f2de41
RK
2077 copy = emit_note (NOTE_SOURCE_FILE (insn),
2078 NOTE_LINE_NUMBER (insn));
2079 else
2080 copy = 0;
2081 break;
2082
2083 default:
2084 abort ();
2085 break;
2086 }
2087
2088 map->insn_map[INSN_UID (insn)] = copy;
2089 }
2090 while (insn != copy_end);
2091
6bd43524 2092 /* Now finish coping the REG_NOTES. */
ef39bb95
JW
2093 insn = copy_start;
2094 do
2095 {
2096 insn = NEXT_INSN (insn);
2097 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2098 || GET_CODE (insn) == CALL_INSN)
2099 && map->insn_map[INSN_UID (insn)])
6bd43524 2100 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
ef39bb95
JW
2101 }
2102 while (insn != copy_end);
2103
67f2de41
RK
2104 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2105 each of these notes here, since there may be some important ones, such as
2106 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2107 iteration, because the original notes won't be deleted.
2108
2109 We can't use insert_before here, because when from preconditioning,
2110 insert_before points before the loop. We can't use copy_end, because
2111 there may be insns already inserted after it (which we don't want to
2112 copy) when not from preconditioning code. */
2113
2114 if (! last_iteration)
2115 {
2116 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2117 {
2118 if (GET_CODE (insn) == NOTE
2119 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2120 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2121 }
2122 }
2123
2124 if (final_label && LABEL_NUSES (final_label) > 0)
2125 emit_label (final_label);
2126
2127 tem = gen_sequence ();
2128 end_sequence ();
2129 emit_insn_before (tem, insert_before);
2130}
2131\f
2132/* Emit an insn, using the expand_binop to ensure that a valid insn is
2133 emitted. This will correctly handle the case where the increment value
2134 won't fit in the immediate field of a PLUS insns. */
2135
2136void
2137emit_unrolled_add (dest_reg, src_reg, increment)
2138 rtx dest_reg, src_reg, increment;
2139{
2140 rtx result;
2141
2142 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2143 dest_reg, 0, OPTAB_LIB_WIDEN);
2144
2145 if (dest_reg != result)
2146 emit_move_insn (dest_reg, result);
2147}
2148\f
2149/* Searches the insns between INSN and LOOP_END. Returns 1 if there
2150 is a backward branch in that range that branches to somewhere between
2151 LOOP_START and INSN. Returns 0 otherwise. */
2152
6dc42e49 2153/* ??? This is quadratic algorithm. Could be rewritten to be linear.
67f2de41
RK
2154 In practice, this is not a problem, because this function is seldom called,
2155 and uses a negligible amount of CPU time on average. */
2156
9923a30d 2157int
67f2de41
RK
2158back_branch_in_range_p (insn, loop_start, loop_end)
2159 rtx insn;
2160 rtx loop_start, loop_end;
2161{
2162 rtx p, q, target_insn;
956d6950 2163 rtx orig_loop_end = loop_end;
67f2de41
RK
2164
2165 /* Stop before we get to the backward branch at the end of the loop. */
2166 loop_end = prev_nonnote_insn (loop_end);
2167 if (GET_CODE (loop_end) == BARRIER)
2168 loop_end = PREV_INSN (loop_end);
2169
2170 /* Check in case insn has been deleted, search forward for first non
2171 deleted insn following it. */
2172 while (INSN_DELETED_P (insn))
2173 insn = NEXT_INSN (insn);
2174
956d6950
JL
2175 /* Check for the case where insn is the last insn in the loop. Deal
2176 with the case where INSN was a deleted loop test insn, in which case
2177 it will now be the NOTE_LOOP_END. */
2178 if (insn == loop_end || insn == orig_loop_end)
67f2de41
RK
2179 return 0;
2180
2181 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2182 {
2183 if (GET_CODE (p) == JUMP_INSN)
2184 {
2185 target_insn = JUMP_LABEL (p);
2186
2187 /* Search from loop_start to insn, to see if one of them is
2188 the target_insn. We can't use INSN_LUID comparisons here,
2189 since insn may not have an LUID entry. */
2190 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2191 if (q == target_insn)
2192 return 1;
2193 }
2194 }
2195
2196 return 0;
2197}
2198
2199/* Try to generate the simplest rtx for the expression
2200 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2201 value of giv's. */
2202
2203static rtx
2204fold_rtx_mult_add (mult1, mult2, add1, mode)
2205 rtx mult1, mult2, add1;
2206 enum machine_mode mode;
2207{
2208 rtx temp, mult_res;
2209 rtx result;
2210
2211 /* The modes must all be the same. This should always be true. For now,
2212 check to make sure. */
2213 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2214 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2215 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2216 abort ();
2217
2218 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2219 will be a constant. */
2220 if (GET_CODE (mult1) == CONST_INT)
2221 {
2222 temp = mult2;
2223 mult2 = mult1;
2224 mult1 = temp;
2225 }
2226
2227 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2228 if (! mult_res)
2229 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2230
2231 /* Again, put the constant second. */
2232 if (GET_CODE (add1) == CONST_INT)
2233 {
2234 temp = add1;
2235 add1 = mult_res;
2236 mult_res = temp;
2237 }
2238
2239 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2240 if (! result)
2241 result = gen_rtx (PLUS, mode, add1, mult_res);
2242
2243 return result;
2244}
2245
2246/* Searches the list of induction struct's for the biv BL, to try to calculate
2247 the total increment value for one iteration of the loop as a constant.
2248
2249 Returns the increment value as an rtx, simplified as much as possible,
2250 if it can be calculated. Otherwise, returns 0. */
2251
2252rtx
2253biv_total_increment (bl, loop_start, loop_end)
2254 struct iv_class *bl;
2255 rtx loop_start, loop_end;
2256{
2257 struct induction *v;
2258 rtx result;
2259
2260 /* For increment, must check every instruction that sets it. Each
2261 instruction must be executed only once each time through the loop.
2262 To verify this, we check that the the insn is always executed, and that
2263 there are no backward branches after the insn that branch to before it.
2264 Also, the insn must have a mult_val of one (to make sure it really is
2265 an increment). */
2266
2267 result = const0_rtx;
2268 for (v = bl->biv; v; v = v->next_iv)
2269 {
2270 if (v->always_computable && v->mult_val == const1_rtx
2271 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2272 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2273 else
2274 return 0;
2275 }
2276
2277 return result;
2278}
2279
2280/* Determine the initial value of the iteration variable, and the amount
2281 that it is incremented each loop. Use the tables constructed by
2282 the strength reduction pass to calculate these values.
