]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/unwind-dw2-fde.c
alias.c [...]: Remove unnecessary casts.
[thirdparty/gcc.git] / gcc / unwind-dw2-fde.c
CommitLineData
0021b564 1/* Subroutines needed for unwinding stack frames for exception handling. */
3cfe49da 2/* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
0021b564
JM
3 Contributed by Jason Merrill <jason@cygnus.com>.
4
1322177d 5This file is part of GCC.
0021b564 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
0021b564 11
f7af368f
JL
12In addition to the permissions in the GNU General Public License, the
13Free Software Foundation gives you unlimited permission to link the
14compiled version of this file into combinations with other programs,
15and to distribute those combinations without any restriction coming
16from the use of this file. (The General Public License restrictions
17do apply in other respects; for example, they cover modification of
18the file, and distribution when not linked into a combine
19executable.)
20
1322177d
LB
21GCC is distributed in the hope that it will be useful, but WITHOUT ANY
22WARRANTY; without even the implied warranty of MERCHANTABILITY or
23FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
24for more details.
0021b564
JM
25
26You should have received a copy of the GNU General Public License
1322177d
LB
27along with GCC; see the file COPYING. If not, write to the Free
28Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2902111-1307, USA. */
0021b564 30
275b60d6 31#ifndef _Unwind_Find_FDE
52a11cbf
RH
32#include "tconfig.h"
33#include "tsystem.h"
4977bab6
ZW
34#include "coretypes.h"
35#include "tm.h"
e1f9550a
RH
36#include "dwarf2.h"
37#include "unwind.h"
bda33a6e 38#define NO_BASE_OF_ENCODED_VALUE
e1f9550a 39#include "unwind-pe.h"
52a11cbf
RH
40#include "unwind-dw2-fde.h"
41#include "gthr.h"
275b60d6 42#endif
52a11cbf 43
e1f9550a
RH
44/* The unseen_objects list contains objects that have been registered
45 but not yet categorized in any way. The seen_objects list has had
46 it's pc_begin and count fields initialized at minimum, and is sorted
47 by decreasing value of pc_begin. */
48static struct object *unseen_objects;
49static struct object *seen_objects;
52a11cbf
RH
50
51#ifdef __GTHREAD_MUTEX_INIT
52static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
53#else
54static __gthread_mutex_t object_mutex;
55#endif
56
57#ifdef __GTHREAD_MUTEX_INIT_FUNCTION
41077ce4 58static void
52a11cbf
RH
59init_object_mutex (void)
60{
61 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
62}
63
64static void
65init_object_mutex_once (void)
66{
67 static __gthread_once_t once = __GTHREAD_ONCE_INIT;
68 __gthread_once (&once, init_object_mutex);
69}
70#else
71#define init_object_mutex_once()
72#endif
73
74/* Called from crtbegin.o to register the unwind info for an object. */
75
76void
e1f9550a
RH
77__register_frame_info_bases (void *begin, struct object *ob,
78 void *tbase, void *dbase)
52a11cbf 79{
55fae1a9 80 /* If .eh_frame is empty, don't register at all. */
7008a11b 81 if ((uword *) begin == 0 || *(uword *) begin == 0)
55fae1a9
JJ
82 return;
83
e1f9550a
RH
84 ob->pc_begin = (void *)-1;
85 ob->tbase = tbase;
86 ob->dbase = dbase;
87 ob->u.single = begin;
88 ob->s.i = 0;
89 ob->s.b.encoding = DW_EH_PE_omit;
3cfe49da
GK
90#ifdef DWARF2_OBJECT_END_PTR_EXTENSION
91 ob->fde_end = NULL;
92#endif
52a11cbf
RH
93
94 init_object_mutex_once ();
95 __gthread_mutex_lock (&object_mutex);
96
e1f9550a
RH
97 ob->next = unseen_objects;
98 unseen_objects = ob;
52a11cbf
RH
99
100 __gthread_mutex_unlock (&object_mutex);
101}
102
e1f9550a
RH
103void
104__register_frame_info (void *begin, struct object *ob)
105{
106 __register_frame_info_bases (begin, ob, 0, 0);
107}
108
52a11cbf
RH
109void
110__register_frame (void *begin)
111{
55fae1a9
JJ
112 struct object *ob;
113
114 /* If .eh_frame is empty, don't register at all. */
e9d1b155 115 if (*(uword *) begin == 0)
