]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/var-tracking.c
Revert "[PR64164] Drop copyrename, use coalescible partition as base when optimizing."
[thirdparty/gcc.git] / gcc / var-tracking.c
CommitLineData
014a1138 1/* Variable tracking routines for the GNU compiler.
5624e564 2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
014a1138
JZ
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
9dcd6f09 8 the Free Software Foundation; either version 3, or (at your option)
014a1138
JZ
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
9dcd6f09
NC
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
014a1138
JZ
19
20/* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
12c5ffe5 36 < clobber < set < post-modifying stack adjustment
014a1138
JZ
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86*/
87
88#include "config.h"
89#include "system.h"
90#include "coretypes.h"
91#include "tm.h"
92#include "rtl.h"
40e23961
MC
93#include "input.h"
94#include "alias.h"
95#include "symtab.h"
014a1138 96#include "tree.h"
d8a2d370
DN
97#include "varasm.h"
98#include "stor-layout.h"
60393bbc 99#include "predict.h"
60393bbc 100#include "hard-reg-set.h"
60393bbc
AM
101#include "function.h"
102#include "dominance.h"
103#include "cfg.h"
104#include "cfgrtl.h"
105#include "cfganal.h"
2fb9a547 106#include "basic-block.h"
f42865cb 107#include "tm_p.h"
014a1138 108#include "flags.h"
014a1138
JZ
109#include "insn-config.h"
110#include "reload.h"
111#include "sbitmap.h"
112#include "alloc-pool.h"
c938250d 113#include "regs.h"
36566b39
PK
114#include "expmed.h"
115#include "dojump.h"
116#include "explow.h"
117#include "calls.h"
118#include "emit-rtl.h"
119#include "stmt.h"
c938250d 120#include "expr.h"
ef330312 121#include "tree-pass.h"
442b4905
AM
122#include "bitmap.h"
123#include "tree-dfa.h"
7a300452 124#include "tree-ssa.h"
b5b8b0ac
AO
125#include "cselib.h"
126#include "target.h"
ec8c3978 127#include "params.h"
6764d92c 128#include "diagnostic.h"
cf835838 129#include "tree-pretty-print.h"
457eeaae 130#include "recog.h"
4f498863 131#include "rtl-iter.h"
7b69b603
ML
132#include "fibonacci_heap.h"
133
134typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
135typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
014a1138 136
a85caf9e
JJ
137/* var-tracking.c assumes that tree code with the same value as VALUE rtx code
138 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
139 Currently the value is the same as IDENTIFIER_NODE, which has such
140 a property. If this compile time assertion ever fails, make sure that
141 the new tree code that equals (int) VALUE has the same property. */
142extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
143
014a1138
JZ
144/* Type of micro operation. */
145enum micro_operation_type
146{
147 MO_USE, /* Use location (REG or MEM). */
148 MO_USE_NO_VAR,/* Use location which is not associated with a variable
149 or the variable is not trackable. */
b5b8b0ac
AO
150 MO_VAL_USE, /* Use location which is associated with a value. */
151 MO_VAL_LOC, /* Use location which appears in a debug insn. */
152 MO_VAL_SET, /* Set location associated with a value. */
014a1138 153 MO_SET, /* Set location. */
ca787200 154 MO_COPY, /* Copy the same portion of a variable from one
96ff6c8c 155 location to another. */
014a1138
JZ
156 MO_CLOBBER, /* Clobber location. */
157 MO_CALL, /* Call insn. */
9ac97460 158 MO_ADJUST /* Adjust stack pointer. */
b5b8b0ac
AO
159
160};
161
162static const char * const ATTRIBUTE_UNUSED
163micro_operation_type_name[] = {
164 "MO_USE",
165 "MO_USE_NO_VAR",
166 "MO_VAL_USE",
167 "MO_VAL_LOC",
168 "MO_VAL_SET",
169 "MO_SET",
170 "MO_COPY",
171 "MO_CLOBBER",
172 "MO_CALL",
173 "MO_ADJUST"
014a1138
JZ
174};
175
b5b8b0ac
AO
176/* Where shall the note be emitted? BEFORE or AFTER the instruction.
177 Notes emitted as AFTER_CALL are to take effect during the call,
178 rather than after the call. */
014a1138
JZ
179enum emit_note_where
180{
181 EMIT_NOTE_BEFORE_INSN,
b5b8b0ac
AO
182 EMIT_NOTE_AFTER_INSN,
183 EMIT_NOTE_AFTER_CALL_INSN
014a1138
JZ
184};
185
186/* Structure holding information about micro operation. */
187typedef struct micro_operation_def
188{
189 /* Type of micro operation. */
190 enum micro_operation_type type;
191
0de3e43f
JJ
192 /* The instruction which the micro operation is in, for MO_USE,
193 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
194 instruction or note in the original flow (before any var-tracking
195 notes are inserted, to simplify emission of notes), for MO_SET
196 and MO_CLOBBER. */
598d62da 197 rtx_insn *insn;
0de3e43f 198
014a1138 199 union {
b5b8b0ac
AO
200 /* Location. For MO_SET and MO_COPY, this is the SET that
201 performs the assignment, if known, otherwise it is the target
202 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
203 CONCAT of the VALUE and the LOC associated with it. For
204 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
205 associated with it. */
014a1138
JZ
206 rtx loc;
207
208 /* Stack adjustment. */
209 HOST_WIDE_INT adjust;
210 } u;
014a1138
JZ
211} micro_operation;
212
0de3e43f 213
b5b8b0ac
AO
214/* A declaration of a variable, or an RTL value being handled like a
215 declaration. */
216typedef void *decl_or_value;
217
013e5ef9
LC
218/* Return true if a decl_or_value DV is a DECL or NULL. */
219static inline bool
220dv_is_decl_p (decl_or_value dv)
014a1138 221{
013e5ef9
LC
222 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
223}
014a1138 224
013e5ef9
LC
225/* Return true if a decl_or_value is a VALUE rtl. */
226static inline bool
227dv_is_value_p (decl_or_value dv)
228{
229 return dv && !dv_is_decl_p (dv);
230}
231
232/* Return the decl in the decl_or_value. */
233static inline tree
234dv_as_decl (decl_or_value dv)
235{
236 gcc_checking_assert (dv_is_decl_p (dv));
237 return (tree) dv;
238}
239
240/* Return the value in the decl_or_value. */
241static inline rtx
242dv_as_value (decl_or_value dv)
243{
244 gcc_checking_assert (dv_is_value_p (dv));
245 return (rtx)dv;
246}
247
248/* Return the opaque pointer in the decl_or_value. */
249static inline void *
250dv_as_opaque (decl_or_value dv)
251{
252 return dv;
253}
b5b8b0ac 254
014a1138
JZ
255
256/* Description of location of a part of a variable. The content of a physical
257 register is described by a chain of these structures.
258 The chains are pretty short (usually 1 or 2 elements) and thus
259 chain is the best data structure. */
260typedef struct attrs_def
261{
262 /* Pointer to next member of the list. */
263 struct attrs_def *next;
264
265 /* The rtx of register. */
266 rtx loc;
267
268 /* The declaration corresponding to LOC. */
b5b8b0ac 269 decl_or_value dv;
014a1138
JZ
270
271 /* Offset from start of DECL. */
272 HOST_WIDE_INT offset;
7e46899d
ML
273
274 /* Pool allocation new operator. */
275 inline void *operator new (size_t)
276 {
277 return pool.allocate ();
278 }
279
280 /* Delete operator utilizing pool allocation. */
281 inline void operator delete (void *ptr)
282 {
283 pool.remove ((attrs_def *) ptr);
284 }
285
286 /* Memory allocation pool. */
287 static pool_allocator<attrs_def> pool;
014a1138
JZ
288} *attrs;
289
014a1138
JZ
290/* Structure for chaining the locations. */
291typedef struct location_chain_def
292{
293 /* Next element in the chain. */
294 struct location_chain_def *next;
295
b5b8b0ac 296 /* The location (REG, MEM or VALUE). */
014a1138 297 rtx loc;
62760ffd
CT
298
299 /* The "value" stored in this location. */
300 rtx set_src;
301
302 /* Initialized? */
303 enum var_init_status init;
7e46899d
ML
304
305 /* Pool allocation new operator. */
306 inline void *operator new (size_t)
307 {
308 return pool.allocate ();
309 }
310
311 /* Delete operator utilizing pool allocation. */
312 inline void operator delete (void *ptr)
313 {
314 pool.remove ((location_chain_def *) ptr);
315 }
316
317 /* Memory allocation pool. */
318 static pool_allocator<location_chain_def> pool;
014a1138
JZ
319} *location_chain;
320
09dbcd96
AO
321/* A vector of loc_exp_dep holds the active dependencies of a one-part
322 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
323 location of DV. Each entry is also part of VALUE' s linked-list of
324 backlinks back to DV. */
325typedef struct loc_exp_dep_s
326{
327 /* The dependent DV. */
328 decl_or_value dv;
329 /* The dependency VALUE or DECL_DEBUG. */
330 rtx value;
331 /* The next entry in VALUE's backlinks list. */
332 struct loc_exp_dep_s *next;
333 /* A pointer to the pointer to this entry (head or prev's next) in
334 the doubly-linked list. */
335 struct loc_exp_dep_s **pprev;
7e46899d
ML
336
337 /* Pool allocation new operator. */
338 inline void *operator new (size_t)
339 {
340 return pool.allocate ();
341 }
342
343 /* Delete operator utilizing pool allocation. */
344 inline void operator delete (void *ptr)
345 {
346 pool.remove ((loc_exp_dep_s *) ptr);
347 }
348
349 /* Memory allocation pool. */
350 static pool_allocator<loc_exp_dep_s> pool;
09dbcd96
AO
351} loc_exp_dep;
352
09dbcd96 353
6a184afa
AO
354/* This data structure holds information about the depth of a variable
355 expansion. */
356typedef struct expand_depth_struct
357{
358 /* This measures the complexity of the expanded expression. It
359 grows by one for each level of expansion that adds more than one
360 operand. */
361 int complexity;
362 /* This counts the number of ENTRY_VALUE expressions in an
363 expansion. We want to minimize their use. */
364 int entryvals;
365} expand_depth;
366
09dbcd96
AO
367/* This data structure is allocated for one-part variables at the time
368 of emitting notes. */
369struct onepart_aux
370{
371 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
372 computation used the expansion of this variable, and that ought
373 to be notified should this variable change. If the DV's cur_loc
374 expanded to NULL, all components of the loc list are regarded as
375 active, so that any changes in them give us a chance to get a
376 location. Otherwise, only components of the loc that expanded to
377 non-NULL are regarded as active dependencies. */
378 loc_exp_dep *backlinks;
379 /* This holds the LOC that was expanded into cur_loc. We need only
380 mark a one-part variable as changed if the FROM loc is removed,
381 or if it has no known location and a loc is added, or if it gets
382 a change notification from any of its active dependencies. */
383 rtx from;
384 /* The depth of the cur_loc expression. */
6a184afa 385 expand_depth depth;
09dbcd96 386 /* Dependencies actively used when expand FROM into cur_loc. */
9771b263 387 vec<loc_exp_dep, va_heap, vl_embed> deps;
09dbcd96
AO
388};
389
014a1138
JZ
390/* Structure describing one part of variable. */
391typedef struct variable_part_def
392{
393 /* Chain of locations of the part. */
394 location_chain loc_chain;
395
396 /* Location which was last emitted to location list. */
397 rtx cur_loc;
398
09dbcd96
AO
399 union variable_aux
400 {
401 /* The offset in the variable, if !var->onepart. */
402 HOST_WIDE_INT offset;
403
404 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
405 struct onepart_aux *onepaux;
406 } aux;
014a1138
JZ
407} variable_part;
408
409/* Maximum number of location parts. */
410#define MAX_VAR_PARTS 16
411
09dbcd96
AO
412/* Enumeration type used to discriminate various types of one-part
413 variables. */
414typedef enum onepart_enum
415{
416 /* Not a one-part variable. */
417 NOT_ONEPART = 0,
418 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
419 ONEPART_VDECL = 1,
420 /* A DEBUG_EXPR_DECL. */
421 ONEPART_DEXPR = 2,
422 /* A VALUE. */
423 ONEPART_VALUE = 3
424} onepart_enum_t;
425
014a1138
JZ
426/* Structure describing where the variable is located. */
427typedef struct variable_def
428{
b5b8b0ac
AO
429 /* The declaration of the variable, or an RTL value being handled
430 like a declaration. */
431 decl_or_value dv;
014a1138 432
81f2eadb
JZ
433 /* Reference count. */
434 int refcount;
435
014a1138 436 /* Number of variable parts. */
864ddef7
JJ
437 char n_var_parts;
438
09dbcd96
AO
439 /* What type of DV this is, according to enum onepart_enum. */
440 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
864ddef7
JJ
441
442 /* True if this variable_def struct is currently in the
443 changed_variables hash table. */
444 bool in_changed_variables;
014a1138
JZ
445
446 /* The variable parts. */
b5b8b0ac 447 variable_part var_part[1];
014a1138 448} *variable;
741ac903 449typedef const struct variable_def *const_variable;
014a1138 450
014a1138
JZ
451/* Pointer to the BB's information specific to variable tracking pass. */
452#define VTI(BB) ((variable_tracking_info) (BB)->aux)
453
8c6c36a3 454/* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
527210c4 455#define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
8c6c36a3 456
09dbcd96
AO
457#if ENABLE_CHECKING && (GCC_VERSION >= 2007)
458
459/* Access VAR's Ith part's offset, checking that it's not a one-part
460 variable. */
461#define VAR_PART_OFFSET(var, i) __extension__ \
462(*({ variable const __v = (var); \
463 gcc_checking_assert (!__v->onepart); \
464 &__v->var_part[(i)].aux.offset; }))
465
466/* Access VAR's one-part auxiliary data, checking that it is a
467 one-part variable. */
468#define VAR_LOC_1PAUX(var) __extension__ \
469(*({ variable const __v = (var); \
470 gcc_checking_assert (__v->onepart); \
471 &__v->var_part[0].aux.onepaux; }))
472
473#else
474#define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
475#define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
476#endif
477
478/* These are accessor macros for the one-part auxiliary data. When
479 convenient for users, they're guarded by tests that the data was
480 allocated. */
481#define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
482 ? VAR_LOC_1PAUX (var)->backlinks \
483 : NULL)
484#define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
485 ? &VAR_LOC_1PAUX (var)->backlinks \
486 : NULL)
487#define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
488#define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
489#define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
490 ? &VAR_LOC_1PAUX (var)->deps \
491 : NULL)
492
013e5ef9
LC
493
494
495typedef unsigned int dvuid;
496
497/* Return the uid of DV. */
498
499static inline dvuid
500dv_uid (decl_or_value dv)
501{
502 if (dv_is_value_p (dv))
503 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
504 else
505 return DECL_UID (dv_as_decl (dv));
506}
507
508/* Compute the hash from the uid. */
509
510static inline hashval_t
511dv_uid2hash (dvuid uid)
512{
513 return uid;
514}
515
516/* The hash function for a mask table in a shared_htab chain. */
517
518static inline hashval_t
519dv_htab_hash (decl_or_value dv)
520{
521 return dv_uid2hash (dv_uid (dv));
522}
523
524static void variable_htab_free (void *);
525
526/* Variable hashtable helpers. */
527
528struct variable_hasher
529{
67f58944
TS
530 typedef variable_def *value_type;
531 typedef void *compare_type;
532 static inline hashval_t hash (const variable_def *);
533 static inline bool equal (const variable_def *, const void *);
534 static inline void remove (variable_def *);
013e5ef9
LC
535};
536
537/* The hash function for variable_htab, computes the hash value
538 from the declaration of variable X. */
539
540inline hashval_t
67f58944 541variable_hasher::hash (const variable_def *v)
013e5ef9
LC
542{
543 return dv_htab_hash (v->dv);
544}
545
546/* Compare the declaration of variable X with declaration Y. */
547
548inline bool
67f58944 549variable_hasher::equal (const variable_def *v, const void *y)
013e5ef9
LC
550{
551 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
552
553 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
554}
555
556/* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
557
558inline void
67f58944 559variable_hasher::remove (variable_def *var)
013e5ef9
LC
560{
561 variable_htab_free (var);
562}
563
c203e8a7 564typedef hash_table<variable_hasher> variable_table_type;
013e5ef9
LC
565typedef variable_table_type::iterator variable_iterator_type;
566
567/* Structure for passing some other parameters to function
568 emit_note_insn_var_location. */
569typedef struct emit_note_data_def
570{
571 /* The instruction which the note will be emitted before/after. */
598d62da 572 rtx_insn *insn;
013e5ef9
LC
573
574 /* Where the note will be emitted (before/after insn)? */
575 enum emit_note_where where;
576
577 /* The variables and values active at this point. */
c203e8a7 578 variable_table_type *vars;
013e5ef9
LC
579} emit_note_data;
580
581/* Structure holding a refcounted hash table. If refcount > 1,
582 it must be first unshared before modified. */
583typedef struct shared_hash_def
584{
585 /* Reference count. */
586 int refcount;
587
588 /* Actual hash table. */
c203e8a7 589 variable_table_type *htab;
7e46899d
ML
590
591 /* Pool allocation new operator. */
592 inline void *operator new (size_t)
593 {
594 return pool.allocate ();
595 }
596
597 /* Delete operator utilizing pool allocation. */
598 inline void operator delete (void *ptr)
599 {
600 pool.remove ((shared_hash_def *) ptr);
601 }
602
603 /* Memory allocation pool. */
604 static pool_allocator<shared_hash_def> pool;
013e5ef9
LC
605} *shared_hash;
606
607/* Structure holding the IN or OUT set for a basic block. */
608typedef struct dataflow_set_def
609{
610 /* Adjustment of stack offset. */
611 HOST_WIDE_INT stack_adjust;
612
613 /* Attributes for registers (lists of attrs). */
614 attrs regs[FIRST_PSEUDO_REGISTER];
615
616 /* Variable locations. */
617 shared_hash vars;
618
619 /* Vars that is being traversed. */
620 shared_hash traversed_vars;
621} dataflow_set;
622
623/* The structure (one for each basic block) containing the information
624 needed for variable tracking. */
625typedef struct variable_tracking_info_def
626{
627 /* The vector of micro operations. */
628 vec<micro_operation> mos;
629
630 /* The IN and OUT set for dataflow analysis. */
631 dataflow_set in;
632 dataflow_set out;
633
634 /* The permanent-in dataflow set for this block. This is used to
635 hold values for which we had to compute entry values. ??? This
636 should probably be dynamically allocated, to avoid using more
637 memory in non-debug builds. */
638 dataflow_set *permp;
639
640 /* Has the block been visited in DFS? */
641 bool visited;
642
643 /* Has the block been flooded in VTA? */
644 bool flooded;
645
646} *variable_tracking_info;
647
014a1138 648/* Alloc pool for struct attrs_def. */
7e46899d 649pool_allocator<attrs_def> attrs_def::pool ("attrs_def pool", 1024);
014a1138 650
b5b8b0ac 651/* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
7e46899d
ML
652
653static pool_allocator<variable_def> var_pool
654 ("variable_def pool", 64,
655 (MAX_VAR_PARTS - 1) * sizeof (((variable)NULL)->var_part[0]));
014a1138 656
b5b8b0ac 657/* Alloc pool for struct variable_def with a single var_part entry. */
7e46899d
ML
658static pool_allocator<variable_def> valvar_pool
659 ("small variable_def pool", 256);
b5b8b0ac 660
014a1138 661/* Alloc pool for struct location_chain_def. */
7e46899d
ML
662pool_allocator<location_chain_def> location_chain_def::pool
663 ("location_chain_def pool", 1024);
014a1138 664
d24686d7 665/* Alloc pool for struct shared_hash_def. */
7e46899d
ML
666pool_allocator<shared_hash_def> shared_hash_def::pool
667 ("shared_hash_def pool", 256);
d24686d7 668
d05cae4a 669/* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
7e46899d 670pool_allocator<loc_exp_dep> loc_exp_dep::pool ("loc_exp_dep pool", 64);
d05cae4a 671
014a1138 672/* Changed variables, notes will be emitted for them. */
c203e8a7 673static variable_table_type *changed_variables;
014a1138
JZ
674
675/* Shall notes be emitted? */
676static bool emit_notes;
677
09dbcd96
AO
678/* Values whose dynamic location lists have gone empty, but whose
679 cselib location lists are still usable. Use this to hold the
680 current location, the backlinks, etc, during emit_notes. */
c203e8a7 681static variable_table_type *dropped_values;
09dbcd96 682
d24686d7
JJ
683/* Empty shared hashtable. */
684static shared_hash empty_shared_hash;
685
b5b8b0ac
AO
686/* Scratch register bitmap used by cselib_expand_value_rtx. */
687static bitmap scratch_regs = NULL;
688
09dbcd96 689#ifdef HAVE_window_save
12c5ffe5
EB
690typedef struct GTY(()) parm_reg {
691 rtx outgoing;
692 rtx incoming;
693} parm_reg_t;
694
12c5ffe5
EB
695
696/* Vector of windowed parameter registers, if any. */
9771b263 697static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
09dbcd96 698#endif
12c5ffe5 699
b5b8b0ac
AO
700/* Variable used to tell whether cselib_process_insn called our hook. */
701static bool cselib_hook_called;
702
014a1138
JZ
703/* Local function prototypes. */
704static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
705 HOST_WIDE_INT *);
598d62da 706static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
014a1138 707 HOST_WIDE_INT *);
014a1138 708static bool vt_stack_adjustments (void);
014a1138
JZ
709
710static void init_attrs_list_set (attrs *);
711static void attrs_list_clear (attrs *);
b5b8b0ac
AO
712static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
713static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
014a1138
JZ
714static void attrs_list_copy (attrs *, attrs);
715static void attrs_list_union (attrs *, attrs);
716
013e5ef9
LC
717static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
718 variable var, enum var_init_status);
c203e8a7 719static void vars_copy (variable_table_type *, variable_table_type *);
ca787200 720static tree var_debug_decl (tree);
62760ffd 721static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
b8698a0f 722static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
62760ffd 723 enum var_init_status, rtx);
ca787200 724static void var_reg_delete (dataflow_set *, rtx, bool);
014a1138 725static void var_regno_delete (dataflow_set *, int);
62760ffd 726static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
b8698a0f 727static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
62760ffd 728 enum var_init_status, rtx);
ca787200 729static void var_mem_delete (dataflow_set *, rtx, bool);
014a1138 730
d24686d7 731static void dataflow_set_init (dataflow_set *);
014a1138
JZ
732static void dataflow_set_clear (dataflow_set *);
733static void dataflow_set_copy (dataflow_set *, dataflow_set *);
734static int variable_union_info_cmp_pos (const void *, const void *);
014a1138 735static void dataflow_set_union (dataflow_set *, dataflow_set *);
c203e8a7 736static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
b5b8b0ac
AO
737static bool canon_value_cmp (rtx, rtx);
738static int loc_cmp (rtx, rtx);
014a1138 739static bool variable_part_different_p (variable_part *, variable_part *);
b5b8b0ac 740static bool onepart_variable_different_p (variable, variable);
864ddef7 741static bool variable_different_p (variable, variable);
014a1138
JZ
742static bool dataflow_set_different (dataflow_set *, dataflow_set *);
743static void dataflow_set_destroy (dataflow_set *);
744
745static bool contains_symbol_ref (rtx);
b5b8b0ac 746static bool track_expr_p (tree, bool);
ca787200 747static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
014a1138 748static void add_uses_1 (rtx *, void *);
7bc980e1 749static void add_stores (rtx, const_rtx, void *);
014a1138 750static bool compute_bb_dataflow (basic_block);
ec8c3978 751static bool vt_find_locations (void);
014a1138
JZ
752
753static void dump_attrs_list (attrs);
4a4d4c08 754static void dump_var (variable);
c203e8a7 755static void dump_vars (variable_table_type *);
014a1138
JZ
756static void dump_dataflow_set (dataflow_set *);
757static void dump_dataflow_sets (void);
758
09dbcd96 759static void set_dv_changed (decl_or_value, bool);
d24686d7 760static void variable_was_changed (variable, dataflow_set *);
013e5ef9
LC
761static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
762 decl_or_value, HOST_WIDE_INT,
763 enum var_init_status, rtx);
b5b8b0ac
AO
764static void set_variable_part (dataflow_set *, rtx,
765 decl_or_value, HOST_WIDE_INT,
766 enum var_init_status, rtx, enum insert_option);
013e5ef9
LC
767static variable_def **clobber_slot_part (dataflow_set *, rtx,
768 variable_def **, HOST_WIDE_INT, rtx);
b5b8b0ac
AO
769static void clobber_variable_part (dataflow_set *, rtx,
770 decl_or_value, HOST_WIDE_INT, rtx);
013e5ef9
LC
771static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
772 HOST_WIDE_INT);
b5b8b0ac
AO
773static void delete_variable_part (dataflow_set *, rtx,
774 decl_or_value, HOST_WIDE_INT);
b5b8b0ac 775static void emit_notes_in_bb (basic_block, dataflow_set *);
014a1138
JZ
776static void vt_emit_notes (void);
777
778static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
779static void vt_add_function_parameters (void);
457eeaae 780static bool vt_initialize (void);
014a1138
JZ
781static void vt_finalize (void);
782
41b9329e
JJ
783/* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
784
785static int
786stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
787 void *arg)
788{
789 if (dest != stack_pointer_rtx)
790 return 0;
791
792 switch (GET_CODE (op))
793 {
794 case PRE_INC:
795 case PRE_DEC:
796 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
797 return 0;
798 case POST_INC:
799 case POST_DEC:
800 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
801 return 0;
802 case PRE_MODIFY:
803 case POST_MODIFY:
804 /* We handle only adjustments by constant amount. */
805 gcc_assert (GET_CODE (src) == PLUS
806 && CONST_INT_P (XEXP (src, 1))
807 && XEXP (src, 0) == stack_pointer_rtx);
808 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
809 -= INTVAL (XEXP (src, 1));
810 return 0;
811 default:
812 gcc_unreachable ();