2283
2284 Initial_value and/or increment are set to zero if their values could not
2285 be calculated. */
2286
8c660648 2287void
67f2de41
RK
2288iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2289 rtx iteration_var, *initial_value, *increment;
2290 rtx loop_start, loop_end;
2291{
2292 struct iv_class *bl;
2293 struct induction *v, *b;
2294
2295 /* Clear the result values, in case no answer can be found. */
2296 *initial_value = 0;
2297 *increment = 0;
2298
2299 /* The iteration variable can be either a giv or a biv. Check to see
2300 which it is, and compute the variable's initial value, and increment
2301 value if possible. */
2302
2303 /* If this is a new register, can't handle it since we don't have any
2304 reg_iv_type entry for it. */
2305 if (REGNO (iteration_var) >= max_reg_before_loop)
2306 {
2307 if (loop_dump_stream)
2308 fprintf (loop_dump_stream,
2309 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2310 return;
2311 }
f6beed21
RK
2312
2313 /* Reject iteration variables larger than the host wide int size, since they
67f2de41 2314 could result in a number of iterations greater than the range of our
f6beed21
RK
2315 `unsigned HOST_WIDE_INT' variable loop_n_iterations. */
2316 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2317 > HOST_BITS_PER_WIDE_INT))
67f2de41
RK
2318 {
2319 if (loop_dump_stream)
2320 fprintf (loop_dump_stream,
f6beed21 2321 "Loop unrolling: Iteration var rejected because mode too large.\n");
67f2de41
RK
2322 return;
2323 }
2324 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2325 {
2326 if (loop_dump_stream)
2327 fprintf (loop_dump_stream,
b4ac57ab 2328 "Loop unrolling: Iteration var not an integer.\n");
67f2de41
RK
2329 return;
2330 }
2331 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2332 {
2333 /* Grab initial value, only useful if it is a constant. */
2334 bl = reg_biv_class[REGNO (iteration_var)];
2335 *initial_value = bl->initial_value;
2336
2337 *increment = biv_total_increment (bl, loop_start, loop_end);
2338 }
2339 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2340 {
2341#if 1
2342 /* ??? The code below does not work because the incorrect number of
2343 iterations is calculated when the biv is incremented after the giv
2344 is set (which is the usual case). This can probably be accounted
2345 for by biasing the initial_value by subtracting the amount of the
2346 increment that occurs between the giv set and the giv test. However,
2347 a giv as an iterator is very rare, so it does not seem worthwhile
2348 to handle this. */
2349 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2350 if (loop_dump_stream)
2351 fprintf (loop_dump_stream,
2352 "Loop unrolling: Giv iterators are not handled.\n");
2353 return;
2354#else
2355 /* Initial value is mult_val times the biv's initial value plus
2356 add_val. Only useful if it is a constant. */
2357 v = reg_iv_info[REGNO (iteration_var)];
2358 bl = reg_biv_class[REGNO (v->src_reg)];
2359 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2360 v->add_val, v->mode);
2361
2362 /* Increment value is mult_val times the increment value of the biv. */
2363
2364 *increment = biv_total_increment (bl, loop_start, loop_end);
2365 if (*increment)
2366 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2367 v->mode);
2368#endif
2369 }
2370 else
2371 {
2372 if (loop_dump_stream)
2373 fprintf (loop_dump_stream,
2374 "Loop unrolling: Not basic or general induction var.\n");
2375 return;
2376 }
2377}
2378
2379/* Calculate the approximate final value of the iteration variable
2380 which has an loop exit test with code COMPARISON_CODE and comparison value
2381 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2382 was signed or unsigned, and the direction of the comparison. This info is
2383 needed to calculate the number of loop iterations. */
2384
2385static rtx
2386approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2387 enum rtx_code comparison_code;
2388 rtx comparison_value;
2389 int *unsigned_p;
2390 int *compare_dir;
2391{
2392 /* Calculate the final value of the induction variable.
2393 The exact final value depends on the branch operator, and increment sign.
2394 This is only an approximate value. It will be wrong if the iteration
2395 variable is not incremented by one each time through the loop, and
2396 approx final value - start value % increment != 0. */
2397
2398 *unsigned_p = 0;
2399 switch (comparison_code)
2400 {
2401 case LEU:
2402 *unsigned_p = 1;
2403 case LE:
2404 *compare_dir = 1;
2405 return plus_constant (comparison_value, 1);
2406 case GEU:
2407 *unsigned_p = 1;
2408 case GE:
2409 *compare_dir = -1;
2410 return plus_constant (comparison_value, -1);
2411 case EQ:
2412 /* Can not calculate a final value for this case. */
2413 *compare_dir = 0;
2414 return 0;
2415 case LTU:
2416 *unsigned_p = 1;
2417 case LT:
2418 *compare_dir = 1;
2419 return comparison_value;
2420 break;
2421 case GTU:
2422 *unsigned_p = 1;
2423 case GT:
2424 *compare_dir = -1;
2425 return comparison_value;
2426 case NE:
2427 *compare_dir = 0;
2428 return comparison_value;
2429 default:
2430 abort ();
2431 }
2432}
2433
2434/* For each biv and giv, determine whether it can be safely split into
2435 a different variable for each unrolled copy of the loop body. If it
2436 is safe to split, then indicate that by saving some useful info
2437 in the splittable_regs array.
2438
2439 If the loop is being completely unrolled, then splittable_regs will hold
2440 the current value of the induction variable while the loop is unrolled.
2441 It must be set to the initial value of the induction variable here.
2442 Otherwise, splittable_regs will hold the difference between the current
2443 value of the induction variable and the value the induction variable had
8dc0b179
RS
2444 at the top of the loop. It must be set to the value 0 here.
2445
2446 Returns the total number of instructions that set registers that are
2447 splittable. */
67f2de41
RK
2448
2449/* ?? If the loop is only unrolled twice, then most of the restrictions to
2450 constant values are unnecessary, since we can easily calculate increment
2451 values in this case even if nothing is constant. The increment value
2452 should not involve a multiply however. */
2453
2454/* ?? Even if the biv/giv increment values aren't constant, it may still
2455 be beneficial to split the variable if the loop is only unrolled a few
2456 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2457
2458static int
2459find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2460 unroll_number)
2461 enum unroll_types unroll_type;
2462 rtx loop_start, loop_end;
2463 rtx end_insert_before;
2464 int unroll_number;
2465{
2466 struct iv_class *bl;
0e91429a 2467 struct induction *v;
67f2de41
RK
2468 rtx increment, tem;
2469 rtx biv_final_value;
2470 int biv_splittable;
2471 int result = 0;
2472
2473 for (bl = loop_iv_list; bl; bl = bl->next)
2474 {
2475 /* Biv_total_increment must return a constant value,
2476 otherwise we can not calculate the split values. */
2477
2478 increment = biv_total_increment (bl, loop_start, loop_end);
2479 if (! increment || GET_CODE (increment) != CONST_INT)
2480 continue;
2481
2482 /* The loop must be unrolled completely, or else have a known number
2483 of iterations and only one exit, or else the biv must be dead
2484 outside the loop, or else the final value must be known. Otherwise,
2485 it is unsafe to split the biv since it may not have the proper
2486 value on loop exit. */
2487
3669e646 2488 /* loop_number_exit_count is non-zero if the loop has an exit other than
67f2de41
RK
2489 a fall through at the end. */
2490
2491 biv_splittable = 1;
2492 biv_final_value = 0;
2493 if (unroll_type != UNROLL_COMPLETELY
3669e646 2494 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
67f2de41 2495 || unroll_type == UNROLL_NAIVE)