55fae1a9
JJ
116 return;
117
703ad42b 118 ob = malloc (sizeof (struct object));
41077ce4 119 __register_frame_info (begin, ob);
52a11cbf
RH
120}
121
122/* Similar, but BEGIN is actually a pointer to a table of unwind entries
123 for different translation units. Called from the file generated by
124 collect2. */
125
126void
e1f9550a
RH
127__register_frame_info_table_bases (void *begin, struct object *ob,
128 void *tbase, void *dbase)
52a11cbf 129{
e1f9550a
RH
130 ob->pc_begin = (void *)-1;
131 ob->tbase = tbase;
132 ob->dbase = dbase;
133 ob->u.array = begin;
134 ob->s.i = 0;
135 ob->s.b.from_array = 1;
136 ob->s.b.encoding = DW_EH_PE_omit;
52a11cbf
RH
137
138 init_object_mutex_once ();
139 __gthread_mutex_lock (&object_mutex);
140
e1f9550a
RH
141 ob->next = unseen_objects;
142 unseen_objects = ob;
52a11cbf
RH
143
144 __gthread_mutex_unlock (&object_mutex);
145}
146
e1f9550a
RH
147void
148__register_frame_info_table (void *begin, struct object *ob)
149{
150 __register_frame_info_table_bases (begin, ob, 0, 0);
151}
152
52a11cbf
RH
153void
154__register_frame_table (void *begin)
155{
703ad42b 156 struct object *ob = malloc (sizeof (struct object));
52a11cbf
RH
157 __register_frame_info_table (begin, ob);
158}
159
160/* Called from crtbegin.o to deregister the unwind info for an object. */
101fa48c
RH
161/* ??? Glibc has for a while now exported __register_frame_info and
162 __deregister_frame_info. If we call __register_frame_info_bases
163 from crtbegin (wherein it is declared weak), and this object does
164 not get pulled from libgcc.a for other reasons, then the
165 invocation of __deregister_frame_info will be resolved from glibc.
166 Since the registration did not happen there, we'll abort.
167
168 Therefore, declare a new deregistration entry point that does the
41077ce4 169 exact same thing, but will resolve to the same library as
101fa48c 170 implements __register_frame_info_bases. */
52a11cbf
RH
171
172void *
101fa48c 173__deregister_frame_info_bases (void *begin)
52a11cbf
RH
174{
175 struct object **p;
e1f9550a 176 struct object *ob = 0;
52a11cbf 177
55fae1a9 178 /* If .eh_frame is empty, we haven't registered. */
7008a11b 179 if ((uword *) begin == 0 || *(uword *) begin == 0)
5d393c8e 180 return ob;
55fae1a9 181
52a11cbf
RH
182 init_object_mutex_once ();
183 __gthread_mutex_lock (&object_mutex);
184
e1f9550a
RH
185 for (p = &unseen_objects; *p ; p = &(*p)->next)
186 if ((*p)->u.single == begin)
187 {
188 ob = *p;
189 *p = ob->next;
190 goto out;
191 }
192
193 for (p = &seen_objects; *p ; p = &(*p)->next)
194 if ((*p)->s.b.sorted)
195 {
196 if ((*p)->u.sort->orig_data == begin)
197 {
198 ob = *p;
199 *p = ob->next;
200 free (ob->u.sort);
201 goto out;
202 }
203 }
204 else
205 {
206 if ((*p)->u.single == begin)
207 {
208 ob = *p;
209 *p = ob->next;
210 goto out;
211 }
212 }
52a11cbf
RH
213
214 __gthread_mutex_unlock (&object_mutex);
215 abort ();
e1f9550a
RH
216
217 out:
218 __gthread_mutex_unlock (&object_mutex);
219 return (void *) ob;
52a11cbf
RH
220}
221
101fa48c
RH
222void *
223__deregister_frame_info (void *begin)
224{
225 return __deregister_frame_info_bases (begin);
226}
101fa48c 227
52a11cbf
RH
228void
229__deregister_frame (void *begin)
230{
55fae1a9 231 /* If .eh_frame is empty, we haven't registered. */
e9d1b155 232 if (*(uword *) begin != 0)
55fae1a9 233 free (__deregister_frame_info (begin));
52a11cbf
RH
234}
235
e1f9550a
RH
236\f
237/* Like base_of_encoded_value, but take the base from a struct object
238 instead of an _Unwind_Context. */
239
240static _Unwind_Ptr
241base_from_object (unsigned char encoding, struct object *ob)
242{
243 if (encoding == DW_EH_PE_omit)
244 return 0;
245
246 switch (encoding & 0x70)
247 {
248 case DW_EH_PE_absptr:
249 case DW_EH_PE_pcrel:
099c8b17 250 case DW_EH_PE_aligned:
e1f9550a
RH
251 return 0;
252
253 case DW_EH_PE_textrel:
254 return (_Unwind_Ptr) ob->tbase;