813 }
814}
815
014a1138
JZ
816/* Given a SET, calculate the amount of stack adjustment it contains
817 PRE- and POST-modifying stack pointer.
818 This function is similar to stack_adjust_offset. */
819
820static void
821stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
822 HOST_WIDE_INT *post)
823{
824 rtx src = SET_SRC (pattern);
825 rtx dest = SET_DEST (pattern);
826 enum rtx_code code;
827
828 if (dest == stack_pointer_rtx)
829 {
830 /* (set (reg sp) (plus (reg sp) (const_int))) */
831 code = GET_CODE (src);
832 if (! (code == PLUS || code == MINUS)
833 || XEXP (src, 0) != stack_pointer_rtx
481683e1 834 || !CONST_INT_P (XEXP (src, 1)))
014a1138
JZ
835 return;
836
837 if (code == MINUS)
838 *post += INTVAL (XEXP (src, 1));
839 else
840 *post -= INTVAL (XEXP (src, 1));
7e46899d 841 return;
014a1138 842 }
41b9329e
JJ
843 HOST_WIDE_INT res[2] = { 0, 0 };
844 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
845 *pre += res[0];
846 *post += res[1];
014a1138
JZ
847}
848
849/* Given an INSN, calculate the amount of stack adjustment it contains
850 PRE- and POST-modifying stack pointer. */
851
852static void
598d62da 853insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
014a1138
JZ
854 HOST_WIDE_INT *post)
855{
7d407433
BW
856 rtx pattern;
857
014a1138
JZ
858 *pre = 0;
859 *post = 0;
860
7d407433
BW
861 pattern = PATTERN (insn);
862 if (RTX_FRAME_RELATED_P (insn))
863 {
864 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
865 if (expr)
866 pattern = XEXP (expr, 0);
867 }
868
869 if (GET_CODE (pattern) == SET)
870 stack_adjust_offset_pre_post (pattern, pre, post);
871 else if (GET_CODE (pattern) == PARALLEL
872 || GET_CODE (pattern) == SEQUENCE)
014a1138
JZ
873 {
874 int i;
875
876 /* There may be stack adjustments inside compound insns. Search
877 for them. */
7d407433
BW
878 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
879 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
880 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
014a1138
JZ
881 }
882}
883
014a1138
JZ
884/* Compute stack adjustments for all blocks by traversing DFS tree.
885 Return true when the adjustments on all incoming edges are consistent.
f91a0beb 886 Heavily borrowed from pre_and_rev_post_order_compute. */
014a1138
JZ
887
888static bool
889vt_stack_adjustments (void)
890{
628f6a4e 891 edge_iterator *stack;
014a1138
JZ
892 int sp;
893
fb0840fc 894 /* Initialize entry block. */
fefa31b5 895 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
41b9329e
JJ
896 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
897 = INCOMING_FRAME_SP_OFFSET;
898 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
899 = INCOMING_FRAME_SP_OFFSET;
014a1138
JZ
900
901 /* Allocate stack for back-tracking up CFG. */
0cae8d31 902 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
014a1138
JZ
903 sp = 0;
904
905 /* Push the first edge on to the stack. */
fefa31b5 906 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
014a1138
JZ
907
908 while (sp)
909 {
628f6a4e 910 edge_iterator ei;
014a1138
JZ
911 basic_block src;
912 basic_block dest;
913
914 /* Look at the edge on the top of the stack. */
628f6a4e
BE
915 ei = stack[sp - 1];
916 src = ei_edge (ei)->src;
917 dest = ei_edge (ei)->dest;
014a1138
JZ
918
919 /* Check if the edge destination has been visited yet. */
920 if (!VTI (dest)->visited)
921 {
598d62da 922 rtx_insn *insn;
457eeaae 923 HOST_WIDE_INT pre, post, offset;
014a1138 924 VTI (dest)->visited = true;
457eeaae
JJ
925 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
926
fefa31b5 927 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
457eeaae
JJ
928 for (insn = BB_HEAD (dest);
929 insn != NEXT_INSN (BB_END (dest));
930 insn = NEXT_INSN (insn))
09dbcd96
AO
931 if (INSN_P (insn))
932 {
933 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
934 offset += pre + post;
935 }
457eeaae
JJ
936
937 VTI (dest)->out.stack_adjust = offset;
014a1138 938
628f6a4e 939 if (EDGE_COUNT (dest->succs) > 0)
014a1138
JZ
940 /* Since the DEST node has been visited for the first
941 time, check its successors. */
628f6a4e 942 stack[sp++] = ei_start (dest->succs);
014a1138
JZ
943 }
944 else
945 {
3489cc33
RS
946 /* We can end up with different stack adjustments for the exit block
947 of a shrink-wrapped function if stack_adjust_offset_pre_post
948 doesn't understand the rtx pattern used to restore the stack
949 pointer in the epilogue. For example, on s390(x), the stack
950 pointer is often restored via a load-multiple instruction
951 and so no stack_adjust offset is recorded for it. This means
952 that the stack offset at the end of the epilogue block is the
953 the same as the offset before the epilogue, whereas other paths
954 to the exit block will have the correct stack_adjust.
955
956 It is safe to ignore these differences because (a) we never
957 use the stack_adjust for the exit block in this pass and
958 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
959 function are correct.
960
961 We must check whether the adjustments on other edges are
962 the same though. */
963 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
964 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
014a1138
JZ
965 {
966 free (stack);
967 return false;
968 }
969
628f6a4e 970 if (! ei_one_before_end_p (ei))
014a1138 971 /* Go to the next edge. */
628f6a4e 972 ei_next (&stack[sp - 1]);
014a1138
JZ
973 else
974 /* Return to previous level if there are no more edges. */
975 sp--;
976 }
977 }
978
979 free (stack);
980 return true;
981}
982
cfd8c4b1
JJ
983/* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
984 hard_frame_pointer_rtx is being mapped to it and offset for it. */
985static rtx cfa_base_rtx;
986static HOST_WIDE_INT cfa_base_offset;
987
65773087
EB
988/* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
989 or hard_frame_pointer_rtx. */
014a1138 990
cfd8c4b1 991static inline rtx
457eeaae 992compute_cfa_pointer (HOST_WIDE_INT adjustment)
014a1138 993{
0a81f074 994 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
457eeaae
JJ
995}
996
997/* Adjustment for hard_frame_pointer_rtx to cfa base reg,
998 or -1 if the replacement shouldn't be done. */
999static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
1000
1001/* Data for adjust_mems callback. */
1002
1003struct adjust_mem_data
1004{
1005 bool store;
ef4bddc2 1006 machine_mode mem_mode;
457eeaae 1007 HOST_WIDE_INT stack_adjust;
2f33ff0a 1008 rtx_expr_list *side_effects;
457eeaae
JJ
1009};
1010
b328e730
RS
1011/* Helper for adjust_mems. Return true if X is suitable for
1012 transformation of wider mode arithmetics to narrower mode. */
e9e00885 1013
b328e730
RS
1014static bool
1015use_narrower_mode_test (rtx x, const_rtx subreg)
1016{
1017 subrtx_var_iterator::array_type array;
1018 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
e9e00885 1019 {
b328e730
RS
1020 rtx x = *iter;
1021 if (CONSTANT_P (x))
1022 iter.skip_subrtxes ();
e9e00885 1023 else
b328e730
RS
1024 switch (GET_CODE (x))
1025 {
1026 case REG:
1027 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
1028 return false;
1029 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
1030 subreg_lowpart_offset (GET_MODE (subreg),
1031 GET_MODE (x))))
1032 return false;
1033 break;
1034 case PLUS:
1035 case MINUS:
1036 case MULT:
1037 break;
1038 case ASHIFT:
1039 iter.substitute (XEXP (x, 0));
1040 break;
1041 default:
1042 return false;
1043 }
e9e00885 1044 }
b328e730 1045 return true;
e9e00885
JJ
1046}
1047
1048/* Transform X into narrower mode MODE from wider mode WMODE. */
1049
1050static rtx
ef4bddc2 1051use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
e9e00885
JJ
1052{
1053 rtx op0, op1;
1054 if (CONSTANT_P (x))
1055 return lowpart_subreg (mode, x, wmode);
1056 switch (GET_CODE (x))
1057 {
1058 case REG:
1059 return lowpart_subreg (mode, x, wmode);
1060 case PLUS:
1061 case MINUS:
1062 case MULT:
1063 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1064 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1065 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1066 case ASHIFT:
1067 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
26d83bcc
JJ
1068 op1 = XEXP (x, 1);
1069 /* Ensure shift amount is not wider than mode. */
1070 if (GET_MODE (op1) == VOIDmode)
1071 op1 = lowpart_subreg (mode, op1, wmode);
1072 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
1073 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1074 return simplify_gen_binary (ASHIFT, mode, op0, op1);
e9e00885
JJ
1075 default:
1076 gcc_unreachable ();
1077 }
1078}
1079
457eeaae
JJ
1080/* Helper function for adjusting used MEMs. */
1081
1082static rtx
1083adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1084{
1085 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1086 rtx mem, addr = loc, tem;
ef4bddc2 1087 machine_mode mem_mode_save;
457eeaae
JJ
1088 bool store_save;
1089 switch (GET_CODE (loc))
1090 {
1091 case REG:
9de9cbaf
JJ
1092 /* Don't do any sp or fp replacements outside of MEM addresses
1093 on the LHS. */
1094 if (amd->mem_mode == VOIDmode && amd->store)
457eeaae
JJ
1095 return loc;
1096 if (loc == stack_pointer_rtx
cfd8c4b1
JJ
1097 && !frame_pointer_needed
1098 && cfa_base_rtx)
457eeaae
JJ
1099 return compute_cfa_pointer (amd->stack_adjust);
1100 else if (loc == hard_frame_pointer_rtx
1101 && frame_pointer_needed
cfd8c4b1
JJ
1102 && hard_frame_pointer_adjustment != -1
1103 && cfa_base_rtx)
457eeaae 1104 return compute_cfa_pointer (hard_frame_pointer_adjustment);
37d6a488 1105 gcc_checking_assert (loc != virtual_incoming_args_rtx);
457eeaae
JJ
1106 return loc;
1107 case MEM:
1108 mem = loc;
1109 if (!amd->store)
1110 {
1111 mem = targetm.delegitimize_address (mem);
1112 if (mem != loc && !MEM_P (mem))
1113 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1114 }
1115
1116 addr = XEXP (mem, 0);
1117 mem_mode_save = amd->mem_mode;
1118 amd->mem_mode = GET_MODE (mem);
1119 store_save = amd->store;
1120 amd->store = false;
1121 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1122 amd->store = store_save;
1123 amd->mem_mode = mem_mode_save;
1124 if (mem == loc)
1125 addr = targetm.delegitimize_address (addr);
1126 if (addr != XEXP (mem, 0))
1127 mem = replace_equiv_address_nv (mem, addr);
1128 if (!amd->store)
1129 mem = avoid_constant_pool_reference (mem);
1130 return mem;
1131 case PRE_INC:
1132 case PRE_DEC:
1133 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
4789c0ce
RS
1134 gen_int_mode (GET_CODE (loc) == PRE_INC
1135 ? GET_MODE_SIZE (amd->mem_mode)
1136 : -GET_MODE_SIZE (amd->mem_mode),
1137 GET_MODE (loc)));
457eeaae
JJ
1138 case POST_INC:
1139 case POST_DEC:
1140 if (addr == loc)
1141 addr = XEXP (loc, 0);
1142 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1143 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1144 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
4789c0ce
RS
1145 gen_int_mode ((GET_CODE (loc) == PRE_INC
1146 || GET_CODE (loc) == POST_INC)
1147 ? GET_MODE_SIZE (amd->mem_mode)
1148 : -GET_MODE_SIZE (amd->mem_mode),
1149 GET_MODE (loc)));
af116cae
JJ
1150 store_save = amd->store;
1151 amd->store = false;
1152 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1153 amd->store = store_save;
457eeaae 1154 amd->side_effects = alloc_EXPR_LIST (0,
f7df4a84 1155 gen_rtx_SET (XEXP (loc, 0), tem),
457eeaae
JJ
1156 amd->side_effects);
1157 return addr;
1158 case PRE_MODIFY:
1159 addr = XEXP (loc, 1);
1160 case POST_MODIFY:
1161 if (addr == loc)
1162 addr = XEXP (loc, 0);
9a05b749 1163 gcc_assert (amd->mem_mode != VOIDmode);
457eeaae 1164 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
af116cae
JJ
1165 store_save = amd->store;
1166 amd->store = false;
1167 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1168 adjust_mems, data);
1169 amd->store = store_save;
457eeaae 1170 amd->side_effects = alloc_EXPR_LIST (0,
f7df4a84 1171 gen_rtx_SET (XEXP (loc, 0), tem),
457eeaae
JJ
1172 amd->side_effects);
1173 return addr;
1174 case SUBREG:
1175 /* First try without delegitimization of whole MEMs and
1176 avoid_constant_pool_reference, which is more likely to succeed. */
1177 store_save = amd->store;
1178 amd->store = true;
1179 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1180 data);
1181 amd->store = store_save;
1182 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1183 if (mem == SUBREG_REG (loc))
e9e00885
JJ
1184 {
1185 tem = loc;
1186 goto finish_subreg;
1187 }
457eeaae
JJ
1188 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1189 GET_MODE (SUBREG_REG (loc)),
1190 SUBREG_BYTE (loc));
1191 if (tem)
e9e00885 1192 goto finish_subreg;
457eeaae
JJ
1193 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1194 GET_MODE (SUBREG_REG (loc)),
1195 SUBREG_BYTE (loc));
e9e00885
JJ
1196 if (tem == NULL_RTX)
1197 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1198 finish_subreg:
1199 if (MAY_HAVE_DEBUG_INSNS
1200 && GET_CODE (tem) == SUBREG
1201 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1202 || GET_CODE (SUBREG_REG (tem)) == MINUS
1203 || GET_CODE (SUBREG_REG (tem)) == MULT
1204 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
50b6ee8b
DD
1205 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1206 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1207 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1208 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1209 && GET_MODE_PRECISION (GET_MODE (tem))
1210 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
e9e00885 1211 && subreg_lowpart_p (tem)
b328e730 1212 && use_narrower_mode_test (SUBREG_REG (tem), tem))
e9e00885
JJ
1213 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1214 GET_MODE (SUBREG_REG (tem)));
1215 return tem;
fcc71c6c
JJ
1216 case ASM_OPERANDS:
1217 /* Don't do any replacements in second and following
1218 ASM_OPERANDS of inline-asm with multiple sets.
1219 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1220 and ASM_OPERANDS_LABEL_VEC need to be equal between
1221 all the ASM_OPERANDs in the insn and adjust_insn will
1222 fix this up. */
1223 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1224 return loc;
1225 break;
457eeaae
JJ
1226 default:
1227 break;
1228 }
1229 return NULL_RTX;
1230}
1231
1232/* Helper function for replacement of uses. */
1233
1234static void
1235adjust_mem_uses (rtx *x, void *data)
1236{
1237 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1238 if (new_x != *x)
1239 validate_change (NULL_RTX, x, new_x, true);
1240}
1241
1242/* Helper function for replacement of stores. */
1243
1244static void
1245adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1246{
1247 if (MEM_P (loc))
1248 {
1249 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1250 adjust_mems, data);
1251 if (new_dest != SET_DEST (expr))
1252 {
1253 rtx xexpr = CONST_CAST_RTX (expr);
1254 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1255 }
1256 }
1257}
1258
1259/* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1260 replace them with their value in the insn and add the side-effects
1261 as other sets to the insn. */
1262
1263static void
598d62da 1264adjust_insn (basic_block bb, rtx_insn *insn)
457eeaae
JJ
1265{
1266 struct adjust_mem_data amd;
1267 rtx set;
12c5ffe5
EB
1268
1269#ifdef HAVE_window_save
1270 /* If the target machine has an explicit window save instruction, the
1271 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1272 if (RTX_FRAME_RELATED_P (insn)
1273 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1274 {
9771b263 1275 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
12c5ffe5
EB
1276 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1277 parm_reg_t *p;
1278
9771b263 1279 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
12c5ffe5
EB
1280 {
1281 XVECEXP (rtl, 0, i * 2)
f7df4a84 1282 = gen_rtx_SET (p->incoming, p->outgoing);
12c5ffe5
EB
1283 /* Do not clobber the attached DECL, but only the REG. */
1284 XVECEXP (rtl, 0, i * 2 + 1)
1285 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1286 gen_raw_REG (GET_MODE (p->outgoing),
1287 REGNO (p->outgoing)));
1288 }
1289
1290 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1291 return;
1292 }
1293#endif
1294
457eeaae
JJ
1295 amd.mem_mode = VOIDmode;
1296 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
2f33ff0a 1297 amd.side_effects = NULL;
457eeaae
JJ
1298
1299 amd.store = true;
1300 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1301
1302 amd.store = false;
fcc71c6c
JJ
1303 if (GET_CODE (PATTERN (insn)) == PARALLEL
1304 && asm_noperands (PATTERN (insn)) > 0
1305 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1306 {
1307 rtx body, set0;
1308 int i;
1309
1310 /* inline-asm with multiple sets is tiny bit more complicated,
1311 because the 3 vectors in ASM_OPERANDS need to be shared between
1312 all ASM_OPERANDS in the instruction. adjust_mems will
1313 not touch ASM_OPERANDS other than the first one, asm_noperands
1314 test above needs to be called before that (otherwise it would fail)
1315 and afterwards this code fixes it up. */
1316 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1317 body = PATTERN (insn);
1318 set0 = XVECEXP (body, 0, 0);
1319 gcc_checking_assert (GET_CODE (set0) == SET
1320 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1321 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1322 for (i = 1; i < XVECLEN (body, 0); i++)
1323 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1324 break;
1325 else
1326 {
1327 set = XVECEXP (body, 0, i);
1328 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1329 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1330 == i);
1331 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1332 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1333 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1334 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1335 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1336 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1337 {
1338 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1339 ASM_OPERANDS_INPUT_VEC (newsrc)
1340 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1341 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1342 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1343 ASM_OPERANDS_LABEL_VEC (newsrc)
1344 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1345 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1346 }
1347 }
1348 }
1349 else
1350 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
457eeaae
JJ
1351
1352 /* For read-only MEMs containing some constant, prefer those
1353 constants. */
1354 set = single_set (insn);
1355 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1356 {
1357 rtx note = find_reg_equal_equiv_note (insn);
1358
1359 if (note && CONSTANT_P (XEXP (note, 0)))
1360 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1361 }
1362
1363 if (amd.side_effects)
1364 {
1365 rtx *pat, new_pat, s;
1366 int i, oldn, newn;
014a1138 1367
457eeaae
JJ
1368 pat = &PATTERN (insn);
1369 if (GET_CODE (*pat) == COND_EXEC)
1370 pat = &COND_EXEC_CODE (*pat);
1371 if (GET_CODE (*pat) == PARALLEL)
1372 oldn = XVECLEN (*pat, 0);
1373 else
1374 oldn = 1;
1375 for (s = amd.side_effects, newn = 0; s; newn++)
1376 s = XEXP (s, 1);
1377 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1378 if (GET_CODE (*pat) == PARALLEL)
1379 for (i = 0; i < oldn; i++)
1380 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1381 else
1382 XVECEXP (new_pat, 0, 0) = *pat;
1383 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1384 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1385 free_EXPR_LIST_list (&amd.side_effects);
1386 validate_change (NULL_RTX, pat, new_pat, true);
1387 }
014a1138
JZ
1388}
1389
09dbcd96
AO
1390/* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1391static inline rtx
1392dv_as_rtx (decl_or_value dv)
1393{
1394 tree decl;
1395
1396 if (dv_is_value_p (dv))
1397 return dv_as_value (dv);
1398
1399 decl = dv_as_decl (dv);
1400
1401 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1402 return DECL_RTL_KNOWN_SET (decl);
1403}
1404
09dbcd96
AO
1405/* Return nonzero if a decl_or_value must not have more than one
1406 variable part. The returned value discriminates among various
1407 kinds of one-part DVs ccording to enum onepart_enum. */
1408static inline onepart_enum_t
b5b8b0ac
AO
1409dv_onepart_p (decl_or_value dv)
1410{
1411 tree decl;
1412
1413 if (!MAY_HAVE_DEBUG_INSNS)
09dbcd96 1414 return NOT_ONEPART;
b5b8b0ac
AO
1415
1416 if (dv_is_value_p (dv))
09dbcd96 1417 return ONEPART_VALUE;
b5b8b0ac
AO
1418
1419 decl = dv_as_decl (dv);
1420
5a309965 1421 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
09dbcd96 1422 return ONEPART_DEXPR;
5a309965 1423
09dbcd96
AO
1424 if (target_for_debug_bind (decl) != NULL_TREE)
1425 return ONEPART_VDECL;
1426
1427 return NOT_ONEPART;
b5b8b0ac
AO
1428}
1429
09dbcd96 1430/* Return the variable pool to be used for a dv of type ONEPART. */
7e46899d 1431static inline pool_allocator <variable_def> &
09dbcd96 1432onepart_pool (onepart_enum_t onepart)
b5b8b0ac 1433{
09dbcd96 1434 return onepart ? valvar_pool : var_pool;
b5b8b0ac
AO
1435}
1436
b5b8b0ac
AO
1437/* Build a decl_or_value out of a decl. */
1438static inline decl_or_value
1439dv_from_decl (tree decl)
1440{
1441 decl_or_value dv;
b5b8b0ac 1442 dv = decl;
77a74ed7 1443 gcc_checking_assert (dv_is_decl_p (dv));
b5b8b0ac
AO
1444 return dv;
1445}
1446
1447/* Build a decl_or_value out of a value. */
1448static inline decl_or_value
1449dv_from_value (rtx value)
1450{
1451 decl_or_value dv;
b5b8b0ac 1452 dv = value;
77a74ed7 1453 gcc_checking_assert (dv_is_value_p (dv));
b5b8b0ac
AO
1454 return dv;
1455}
1456
09dbcd96
AO
1457/* Return a value or the decl of a debug_expr as a decl_or_value. */
1458static inline decl_or_value
1459dv_from_rtx (rtx x)
1460{
1461 decl_or_value dv;
1462
1463 switch (GET_CODE (x))
1464 {
1465 case DEBUG_EXPR:
1466 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1467 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1468 break;
1469
1470 case VALUE:
1471 dv = dv_from_value (x);
1472 break;
1473
1474 default:
1475 gcc_unreachable ();
1476 }
1477
1478 return dv;
1479}
1480
6764d92c
JJ
1481extern void debug_dv (decl_or_value dv);
1482
24e47c76 1483DEBUG_FUNCTION void
6764d92c
JJ
1484debug_dv (decl_or_value dv)
1485{
1486 if (dv_is_value_p (dv))
1487 debug_rtx (dv_as_value (dv));
1488 else
1489 debug_generic_stmt (dv_as_decl (dv));
1490}
1491
09dbcd96
AO
1492static void loc_exp_dep_clear (variable var);
1493
014a1138
JZ
1494/* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1495
1496static void
1497variable_htab_free (void *elem)
1498{
1499 int i;
1500 variable var = (variable) elem;
1501 location_chain node, next;
1502
7a40b8b1 1503 gcc_checking_assert (var->refcount > 0);
81f2eadb
JZ
1504
1505 var->refcount--;
1506 if (var->refcount > 0)
1507 return;
1508
014a1138
JZ
1509 for (i = 0; i < var->n_var_parts; i++)
1510 {
1511 for (node = var->var_part[i].loc_chain; node; node = next)
1512 {
1513 next = node->next;
7e46899d 1514 delete node;
014a1138
JZ
1515 }
1516 var->var_part[i].loc_chain = NULL;
1517 }
09dbcd96
AO
1518 if (var->onepart && VAR_LOC_1PAUX (var))
1519 {
1520 loc_exp_dep_clear (var);
1521 if (VAR_LOC_DEP_LST (var))
1522 VAR_LOC_DEP_LST (var)->pprev = NULL;
1523 XDELETE (VAR_LOC_1PAUX (var));
1524 /* These may be reused across functions, so reset
1525 e.g. NO_LOC_P. */
1526 if (var->onepart == ONEPART_DEXPR)
1527 set_dv_changed (var->dv, true);
1528 }
7e46899d 1529 onepart_pool (var->onepart).remove (var);
014a1138
JZ
1530}
1531
1532/* Initialize the set (array) SET of attrs to empty lists. */
1533
1534static void
1535init_attrs_list_set (attrs *set)
1536{
1537 int i;
1538
1539 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1540 set[i] = NULL;
1541}
1542
1543/* Make the list *LISTP empty. */
1544
1545static void
1546attrs_list_clear (attrs *listp)
1547{
1548 attrs list, next;
1549
1550 for (list = *listp; list; list = next)
1551 {
1552 next = list->next;
7e46899d 1553 delete list;
014a1138
JZ
1554 }
1555 *listp = NULL;
1556}
1557
1558/* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1559
1560static attrs
b5b8b0ac 1561attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
014a1138
JZ
1562{
1563 for (; list; list = list->next)
b5b8b0ac 1564 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
014a1138
JZ
1565 return list;
1566 return NULL;
1567}
1568
1569/* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1570
1571static void
b5b8b0ac
AO
1572attrs_list_insert (attrs *listp, decl_or_value dv,
1573 HOST_WIDE_INT offset, rtx loc)
014a1138 1574{
7e46899d 1575 attrs list = new attrs_def;
014a1138 1576 list->loc = loc;
b5b8b0ac 1577 list->dv = dv;
014a1138
JZ
1578 list->offset = offset;
1579 list->next = *listp;
1580 *listp = list;
1581}
1582
1583/* Copy all nodes from SRC and create a list *DSTP of the copies. */
1584
1585static void
1586attrs_list_copy (attrs *dstp, attrs src)
1587{
014a1138
JZ
1588 attrs_list_clear (dstp);
1589 for (; src; src = src->next)
1590 {
7e46899d 1591 attrs n = new attrs_def;
014a1138 1592 n->loc = src->loc;
b5b8b0ac 1593 n->dv = src->dv;
014a1138
JZ
1594 n->offset = src->offset;
1595 n->next = *dstp;
1596 *dstp = n;
1597 }
1598}
1599
1600/* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1601
1602static void
1603attrs_list_union (attrs *dstp, attrs src)
1604{
1605 for (; src; src = src->next)
1606 {
b5b8b0ac
AO
1607 if (!attrs_list_member (*dstp, src->dv, src->offset))
1608 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1609 }
1610}
1611
1612/* Combine nodes that are not onepart nodes from SRC and SRC2 into
1613 *DSTP. */
1614
1615static void
1616attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1617{
1618 gcc_assert (!*dstp);
1619 for (; src; src = src->next)
1620 {
1621 if (!dv_onepart_p (src->dv))
1622 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1623 }
1624 for (src = src2; src; src = src->next)
1625 {
1626 if (!dv_onepart_p (src->dv)
1627 && !attrs_list_member (*dstp, src->dv, src->offset))
1628 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
014a1138
JZ
1629 }
1630}
1631
d24686d7
JJ
1632/* Shared hashtable support. */
1633
1634/* Return true if VARS is shared. */
1635
1636static inline bool
1637shared_hash_shared (shared_hash vars)
1638{
1639 return vars->refcount > 1;
1640}
1641
1642/* Return the hash table for VARS. */
1643
c203e8a7 1644static inline variable_table_type *
d24686d7
JJ
1645shared_hash_htab (shared_hash vars)
1646{
1647 return vars->htab;
1648}
1649
864ddef7
JJ
1650/* Return true if VAR is shared, or maybe because VARS is shared. */
1651
1652static inline bool
1653shared_var_p (variable var, shared_hash vars)
1654{
1655 /* Don't count an entry in the changed_variables table as a duplicate. */
1656 return ((var->refcount > 1 + (int) var->in_changed_variables)
1657 || shared_hash_shared (vars));
1658}
1659
d24686d7
JJ
1660/* Copy variables into a new hash table. */
1661
1662static shared_hash
1663shared_hash_unshare (shared_hash vars)
1664{
7e46899d 1665 shared_hash new_vars = new shared_hash_def;
d24686d7
JJ
1666 gcc_assert (vars->refcount > 1);
1667 new_vars->refcount = 1;
c203e8a7 1668 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
d24686d7
JJ
1669 vars_copy (new_vars->htab, vars->htab);
1670 vars->refcount--;
1671 return new_vars;
1672}
1673
1674/* Increment reference counter on VARS and return it. */
1675
1676static inline shared_hash
1677shared_hash_copy (shared_hash vars)
1678{
1679 vars->refcount++;
1680 return vars;
1681}
1682
1683/* Decrement reference counter and destroy hash table if not shared
1684 anymore. */
014a1138
JZ
1685
1686static void
d24686d7 1687shared_hash_destroy (shared_hash vars)
014a1138 1688{
7a40b8b1 1689 gcc_checking_assert (vars->refcount > 0);
d24686d7
JJ
1690 if (--vars->refcount == 0)
1691 {
c203e8a7 1692 delete vars->htab;
7e46899d 1693 delete vars;
d24686d7
JJ
1694 }
1695}
1696
b5b8b0ac 1697/* Unshare *PVARS if shared and return slot for DV. If INS is
d24686d7
JJ
1698 INSERT, insert it if not already present. */
1699
013e5ef9 1700static inline variable_def **
b5b8b0ac
AO
1701shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1702 hashval_t dvhash, enum insert_option ins)
d24686d7
JJ
1703{
1704 if (shared_hash_shared (*pvars))
1705 *pvars = shared_hash_unshare (*pvars);
c203e8a7 1706 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
b5b8b0ac
AO
1707}
1708
013e5ef9 1709static inline variable_def **
b5b8b0ac
AO
1710shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1711 enum insert_option ins)
1712{
1713 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
d24686d7
JJ
1714}
1715
b5b8b0ac 1716/* Return slot for DV, if it is already present in the hash table.
d24686d7
JJ
1717 If it is not present, insert it only VARS is not shared, otherwise
1718 return NULL. */
1719
013e5ef9 1720static inline variable_def **
b5b8b0ac 1721shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
d24686d7 1722{
c203e8a7
TS
1723 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1724 shared_hash_shared (vars)
1725 ? NO_INSERT : INSERT);
d24686d7
JJ
1726}
1727
013e5ef9 1728static inline variable_def **
b5b8b0ac
AO
1729shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1730{
1731 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1732}
1733
1734/* Return slot for DV only if it is already present in the hash table. */
1735
013e5ef9 1736static inline variable_def **
b5b8b0ac
AO
1737shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1738 hashval_t dvhash)
1739{
c203e8a7 1740 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
b5b8b0ac 1741}
d24686d7 1742
013e5ef9 1743static inline variable_def **
b5b8b0ac 1744shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
d24686d7 1745{
b5b8b0ac 1746 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
d24686d7
JJ
1747}
1748
b5b8b0ac 1749/* Return variable for DV or NULL if not already present in the hash
d24686d7
JJ
1750 table. */
1751
1752static inline variable
b5b8b0ac
AO
1753shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1754{
c203e8a7 1755 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
b5b8b0ac
AO
1756}
1757
1758static inline variable
1759shared_hash_find (shared_hash vars, decl_or_value dv)
1760{
1761 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1762}
1763
b5b8b0ac
AO
1764/* Return true if TVAL is better than CVAL as a canonival value. We
1765 choose lowest-numbered VALUEs, using the RTX address as a
1766 tie-breaker. The idea is to arrange them into a star topology,
1767 such that all of them are at most one step away from the canonical
1768 value, and the canonical value has backlinks to all of them, in
1769 addition to all the actual locations. We don't enforce this
1770 topology throughout the entire dataflow analysis, though.
1771 */
1772
1773static inline bool
1774canon_value_cmp (rtx tval, rtx cval)
1775{
1776 return !cval
5440c0e7 1777 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
014a1138
JZ
1778}
1779
b5b8b0ac
AO
1780static bool dst_can_be_shared;
1781
81f2eadb 1782/* Return a copy of a variable VAR and insert it to dataflow set SET. */
014a1138 1783
013e5ef9
LC
1784static variable_def **
1785unshare_variable (dataflow_set *set, variable_def **slot, variable var,
62760ffd 1786 enum var_init_status initialized)
014a1138 1787{
81f2eadb 1788 variable new_var;
014a1138
JZ
1789 int i;
1790
7e46899d 1791 new_var = onepart_pool (var->onepart).allocate ();
b5b8b0ac 1792 new_var->dv = var->dv;
81f2eadb
JZ
1793 new_var->refcount = 1;
1794 var->refcount--;
1795 new_var->n_var_parts = var->n_var_parts;
09dbcd96 1796 new_var->onepart = var->onepart;
864ddef7 1797 new_var->in_changed_variables = false;
014a1138 1798
7eb3f1f7
JJ
1799 if (! flag_var_tracking_uninit)
1800 initialized = VAR_INIT_STATUS_INITIALIZED;
1801
014a1138
JZ
1802 for (i = 0; i < var->n_var_parts; i++)
1803 {
11599d14
JZ
1804 location_chain node;
1805 location_chain *nextp;
014a1138 1806
09dbcd96
AO
1807 if (i == 0 && var->onepart)
1808 {
1809 /* One-part auxiliary data is only used while emitting
1810 notes, so propagate it to the new variable in the active
1811 dataflow set. If we're not emitting notes, this will be
1812 a no-op. */
1813 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1814 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1815 VAR_LOC_1PAUX (var) = NULL;
1816 }
1817 else
1818 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
81f2eadb
JZ
1819 nextp = &new_var->var_part[i].loc_chain;
1820 for (node = var->var_part[i].loc_chain; node; node = node->next)
014a1138
JZ
1821 {
1822 location_chain new_lc;
1823
7e46899d 1824 new_lc = new location_chain_def;
014a1138 1825 new_lc->next = NULL;
62760ffd
CT
1826 if (node->init > initialized)
1827 new_lc->init = node->init;
1828 else
1829 new_lc->init = initialized;
1830 if (node->set_src && !(MEM_P (node->set_src)))
1831 new_lc->set_src = node->set_src;
1832 else
1833 new_lc->set_src = NULL;
014a1138
JZ
1834 new_lc->loc = node->loc;
1835
11599d14
JZ
1836 *nextp = new_lc;
1837 nextp = &new_lc->next;
014a1138
JZ
1838 }
1839
864ddef7 1840 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
014a1138
JZ
1841 }
1842
b5b8b0ac
AO
1843 dst_can_be_shared = false;
1844 if (shared_hash_shared (set->vars))
1845 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1846 else if (set->traversed_vars && set->vars != set->traversed_vars)
1847 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
81f2eadb 1848 *slot = new_var;
864ddef7
JJ
1849 if (var->in_changed_variables)
1850 {
013e5ef9 1851 variable_def **cslot
c203e8a7
TS
1852 = changed_variables->find_slot_with_hash (var->dv,
1853 dv_htab_hash (var->dv),
1854 NO_INSERT);
864ddef7
JJ
1855 gcc_assert (*cslot == (void *) var);
1856 var->in_changed_variables = false;
1857 variable_htab_free (var);
1858 *cslot = new_var;
1859 new_var->in_changed_variables = true;
1860 }
b5b8b0ac 1861 return slot;
81f2eadb
JZ
1862}
1863
014a1138
JZ
1864/* Copy all variables from hash table SRC to hash table DST. */
1865
1866static void
c203e8a7 1867vars_copy (variable_table_type *dst, variable_table_type *src)
014a1138 1868{
013e5ef9 1869 variable_iterator_type hi;
a6590c31
RG
1870 variable var;
1871
c203e8a7 1872 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
a6590c31 1873 {
013e5ef9 1874 variable_def **dstp;
a6590c31 1875 var->refcount++;
c203e8a7
TS
1876 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1877 INSERT);
a6590c31
RG
1878 *dstp = var;
1879 }
014a1138
JZ
1880}
1881
ca787200
AO
1882/* Map a decl to its main debug decl. */
1883
1884static inline tree
1885var_debug_decl (tree decl)
1886{
839b422f
RB
1887 if (decl && TREE_CODE (decl) == VAR_DECL
1888 && DECL_HAS_DEBUG_EXPR_P (decl))
dbb2a2cb
JJ
1889 {
1890 tree debugdecl = DECL_DEBUG_EXPR (decl);
839b422f 1891 if (DECL_P (debugdecl))
dbb2a2cb
JJ
1892 decl = debugdecl;
1893 }
ca787200
AO
1894
1895 return decl;
1896}
1897
b5b8b0ac 1898/* Set the register LOC to contain DV, OFFSET. */
dedc1e6d
AO
1899
1900static void
b5b8b0ac
AO
1901var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1902 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1903 enum insert_option iopt)
dedc1e6d 1904{
ca787200 1905 attrs node;
b5b8b0ac 1906 bool decl_p = dv_is_decl_p (dv);
ca787200 1907
b5b8b0ac
AO
1908 if (decl_p)
1909 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
dedc1e6d 1910
ca787200 1911 for (node = set->regs[REGNO (loc)]; node; node = node->next)
b5b8b0ac
AO
1912 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1913 && node->offset == offset)
ca787200
AO
1914 break;
1915 if (!node)
b5b8b0ac
AO
1916 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1917 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1918}
1919
1920/* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1921
1922static void
1923var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1924 rtx set_src)
1925{
1926 tree decl = REG_EXPR (loc);
1927 HOST_WIDE_INT offset = REG_OFFSET (loc);
1928
1929 var_reg_decl_set (set, loc, initialized,
1930 dv_from_decl (decl), offset, set_src, INSERT);
62760ffd
CT
1931}
1932
32e8bb8e 1933static enum var_init_status
b5b8b0ac 1934get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
62760ffd 1935{
62760ffd
CT
1936 variable var;
1937 int i;
32e8bb8e 1938 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
62760ffd
CT
1939
1940 if (! flag_var_tracking_uninit)
1941 return VAR_INIT_STATUS_INITIALIZED;
1942
b5b8b0ac 1943 var = shared_hash_find (set->vars, dv);
d24686d7 1944 if (var)
62760ffd 1945 {
62760ffd
CT
1946 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1947 {
1948 location_chain nextp;
1949 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1950 if (rtx_equal_p (nextp->loc, loc))
1951 {
1952 ret_val = nextp->init;
1953 break;
1954 }
1955 }
1956 }
1957
1958 return ret_val;
dedc1e6d
AO
1959}
1960
ca787200
AO
1961/* Delete current content of register LOC in dataflow set SET and set
1962 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1963 MODIFY is true, any other live copies of the same variable part are
1964 also deleted from the dataflow set, otherwise the variable part is
1965 assumed to be copied from another location holding the same
1966 part. */
014a1138
JZ
1967
1968static void
b8698a0f 1969var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
62760ffd 1970 enum var_init_status initialized, rtx set_src)
014a1138 1971{
014a1138
JZ
1972 tree decl = REG_EXPR (loc);
1973 HOST_WIDE_INT offset = REG_OFFSET (loc);
11599d14
JZ
1974 attrs node, next;
1975 attrs *nextp;
014a1138 1976
ca787200
AO
1977 decl = var_debug_decl (decl);
1978
62760ffd 1979 if (initialized == VAR_INIT_STATUS_UNKNOWN)
b5b8b0ac 1980 initialized = get_init_value (set, loc, dv_from_decl (decl));
62760ffd 1981
11599d14
JZ
1982 nextp = &set->regs[REGNO (loc)];
1983 for (node = *nextp; node; node = next)
014a1138
JZ
1984 {
1985 next = node->next;
b5b8b0ac 1986 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
014a1138 1987 {
b5b8b0ac 1988 delete_variable_part (set, node->loc, node->dv, node->offset);
7e46899d 1989 delete node;
11599d14 1990 *nextp = next;
014a1138
JZ
1991 }
1992 else
1993 {
1994 node->loc = loc;
11599d14 1995 nextp = &node->next;
014a1138
JZ
1996 }
1997 }
ca787200 1998 if (modify)
b5b8b0ac 1999 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
62760ffd 2000 var_reg_set (set, loc, initialized, set_src);
014a1138
JZ
2001}
2002
7d2a8452
AO
2003/* Delete the association of register LOC in dataflow set SET with any
2004 variables that aren't onepart. If CLOBBER is true, also delete any
2005 other live copies of the same variable part, and delete the
2006 association with onepart dvs too. */
014a1138
JZ
2007
2008static void
ca787200 2009var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
014a1138 2010{
7d2a8452 2011 attrs *nextp = &set->regs[REGNO (loc)];
014a1138
JZ
2012 attrs node, next;
2013
ca787200
AO
2014 if (clobber)
2015 {
2016 tree decl = REG_EXPR (loc);
2017 HOST_WIDE_INT offset = REG_OFFSET (loc);
2018
2019 decl = var_debug_decl (decl);
2020
b5b8b0ac 2021 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
ca787200
AO
2022 }
2023
7d2a8452 2024 for (node = *nextp; node; node = next)
014a1138
JZ
2025 {
2026 next = node->next;
7d2a8452
AO
2027 if (clobber || !dv_onepart_p (node->dv))
2028 {
2029 delete_variable_part (set, node->loc, node->dv, node->offset);
7e46899d 2030 delete node;
7d2a8452
AO
2031 *nextp = next;
2032 }
2033 else
2034 nextp = &node->next;
014a1138 2035 }
014a1138
JZ
2036}
2037
2038/* Delete content of register with number REGNO in dataflow set SET. */
2039
2040static void
2041var_regno_delete (dataflow_set *set, int regno)
2042{
2043 attrs *reg = &set->regs[regno];
2044 attrs node, next;
2045
2046 for (node = *reg; node; node = next)
2047 {
2048 next = node->next;
b5b8b0ac 2049 delete_variable_part (set, node->loc, node->dv, node->offset);
7e46899d 2050 delete node;
014a1138
JZ
2051 }
2052 *reg = NULL;
2053}
2054
af6236c1
AO
2055/* Return true if I is the negated value of a power of two. */
2056static bool
2057negative_power_of_two_p (HOST_WIDE_INT i)
2058{
2059 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2060 return x == (x & -x);
2061}
2062
61806a93
AO
2063/* Strip constant offsets and alignments off of LOC. Return the base
2064 expression. */
2065
2066static rtx
2067vt_get_canonicalize_base (rtx loc)
2068{
2069 while ((GET_CODE (loc) == PLUS
2070 || GET_CODE (loc) == AND)
2071 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2072 && (GET_CODE (loc) != AND
af6236c1 2073 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
61806a93
AO
2074 loc = XEXP (loc, 0);
2075
2076 return loc;
2077}
2078
af6236c1
AO
2079/* This caches canonicalized addresses for VALUEs, computed using
2080 information in the global cselib table. */
b787e7a2 2081static hash_map<rtx, rtx> *global_get_addr_cache;
af6236c1
AO
2082
2083/* This caches canonicalized addresses for VALUEs, computed using
2084 information from the global cache and information pertaining to a
2085 basic block being analyzed. */
b787e7a2 2086static hash_map<rtx, rtx> *local_get_addr_cache;
af6236c1
AO
2087
2088static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2089
2090/* Return the canonical address for LOC, that must be a VALUE, using a
2091 cached global equivalence or computing it and storing it in the
2092 global cache. */
2093
2094static rtx
2095get_addr_from_global_cache (rtx const loc)
2096{
2097 rtx x;
af6236c1
AO
2098
2099 gcc_checking_assert (GET_CODE (loc) == VALUE);
7e46899d 2100
b787e7a2
TS
2101 bool existed;
2102 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2103 if (existed)
2104 return *slot;
af6236c1
AO
2105
2106 x = canon_rtx (get_addr (loc));
2107
2108 /* Tentative, avoiding infinite recursion. */
2109 *slot = x;
2110
2111 if (x != loc)
2112 {
2113 rtx nx = vt_canonicalize_addr (NULL, x);
2114 if (nx != x)
2115 {
2116 /* The table may have moved during recursion, recompute
2117 SLOT. */
b787e7a2 2118 *global_get_addr_cache->get (loc) = x = nx;
af6236c1
AO
2119 }
2120 }
2121
2122 return x;
2123}
2124
2125/* Return the canonical address for LOC, that must be a VALUE, using a
2126 cached local equivalence or computing it and storing it in the
2127 local cache. */
2128
2129static rtx
2130get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2131{
2132 rtx x;
af6236c1
AO
2133 decl_or_value dv;
2134 variable var;
2135 location_chain l;
2136
2137 gcc_checking_assert (GET_CODE (loc) == VALUE);
7e46899d 2138
b787e7a2
TS
2139 bool existed;
2140 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2141 if (existed)
2142 return *slot;
af6236c1
AO
2143
2144 x = get_addr_from_global_cache (loc);
7e46899d 2145
af6236c1
AO
2146 /* Tentative, avoiding infinite recursion. */
2147 *slot = x;
2148
2149 /* Recurse to cache local expansion of X, or if we need to search
2150 for a VALUE in the expansion. */
2151 if (x != loc)
2152 {
2153 rtx nx = vt_canonicalize_addr (set, x);
2154 if (nx != x)
2155 {
b787e7a2 2156 slot = local_get_addr_cache->get (loc);
af6236c1
AO
2157 *slot = x = nx;
2158 }
2159 return x;
2160 }
2161
2162 dv = dv_from_rtx (x);
013e5ef9 2163 var = shared_hash_find (set->vars, dv);
af6236c1
AO
2164 if (!var)
2165 return x;
2166
2167 /* Look for an improved equivalent expression. */
2168 for (l = var->var_part[0].loc_chain; l; l = l->next)
2169 {
2170 rtx base = vt_get_canonicalize_base (l->loc);
2171 if (GET_CODE (base) == VALUE
2172 && canon_value_cmp (base, loc))
2173 {
2174 rtx nx = vt_canonicalize_addr (set, l->loc);
2175 if (x != nx)
2176 {
b787e7a2 2177 slot = local_get_addr_cache->get (loc);
af6236c1
AO
2178 *slot = x = nx;
2179 }
2180 break;
2181 }
2182 }
2183
2184 return x;
2185}
2186
61806a93 2187/* Canonicalize LOC using equivalences from SET in addition to those
af6236c1
AO
2188 in the cselib static table. It expects a VALUE-based expression,
2189 and it will only substitute VALUEs with other VALUEs or
2190 function-global equivalences, so that, if two addresses have base
2191 VALUEs that are locally or globally related in ways that
2192 memrefs_conflict_p cares about, they will both canonicalize to
2193 expressions that have the same base VALUE.
