]>
| Commit | Line | Data |
|---|---|---|
| 3aaa69e5 | 1 | /* Header file for the value range relational processing. |
| 6441eb6d | 2 | Copyright (C) 2020-2025 Free Software Foundation, Inc. |
| 3aaa69e5 AM |
3 | Contributed by Andrew MacLeod <amacleod@redhat.com> |
| 4 | ||
| 5 | This file is part of GCC. | |
| 6 | ||
| 7 | GCC is free software; you can redistribute it and/or modify it under | |
| 8 | the terms of the GNU General Public License as published by the Free | |
| 9 | Software Foundation; either version 3, or (at your option) any later | |
| 10 | version. | |
| 11 | ||
| 12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | |
| 13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
| 14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
| 15 | for more details. | |
| 16 | ||
| 17 | You should have received a copy of the GNU General Public License | |
| 18 | along with GCC; see the file COPYING3. If not see | |
| 19 | <http://www.gnu.org/licenses/>. */ | |
| 20 | ||
| 21 | #include "config.h" | |
| 22 | #include "system.h" | |
| 23 | #include "coretypes.h" | |
| 24 | #include "backend.h" | |
| 25 | #include "tree.h" | |
| 26 | #include "gimple.h" | |
| 27 | #include "ssa.h" | |
| 28 | ||
| 29 | #include "gimple-range.h" | |
| 30 | #include "tree-pretty-print.h" | |
| 31 | #include "gimple-pretty-print.h" | |
| 32 | #include "alloc-pool.h" | |
| 33 | #include "dominance.h" | |
| 34 | ||
| 0cdb609f | 35 | static const char *const kind_string[VREL_LAST] = |
| b5563410 AM |
36 | { "varying", "undefined", "<", "<=", ">", ">=", "==", "!=", "pe8", "pe16", |
| 37 | "pe32", "pe64" }; | |
| 3aaa69e5 AM |
38 | |
| 39 | // Print a relation_kind REL to file F. | |
| 40 | ||
| 41 | void | |
| 42 | print_relation (FILE *f, relation_kind rel) | |
| 43 | { | |
| ade5531c | 44 | fprintf (f, " %s ", kind_string[rel]); |
| 3aaa69e5 AM |
45 | } |
| 46 | ||
| 47 | // This table is used to negate the operands. op1 REL op2 -> !(op1 REL op2). | |
| 0cdb609f | 48 | static const unsigned char rr_negate_table[VREL_LAST] = { |
| ade5531c AM |
49 | VREL_VARYING, VREL_UNDEFINED, VREL_GE, VREL_GT, VREL_LE, VREL_LT, VREL_NE, |
| 50 | VREL_EQ }; | |
| 3aaa69e5 AM |
51 | |
| 52 | // Negate the relation, as in logical negation. | |
| 53 | ||
| 54 | relation_kind | |
| 55 | relation_negate (relation_kind r) | |
| 56 | { | |
| 0cdb609f | 57 | return relation_kind (rr_negate_table [r]); |
| 3aaa69e5 AM |
58 | } |
| 59 | ||
| 60 | // This table is used to swap the operands. op1 REL op2 -> op2 REL op1. | |
| 0cdb609f | 61 | static const unsigned char rr_swap_table[VREL_LAST] = { |
| ade5531c AM |
62 | VREL_VARYING, VREL_UNDEFINED, VREL_GT, VREL_GE, VREL_LT, VREL_LE, VREL_EQ, |
| 63 | VREL_NE }; | |
| 3aaa69e5 AM |
64 | |
| 65 | // Return the relation as if the operands were swapped. | |
| 66 | ||
| 67 | relation_kind | |
| 68 | relation_swap (relation_kind r) | |
| 69 | { | |
| 0cdb609f | 70 | return relation_kind (rr_swap_table [r]); |
| 3aaa69e5 AM |
71 | } |
| 72 | ||
| 73 | // This table is used to perform an intersection between 2 relations. | |
| 74 | ||
| 0cdb609f | 75 | static const unsigned char rr_intersect_table[VREL_LAST][VREL_LAST] = { |
| ade5531c AM |
76 | // VREL_VARYING |
| 77 | { VREL_VARYING, VREL_UNDEFINED, VREL_LT, VREL_LE, VREL_GT, VREL_GE, VREL_EQ, | |
| 78 | VREL_NE }, | |
| 79 | // VREL_UNDEFINED | |
| 80 | { VREL_UNDEFINED, VREL_UNDEFINED, VREL_UNDEFINED, VREL_UNDEFINED, | |
| 81 | VREL_UNDEFINED, VREL_UNDEFINED, VREL_UNDEFINED, VREL_UNDEFINED }, | |
| 82 | // VREL_LT | |
| 83 | { VREL_LT, VREL_UNDEFINED, VREL_LT, VREL_LT, VREL_UNDEFINED, VREL_UNDEFINED, | |
| 84 | VREL_UNDEFINED, VREL_LT }, | |
| 85 | // VREL_LE | |
| 86 | { VREL_LE, VREL_UNDEFINED, VREL_LT, VREL_LE, VREL_UNDEFINED, VREL_EQ, | |
| 87 | VREL_EQ, VREL_LT }, | |
| 88 | // VREL_GT | |
| 89 | { VREL_GT, VREL_UNDEFINED, VREL_UNDEFINED, VREL_UNDEFINED, VREL_GT, VREL_GT, | |
| 90 | VREL_UNDEFINED, VREL_GT }, | |
| 91 | // VREL_GE | |
| 92 | { VREL_GE, VREL_UNDEFINED, VREL_UNDEFINED, VREL_EQ, VREL_GT, VREL_GE, | |
| 93 | VREL_EQ, VREL_GT }, | |
| 94 | // VREL_EQ | |
| 95 | { VREL_EQ, VREL_UNDEFINED, VREL_UNDEFINED, VREL_EQ, VREL_UNDEFINED, VREL_EQ, | |
| 96 | VREL_EQ, VREL_UNDEFINED }, | |
| 97 | // VREL_NE | |
| 98 | { VREL_NE, VREL_UNDEFINED, VREL_LT, VREL_LT, VREL_GT, VREL_GT, | |
| 99 | VREL_UNDEFINED, VREL_NE } }; | |
| 3aaa69e5 AM |
100 | |
| 101 | ||
| 675a3e40 | 102 | // Intersect relation R1 with relation R2 and return the resulting relation. |
| 3aaa69e5 AM |
103 | |
| 104 | relation_kind | |
| 105 | relation_intersect (relation_kind r1, relation_kind r2) | |
| 106 | { | |
| 0cdb609f | 107 | return relation_kind (rr_intersect_table[r1][r2]); |
| 3aaa69e5 AM |
108 | } |
| 109 | ||
| 110 | ||
| 111 | // This table is used to perform a union between 2 relations. | |
| 112 | ||
| 0cdb609f | 113 | static const unsigned char rr_union_table[VREL_LAST][VREL_LAST] = { |
| ade5531c AM |
114 | // VREL_VARYING |
| 115 | { VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, | |
| 116 | VREL_VARYING, VREL_VARYING, VREL_VARYING }, | |
| 117 | // VREL_UNDEFINED | |
| c81e68a9 | 118 | { VREL_VARYING, VREL_UNDEFINED, VREL_LT, VREL_LE, VREL_GT, VREL_GE, |
| ade5531c AM |
119 | VREL_EQ, VREL_NE }, |
| 120 | // VREL_LT | |
| 121 | { VREL_VARYING, VREL_LT, VREL_LT, VREL_LE, VREL_NE, VREL_VARYING, VREL_LE, | |
| 122 | VREL_NE }, | |
| 123 | // VREL_LE | |
| 124 | { VREL_VARYING, VREL_LE, VREL_LE, VREL_LE, VREL_VARYING, VREL_VARYING, | |
| 125 | VREL_LE, VREL_VARYING }, | |
| 126 | // VREL_GT | |
| 127 | { VREL_VARYING, VREL_GT, VREL_NE, VREL_VARYING, VREL_GT, VREL_GE, VREL_GE, | |
| 128 | VREL_NE }, | |
| 129 | // VREL_GE | |
| 130 | { VREL_VARYING, VREL_GE, VREL_VARYING, VREL_VARYING, VREL_GE, VREL_GE, | |
| 131 | VREL_GE, VREL_VARYING }, | |
| 132 | // VREL_EQ | |
| 133 | { VREL_VARYING, VREL_EQ, VREL_LE, VREL_LE, VREL_GE, VREL_GE, VREL_EQ, | |
| 134 | VREL_VARYING }, | |
| 135 | // VREL_NE | |
| 136 | { VREL_VARYING, VREL_NE, VREL_NE, VREL_VARYING, VREL_NE, VREL_VARYING, | |
| 137 | VREL_VARYING, VREL_NE } }; | |
| 3aaa69e5 AM |
138 | |
| 139 | // Union relation R1 with relation R2 and return the result. | |
| 140 | ||
| 141 | relation_kind | |
| 142 | relation_union (relation_kind r1, relation_kind r2) | |
| 143 | { | |
| 0cdb609f | 144 | return relation_kind (rr_union_table[r1][r2]); |
| 3aaa69e5 AM |
145 | } |
| 146 | ||
| 147 | ||
| 675a3e40 AM |
148 | // This table is used to determine transitivity between 2 relations. |
| 149 | // (A relation0 B) and (B relation1 C) implies (A result C) | |
| 150 | ||
| 0cdb609f | 151 | static const unsigned char rr_transitive_table[VREL_LAST][VREL_LAST] = { |
| ade5531c AM |
152 | // VREL_VARYING |
| 153 | { VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, | |
| 154 | VREL_VARYING, VREL_VARYING, VREL_VARYING }, | |
| 155 | // VREL_UNDEFINED | |
| 156 | { VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, | |
| 157 | VREL_VARYING, VREL_VARYING, VREL_VARYING }, | |
| 158 | // VREL_LT | |
| 159 | { VREL_VARYING, VREL_VARYING, VREL_LT, VREL_LT, VREL_VARYING, VREL_VARYING, | |
| 160 | VREL_LT, VREL_VARYING }, | |
| 161 | // VREL_LE | |
| 162 | { VREL_VARYING, VREL_VARYING, VREL_LT, VREL_LE, VREL_VARYING, VREL_VARYING, | |
| 163 | VREL_LE, VREL_VARYING }, | |
| 164 | // VREL_GT | |
| 165 | { VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_GT, VREL_GT, | |
| 166 | VREL_GT, VREL_VARYING }, | |
| 167 | // VREL_GE | |
| 168 | { VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_GT, VREL_GE, | |
| 169 | VREL_GE, VREL_VARYING }, | |
| 170 | // VREL_EQ | |
| 171 | { VREL_VARYING, VREL_VARYING, VREL_LT, VREL_LE, VREL_GT, VREL_GE, VREL_EQ, | |
| 172 | VREL_VARYING }, | |
| 173 | // VREL_NE | |
| 174 | { VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, VREL_VARYING, | |
| 175 | VREL_VARYING, VREL_VARYING, VREL_VARYING } }; | |
| 675a3e40 AM |
176 | |
| 177 | // Apply transitive operation between relation R1 and relation R2, and | |
| 178 | // return the resulting relation, if any. | |
| 179 | ||
| 180 | relation_kind | |
| 181 | relation_transitive (relation_kind r1, relation_kind r2) | |
| 182 | { | |
| 0cdb609f | 183 | return relation_kind (rr_transitive_table[r1][r2]); |
| 675a3e40 AM |
184 | } |
| 185 | ||
| b0892b1f AM |
186 | // When one name is an equivalence of another, ensure the equivalence |
| 187 | // range is correct. Specifically for floating point, a +0 is also | |
| 188 | // equivalent to a -0 which may not be reflected. See PR 111694. | |
| 189 | ||
| 190 | void | |
| 191 | adjust_equivalence_range (vrange &range) | |
| 192 | { | |
| 193 | if (range.undefined_p () || !is_a<frange> (range)) | |
| 194 | return; | |
| 195 | ||
| 196 | frange fr = as_a<frange> (range); | |
| 197 | // If range includes 0 make sure both signs of zero are included. | |
| 198 | if (fr.contains_p (dconst0) || fr.contains_p (dconstm0)) | |
| 199 | { | |
| 200 | frange zeros (range.type (), dconstm0, dconst0); | |
| 201 | range.union_ (zeros); | |
| 202 | } | |
| 203 | } | |
| 204 | ||
| 6b73c07e AM |
205 | // Given an equivalence set EQUIV, set all the bits in B that are still valid |
| 206 | // members of EQUIV in basic block BB. | |
| 207 | ||
| 208 | void | |
| 209 | relation_oracle::valid_equivs (bitmap b, const_bitmap equivs, basic_block bb) | |
| 210 | { | |
| 211 | unsigned i; | |
| 212 | bitmap_iterator bi; | |
| 213 | EXECUTE_IF_SET_IN_BITMAP (equivs, 0, i, bi) | |
| 214 | { | |
| 215 | tree ssa = ssa_name (i); | |
| c9dbace0 AM |
216 | if (ssa && !SSA_NAME_IN_FREE_LIST (ssa)) |