b1f21e0a 2496 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
67f2de41
RK
2497 || ! bl->init_insn
2498 || INSN_UID (bl->init_insn) >= max_uid_for_loop
b1f21e0a 2499 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
67f2de41
RK
2500 < INSN_LUID (bl->init_insn))
2501 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2502 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2503 biv_splittable = 0;
2504
0e91429a
RK
2505 /* If any of the insns setting the BIV don't do so with a simple
2506 PLUS, we don't know how to split it. */
2507 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2508 if ((tem = single_set (v->insn)) == 0
2509 || GET_CODE (SET_DEST (tem)) != REG
2510 || REGNO (SET_DEST (tem)) != bl->regno
2511 || GET_CODE (SET_SRC (tem)) != PLUS)
2512 biv_splittable = 0;
2513
67f2de41
RK
2514 /* If final value is non-zero, then must emit an instruction which sets
2515 the value of the biv to the proper value. This is done after
2516 handling all of the givs, since some of them may need to use the
2517 biv's value in their initialization code. */
2518
2519 /* This biv is splittable. If completely unrolling the loop, save
2520 the biv's initial value. Otherwise, save the constant zero. */
2521
2522 if (biv_splittable == 1)
2523 {
2524 if (unroll_type == UNROLL_COMPLETELY)
2525 {
2526 /* If the initial value of the biv is itself (i.e. it is too
2527 complicated for strength_reduce to compute), or is a hard
f47f2c17
RK
2528 register, or it isn't invariant, then we must create a new
2529 pseudo reg to hold the initial value of the biv. */
67f2de41
RK
2530
2531 if (GET_CODE (bl->initial_value) == REG
2532 && (REGNO (bl->initial_value) == bl->regno
f47f2c17
RK
2533 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2534 || ! invariant_p (bl->initial_value)))
67f2de41
RK
2535 {
2536 rtx tem = gen_reg_rtx (bl->biv->mode);
9ae8ffe7
JL
2537
2538 record_base_value (REGNO (tem), bl->biv->add_val);
67f2de41
RK
2539 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2540 loop_start);
2541
2542 if (loop_dump_stream)
2543 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2544 bl->regno, REGNO (tem));
2545
2546 splittable_regs[bl->regno] = tem;
2547 }
2548 else
2549 splittable_regs[bl->regno] = bl->initial_value;
2550 }
2551 else
2552 splittable_regs[bl->regno] = const0_rtx;
2553
2554 /* Save the number of instructions that modify the biv, so that
2555 we can treat the last one specially. */
2556
2557 splittable_regs_updates[bl->regno] = bl->biv_count;
8dc0b179 2558 result += bl->biv_count;
67f2de41
RK
2559
2560 if (loop_dump_stream)
2561 fprintf (loop_dump_stream,
2562 "Biv %d safe to split.\n", bl->regno);
2563 }
2564
2565 /* Check every giv that depends on this biv to see whether it is
2566 splittable also. Even if the biv isn't splittable, givs which
2567 depend on it may be splittable if the biv is live outside the
2568 loop, and the givs aren't. */
2569
8dc0b179
RS
2570 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2571 increment, unroll_number);
67f2de41
RK
2572
2573 /* If final value is non-zero, then must emit an instruction which sets
2574 the value of the biv to the proper value. This is done after
2575 handling all of the givs, since some of them may need to use the
2576 biv's value in their initialization code. */
2577 if (biv_final_value)
2578 {
2579 /* If the loop has multiple exits, emit the insns before the
2580 loop to ensure that it will always be executed no matter
2581 how the loop exits. Otherwise emit the insn after the loop,
2582 since this is slightly more efficient. */
3669e646 2583 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
67f2de41
RK
2584 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2585 biv_final_value),
2586 end_insert_before);
2587 else
2588 {
2589 /* Create a new register to hold the value of the biv, and then
2590 set the biv to its final value before the loop start. The biv
2591 is set to its final value before loop start to ensure that
2592 this insn will always be executed, no matter how the loop
2593 exits. */
2594 rtx tem = gen_reg_rtx (bl->biv->mode);
9ae8ffe7
JL
2595 record_base_value (REGNO (tem), bl->biv->add_val);
2596
67f2de41
RK
2597 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2598 loop_start);
2599 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2600 biv_final_value),
2601 loop_start);
2602
2603 if (loop_dump_stream)
2604 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2605 REGNO (bl->biv->src_reg), REGNO (tem));
2606
2607 /* Set up the mapping from the original biv register to the new
2608 register. */
2609 bl->biv->src_reg = tem;
2610 }
2611 }
2612 }
2613 return result;
2614}
2615
d8191d86
RK
2616/* Return 1 if the first and last unrolled copy of the address giv V is valid
2617 for the instruction that is using it. Do not make any changes to that
2618 instruction. */
2619
2620static int
2621verify_addresses (v, giv_inc, unroll_number)
2622 struct induction *v;
2623 rtx giv_inc;
2624 int unroll_number;
2625{
2626 int ret = 1;
2627 rtx orig_addr = *v->location;
2628 rtx last_addr = plus_constant (v->dest_reg,
2629 INTVAL (giv_inc) * (unroll_number - 1));
2630
2631 /* First check to see if either address would fail. */
2632 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2633 || ! validate_change (v->insn, v->location, last_addr, 0))
2634 ret = 0;
2635
2636 /* Now put things back the way they were before. This will always
2637 succeed. */
2638 validate_change (v->insn, v->location, orig_addr, 0);
2639
2640 return ret;
2641}
2642
67f2de41 2643/* For every giv based on the biv BL, check to determine whether it is
8dc0b179
RS
2644 splittable. This is a subroutine to find_splittable_regs ().
2645
2646 Return the number of instructions that set splittable registers. */
67f2de41
RK
2647
2648static int
2649find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
8dc0b179 2650 unroll_number)
67f2de41
RK
2651 struct iv_class *bl;
2652 enum unroll_types unroll_type;
2653 rtx loop_start, loop_end;
2654 rtx increment;
8dc0b179 2655 int unroll_number;
67f2de41 2656{
3fc347fa 2657 struct induction *v, *v2;
67f2de41
RK
2658 rtx final_value;
2659 rtx tem;
8dc0b179 2660 int result = 0;
67f2de41 2661
3fc347fa
JW
2662 /* Scan the list of givs, and set the same_insn field when there are
2663 multiple identical givs in the same insn. */
2664 for (v = bl->giv; v; v = v->next_iv)
2665 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2666 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2667 && ! v2->same_insn)
2668 v2->same_insn = v;
2669
67f2de41
RK
2670 for (v = bl->giv; v; v = v->next_iv)
2671 {
2672 rtx giv_inc, value;
2673
2674 /* Only split the giv if it has already been reduced, or if the loop is
2675 being completely unrolled. */
2676 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2677 continue;
2678
2679 /* The giv can be split if the insn that sets the giv is executed once
2680 and only once on every iteration of the loop. */
2681 /* An address giv can always be split. v->insn is just a use not a set,
2682 and hence it does not matter whether it is always executed. All that
2683 matters is that all the biv increments are always executed, and we
2684 won't reach here if they aren't. */
2685 if (v->giv_type != DEST_ADDR
2686 && (! v->always_computable
2687 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2688 continue;
2689
2690 /* The giv increment value must be a constant. */
2691 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2692 v->mode);
2693 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2694 continue;
2695
2696 /* The loop must be unrolled completely, or else have a known number of
2697 iterations and only one exit, or else the giv must be dead outside
2698 the loop, or else the final value of the giv must be known.