255 case DW_EH_PE_datarel:
256 return (_Unwind_Ptr) ob->dbase;
257 }
258 abort ();
259}
260
261/* Return the FDE pointer encoding from the CIE. */
262/* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
263
264static int
265get_cie_encoding (struct dwarf_cie *cie)
266{
267 const unsigned char *aug, *p;
268 _Unwind_Ptr dummy;
a9985a92
JM
269 _Unwind_Word utmp;
270 _Unwind_Sword stmp;
e1f9550a
RH
271
272 aug = cie->augmentation;
273 if (aug[0] != 'z')
274 return DW_EH_PE_absptr;
275
276 p = aug + strlen (aug) + 1; /* Skip the augmentation string. */
a9985a92
JM
277 p = read_uleb128 (p, &utmp); /* Skip code alignment. */
278 p = read_sleb128 (p, &stmp); /* Skip data alignment. */
e1f9550a
RH
279 p++; /* Skip return address column. */
280
281 aug++; /* Skip 'z' */
a9985a92 282 p = read_uleb128 (p, &utmp); /* Skip augmentation length. */
e1f9550a
RH
283 while (1)
284 {
285 /* This is what we're looking for. */
286 if (*aug == 'R')
287 return *p;
288 /* Personality encoding and pointer. */
289 else if (*aug == 'P')
099c8b17
RH
290 {
291 /* ??? Avoid dereferencing indirect pointers, since we're
292 faking the base address. Gotta keep DW_EH_PE_aligned
293 intact, however. */
294 p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
295 }
e1f9550a
RH
296 /* LSDA encoding. */
297 else if (*aug == 'L')
298 p++;
299 /* Otherwise end of string, or unknown augmentation. */
300 else
301 return DW_EH_PE_absptr;
302 aug++;
303 }
304}
305
306static inline int
307get_fde_encoding (struct dwarf_fde *f)
308{
309 return get_cie_encoding (get_cie (f));
310}
311
52a11cbf 312\f
72dd050a
BH
313/* Sorting an array of FDEs by address.
314 (Ideally we would have the linker sort the FDEs so we don't have to do
315 it at run time. But the linkers are not yet prepared for this.) */
316
e1f9550a
RH
317/* Comparison routines. Three variants of increasing complexity. */
318
bde257ff 319static int
e1f9550a
RH
320fde_unencoded_compare (struct object *ob __attribute__((unused)),
321 fde *x, fde *y)
322{
2f9ec5e5
HPN
323 _Unwind_Ptr x_ptr = *(_Unwind_Ptr *) x->pc_begin;
324 _Unwind_Ptr y_ptr = *(_Unwind_Ptr *) y->pc_begin;
325
326 if (x_ptr > y_ptr)
bde257ff 327 return 1;
2f9ec5e5 328 if (x_ptr < y_ptr)
bde257ff
RH
329 return -1;
330 return 0;
e1f9550a
RH
331}
332
bde257ff 333static int
e1f9550a
RH
334fde_single_encoding_compare (struct object *ob, fde *x, fde *y)
335{
336 _Unwind_Ptr base, x_ptr, y_ptr;
337
338 base = base_from_object (ob->s.b.encoding, ob);
339 read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
340 read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
341
bde257ff
RH
342 if (x_ptr > y_ptr)
343 return 1;
344 if (x_ptr < y_ptr)
345 return -1;
346 return 0;
e1f9550a
RH
347}
348
bde257ff 349static int
e1f9550a
RH
350fde_mixed_encoding_compare (struct object *ob, fde *x, fde *y)
351{
352 int x_encoding, y_encoding;
353 _Unwind_Ptr x_ptr, y_ptr;
354
355 x_encoding = get_fde_encoding (x);
356 read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
357 x->pc_begin, &x_ptr);
358
359 y_encoding = get_fde_encoding (y);
360 read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
361 y->pc_begin, &y_ptr);
362
bde257ff
RH
363 if (x_ptr > y_ptr)
364 return 1;
365 if (x_ptr < y_ptr)
366 return -1;
367 return 0;
e1f9550a
RH
368}
369
bde257ff 370typedef int (*fde_compare_t) (struct object *, fde *, fde *);
e1f9550a
RH
371
372
72dd050a
BH
373/* This is a special mix of insertion sort and heap sort, optimized for
374 the data sets that actually occur. They look like
375 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
376 I.e. a linearly increasing sequence (coming from functions in the text
377 section), with additionally a few unordered elements (coming from functions
378 in gnu_linkonce sections) whose values are higher than the values in the
379 surrounding linear sequence (but not necessarily higher than the values
380 at the end of the linear sequence!).