| 217 | { | |
| 218 | const_bitmap ssa_equiv = equiv_set (ssa, bb); | |
| 219 | if (ssa_equiv == equivs) | |
| 220 | bitmap_set_bit (b, i); | |
| 221 | } | |
| 6b73c07e AM |
222 | } |
| 223 | } | |
| 224 | ||
| 67afcf28 AM |
225 | // Return any known relation between SSA1 and SSA2 before stmt S is executed. |
| 226 | // If GET_RANGE is true, query the range of both operands first to ensure | |
| 227 | // the definitions have been processed and any relations have be created. | |
| 228 | ||
| 229 | relation_kind | |
| fca649de | 230 | relation_oracle::query (gimple *s, tree ssa1, tree ssa2) |
| 67afcf28 AM |
231 | { |
| 232 | if (TREE_CODE (ssa1) != SSA_NAME || TREE_CODE (ssa2) != SSA_NAME) | |
| 233 | return VREL_VARYING; | |
| fca649de | 234 | return query (gimple_bb (s), ssa1, ssa2); |
| 67afcf28 AM |
235 | } |
| 236 | ||
| 237 | // Return any known relation between SSA1 and SSA2 on edge E. | |
| 238 | // If GET_RANGE is true, query the range of both operands first to ensure | |
| 239 | // the definitions have been processed and any relations have be created. | |
| 240 | ||
| 241 | relation_kind | |
| fca649de | 242 | relation_oracle::query (edge e, tree ssa1, tree ssa2) |
| 67afcf28 AM |
243 | { |
| 244 | basic_block bb; | |
| 245 | if (TREE_CODE (ssa1) != SSA_NAME || TREE_CODE (ssa2) != SSA_NAME) | |
| 246 | return VREL_VARYING; | |
| 247 | ||
| 248 | // Use destination block if it has a single predecessor, and this picks | |
| 249 | // up any relation on the edge. | |
| 250 | // Otherwise choose the src edge and the result is the same as on-exit. | |
| 251 | if (!single_pred_p (e->dest)) | |
| 252 | bb = e->src; | |
| 253 | else | |
| 254 | bb = e->dest; | |
| 255 | ||
| fca649de | 256 | return query (bb, ssa1, ssa2); |
| 67afcf28 | 257 | } |
| 3aaa69e5 AM |
258 | // ------------------------------------------------------------------------- |
| 259 | ||
| 3aaa69e5 AM |
260 | // The very first element in the m_equiv chain is actually just a summary |
| 261 | // element in which the m_names bitmap is used to indicate that an ssa_name | |
| 262 | // has an equivalence set in this block. | |
| 263 | // This allows for much faster traversal of the DOM chain, as a search for | |
| 264 | // SSA_NAME simply requires walking the DOM chain until a block is found | |
| 265 | // which has the bit for SSA_NAME set. Then scan for the equivalency set in | |
| 3674d8e6 | 266 | // that block. No previous lists need be searched. |
| 3aaa69e5 | 267 | |
| 3674d8e6 AM |
268 | // If SSA has an equivalence in this list, find and return it. |
| 269 | // Otherwise return NULL. | |
| 270 | ||
| 271 | equiv_chain * | |
| 272 | equiv_chain::find (unsigned ssa) | |
| 273 | { | |
| 274 | equiv_chain *ptr = NULL; | |
| 275 | // If there are equiv sets and SSA is in one in this list, find it. | |
| 276 | // Otherwise return NULL. | |
| 277 | if (bitmap_bit_p (m_names, ssa)) | |
| 278 | { | |
| 279 | for (ptr = m_next; ptr; ptr = ptr->m_next) | |
| 280 | if (bitmap_bit_p (ptr->m_names, ssa)) | |
| 281 | break; | |
| 282 | } | |
| 283 | return ptr; | |
| 284 | } | |
| 3aaa69e5 AM |
285 | |
| 286 | // Dump the names in this equivalence set. | |
| 287 | ||
| 288 | void | |
| 289 | equiv_chain::dump (FILE *f) const | |
| 290 | { | |
| 291 | bitmap_iterator bi; | |
| 292 | unsigned i; | |
| 293 | ||
| b5563410 | 294 | if (!m_names || bitmap_empty_p (m_names)) |
| 3aaa69e5 AM |
295 | return; |
| 296 | fprintf (f, "Equivalence set : ["); | |
| 297 | unsigned c = 0; | |
| 298 | EXECUTE_IF_SET_IN_BITMAP (m_names, 0, i, bi) | |
| 299 | { | |
| 300 | if (ssa_name (i)) | |
| 301 | { | |
| 302 | if (c++) | |
| 303 | fprintf (f, ", "); | |
| 304 | print_generic_expr (f, ssa_name (i), TDF_SLIM); | |
| 305 | } | |
| 306 | } | |
| 307 | fprintf (f, "]\n"); | |
| 308 | } | |
| 309 | ||
| 310 | // Instantiate an equivalency oracle. | |
| 311 | ||
| 312 | equiv_oracle::equiv_oracle () | |
| 313 | { | |
| 314 | bitmap_obstack_initialize (&m_bitmaps); | |
| 315 | m_equiv.create (0); | |
| 316 | m_equiv.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1); | |
| 317 | m_equiv_set = BITMAP_ALLOC (&m_bitmaps); | |
| caf3fe78 | 318 | bitmap_tree_view (m_equiv_set); |
| 3aaa69e5 | 319 | obstack_init (&m_chain_obstack); |
| 3674d8e6 AM |
320 | m_self_equiv.create (0); |
| 321 | m_self_equiv.safe_grow_cleared (num_ssa_names + 1); | |
| b5563410 AM |
322 | m_partial.create (0); |
| 323 | m_partial.safe_grow_cleared (num_ssa_names + 1); | |
| 3aaa69e5 AM |
324 | } |
| 325 | ||
| 326 | // Destruct an equivalency oracle. | |
| 327 | ||
| 328 | equiv_oracle::~equiv_oracle () | |
| 329 | { | |
| b5563410 | 330 | m_partial.release (); |
| 3674d8e6 | 331 | m_self_equiv.release (); |
| 3aaa69e5 AM |
332 | obstack_free (&m_chain_obstack, NULL); |
| 333 | m_equiv.release (); | |
| 334 | bitmap_obstack_release (&m_bitmaps); | |
| 335 | } | |
| 336 | ||
| b5563410 AM |
337 | // Add a partial equivalence R between OP1 and OP2. |
| 338 | ||
| 339 | void | |
| 340 | equiv_oracle::add_partial_equiv (relation_kind r, tree op1, tree op2) | |
| 341 | { | |
| 342 | int v1 = SSA_NAME_VERSION (op1); | |
| 343 | int v2 = SSA_NAME_VERSION (op2); | |
| 344 | int prec2 = TYPE_PRECISION (TREE_TYPE (op2)); | |
| 345 | int bits = pe_to_bits (r); | |
| 346 | gcc_checking_assert (bits && prec2 >= bits); | |
| 347 | ||
| 348 | if (v1 >= (int)m_partial.length () || v2 >= (int)m_partial.length ()) | |
| 349 | m_partial.safe_grow_cleared (num_ssa_names + 1); | |
| 350 | gcc_checking_assert (v1 < (int)m_partial.length () | |
| 351 | && v2 < (int)m_partial.length ()); | |
| 352 | ||
| 353 | pe_slice &pe1 = m_partial[v1]; | |
| 354 | pe_slice &pe2 = m_partial[v2]; | |
| 355 | ||
| 356 | if (pe1.members) | |
| 357 | { | |
| 358 | // If the definition pe1 already has an entry, either the stmt is | |
| 359 | // being re-evaluated, or the def was used before being registered. | |
| 360 | // In either case, if PE2 has an entry, we simply do nothing. | |
| 361 | if (pe2.members) | |
| 362 | return; | |
| 8be20f3b AM |
363 | // If there are no uses of op2, do not register. |
| 364 | if (has_zero_uses (op2)) | |
| 365 | return; | |
| b5563410 AM |
366 | // PE1 is the LHS and already has members, so everything in the set |
| 367 | // should be a slice of PE2 rather than PE1. | |
| 368 | pe2.code = pe_min (r, pe1.code); | |
| 369 | pe2.ssa_base = op2; | |
| 370 | pe2.members = pe1.members; | |
| 371 | bitmap_iterator bi; | |
| 372 | unsigned x; | |
| 373 | EXECUTE_IF_SET_IN_BITMAP (pe1.members, 0, x, bi) | |
| 374 | { | |
| 375 | m_partial[x].ssa_base = op2; | |
| 0205fbb9 | 376 | m_partial[x].code = pe_min (m_partial[x].code, pe2.code); |
| b5563410 AM |
377 | } |
| 378 | bitmap_set_bit (pe1.members, v2); | |
| 379 | return; | |
| 380 | } | |
| 381 | if (pe2.members) | |
| 382 | { | |
| 8be20f3b AM |
383 | // If there are no uses of op1, do not register. |
| 384 | if (has_zero_uses (op1)) | |
| 385 | return; | |
| b5563410 AM |
386 | pe1.ssa_base = pe2.ssa_base; |
| 387 | // If pe2 is a 16 bit value, but only an 8 bit copy, we can't be any | |
| 388 | // more than an 8 bit equivalence here, so choose MIN value. | |
| 389 | pe1.code = pe_min (r, pe2.code); | |
| 390 | pe1.members = pe2.members; | |
| 391 | bitmap_set_bit (pe1.members, v1); | |
| 392 | } | |
| 393 | else | |
| 394 | { | |
| 8be20f3b AM |
395 | // If there are no uses of either operand, do not register. |
| 396 | if (has_zero_uses (op1) || has_zero_uses (op2)) | |
| 397 | return; | |
| b5563410 AM |
398 | // Neither name has an entry, simply create op1 as slice of op2. |
| 399 | pe2.code = bits_to_pe (TYPE_PRECISION (TREE_TYPE (op2))); | |
| 400 | if (pe2.code == VREL_VARYING) | |
| 401 | return; | |
| 402 | pe2.ssa_base = op2; | |
| 403 | pe2.members = BITMAP_ALLOC (&m_bitmaps); | |
| 404 | bitmap_set_bit (pe2.members, v2); | |
| 405 | pe1.ssa_base = op2; | |
| 406 | pe1.code = r; | |
| 407 | pe1.members = pe2.members; | |
| 408 | bitmap_set_bit (pe1.members, v1); | |
| 409 | } | |
| 410 | } | |
| 411 | ||
| 412 | // Return the set of partial equivalences associated with NAME. The bitmap | |
| 413 | // will be NULL if there are none. | |
| 414 | ||
| 415 | const pe_slice * | |
| 416 | equiv_oracle::partial_equiv_set (tree name) | |
| 417 | { | |
| 418 | int v = SSA_NAME_VERSION (name); | |
| 419 | if (v >= (int)m_partial.length ()) | |
| 420 | return NULL; | |
| 421 | return &m_partial[v]; | |
| 422 | } | |
| 423 | ||
| 424 | // Query if there is a partial equivalence between SSA1 and SSA2. Return | |
| 425 | // VREL_VARYING if there is not one. If BASE is non-null, return the base | |
| 426 | // ssa-name this is a slice of. | |
| 427 | ||
| 428 | relation_kind | |
| 429 | equiv_oracle::partial_equiv (tree ssa1, tree ssa2, tree *base) const | |
| 430 | { | |
| 431 | int v1 = SSA_NAME_VERSION (ssa1); | |
| 432 | int v2 = SSA_NAME_VERSION (ssa2); | |
| 433 | ||
| 434 | if (v1 >= (int)m_partial.length () || v2 >= (int)m_partial.length ()) | |
| 435 | return VREL_VARYING; | |
| 436 | ||
| 437 | const pe_slice &pe1 = m_partial[v1]; | |
| 438 | const pe_slice &pe2 = m_partial[v2]; | |
| 439 | if (pe1.members && pe2.members == pe1.members) | |
| 440 | { | |
| 441 | if (base) | |
| 442 | *base = pe1.ssa_base; | |
| 443 | return pe_min (pe1.code, pe2.code); | |
| 444 | } | |
| 445 | return VREL_VARYING; | |
| 446 | } | |
| 447 | ||
| 448 | ||
| 3aaa69e5 AM |
449 | // Find and return the equivalency set for SSA along the dominators of BB. |
| 450 | // This is the external API. | |
| 451 | ||