2699 Otherwise, it is not safe to split the giv since it may not have the
2700 proper value on loop exit. */
2701
2702 /* The used outside loop test will fail for DEST_ADDR givs. They are
2703 never used outside the loop anyways, so it is always safe to split a
2704 DEST_ADDR giv. */
2705
2706 final_value = 0;
2707 if (unroll_type != UNROLL_COMPLETELY
3669e646 2708 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
67f2de41
RK
2709 || unroll_type == UNROLL_NAIVE)
2710 && v->giv_type != DEST_ADDR
9fb82071
JW
2711 /* The next part is true if the pseudo is used outside the loop.
2712 We assume that this is true for any pseudo created after loop
2713 starts, because we don't have a reg_n_info entry for them. */
2714 && (REGNO (v->dest_reg) >= max_reg_before_loop
2715 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2716 /* Check for the case where the pseudo is set by a shift/add
2717 sequence, in which case the first insn setting the pseudo
2718 is the first insn of the shift/add sequence. */
2719 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2720 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2721 != INSN_UID (XEXP (tem, 0)))))
67f2de41 2722 /* Line above always fails if INSN was moved by loop opt. */
b1f21e0a 2723 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
67f2de41
RK
2724 >= INSN_LUID (loop_end)))
2725 && ! (final_value = v->final_value))
2726 continue;
2727
2728#if 0
2729 /* Currently, non-reduced/final-value givs are never split. */
2730 /* Should emit insns after the loop if possible, as the biv final value
2731 code below does. */
2732
2733 /* If the final value is non-zero, and the giv has not been reduced,
2734 then must emit an instruction to set the final value. */
2735 if (final_value && !v->new_reg)
2736 {
2737 /* Create a new register to hold the value of the giv, and then set
2738 the giv to its final value before the loop start. The giv is set
2739 to its final value before loop start to ensure that this insn
2740 will always be executed, no matter how we exit. */
2741 tem = gen_reg_rtx (v->mode);
2742 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2743 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2744 loop_start);
2745
2746 if (loop_dump_stream)
2747 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2748 REGNO (v->dest_reg), REGNO (tem));
2749
2750 v->src_reg = tem;
2751 }
2752#endif
2753
2754 /* This giv is splittable. If completely unrolling the loop, save the
2755 giv's initial value. Otherwise, save the constant zero for it. */
2756
2757 if (unroll_type == UNROLL_COMPLETELY)
0e91429a
RK
2758 {
2759 /* It is not safe to use bl->initial_value here, because it may not
2760 be invariant. It is safe to use the initial value stored in
2761 the splittable_regs array if it is set. In rare cases, it won't
2762 be set, so then we do exactly the same thing as
2763 find_splittable_regs does to get a safe value. */
2764 rtx biv_initial_value;
2765
2766 if (splittable_regs[bl->regno])
2767 biv_initial_value = splittable_regs[bl->regno];
2768 else if (GET_CODE (bl->initial_value) != REG
2769 || (REGNO (bl->initial_value) != bl->regno
2770 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2771 biv_initial_value = bl->initial_value;
2772 else
2773 {
2774 rtx tem = gen_reg_rtx (bl->biv->mode);
2775
9ae8ffe7 2776 record_base_value (REGNO (tem), bl->biv->add_val);
0e91429a
RK
2777 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2778 loop_start);
2779 biv_initial_value = tem;
2780 }
2781 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2782 v->add_val, v->mode);
2783 }
67f2de41
RK
2784 else
2785 value = const0_rtx;
2786
2787 if (v->new_reg)
2788 {
bf1c6940
JW
2789 /* If a giv was combined with another giv, then we can only split
2790 this giv if the giv it was combined with was reduced. This
2791 is because the value of v->new_reg is meaningless in this
2792 case. */
2793 if (v->same && ! v->same->new_reg)
67f2de41
RK
2794 {
2795 if (loop_dump_stream)
2796 fprintf (loop_dump_stream,
bf1c6940
JW
2797 "giv combined with unreduced giv not split.\n");
2798 continue;
67f2de41 2799 }
bf1c6940
JW
2800 /* If the giv is an address destination, it could be something other
2801 than a simple register, these have to be treated differently. */
2802 else if (v->giv_type == DEST_REG)
2b9a9aea
JW
2803 {
2804 /* If value is not a constant, register, or register plus
2805 constant, then compute its value into a register before
181c6568 2806 loop start. This prevents invalid rtx sharing, and should
2b9a9aea
JW
2807 generate better code. We can use bl->initial_value here
2808 instead of splittable_regs[bl->regno] because this code
2809 is going before the loop start. */
2810 if (unroll_type == UNROLL_COMPLETELY
2811 && GET_CODE (value) != CONST_INT
2812 && GET_CODE (value) != REG
2813 && (GET_CODE (value) != PLUS
2814 || GET_CODE (XEXP (value, 0)) != REG
2815 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2816 {
2817 rtx tem = gen_reg_rtx (v->mode);
9ae8ffe7 2818 record_base_value (REGNO (tem), v->add_val);
2b9a9aea
JW
2819 emit_iv_add_mult (bl->initial_value, v->mult_val,
2820 v->add_val, tem, loop_start);
2821 value = tem;
2822 }
2823
2824 splittable_regs[REGNO (v->new_reg)] = value;
2825 }
67f2de41
RK
2826 else
2827 {
2828 /* Splitting address givs is useful since it will often allow us
2829 to eliminate some increment insns for the base giv as
2830 unnecessary. */
2831
2832 /* If the addr giv is combined with a dest_reg giv, then all
2833 references to that dest reg will be remapped, which is NOT
2834 what we want for split addr regs. We always create a new
2835 register for the split addr giv, just to be safe. */
2836
9ae8ffe7
JL
2837 /* If we have multiple identical address givs within a
2838 single instruction, then use a single pseudo reg for
2839 both. This is necessary in case one is a match_dup
8d092274
JW
2840 of the other. */
2841
67f2de41 2842 v->const_adjust = 0;
8d092274 2843
3fc347fa 2844 if (v->same_insn)
8d092274 2845 {
3fc347fa 2846 v->dest_reg = v->same_insn->dest_reg;
8d092274
JW
2847 if (loop_dump_stream)
2848 fprintf (loop_dump_stream,
3fc347fa
JW
2849 "Sharing address givs in insn %d\n",
2850 INSN_UID (v->insn));
8d092274 2851 }
9ae8ffe7
JL
2852 /* If multiple address GIVs have been combined with the
2853 same dest_reg GIV, do not create a new register for
2854 each. */
2855 else if (unroll_type != UNROLL_COMPLETELY
2856 && v->giv_type == DEST_ADDR
2857 && v->same && v->same->giv_type == DEST_ADDR
b6ffe602
JC
2858 && v->same->unrolled
2859 /* combine_givs_p may return true for some cases
2860 where the add and mult values are not equal.
2861 To share a register here, the values must be
2862 equal. */
2863 && rtx_equal_p (v->same->mult_val, v->mult_val)
2864 && rtx_equal_p (v->same->add_val, v->add_val))
2865
9ae8ffe7
JL
2866 {
2867 v->dest_reg = v->same->dest_reg;
2868 v->shared = 1;
2869 }
8d092274 2870 else if (unroll_type != UNROLL_COMPLETELY)
67f2de41
RK
2871 {
2872 /* If not completely unrolling the loop, then create a new
2873 register to hold the split value of the DEST_ADDR giv.