381 The worst-case total run time is O(N) + O(n log (n)), where N is the
382 total number of FDEs and n is the number of erratic ones. */
383
e1f9550a 384struct fde_accumulator
72dd050a 385{
e1f9550a
RH
386 struct fde_vector *linear;
387 struct fde_vector *erratic;
388};
52a11cbf 389
d593d1d2 390static inline int
e1f9550a 391start_fde_sort (struct fde_accumulator *accu, size_t count)
72dd050a 392{
e1f9550a
RH
393 size_t size;
394 if (! count)
395 return 0;
396
397 size = sizeof (struct fde_vector) + sizeof (fde *) * count;
703ad42b 398 if ((accu->linear = malloc (size)))
e1f9550a
RH
399 {
400 accu->linear->count = 0;
703ad42b 401 if ((accu->erratic = malloc (size)))
e1f9550a
RH
402 accu->erratic->count = 0;
403 return 1;
404 }
405 else
41077ce4 406 return 0;
72dd050a 407}
0021b564 408
72dd050a 409static inline void
e1f9550a 410fde_insert (struct fde_accumulator *accu, fde *this_fde)
72dd050a 411{
e1f9550a
RH
412 if (accu->linear)
413 accu->linear->array[accu->linear->count++] = this_fde;
72dd050a
BH
414}
415
416/* Split LINEAR into a linear sequence with low values and an erratic
417 sequence with high values, put the linear one (of longest possible
ba540394 418 length) into LINEAR and the erratic one into ERRATIC. This is O(N).
41077ce4 419
ba540394
NS
420 Because the longest linear sequence we are trying to locate within the
421 incoming LINEAR array can be interspersed with (high valued) erratic
422 entries. We construct a chain indicating the sequenced entries.
423 To avoid having to allocate this chain, we overlay it onto the space of
424 the ERRATIC array during construction. A final pass iterates over the
425 chain to determine what should be placed in the ERRATIC array, and
426 what is the linear sequence. This overlay is safe from aliasing. */
e1f9550a 427
72dd050a 428static inline void
e1f9550a
RH
429fde_split (struct object *ob, fde_compare_t fde_compare,
430 struct fde_vector *linear, struct fde_vector *erratic)
72dd050a 431{
ba540394 432 static fde *marker;
72dd050a 433 size_t count = linear->count;
ba540394
NS
434 fde **chain_end = &marker;
435 size_t i, j, k;
436
437 /* This should optimize out, but it is wise to make sure this assumption
438 is correct. Should these have different sizes, we cannot cast between
439 them and the overlaying onto ERRATIC will not work. */
440 if (sizeof (fde *) != sizeof (fde **))
441 abort ();
41077ce4 442
72dd050a
BH
443 for (i = 0; i < count; i++)
444 {
ba540394 445 fde **probe;
41077ce4 446
ba540394 447 for (probe = chain_end;
41077ce4
KH
448 probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0;
449 probe = chain_end)
450 {
451 chain_end = (fde **) erratic->array[probe - linear->array];
452 erratic->array[probe - linear->array] = NULL;
453 }
e9d1b155 454 erratic->array[i] = (fde *) chain_end;
ba540394 455 chain_end = &linear->array[i];
72dd050a
BH
456 }
457
ba540394
NS
458 /* Each entry in LINEAR which is part of the linear sequence we have
459 discovered will correspond to a non-NULL entry in the chain we built in
460 the ERRATIC array. */
461 for (i = j = k = 0; i < count; i++)
462 if (erratic->array[i])
72dd050a 463 linear->array[j++] = linear->array[i];
ba540394
NS
464 else
465 erratic->array[k++] = linear->array[i];
72dd050a 466 linear->count = j;
ba540394 467 erratic->count = k;
72dd050a
BH
468}
469
80d83b16
JM
470#define SWAP(x,y) do { fde * tmp = x; x = y; y = tmp; } while (0)
471
472/* Convert a semi-heap to a heap. A semi-heap is a heap except possibly
473 for the first (root) node; push it down to its rightful place. */
474
475static void
476frame_downheap (struct object *ob, fde_compare_t fde_compare, fde **a,
477 int lo, int hi)
478{
479 int i, j;
480
481 for (i = lo, j = 2*i+1;
482 j < hi;
483 j = 2*i+1)
484 {
485 if (j+1 < hi && fde_compare (ob, a[j], a[j+1]) < 0)
486 ++j;
487
488 if (fde_compare (ob, a[i], a[j]) < 0)
489 {
490 SWAP (a[i], a[j]);
491 i = j;
492 }
493 else
494 break;
495 }
496}
497
99b13ed3
JW
498/* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
499 use a name that does not conflict. */
e1f9550a
RH
500
501static void
502frame_heapsort (struct object *ob, fde_compare_t fde_compare,
503 struct fde_vector *erratic)