| 452 | const_bitmap | |
| 3674d8e6 | 453 | equiv_oracle::equiv_set (tree ssa, basic_block bb) |
| 3aaa69e5 AM |
454 | { |
| 455 | // Search the dominator tree for an equivalency. | |
| 456 | equiv_chain *equiv = find_equiv_dom (ssa, bb); | |
| 457 | if (equiv) | |
| 458 | return equiv->m_names; | |
| 459 | ||
| 3674d8e6 AM |
460 | // Otherwise return a cached equiv set containing just this SSA. |
| 461 | unsigned v = SSA_NAME_VERSION (ssa); | |
| 462 | if (v >= m_self_equiv.length ()) | |
| 463 | m_self_equiv.safe_grow_cleared (num_ssa_names + 1); | |
| 464 | ||
| 465 | if (!m_self_equiv[v]) | |
| 466 | { | |
| 467 | m_self_equiv[v] = BITMAP_ALLOC (&m_bitmaps); | |
| 468 | bitmap_set_bit (m_self_equiv[v], v); | |
| 469 | } | |
| 470 | return m_self_equiv[v]; | |
| 3aaa69e5 AM |
471 | } |
| 472 | ||
| b5563410 | 473 | // Query if there is a relation (equivalence) between 2 SSA_NAMEs. |
| 3674d8e6 AM |
474 | |
| 475 | relation_kind | |
| fca649de | 476 | equiv_oracle::query (basic_block bb, tree ssa1, tree ssa2) |
| 3674d8e6 AM |
477 | { |
| 478 | // If the 2 ssa names share the same equiv set, they are equal. | |
| 479 | if (equiv_set (ssa1, bb) == equiv_set (ssa2, bb)) | |
| ade5531c | 480 | return VREL_EQ; |
| b5563410 AM |
481 | |
| 482 | // Check if there is a partial equivalence. | |
| 483 | return partial_equiv (ssa1, ssa2); | |
| 3674d8e6 AM |
484 | } |
| 485 | ||
| c46b5b0a | 486 | // Query if there is a relation (equivalence) between 2 SSA_NAMEs. |
| 3674d8e6 AM |
487 | |
| 488 | relation_kind | |
| fca649de AM |
489 | equiv_oracle::query (basic_block bb ATTRIBUTE_UNUSED, const_bitmap e1, |
| 490 | const_bitmap e2) | |
| 3674d8e6 AM |
491 | { |
| 492 | // If the 2 ssa names share the same equiv set, they are equal. | |
| 493 | if (bitmap_equal_p (e1, e2)) | |
| ade5531c AM |
494 | return VREL_EQ; |
| 495 | return VREL_VARYING; | |
| 3674d8e6 | 496 | } |
| 3aaa69e5 AM |
497 | |
| 498 | // If SSA has an equivalence in block BB, find and return it. | |
| 499 | // Otherwise return NULL. | |
| 500 | ||
| 501 | equiv_chain * | |
| 502 | equiv_oracle::find_equiv_block (unsigned ssa, int bb) const | |
| 503 | { | |
| 3674d8e6 | 504 | if (bb >= (int)m_equiv.length () || !m_equiv[bb]) |
| 3aaa69e5 AM |
505 | return NULL; |
| 506 | ||
| 3674d8e6 | 507 | return m_equiv[bb]->find (ssa); |
| 3aaa69e5 AM |
508 | } |
| 509 | ||
| 510 | // Starting at block BB, walk the dominator chain looking for the nearest | |
| 511 | // equivalence set containing NAME. | |
| 512 | ||
| 513 | equiv_chain * | |
| 514 | equiv_oracle::find_equiv_dom (tree name, basic_block bb) const | |
| 515 | { | |
| 516 | unsigned v = SSA_NAME_VERSION (name); | |
| 517 | // Short circuit looking for names which have no equivalences. | |
| 518 | // Saves time looking for something which does not exist. | |
| 519 | if (!bitmap_bit_p (m_equiv_set, v)) | |
| 520 | return NULL; | |
| 521 | ||
| 522 | // NAME has at least once equivalence set, check to see if it has one along | |
| 523 | // the dominator tree. | |
| 524 | for ( ; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb)) | |
| 525 | { | |
| 526 | equiv_chain *ptr = find_equiv_block (v, bb->index); | |
| 527 | if (ptr) | |
| 528 | return ptr; | |
| 529 | } | |
| 530 | return NULL; | |
| 531 | } | |
| 532 | ||
| c46b5b0a | 533 | // Register equivalence between ssa_name V and set EQUIV in block BB, |
| 3aaa69e5 AM |
534 | |
| 535 | bitmap | |
| 536 | equiv_oracle::register_equiv (basic_block bb, unsigned v, equiv_chain *equiv) | |
| 537 | { | |
| 538 | // V will have an equivalency now. | |
| 539 | bitmap_set_bit (m_equiv_set, v); | |
| 540 | ||
| 541 | // If that equiv chain is in this block, simply use it. | |
| 542 | if (equiv->m_bb == bb) | |
| 543 | { | |
| 544 | bitmap_set_bit (equiv->m_names, v); | |
| 545 | bitmap_set_bit (m_equiv[bb->index]->m_names, v); | |
| 546 | return NULL; | |
| 547 | } | |
| 548 | ||
| 549 | // Otherwise create an equivalence for this block which is a copy | |
| 550 | // of equiv, the add V to the set. | |
| 551 | bitmap b = BITMAP_ALLOC (&m_bitmaps); | |
| 6b73c07e | 552 | valid_equivs (b, equiv->m_names, bb); |
| 3aaa69e5 AM |
553 | bitmap_set_bit (b, v); |
| 554 | return b; | |
| 555 | } | |
| 556 | ||
| 557 | // Register equivalence between set equiv_1 and equiv_2 in block BB. | |
| 558 | // Return NULL if either name can be merged with the other. Otherwise | |
| 559 | // return a pointer to the combined bitmap of names. This allows the | |
| 560 | // caller to do any setup required for a new element. | |
| 561 | ||
| 562 | bitmap | |
| 563 | equiv_oracle::register_equiv (basic_block bb, equiv_chain *equiv_1, | |
| 564 | equiv_chain *equiv_2) | |
| 565 | { | |
| 6b73c07e | 566 | // If equiv_1 is already in BB, use it as the combined set. |
| 3aaa69e5 AM |
567 | if (equiv_1->m_bb == bb) |
| 568 | { | |
| 6b73c07e | 569 | valid_equivs (equiv_1->m_names, equiv_2->m_names, bb); |
| 3aaa69e5 AM |
570 | // Its hard to delete from a single linked list, so |
| 571 | // just clear the second one. | |
| 572 | if (equiv_2->m_bb == bb) | |
| 573 | bitmap_clear (equiv_2->m_names); | |
| 574 | else | |
| 6b73c07e AM |
575 | // Ensure the new names are in the summary for BB. |
| 576 | bitmap_ior_into (m_equiv[bb->index]->m_names, equiv_1->m_names); | |
| 3aaa69e5 AM |
577 | return NULL; |
| 578 | } | |
| 579 | // If equiv_2 is in BB, use it for the combined set. | |
| 580 | if (equiv_2->m_bb == bb) | |
| 581 | { | |
| 6b73c07e AM |
582 | valid_equivs (equiv_2->m_names, equiv_1->m_names, bb); |
| 583 | // Ensure the new names are in the summary. | |
| 584 | bitmap_ior_into (m_equiv[bb->index]->m_names, equiv_2->m_names); | |
| 3aaa69e5 AM |
585 | return NULL; |
| 586 | } | |
| 587 | ||
| 588 | // At this point, neither equivalence is from this block. | |
| 589 | bitmap b = BITMAP_ALLOC (&m_bitmaps); | |
| 6b73c07e AM |
590 | valid_equivs (b, equiv_1->m_names, bb); |
| 591 | valid_equivs (b, equiv_2->m_names, bb); | |
| 3aaa69e5 AM |
592 | return b; |
| 593 | } | |
| 594 | ||
| 5d110fe9 AM |
595 | // Create an equivalency set containing only SSA in its definition block. |
| 596 | // This is done the first time SSA is registered in an equivalency and blocks | |
| 597 | // any DOM searches past the definition. | |
| 598 | ||
| 599 | void | |
| 600 | equiv_oracle::register_initial_def (tree ssa) | |
| 601 | { | |
| 602 | if (SSA_NAME_IS_DEFAULT_DEF (ssa)) | |
| 603 | return; | |
| 604 | basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (ssa)); | |
| 01c095ab AM |
605 | |
| 606 | // If defining stmt is not in the IL, simply return. | |
| 607 | if (!bb) | |
| 608 | return; | |
| 609 | gcc_checking_assert (!find_equiv_dom (ssa, bb)); | |
| 5d110fe9 AM |
610 | |
| 611 | unsigned v = SSA_NAME_VERSION (ssa); | |
| 612 | bitmap_set_bit (m_equiv_set, v); | |
| 613 | bitmap equiv_set = BITMAP_ALLOC (&m_bitmaps); | |
| 614 | bitmap_set_bit (equiv_set, v); | |
| 615 | add_equiv_to_block (bb, equiv_set); | |
| 616 | } | |
| 3aaa69e5 AM |
617 | |
| 618 | // Register an equivalence between SSA1 and SSA2 in block BB. | |
| 619 | // The equivalence oracle maintains a vector of equivalencies indexed by basic | |
| c46b5b0a | 620 | // block. When an equivalence between SSA1 and SSA2 is registered in block BB, |
| 3aaa69e5 AM |
621 | // a query is made as to what equivalences both names have already, and |
| 622 | // any preexisting equivalences are merged to create a single equivalence | |
| 623 | // containing all the ssa_names in this basic block. | |
| 624 | ||
| 625 | void | |
| fca649de | 626 | equiv_oracle::record (basic_block bb, relation_kind k, tree ssa1, tree ssa2) |
| 3aaa69e5 | 627 | { |
| b5563410 AM |
628 | // Process partial equivalencies. |
| 629 | if (relation_partial_equiv_p (k)) | |
| 630 | { | |
| 631 | add_partial_equiv (k, ssa1, ssa2); | |
| 632 | return; | |
| 633 | } | |
| 3674d8e6 | 634 | // Only handle equality relations. |
| ade5531c | 635 | if (k != VREL_EQ) |
| 3674d8e6 AM |
636 | return; |
| 637 | ||
| 3aaa69e5 AM |
638 | unsigned v1 = SSA_NAME_VERSION (ssa1); |
| 639 | unsigned v2 = SSA_NAME_VERSION (ssa2); | |
| 5d110fe9 AM |
640 | |
| 641 | // If this is the first time an ssa_name has an equivalency registered | |
| 642 | // create a self-equivalency record in the def block. | |
| 643 | if (!bitmap_bit_p (m_equiv_set, v1)) | |
| 644 | register_initial_def (ssa1); | |
| 645 | if (!bitmap_bit_p (m_equiv_set, v2)) | |
| 646 | register_initial_def (ssa2); | |
| 647 | ||
| 3aaa69e5 AM |
648 | equiv_chain *equiv_1 = find_equiv_dom (ssa1, bb); |
| 649 | equiv_chain *equiv_2 = find_equiv_dom (ssa2, bb); | |
| 650 | ||
| 651 | // Check if they are the same set | |
| 652 | if (equiv_1 && equiv_1 == equiv_2) | |
| 653 | return; | |
| 654 | ||
| 655 | bitmap equiv_set; | |
| 656 | ||
| 657 | // Case where we have 2 SSA_NAMEs that are not in any set. | |
| 658 | if (!equiv_1 && !equiv_2) | |
| 659 | { | |
| 660 | bitmap_set_bit (m_equiv_set, v1); | |
| 661 | bitmap_set_bit (m_equiv_set, v2); | |
| 662 | ||
| 663 | equiv_set = BITMAP_ALLOC (&m_bitmaps); | |
| 664 | bitmap_set_bit (equiv_set, v1); | |
| 665 | bitmap_set_bit (equiv_set, v2); | |
| 666 | } | |
| 667 | else if (!equiv_1 && equiv_2) | |
| 668 | equiv_set = register_equiv (bb, v1, equiv_2); | |
| 669 | else if (equiv_1 && !equiv_2) | |
| 670 | equiv_set = register_equiv (bb, v2, equiv_1); | |
| 671 | else | |
| 672 | equiv_set = register_equiv (bb, equiv_1, equiv_2); | |
| 673 | ||
| 674 | // A non-null return is a bitmap that is to be added to the current | |