2194
2195 The use of VALUEs as canonical base addresses enables the canonical
2196 RTXs to remain unchanged globally, if they resolve to a constant,
2197 or throughout a basic block otherwise, so that they can be cached
2198 and the cache needs not be invalidated when REGs, MEMs or such
2199 change. */
61806a93
AO
2200
2201static rtx
2202vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2203{
2204 HOST_WIDE_INT ofst = 0;
ef4bddc2 2205 machine_mode mode = GET_MODE (oloc);
af6236c1
AO
2206 rtx loc = oloc;
2207 rtx x;
2208 bool retry = true;
61806a93 2209
af6236c1 2210 while (retry)
61806a93 2211 {
af6236c1
AO
2212 while (GET_CODE (loc) == PLUS
2213 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
61806a93
AO
2214 {
2215 ofst += INTVAL (XEXP (loc, 1));
2216 loc = XEXP (loc, 0);
61806a93
AO
2217 }
2218
2219 /* Alignment operations can't normally be combined, so just
2220 canonicalize the base and we're done. We'll normally have
2221 only one stack alignment anyway. */
af6236c1
AO
2222 if (GET_CODE (loc) == AND
2223 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2224 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
61806a93
AO
2225 {
2226 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2227 if (x != XEXP (loc, 0))
2228 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
af6236c1 2229 retry = false;
61806a93
AO
2230 }
2231
af6236c1 2232 if (GET_CODE (loc) == VALUE)
61806a93 2233 {
af6236c1
AO
2234 if (set)
2235 loc = get_addr_from_local_cache (set, loc);
2236 else
2237 loc = get_addr_from_global_cache (loc);
61806a93 2238
af6236c1
AO
2239 /* Consolidate plus_constants. */
2240 while (ofst && GET_CODE (loc) == PLUS
2241 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
61806a93 2242 {
af6236c1
AO
2243 ofst += INTVAL (XEXP (loc, 1));
2244 loc = XEXP (loc, 0);
61806a93 2245 }
61806a93 2246
af6236c1
AO
2247 retry = false;
2248 }
2249 else
2250 {
2251 x = canon_rtx (loc);
2252 if (retry)
2253 retry = (x != loc);
2254 loc = x;
2255 }
61806a93
AO
2256 }
2257
2258 /* Add OFST back in. */
2259 if (ofst)
2260 {
2261 /* Don't build new RTL if we can help it. */
2262 if (GET_CODE (oloc) == PLUS
2263 && XEXP (oloc, 0) == loc
2264 && INTVAL (XEXP (oloc, 1)) == ofst)
2265 return oloc;
2266
2267 loc = plus_constant (mode, loc, ofst);
2268 }
2269
2270 return loc;
2271}
2272
61806a93
AO
2273/* Return true iff there's a true dependence between MLOC and LOC.
2274 MADDR must be a canonicalized version of MLOC's address. */
2275
2276static inline bool
2277vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2278{
2279 if (GET_CODE (loc) != MEM)
2280 return false;
2281
af6236c1
AO
2282 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2283 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
61806a93
AO
2284 return false;
2285
61806a93
AO
2286 return true;
2287}
2288
8cda8ad3
AO
2289/* Hold parameters for the hashtab traversal function
2290 drop_overlapping_mem_locs, see below. */
2291
2292struct overlapping_mems
2293{
2294 dataflow_set *set;
2295 rtx loc, addr;
2296};
2297
2298/* Remove all MEMs that overlap with COMS->LOC from the location list
2299 of a hash table entry for a value. COMS->ADDR must be a
2300 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2301 canonicalized itself. */
2302
013e5ef9
LC
2303int
2304drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
8cda8ad3 2305{
8cda8ad3
AO
2306 dataflow_set *set = coms->set;
2307 rtx mloc = coms->loc, addr = coms->addr;
013e5ef9 2308 variable var = *slot;
8cda8ad3
AO
2309
2310 if (var->onepart == ONEPART_VALUE)
2311 {
2312 location_chain loc, *locp;
2313 bool changed = false;
2314 rtx cur_loc;
2315
2316 gcc_assert (var->n_var_parts == 1);
2317
2318 if (shared_var_p (var, set->vars))
2319 {
2320 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
61806a93 2321 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
8cda8ad3
AO
2322 break;
2323
2324 if (!loc)
2325 return 1;
2326
2327 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
013e5ef9 2328 var = *slot;
8cda8ad3
AO
2329 gcc_assert (var->n_var_parts == 1);
2330 }
2331
2332 if (VAR_LOC_1PAUX (var))
2333 cur_loc = VAR_LOC_FROM (var);
2334 else
2335 cur_loc = var->var_part[0].cur_loc;
2336
2337 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2338 loc; loc = *locp)
2339 {
61806a93 2340 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
8cda8ad3
AO
2341 {
2342 locp = &loc->next;
2343 continue;
2344 }
2345
2346 *locp = loc->next;
2347 /* If we have deleted the location which was last emitted
2348 we have to emit new location so add the variable to set
2349 of changed variables. */
2350 if (cur_loc == loc->loc)
2351 {
2352 changed = true;
2353 var->var_part[0].cur_loc = NULL;
2354 if (VAR_LOC_1PAUX (var))
2355 VAR_LOC_FROM (var) = NULL;
2356 }
7e46899d 2357 delete loc;
8cda8ad3
AO
2358 }
2359
2360 if (!var->var_part[0].loc_chain)
2361 {
2362 var->n_var_parts--;
2363 changed = true;
2364 }
2365 if (changed)
2366 variable_was_changed (var, set);
2367 }
2368
2369 return 1;
2370}
2371
2372/* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2373
2374static void
2375clobber_overlapping_mems (dataflow_set *set, rtx loc)
2376{
2377 struct overlapping_mems coms;
2378
af6236c1
AO
2379 gcc_checking_assert (GET_CODE (loc) == MEM);
2380
8cda8ad3
AO
2381 coms.set = set;
2382 coms.loc = canon_rtx (loc);
61806a93 2383 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
8cda8ad3
AO
2384
2385 set->traversed_vars = set->vars;
013e5ef9 2386 shared_hash_htab (set->vars)
c203e8a7 2387 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
8cda8ad3
AO
2388 set->traversed_vars = NULL;
2389}
2390
b5b8b0ac
AO
2391/* Set the location of DV, OFFSET as the MEM LOC. */
2392
2393static void
2394var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2395 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2396 enum insert_option iopt)
2397{
2398 if (dv_is_decl_p (dv))
2399 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2400
2401 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2402}
2403
dedc1e6d
AO
2404/* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2405 SET to LOC.
014a1138
JZ
2406 Adjust the address first if it is stack pointer based. */
2407
2408static void
b8698a0f 2409var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
62760ffd 2410 rtx set_src)
014a1138
JZ
2411{
2412 tree decl = MEM_EXPR (loc);
8c6c36a3 2413 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
014a1138 2414
b5b8b0ac
AO
2415 var_mem_decl_set (set, loc, initialized,
2416 dv_from_decl (decl), offset, set_src, INSERT);
014a1138
JZ
2417}
2418
ca787200
AO
2419/* Delete and set the location part of variable MEM_EXPR (LOC) in
2420 dataflow set SET to LOC. If MODIFY is true, any other live copies
2421 of the same variable part are also deleted from the dataflow set,
2422 otherwise the variable part is assumed to be copied from another
2423 location holding the same part.
dedc1e6d
AO
2424 Adjust the address first if it is stack pointer based. */
2425
2426static void
b8698a0f 2427var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
62760ffd 2428 enum var_init_status initialized, rtx set_src)
dedc1e6d 2429{
ca787200 2430 tree decl = MEM_EXPR (loc);
8c6c36a3 2431 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
ca787200 2432
8cda8ad3 2433 clobber_overlapping_mems (set, loc);
ca787200
AO
2434 decl = var_debug_decl (decl);
2435
62760ffd 2436 if (initialized == VAR_INIT_STATUS_UNKNOWN)
b5b8b0ac 2437 initialized = get_init_value (set, loc, dv_from_decl (decl));
62760ffd 2438
ca787200 2439 if (modify)
b5b8b0ac 2440 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
62760ffd 2441 var_mem_set (set, loc, initialized, set_src);
dedc1e6d
AO
2442}
2443
ca787200
AO
2444/* Delete the location part LOC from dataflow set SET. If CLOBBER is
2445 true, also delete any other live copies of the same variable part.
014a1138
JZ
2446 Adjust the address first if it is stack pointer based. */
2447
2448static void
ca787200 2449var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
014a1138
JZ
2450{
2451 tree decl = MEM_EXPR (loc);
8c6c36a3 2452 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
014a1138 2453
8cda8ad3 2454 clobber_overlapping_mems (set, loc);
ca787200
AO
2455 decl = var_debug_decl (decl);
2456 if (clobber)
b5b8b0ac
AO
2457 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2458 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2459}
2460
09dbcd96
AO
2461/* Return true if LOC should not be expanded for location expressions,
2462 or used in them. */
2463
2464static inline bool
2465unsuitable_loc (rtx loc)
2466{
2467 switch (GET_CODE (loc))
2468 {
2469 case PC:
2470 case SCRATCH:
2471 case CC0:
2472 case ASM_INPUT:
2473 case ASM_OPERANDS:
2474 return true;
2475
2476 default:
2477 return false;
2478 }
2479}
2480
6f2ffb4b
AO
2481/* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2482 bound to it. */
2483
2484static inline void
2485val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2486{
2487 if (REG_P (loc))
2488 {
2489 if (modified)
2490 var_regno_delete (set, REGNO (loc));
2491 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2492 dv_from_value (val), 0, NULL_RTX, INSERT);
2493 }
2494 else if (MEM_P (loc))
2495 {
2496 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2497
8cda8ad3
AO
2498 if (modified)
2499 clobber_overlapping_mems (set, loc);
2500
6f2ffb4b
AO
2501 if (l && GET_CODE (l->loc) == VALUE)
2502 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2503
2504 /* If this MEM is a global constant, we don't need it in the
2505 dynamic tables. ??? We should test this before emitting the
2506 micro-op in the first place. */
2507 while (l)
2508 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2509 break;
2510 else
2511 l = l->next;
2512
2513 if (!l)
2514 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2515 dv_from_value (val), 0, NULL_RTX, INSERT);
2516 }
2517 else
2518 {
2519 /* Other kinds of equivalences are necessarily static, at least
2520 so long as we do not perform substitutions while merging
2521 expressions. */
2522 gcc_unreachable ();
2523 set_variable_part (set, loc, dv_from_value (val), 0,
2524 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2525 }
2526}
2527
fb4cbb9f
AO
2528/* Bind a value to a location it was just stored in. If MODIFIED
2529 holds, assume the location was modified, detaching it from any
2530 values bound to it. */
b5b8b0ac
AO
2531
2532static void
598d62da
DM
2533val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2534 bool modified)
b5b8b0ac
AO
2535{
2536 cselib_val *v = CSELIB_VAL_PTR (val);
2537
2538 gcc_assert (cselib_preserved_value_p (v));
2539
2540 if (dump_file)
2541 {
09dbcd96 2542 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
b5b8b0ac 2543 print_inline_rtx (dump_file, loc, 0);
09dbcd96
AO
2544 fprintf (dump_file, " evaluates to ");
2545 print_inline_rtx (dump_file, val, 0);
b5b8b0ac
AO
2546 if (v->locs)
2547 {
2548 struct elt_loc_list *l;
2549 for (l = v->locs; l; l = l->next)
2550 {
2551 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2552 print_inline_rtx (dump_file, l->loc, 0);
2553 }
2554 }
2555 fprintf (dump_file, "\n");
2556 }
2557
09dbcd96
AO
2558 gcc_checking_assert (!unsuitable_loc (loc));
2559
6f2ffb4b 2560 val_bind (set, val, loc, modified);
b5b8b0ac
AO
2561}
2562
af6236c1
AO
2563/* Clear (canonical address) slots that reference X. */
2564
b787e7a2
TS
2565bool
2566local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
af6236c1 2567{
b787e7a2 2568 if (vt_get_canonicalize_base (*slot) == x)
af6236c1
AO
2569 *slot = NULL;
2570 return true;
2571}
2572
b5b8b0ac
AO
2573/* Reset this node, detaching all its equivalences. Return the slot
2574 in the variable hash table that holds dv, if there is one. */
2575
2576static void
2577val_reset (dataflow_set *set, decl_or_value dv)
2578{
2579 variable var = shared_hash_find (set->vars, dv) ;
2580 location_chain node;
2581 rtx cval;
2582
2583 if (!var || !var->n_var_parts)
2584 return;
2585
2586 gcc_assert (var->n_var_parts == 1);
2587
e04faf24 2588 if (var->onepart == ONEPART_VALUE)
af6236c1
AO
2589 {
2590 rtx x = dv_as_value (dv);
7e46899d 2591
af6236c1
AO
2592 /* Relationships in the global cache don't change, so reset the
2593 local cache entry only. */
b787e7a2 2594 rtx *slot = local_get_addr_cache->get (x);
af6236c1
AO
2595 if (slot)
2596 {
2597 /* If the value resolved back to itself, odds are that other
2598 values may have cached it too. These entries now refer
2599 to the old X, so detach them too. Entries that used the
2600 old X but resolved to something else remain ok as long as
2601 that something else isn't also reset. */
2602 if (*slot == x)
b787e7a2
TS
2603 local_get_addr_cache
2604 ->traverse<rtx, local_get_addr_clear_given_value> (x);
af6236c1
AO
2605 *slot = NULL;
2606 }
2607 }
2608
b5b8b0ac
AO
2609 cval = NULL;
2610 for (node = var->var_part[0].loc_chain; node; node = node->next)
2611 if (GET_CODE (node->loc) == VALUE
2612 && canon_value_cmp (node->loc, cval))
2613 cval = node->loc;
2614
2615 for (node = var->var_part[0].loc_chain; node; node = node->next)
2616 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2617 {
2618 /* Redirect the equivalence link to the new canonical
2619 value, or simply remove it if it would point at
2620 itself. */
2621 if (cval)
2622 set_variable_part (set, cval, dv_from_value (node->loc),
2623 0, node->init, node->set_src, NO_INSERT);
2624 delete_variable_part (set, dv_as_value (dv),
2625 dv_from_value (node->loc), 0);
2626 }
2627
2628 if (cval)
2629 {
2630 decl_or_value cdv = dv_from_value (cval);
2631
2632 /* Keep the remaining values connected, accummulating links
2633 in the canonical value. */
2634 for (node = var->var_part[0].loc_chain; node; node = node->next)
2635 {
2636 if (node->loc == cval)
2637 continue;
2638 else if (GET_CODE (node->loc) == REG)
2639 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2640 node->set_src, NO_INSERT);
2641 else if (GET_CODE (node->loc) == MEM)
2642 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2643 node->set_src, NO_INSERT);
2644 else
2645 set_variable_part (set, node->loc, cdv, 0,
2646 node->init, node->set_src, NO_INSERT);
2647 }
2648 }
2649
2650 /* We remove this last, to make sure that the canonical value is not
2651 removed to the point of requiring reinsertion. */
2652 if (cval)
2653 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2654
2655 clobber_variable_part (set, NULL, dv, 0, NULL);
b5b8b0ac
AO
2656}
2657
2658/* Find the values in a given location and map the val to another
2659 value, if it is unique, or add the location as one holding the
2660 value. */
2661
2662static void
598d62da 2663val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
b5b8b0ac
AO
2664{
2665 decl_or_value dv = dv_from_value (val);
2666
2667 if (dump_file && (dump_flags & TDF_DETAILS))
2668 {
2669 if (insn)
2670 fprintf (dump_file, "%i: ", INSN_UID (insn));
2671 else
2672 fprintf (dump_file, "head: ");
2673 print_inline_rtx (dump_file, val, 0);
2674 fputs (" is at ", dump_file);
2675 print_inline_rtx (dump_file, loc, 0);
2676 fputc ('\n', dump_file);
2677 }
2678
2679 val_reset (set, dv);
2680
09dbcd96
AO
2681 gcc_checking_assert (!unsuitable_loc (loc));
2682
b5b8b0ac
AO
2683 if (REG_P (loc))
2684 {
2685 attrs node, found = NULL;
2686
2687 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2688 if (dv_is_value_p (node->dv)
2689 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2690 {
2691 found = node;
2692
2693 /* Map incoming equivalences. ??? Wouldn't it be nice if
2694 we just started sharing the location lists? Maybe a
2695 circular list ending at the value itself or some
2696 such. */
2697 set_variable_part (set, dv_as_value (node->dv),
2698 dv_from_value (val), node->offset,
2699 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2700 set_variable_part (set, val, node->dv, node->offset,
2701 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2702 }
2703
2704 /* If we didn't find any equivalence, we need to remember that
2705 this value is held in the named register. */
6f2ffb4b
AO
2706 if (found)
2707 return;
b5b8b0ac 2708 }
6f2ffb4b
AO
2709 /* ??? Attempt to find and merge equivalent MEMs or other
2710 expressions too. */
2711
2712 val_bind (set, val, loc, false);
014a1138
JZ
2713}
2714
b8698a0f 2715/* Initialize dataflow set SET to be empty.
014a1138
JZ
2716 VARS_SIZE is the initial size of hash table VARS. */
2717
2718static void
d24686d7 2719dataflow_set_init (dataflow_set *set)
014a1138
JZ
2720{
2721 init_attrs_list_set (set->regs);
d24686d7 2722 set->vars = shared_hash_copy (empty_shared_hash);
014a1138 2723 set->stack_adjust = 0;
b5b8b0ac 2724 set->traversed_vars = NULL;
014a1138
JZ
2725}
2726
2727/* Delete the contents of dataflow set SET. */
2728
2729static void
2730dataflow_set_clear (dataflow_set *set)
2731{
2732 int i;
2733
2734 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2735 attrs_list_clear (&set->regs[i]);
2736
d24686d7
JJ
2737 shared_hash_destroy (set->vars);
2738 set->vars = shared_hash_copy (empty_shared_hash);
014a1138
JZ
2739}
2740
2741/* Copy the contents of dataflow set SRC to DST. */
2742
2743static void
2744dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2745{
2746 int i;
2747
2748 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2749 attrs_list_copy (&dst->regs[i], src->regs[i]);
2750
d24686d7
JJ
2751 shared_hash_destroy (dst->vars);
2752 dst->vars = shared_hash_copy (src->vars);
014a1138
JZ
2753 dst->stack_adjust = src->stack_adjust;
2754}
2755
2756/* Information for merging lists of locations for a given offset of variable.
2757 */
2758struct variable_union_info
2759{
2760 /* Node of the location chain. */
2761 location_chain lc;
2762
2763 /* The sum of positions in the input chains. */
2764 int pos;
2765
7eb3f1f7 2766 /* The position in the chain of DST dataflow set. */
014a1138
JZ
2767 int pos_dst;
2768};
2769
7eb3f1f7
JJ
2770/* Buffer for location list sorting and its allocated size. */
2771static struct variable_union_info *vui_vec;
2772static int vui_allocated;
2773
014a1138
JZ
2774/* Compare function for qsort, order the structures by POS element. */
2775
2776static int
2777variable_union_info_cmp_pos (const void *n1, const void *n2)
2778{
3d9a9f94
KG
2779 const struct variable_union_info *const i1 =
2780 (const struct variable_union_info *) n1;
2781 const struct variable_union_info *const i2 =
2782 ( const struct variable_union_info *) n2;
014a1138
JZ
2783
2784 if (i1->pos != i2->pos)
2785 return i1->pos - i2->pos;
b8698a0f 2786
014a1138
JZ
2787 return (i1->pos_dst - i2->pos_dst);
2788}
2789
2790/* Compute union of location parts of variable *SLOT and the same variable
2791 from hash table DATA. Compute "sorted" union of the location chains
2792 for common offsets, i.e. the locations of a variable part are sorted by
2793 a priority where the priority is the sum of the positions in the 2 chains
2794 (if a location is only in one list the position in the second list is
2795 defined to be larger than the length of the chains).