2874 Emit insn to initialize its value before loop start. */
9ae8ffe7
JL
2875
2876 rtx tem = gen_reg_rtx (v->mode);
2877 record_base_value (REGNO (tem), v->add_val);
2878 v->unrolled = 1;
67f2de41
RK
2879
2880 /* If the address giv has a constant in its new_reg value,
2881 then this constant can be pulled out and put in value,
2882 instead of being part of the initialization code. */
2883
2884 if (GET_CODE (v->new_reg) == PLUS
2885 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2886 {
2887 v->dest_reg
2888 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
9ae8ffe7 2889
67f2de41
RK
2890 /* Only succeed if this will give valid addresses.
2891 Try to validate both the first and the last
2892 address resulting from loop unrolling, if
2893 one fails, then can't do const elim here. */
7085bad3 2894 if (verify_addresses (v, giv_inc, unroll_number))
67f2de41
RK
2895 {
2896 /* Save the negative of the eliminated const, so
2897 that we can calculate the dest_reg's increment
2898 value later. */
2899 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2900
2901 v->new_reg = XEXP (v->new_reg, 0);
2902 if (loop_dump_stream)
2903 fprintf (loop_dump_stream,
2904 "Eliminating constant from giv %d\n",
2905 REGNO (tem));
2906 }
2907 else
2908 v->dest_reg = tem;
2909 }
2910 else
2911 v->dest_reg = tem;
2912
2913 /* If the address hasn't been checked for validity yet, do so
2914 now, and fail completely if either the first or the last
d8191d86
RK
2915 unrolled copy of the address is not a valid address
2916 for the instruction that uses it. */
67f2de41 2917 if (v->dest_reg == tem
d8191d86 2918 && ! verify_addresses (v, giv_inc, unroll_number))
67f2de41
RK
2919 {
2920 if (loop_dump_stream)
2921 fprintf (loop_dump_stream,
181c6568 2922 "Invalid address for giv at insn %d\n",
67f2de41
RK
2923 INSN_UID (v->insn));
2924 continue;
2925 }
2926
2927 /* To initialize the new register, just move the value of
2928 new_reg into it. This is not guaranteed to give a valid
2929 instruction on machines with complex addressing modes.
2930 If we can't recognize it, then delete it and emit insns
2931 to calculate the value from scratch. */
2932 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2933 copy_rtx (v->new_reg)),
2934 loop_start);
9fdc1dca 2935 if (recog_memoized (PREV_INSN (loop_start)) < 0)
67f2de41 2936 {
75540fea
JW
2937 rtx sequence, ret;
2938
2939 /* We can't use bl->initial_value to compute the initial
2940 value, because the loop may have been preconditioned.
2941 We must calculate it from NEW_REG. Try using
2942 force_operand instead of emit_iv_add_mult. */
67f2de41 2943 delete_insn (PREV_INSN (loop_start));
75540fea
JW
2944
2945 start_sequence ();
2946 ret = force_operand (v->new_reg, tem);
2947 if (ret != tem)
2948 emit_move_insn (tem, ret);
2949 sequence = gen_sequence ();
2950 end_sequence ();
2951 emit_insn_before (sequence, loop_start);
2952
67f2de41
RK
2953 if (loop_dump_stream)
2954 fprintf (loop_dump_stream,
181c6568 2955 "Invalid init insn, rewritten.\n");
67f2de41
RK
2956 }
2957 }
2958 else
2959 {
2960 v->dest_reg = value;
2961
2962 /* Check the resulting address for validity, and fail
181c6568 2963 if the resulting address would be invalid. */
d8191d86 2964 if (! verify_addresses (v, giv_inc, unroll_number))
67f2de41
RK
2965 {
2966 if (loop_dump_stream)
2967 fprintf (loop_dump_stream,
181c6568 2968 "Invalid address for giv at insn %d\n",
67f2de41
RK
2969 INSN_UID (v->insn));
2970 continue;
2971 }
2972 }
2973
2974 /* Store the value of dest_reg into the insn. This sharing
2975 will not be a problem as this insn will always be copied
2976 later. */
2977
2978 *v->location = v->dest_reg;
2979
2980 /* If this address giv is combined with a dest reg giv, then
2981 save the base giv's induction pointer so that we will be
2982 able to handle this address giv properly. The base giv
2983 itself does not have to be splittable. */
2984
2985 if (v->same && v->same->giv_type == DEST_REG)
2986 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2987
2988 if (GET_CODE (v->new_reg) == REG)
2989 {
2990 /* This giv maybe hasn't been combined with any others.
2991 Make sure that it's giv is marked as splittable here. */
2992
2993 splittable_regs[REGNO (v->new_reg)] = value;
2994
2995 /* Make it appear to depend upon itself, so that the
2996 giv will be properly split in the main loop above. */
2997 if (! v->same)
2998 {
2999 v->same = v;
3000 addr_combined_regs[REGNO (v->new_reg)] = v;
3001 }
3002 }
3f07e47a 3003
67f2de41
RK
3004 if (loop_dump_stream)
3005 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3006 }
3007 }
3008 else
3009 {
3010#if 0
3011 /* Currently, unreduced giv's can't be split. This is not too much
3012 of a problem since unreduced giv's are not live across loop
3013 iterations anyways. When unrolling a loop completely though,
3014 it makes sense to reduce&split givs when possible, as this will
3015 result in simpler instructions, and will not require that a reg
3016 be live across loop iterations. */
3017
3018 splittable_regs[REGNO (v->dest_reg)] = value;
3019 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3020 REGNO (v->dest_reg), INSN_UID (v->insn));
3021#else
3022 continue;
3023#endif
3024 }
3025
3bb24246
JW
3026 /* Unreduced givs are only updated once by definition. Reduced givs
3027 are updated as many times as their biv is. Mark it so if this is
67f2de41
RK
3028 a splittable register. Don't need to do anything for address givs
3029 where this may not be a register. */
3030
3031 if (GET_CODE (v->new_reg) == REG)
3bb24246
JW
3032 {
3033 int count = 1;
3034 if (! v->ignore)
3035 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3036
3037 splittable_regs_updates[REGNO (v->new_reg)] = count;
3038 }
67f2de41
RK
3039
3040 result++;
3041
3042 if (loop_dump_stream)
3043 {
3044 int regnum;
3045
3046 if (GET_CODE (v->dest_reg) == CONST_INT)
3047 regnum = -1;
3048 else if (GET_CODE (v->dest_reg) != REG)
3049 regnum = REGNO (XEXP (v->dest_reg, 0));
3050 else
3051 regnum = REGNO (v->dest_reg);
3052 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3053 regnum, INSN_UID (v->insn));
3054 }
3055 }
3056
3057 return result;
3058}
3059\f
3060/* Try to prove that the register is dead after the loop exits. Trace every
3061 loop exit looking for an insn that will always be executed, which sets
3062 the register to some value, and appears before the first use of the register
3063 is found. If successful, then return 1, otherwise return 0. */
3064
3065/* ?? Could be made more intelligent in the handling of jumps, so that
3066 it can search past if statements and other similar structures. */
3067
3068static int