| 675 | // block as a new equivalence. | |
| 676 | if (!equiv_set) | |
| 677 | return; | |
| 678 | ||
| 5d110fe9 AM |
679 | add_equiv_to_block (bb, equiv_set); |
| 680 | } | |
| 681 | ||
| 682 | // Add an equivalency record in block BB containing bitmap EQUIV_SET. | |
| c46b5b0a | 683 | // Note the internal caller is responsible for allocating EQUIV_SET properly. |
| 5d110fe9 AM |
684 | |
| 685 | void | |
| 686 | equiv_oracle::add_equiv_to_block (basic_block bb, bitmap equiv_set) | |
| 687 | { | |
| 3aaa69e5 AM |
688 | equiv_chain *ptr; |
| 689 | ||
| 690 | // Check if this is the first time a block has an equivalence added. | |
| 691 | // and create a header block. And set the summary for this block. | |
| d2d5ef6e | 692 | limit_check (bb); |
| 3aaa69e5 AM |
693 | if (!m_equiv[bb->index]) |
| 694 | { | |
| 695 | ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack, | |
| 696 | sizeof (equiv_chain)); | |
| 697 | ptr->m_names = BITMAP_ALLOC (&m_bitmaps); | |
| 698 | bitmap_copy (ptr->m_names, equiv_set); | |
| 699 | ptr->m_bb = bb; | |
| 700 | ptr->m_next = NULL; | |
| 701 | m_equiv[bb->index] = ptr; | |
| 702 | } | |
| 703 | ||
| 704 | // Now create the element for this equiv set and initialize it. | |
| 705 | ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack, sizeof (equiv_chain)); | |
| 706 | ptr->m_names = equiv_set; | |
| 707 | ptr->m_bb = bb; | |
| 708 | gcc_checking_assert (bb->index < (int)m_equiv.length ()); | |
| 709 | ptr->m_next = m_equiv[bb->index]->m_next; | |
| 710 | m_equiv[bb->index]->m_next = ptr; | |
| 711 | bitmap_ior_into (m_equiv[bb->index]->m_names, equiv_set); | |
| 712 | } | |
| 713 | ||
| 714 | // Make sure the BB vector is big enough and grow it if needed. | |
| 715 | ||
| 716 | void | |
| 717 | equiv_oracle::limit_check (basic_block bb) | |
| 718 | { | |
| 719 | int i = (bb) ? bb->index : last_basic_block_for_fn (cfun); | |
| 720 | if (i >= (int)m_equiv.length ()) | |
| 721 | m_equiv.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1); | |
| 722 | } | |
| 723 | ||
| 724 | // Dump the equivalence sets in BB to file F. | |
| 725 | ||
| 726 | void | |
| 727 | equiv_oracle::dump (FILE *f, basic_block bb) const | |
| 728 | { | |
| 729 | if (bb->index >= (int)m_equiv.length ()) | |
| 730 | return; | |
| b5563410 AM |
731 | // Process equivalences. |
| 732 | if (m_equiv[bb->index]) | |
| 733 | { | |
| 734 | equiv_chain *ptr = m_equiv[bb->index]->m_next; | |
| 735 | for (; ptr; ptr = ptr->m_next) | |
| 736 | ptr->dump (f); | |
| 737 | } | |
| 738 | // Look for partial equivalences defined in this block.. | |
| 739 | for (unsigned i = 0; i < num_ssa_names; i++) | |
| 740 | { | |
| 741 | tree name = ssa_name (i); | |
| 742 | if (!gimple_range_ssa_p (name) || !SSA_NAME_DEF_STMT (name)) | |
| 743 | continue; | |
| 744 | if (i >= m_partial.length ()) | |
| 745 | break; | |
| 746 | tree base = m_partial[i].ssa_base; | |
| 747 | if (base && name != base && gimple_bb (SSA_NAME_DEF_STMT (name)) == bb) | |
| 748 | { | |
| 749 | relation_kind k = partial_equiv (name, base); | |
| 750 | if (k != VREL_VARYING) | |
| 751 | { | |
| 752 | value_relation vr (k, name, base); | |
| 753 | fprintf (f, "Partial equiv "); | |
| 754 | vr.dump (f); | |
| 755 | fputc ('\n',f); | |
| 756 | } | |
| 757 | } | |
| 758 | } | |
| 3aaa69e5 AM |
759 | } |
| 760 | ||
| 761 | // Dump all equivalence sets known to the oracle. | |
| 762 | ||
| 763 | void | |
| 764 | equiv_oracle::dump (FILE *f) const | |
| 765 | { | |
| 766 | fprintf (f, "Equivalency dump\n"); | |
| 767 | for (unsigned i = 0; i < m_equiv.length (); i++) | |
| ce0b409f | 768 | if (m_equiv[i] && BASIC_BLOCK_FOR_FN (cfun, i)) |
| 3aaa69e5 AM |
769 | { |
| 770 | fprintf (f, "BB%d\n", i); | |
| 771 | dump (f, BASIC_BLOCK_FOR_FN (cfun, i)); | |
| 772 | } | |
| 773 | } | |
| 774 | ||
| 775 | ||
| 776 | // -------------------------------------------------------------------------- | |
| 8d0ec97f AM |
777 | |
| 778 | // Adjust the relation by Swapping the operands and relation. | |
| 3aaa69e5 AM |
779 | |
| 780 | void | |
| 8d0ec97f | 781 | value_relation::swap () |
| 3aaa69e5 | 782 | { |
| 8d0ec97f AM |
783 | related = relation_swap (related); |
| 784 | tree tmp = name1; | |
| 785 | name1 = name2; | |
| 786 | name2 = tmp; | |
| 3aaa69e5 AM |
787 | } |
| 788 | ||
| 3aaa69e5 | 789 | // Perform an intersection between 2 relations. *this &&= p. |
| 8d0ec97f | 790 | // Return false if the relations cannot be intersected. |
| 3aaa69e5 AM |
791 | |
| 792 | bool | |
| 793 | value_relation::intersect (value_relation &p) | |
| 794 | { | |
| 795 | // Save previous value | |
| 796 | relation_kind old = related; | |
| 797 | ||
| 798 | if (p.op1 () == op1 () && p.op2 () == op2 ()) | |
| 799 | related = relation_intersect (kind (), p.kind ()); | |
| 800 | else if (p.op2 () == op1 () && p.op1 () == op2 ()) | |
| 801 | related = relation_intersect (kind (), relation_swap (p.kind ())); | |
| 802 | else | |
| 803 | return false; | |
| 804 | ||
| 805 | return old != related; | |
| 806 | } | |
| 807 | ||
| 808 | // Perform a union between 2 relations. *this ||= p. | |
| 809 | ||
| 810 | bool | |
| 811 | value_relation::union_ (value_relation &p) | |
| 812 | { | |
| 813 | // Save previous value | |
| 814 | relation_kind old = related; | |
| 815 | ||
| 816 | if (p.op1 () == op1 () && p.op2 () == op2 ()) | |
| 817 | related = relation_union (kind(), p.kind()); | |
| 818 | else if (p.op2 () == op1 () && p.op1 () == op2 ()) | |
| 819 | related = relation_union (kind(), relation_swap (p.kind ())); | |
| 820 | else | |
| 821 | return false; | |
| 822 | ||
| 823 | return old != related; | |
| 824 | } | |
| 825 | ||
| 675a3e40 AM |
826 | // Identify and apply any transitive relations between REL |
| 827 | // and THIS. Return true if there was a transformation. | |
| 828 | ||
| 829 | bool | |
| 830 | value_relation::apply_transitive (const value_relation &rel) | |
| 831 | { | |
| ade5531c | 832 | relation_kind k = VREL_VARYING; |
| 675a3e40 | 833 | |
| c46b5b0a | 834 | // Identify any common operand, and normalize the relations to |
| 675a3e40 AM |
835 | // the form : A < B B < C produces A < C |
| 836 | if (rel.op1 () == name2) | |
| 837 | { | |
| 838 | // A < B B < C | |
| 839 | if (rel.op2 () == name1) | |
| 840 | return false; | |
| 841 | k = relation_transitive (kind (), rel.kind ()); | |
| ade5531c | 842 | if (k != VREL_VARYING) |
| 675a3e40 AM |
843 | { |
| 844 | related = k; | |
| 845 | name2 = rel.op2 (); | |
| 846 | return true; | |
| 847 | } | |
| 848 | } | |
| 849 | else if (rel.op1 () == name1) | |
| 850 | { | |
| 851 | // B > A B < C | |
| 852 | if (rel.op2 () == name2) | |
| 853 | return false; | |
| 854 | k = relation_transitive (relation_swap (kind ()), rel.kind ()); | |
| ade5531c | 855 | if (k != VREL_VARYING) |
| 675a3e40 AM |
856 | { |
| 857 | related = k; | |
| 858 | name1 = name2; | |
| 859 | name2 = rel.op2 (); | |
| 860 | return true; | |
| 861 | } | |
| 862 | } | |
| 863 | else if (rel.op2 () == name2) | |
| 864 | { | |
| 865 | // A < B C > B | |
| 866 | if (rel.op1 () == name1) | |
| 867 | return false; | |
| 868 | k = relation_transitive (kind (), relation_swap (rel.kind ())); | |
| ade5531c | 869 | if (k != VREL_VARYING) |
| 675a3e40 AM |
870 | { |
| 871 | related = k; | |
| 872 | name2 = rel.op1 (); | |
| 873 | return true; | |
| 874 | } | |
| 875 | } | |
| 876 | else if (rel.op2 () == name1) | |
| 877 | { | |
| 878 | // B > A C > B | |
| 879 | if (rel.op1 () == name2) | |
| 880 | return false; | |
| 881 | k = relation_transitive (relation_swap (kind ()), | |
| 882 | relation_swap (rel.kind ())); | |
| ade5531c | 883 | if (k != VREL_VARYING) |
| 675a3e40 AM |
884 | { |
| 885 | related = k; | |
| 886 | name1 = name2; | |
| 887 | name2 = rel.op1 (); | |
| 888 | return true; | |
| 889 | } | |
| 890 | } | |
| 891 | return false; | |
| 892 | } | |
| 3aaa69e5 | 893 | |
| 99fda5de AM |
894 | // Create a trio from this value relation given LHS, OP1 and OP2. |
| 895 | ||
| 896 | relation_trio | |
| 897 | value_relation::create_trio (tree lhs, tree op1, tree op2) | |
| 898 | { | |
| 899 | relation_kind lhs_1; | |
| 900 | if (lhs == name1 && op1 == name2) | |
| 901 | lhs_1 = related; | |
| 902 | else if (lhs == name2 && op1 == name1) | |
| 903 | lhs_1 = relation_swap (related); | |
| 904 | else | |
| 905 | lhs_1 = VREL_VARYING; | |
| 906 | ||
| 907 | relation_kind lhs_2; | |
| 908 | if (lhs == name1 && op2 == name2) | |
| 909 | lhs_2 = related; | |
| 910 | else if (lhs == name2 && op2 == name1) | |
| 911 | lhs_2 = relation_swap (related); | |
| 912 | else | |
| 913 | lhs_2 = VREL_VARYING; | |
| 914 | ||
| 915 | relation_kind op_op; | |
| 916 | if (op1 == name1 && op2 == name2) | |
| 917 | op_op = related; | |
| 918 | else if (op1 == name2 && op2 == name1) | |
| 919 | op_op = relation_swap (related); | |
| 920 | else if (op1 == op2) | |
| 921 | op_op = VREL_EQ; | |
| 922 | else | |
| 923 | op_op = VREL_VARYING; | |
| 924 | ||
| 925 | return relation_trio (lhs_1, lhs_2, op_op); | |
| 926 | } | |
| 927 | ||
| 3aaa69e5 AM |
928 | // Dump the relation to file F. |
| 929 | ||
| 930 | void | |
| 931 | value_relation::dump (FILE *f) const | |
| 932 | { | |
| 933 | if (!name1 || !name2) | |
| 934 | { | |
| fca52951 | 935 | fprintf (f, "no relation registered"); |
| 3aaa69e5 AM |
936 | return; |
| 937 | } | |
| 938 | fputc ('(', f); | |
| 939 | print_generic_expr (f, op1 (), TDF_SLIM); | |
| 940 | print_relation (f, kind ()); | |
| 941 | print_generic_expr (f, op2 (), TDF_SLIM); | |
| 942 | fputc(')', f); | |
| 943 | } | |
| 944 | ||