72dd050a
BH
504{
505 /* For a description of this algorithm, see:
506 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
2d76cb1a 507 p. 60-61. */
72dd050a
BH
508 fde ** a = erratic->array;
509 /* A portion of the array is called a "heap" if for all i>=0:
510 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
2d76cb1a 511 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
72dd050a 512 size_t n = erratic->count;
80d83b16
JM
513 int m;
514
515 /* Expand our heap incrementally from the end of the array, heapifying
516 each resulting semi-heap as we go. After each step, a[m] is the top
517 of a heap. */
518 for (m = n/2-1; m >= 0; --m)
519 frame_downheap (ob, fde_compare, a, m, n);
520
521 /* Shrink our heap incrementally from the end of the array, first
522 swapping out the largest element a[0] and then re-heapifying the
523 resulting semi-heap. After each step, a[0..m) is a heap. */
524 for (m = n-1; m >= 1; --m)
72dd050a 525 {
80d83b16
JM
526 SWAP (a[0], a[m]);
527 frame_downheap (ob, fde_compare, a, 0, m);
72dd050a
BH
528 }
529#undef SWAP
530}
531
2d76cb1a 532/* Merge V1 and V2, both sorted, and put the result into V1. */
e1f9550a
RH
533static inline void
534fde_merge (struct object *ob, fde_compare_t fde_compare,
535 struct fde_vector *v1, struct fde_vector *v2)
0021b564 536{
72dd050a
BH
537 size_t i1, i2;
538 fde * fde2;
0021b564 539
72dd050a
BH
540 i2 = v2->count;
541 if (i2 > 0)
0021b564 542 {
72dd050a 543 i1 = v1->count;
a01da83b
KH
544 do
545 {
546 i2--;
547 fde2 = v2->array[i2];
548 while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0)
549 {
550 v1->array[i1+i2] = v1->array[i1-1];
551 i1--;
552 }
41077ce4 553 v1->array[i1+i2] = fde2;
a01da83b
KH
554 }
555 while (i2 > 0);
72dd050a 556 v1->count += v2->count;
0021b564
JM
557 }
558}
559
e1f9550a
RH
560static inline void
561end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
72dd050a 562{
e1f9550a
RH
563 fde_compare_t fde_compare;
564
565 if (accu->linear && accu->linear->count != count)
72dd050a 566 abort ();
e1f9550a
RH
567
568 if (ob->s.b.mixed_encoding)
569 fde_compare = fde_mixed_encoding_compare;
570 else if (ob->s.b.encoding == DW_EH_PE_absptr)
571 fde_compare = fde_unencoded_compare;
572 else
573 fde_compare = fde_single_encoding_compare;
574
575 if (accu->erratic)
d593d1d2 576 {
e1f9550a
RH
577 fde_split (ob, fde_compare, accu->linear, accu->erratic);
578 if (accu->linear->count + accu->erratic->count != count)
d593d1d2 579 abort ();
e1f9550a
RH
580 frame_heapsort (ob, fde_compare, accu->erratic);
581 fde_merge (ob, fde_compare, accu->linear, accu->erratic);
582 free (accu->erratic);
d593d1d2
NS
583 }
584 else
585 {
e1f9550a
RH
586 /* We've not managed to malloc an erratic array,
587 so heap sort in the linear one. */
588 frame_heapsort (ob, fde_compare, accu->linear);
d593d1d2 589 }
72dd050a
BH
590}
591
52a11cbf 592\f
41077ce4 593/* Update encoding, mixed_encoding, and pc_begin for OB for the
e1f9550a
RH
594 fde array beginning at THIS_FDE. Return the number of fdes
595 encountered along the way. */
596
52a11cbf 597static size_t
e1f9550a 598classify_object_over_fdes (struct object *ob, fde *this_fde)
52a11cbf 599{
e1f9550a
RH
600 struct dwarf_cie *last_cie = 0;
601 size_t count = 0;
602 int encoding = DW_EH_PE_absptr;
603 _Unwind_Ptr base = 0;
0021b564 604
3cfe49da 605 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
e1f9550a
RH
606 {
607 struct dwarf_cie *this_cie;
608 _Unwind_Ptr mask, pc_begin;
52a11cbf 609
e1f9550a
RH
610 /* Skip CIEs. */
611 if (this_fde->CIE_delta == 0)
612 continue;
52a11cbf 613
e1f9550a
RH
614 /* Determine the encoding for this FDE. Note mixed encoded
615 objects for later. */
616 this_cie = get_cie (this_fde);
617 if (this_cie != last_cie)
618 {
619 last_cie = this_cie;
620 encoding = get_cie_encoding (this_cie);
621 base = base_from_object (encoding, ob);
622 if (ob->s.b.encoding == DW_EH_PE_omit)
623 ob->s.b.encoding = encoding;
624 else if (ob->s.b.encoding != encoding)
625 ob->s.b.mixed_encoding = 1;
626 }
0021b564 627
e1f9550a
RH
628 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
629 &pc_begin);
0021b564 630
e1f9550a
RH
631 /* Take care to ignore link-once functions that were removed.