3069reg_dead_after_loop (reg, loop_start, loop_end)
3070 rtx reg, loop_start, loop_end;
3071{
3072 rtx insn, label;
3073 enum rtx_code code;
412dc348 3074 int jump_count = 0;
3669e646
RK
3075 int label_count = 0;
3076 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3077
3078 /* In addition to checking all exits of this loop, we must also check
3079 all exits of inner nested loops that would exit this loop. We don't
3080 have any way to identify those, so we just give up if there are any
3081 such inner loop exits. */
3082
3083 for (label = loop_number_exit_labels[this_loop_num]; label;
3084 label = LABEL_NEXTREF (label))
3085 label_count++;
3086
3087 if (label_count != loop_number_exit_count[this_loop_num])
3088 return 0;
67f2de41
RK
3089
3090 /* HACK: Must also search the loop fall through exit, create a label_ref
3091 here which points to the loop_end, and append the loop_number_exit_labels
3092 list to it. */
3093 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
3669e646 3094 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
67f2de41
RK
3095
3096 for ( ; label; label = LABEL_NEXTREF (label))
3097 {
3098 /* Succeed if find an insn which sets the biv or if reach end of
3099 function. Fail if find an insn that uses the biv, or if come to
3100 a conditional jump. */
3101
3102 insn = NEXT_INSN (XEXP (label, 0));
412dc348 3103 while (insn)
67f2de41 3104 {
412dc348
RK
3105 code = GET_CODE (insn);
3106 if (GET_RTX_CLASS (code) == 'i')
67f2de41 3107 {
412dc348
RK
3108 rtx set;
3109
3110 if (reg_referenced_p (reg, PATTERN (insn)))
67f2de41 3111 return 0;
412dc348
RK
3112
3113 set = single_set (insn);
3114 if (set && rtx_equal_p (SET_DEST (set), reg))
3115 break;
67f2de41 3116 }
412dc348 3117
67f2de41
RK
3118 if (code == JUMP_INSN)
3119 {
3120 if (GET_CODE (PATTERN (insn)) == RETURN)
3121 break;
412dc348 3122 else if (! simplejump_p (insn)
0f41302f 3123 /* Prevent infinite loop following infinite loops. */
412dc348 3124 || jump_count++ > 20)
67f2de41
RK
3125 return 0;
3126 else
412dc348 3127 insn = JUMP_LABEL (insn);
67f2de41 3128 }
412dc348 3129
67f2de41
RK
3130 insn = NEXT_INSN (insn);
3131 }
3132 }
3133
3134 /* Success, the register is dead on all loop exits. */
3135 return 1;
3136}
3137
3138/* Try to calculate the final value of the biv, the value it will have at
3139 the end of the loop. If we can do it, return that value. */
3140
3141rtx
3142final_biv_value (bl, loop_start, loop_end)
3143 struct iv_class *bl;
3144 rtx loop_start, loop_end;
3145{
3146 rtx increment, tem;
3147
b4ac57ab
RS
3148 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3149
3150 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3151 return 0;
3152
67f2de41
RK
3153 /* The final value for reversed bivs must be calculated differently than
3154 for ordinary bivs. In this case, there is already an insn after the
3155 loop which sets this biv's final value (if necessary), and there are
3156 no other loop exits, so we can return any value. */
3157 if (bl->reversed)
3158 {
3159 if (loop_dump_stream)
3160 fprintf (loop_dump_stream,
3161 "Final biv value for %d, reversed biv.\n", bl->regno);
3162
3163 return const0_rtx;
3164 }
3165
3166 /* Try to calculate the final value as initial value + (number of iterations
3167 * increment). For this to work, increment must be invariant, the only
3168 exit from the loop must be the fall through at the bottom (otherwise
3169 it may not have its final value when the loop exits), and the initial
3170 value of the biv must be invariant. */
3171
3172 if (loop_n_iterations != 0
3669e646 3173 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
67f2de41
RK
3174 && invariant_p (bl->initial_value))
3175 {
3176 increment = biv_total_increment (bl, loop_start, loop_end);
3177
3178 if (increment && invariant_p (increment))
3179 {
3180 /* Can calculate the loop exit value, emit insns after loop
3181 end to calculate this value into a temporary register in
3182 case it is needed later. */
3183
3184 tem = gen_reg_rtx (bl->biv->mode);
9ae8ffe7 3185 record_base_value (REGNO (tem), bl->biv->add_val);
885cde01
RS
3186 /* Make sure loop_end is not the last insn. */
3187 if (NEXT_INSN (loop_end) == 0)
3188 emit_note_after (NOTE_INSN_DELETED, loop_end);
c166a311 3189 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
67f2de41
RK
3190 bl->initial_value, tem, NEXT_INSN (loop_end));
3191
3192 if (loop_dump_stream)
3193 fprintf (loop_dump_stream,
3194 "Final biv value for %d, calculated.\n", bl->regno);
3195
3196 return tem;
3197 }
3198 }
3199
3200 /* Check to see if the biv is dead at all loop exits. */
3201 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3202 {
3203 if (loop_dump_stream)
3204 fprintf (loop_dump_stream,
3205 "Final biv value for %d, biv dead after loop exit.\n",
3206 bl->regno);
3207
3208 return const0_rtx;
3209 }
3210
3211 return 0;
3212}
3213
3214/* Try to calculate the final value of the giv, the value it will have at
3215 the end of the loop. If we can do it, return that value. */
3216
3217rtx
3218final_giv_value (v, loop_start, loop_end)
3219 struct induction *v;
3220 rtx loop_start, loop_end;
3221{
3222 struct iv_class *bl;
0e91429a 3223 rtx insn;
67f2de41 3224 rtx increment, tem;
b82fb263 3225 rtx insert_before, seq;
67f2de41
RK
3226
3227 bl = reg_biv_class[REGNO (v->src_reg)];
3228
3229 /* The final value for givs which depend on reversed bivs must be calculated
3230 differently than for ordinary givs. In this case, there is already an
3231 insn after the loop which sets this giv's final value (if necessary),
3232 and there are no other loop exits, so we can return any value. */
3233 if (bl->reversed)
3234 {
3235 if (loop_dump_stream)
3236 fprintf (loop_dump_stream,
3237 "Final giv value for %d, depends on reversed biv\n",
3238 REGNO (v->dest_reg));
3239 return const0_rtx;
3240 }
3241
3242 /* Try to calculate the final value as a function of the biv it depends
3243 upon. The only exit from the loop must be the fall through at the bottom
3244 (otherwise it may not have its final value when the loop exits). */
3245
3246 /* ??? Can calculate the final giv value by subtracting off the
3247 extra biv increments times the giv's mult_val. The loop must have
3248 only one exit for this to work, but the loop iterations does not need
3249 to be known. */
3250
3251 if (loop_n_iterations != 0
3669e646 3252 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
67f2de41
RK
3253 {
3254 /* ?? It is tempting to use the biv's value here since these insns will
3255 be put after the loop, and hence the biv will have its final value
3256 then. However, this fails if the biv is subsequently eliminated.