| 945 | // This container is used to link relations in a chain. | |
| 946 | ||
| 947 | class relation_chain : public value_relation | |
| 948 | { | |
| 949 | public: | |
| 950 | relation_chain *m_next; | |
| 951 | }; | |
| 952 | ||
| 8d0ec97f AM |
953 | // Given relation record PTR in block BB, return the next relation in the |
| 954 | // list. If PTR is NULL, retreive the first relation in BB. | |
| 955 | // If NAME is sprecified, return only relations which include NAME. | |
| 956 | // Return NULL when there are no relations left. | |
| 957 | ||
| 958 | relation_chain * | |
| 959 | dom_oracle::next_relation (basic_block bb, relation_chain *ptr, | |
| 960 | tree name) const | |
| 961 | { | |
| 962 | relation_chain *p; | |
| 963 | // No value_relation pointer is used to intialize the iterator. | |
| 964 | if (!ptr) | |
| 965 | { | |
| 966 | int bbi = bb->index; | |
| 967 | if (bbi >= (int)m_relations.length()) | |
| 968 | return NULL; | |
| 969 | else | |
| 970 | p = m_relations[bbi].m_head; | |
| 971 | } | |
| 972 | else | |
| 973 | p = ptr->m_next; | |
| 974 | ||
| 975 | if (name) | |
| 976 | for ( ; p; p = p->m_next) | |
| 977 | if (p->op1 () == name || p->op2 () == name) | |
| 978 | break; | |
| 979 | return p; | |
| 980 | } | |
| 981 | ||
| 982 | // Instatiate a block relation iterator to iterate over the relations | |
| 983 | // on exit from block BB in ORACLE. Limit this to relations involving NAME | |
| 984 | // if specified. Return the first such relation in VR if there is one. | |
| 985 | ||
| 986 | block_relation_iterator::block_relation_iterator (const relation_oracle *oracle, | |
| 987 | basic_block bb, | |
| 988 | value_relation &vr, | |
| 989 | tree name) | |
| 990 | { | |
| 991 | m_oracle = oracle; | |
| 992 | m_bb = bb; | |
| 993 | m_name = name; | |
| 994 | m_ptr = oracle->next_relation (bb, NULL, m_name); | |
| 995 | if (m_ptr) | |
| 996 | { | |
| 997 | m_done = false; | |
| 998 | vr = *m_ptr; | |
| 999 | } | |
| 1000 | else | |
| 1001 | m_done = true; | |
| 1002 | } | |
| 1003 | ||
| 1004 | // Retreive the next relation from the iterator and return it in VR. | |
| 1005 | ||
| 1006 | void | |
| 1007 | block_relation_iterator::get_next_relation (value_relation &vr) | |
| 1008 | { | |
| 1009 | m_ptr = m_oracle->next_relation (m_bb, m_ptr, m_name); | |
| 1010 | if (m_ptr) | |
| 1011 | { | |
| 1012 | vr = *m_ptr; | |
| 1013 | if (m_name) | |
| 1014 | { | |
| 1015 | if (vr.op1 () != m_name) | |
| 1016 | { | |
| 1017 | gcc_checking_assert (vr.op2 () == m_name); | |
| 1018 | vr.swap (); | |
| 1019 | } | |
| 1020 | } | |
| 1021 | } | |
| 1022 | else | |
| 1023 | m_done = true; | |
| 1024 | } | |
| 1025 | ||
| 3aaa69e5 AM |
1026 | // ------------------------------------------------------------------------ |
| 1027 | ||
| 3674d8e6 AM |
1028 | // Find the relation between any ssa_name in B1 and any name in B2 in LIST. |
| 1029 | // This will allow equivalencies to be applied to any SSA_NAME in a relation. | |
| 1030 | ||
| 1031 | relation_kind | |
| 1032 | relation_chain_head::find_relation (const_bitmap b1, const_bitmap b2) const | |
| 1033 | { | |
| 1034 | if (!m_names) | |
| ade5531c | 1035 | return VREL_VARYING; |
| 3674d8e6 | 1036 | |
| c46b5b0a | 1037 | // If both b1 and b2 aren't referenced in this block, cant be a relation |
| 3674d8e6 | 1038 | if (!bitmap_intersect_p (m_names, b1) || !bitmap_intersect_p (m_names, b2)) |
| ade5531c | 1039 | return VREL_VARYING; |
| 3674d8e6 | 1040 | |
| c46b5b0a | 1041 | // Search for the first relation that contains BOTH an element from B1 |
| 3674d8e6 AM |
1042 | // and B2, and return that relation. |
| 1043 | for (relation_chain *ptr = m_head; ptr ; ptr = ptr->m_next) | |
| 1044 | { | |
| 1045 | unsigned op1 = SSA_NAME_VERSION (ptr->op1 ()); | |
| 1046 | unsigned op2 = SSA_NAME_VERSION (ptr->op2 ()); | |
| 1047 | if (bitmap_bit_p (b1, op1) && bitmap_bit_p (b2, op2)) | |
| 1048 | return ptr->kind (); | |
| 1049 | if (bitmap_bit_p (b1, op2) && bitmap_bit_p (b2, op1)) | |
| 1050 | return relation_swap (ptr->kind ()); | |
| 1051 | } | |
| 1052 | ||
| ade5531c | 1053 | return VREL_VARYING; |
| 3674d8e6 AM |
1054 | } |
| 1055 | ||
| 3aaa69e5 AM |
1056 | // Instantiate a relation oracle. |
| 1057 | ||
| 4c8b0858 | 1058 | dom_oracle::dom_oracle (bool do_trans_p) |
| 3aaa69e5 | 1059 | { |
| 4c8b0858 | 1060 | m_do_trans_p = do_trans_p; |
| 3aaa69e5 AM |
1061 | m_relations.create (0); |
| 1062 | m_relations.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1); | |
| 1063 | m_relation_set = BITMAP_ALLOC (&m_bitmaps); | |
| 1064 | m_tmp = BITMAP_ALLOC (&m_bitmaps); | |
| 675a3e40 | 1065 | m_tmp2 = BITMAP_ALLOC (&m_bitmaps); |
| 3aaa69e5 AM |
1066 | } |
| 1067 | ||
| 1068 | // Destruct a relation oracle. | |
| 1069 | ||
| 3674d8e6 | 1070 | dom_oracle::~dom_oracle () |
| 3aaa69e5 AM |
1071 | { |
| 1072 | m_relations.release (); | |
| 1073 | } | |
| 1074 | ||
| 1075 | // Register relation K between ssa_name OP1 and OP2 on STMT. | |
| 1076 | ||
| 1077 | void | |
| fca649de | 1078 | relation_oracle::record (gimple *stmt, relation_kind k, tree op1, tree op2) |
| 3aaa69e5 AM |
1079 | { |
| 1080 | gcc_checking_assert (TREE_CODE (op1) == SSA_NAME); | |
| 1081 | gcc_checking_assert (TREE_CODE (op2) == SSA_NAME); | |
| 1082 | gcc_checking_assert (stmt && gimple_bb (stmt)); | |
| 1083 | ||
| 1084 | // Don't register lack of a relation. | |
| ade5531c | 1085 | if (k == VREL_VARYING) |
| 3aaa69e5 AM |
1086 | return; |
| 1087 | ||
| 1088 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
| 1089 | { | |
| 1090 | value_relation vr (k, op1, op2); | |
| 1091 | fprintf (dump_file, " Registering value_relation "); | |
| 1092 | vr.dump (dump_file); | |
| 1093 | fprintf (dump_file, " (bb%d) at ", gimple_bb (stmt)->index); | |
| 1094 | print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); | |
| 1095 | } | |
| 1096 | ||
| 5d110fe9 AM |
1097 | // If an equivalence is being added between a PHI and one of its arguments |
| 1098 | // make sure that that argument is not defined in the same block. | |
| 1099 | // This can happen along back edges and the equivalence will not be | |
| 1100 | // applicable as it would require a use before def. | |
| ade5531c | 1101 | if (k == VREL_EQ && is_a<gphi *> (stmt)) |
| 5d110fe9 AM |
1102 | { |
| 1103 | tree phi_def = gimple_phi_result (stmt); | |
| 1104 | gcc_checking_assert (phi_def == op1 || phi_def == op2); | |
| 1105 | tree arg = op2; | |
| 1106 | if (phi_def == op2) | |
| 1107 | arg = op1; | |
| 1108 | if (gimple_bb (stmt) == gimple_bb (SSA_NAME_DEF_STMT (arg))) | |
| 1109 | { | |
| 1110 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
| 1111 | { | |
| 1112 | fprintf (dump_file, " Not registered due to "); | |
| 1113 | print_generic_expr (dump_file, arg, TDF_SLIM); | |
| 1114 | fprintf (dump_file, " being defined in the same block.\n"); | |
| 1115 | } | |
| 1116 | return; | |
| 1117 | } | |
| 1118 | } | |
| fca649de | 1119 | record (gimple_bb (stmt), k, op1, op2); |
| 3aaa69e5 AM |
1120 | } |
| 1121 | ||
| 1122 | // Register relation K between ssa_name OP1 and OP2 on edge E. | |
| 1123 | ||
| 1124 | void | |
| fca649de | 1125 | relation_oracle::record (edge e, relation_kind k, tree op1, tree op2) |
| 3aaa69e5 AM |
1126 | { |
| 1127 | gcc_checking_assert (TREE_CODE (op1) == SSA_NAME); | |
| 1128 | gcc_checking_assert (TREE_CODE (op2) == SSA_NAME); | |
| 1129 | ||
| 1130 | // Do not register lack of relation, or blocks which have more than | |
| 1131 | // edge E for a predecessor. | |
| ade5531c | 1132 | if (k == VREL_VARYING || !single_pred_p (e->dest)) |
| 3aaa69e5 AM |
1133 | return; |
| 1134 | ||
| 1135 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
| 1136 | { | |
| 1137 | value_relation vr (k, op1, op2); | |
| 1138 | fprintf (dump_file, " Registering value_relation "); | |
| 1139 | vr.dump (dump_file); | |
| 1140 | fprintf (dump_file, " on (%d->%d)\n", e->src->index, e->dest->index); | |
| 1141 | } | |
| 1142 | ||
| fca649de | 1143 | record (e->dest, k, op1, op2); |
| 3674d8e6 AM |
1144 | } |
| 1145 | ||
| 1146 | // Register relation K between OP! and OP2 in block BB. | |
| 1147 | // This creates the record and searches for existing records in the dominator | |
| 1148 | // tree to merge with. | |
| 1149 | ||
| 1150 | void | |
| fca649de | 1151 | dom_oracle::record (basic_block bb, relation_kind k, tree op1, tree op2) |
| 0187c03b AM |
1152 | { |
| 1153 | // If the 2 ssa_names are the same, do nothing. An equivalence is implied, | |
| 1154 | // and no other relation makes sense. | |
| 1155 | if (op1 == op2) | |
| 1156 | return; | |
| 1157 | ||
| 1158 | // Equivalencies are handled by the equivalence oracle. | |
| b5563410 | 1159 | if (relation_equiv_p (k)) |
| fca649de | 1160 | equiv_oracle::record (bb, k, op1, op2); |
| 3aaa69e5 | 1161 | else |
| 3674d8e6 | 1162 | { |
| 5e47c933 AM |
1163 | // if neither op1 nor op2 are in a relation before this is registered, |
| 1164 | // there will be no transitive. | |
| 1165 | bool check = bitmap_bit_p (m_relation_set, SSA_NAME_VERSION (op1)) | |
| 1166 | || bitmap_bit_p (m_relation_set, SSA_NAME_VERSION (op2)); | |
| 3674d8e6 | 1167 | relation_chain *ptr = set_one_relation (bb, k, op1, op2); |
| 942bbb23 RB |
1168 | if (ptr && check |
| 1169 | && (m_relations[bb->index].m_num_relations | |
| 1170 | < param_relation_block_limit)) | |
| 254ada46 | 1171 | register_transitives (bb, *ptr); |
| 3674d8e6 | 1172 | } |
| 3aaa69e5 AM |
1173 | } |
| 1174 | ||
| 1175 | // Register relation K between OP! and OP2 in block BB. | |
| 1176 | // This creates the record and searches for existing records in the dominator | |