632 In these cases, the function address will be NULL, but if
633 the encoding is smaller than a pointer a true NULL may not
634 be representable. Assume 0 in the representable bits is NULL. */
635 mask = size_of_encoded_value (encoding);
636 if (mask < sizeof (void *))
637 mask = (1L << (mask << 3)) - 1;
638 else
639 mask = -1;
640
641 if ((pc_begin & mask) == 0)
642 continue;
154bba13 643
e1f9550a 644 count += 1;
e9d1b155
KH
645 if ((void *) pc_begin < ob->pc_begin)
646 ob->pc_begin = (void *) pc_begin;
52a11cbf 647 }
154bba13 648
e1f9550a 649 return count;
0021b564
JM
650}
651
e1f9550a
RH
652static void
653add_fdes (struct object *ob, struct fde_accumulator *accu, fde *this_fde)
a3fd4e75 654{
e1f9550a
RH
655 struct dwarf_cie *last_cie = 0;
656 int encoding = ob->s.b.encoding;
657 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
658
3cfe49da 659 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
52a11cbf 660 {
e1f9550a 661 struct dwarf_cie *this_cie;
52a11cbf 662
e1f9550a
RH
663 /* Skip CIEs. */
664 if (this_fde->CIE_delta == 0)
665 continue;
666
667 if (ob->s.b.mixed_encoding)
668 {
669 /* Determine the encoding for this FDE. Note mixed encoded
670 objects for later. */
671 this_cie = get_cie (this_fde);
672 if (this_cie != last_cie)
673 {
674 last_cie = this_cie;
675 encoding = get_cie_encoding (this_cie);
676 base = base_from_object (encoding, ob);
677 }
678 }
679
680 if (encoding == DW_EH_PE_absptr)
681 {
e9d1b155 682 if (*(_Unwind_Ptr *) this_fde->pc_begin == 0)
e1f9550a
RH
683 continue;
684 }
685 else
686 {
687 _Unwind_Ptr pc_begin, mask;
688
689 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
690 &pc_begin);
691
692 /* Take care to ignore link-once functions that were removed.
693 In these cases, the function address will be NULL, but if
694 the encoding is smaller than a pointer a true NULL may not
695 be representable. Assume 0 in the representable bits is NULL. */
696 mask = size_of_encoded_value (encoding);
697 if (mask < sizeof (void *))
698 mask = (1L << (mask << 3)) - 1;
699 else
700 mask = -1;
701
702 if ((pc_begin & mask) == 0)
703 continue;
704 }
705
706 fde_insert (accu, this_fde);
52a11cbf 707 }
a3fd4e75
JL
708}
709
52a11cbf
RH
710/* Set up a sorted array of pointers to FDEs for a loaded object. We
711 count up the entries before allocating the array because it's likely to
712 be faster. We can be called multiple times, should we have failed to
713 allocate a sorted fde array on a previous occasion. */
0021b564 714
e1f9550a
RH
715static inline void
716init_object (struct object* ob)
0021b564 717{
e1f9550a 718 struct fde_accumulator accu;
52a11cbf 719 size_t count;
0021b564 720
e1f9550a
RH
721 count = ob->s.b.count;
722 if (count == 0)
52a11cbf 723 {
e1f9550a
RH
724 if (ob->s.b.from_array)
725 {
726 fde **p = ob->u.array;
727 for (count = 0; *p; ++p)
728 count += classify_object_over_fdes (ob, *p);
729 }
730 else
731 count = classify_object_over_fdes (ob, ob->u.single);
732
733 /* The count field we have in the main struct object is somewhat
734 limited, but should suffice for virtually all cases. If the
735 counted value doesn't fit, re-write a zero. The worst that
736 happens is that we re-count next time -- admittedly non-trivial
737 in that this implies some 2M fdes, but at least we function. */
738 ob->s.b.count = count;
739 if (ob->s.b.count != count)
740 ob->s.b.count = 0;
52a11cbf 741 }
154bba13 742
e1f9550a 743 if (!start_fde_sort (&accu, count))
52a11cbf 744 return;
154bba13 745
e1f9550a 746 if (ob->s.b.from_array)
52a11cbf 747 {
e1f9550a
RH
748 fde **p;
749 for (p = ob->u.array; *p; ++p)
41077ce4 750 add_fdes (ob, &accu, *p);
52a11cbf
RH
751 }
752 else
e1f9550a
RH
753 add_fdes (ob, &accu, ob->u.single);
754