3257 Perhaps determine whether biv's are eliminable before trying to
3258 determine whether giv's are replaceable so that we can use the
3259 biv value here if it is not eliminable. */
3260
db2f7559
JW
3261 /* We are emitting code after the end of the loop, so we must make
3262 sure that bl->initial_value is still valid then. It will still
3263 be valid if it is invariant. */
3264
67f2de41
RK
3265 increment = biv_total_increment (bl, loop_start, loop_end);
3266
db2f7559
JW
3267 if (increment && invariant_p (increment)
3268 && invariant_p (bl->initial_value))
67f2de41
RK
3269 {
3270 /* Can calculate the loop exit value of its biv as
3271 (loop_n_iterations * increment) + initial_value */
3272
3273 /* The loop exit value of the giv is then
3274 (final_biv_value - extra increments) * mult_val + add_val.
3275 The extra increments are any increments to the biv which
3276 occur in the loop after the giv's value is calculated.
3277 We must search from the insn that sets the giv to the end
3278 of the loop to calculate this value. */
3279
3280 insert_before = NEXT_INSN (loop_end);
3281
3282 /* Put the final biv value in tem. */
3283 tem = gen_reg_rtx (bl->biv->mode);
9ae8ffe7 3284 record_base_value (REGNO (tem), bl->biv->add_val);
c166a311 3285 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
67f2de41
RK
3286 bl->initial_value, tem, insert_before);
3287
3288 /* Subtract off extra increments as we find them. */
3289 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3290 insn = NEXT_INSN (insn))
3291 {
0e91429a
RK
3292 struct induction *biv;
3293
3294 for (biv = bl->biv; biv; biv = biv->next_iv)
3295 if (biv->insn == insn)
3296 {
3297 start_sequence ();
3298 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3299 biv->add_val, NULL_RTX, 0,
3300 OPTAB_LIB_WIDEN);
3301 seq = gen_sequence ();
3302 end_sequence ();
3303 emit_insn_before (seq, insert_before);
3304 }
67f2de41
RK
3305 }
3306
3307 /* Now calculate the giv's final value. */
3308 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3309 insert_before);
3310
3311 if (loop_dump_stream)
3312 fprintf (loop_dump_stream,
3313 "Final giv value for %d, calc from biv's value.\n",
3314 REGNO (v->dest_reg));
3315
3316 return tem;
3317 }
3318 }
3319
3320 /* Replaceable giv's should never reach here. */
3321 if (v->replaceable)
3322 abort ();
3323
3324 /* Check to see if the biv is dead at all loop exits. */
3325 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3326 {
3327 if (loop_dump_stream)
3328 fprintf (loop_dump_stream,
3329 "Final giv value for %d, giv dead after loop exit.\n",
3330 REGNO (v->dest_reg));
3331
3332 return const0_rtx;
3333 }
3334
3335 return 0;
3336}
3337
3338
3339/* Calculate the number of loop iterations. Returns the exact number of loop
6dc42e49 3340 iterations if it can be calculated, otherwise returns zero. */
67f2de41 3341
c166a311 3342unsigned HOST_WIDE_INT
67f2de41
RK
3343loop_iterations (loop_start, loop_end)
3344 rtx loop_start, loop_end;
3345{
3346 rtx comparison, comparison_value;
3347 rtx iteration_var, initial_value, increment, final_value;
3348 enum rtx_code comparison_code;
c166a311
CH
3349 HOST_WIDE_INT i;
3350 int increment_dir;
67f2de41
RK
3351 int unsigned_compare, compare_dir, final_larger;
3352 unsigned long tempu;
3353 rtx last_loop_insn;
3354
3355 /* First find the iteration variable. If the last insn is a conditional
3356 branch, and the insn before tests a register value, make that the
3357 iteration variable. */
3358
3359 loop_initial_value = 0;
3360 loop_increment = 0;
3361 loop_final_value = 0;
3362 loop_iteration_var = 0;
3363
40e81af5
JW
3364 /* We used to use pren_nonnote_insn here, but that fails because it might
3365 accidentally get the branch for a contained loop if the branch for this
3366 loop was deleted. We can only trust branches immediately before the
3367 loop_end. */
3368 last_loop_insn = PREV_INSN (loop_end);
67f2de41
RK
3369
3370 comparison = get_condition_for_loop (last_loop_insn);
3371 if (comparison == 0)
3372 {
3373 if (loop_dump_stream)
3374 fprintf (loop_dump_stream,
3375 "Loop unrolling: No final conditional branch found.\n");
3376 return 0;
3377 }
3378
3379 /* ??? Get_condition may switch position of induction variable and
3380 invariant register when it canonicalizes the comparison. */
3381
3382 comparison_code = GET_CODE (comparison);
3383 iteration_var = XEXP (comparison, 0);
3384 comparison_value = XEXP (comparison, 1);
3385
3386 if (GET_CODE (iteration_var) != REG)
3387 {
3388 if (loop_dump_stream)
3389 fprintf (loop_dump_stream,
3390 "Loop unrolling: Comparison not against register.\n");
3391 return 0;
3392 }
3393
3394 /* Loop iterations is always called before any new registers are created
3395 now, so this should never occur. */
3396
3397 if (REGNO (iteration_var) >= max_reg_before_loop)
3398 abort ();
3399
3400 iteration_info (iteration_var, &initial_value, &increment,
3401 loop_start, loop_end);
3402 if (initial_value == 0)
3403 /* iteration_info already printed a message. */
3404 return 0;
3405
67f2de41
RK
3406 /* If the comparison value is an invariant register, then try to find
3407 its value from the insns before the start of the loop. */
3408
3409 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3410 {
3411 rtx insn, set;
3412
3413 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3414 {
3415 if (GET_CODE (insn) == CODE_LABEL)
3416 break;
3417
3418 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1f1e8172 3419 && reg_set_p (comparison_value, insn))
67f2de41 3420 {
1f1e8172
JW
3421 /* We found the last insn before the loop that sets the register.
3422 If it sets the entire register, and has a REG_EQUAL note,
3423 then use the value of the REG_EQUAL note. */
3424 if ((set = single_set (insn))
3425 && (SET_DEST (set) == comparison_value))
3426 {
3427 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
67f2de41 3428
f0c94be0
JW
3429 /* Only use the REG_EQUAL note if it is a constant.
3430 Other things, divide in particular, will cause
3431 problems later if we use them. */
3432 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3433 && CONSTANT_P (XEXP (note, 0)))
1f1e8172
JW
3434 comparison_value = XEXP (note, 0);
3435 }
67f2de41
RK
3436 break;
3437 }
3438 }
3439 }
3440
3441 final_value = approx_final_value (comparison_code, comparison_value,
3442 &unsigned_compare, &compare_dir);
3443
3444 /* Save the calculated values describing this loop's bounds, in case
3445 precondition_loop_p will need them later. These values can not be
3446 recalculated inside precondition_loop_p because strength reduction
3447 optimizations may obscure the loop's structure. */
3448
3449 loop_iteration_var = iteration_var;
3450 loop_initial_value = initial_value;
3451 loop_increment = increment;
3452 loop_final_value = final_value;
1dcfa896 3453 loop_comparison_code = comparison_code;
67f2de41 3454
00c0c63c
JW
3455 if (increment == 0)
3456 {
3457 if (loop_dump_stream)
3458 fprintf (loop_dump_stream,
3459 "Loop unrolling: Increment value can't be calculated.\n");
3460 return 0;
3461 }
3462 else if (GET_CODE (increment) != CONST_INT)
3463 {
3464 if (loop_dump_stream)
3465 fprintf (loop_dump_stream,
3466 "Loop unrolling: Increment value not constant.\n");
3467 return 0;
3468 }
3469 else if (GET_CODE (initial_value) != CONST_INT)
3470 {
3471 if (loop_dump_stream)
3472 fprintf (loop_dump_stream,
3473 "Loop unrolling: Initial value not constant.\n");
3474 return 0;
3475 }
3476 else if (final_value == 0)
67f2de41
RK
3477 {
3478 if (loop_dump_stream)
3479 fprintf (loop_dump_stream,
3480 "Loop unrolling: EQ comparison loop.\n");
3481 return 0;
3482 }
3483 else if (GET_CODE (final_value) != CONST_INT)
3484 {
3485 if (loop_dump_stream)
3486 fprintf (loop_dump_stream,
3487 "Loop unrolling: Final value not constant.\n");
3488 return 0;
3489 }
3490
3491 /* ?? Final value and initial value do not have to be constants.