2796 When we are updating the location parts the newest location is in the
2797 beginning of the chain, so when we do the described "sorted" union
2798 we keep the newest locations in the beginning. */
2799
2800static int
a6590c31 2801variable_union (variable src, dataflow_set *set)
014a1138 2802{
a6590c31 2803 variable dst;
013e5ef9 2804 variable_def **dstp;
014a1138
JZ
2805 int i, j, k;
2806
b5b8b0ac 2807 dstp = shared_hash_find_slot (set->vars, src->dv);
d24686d7 2808 if (!dstp || !*dstp)
014a1138 2809 {
81f2eadb
JZ
2810 src->refcount++;
2811
b5b8b0ac
AO
2812 dst_can_be_shared = false;
2813 if (!dstp)
2814 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2815
2816 *dstp = src;
2817
81f2eadb
JZ
2818 /* Continue traversing the hash table. */
2819 return 1;
014a1138
JZ
2820 }
2821 else
013e5ef9 2822 dst = *dstp;
014a1138 2823
fbc848cc 2824 gcc_assert (src->n_var_parts);
09dbcd96 2825 gcc_checking_assert (src->onepart == dst->onepart);
014a1138 2826
b5b8b0ac
AO
2827 /* We can combine one-part variables very efficiently, because their
2828 entries are in canonical order. */
09dbcd96 2829 if (src->onepart)
b5b8b0ac
AO
2830 {
2831 location_chain *nodep, dnode, snode;
2832
a6590c31
RG
2833 gcc_assert (src->n_var_parts == 1
2834 && dst->n_var_parts == 1);
b5b8b0ac
AO
2835
2836 snode = src->var_part[0].loc_chain;
2837 gcc_assert (snode);
2838
2839 restart_onepart_unshared:
2840 nodep = &dst->var_part[0].loc_chain;
2841 dnode = *nodep;
2842 gcc_assert (dnode);
2843
2844 while (snode)
2845 {
2846 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2847
2848 if (r > 0)
2849 {
2850 location_chain nnode;
2851
864ddef7 2852 if (shared_var_p (dst, set->vars))
b5b8b0ac
AO
2853 {
2854 dstp = unshare_variable (set, dstp, dst,
2855 VAR_INIT_STATUS_INITIALIZED);
013e5ef9 2856 dst = *dstp;
b5b8b0ac
AO
2857 goto restart_onepart_unshared;
2858 }
2859
7e46899d 2860 *nodep = nnode = new location_chain_def;
b5b8b0ac
AO
2861 nnode->loc = snode->loc;
2862 nnode->init = snode->init;
2863 if (!snode->set_src || MEM_P (snode->set_src))
2864 nnode->set_src = NULL;
2865 else
2866 nnode->set_src = snode->set_src;
2867 nnode->next = dnode;
2868 dnode = nnode;
2869 }
b5b8b0ac 2870 else if (r == 0)
77a74ed7 2871 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
b5b8b0ac
AO
2872
2873 if (r >= 0)
2874 snode = snode->next;
2875
2876 nodep = &dnode->next;
2877 dnode = *nodep;
2878 }
2879
b5b8b0ac
AO
2880 return 1;
2881 }
2882
09dbcd96
AO
2883 gcc_checking_assert (!src->onepart);
2884
014a1138
JZ
2885 /* Count the number of location parts, result is K. */
2886 for (i = 0, j = 0, k = 0;
2887 i < src->n_var_parts && j < dst->n_var_parts; k++)
2888 {
09dbcd96 2889 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
014a1138
JZ
2890 {
2891 i++;
2892 j++;
2893 }
09dbcd96 2894 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
014a1138
JZ
2895 i++;
2896 else
2897 j++;
2898 }
81f2eadb
JZ
2899 k += src->n_var_parts - i;
2900 k += dst->n_var_parts - j;
fbc848cc 2901
014a1138
JZ
2902 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2903 thus there are at most MAX_VAR_PARTS different offsets. */
09dbcd96 2904 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
014a1138 2905
864ddef7 2906 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
b5b8b0ac
AO
2907 {
2908 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
013e5ef9 2909 dst = *dstp;
b5b8b0ac
AO
2910 }
2911
014a1138
JZ
2912 i = src->n_var_parts - 1;
2913 j = dst->n_var_parts - 1;
2914 dst->n_var_parts = k;
2915
2916 for (k--; k >= 0; k--)
2917 {
81f2eadb 2918 location_chain node, node2;
014a1138
JZ
2919
2920 if (i >= 0 && j >= 0
09dbcd96 2921 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
014a1138
JZ
2922 {
2923 /* Compute the "sorted" union of the chains, i.e. the locations which
2924 are in both chains go first, they are sorted by the sum of
2925 positions in the chains. */
2926 int dst_l, src_l;
2927 int ii, jj, n;
2928 struct variable_union_info *vui;
81f2eadb
JZ
2929
2930 /* If DST is shared compare the location chains.
2931 If they are different we will modify the chain in DST with
2932 high probability so make a copy of DST. */
864ddef7 2933 if (shared_var_p (dst, set->vars))
81f2eadb
JZ
2934 {
2935 for (node = src->var_part[i].loc_chain,
2936 node2 = dst->var_part[j].loc_chain; node && node2;
2937 node = node->next, node2 = node2->next)
2938 {
f8cfc6aa
JQ
2939 if (!((REG_P (node2->loc)
2940 && REG_P (node->loc)
81f2eadb
JZ
2941 && REGNO (node2->loc) == REGNO (node->loc))
2942 || rtx_equal_p (node2->loc, node->loc)))
e56f9152
MM
2943 {
2944 if (node2->init < node->init)
2945 node2->init = node->init;
2946 break;
2947 }
81f2eadb
JZ
2948 }
2949 if (node || node2)
b5b8b0ac
AO
2950 {
2951 dstp = unshare_variable (set, dstp, dst,
2952 VAR_INIT_STATUS_UNKNOWN);
2953 dst = (variable)*dstp;
2954 }
81f2eadb
JZ
2955 }
2956
014a1138
JZ
2957 src_l = 0;
2958 for (node = src->var_part[i].loc_chain; node; node = node->next)
2959 src_l++;
2960 dst_l = 0;
2961 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2962 dst_l++;
014a1138 2963
7eb3f1f7 2964 if (dst_l == 1)
014a1138 2965 {
7eb3f1f7
JJ
2966 /* The most common case, much simpler, no qsort is needed. */
2967 location_chain dstnode = dst->var_part[j].loc_chain;
2968 dst->var_part[k].loc_chain = dstnode;
c3284718 2969 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
7eb3f1f7
JJ
2970 node2 = dstnode;
2971 for (node = src->var_part[i].loc_chain; node; node = node->next)
2972 if (!((REG_P (dstnode->loc)
2973 && REG_P (node->loc)
2974 && REGNO (dstnode->loc) == REGNO (node->loc))
2975 || rtx_equal_p (dstnode->loc, node->loc)))
2976 {
2977 location_chain new_node;
2978
2979 /* Copy the location from SRC. */
7e46899d 2980 new_node = new location_chain_def;
7eb3f1f7
JJ
2981 new_node->loc = node->loc;
2982 new_node->init = node->init;
2983 if (!node->set_src || MEM_P (node->set_src))
2984 new_node->set_src = NULL;
2985 else
2986 new_node->set_src = node->set_src;
2987 node2->next = new_node;
2988 node2 = new_node;
2989 }
2990 node2->next = NULL;
014a1138 2991 }
7eb3f1f7 2992 else
014a1138 2993 {
7eb3f1f7 2994 if (src_l + dst_l > vui_allocated)
014a1138 2995 {
7eb3f1f7
JJ
2996 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2997 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2998 vui_allocated);
2999 }
3000 vui = vui_vec;
3001
3002 /* Fill in the locations from DST. */
3003 for (node = dst->var_part[j].loc_chain, jj = 0; node;
3004 node = node->next, jj++)
3005 {
3006 vui[jj].lc = node;
3007 vui[jj].pos_dst = jj;
3008
3009 /* Pos plus value larger than a sum of 2 valid positions. */
3010 vui[jj].pos = jj + src_l + dst_l;
3011 }
3012
3013 /* Fill in the locations from SRC. */
3014 n = dst_l;
3015 for (node = src->var_part[i].loc_chain, ii = 0; node;
3016 node = node->next, ii++)
3017 {
3018 /* Find location from NODE. */
3019 for (jj = 0; jj < dst_l; jj++)
014a1138 3020 {
7eb3f1f7
JJ
3021 if ((REG_P (vui[jj].lc->loc)
3022 && REG_P (node->loc)
3023 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
3024 || rtx_equal_p (vui[jj].lc->loc, node->loc))
3025 {
3026 vui[jj].pos = jj + ii;
3027 break;
3028 }
3029 }
3030 if (jj >= dst_l) /* The location has not been found. */
3031 {
3032 location_chain new_node;
3033
3034 /* Copy the location from SRC. */
7e46899d 3035 new_node = new location_chain_def;
7eb3f1f7
JJ
3036 new_node->loc = node->loc;
3037 new_node->init = node->init;
3038 if (!node->set_src || MEM_P (node->set_src))
3039 new_node->set_src = NULL;
3040 else
3041 new_node->set_src = node->set_src;
3042 vui[n].lc = new_node;
3043 vui[n].pos_dst = src_l + dst_l;
3044 vui[n].pos = ii + src_l + dst_l;
3045 n++;
014a1138
JZ
3046 }
3047 }
7eb3f1f7
JJ
3048
3049 if (dst_l == 2)
014a1138 3050 {
7eb3f1f7
JJ
3051 /* Special case still very common case. For dst_l == 2
3052 all entries dst_l ... n-1 are sorted, with for i >= dst_l
3053 vui[i].pos == i + src_l + dst_l. */
3054 if (vui[0].pos > vui[1].pos)
3055 {
3056 /* Order should be 1, 0, 2... */
3057 dst->var_part[k].loc_chain = vui[1].lc;
3058 vui[1].lc->next = vui[0].lc;
3059 if (n >= 3)
3060 {
3061 vui[0].lc->next = vui[2].lc;
3062 vui[n - 1].lc->next = NULL;
3063 }
3064 else
3065 vui[0].lc->next = NULL;
3066 ii = 3;
3067 }
62760ffd 3068 else
7eb3f1f7
JJ
3069 {
3070 dst->var_part[k].loc_chain = vui[0].lc;
3071 if (n >= 3 && vui[2].pos < vui[1].pos)
3072 {
3073 /* Order should be 0, 2, 1, 3... */
3074 vui[0].lc->next = vui[2].lc;
3075 vui[2].lc->next = vui[1].lc;
3076 if (n >= 4)
3077 {
3078 vui[1].lc->next = vui[3].lc;
3079 vui[n - 1].lc->next = NULL;
3080 }
3081 else
3082 vui[1].lc->next = NULL;
3083 ii = 4;
3084 }
3085 else
3086 {
3087 /* Order should be 0, 1, 2... */
3088 ii = 1;
3089 vui[n - 1].lc->next = NULL;
3090 }
3091 }
3092 for (; ii < n; ii++)
3093 vui[ii - 1].lc->next = vui[ii].lc;
3094 }
3095 else
3096 {
3097 qsort (vui, n, sizeof (struct variable_union_info),
3098 variable_union_info_cmp_pos);
3099
3100 /* Reconnect the nodes in sorted order. */
3101 for (ii = 1; ii < n; ii++)
3102 vui[ii - 1].lc->next = vui[ii].lc;
3103 vui[n - 1].lc->next = NULL;
3104 dst->var_part[k].loc_chain = vui[0].lc;
014a1138 3105 }
014a1138 3106
09dbcd96 3107 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
7eb3f1f7 3108 }
014a1138
JZ
3109 i--;
3110 j--;
3111 }
3112 else if ((i >= 0 && j >= 0
09dbcd96 3113 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
014a1138
JZ
3114 || i < 0)
3115 {
3116 dst->var_part[k] = dst->var_part[j];
3117 j--;
3118 }
3119 else if ((i >= 0 && j >= 0
09dbcd96 3120 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
014a1138
JZ
3121 || j < 0)
3122 {
11599d14 3123 location_chain *nextp;
014a1138
JZ
3124
3125 /* Copy the chain from SRC. */
11599d14 3126 nextp = &dst->var_part[k].loc_chain;
014a1138
JZ
3127 for (node = src->var_part[i].loc_chain; node; node = node->next)
3128 {
3129 location_chain new_lc;
3130
7e46899d 3131 new_lc = new location_chain_def;
014a1138 3132 new_lc->next = NULL;
62760ffd
CT
3133 new_lc->init = node->init;
3134 if (!node->set_src || MEM_P (node->set_src))
3135 new_lc->set_src = NULL;
3136 else
3137 new_lc->set_src = node->set_src;
014a1138
JZ
3138 new_lc->loc = node->loc;
3139
11599d14
JZ
3140 *nextp = new_lc;
3141 nextp = &new_lc->next;
014a1138
JZ
3142 }
3143
09dbcd96 3144 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
014a1138
JZ
3145 i--;
3146 }
864ddef7 3147 dst->var_part[k].cur_loc = NULL;
014a1138
JZ
3148 }
3149
7eb3f1f7
JJ
3150 if (flag_var_tracking_uninit)
3151 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3152 {
3153 location_chain node, node2;
3154 for (node = src->var_part[i].loc_chain; node; node = node->next)
3155 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3156 if (rtx_equal_p (node->loc, node2->loc))
3157 {
3158 if (node->init > node2->init)
3159 node2->init = node->init;
3160 }
3161 }
62760ffd 3162
014a1138
JZ
3163 /* Continue traversing the hash table. */
3164 return 1;
3165}
3166
3167/* Compute union of dataflow sets SRC and DST and store it to DST. */
3168
3169static void
3170dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3171{
3172 int i;
3173
3174 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3175 attrs_list_union (&dst->regs[i], src->regs[i]);
3176
d24686d7
JJ
3177 if (dst->vars == empty_shared_hash)
3178 {
3179 shared_hash_destroy (dst->vars);
3180 dst->vars = shared_hash_copy (src->vars);
d24686d7
JJ
3181 }
3182 else
a6590c31 3183 {
013e5ef9 3184 variable_iterator_type hi;
a6590c31
RG
3185 variable var;
3186
c203e8a7 3187 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
013e5ef9 3188 var, variable, hi)
a6590c31
RG
3189 variable_union (var, dst);
3190 }
014a1138
JZ
3191}
3192
b5b8b0ac
AO
3193/* Whether the value is currently being expanded. */
3194#define VALUE_RECURSED_INTO(x) \
0ca5af51 3195 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
09dbcd96
AO
3196
3197/* Whether no expansion was found, saving useless lookups.
3198 It must only be set when VALUE_CHANGED is clear. */
3199#define NO_LOC_P(x) \
3200 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3201
3202/* Whether cur_loc in the value needs to be (re)computed. */
b5b8b0ac
AO
3203#define VALUE_CHANGED(x) \
3204 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
09dbcd96 3205/* Whether cur_loc in the decl needs to be (re)computed. */
b5b8b0ac 3206#define DECL_CHANGED(x) TREE_VISITED (x)
014a1138 3207
09dbcd96
AO
3208/* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3209 user DECLs, this means they're in changed_variables. Values and
3210 debug exprs may be left with this flag set if no user variable
3211 requires them to be evaluated. */
014a1138 3212
b5b8b0ac
AO
3213static inline void
3214set_dv_changed (decl_or_value dv, bool newv)
3215{
09dbcd96
AO
3216 switch (dv_onepart_p (dv))
3217 {
3218 case ONEPART_VALUE:
3219 if (newv)
3220 NO_LOC_P (dv_as_value (dv)) = false;
3221 VALUE_CHANGED (dv_as_value (dv)) = newv;
3222 break;
3223
3224 case ONEPART_DEXPR:
3225 if (newv)
3226 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3227 /* Fall through... */
3228
3229 default:
3230 DECL_CHANGED (dv_as_decl (dv)) = newv;
3231 break;
3232 }
014a1138
JZ
3233}
3234
09dbcd96 3235/* Return true if DV needs to have its cur_loc recomputed. */
014a1138 3236
b5b8b0ac
AO
3237static inline bool
3238dv_changed_p (decl_or_value dv)
014a1138 3239{
b5b8b0ac
AO
3240 return (dv_is_value_p (dv)
3241 ? VALUE_CHANGED (dv_as_value (dv))
3242 : DECL_CHANGED (dv_as_decl (dv)));
014a1138
JZ
3243}
3244
60d7a09b 3245/* Return a location list node whose loc is rtx_equal to LOC, in the
b5b8b0ac 3246 location list of a one-part variable or value VAR, or in that of
b933b33a
AO
3247 any values recursively mentioned in the location lists. VARS must
3248 be in star-canonical form. */
014a1138 3249
b5b8b0ac 3250static location_chain
c203e8a7 3251find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
014a1138 3252{
b5b8b0ac 3253 location_chain node;
13077931 3254 enum rtx_code loc_code;
014a1138 3255
b5b8b0ac 3256 if (!var)
b933b33a 3257 return NULL;
014a1138 3258
09dbcd96 3259 gcc_checking_assert (var->onepart);
014a1138 3260
b5b8b0ac 3261 if (!var->n_var_parts)
b933b33a 3262 return NULL;
014a1138 3263
77a74ed7 3264 gcc_checking_assert (loc != dv_as_opaque (var->dv));
014a1138 3265
13077931 3266 loc_code = GET_CODE (loc);
b5b8b0ac 3267 for (node = var->var_part[0].loc_chain; node; node = node->next)
13077931 3268 {
b933b33a
AO
3269 decl_or_value dv;
3270 variable rvar;
3271
13077931
JJ
3272 if (GET_CODE (node->loc) != loc_code)
3273 {
3274 if (GET_CODE (node->loc) != VALUE)
3275 continue;
3276 }
3277 else if (loc == node->loc)
b933b33a 3278 return node;
13077931
JJ
3279 else if (loc_code != VALUE)
3280 {
3281 if (rtx_equal_p (loc, node->loc))
b933b33a 3282 return node;
13077931
JJ
3283 continue;
3284 }
b5b8b0ac 3285
b933b33a
AO
3286 /* Since we're in star-canonical form, we don't need to visit
3287 non-canonical nodes: one-part variables and non-canonical
3288 values would only point back to the canonical node. */
3289 if (dv_is_value_p (var->dv)
3290 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3291 {
3292 /* Skip all subsequent VALUEs. */
3293 while (node->next && GET_CODE (node->next->loc) == VALUE)
13077931 3294 {
b933b33a 3295 node = node->next;
77a74ed7
NF
3296 gcc_checking_assert (!canon_value_cmp (node->loc,
3297 dv_as_value (var->dv)));
b933b33a
AO
3298 if (loc == node->loc)
3299 return node;
13077931 3300 }
b933b33a 3301 continue;
13077931 3302 }
014a1138 3303
77a74ed7
NF
3304 gcc_checking_assert (node == var->var_part[0].loc_chain);
3305 gcc_checking_assert (!node->next);
b933b33a
AO
3306
3307 dv = dv_from_value (node->loc);
c203e8a7 3308 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
b933b33a 3309 return find_loc_in_1pdv (loc, rvar, vars);
0fa43fb7
AO
3310 }
3311
09dbcd96
AO
3312 /* ??? Gotta look in cselib_val locations too. */
3313
b933b33a 3314 return NULL;
b5b8b0ac 3315}
014a1138 3316
b5b8b0ac
AO
3317/* Hash table iteration argument passed to variable_merge. */
3318struct dfset_merge
014a1138 3319{
b5b8b0ac
AO
3320 /* The set in which the merge is to be inserted. */
3321 dataflow_set *dst;
3322 /* The set that we're iterating in. */
3323 dataflow_set *cur;
3324 /* The set that may contain the other dv we are to merge with. */
3325 dataflow_set *src;
3326 /* Number of onepart dvs in src. */
3327 int src_onepart_cnt;
3328};
014a1138 3329
b5b8b0ac
AO
3330/* Insert LOC in *DNODE, if it's not there yet. The list must be in
3331 loc_cmp order, and it is maintained as such. */
014a1138
JZ
3332
3333static void
b5b8b0ac
AO
3334insert_into_intersection (location_chain *nodep, rtx loc,
3335 enum var_init_status status)
014a1138 3336{
b5b8b0ac
AO
3337 location_chain node;
3338 int r;
014a1138 3339
b5b8b0ac
AO
3340 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3341 if ((r = loc_cmp (node->loc, loc)) == 0)
3342 {
3343 node->init = MIN (node->init, status);
3344 return;
3345 }
3346 else if (r > 0)
3347 break;
014a1138 3348
7e46899d 3349 node = new location_chain_def;
b5b8b0ac
AO
3350
3351 node->loc = loc;
3352 node->set_src = NULL;
3353 node->init = status;
3354 node->next = *nodep;
3355 *nodep = node;
014a1138
JZ
3356}
3357
09dbcd96 3358/* Insert in DEST the intersection of the locations present in both
b5b8b0ac
AO
3359 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3360 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3361 DSM->dst. */
014a1138 3362
b5b8b0ac
AO
3363static void
3364intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3365 location_chain s1node, variable s2var)
014a1138 3366{
b5b8b0ac
AO
3367 dataflow_set *s1set = dsm->cur;
3368 dataflow_set *s2set = dsm->src;
3369 location_chain found;
014a1138 3370
bb9862c6
JJ
3371 if (s2var)
3372 {
3373 location_chain s2node;
3374
09dbcd96 3375 gcc_checking_assert (s2var->onepart);
bb9862c6
JJ
3376
3377 if (s2var->n_var_parts)
3378 {
bb9862c6
JJ
3379 s2node = s2var->var_part[0].loc_chain;
3380
3381 for (; s1node && s2node;
3382 s1node = s1node->next, s2node = s2node->next)
3383 if (s1node->loc != s2node->loc)
3384 break;
3385 else if (s1node->loc == val)
3386 continue;
3387 else
3388 insert_into_intersection (dest, s1node->loc,
3389 MIN (s1node->init, s2node->init));
3390 }
3391 }
3392
b5b8b0ac 3393 for (; s1node; s1node = s1node->next)
014a1138 3394 {
b5b8b0ac
AO
3395 if (s1node->loc == val)
3396 continue;
3397
3398 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3399 shared_hash_htab (s2set->vars))))
014a1138 3400 {
b5b8b0ac
AO
3401 insert_into_intersection (dest, s1node->loc,
3402 MIN (s1node->init, found->init));
3403 continue;
014a1138 3404 }
b5b8b0ac
AO
3405
3406 if (GET_CODE (s1node->loc) == VALUE
3407 && !VALUE_RECURSED_INTO (s1node->loc))
014a1138 3408 {
b5b8b0ac
AO
3409 decl_or_value dv = dv_from_value (s1node->loc);
3410 variable svar = shared_hash_find (s1set->vars, dv);
3411 if (svar)
3412 {
3413 if (svar->n_var_parts == 1)
3414 {
3415 VALUE_RECURSED_INTO (s1node->loc) = true;
3416 intersect_loc_chains (val, dest, dsm,
3417 svar->var_part[0].loc_chain,
3418 s2var);
3419 VALUE_RECURSED_INTO (s1node->loc) = false;
3420 }
3421 }
014a1138 3422 }
014a1138 3423
09dbcd96
AO
3424 /* ??? gotta look in cselib_val locations too. */
3425
b5b8b0ac
AO
3426 /* ??? if the location is equivalent to any location in src,
3427 searched recursively
014a1138 3428
b5b8b0ac 3429 add to dst the values needed to represent the equivalence
014a1138 3430
b5b8b0ac
AO