755 end_fde_sort (ob, &accu, count);
756
757 /* Save the original fde pointer, since this is the key by which the
758 DSO will deregister the object. */
759 accu.linear->orig_data = ob->u.single;
760 ob->u.sort = accu.linear;
761
762 ob->s.b.sorted = 1;
a3fd4e75
JL
763}
764
e1f9550a
RH
765/* A linear search through a set of FDEs for the given PC. This is
766 used when there was insufficient memory to allocate and sort an
767 array. */
768
769static fde *
770linear_search_fdes (struct object *ob, fde *this_fde, void *pc)
0021b564 771{
e1f9550a
RH
772 struct dwarf_cie *last_cie = 0;
773 int encoding = ob->s.b.encoding;
774 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
775
3cfe49da 776 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
e1f9550a
RH
777 {
778 struct dwarf_cie *this_cie;
779 _Unwind_Ptr pc_begin, pc_range;
780
781 /* Skip CIEs. */
782 if (this_fde->CIE_delta == 0)
783 continue;
784
785 if (ob->s.b.mixed_encoding)
786 {
787 /* Determine the encoding for this FDE. Note mixed encoded
788 objects for later. */
789 this_cie = get_cie (this_fde);
790 if (this_cie != last_cie)
791 {
792 last_cie = this_cie;
793 encoding = get_cie_encoding (this_cie);
794 base = base_from_object (encoding, ob);
795 }
796 }
797
798 if (encoding == DW_EH_PE_absptr)
799 {
e9d1b155
KH
800 pc_begin = ((_Unwind_Ptr *) this_fde->pc_begin)[0];
801 pc_range = ((_Unwind_Ptr *) this_fde->pc_begin)[1];
e1f9550a
RH
802 if (pc_begin == 0)
803 continue;
804 }
805 else
806 {
807 _Unwind_Ptr mask;
808 const char *p;
809
810 p = read_encoded_value_with_base (encoding, base,
811 this_fde->pc_begin, &pc_begin);
812 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
813
814 /* Take care to ignore link-once functions that were removed.
815 In these cases, the function address will be NULL, but if
816 the encoding is smaller than a pointer a true NULL may not
817 be representable. Assume 0 in the representable bits is NULL. */
818 mask = size_of_encoded_value (encoding);
819 if (mask < sizeof (void *))
820 mask = (1L << (mask << 3)) - 1;
821 else
822 mask = -1;
823
824 if ((pc_begin & mask) == 0)
825 continue;
826 }
827
e9d1b155 828 if ((_Unwind_Ptr) pc - pc_begin < pc_range)
41077ce4 829 return this_fde;
e1f9550a
RH
830 }
831
832 return NULL;
833}
834
835/* Binary search for an FDE containing the given PC. Here are three
836 implementations of increasing complexity. */
837
838static inline fde *
839binary_search_unencoded_fdes (struct object *ob, void *pc)
840{
841 struct fde_vector *vec = ob->u.sort;
52a11cbf 842 size_t lo, hi;
41077ce4 843
e1f9550a
RH
844 for (lo = 0, hi = vec->count; lo < hi; )
845 {
846 size_t i = (lo + hi) / 2;
847 fde *f = vec->array[i];
848 void *pc_begin;
849 uaddr pc_range;
850
e9d1b155
KH
851 pc_begin = ((void **) f->pc_begin)[0];
852 pc_range = ((uaddr *) f->pc_begin)[1];
e1f9550a
RH
853
854 if (pc < pc_begin)
855 hi = i;
856 else if (pc >= pc_begin + pc_range)
857 lo = i + 1;
858 else
859 return f;
860 }
0021b564 861
e1f9550a
RH
862 return NULL;
863}
154bba13 864
e1f9550a
RH
865static inline fde *
866binary_search_single_encoding_fdes (struct object *ob, void *pc)
867{
868 struct fde_vector *vec = ob->u.sort;
869 int encoding = ob->s.b.encoding;
870 _Unwind_Ptr base = base_from_object (encoding, ob);
871 size_t lo, hi;
41077ce4 872
e1f9550a 873 for (lo = 0, hi = vec->count; lo < hi; )
0021b564 874 {
e1f9550a
RH
875 size_t i = (lo + hi) / 2;
876 fde *f = vec->array[i];
877 _Unwind_Ptr pc_begin, pc_range;
878 const char *p;
879
880 p = read_encoded_value_with_base (encoding, base, f->pc_begin,
881 &pc_begin);
882 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
883
e9d1b155 884 if ((_Unwind_Ptr) pc < pc_begin)
e1f9550a 885 hi = i;
e9d1b155 886 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