3492 Only their difference has to be constant. When the iteration variable
3493 is an array address, the final value and initial value might both
3494 be addresses with the same base but different constant offsets.
3495 Final value must be invariant for this to work.
3496
6dc42e49 3497 To do this, need some way to find the values of registers which are
67f2de41
RK
3498 invariant. */
3499
3500 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3501 if (unsigned_compare)
3502 final_larger
c166a311
CH
3503 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3504 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3505 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3506 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
67f2de41 3507 else
c166a311
CH
3508 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3509 - (INTVAL (final_value) < INTVAL (initial_value));
67f2de41
RK
3510
3511 if (INTVAL (increment) > 0)
3512 increment_dir = 1;
3513 else if (INTVAL (increment) == 0)
3514 increment_dir = 0;
3515 else
3516 increment_dir = -1;
3517
3518 /* There are 27 different cases: compare_dir = -1, 0, 1;
3519 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3520 There are 4 normal cases, 4 reverse cases (where the iteration variable
3521 will overflow before the loop exits), 4 infinite loop cases, and 15
3522 immediate exit (0 or 1 iteration depending on loop type) cases.
3523 Only try to optimize the normal cases. */
3524
3525 /* (compare_dir/final_larger/increment_dir)
3526 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3527 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3528 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3529 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3530
3531 /* ?? If the meaning of reverse loops (where the iteration variable
3532 will overflow before the loop exits) is undefined, then could
3533 eliminate all of these special checks, and just always assume
3534 the loops are normal/immediate/infinite. Note that this means
3535 the sign of increment_dir does not have to be known. Also,
3536 since it does not really hurt if immediate exit loops or infinite loops
3537 are optimized, then that case could be ignored also, and hence all
3538 loops can be optimized.
3539
3540 According to ANSI Spec, the reverse loop case result is undefined,
3541 because the action on overflow is undefined.
3542
3543 See also the special test for NE loops below. */
3544
3545 if (final_larger == increment_dir && final_larger != 0
3546 && (final_larger == compare_dir || compare_dir == 0))
3547 /* Normal case. */
3548 ;
3549 else
3550 {
3551 if (loop_dump_stream)
3552 fprintf (loop_dump_stream,
3553 "Loop unrolling: Not normal loop.\n");
3554 return 0;
3555 }
3556
3557 /* Calculate the number of iterations, final_value is only an approximation,
3558 so correct for that. Note that tempu and loop_n_iterations are
3559 unsigned, because they can be as large as 2^n - 1. */
3560
3561 i = INTVAL (increment);
3562 if (i > 0)
3563 tempu = INTVAL (final_value) - INTVAL (initial_value);
3564 else if (i < 0)
3565 {
3566 tempu = INTVAL (initial_value) - INTVAL (final_value);
3567 i = -i;
3568 }
3569 else
3570 abort ();
3571
3572 /* For NE tests, make sure that the iteration variable won't miss the
3573 final value. If tempu mod i is not zero, then the iteration variable
3574 will overflow before the loop exits, and we can not calculate the
3575 number of iterations. */
3576 if (compare_dir == 0 && (tempu % i) != 0)
3577 return 0;
3578
3579 return tempu / i + ((tempu % i) != 0);
3580}
2b59419a 3581
9faa82d8 3582/* Replace uses of split bivs with their split pseudo register. This is
2b59419a
JW
3583 for original instructions which remain after loop unrolling without
3584 copying. */
3585
3586static rtx
3587remap_split_bivs (x)
3588 rtx x;
3589{
3590 register enum rtx_code code;
3591 register int i;
3592 register char *fmt;
3593
3594 if (x == 0)
3595 return x;
3596
3597 code = GET_CODE (x);
3598 switch (code)
3599 {
3600 case SCRATCH:
3601 case PC:
3602 case CC0:
3603 case CONST_INT:
3604 case CONST_DOUBLE:
3605 case CONST:
3606 case SYMBOL_REF:
3607 case LABEL_REF:
3608 return x;
3609
3610 case REG:
3611#if 0
3612 /* If non-reduced/final-value givs were split, then this would also
3613 have to remap those givs also. */
3614#endif
3615 if (REGNO (x) < max_reg_before_loop
3616 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3617 return reg_biv_class[REGNO (x)]->biv->src_reg;
e9a25f70
JL
3618 break;
3619
3620 default:
3621 break;
2b59419a
JW
3622 }
3623
3624 fmt = GET_RTX_FORMAT (code);
3625 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3626 {
3627 if (fmt[i] == 'e')
3628 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3629 if (fmt[i] == 'E')
3630 {
3631 register int j;
3632 for (j = 0; j < XVECLEN (x, i); j++)
3633 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3634 }
3635 }
3636 return x;
3637}
1fe33d17
JW
3638
3639/* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3640 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3641 return 0. COPY_START is where we can start looking for the insns
3642 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3643 insns.
3644
3645 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3646 must dominate LAST_UID.
3647
3648 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3649 may not dominate LAST_UID.
3650
3651 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3652 must dominate LAST_UID. */
3653
3654int
3655set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3656 int regno;
3657 int first_uid;
3658 int last_uid;
3659 rtx copy_start;
3660 rtx copy_end;
3661{
3662 int passed_jump = 0;
3663 rtx p = NEXT_INSN (copy_start);
3664
3665 while (INSN_UID (p) != first_uid)
3666 {
3667 if (GET_CODE (p) == JUMP_INSN)
3668 passed_jump= 1;
3669 /* Could not find FIRST_UID. */
3670 if (p == copy_end)
3671 return 0;
3672 p = NEXT_INSN (p);
3673 }
3674
3675 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3676 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3677 || ! dead_or_set_regno_p (p, regno))
3678 return 0;
3679
3680 /* FIRST_UID is always executed. */
3681 if (passed_jump == 0)
3682 return 1;
3683
3684 while (INSN_UID (p) != last_uid)
3685 {
3686 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3687 can not be sure that FIRST_UID dominates LAST_UID. */
3688 if (GET_CODE (p) == CODE_LABEL)
3689 return 0;
6b857f04
JW
3690 /* Could not find LAST_UID, but we reached the end of the loop, so
3691 it must be safe. */
3692 else if (p == copy_end)
3693 return 1;
1fe33d17
JW
3694 p = NEXT_INSN (p);
3695 }
3696
3697 /* FIRST_UID is always executed if LAST_UID is executed. */
3698 return 1;
3699}