3431 telling whether locations S is equivalent to another dv's
3432 location list:
014a1138 3433
b5b8b0ac 3434 for each location D in the list
014a1138 3435
b5b8b0ac 3436 if S and D satisfy rtx_equal_p, then it is present
014a1138 3437
b5b8b0ac 3438 else if D is a value, recurse without cycles
ac3bfd86 3439
b5b8b0ac 3440 else if S and D have the same CODE and MODE
af931390 3441
b5b8b0ac 3442 for each operand oS and the corresponding oD
014a1138 3443
b5b8b0ac 3444 if oS and oD are not equivalent, then S an D are not equivalent
014a1138 3445
b5b8b0ac 3446 else if they are RTX vectors
014a1138 3447
b5b8b0ac
AO
3448 if any vector oS element is not equivalent to its respective oD,
3449 then S and D are not equivalent
014a1138 3450
b5b8b0ac
AO
3451 */
3452
3453
3454 }
014a1138
JZ
3455}
3456
b5b8b0ac
AO
3457/* Return -1 if X should be before Y in a location list for a 1-part
3458 variable, 1 if Y should be before X, and 0 if they're equivalent
3459 and should not appear in the list. */
ca787200 3460
b5b8b0ac
AO
3461static int
3462loc_cmp (rtx x, rtx y)
ca787200 3463{
b5b8b0ac
AO
3464 int i, j, r;
3465 RTX_CODE code = GET_CODE (x);
3466 const char *fmt;
ca787200 3467
b5b8b0ac
AO
3468 if (x == y)
3469 return 0;
ca787200 3470
b5b8b0ac 3471 if (REG_P (x))
ca787200 3472 {
b5b8b0ac
AO
3473 if (!REG_P (y))
3474 return -1;
3475 gcc_assert (GET_MODE (x) == GET_MODE (y));
3476 if (REGNO (x) == REGNO (y))
3477 return 0;
3478 else if (REGNO (x) < REGNO (y))
3479 return -1;
3480 else
3481 return 1;
ca787200 3482 }
b5b8b0ac
AO
3483
3484 if (REG_P (y))
3485 return 1;
3486
3487 if (MEM_P (x))
ca787200 3488 {
b5b8b0ac
AO
3489 if (!MEM_P (y))
3490 return -1;
3491 gcc_assert (GET_MODE (x) == GET_MODE (y));
3492 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
ca787200 3493 }
ca787200 3494
b5b8b0ac
AO
3495 if (MEM_P (y))
3496 return 1;
ca787200 3497
b5b8b0ac
AO
3498 if (GET_CODE (x) == VALUE)
3499 {
3500 if (GET_CODE (y) != VALUE)
3501 return -1;
0c5863c2
JJ
3502 /* Don't assert the modes are the same, that is true only
3503 when not recursing. (subreg:QI (value:SI 1:1) 0)
3504 and (subreg:QI (value:DI 2:2) 0) can be compared,
3505 even when the modes are different. */
b5b8b0ac
AO
3506 if (canon_value_cmp (x, y))
3507 return -1;
3508 else
3509 return 1;
3510 }
ca787200 3511
b5b8b0ac
AO
3512 if (GET_CODE (y) == VALUE)
3513 return 1;
ca787200 3514
09dbcd96
AO
3515 /* Entry value is the least preferable kind of expression. */
3516 if (GET_CODE (x) == ENTRY_VALUE)
3517 {
3518 if (GET_CODE (y) != ENTRY_VALUE)
3519 return 1;
3520 gcc_assert (GET_MODE (x) == GET_MODE (y));
7fefb1d1 3521 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
09dbcd96
AO
3522 }
3523
3524 if (GET_CODE (y) == ENTRY_VALUE)
3525 return -1;
3526
b5b8b0ac
AO
3527 if (GET_CODE (x) == GET_CODE (y))
3528 /* Compare operands below. */;
3529 else if (GET_CODE (x) < GET_CODE (y))
3530 return -1;
3531 else
3532 return 1;
3533
3534 gcc_assert (GET_MODE (x) == GET_MODE (y));
3535
864ddef7
JJ
3536 if (GET_CODE (x) == DEBUG_EXPR)
3537 {
3538 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3539 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3540 return -1;
77a74ed7
NF
3541 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3542 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
864ddef7
JJ
3543 return 1;
3544 }
3545
b5b8b0ac
AO
3546 fmt = GET_RTX_FORMAT (code);
3547 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3548 switch (fmt[i])
3549 {
3550 case 'w':
3551 if (XWINT (x, i) == XWINT (y, i))
3552 break;
3553 else if (XWINT (x, i) < XWINT (y, i))
3554 return -1;
3555 else
3556 return 1;
3557
3558 case 'n':
3559 case 'i':
3560 if (XINT (x, i) == XINT (y, i))
3561 break;
3562 else if (XINT (x, i) < XINT (y, i))
3563 return -1;
3564 else
3565 return 1;
3566
3567 case 'V':
3568 case 'E':
3569 /* Compare the vector length first. */
3570 if (XVECLEN (x, i) == XVECLEN (y, i))
3571 /* Compare the vectors elements. */;
3572 else if (XVECLEN (x, i) < XVECLEN (y, i))
3573 return -1;
3574 else
3575 return 1;
3576
3577 for (j = 0; j < XVECLEN (x, i); j++)
3578 if ((r = loc_cmp (XVECEXP (x, i, j),
3579 XVECEXP (y, i, j))))
3580 return r;
3581 break;
3582
3583 case 'e':
3584 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3585 return r;
3586 break;
3587
3588 case 'S':
3589 case 's':
3590 if (XSTR (x, i) == XSTR (y, i))
3591 break;
3592 if (!XSTR (x, i))
3593 return -1;
3594 if (!XSTR (y, i))
3595 return 1;
3596 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3597 break;
3598 else if (r < 0)
3599 return -1;
3600 else
3601 return 1;
3602
3603 case 'u':
3604 /* These are just backpointers, so they don't matter. */
3605 break;
3606
3607 case '0':
3608 case 't':
3609 break;
3610
3611 /* It is believed that rtx's at this level will never
3612 contain anything but integers and other rtx's,
3613 except for within LABEL_REFs and SYMBOL_REFs. */
3614 default:
3615 gcc_unreachable ();
3616 }
807e902e
KZ
3617 if (CONST_WIDE_INT_P (x))
3618 {
3619 /* Compare the vector length first. */
3620 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3621 return 1;
3622 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3623 return -1;
3624
3625 /* Compare the vectors elements. */;
3626 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3627 {
3628 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3629 return -1;
3630 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3631 return 1;
3632 }
3633 }
b5b8b0ac
AO
3634
3635 return 0;
3636}
3637
1feb8238 3638#if ENABLE_CHECKING
b5b8b0ac
AO
3639/* Check the order of entries in one-part variables. */
3640
013e5ef9
LC
3641int
3642canonicalize_loc_order_check (variable_def **slot,
3643 dataflow_set *data ATTRIBUTE_UNUSED)
b5b8b0ac 3644{
013e5ef9 3645 variable var = *slot;
b5b8b0ac
AO
3646 location_chain node, next;
3647
864ddef7
JJ
3648#ifdef ENABLE_RTL_CHECKING
3649 int i;
3650 for (i = 0; i < var->n_var_parts; i++)
3651 gcc_assert (var->var_part[0].cur_loc == NULL);
09dbcd96 3652 gcc_assert (!var->in_changed_variables);
864ddef7
JJ
3653#endif
3654
09dbcd96 3655 if (!var->onepart)
b5b8b0ac
AO
3656 return 1;
3657
3658 gcc_assert (var->n_var_parts == 1);
3659 node = var->var_part[0].loc_chain;
3660 gcc_assert (node);
3661
3662 while ((next = node->next))
3663 {
3664 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3665 node = next;
3666 }
3667
3668 return 1;
3669}
3670#endif
3671
3672/* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3673 more likely to be chosen as canonical for an equivalence set.
3674 Ensure less likely values can reach more likely neighbors, making
3675 the connections bidirectional. */
3676
013e5ef9
LC
3677int
3678canonicalize_values_mark (variable_def **slot, dataflow_set *set)
b5b8b0ac 3679{
013e5ef9 3680 variable var = *slot;
b5b8b0ac
AO
3681 decl_or_value dv = var->dv;
3682 rtx val;
3683 location_chain node;
3684
3685 if (!dv_is_value_p (dv))
3686 return 1;
3687
7a40b8b1 3688 gcc_checking_assert (var->n_var_parts == 1);
b5b8b0ac
AO
3689
3690 val = dv_as_value (dv);
3691
3692 for (node = var->var_part[0].loc_chain; node; node = node->next)
3693 if (GET_CODE (node->loc) == VALUE)
3694 {
3695 if (canon_value_cmp (node->loc, val))
3696 VALUE_RECURSED_INTO (val) = true;
3697 else
3698 {
3699 decl_or_value odv = dv_from_value (node->loc);
013e5ef9
LC
3700 variable_def **oslot;
3701 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
b5b8b0ac 3702
649beb33
JL
3703 set_slot_part (set, val, oslot, odv, 0,
3704 node->init, NULL_RTX);
b5b8b0ac
AO
3705
3706 VALUE_RECURSED_INTO (node->loc) = true;
3707 }
3708 }
3709
3710 return 1;
3711}
3712
3713/* Remove redundant entries from equivalence lists in onepart
3714 variables, canonicalizing equivalence sets into star shapes. */
3715
013e5ef9
LC
3716int
3717canonicalize_values_star (variable_def **slot, dataflow_set *set)
b5b8b0ac 3718{
013e5ef9 3719 variable var = *slot;
b5b8b0ac
AO
3720 decl_or_value dv = var->dv;
3721 location_chain node;
3722 decl_or_value cdv;
3723 rtx val, cval;
013e5ef9 3724 variable_def **cslot;
b5b8b0ac
AO
3725 bool has_value;
3726 bool has_marks;
3727
09dbcd96 3728 if (!var->onepart)
b5b8b0ac
AO
3729 return 1;
3730
7a40b8b1 3731 gcc_checking_assert (var->n_var_parts == 1);
b5b8b0ac
AO
3732
3733 if (dv_is_value_p (dv))
3734 {
3735 cval = dv_as_value (dv);
3736 if (!VALUE_RECURSED_INTO (cval))
3737 return 1;
3738 VALUE_RECURSED_INTO (cval) = false;
3739 }
3740 else
3741 cval = NULL_RTX;
3742
3743 restart:
3744 val = cval;
3745 has_value = false;
3746 has_marks = false;
3747
3748 gcc_assert (var->n_var_parts == 1);
3749
3750 for (node = var->var_part[0].loc_chain; node; node = node->next)
3751 if (GET_CODE (node->loc) == VALUE)
3752 {
3753 has_value = true;
3754 if (VALUE_RECURSED_INTO (node->loc))
3755 has_marks = true;
3756 if (canon_value_cmp (node->loc, cval))
3757 cval = node->loc;
3758 }
3759
3760 if (!has_value)
3761 return 1;
3762
3763 if (cval == val)
3764 {
3765 if (!has_marks || dv_is_decl_p (dv))
3766 return 1;
3767
3768 /* Keep it marked so that we revisit it, either after visiting a
3769 child node, or after visiting a new parent that might be
3770 found out. */
3771 VALUE_RECURSED_INTO (val) = true;
3772
3773 for (node = var->var_part[0].loc_chain; node; node = node->next)
3774 if (GET_CODE (node->loc) == VALUE
3775 && VALUE_RECURSED_INTO (node->loc))
3776 {
3777 cval = node->loc;
3778 restart_with_cval:
3779 VALUE_RECURSED_INTO (cval) = false;
3780 dv = dv_from_value (cval);
3781 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3782 if (!slot)
3783 {
3784 gcc_assert (dv_is_decl_p (var->dv));
3785 /* The canonical value was reset and dropped.
3786 Remove it. */
3787 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3788 return 1;
3789 }
013e5ef9 3790 var = *slot;
b5b8b0ac
AO
3791 gcc_assert (dv_is_value_p (var->dv));
3792 if (var->n_var_parts == 0)
3793 return 1;
3794 gcc_assert (var->n_var_parts == 1);
3795 goto restart;
3796 }
3797
3798 VALUE_RECURSED_INTO (val) = false;
3799
3800 return 1;
3801 }
3802
3803 /* Push values to the canonical one. */
3804 cdv = dv_from_value (cval);
3805 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3806
3807 for (node = var->var_part[0].loc_chain; node; node = node->next)
3808 if (node->loc != cval)
3809 {
3810 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3811 node->init, NULL_RTX);
3812 if (GET_CODE (node->loc) == VALUE)
3813 {
3814 decl_or_value ndv = dv_from_value (node->loc);
3815
3816 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3817 NO_INSERT);
3818
3819 if (canon_value_cmp (node->loc, val))
3820 {
3821 /* If it could have been a local minimum, it's not any more,
3822 since it's now neighbor to cval, so it may have to push
3823 to it. Conversely, if it wouldn't have prevailed over
3824 val, then whatever mark it has is fine: if it was to
3825 push, it will now push to a more canonical node, but if
3826 it wasn't, then it has already pushed any values it might
3827 have to. */
3828 VALUE_RECURSED_INTO (node->loc) = true;
3829 /* Make sure we visit node->loc by ensuring we cval is
3830 visited too. */
3831 VALUE_RECURSED_INTO (cval) = true;
3832 }
3833 else if (!VALUE_RECURSED_INTO (node->loc))
3834 /* If we have no need to "recurse" into this node, it's
3835 already "canonicalized", so drop the link to the old
3836 parent. */
3837 clobber_variable_part (set, cval, ndv, 0, NULL);
3838 }
3839 else if (GET_CODE (node->loc) == REG)
3840 {
3841 attrs list = set->regs[REGNO (node->loc)], *listp;
3842
3843 /* Change an existing attribute referring to dv so that it
3844 refers to cdv, removing any duplicate this might
3845 introduce, and checking that no previous duplicates
3846 existed, all in a single pass. */
3847
3848 while (list)
3849 {
3850 if (list->offset == 0
3851 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3852 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3853 break;
3854
3855 list = list->next;
3856 }
3857
3858 gcc_assert (list);
3859 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3860 {
3861 list->dv = cdv;
3862 for (listp = &list->next; (list = *listp); listp = &list->next)
3863 {
3864 if (list->offset)
3865 continue;
3866
3867 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3868 {
3869 *listp = list->next;
7e46899d 3870 delete list;
b5b8b0ac
AO
3871 list = *listp;
3872 break;
3873 }
3874
3875 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3876 }
3877 }
3878 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3879 {
3880 for (listp = &list->next; (list = *listp); listp = &list->next)
3881 {
3882 if (list->offset)
3883 continue;
3884
3885 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3886 {
3887 *listp = list->next;
7e46899d 3888 delete list;
b5b8b0ac
AO
3889 list = *listp;
3890 break;
3891 }
3892
3893 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3894 }
3895 }
3896 else
3897 gcc_unreachable ();
3898
3899#if ENABLE_CHECKING
3900 while (list)
3901 {
3902 if (list->offset == 0
3903 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3904 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3905 gcc_unreachable ();
3906
3907 list = list->next;
3908 }
3909#endif
3910 }
3911 }
3912
3913 if (val)
649beb33
JL
3914 set_slot_part (set, val, cslot, cdv, 0,
3915 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
b5b8b0ac
AO
3916
3917 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3918
3919 /* Variable may have been unshared. */
013e5ef9 3920 var = *slot;
7a40b8b1
JH
3921 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3922 && var->var_part[0].loc_chain->next == NULL);
b5b8b0ac
AO
3923
3924 if (VALUE_RECURSED_INTO (cval))
3925 goto restart_with_cval;
3926
3927 return 1;
3928}
3929
e999b0c9
AO
3930/* Bind one-part variables to the canonical value in an equivalence
3931 set. Not doing this causes dataflow convergence failure in rare
3932 circumstances, see PR42873. Unfortunately we can't do this
3933 efficiently as part of canonicalize_values_star, since we may not
3934 have determined or even seen the canonical value of a set when we
3935 get to a variable that references another member of the set. */
3936
013e5ef9
LC
3937int
3938canonicalize_vars_star (variable_def **slot, dataflow_set *set)
e999b0c9 3939{
013e5ef9 3940 variable var = *slot;
e999b0c9
AO
3941 decl_or_value dv = var->dv;
3942 location_chain node;
3943 rtx cval;
3944 decl_or_value cdv;
013e5ef9 3945 variable_def **cslot;
e999b0c9
AO
3946 variable cvar;
3947 location_chain cnode;
3948
09dbcd96 3949 if (!var->onepart || var->onepart == ONEPART_VALUE)
e999b0c9
AO
3950 return 1;
3951
3952 gcc_assert (var->n_var_parts == 1);
3953
3954 node = var->var_part[0].loc_chain;
3955
3956 if (GET_CODE (node->loc) != VALUE)
3957 return 1;
3958
3959 gcc_assert (!node->next);
3960 cval = node->loc;
3961
3962 /* Push values to the canonical one. */
3963 cdv = dv_from_value (cval);
3964 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3965 if (!cslot)
3966 return 1;
013e5ef9 3967 cvar = *cslot;
e999b0c9
AO
3968 gcc_assert (cvar->n_var_parts == 1);
3969
3970 cnode = cvar->var_part[0].loc_chain;
3971
3972 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3973 that are not “more canonical” than it. */
3974 if (GET_CODE (cnode->loc) != VALUE
3975 || !canon_value_cmp (cnode->loc, cval))
3976 return 1;
3977
3978 /* CVAL was found to be non-canonical. Change the variable to point
3979 to the canonical VALUE. */
3980 gcc_assert (!cnode->next);
3981 cval = cnode->loc;
3982
3983 slot = set_slot_part (set, cval, slot, dv, 0,
3984 node->init, node->set_src);
649beb33 3985 clobber_slot_part (set, cval, slot, 0, node->set_src);
e999b0c9
AO
3986
3987 return 1;
3988}
3989
b5b8b0ac
AO
3990/* Combine variable or value in *S1SLOT (in DSM->cur) with the
3991 corresponding entry in DSM->src. Multi-part variables are combined
3992 with variable_union, whereas onepart dvs are combined with
3993 intersection. */
3994
3995static int
a6590c31 3996variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
b5b8b0ac 3997{
b5b8b0ac 3998 dataflow_set *dst = dsm->dst;
013e5ef9 3999 variable_def **dstslot;
b5b8b0ac
AO
4000 variable s2var, dvar = NULL;
4001 decl_or_value dv = s1var->dv;
09dbcd96 4002 onepart_enum_t onepart = s1var->onepart;
b5b8b0ac
AO
4003 rtx val;
4004 hashval_t dvhash;
4005 location_chain node, *nodep;
4006
4007 /* If the incoming onepart variable has an empty location list, then
4008 the intersection will be just as empty. For other variables,
4009 it's always union. */
7a40b8b1
JH
4010 gcc_checking_assert (s1var->n_var_parts
4011 && s1var->var_part[0].loc_chain);
b5b8b0ac
AO
4012
4013 if (!onepart)
a6590c31 4014 return variable_union (s1var, dst);
b5b8b0ac 4015
09dbcd96 4016 gcc_checking_assert (s1var->n_var_parts == 1);
b5b8b0ac
AO
4017
4018 dvhash = dv_htab_hash (dv);
4019 if (dv_is_value_p (dv))
4020 val = dv_as_value (dv);
4021 else
4022 val = NULL;
4023
4024 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
4025 if (!s2var)
4026 {
4027 dst_can_be_shared = false;
4028 return 1;
4029 }
4030
4031 dsm->src_onepart_cnt--;
a6590c31 4032 gcc_assert (s2var->var_part[0].loc_chain
09dbcd96
AO
4033 && s2var->onepart == onepart
4034 && s2var->n_var_parts == 1);
b5b8b0ac
AO
4035
4036 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4037 if (dstslot)
4038 {
013e5ef9 4039 dvar = *dstslot;
a6590c31 4040 gcc_assert (dvar->refcount == 1
09dbcd96
AO
4041 && dvar->onepart == onepart
4042 && dvar->n_var_parts == 1);
b5b8b0ac
AO
4043 nodep = &dvar->var_part[0].loc_chain;
4044 }
4045 else
4046 {
4047 nodep = &node;
4048 node = NULL;
4049 }
4050
4051 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4052 {
4053 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4054 dvhash, INSERT);
4055 *dstslot = dvar = s2var;
4056 dvar->refcount++;
4057 }
4058 else
4059 {
4060 dst_can_be_shared = false;
4061
4062 intersect_loc_chains (val, nodep, dsm,
4063 s1var->var_part[0].loc_chain, s2var);
4064
4065 if (!dstslot)
4066 {
4067 if (node)
4068 {
7e46899d 4069 dvar = onepart_pool (onepart).allocate ();
b5b8b0ac
AO
4070 dvar->dv = dv;
4071 dvar->refcount = 1;
4072 dvar->n_var_parts = 1;
09dbcd96 4073 dvar->onepart = onepart;
864ddef7 4074 dvar->in_changed_variables = false;
b5b8b0ac 4075 dvar->var_part[0].loc_chain = node;
864ddef7 4076 dvar->var_part[0].cur_loc = NULL;
09dbcd96
AO
4077 if (onepart)
4078 VAR_LOC_1PAUX (dvar) = NULL;
4079 else
4080 VAR_PART_OFFSET (dvar, 0) = 0;
b5b8b0ac
AO
4081
4082 dstslot
4083 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4084 INSERT);
4085 gcc_assert (!*dstslot);
4086 *dstslot = dvar;
4087 }
4088 else
4089 return 1;
4090 }
4091 }
4092
4093 nodep = &dvar->var_part[0].loc_chain;
4094 while ((node = *nodep))
4095 {
4096 location_chain *nextp = &node->next;
4097
4098 if (GET_CODE (node->loc) == REG)
4099 {
4100 attrs list;
4101
4102 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4103 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4104 && dv_is_value_p (list->dv))
4105 break;
4106
4107 if (!list)
4108 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4109 dv, 0, node->loc);
4110 /* If this value became canonical for another value that had
4111 this register, we want to leave it alone. */
4112 else if (dv_as_value (list->dv) != val)
4113 {
4114 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4115 dstslot, dv, 0,
4116 node->init, NULL_RTX);
4117 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4118
4119 /* Since nextp points into the removed node, we can't
4120 use it. The pointer to the next node moved to nodep.