e1f9550a
RH
887 lo = i + 1;
888 else
889 return f;
52a11cbf 890 }
0021b564 891
e1f9550a
RH
892 return NULL;
893}
894
895static inline fde *
896binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
897{
898 struct fde_vector *vec = ob->u.sort;
899 size_t lo, hi;
41077ce4 900
e1f9550a 901 for (lo = 0, hi = vec->count; lo < hi; )
52a11cbf 902 {
e1f9550a
RH
903 size_t i = (lo + hi) / 2;
904 fde *f = vec->array[i];
905 _Unwind_Ptr pc_begin, pc_range;
906 const char *p;
907 int encoding;
908
909 encoding = get_fde_encoding (f);
910 p = read_encoded_value_with_base (encoding,
911 base_from_object (encoding, ob),
912 f->pc_begin, &pc_begin);
913 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
914
e9d1b155 915 if ((_Unwind_Ptr) pc < pc_begin)
e1f9550a 916 hi = i;
e9d1b155 917 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
e1f9550a
RH
918 lo = i + 1;
919 else
920 return f;
52a11cbf 921 }
0021b564 922
e1f9550a
RH
923 return NULL;
924}
52a11cbf 925
e1f9550a
RH
926static fde *
927search_object (struct object* ob, void *pc)
928{
929 /* If the data hasn't been sorted, try to do this now. We may have
930 more memory available than last time we tried. */
931 if (! ob->s.b.sorted)
52a11cbf 932 {
e1f9550a 933 init_object (ob);
52a11cbf 934
e1f9550a
RH
935 /* Despite the above comment, the normal reason to get here is
936 that we've not processed this object before. A quick range
937 check is in order. */
938 if (pc < ob->pc_begin)
939 return NULL;
940 }
941
942 if (ob->s.b.sorted)
943 {
944 if (ob->s.b.mixed_encoding)
945 return binary_search_mixed_encoding_fdes (ob, pc);
946 else if (ob->s.b.encoding == DW_EH_PE_absptr)
947 return binary_search_unencoded_fdes (ob, pc);
948 else
949 return binary_search_single_encoding_fdes (ob, pc);
0021b564 950 }
52a11cbf
RH
951 else
952 {
e1f9550a
RH
953 /* Long slow labourious linear search, cos we've no memory. */
954 if (ob->s.b.from_array)
41077ce4
KH
955 {
956 fde **p;
e1f9550a
RH
957 for (p = ob->u.array; *p ; p++)
958 {
959 fde *f = linear_search_fdes (ob, *p, pc);
41077ce4 960 if (f)
e1f9550a 961 return f;
41077ce4 962 }
e1f9550a
RH
963 return NULL;
964 }
52a11cbf 965 else
e1f9550a
RH
966 return linear_search_fdes (ob, ob->u.single, pc);
967 }
968}
969
970fde *
971_Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
972{
973 struct object *ob;
974 fde *f = NULL;
975
976 init_object_mutex_once ();
977 __gthread_mutex_lock (&object_mutex);
978
979 /* Linear search through the classified objects, to find the one
e3aafbad 980 containing the pc. Note that pc_begin is sorted descending, and
e1f9550a
RH
981 we expect objects to be non-overlapping. */
982 for (ob = seen_objects; ob; ob = ob->next)
983 if (pc >= ob->pc_begin)
984 {
985 f = search_object (ob, pc);
986 if (f)
987 goto fini;
988 break;
989 }
990
991 /* Classify and search the objects we've not yet processed. */
992 while ((ob = unseen_objects))
993 {
994 struct object **p;
995
996 unseen_objects = ob->next;
997 f = search_object (ob, pc);
998
999 /* Insert the object into the classified list. */
1000 for (p = &seen_objects; *p ; p = &(*p)->next)
1001 if ((*p)->pc_begin < ob->pc_begin)
1002 break;
1003 ob->next = *p;
1004 *p = ob;
1005
1006 if (f)
1007 goto fini;
1008 }
1009
1010 fini:
1011 __gthread_mutex_unlock (&object_mutex);
1012
1013 if (f)
1014 {
1015 int encoding;
1016
1017 bases->tbase = ob->tbase;
1018 bases->dbase = ob->dbase;
154bba13 1019
e1f9550a
RH
1020 encoding = ob->s.b.encoding;
1021 if (ob->s.b.mixed_encoding)
1022 encoding = get_fde_encoding (f);
1023 read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
1024 f->pc_begin, (_Unwind_Ptr *)&bases->func);
52a11cbf 1025 }
0021b564 1026
e1f9550a 1027 return f;
a3fd4e75 1028}