| 254ada46 | 1177 | // tree to merge with. Return the record, or NULL if no record was created. |
| 3aaa69e5 | 1178 | |
| 3674d8e6 AM |
1179 | relation_chain * |
| 1180 | dom_oracle::set_one_relation (basic_block bb, relation_kind k, tree op1, | |
| 1181 | tree op2) | |
| 3aaa69e5 | 1182 | { |
| ade5531c | 1183 | gcc_checking_assert (k != VREL_VARYING && k != VREL_EQ); |
| 3aaa69e5 AM |
1184 | |
| 1185 | value_relation vr(k, op1, op2); | |
| 1186 | int bbi = bb->index; | |
| 1187 | ||
| 1188 | if (bbi >= (int)m_relations.length()) | |
| 1189 | m_relations.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1); | |
| 1190 | ||
| 1191 | // Summary bitmap indicating what ssa_names have relations in this BB. | |
| 1192 | bitmap bm = m_relations[bbi].m_names; | |
| 1193 | if (!bm) | |
| 1194 | bm = m_relations[bbi].m_names = BITMAP_ALLOC (&m_bitmaps); | |
| 1195 | unsigned v1 = SSA_NAME_VERSION (op1); | |
| 1196 | unsigned v2 = SSA_NAME_VERSION (op2); | |
| 1197 | ||
| 1198 | relation_kind curr; | |
| 1199 | relation_chain *ptr; | |
| 1200 | curr = find_relation_block (bbi, v1, v2, &ptr); | |
| 1201 | // There is an existing relation in this block, just intersect with it. | |
| ade5531c | 1202 | if (curr != VREL_VARYING) |
| 3aaa69e5 AM |
1203 | { |
| 1204 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
| 1205 | { | |
| 1206 | fprintf (dump_file, " Intersecting with existing "); | |
| 1207 | ptr->dump (dump_file); | |
| 1208 | } | |
| 1209 | // Check into whether we can simply replace the relation rather than | |
| e66236c6 | 1210 | // intersecting it. This may help with some optimistic iterative |
| 3aaa69e5 | 1211 | // updating algorithms. |
| 5e47c933 | 1212 | bool new_rel = ptr->intersect (vr); |
| 3aaa69e5 AM |
1213 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1214 | { | |
| 1215 | fprintf (dump_file, " to produce "); | |
| 1216 | ptr->dump (dump_file); | |
| 5e47c933 | 1217 | fprintf (dump_file, " %s.\n", new_rel ? "Updated" : "No Change"); |
| 3aaa69e5 | 1218 | } |
| 5e47c933 AM |
1219 | // If there was no change, return no record.. |
| 1220 | if (!new_rel) | |
| 1221 | return NULL; | |
| 675a3e40 AM |
1222 | } |
| 1223 | else | |
| 1224 | { | |
| 254ada46 AM |
1225 | if (m_relations[bbi].m_num_relations >= param_relation_block_limit) |
| 1226 | { | |
| 1227 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
| 1228 | fprintf (dump_file, " Not registered due to bb being full\n"); | |
| 1229 | return NULL; | |
| 1230 | } | |
| 1231 | m_relations[bbi].m_num_relations++; | |
| 675a3e40 AM |
1232 | // Check for an existing relation further up the DOM chain. |
| 1233 | // By including dominating relations, The first one found in any search | |
| 1234 | // will be the aggregate of all the previous ones. | |
| 1235 | curr = find_relation_dom (bb, v1, v2); | |
| ade5531c | 1236 | if (curr != VREL_VARYING) |
| 675a3e40 AM |
1237 | k = relation_intersect (curr, k); |
| 1238 | ||
| 1239 | bitmap_set_bit (bm, v1); | |
| 1240 | bitmap_set_bit (bm, v2); | |
| 1241 | bitmap_set_bit (m_relation_set, v1); | |
| 1242 | bitmap_set_bit (m_relation_set, v2); | |
| 1243 | ||
| 1244 | ptr = (relation_chain *) obstack_alloc (&m_chain_obstack, | |
| 1245 | sizeof (relation_chain)); | |
| 1246 | ptr->set_relation (k, op1, op2); | |
| 1247 | ptr->m_next = m_relations[bbi].m_head; | |
| 3674d8e6 | 1248 | m_relations[bbi].m_head = ptr; |
| 3aaa69e5 | 1249 | } |
| 3674d8e6 | 1250 | return ptr; |
| 675a3e40 AM |
1251 | } |
| 1252 | ||
| 1253 | // Starting at ROOT_BB search the DOM tree looking for relations which | |
| 1254 | // may produce transitive relations to RELATION. EQUIV1 and EQUIV2 are | |
| 1255 | // bitmaps for op1/op2 and any of their equivalences that should also be | |
| 1256 | // considered. | |
| 1257 | ||
| 1258 | void | |
| 3674d8e6 AM |
1259 | dom_oracle::register_transitives (basic_block root_bb, |
| 1260 | const value_relation &relation) | |
| 675a3e40 | 1261 | { |
| 4c8b0858 AM |
1262 | // Only register transitives if they are requested. |
| 1263 | if (!m_do_trans_p) | |
| 1264 | return; | |
| 675a3e40 | 1265 | basic_block bb; |
| 3674d8e6 AM |
1266 | // Only apply transitives to certain kinds of operations. |
| 1267 | switch (relation.kind ()) | |
| 1268 | { | |
| ade5531c AM |
1269 | case VREL_LE: |
| 1270 | case VREL_LT: | |
| 1271 | case VREL_GT: | |
| 1272 | case VREL_GE: | |
| 3674d8e6 AM |
1273 | break; |
| 1274 | default: | |
| 1275 | return; | |
| 1276 | } | |
| 1277 | ||
| 1278 | const_bitmap equiv1 = equiv_set (relation.op1 (), root_bb); | |
| 1279 | const_bitmap equiv2 = equiv_set (relation.op2 (), root_bb); | |
| 1280 | ||
| 942bbb23 RB |
1281 | const unsigned work_budget = param_transitive_relations_work_bound; |
| 1282 | unsigned avail_budget = work_budget; | |
| 1283 | for (bb = root_bb; bb; | |
| 1284 | /* Advancing to the next immediate dominator eats from the budget, | |
| 1285 | if none is left after that there's no point to continue. */ | |
| 1286 | bb = (--avail_budget > 0 | |
| 1287 | ? get_immediate_dominator (CDI_DOMINATORS, bb) : nullptr)) | |
| 675a3e40 AM |
1288 | { |
| 1289 | int bbi = bb->index; | |
| 1290 | if (bbi >= (int)m_relations.length()) | |
| 1291 | continue; | |
| 1292 | const_bitmap bm = m_relations[bbi].m_names; | |
| 1293 | if (!bm) | |
| 1294 | continue; | |
| 1295 | if (!bitmap_intersect_p (bm, equiv1) && !bitmap_intersect_p (bm, equiv2)) | |
| 1296 | continue; | |
| 1297 | // At least one of the 2 ops has a relation in this block. | |
| 1298 | relation_chain *ptr; | |
| 1299 | for (ptr = m_relations[bbi].m_head; ptr ; ptr = ptr->m_next) | |
| 1300 | { | |
| 1301 | // In the presence of an equivalence, 2 operands may do not | |
| 1302 | // naturally match. ie with equivalence a_2 == b_3 | |
| 1303 | // given c_1 < a_2 && b_3 < d_4 | |
| 1304 | // convert the second relation (b_3 < d_4) to match any | |
| 1305 | // equivalences to found in the first relation. | |
| 1306 | // ie convert b_3 < d_4 to a_2 < d_4, which then exposes the | |
| 1307 | // transitive operation: c_1 < a_2 && a_2 < d_4 -> c_1 < d_4 | |
| 1308 | ||
| 1309 | tree r1, r2; | |
| 1310 | tree p1 = ptr->op1 (); | |
| 1311 | tree p2 = ptr->op2 (); | |
| 1312 | // Find which equivalence is in the first operand. | |
| 1313 | if (bitmap_bit_p (equiv1, SSA_NAME_VERSION (p1))) | |
| 1314 | r1 = p1; | |
| 1315 | else if (bitmap_bit_p (equiv1, SSA_NAME_VERSION (p2))) | |
| 1316 | r1 = p2; | |
| 1317 | else | |
| 1318 | r1 = NULL_TREE; | |
| 1319 | ||
| 1320 | // Find which equivalence is in the second operand. | |
| 1321 | if (bitmap_bit_p (equiv2, SSA_NAME_VERSION (p1))) | |
| 1322 | r2 = p1; | |
| 1323 | else if (bitmap_bit_p (equiv2, SSA_NAME_VERSION (p2))) | |
| 1324 | r2 = p2; | |
| 1325 | else | |
| 1326 | r2 = NULL_TREE; | |
| 1327 | ||
| 1328 | // Ignore if both NULL (not relevant relation) or the same, | |
| 1329 | if (r1 == r2) | |
| 942bbb23 | 1330 | ; |
| 675a3e40 | 1331 | |
| 942bbb23 | 1332 | else |
| 675a3e40 | 1333 | { |
| 942bbb23 RB |
1334 | // Any operand not an equivalence, just take the real operand. |
| 1335 | if (!r1) | |
| 1336 | r1 = relation.op1 (); | |
| 1337 | if (!r2) | |
| 1338 | r2 = relation.op2 (); | |
| 1339 | ||
| 1340 | value_relation nr (relation.kind (), r1, r2); | |
| 1341 | if (nr.apply_transitive (*ptr)) | |
| 675a3e40 | 1342 | { |
| 942bbb23 RB |
1343 | // If the new relation is already present we know any |
| 1344 | // further processing is already reflected above it. | |
| 1345 | // When we ran into the limit of relations on root_bb | |
| 1346 | // we can give up as well. | |
| 1347 | if (!set_one_relation (root_bb, nr.kind (), | |
| 1348 | nr.op1 (), nr.op2 ())) | |
| 1349 | return; | |
| 1350 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
| 1351 | { | |
| 1352 | fprintf (dump_file, | |
| 1353 | " Registering transitive relation "); | |
| 1354 | nr.dump (dump_file); | |
| 1355 | fputc ('\n', dump_file); | |
| 1356 | } | |
| 675a3e40 AM |
1357 | } |
| 1358 | } | |
| 942bbb23 RB |
1359 | /* Processed one relation, abort if we've eaten up our budget. */ |
| 1360 | if (--avail_budget == 0) | |
| 1361 | return; | |
| 675a3e40 AM |
1362 | } |
| 1363 | } | |
| 1364 | } | |
| 1365 | ||
| 3aaa69e5 AM |
1366 | // Find the relation between any ssa_name in B1 and any name in B2 in block BB. |
| 1367 | // This will allow equivalencies to be applied to any SSA_NAME in a relation. | |
| 1368 | ||
| 1369 | relation_kind | |
| 3674d8e6 AM |
1370 | dom_oracle::find_relation_block (unsigned bb, const_bitmap b1, |
| 1371 | const_bitmap b2) const | |
| 3aaa69e5 | 1372 | { |
| 3aaa69e5 | 1373 | if (bb >= m_relations.length()) |
| ade5531c | 1374 | return VREL_VARYING; |
| 3aaa69e5 | 1375 | |
| 3674d8e6 | 1376 | return m_relations[bb].find_relation (b1, b2); |
| 3aaa69e5 AM |
1377 | } |
| 1378 | ||
| 3674d8e6 AM |
1379 | // Search the DOM tree for a relation between an element of equivalency set B1 |
| 1380 | // and B2, starting with block BB. | |
| 3aaa69e5 AM |
1381 | |
| 1382 | relation_kind | |
| fca649de | 1383 | dom_oracle::query (basic_block bb, const_bitmap b1, const_bitmap b2) |
| 3aaa69e5 AM |
1384 | { |
| 1385 | relation_kind r; | |
| 3674d8e6 | 1386 | if (bitmap_equal_p (b1, b2)) |
| ade5531c | 1387 | return VREL_EQ; |
| 3674d8e6 | 1388 | |
| c46b5b0a | 1389 | // If either name does not occur in a relation anywhere, there isn't one. |
| 3aaa69e5 AM |
1390 | if (!bitmap_intersect_p (m_relation_set, b1) |
| 1391 | || !bitmap_intersect_p (m_relation_set, b2)) | |