4121 However, if the variable we're walking is unshared
4122 during our walk, we'll keep walking the location list
4123 of the previously-shared variable, in which case the
4124 node won't have been removed, and we'll want to skip
4125 it. That's why we test *nodep here. */
4126 if (*nodep != node)
4127 nextp = nodep;
4128 }
4129 }
4130 else
4131 /* Canonicalization puts registers first, so we don't have to
4132 walk it all. */
4133 break;
4134 nodep = nextp;
4135 }
4136
013e5ef9
LC
4137 if (dvar != *dstslot)
4138 dvar = *dstslot;
b5b8b0ac
AO
4139 nodep = &dvar->var_part[0].loc_chain;
4140
4141 if (val)
4142 {
4143 /* Mark all referenced nodes for canonicalization, and make sure
4144 we have mutual equivalence links. */
4145 VALUE_RECURSED_INTO (val) = true;
4146 for (node = *nodep; node; node = node->next)
4147 if (GET_CODE (node->loc) == VALUE)
4148 {
4149 VALUE_RECURSED_INTO (node->loc) = true;
4150 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4151 node->init, NULL, INSERT);
4152 }
4153
4154 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4155 gcc_assert (*dstslot == dvar);
4156 canonicalize_values_star (dstslot, dst);
77a74ed7
NF
4157 gcc_checking_assert (dstslot
4158 == shared_hash_find_slot_noinsert_1 (dst->vars,
4159 dv, dvhash));
013e5ef9 4160 dvar = *dstslot;
b5b8b0ac
AO
4161 }
4162 else
4163 {
4164 bool has_value = false, has_other = false;
4165
4166 /* If we have one value and anything else, we're going to
4167 canonicalize this, so make sure all values have an entry in
4168 the table and are marked for canonicalization. */
4169 for (node = *nodep; node; node = node->next)
4170 {
4171 if (GET_CODE (node->loc) == VALUE)
4172 {
4173 /* If this was marked during register canonicalization,
4174 we know we have to canonicalize values. */
4175 if (has_value)
4176 has_other = true;
4177 has_value = true;
4178 if (has_other)
4179 break;
4180 }
4181 else
4182 {
4183 has_other = true;
4184 if (has_value)
4185 break;
4186 }
4187 }
4188
4189 if (has_value && has_other)
4190 {
4191 for (node = *nodep; node; node = node->next)
4192 {
4193 if (GET_CODE (node->loc) == VALUE)
4194 {
4195 decl_or_value dv = dv_from_value (node->loc);
013e5ef9 4196 variable_def **slot = NULL;
b5b8b0ac
AO
4197
4198 if (shared_hash_shared (dst->vars))
4199 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4200 if (!slot)
4201 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4202 INSERT);
4203 if (!*slot)
4204 {
7e46899d 4205 variable var = onepart_pool (ONEPART_VALUE).allocate ();
b5b8b0ac
AO
4206 var->dv = dv;
4207 var->refcount = 1;
4208 var->n_var_parts = 1;
09dbcd96 4209 var->onepart = ONEPART_VALUE;
864ddef7 4210 var->in_changed_variables = false;
b5b8b0ac
AO
4211 var->var_part[0].loc_chain = NULL;
4212 var->var_part[0].cur_loc = NULL;
09dbcd96 4213 VAR_LOC_1PAUX (var) = NULL;
b5b8b0ac
AO
4214 *slot = var;
4215 }
4216
4217 VALUE_RECURSED_INTO (node->loc) = true;
4218 }
4219 }
4220
4221 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4222 gcc_assert (*dstslot == dvar);
4223 canonicalize_values_star (dstslot, dst);
77a74ed7
NF
4224 gcc_checking_assert (dstslot
4225 == shared_hash_find_slot_noinsert_1 (dst->vars,
4226 dv, dvhash));
013e5ef9 4227 dvar = *dstslot;
b5b8b0ac
AO
4228 }
4229 }
4230
4231 if (!onepart_variable_different_p (dvar, s2var))
4232 {
4233 variable_htab_free (dvar);
4234 *dstslot = dvar = s2var;
4235 dvar->refcount++;
4236 }
4237 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4238 {
4239 variable_htab_free (dvar);
4240 *dstslot = dvar = s1var;
4241 dvar->refcount++;
4242 dst_can_be_shared = false;
4243 }
4244 else
864ddef7 4245 dst_can_be_shared = false;
b5b8b0ac
AO
4246
4247 return 1;
4248}
4249
60d7a09b
AO
4250/* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4251 multi-part variable. Unions of multi-part variables and
4252 intersections of one-part ones will be handled in
4253 variable_merge_over_cur(). */
b5b8b0ac
AO
4254
4255static int
a6590c31 4256variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
b5b8b0ac 4257{
b5b8b0ac 4258 dataflow_set *dst = dsm->dst;
b5b8b0ac 4259 decl_or_value dv = s2var->dv;
b5b8b0ac 4260
09dbcd96 4261 if (!s2var->onepart)
b5b8b0ac 4262 {
013e5ef9 4263 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
b5b8b0ac
AO
4264 *dstp = s2var;
4265 s2var->refcount++;
864ddef7 4266 return 1;
b5b8b0ac
AO
4267 }
4268
4269 dsm->src_onepart_cnt++;
4270 return 1;
4271}
4272
60d7a09b 4273/* Combine dataflow set information from SRC2 into DST, using PDST
b5b8b0ac
AO
4274 to carry over information across passes. */
4275
4276static void
60d7a09b 4277dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
b5b8b0ac 4278{
60d7a09b
AO
4279 dataflow_set cur = *dst;
4280 dataflow_set *src1 = &cur;
b5b8b0ac
AO
4281 struct dfset_merge dsm;
4282 int i;
60d7a09b 4283 size_t src1_elems, src2_elems;
013e5ef9 4284 variable_iterator_type hi;
a6590c31 4285 variable var;
b5b8b0ac 4286
c203e8a7
TS
4287 src1_elems = shared_hash_htab (src1->vars)->elements ();
4288 src2_elems = shared_hash_htab (src2->vars)->elements ();
b5b8b0ac 4289 dataflow_set_init (dst);
60d7a09b 4290 dst->stack_adjust = cur.stack_adjust;
b5b8b0ac 4291 shared_hash_destroy (dst->vars);
7e46899d 4292 dst->vars = new shared_hash_def;
b5b8b0ac 4293 dst->vars->refcount = 1;
c203e8a7 4294 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
b5b8b0ac
AO
4295
4296 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
60d7a09b 4297 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
b5b8b0ac
AO
4298
4299 dsm.dst = dst;
60d7a09b
AO
4300 dsm.src = src2;
4301 dsm.cur = src1;
b5b8b0ac
AO
4302 dsm.src_onepart_cnt = 0;
4303
c203e8a7 4304 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
013e5ef9 4305 var, variable, hi)
a6590c31 4306 variable_merge_over_src (var, &dsm);
c203e8a7 4307 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
013e5ef9 4308 var, variable, hi)
a6590c31 4309 variable_merge_over_cur (var, &dsm);
b5b8b0ac
AO
4310
4311 if (dsm.src_onepart_cnt)
4312 dst_can_be_shared = false;
4313
60d7a09b 4314 dataflow_set_destroy (src1);
b5b8b0ac
AO
4315}
4316
4317/* Mark register equivalences. */
4318
4319static void
4320dataflow_set_equiv_regs (dataflow_set *set)
4321{
4322 int i;
4323 attrs list, *listp;
4324
4325 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4326 {
4327 rtx canon[NUM_MACHINE_MODES];
4328
193d4c0f 4329 /* If the list is empty or one entry, no need to canonicalize
e2cc3483
JJ
4330 anything. */
4331 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
193d4c0f
JJ
4332 continue;
4333
b5b8b0ac
AO
4334 memset (canon, 0, sizeof (canon));
4335
4336 for (list = set->regs[i]; list; list = list->next)
4337 if (list->offset == 0 && dv_is_value_p (list->dv))
4338 {
4339 rtx val = dv_as_value (list->dv);
4340 rtx *cvalp = &canon[(int)GET_MODE (val)];
4341 rtx cval = *cvalp;
4342
4343 if (canon_value_cmp (val, cval))
4344 *cvalp = val;
4345 }
4346
4347 for (list = set->regs[i]; list; list = list->next)
4348 if (list->offset == 0 && dv_onepart_p (list->dv))
4349 {
4350 rtx cval = canon[(int)GET_MODE (list->loc)];
4351
4352 if (!cval)
4353 continue;
4354
4355 if (dv_is_value_p (list->dv))
4356 {
4357 rtx val = dv_as_value (list->dv);
4358
4359 if (val == cval)
4360 continue;
4361
4362 VALUE_RECURSED_INTO (val) = true;
4363 set_variable_part (set, val, dv_from_value (cval), 0,
4364 VAR_INIT_STATUS_INITIALIZED,
4365 NULL, NO_INSERT);
4366 }
4367
4368 VALUE_RECURSED_INTO (cval) = true;
4369 set_variable_part (set, cval, list->dv, 0,
4370 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4371 }
4372
4373 for (listp = &set->regs[i]; (list = *listp);
4374 listp = list ? &list->next : listp)
4375 if (list->offset == 0 && dv_onepart_p (list->dv))
4376 {
4377 rtx cval = canon[(int)GET_MODE (list->loc)];
013e5ef9 4378 variable_def **slot;
b5b8b0ac
AO
4379
4380 if (!cval)
4381 continue;
4382
4383 if (dv_is_value_p (list->dv))
4384 {
4385 rtx val = dv_as_value (list->dv);
4386 if (!VALUE_RECURSED_INTO (val))
4387 continue;
4388 }
4389
4390 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4391 canonicalize_values_star (slot, set);
4392 if (*listp != list)
4393 list = NULL;
4394 }
4395 }
4396}
4397
4398/* Remove any redundant values in the location list of VAR, which must
4399 be unshared and 1-part. */
4400
4401static void
4402remove_duplicate_values (variable var)
4403{
4404 location_chain node, *nodep;
4405
09dbcd96 4406 gcc_assert (var->onepart);
b5b8b0ac
AO
4407 gcc_assert (var->n_var_parts == 1);
4408 gcc_assert (var->refcount == 1);
4409
4410 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4411 {
4412 if (GET_CODE (node->loc) == VALUE)
4413 {
4414 if (VALUE_RECURSED_INTO (node->loc))
4415 {
4416 /* Remove duplicate value node. */
4417 *nodep = node->next;
7e46899d 4418 delete node;
b5b8b0ac
AO
4419 continue;
4420 }
4421 else
4422 VALUE_RECURSED_INTO (node->loc) = true;
4423 }
4424 nodep = &node->next;
4425 }
4426
4427 for (node = var->var_part[0].loc_chain; node; node = node->next)
4428 if (GET_CODE (node->loc) == VALUE)
4429 {
4430 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4431 VALUE_RECURSED_INTO (node->loc) = false;
4432 }
4433}
4434
4435
4436/* Hash table iteration argument passed to variable_post_merge. */
4437struct dfset_post_merge
4438{
4439 /* The new input set for the current block. */
4440 dataflow_set *set;
4441 /* Pointer to the permanent input set for the current block, or
4442 NULL. */
4443 dataflow_set **permp;
4444};
4445
4446/* Create values for incoming expressions associated with one-part
4447 variables that don't have value numbers for them. */
4448
013e5ef9
LC
4449int
4450variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
b5b8b0ac 4451{
b5b8b0ac 4452 dataflow_set *set = dfpm->set;
013e5ef9 4453 variable var = *slot;
b5b8b0ac
AO
4454 location_chain node;
4455
09dbcd96 4456 if (!var->onepart || !var->n_var_parts)
b5b8b0ac
AO
4457 return 1;
4458
4459 gcc_assert (var->n_var_parts == 1);
4460
4461 if (dv_is_decl_p (var->dv))
4462 {
4463 bool check_dupes = false;
4464
4465 restart:
4466 for (node = var->var_part[0].loc_chain; node; node = node->next)
4467 {
4468 if (GET_CODE (node->loc) == VALUE)
4469 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4470 else if (GET_CODE (node->loc) == REG)
4471 {
4472 attrs att, *attp, *curp = NULL;
4473
4474 if (var->refcount != 1)
4475 {
4476 slot = unshare_variable (set, slot, var,
4477 VAR_INIT_STATUS_INITIALIZED);
013e5ef9 4478 var = *slot;
b5b8b0ac
AO
4479 goto restart;
4480 }
4481
4482 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4483 attp = &att->next)
4484 if (att->offset == 0
4485 && GET_MODE (att->loc) == GET_MODE (node->loc))
4486 {
4487 if (dv_is_value_p (att->dv))
4488 {
4489 rtx cval = dv_as_value (att->dv);
4490 node->loc = cval;
4491 check_dupes = true;
4492 break;
4493 }
4494 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4495 curp = attp;
4496 }
4497
4498 if (!curp)
4499 {
4500 curp = attp;
4501 while (*curp)
4502 if ((*curp)->offset == 0
4503 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4504 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4505 break;
4506 else
4507 curp = &(*curp)->next;
4508 gcc_assert (*curp);
4509 }
4510
4511 if (!att)
4512 {
4513 decl_or_value cdv;
4514 rtx cval;
4515
4516 if (!*dfpm->permp)
4517 {
4518 *dfpm->permp = XNEW (dataflow_set);
4519 dataflow_set_init (*dfpm->permp);
4520 }
4521
4522 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4523 att; att = att->next)
4524 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4525 {
a6590c31
RG
4526 gcc_assert (att->offset == 0
4527 && dv_is_value_p (att->dv));
b5b8b0ac
AO
4528 val_reset (set, att->dv);
4529 break;
4530 }
4531
4532 if (att)
4533 {
4534 cdv = att->dv;
4535 cval = dv_as_value (cdv);
4536 }
4537 else
4538 {
4539 /* Create a unique value to hold this register,
4540 that ought to be found and reused in
4541 subsequent rounds. */
4542 cselib_val *v;
4543 gcc_assert (!cselib_lookup (node->loc,
4deef538
AO
4544 GET_MODE (node->loc), 0,
4545 VOIDmode));
4546 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4547 VOIDmode);
b5b8b0ac
AO
4548 cselib_preserve_value (v);
4549 cselib_invalidate_rtx (node->loc);
4550 cval = v->val_rtx;
4551 cdv = dv_from_value (cval);
4552 if (dump_file)
4553 fprintf (dump_file,
5440c0e7
AO
4554 "Created new value %u:%u for reg %i\n",
4555 v->uid, v->hash, REGNO (node->loc));
b5b8b0ac
AO
4556 }
4557
4558 var_reg_decl_set (*dfpm->permp, node->loc,
4559 VAR_INIT_STATUS_INITIALIZED,
4560 cdv, 0, NULL, INSERT);
4561
4562 node->loc = cval;
4563 check_dupes = true;
4564 }
4565
4566 /* Remove attribute referring to the decl, which now
4567 uses the value for the register, already existing or
4568 to be added when we bring perm in. */
4569 att = *curp;
4570 *curp = att->next;
7e46899d 4571 delete att;
b5b8b0ac
AO
4572 }
4573 }
4574
4575 if (check_dupes)
4576 remove_duplicate_values (var);
4577 }
4578
4579 return 1;
4580}
4581
4582/* Reset values in the permanent set that are not associated with the
4583 chosen expression. */
4584
013e5ef9
LC
4585int
4586variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
b5b8b0ac 4587{
b5b8b0ac 4588 dataflow_set *set = dfpm->set;
013e5ef9 4589 variable pvar = *pslot, var;
b5b8b0ac
AO
4590 location_chain pnode;
4591 decl_or_value dv;
4592 attrs att;
4593
a6590c31
RG
4594 gcc_assert (dv_is_value_p (pvar->dv)
4595 && pvar->n_var_parts == 1);
b5b8b0ac 4596 pnode = pvar->var_part[0].loc_chain;
a6590c31
RG
4597 gcc_assert (pnode
4598 && !pnode->next
4599 && REG_P (pnode->loc));
b5b8b0ac
AO
4600
4601 dv = pvar->dv;
4602
4603 var = shared_hash_find (set->vars, dv);
4604 if (var)
4605 {
b933b33a
AO
4606 /* Although variable_post_merge_new_vals may have made decls
4607 non-star-canonical, values that pre-existed in canonical form
4608 remain canonical, and newly-created values reference a single
4609 REG, so they are canonical as well. Since VAR has the
4610 location list for a VALUE, using find_loc_in_1pdv for it is
4611 fine, since VALUEs don't map back to DECLs. */
b5b8b0ac
AO
4612 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4613 return 1;
4614 val_reset (set, dv);
4615 }
4616
4617 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4618 if (att->offset == 0
4619 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4620 && dv_is_value_p (att->dv))
4621 break;
4622
4623 /* If there is a value associated with this register already, create
4624 an equivalence. */
4625 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4626 {
4627 rtx cval = dv_as_value (att->dv);
4628 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4629 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4630 NULL, INSERT);
4631 }
4632 else if (!att)
4633 {
4634 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4635 dv, 0, pnode->loc);
a6590c31 4636 variable_union (pvar, set);
b5b8b0ac
AO
4637 }
4638
4639 return 1;
4640}
4641
4642/* Just checking stuff and registering register attributes for
4643 now. */
4644
4645static void
4646dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4647{
4648 struct dfset_post_merge dfpm;
4649
4650 dfpm.set = set;
4651 dfpm.permp = permp;
4652
013e5ef9 4653 shared_hash_htab (set->vars)
c203e8a7 4654 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
b5b8b0ac 4655 if (*permp)
013e5ef9 4656 shared_hash_htab ((*permp)->vars)
c203e8a7 4657 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
013e5ef9 4658 shared_hash_htab (set->vars)
c203e8a7 4659 ->traverse <dataflow_set *, canonicalize_values_star> (set);
013e5ef9 4660 shared_hash_htab (set->vars)
c203e8a7 4661 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
b5b8b0ac
AO
4662}
4663
4664/* Return a node whose loc is a MEM that refers to EXPR in the
4665 location list of a one-part variable or value VAR, or in that of
4666 any values recursively mentioned in the location lists. */
4667
4668static location_chain
c203e8a7 4669find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
b5b8b0ac
AO
4670{
4671 location_chain node;
4672 decl_or_value dv;
4673 variable var;
4674 location_chain where = NULL;
4675
4676 if (!val)
4677 return NULL;
4678
a6590c31
RG
4679 gcc_assert (GET_CODE (val) == VALUE
4680 && !VALUE_RECURSED_INTO (val));
b5b8b0ac
AO
4681
4682 dv = dv_from_value (val);
c203e8a7 4683 var = vars->find_with_hash (dv, dv_htab_hash (dv));
b5b8b0ac
AO
4684
4685 if (!var)
4686 return NULL;
4687
09dbcd96 4688 gcc_assert (var->onepart);
b5b8b0ac
AO
4689
4690 if (!var->n_var_parts)
4691 return NULL;
4692
b5b8b0ac
AO
4693 VALUE_RECURSED_INTO (val) = true;
4694
4695 for (node = var->var_part[0].loc_chain; node; node = node->next)
c46d001a
EB
4696 if (MEM_P (node->loc)
4697 && MEM_EXPR (node->loc) == expr
4698 && INT_MEM_OFFSET (node->loc) == 0)
b5b8b0ac
AO
4699 {
4700 where = node;
4701 break;
4702 }
4703 else if (GET_CODE (node->loc) == VALUE
4704 && !VALUE_RECURSED_INTO (node->loc)
4705 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4706 break;
4707
4708 VALUE_RECURSED_INTO (val) = false;
4709
4710 return where;
4711}
4712
4a4d4c08
AO
4713/* Return TRUE if the value of MEM may vary across a call. */
4714
4715static bool
4716mem_dies_at_call (rtx mem)
4717{
4718 tree expr = MEM_EXPR (mem);
4719 tree decl;
4720
4721 if (!expr)
4722 return true;
4723
4724 decl = get_base_address (expr);
4725
4726 if (!decl)
4727 return true;
4728
4729 if (!DECL_P (decl))
4730 return true;
4731
4732 return (may_be_aliased (decl)
4733 || (!TREE_READONLY (decl) && is_global_var (decl)));
4734}
4735
b5b8b0ac
AO
4736/* Remove all MEMs from the location list of a hash table entry for a
4737 one-part variable, except those whose MEM attributes map back to
4a4d4c08 4738 the variable itself, directly or within a VALUE. */
b5b8b0ac 4739
013e5ef9
LC
4740int
4741dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
b5b8b0ac 4742{
013e5ef9 4743 variable var = *slot;
b5b8b0ac 4744
09dbcd96 4745 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
b5b8b0ac
AO
4746 {
4747 tree decl = dv_as_decl (var->dv);
4748 location_chain loc, *locp;
864ddef7 4749 bool changed = false;
b5b8b0ac
AO
4750
4751 if (!var->n_var_parts)
4752 return 1;
4753
4754 gcc_assert (var->n_var_parts == 1);
4755
864ddef7 4756 if (shared_var_p (var, set->vars))
b5b8b0ac
AO
4757 {
4758 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4759 {
c46d001a 4760 /* We want to remove dying MEMs that doesn't refer to DECL. */
b5b8b0ac
AO
4761 if (GET_CODE (loc->loc) == MEM
4762 && (MEM_EXPR (loc->loc) != decl
c46d001a 4763 || INT_MEM_OFFSET (loc->loc) != 0)
4a4d4c08 4764 && !mem_dies_at_call (loc->loc))
b5b8b0ac 4765 break;
4a4d4c08 4766 /* We want to move here MEMs that do refer to DECL. */
b5b8b0ac
AO
4767 else if (GET_CODE (loc->loc) == VALUE
4768 && find_mem_expr_in_1pdv (decl, loc->loc,
4769 shared_hash_htab (set->vars)))
4a4d4c08 4770 break;
b5b8b0ac
AO
4771 }
4772
4773 if (!loc)
4774 return 1;
4775
4776 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
013e5ef9 4777 var = *slot;
b5b8b0ac
AO
4778 gcc_assert (var->n_var_parts == 1);
4779 }
4780
4781 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4782 loc; loc = *locp)
4783 {
4784 rtx old_loc = loc->loc;
4785 if (GET_CODE (old_loc) == VALUE)
4786 {
4787 location_chain mem_node
4788 = find_mem_expr_in_1pdv (decl, loc->loc,
4789 shared_hash_htab (set->vars));
4790
4791 /* ??? This picks up only one out of multiple MEMs that
4792 refer to the same variable. Do we ever need to be
4793 concerned about dealing with more than one, or, given
4794 that they should all map to the same variable
4795 location, their addresses will have been merged and
4796 they will be regarded as equivalent? */
4797 if (mem_node)
4798 {
4799 loc->loc = mem_node->loc;
4800 loc->set_src = mem_node->set_src;
4801 loc->init = MIN (loc->init, mem_node->init);
4802 }
4803 }
4804
4805 if (GET_CODE (loc->loc) != MEM
4806 || (MEM_EXPR (loc->loc) == decl
c46d001a 4807 && INT_MEM_OFFSET (loc->loc) == 0)
4a4d4c08 4808 || !mem_dies_at_call (loc->loc))
b5b8b0ac
AO
4809 {
4810 if (old_loc != loc->loc && emit_notes)
4811 {
864ddef7
JJ
4812 if (old_loc == var->var_part[0].cur_loc)
4813 {
4814 changed = true;
4815 var->var_part[0].cur_loc = NULL;
864ddef7 4816 }
b5b8b0ac
AO
4817 }
4818 locp = &loc->next;
4819 continue;
4820 }
4821
4822 if (emit_notes)
864ddef7 4823 {
864ddef7
JJ
4824 if (old_loc == var->var_part[0].cur_loc)
4825 {
4826 changed = true;
4827 var->var_part[0].cur_loc = NULL;
864ddef7
JJ
4828 }
4829 }
b5b8b0ac 4830 *locp = loc->next;
7e46899d 4831 delete loc;
b5b8b0ac
AO
4832 }
4833
4834 if (!var->var_part[0].loc_chain)
4835 {
4836 var->n_var_parts--;
864ddef7 4837 changed = true;
b5b8b0ac 4838 }
864ddef7
JJ
4839 if (changed)
4840 variable_was_changed (var, set);
b5b8b0ac
AO
4841 }
4842
4843 return 1;
4844}
4845
4846/* Remove all MEMs from the location list of a hash table entry for a
4847 value. */
4848
013e5ef9
LC
4849int
4850dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
b5b8b0ac 4851{
013e5ef9 4852 variable var = *slot;
b5b8b0ac 4853
09dbcd96 4854 if (var->onepart == ONEPART_VALUE)
b5b8b0ac
AO
4855 {
4856 location_chain loc, *locp;
4857 bool changed = false;
09dbcd96 4858 rtx cur_loc;
b5b8b0ac
AO
4859
4860 gcc_assert (var->n_var_parts == 1);
4861
864ddef7 4862 if (shared_var_p (var, set->vars))
b5b8b0ac
AO
4863 {
4864 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4a4d4c08
AO
4865 if (GET_CODE (loc->loc) == MEM
4866 && mem_dies_at_call (loc->loc))
b5b8b0ac
AO
4867 break;
4868
4869 if (!loc)
4870 return 1;
4871
4872 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
013e5ef9 4873 var = *slot;
b5b8b0ac
AO
4874 gcc_assert (var->n_var_parts == 1);
4875 }
4876
09dbcd96
AO
4877 if (VAR_LOC_1PAUX (var))
4878 cur_loc = VAR_LOC_FROM (var);
4879 else
4880 cur_loc = var->var_part[0].cur_loc;
4881
b5b8b0ac
AO
4882 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4883 loc; loc = *locp)
4884 {
4a4d4c08
AO
4885 if (GET_CODE (loc->loc) != MEM
4886 || !mem_dies_at_call (loc->loc))
b5b8b0ac
AO
4887 {
4888 locp = &loc->next;
4889 continue;
4890 }
4891
b5b8b0ac
AO
4892 *locp = loc->next;
4893 /* If we have deleted the location which was last emitted
4894 we have to emit new location so add the variable to set
4895 of changed variables. */
09dbcd96 4896 if (cur_loc == loc->loc)
864ddef7
JJ
4897 {
4898 changed = true;
4899 var->var_part[0].cur_loc = NULL;
09dbcd96
AO
4900 if (VAR_LOC_1PAUX (var))
4901 VAR_LOC_FROM (var) = NULL;
864ddef7 4902 }
7e46899d 4903 delete loc;
b5b8b0ac
AO
4904 }
4905
4906 if (!var->var_part[0].loc_chain)
4907 {
4908 var->n_var_parts--;
864ddef7 4909 changed = true;
b5b8b0ac
AO
4910 }
4911 if (changed)
864ddef7 4912 variable_was_changed (var, set);
b5b8b0ac
AO
4913 }
4914
4915 return 1;
4916}
4917
4918/* Remove all variable-location information about call-clobbered
4919 registers, as well as associations between MEMs and VALUEs. */
4920
4921static void
0f9f9784 4922dataflow_set_clear_at_call (dataflow_set *set)
b5b8b0ac 4923{
c7fb4c7a
SB
4924 unsigned int r;
4925 hard_reg_set_iterator hrsi;
b5b8b0ac 4926
0f9f9784 4927 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
c7fb4c7a 4928 var_regno_delete (set, r);
b5b8b0ac
AO
4929
4930 if (MAY_HAVE_DEBUG_INSNS)
4931 {
4932 set->traversed_vars = set->vars;
013e5ef9 4933 shared_hash_htab (set->vars)
c203e8a7 4934 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
b5b8b0ac 4935 set->traversed_vars = set->vars;
013e5ef9 4936 shared_hash_htab (set->vars)
c203e8a7 4937 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
b5b8b0ac
AO
4938 set->traversed_vars = NULL;
4939 }
4940}
4941
b5b8b0ac
AO
4942static bool
4943variable_part_different_p (variable_part *vp1, variable_part *vp2)
4944{
4945 location_chain lc1, lc2;
4946
4947 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4948 {
4949 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4950 {
4951 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4952 {
4953 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4954 break;
4955 }
4956 if (rtx_equal_p (lc1->loc, lc2->loc))
4957 break;
4958 }
4959 if (!lc2)
4960 return true;
4961 }
4962 return false;
4963}
4964
4965/* Return true if one-part variables VAR1 and VAR2 are different.