| ade5531c | 1392 | return VREL_VARYING; |
| 3aaa69e5 AM |
1393 | |
| 1394 | // Search each block in the DOM tree checking. | |
| 1395 | for ( ; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb)) | |
| 1396 | { | |
| 1397 | r = find_relation_block (bb->index, b1, b2); | |
| ade5531c | 1398 | if (r != VREL_VARYING) |
| 3aaa69e5 AM |
1399 | return r; |
| 1400 | } | |
| ade5531c | 1401 | return VREL_VARYING; |
| 3aaa69e5 AM |
1402 | |
| 1403 | } | |
| 1404 | ||
| 1405 | // Find a relation in block BB between ssa version V1 and V2. If a relation | |
| 1406 | // is found, return a pointer to the chain object in OBJ. | |
| 1407 | ||
| 1408 | relation_kind | |
| 3674d8e6 AM |
1409 | dom_oracle::find_relation_block (int bb, unsigned v1, unsigned v2, |
| 1410 | relation_chain **obj) const | |
| 3aaa69e5 AM |
1411 | { |
| 1412 | if (bb >= (int)m_relations.length()) | |
| ade5531c | 1413 | return VREL_VARYING; |
| 3aaa69e5 AM |
1414 | |
| 1415 | const_bitmap bm = m_relations[bb].m_names; | |
| 1416 | if (!bm) | |
| ade5531c | 1417 | return VREL_VARYING; |
| 3aaa69e5 | 1418 | |
| c46b5b0a | 1419 | // If both b1 and b2 aren't referenced in this block, cant be a relation |
| 3aaa69e5 | 1420 | if (!bitmap_bit_p (bm, v1) || !bitmap_bit_p (bm, v2)) |
| ade5531c | 1421 | return VREL_VARYING; |
| 3aaa69e5 AM |
1422 | |
| 1423 | relation_chain *ptr; | |
| 1424 | for (ptr = m_relations[bb].m_head; ptr ; ptr = ptr->m_next) | |
| 1425 | { | |
| 1426 | unsigned op1 = SSA_NAME_VERSION (ptr->op1 ()); | |
| 1427 | unsigned op2 = SSA_NAME_VERSION (ptr->op2 ()); | |
| 1428 | if (v1 == op1 && v2 == op2) | |
| 1429 | { | |
| 1430 | if (obj) | |
| 1431 | *obj = ptr; | |
| 1432 | return ptr->kind (); | |
| 1433 | } | |
| 1434 | if (v1 == op2 && v2 == op1) | |
| 1435 | { | |
| 1436 | if (obj) | |
| 1437 | *obj = ptr; | |
| 1438 | return relation_swap (ptr->kind ()); | |
| 1439 | } | |
| 1440 | } | |
| 1441 | ||
| ade5531c | 1442 | return VREL_VARYING; |
| 3aaa69e5 AM |
1443 | } |
| 1444 | ||
| 1445 | // Find a relation between SSA version V1 and V2 in the dominator tree | |
| 1446 | // starting with block BB | |
| 1447 | ||
| 1448 | relation_kind | |
| 3674d8e6 | 1449 | dom_oracle::find_relation_dom (basic_block bb, unsigned v1, unsigned v2) const |
| 3aaa69e5 AM |
1450 | { |
| 1451 | relation_kind r; | |
| c46b5b0a | 1452 | // IF either name does not occur in a relation anywhere, there isn't one. |
| 3aaa69e5 | 1453 | if (!bitmap_bit_p (m_relation_set, v1) || !bitmap_bit_p (m_relation_set, v2)) |
| ade5531c | 1454 | return VREL_VARYING; |
| 3aaa69e5 AM |
1455 | |
| 1456 | for ( ; bb; bb = get_immediate_dominator (CDI_DOMINATORS, bb)) | |
| 1457 | { | |
| 1458 | r = find_relation_block (bb->index, v1, v2); | |
| ade5531c | 1459 | if (r != VREL_VARYING) |
| 3aaa69e5 AM |
1460 | return r; |
| 1461 | } | |
| ade5531c | 1462 | return VREL_VARYING; |
| 3aaa69e5 AM |
1463 | |
| 1464 | } | |
| 1465 | ||
| 1466 | // Query if there is a relation between SSA1 and SS2 in block BB or a | |
| 1467 | // dominator of BB | |
| 1468 | ||
| 1469 | relation_kind | |
| fca649de | 1470 | dom_oracle::query (basic_block bb, tree ssa1, tree ssa2) |
| 3aaa69e5 AM |
1471 | { |
| 1472 | relation_kind kind; | |
| 1473 | unsigned v1 = SSA_NAME_VERSION (ssa1); | |
| 1474 | unsigned v2 = SSA_NAME_VERSION (ssa2); | |
| 1475 | if (v1 == v2) | |
| ade5531c | 1476 | return VREL_EQ; |
| 3aaa69e5 | 1477 | |
| bf50499a AM |
1478 | // If v1 or v2 do not have any relations or equivalences, a partial |
| 1479 | // equivalence is the only possibility. | |
| 1480 | if ((!bitmap_bit_p (m_relation_set, v1) && !has_equiv_p (v1)) | |
| 1481 | || (!bitmap_bit_p (m_relation_set, v2) && !has_equiv_p (v2))) | |
| 1482 | return partial_equiv (ssa1, ssa2); | |
| 1483 | ||
| 3674d8e6 | 1484 | // Check for equivalence first. They must be in each equivalency set. |
| 3aaa69e5 | 1485 | const_bitmap equiv1 = equiv_set (ssa1, bb); |
| 3674d8e6 AM |
1486 | const_bitmap equiv2 = equiv_set (ssa2, bb); |
| 1487 | if (bitmap_bit_p (equiv1, v2) && bitmap_bit_p (equiv2, v1)) | |
| ade5531c | 1488 | return VREL_EQ; |
| 3aaa69e5 | 1489 | |
| b5563410 AM |
1490 | kind = partial_equiv (ssa1, ssa2); |
| 1491 | if (kind != VREL_VARYING) | |
| 1492 | return kind; | |
| 1493 | ||
| 3aaa69e5 AM |
1494 | // Initially look for a direct relationship and just return that. |
| 1495 | kind = find_relation_dom (bb, v1, v2); | |
| ade5531c | 1496 | if (kind != VREL_VARYING) |
| 3aaa69e5 AM |
1497 | return kind; |
| 1498 | ||
| 1d2aa262 | 1499 | // Query using the equivalence sets. |
| fca649de | 1500 | kind = query (bb, equiv1, equiv2); |
| 3aaa69e5 AM |
1501 | return kind; |
| 1502 | } | |
| 1503 | ||
| 1504 | // Dump all the relations in block BB to file F. | |
| 1505 | ||
| 1506 | void | |
| 3674d8e6 | 1507 | dom_oracle::dump (FILE *f, basic_block bb) const |
| 3aaa69e5 AM |
1508 | { |
| 1509 | equiv_oracle::dump (f,bb); | |
| 1510 | ||
| 1511 | if (bb->index >= (int)m_relations.length ()) | |
| 1512 | return; | |
| 1513 | if (!m_relations[bb->index].m_names) | |
| 1514 | return; | |
| 1515 | ||
| 8d0ec97f AM |
1516 | value_relation vr; |
| 1517 | FOR_EACH_RELATION_BB (this, bb, vr) | |
| 3aaa69e5 AM |
1518 | { |
| 1519 | fprintf (f, "Relational : "); | |
| 8d0ec97f | 1520 | vr.dump (f); |
| 3aaa69e5 AM |
1521 | fprintf (f, "\n"); |
| 1522 | } | |
| 1523 | } | |
| 1524 | ||
| 1525 | // Dump all the relations known to file F. | |
| 1526 | ||
| 1527 | void | |
| 3674d8e6 | 1528 | dom_oracle::dump (FILE *f) const |
| 3aaa69e5 AM |
1529 | { |
| 1530 | fprintf (f, "Relation dump\n"); | |
| 1531 | for (unsigned i = 0; i < m_relations.length (); i++) | |
| ce0b409f AM |
1532 | if (BASIC_BLOCK_FOR_FN (cfun, i)) |
| 1533 | { | |
| 1534 | fprintf (f, "BB%d\n", i); | |
| 1535 | dump (f, BASIC_BLOCK_FOR_FN (cfun, i)); | |
| 1536 | } | |
| 3aaa69e5 | 1537 | } |
| abcd2373 AH |
1538 | |
| 1539 | void | |
| 1540 | relation_oracle::debug () const | |
| 1541 | { | |
| 1542 | dump (stderr); | |
| 1543 | } | |
| 534c5352 AM |
1544 | |
| 1545 | path_oracle::path_oracle (relation_oracle *oracle) | |
| 1546 | { | |
| eb5ee646 | 1547 | set_root_oracle (oracle); |
| 534c5352 AM |
1548 | bitmap_obstack_initialize (&m_bitmaps); |
| 1549 | obstack_init (&m_chain_obstack); | |
| 1550 | ||
| 1551 | // Initialize header records. | |
| 1552 | m_equiv.m_names = BITMAP_ALLOC (&m_bitmaps); | |
| 1553 | m_equiv.m_bb = NULL; | |
| 1554 | m_equiv.m_next = NULL; | |
| 1555 | m_relations.m_names = BITMAP_ALLOC (&m_bitmaps); | |
| 1556 | m_relations.m_head = NULL; | |
| 4856699e | 1557 | m_killed_defs = BITMAP_ALLOC (&m_bitmaps); |
| 534c5352 AM |
1558 | } |
| 1559 | ||
| 1560 | path_oracle::~path_oracle () | |
| 1561 | { | |
| 1562 | obstack_free (&m_chain_obstack, NULL); | |
| 1563 | bitmap_obstack_release (&m_bitmaps); | |
| 1564 | } | |
| 1565 | ||
| 1566 | // Return the equiv set for SSA, and if there isn't one, check for equivs | |
| 1567 | // starting in block BB. | |
| 1568 | ||
| 1569 | const_bitmap | |
| 1570 | path_oracle::equiv_set (tree ssa, basic_block bb) | |
| 1571 | { | |
| 1572 | // Check the list first. | |
| 1573 | equiv_chain *ptr = m_equiv.find (SSA_NAME_VERSION (ssa)); | |
| 1574 | if (ptr) | |
| 1575 | return ptr->m_names; | |
| 1576 | ||
| 1577 | // Otherwise defer to the root oracle. | |
| 1578 | if (m_root) | |
| 1579 | return m_root->equiv_set (ssa, bb); | |
| 1580 | ||
| 1581 | // Allocate a throw away bitmap if there isn't a root oracle. | |
| 1582 | bitmap tmp = BITMAP_ALLOC (&m_bitmaps); | |
| 1583 | bitmap_set_bit (tmp, SSA_NAME_VERSION (ssa)); | |
| 1584 | return tmp; | |
| 1585 | } | |
| 1586 | ||
| c46b5b0a | 1587 | // Register an equivalence between SSA1 and SSA2 resolving unknowns from |
| 534c5352 AM |
1588 | // block BB. |
| 1589 | ||
| 1590 | void | |
| 1591 | path_oracle::register_equiv (basic_block bb, tree ssa1, tree ssa2) | |
| 1592 | { | |
| 1593 | const_bitmap equiv_1 = equiv_set (ssa1, bb); | |
| 1594 | const_bitmap equiv_2 = equiv_set (ssa2, bb); | |
| 1595 | ||
| 1596 | // Check if they are the same set, if so, we're done. | |
| 1597 | if (bitmap_equal_p (equiv_1, equiv_2)) | |
| 1598 | return; | |
| 1599 | ||
| 1600 | // Don't mess around, simply create a new record and insert it first. | |
| 1601 | bitmap b = BITMAP_ALLOC (&m_bitmaps); | |
| 6b73c07e AM |
1602 | valid_equivs (b, equiv_1, bb); |
| 1603 | valid_equivs (b, equiv_2, bb); | |
| 534c5352 AM |
1604 | |
| 1605 | equiv_chain *ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack, | |
| 1606 | sizeof (equiv_chain)); | |
| 1607 | ptr->m_names = b; | |
| 1608 | ptr->m_bb = NULL; | |
| 1609 | ptr->m_next = m_equiv.m_next; | |
| 1610 | m_equiv.m_next = ptr; | |
| 1611 | bitmap_ior_into (m_equiv.m_names, b); | |
| 1612 | } | |
| 1613 | ||
| 8a0fadda AH |
1614 | // Register killing definition of an SSA_NAME. |
| 1615 | ||
| 1616 | void | |
| 1617 | path_oracle::killing_def (tree ssa) | |
| 1618 | { | |
| 1619 | if (dump_file && (dump_flags & TDF_DETAILS)) | |
| 1620 | { | |
| 1621 | fprintf (dump_file, " Registering killing_def (path_oracle) "); | |
| 1622 | print_generic_expr (dump_file, ssa, TDF_SLIM); | |
| 1623 | fprintf (dump_file, "\n"); | |
| 1624 | } | |
| 1625 | ||
| 9f4edfc1 | 1626 | unsigned v = SSA_NAME_VERSION (ssa); |
| 9f4edfc1 | 1627 | |
| 4856699e | 1628 | bitmap_set_bit (m_killed_defs, v); |
| 19ffb35d | 1629 | bitmap_set_bit (m_equiv.m_names, v); |
| dc173a43 AH |
1630 | |
| 1631 | // Now add an equivalency with itself so we don't look to the root oracle. | |
| 1632 | bitmap b = BITMAP_ALLOC (&m_bitmaps); | |
| 1633 | bitmap_set_bit (b, v); | |
| 1634 | equiv_chain *ptr = (equiv_chain *) obstack_alloc (&m_chain_obstack, | |
| 1635 | sizeof (equiv_chain)); | |
| 1636 | ptr->m_names = b; | |
| 1637 | ptr->m_bb = NULL; | |
| 1638 | ptr->m_next = m_equiv.m_next; | |
| 1639 | m_equiv.m_next = ptr; | |
| 6ef9ad93 AH |
1640 | |
| 1641 | // Walk the relation list and remove SSA from any relations. | |
| 9f4edfc1 AH |
1642 | if (!bitmap_bit_p (m_relations.m_names, v)) |
| 1643 | return; | |
| 1644 | ||
| 1645 | bitmap_clear_bit (m_relations.m_names, v); | |
| 1646 | relation_chain **prev = &(m_relations.m_head); | |
| 1647 | relation_chain *next = NULL; | |
| 1648 | for (relation_chain *ptr = m_relations.m_head; ptr; ptr = next) | |
| 1649 | { | |
| 1650 | gcc_checking_assert (*prev == ptr); | |
| 1651 | next = ptr->m_next; | |
| 1652 | if (SSA_NAME_VERSION (ptr->op1 ()) == v | |
| 1653 | || SSA_NAME_VERSION (ptr->op2 ()) == v) | |
| 1654 | *prev = ptr->m_next; | |
| 1655 | else | |
| 1656 | prev = &(ptr->m_next); | |
| 1657 | } | |
| 8a0fadda AH |
1658 | } |
| 1659 | ||
| 534c5352 AM |
1660 | // Register relation K between SSA1 and SSA2, resolving unknowns by |
| 1661 | // querying from BB. | |
| 1662 | ||
| 1663 | void | |
| fca649de | 1664 | path_oracle::record (basic_block bb, relation_kind k, tree ssa1, tree ssa2) |
| 534c5352 | 1665 | { |
| 4a36b4e1 AH |
1666 | // If the 2 ssa_names are the same, do nothing. An equivalence is implied, |
| 1667 | // and no other relation makes sense. | |
| 1668 | if (ssa1 == ssa2) | |
| 1669 | return; | |
| 1670 | ||
| 534c5352 AM |
1671 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1672 | { | |
| 1673 | value_relation vr (k, ssa1, ssa2); | |
| 1674 | fprintf (dump_file, " Registering value_relation (path_oracle) "); | |
| 1675 | vr.dump (dump_file); | |
| eb5ee646 | 1676 | fprintf (dump_file, " (root: bb%d)\n", bb->index); |
| 534c5352 AM |
1677 | } |
| 1678 | ||
| fca649de | 1679 | relation_kind curr = query (bb, ssa1, ssa2); |
| 6101a276 AM |
1680 | if (curr != VREL_VARYING) |
| 1681 | k = relation_intersect (curr, k); | |
| 1682 | ||
| ade5531c | 1683 | if (k == VREL_EQ) |
| 534c5352 AM |
1684 | { |
| 1685 | register_equiv (bb, ssa1, ssa2); | |
| 1686 | return; | |
| 1687 | } | |
| 1688 | ||
| 534c5352 AM |
1689 | bitmap_set_bit (m_relations.m_names, SSA_NAME_VERSION (ssa1)); |
| 1690 | bitmap_set_bit (m_relations.m_names, SSA_NAME_VERSION (ssa2)); | |
| 1691 | relation_chain *ptr = (relation_chain *) obstack_alloc (&m_chain_obstack, | |
| 1692 | sizeof (relation_chain)); | |
| 1693 | ptr->set_relation (k, ssa1, ssa2); | |
| 1694 | ptr->m_next = m_relations.m_head; | |
| 1695 | m_relations.m_head = ptr; | |
| 1696 | } | |
| 1697 | ||
| 1698 | // Query for a relationship between equiv set B1 and B2, resolving unknowns | |
| 1699 | // starting at block BB. | |
| 1700 | ||
| 1701 | relation_kind | |
| fca649de | 1702 | path_oracle::query (basic_block bb, const_bitmap b1, const_bitmap b2) |
| 534c5352 AM |
1703 | { |
| 1704 | if (bitmap_equal_p (b1, b2)) | |
| ade5531c | 1705 | return VREL_EQ; |
| 534c5352 AM |
1706 | |
| 1707 | relation_kind k = m_relations.find_relation (b1, b2); | |
| 1708 | ||
| 4856699e AH |
1709 | // Do not look at the root oracle for names that have been killed |
| 1710 | // along the path. | |
| 1711 | if (bitmap_intersect_p (m_killed_defs, b1) | |
| 1712 | || bitmap_intersect_p (m_killed_defs, b2)) | |
| 1713 | return k; | |
| 1714 | ||
| ade5531c | 1715 | if (k == VREL_VARYING && m_root) |
| fca649de | 1716 | k = m_root->query (bb, b1, b2); |
| 534c5352 AM |
1717 | |
| 1718 | return k; | |
| 1719 | } | |
| 1720 | ||
| 1721 | // Query for a relationship between SSA1 and SSA2, resolving unknowns | |
| 1722 | // starting at block BB. | |
| 1723 | ||
| 1724 | relation_kind | |
| fca649de | 1725 | path_oracle::query (basic_block bb, tree ssa1, tree ssa2) |
| 534c5352 AM |
1726 | { |
| 1727 | unsigned v1 = SSA_NAME_VERSION (ssa1); | |
| 1728 | unsigned v2 = SSA_NAME_VERSION (ssa2); | |
| 1729 | ||
| 1730 | if (v1 == v2) | |
| ade5531c | 1731 | return VREL_EQ; |
| 534c5352 AM |
1732 | |
| 1733 | const_bitmap equiv_1 = equiv_set (ssa1, bb); | |
| 1734 | const_bitmap equiv_2 = equiv_set (ssa2, bb); | |
| 1735 | if (bitmap_bit_p (equiv_1, v2) && bitmap_bit_p (equiv_2, v1)) | |
| ade5531c | 1736 | return VREL_EQ; |
| 534c5352 | 1737 | |
| fca649de | 1738 | return query (bb, equiv_1, equiv_2); |
| 534c5352 AM |
1739 | } |
| 1740 | ||
| 5adfb654 AH |
1741 | // Reset any relations registered on this path. ORACLE is the root |
| 1742 | // oracle to use. | |
| 534c5352 AM |
1743 | |
| 1744 | void | |
| 5adfb654 | 1745 | path_oracle::reset_path (relation_oracle *oracle) |
| 534c5352 | 1746 | { |
| 5adfb654 | 1747 | set_root_oracle (oracle); |
| 534c5352 AM |
1748 | m_equiv.m_next = NULL; |
| 1749 | bitmap_clear (m_equiv.m_names); | |
| 1750 | m_relations.m_head = NULL; | |
| 1751 | bitmap_clear (m_relations.m_names); | |
| 602a3161 | 1752 | bitmap_clear (m_killed_defs); |
| 534c5352 AM |
1753 | } |
| 1754 | ||
| 1755 | // Dump relation in basic block... Do nothing here. | |
| 1756 | ||
| 1757 | void | |
| 1758 | path_oracle::dump (FILE *, basic_block) const | |
| 1759 | { | |
| 1760 | } | |
| 1761 | ||
| 1762 | // Dump the relations and equivalencies found in the path. | |
| 1763 | ||
| 1764 | void | |
| 1765 | path_oracle::dump (FILE *f) const | |
| 1766 | { | |
| 1767 | equiv_chain *ptr = m_equiv.m_next; | |
| 2fc9b4d7 AH |
1768 | relation_chain *ptr2 = m_relations.m_head; |
| 1769 | ||
| 1770 | if (ptr || ptr2) | |
| 1771 | fprintf (f, "\npath_oracle:\n"); | |
| 1772 | ||
| 534c5352 AM |
1773 | for (; ptr; ptr = ptr->m_next) |
| 1774 | ptr->dump (f); | |
| 1775 | ||
| 534c5352 AM |
1776 | for (; ptr2; ptr2 = ptr2->m_next) |
| 1777 | { | |
| 1778 | fprintf (f, "Relational : "); | |
| 1779 | ptr2->dump (f); | |
| 1780 | fprintf (f, "\n"); | |
| 1781 | } | |
| 1782 | } | |
| aa05838b AM |
1783 | |
| 1784 | // ------------------------------------------------------------------------ | |
| 1785 | // EQUIV iterator. Although we have bitmap iterators, don't expose that it | |
| 1786 | // is currently a bitmap. Use an export iterator to hide future changes. | |
| 1787 | ||
| 1788 | // Construct a basic iterator over an equivalence bitmap. | |
| 1789 | ||
| 1790 | equiv_relation_iterator::equiv_relation_iterator (relation_oracle *oracle, | |
| 1791 | basic_block bb, tree name, | |
| 1792 | bool full, bool partial) | |
| 1793 | { | |
| 1794 | m_name = name; | |
| 1795 | m_oracle = oracle; | |
| 1796 | m_pe = partial ? oracle->partial_equiv_set (name) : NULL; | |
| 1797 | m_bm = NULL; | |
| 1798 | if (full) | |
| 1799 | m_bm = oracle->equiv_set (name, bb); | |
| 1800 | if (!m_bm && m_pe) | |
| 1801 | m_bm = m_pe->members; | |
| 1802 | if (m_bm) | |
| 1803 | bmp_iter_set_init (&m_bi, m_bm, 1, &m_y); | |
| 1804 | } | |
| 1805 | ||
| 1806 | // Move to the next export bitmap spot. | |
| 1807 | ||
| 1808 | void | |
| 1809 | equiv_relation_iterator::next () | |
| 1810 | { | |
| 1811 | bmp_iter_next (&m_bi, &m_y); | |
| 1812 | } | |
| 1813 | ||
| 1814 | // Fetch the name of the next export in the export list. Return NULL if | |
| 1815 | // iteration is done. | |
| 1816 | ||
| 1817 | tree | |
| 1818 | equiv_relation_iterator::get_name (relation_kind *rel) | |
| 1819 | { | |
| 1820 | if (!m_bm) | |
| 1821 | return NULL_TREE; | |
| 1822 | ||
| 1823 | while (bmp_iter_set (&m_bi, &m_y)) | |
| 1824 | { | |
| 1825 | // Do not return self. | |
| 1826 | tree t = ssa_name (m_y); | |
| 1827 | if (t && t != m_name) | |
| 1828 | { | |
| 1829 | relation_kind k = VREL_EQ; | |
| 1830 | if (m_pe && m_bm == m_pe->members) | |
| 1831 | { | |
| 1832 | const pe_slice *equiv_pe = m_oracle->partial_equiv_set (t); | |
| 1833 | if (equiv_pe && equiv_pe->members == m_pe->members) | |
| 1834 | k = pe_min (m_pe->code, equiv_pe->code); | |
| 1835 | else | |
| 1836 | k = VREL_VARYING; | |
| 1837 | } | |
| 1838 | if (relation_equiv_p (k)) | |
| 1839 | { | |
| 1840 | if (rel) | |
| 1841 | *rel = k; | |
| 1842 | return t; | |
| 1843 | } | |
| 1844 | } | |
| 1845 | next (); | |
| 1846 | } | |
| 1847 | ||
| 1848 | // Process partial equivs after full equivs if both were requested. | |
| 1849 | if (m_pe && m_bm != m_pe->members) | |
| 1850 | { | |
| 1851 | m_bm = m_pe->members; | |
| 1852 | if (m_bm) | |
| 1853 | { | |
| 1854 | // Recursively call back to process First PE. | |
| 1855 | bmp_iter_set_init (&m_bi, m_bm, 1, &m_y); | |
| 1856 | return get_name (rel); | |
| 1857 | } | |
| 1858 | } | |
| 1859 | return NULL_TREE; | |
| 1860 | } | |
| c81e68a9 JJ |
1861 | |
| 1862 | #if CHECKING_P | |
| 1863 | #include "selftest.h" | |
| 1864 | ||
| 1865 | namespace selftest | |
| 1866 | { | |
| 1867 | void | |
| 1868 | relation_tests () | |
| 1869 | { | |
| 0cdb609f JJ |
1870 | // rr_*_table tables use unsigned char rather than relation_kind. |
| 1871 | ASSERT_LT (VREL_LAST, UCHAR_MAX); | |
| c81e68a9 JJ |
1872 | // Verify commutativity of relation_intersect and relation_union. |
| 1873 | for (relation_kind r1 = VREL_VARYING; r1 < VREL_PE8; | |
| 1874 | r1 = relation_kind (r1 + 1)) | |
| 1875 | for (relation_kind r2 = VREL_VARYING; r2 < VREL_PE8; | |
| 1876 | r2 = relation_kind (r2 + 1)) | |
| 1877 | { | |
| 1878 | ASSERT_EQ (relation_intersect (r1, r2), relation_intersect (r2, r1)); | |
| 1879 | ASSERT_EQ (relation_union (r1, r2), relation_union (r2, r1)); | |
| 1880 | } | |
| 1881 | } | |
| 1882 | ||
| 1883 | } // namespace selftest | |
| 1884 | ||
| 1885 | #endif // CHECKING_P |