4966 They must be in canonical order. */
4967
4968static bool
4969onepart_variable_different_p (variable var1, variable var2)
4970{
4971 location_chain lc1, lc2;
4972
4973 if (var1 == var2)
4974 return false;
4975
a6590c31
RG
4976 gcc_assert (var1->n_var_parts == 1
4977 && var2->n_var_parts == 1);
b5b8b0ac
AO
4978
4979 lc1 = var1->var_part[0].loc_chain;
4980 lc2 = var2->var_part[0].loc_chain;
4981
a6590c31 4982 gcc_assert (lc1 && lc2);
b5b8b0ac
AO
4983
4984 while (lc1 && lc2)
4985 {
4986 if (loc_cmp (lc1->loc, lc2->loc))
4987 return true;
4988 lc1 = lc1->next;
4989 lc2 = lc2->next;
4990 }
4991
4992 return lc1 != lc2;
4993}
4994
864ddef7 4995/* Return true if variables VAR1 and VAR2 are different. */
b5b8b0ac
AO
4996
4997static bool
864ddef7 4998variable_different_p (variable var1, variable var2)
b5b8b0ac
AO
4999{
5000 int i;
5001
5002 if (var1 == var2)
5003 return false;
5004
09dbcd96
AO
5005 if (var1->onepart != var2->onepart)
5006 return true;
5007
b5b8b0ac
AO
5008 if (var1->n_var_parts != var2->n_var_parts)
5009 return true;
5010
09dbcd96
AO
5011 if (var1->onepart && var1->n_var_parts)
5012 {
5013 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
5014 && var1->n_var_parts == 1);
5015 /* One-part values have locations in a canonical order. */
5016 return onepart_variable_different_p (var1, var2);
5017 }
5018
b5b8b0ac
AO
5019 for (i = 0; i < var1->n_var_parts; i++)
5020 {
09dbcd96 5021 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
b5b8b0ac 5022 return true;
b5b8b0ac
AO
5023 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5024 return true;
5025 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5026 return true;
5027 }
5028 return false;
5029}
5030
b5b8b0ac
AO
5031/* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5032
5033static bool
5034dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5035{
013e5ef9 5036 variable_iterator_type hi;
a6590c31
RG
5037 variable var1;
5038
b5b8b0ac
AO
5039 if (old_set->vars == new_set->vars)
5040 return false;
5041
c203e8a7
TS
5042 if (shared_hash_htab (old_set->vars)->elements ()
5043 != shared_hash_htab (new_set->vars)->elements ())
b5b8b0ac
AO
5044 return true;
5045
c203e8a7 5046 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
013e5ef9 5047 var1, variable, hi)
a6590c31 5048 {
c203e8a7
TS
5049 variable_table_type *htab = shared_hash_htab (new_set->vars);
5050 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
a6590c31
RG
5051 if (!var2)
5052 {
5053 if (dump_file && (dump_flags & TDF_DETAILS))
5054 {
5055 fprintf (dump_file, "dataflow difference found: removal of:\n");
5056 dump_var (var1);
5057 }
5058 return true;
5059 }
5060
5061 if (variable_different_p (var1, var2))
5062 {
5063 if (dump_file && (dump_flags & TDF_DETAILS))
5064 {
5065 fprintf (dump_file, "dataflow difference found: "
5066 "old and new follow:\n");
5067 dump_var (var1);
5068 dump_var (var2);
5069 }
5070 return true;
5071 }
5072 }
b5b8b0ac 5073
b5b8b0ac
AO
5074 /* No need to traverse the second hashtab, if both have the same number
5075 of elements and the second one had all entries found in the first one,
5076 then it can't have any extra entries. */
a6590c31 5077 return false;
b5b8b0ac
AO
5078}
5079
5080/* Free the contents of dataflow set SET. */
5081
5082static void
5083dataflow_set_destroy (dataflow_set *set)
5084{
5085 int i;
5086
5087 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5088 attrs_list_clear (&set->regs[i]);
5089
5090 shared_hash_destroy (set->vars);
5091 set->vars = NULL;
5092}
5093
5094/* Return true if RTL X contains a SYMBOL_REF. */
5095
5096static bool
5097contains_symbol_ref (rtx x)
5098{
5099 const char *fmt;
5100 RTX_CODE code;
5101 int i;
5102
5103 if (!x)
5104 return false;
5105
5106 code = GET_CODE (x);
5107 if (code == SYMBOL_REF)
5108 return true;
5109
5110 fmt = GET_RTX_FORMAT (code);
5111 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5112 {
5113 if (fmt[i] == 'e')
5114 {
5115 if (contains_symbol_ref (XEXP (x, i)))
5116 return true;
5117 }
5118 else if (fmt[i] == 'E')
5119 {
5120 int j;
5121 for (j = 0; j < XVECLEN (x, i); j++)
5122 if (contains_symbol_ref (XVECEXP (x, i, j)))
5123 return true;
5124 }
5125 }
5126
5127 return false;
5128}
5129
5130/* Shall EXPR be tracked? */
5131
5132static bool
5133track_expr_p (tree expr, bool need_rtl)
5134{
5135 rtx decl_rtl;
5136 tree realdecl;
5137
0ca5af51
AO
5138 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5139 return DECL_RTL_SET_P (expr);
5140
b5b8b0ac
AO
5141 /* If EXPR is not a parameter or a variable do not track it. */
5142 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5143 return 0;
5144
5145 /* It also must have a name... */
2e957792 5146 if (!DECL_NAME (expr) && need_rtl)
b5b8b0ac
AO
5147 return 0;
5148
5149 /* ... and a RTL assigned to it. */
5150 decl_rtl = DECL_RTL_IF_SET (expr);
5151 if (!decl_rtl && need_rtl)
5152 return 0;
b8698a0f
L
5153
5154 /* If this expression is really a debug alias of some other declaration, we
b5b8b0ac
AO
5155 don't need to track this expression if the ultimate declaration is
5156 ignored. */
5157 realdecl = expr;
839b422f 5158 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
b5b8b0ac
AO
5159 {
5160 realdecl = DECL_DEBUG_EXPR (realdecl);
839b422f 5161 if (!DECL_P (realdecl))
823e9473 5162 {
9430b7ba
JJ
5163 if (handled_component_p (realdecl)
5164 || (TREE_CODE (realdecl) == MEM_REF
5165 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
823e9473
JJ
5166 {
5167 HOST_WIDE_INT bitsize, bitpos, maxsize;
5168 tree innerdecl
5169 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5170 &maxsize);
5171 if (!DECL_P (innerdecl)
5172 || DECL_IGNORED_P (innerdecl)
35af99b4
EB
5173 /* Do not track declarations for parts of tracked parameters
5174 since we want to track them as a whole instead. */
5175 || (TREE_CODE (innerdecl) == PARM_DECL
5176 && DECL_MODE (innerdecl) != BLKmode
5177 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
823e9473
JJ
5178 || TREE_STATIC (innerdecl)
5179 || bitsize <= 0
5180 || bitpos + bitsize > 256
5181 || bitsize != maxsize)
5182 return 0;
5183 else
5184 realdecl = expr;
5185 }
5186 else
5187 return 0;
5188 }
b5b8b0ac
AO
5189 }
5190
5191 /* Do not track EXPR if REALDECL it should be ignored for debugging
b8698a0f 5192 purposes. */
b5b8b0ac
AO
5193 if (DECL_IGNORED_P (realdecl))
5194 return 0;
5195
5196 /* Do not track global variables until we are able to emit correct location
5197 list for them. */
5198 if (TREE_STATIC (realdecl))
5199 return 0;
5200
5201 /* When the EXPR is a DECL for alias of some variable (see example)
5202 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5203 DECL_RTL contains SYMBOL_REF.
5204
5205 Example:
5206 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5207 char **_dl_argv;
5208 */
5209 if (decl_rtl && MEM_P (decl_rtl)
5210 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5211 return 0;
5212
5213 /* If RTX is a memory it should not be very large (because it would be
5214 an array or struct). */
5215 if (decl_rtl && MEM_P (decl_rtl))
5216 {
5217 /* Do not track structures and arrays. */
5218 if (GET_MODE (decl_rtl) == BLKmode
5219 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5220 return 0;
f5541398
RS
5221 if (MEM_SIZE_KNOWN_P (decl_rtl)
5222 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
b5b8b0ac
AO
5223 return 0;
5224 }
5225
5226 DECL_CHANGED (expr) = 0;
5227 DECL_CHANGED (realdecl) = 0;
5228 return 1;
5229}
5230
5231/* Determine whether a given LOC refers to the same variable part as
5232 EXPR+OFFSET. */
5233
5234static bool
5235same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5236{
5237 tree expr2;
5238 HOST_WIDE_INT offset2;
5239
5240 if (! DECL_P (expr))
5241 return false;
5242
5243 if (REG_P (loc))
5244 {
5245 expr2 = REG_EXPR (loc);
5246 offset2 = REG_OFFSET (loc);
5247 }
5248 else if (MEM_P (loc))
5249 {
5250 expr2 = MEM_EXPR (loc);
5251 offset2 = INT_MEM_OFFSET (loc);
5252 }
5253 else
5254 return false;
5255
5256 if (! expr2 || ! DECL_P (expr2))
5257 return false;
5258
5259 expr = var_debug_decl (expr);
5260 expr2 = var_debug_decl (expr2);
5261
5262 return (expr == expr2 && offset == offset2);
5263}
5264
5265/* LOC is a REG or MEM that we would like to track if possible.
38ae7651
RS
5266 If EXPR is null, we don't know what expression LOC refers to,
5267 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5268 LOC is an lvalue register.
94a7682d 5269
38ae7651
RS
5270 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5271 is something we can track. When returning true, store the mode of
5272 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5273 from EXPR in *OFFSET_OUT (if nonnull). */
94a7682d 5274
38ae7651
RS
5275static bool
5276track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
ef4bddc2 5277 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
94a7682d 5278{
ef4bddc2 5279 machine_mode mode;
94a7682d 5280
b5b8b0ac 5281 if (expr == NULL || !track_expr_p (expr, true))
38ae7651
RS
5282 return false;
5283
5284 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5285 whole subreg, but only the old inner part is really relevant. */
5286 mode = GET_MODE (loc);
5287 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
94a7682d 5288 {
ef4bddc2 5289 machine_mode pseudo_mode;
94a7682d 5290
38ae7651 5291 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
94a7682d 5292 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
38ae7651
RS
5293 {
5294 offset += byte_lowpart_offset (pseudo_mode, mode);
5295 mode = pseudo_mode;
5296 }
5297 }
5298
5299 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5300 Do the same if we are storing to a register and EXPR occupies
5301 the whole of register LOC; in that case, the whole of EXPR is
5302 being changed. We exclude complex modes from the second case
5303 because the real and imaginary parts are represented as separate
5304 pseudo registers, even if the whole complex value fits into one
5305 hard register. */
5306 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5307 || (store_reg_p
5308 && !COMPLEX_MODE_P (DECL_MODE (expr))
5309 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5310 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5311 {
5312 mode = DECL_MODE (expr);
5313 offset = 0;
94a7682d 5314 }
38ae7651
RS
5315
5316 if (offset < 0 || offset >= MAX_VAR_PARTS)
5317 return false;
5318
5319 if (mode_out)
5320 *mode_out = mode;
5321 if (offset_out)
5322 *offset_out = offset;
5323 return true;
94a7682d
RS
5324}
5325
5326/* Return the MODE lowpart of LOC, or null if LOC is not something we
5327 want to track. When returning nonnull, make sure that the attributes
5328 on the returned value are updated. */
5329
5330static rtx
ef4bddc2 5331var_lowpart (machine_mode mode, rtx loc)
94a7682d 5332{
38ae7651 5333 unsigned int offset, reg_offset, regno;
94a7682d 5334
94a7682d
RS
5335 if (GET_MODE (loc) == mode)
5336 return loc;
5337
1791f36f
UB
5338 if (!REG_P (loc) && !MEM_P (loc))
5339 return NULL;
5340
b5b8b0ac
AO
5341 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5342
5343 if (MEM_P (loc))
5344 return adjust_address_nv (loc, mode, offset);
5345
5346 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5347 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5348 reg_offset, mode);
5349 return gen_rtx_REG_offset (loc, mode, regno, offset);
5350}
5351
5352/* Carry information about uses and stores while walking rtx. */
5353
5354struct count_use_info
5355{
5356 /* The insn where the RTX is. */
598d62da 5357 rtx_insn *insn;
b5b8b0ac
AO
5358
5359 /* The basic block where insn is. */
5360 basic_block bb;
5361
5362 /* The array of n_sets sets in the insn, as determined by cselib. */
5363 struct cselib_set *sets;
5364 int n_sets;
5365
5366 /* True if we're counting stores, false otherwise. */
5367 bool store_p;
5368};
5369
5370/* Find a VALUE corresponding to X. */
5371
5372static inline cselib_val *
ef4bddc2 5373find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
b5b8b0ac
AO
5374{
5375 int i;
5376
5377 if (cui->sets)
5378 {
5379 /* This is called after uses are set up and before stores are
c7148991 5380 processed by cselib, so it's safe to look up srcs, but not
b5b8b0ac
AO
5381 dsts. So we look up expressions that appear in srcs or in
5382 dest expressions, but we search the sets array for dests of
5383 stores. */
5384 if (cui->store_p)
5385 {
c7148991
JJ
5386 /* Some targets represent memset and memcpy patterns
5387 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5388 (set (mem:BLK ...) (const_int ...)) or
5389 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5390 in that case, otherwise we end up with mode mismatches. */
5391 if (mode == BLKmode && MEM_P (x))
5392 return NULL;
b5b8b0ac
AO
5393 for (i = 0; i < cui->n_sets; i++)
5394 if (cui->sets[i].dest == x)
5395 return cui->sets[i].src_elt;
5396 }
5397 else
4deef538 5398 return cselib_lookup (x, mode, 0, VOIDmode);
b5b8b0ac
AO
5399 }
5400
5401 return NULL;
5402}
5403
5404/* Replace all registers and addresses in an expression with VALUE
5405 expressions that map back to them, unless the expression is a
5406 register. If no mapping is or can be performed, returns NULL. */
5407
5408static rtx
5409replace_expr_with_values (rtx loc)
5410{
509f4495 5411 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
b5b8b0ac
AO
5412 return NULL;
5413 else if (MEM_P (loc))
5414 {
457eeaae 5415 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
4deef538
AO
5416 get_address_mode (loc), 0,
5417 GET_MODE (loc));
b5b8b0ac
AO
5418 if (addr)
5419 return replace_equiv_address_nv (loc, addr->val_rtx);
5420 else
5421 return NULL;
5422 }
5423 else
4deef538 5424 return cselib_subst_to_values (loc, VOIDmode);
b5b8b0ac
AO
5425}
5426
4f498863 5427/* Return true if X contains a DEBUG_EXPR. */
bfd5f9f5 5428
4f498863
RS
5429static bool
5430rtx_debug_expr_p (const_rtx x)
bfd5f9f5 5431{
4f498863
RS
5432 subrtx_iterator::array_type array;
5433 FOR_EACH_SUBRTX (iter, array, x, ALL)
5434 if (GET_CODE (*iter) == DEBUG_EXPR)
5435 return true;
5436 return false;
bfd5f9f5
AO
5437}
5438
b5b8b0ac
AO
5439/* Determine what kind of micro operation to choose for a USE. Return
5440 MO_CLOBBER if no micro operation is to be generated. */
5441
5442static enum micro_operation_type
ef4bddc2 5443use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
b5b8b0ac
AO
5444{
5445 tree expr;
b5b8b0ac
AO
5446
5447 if (cui && cui->sets)
5448 {
951d4497 5449 if (GET_CODE (loc) == VAR_LOCATION)
b5b8b0ac 5450 {
951d4497 5451 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
b5b8b0ac 5452 {
951d4497 5453 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
457eeaae
JJ
5454 if (! VAR_LOC_UNKNOWN_P (ploc))
5455 {
4deef538
AO
5456 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5457 VOIDmode);
b5b8b0ac 5458
457eeaae
JJ
5459 /* ??? flag_float_store and volatile mems are never
5460 given values, but we could in theory use them for
5461 locations. */
5462 gcc_assert (val || 1);
5463 }
b5b8b0ac
AO
5464 return MO_VAL_LOC;
5465 }
5466 else
5467 return MO_CLOBBER;
5468 }
5469
f827f659 5470 if (REG_P (loc) || MEM_P (loc))
b5b8b0ac
AO
5471 {
5472 if (modep)
951d4497 5473 *modep = GET_MODE (loc);
b5b8b0ac
AO
5474 if (cui->store_p)
5475 {
951d4497 5476 if (REG_P (loc)
f827f659 5477 || (find_use_val (loc, GET_MODE (loc), cui)
457eeaae 5478 && cselib_lookup (XEXP (loc, 0),
4deef538
AO
5479 get_address_mode (loc), 0,
5480 GET_MODE (loc))))
b5b8b0ac
AO
5481 return MO_VAL_SET;
5482 }
f827f659
AO
5483 else
5484 {
5485 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5486
5487 if (val && !cselib_preserved_value_p (val))
5488 return MO_VAL_USE;
5489 }
b5b8b0ac
AO
5490 }
5491 }
5492
951d4497 5493 if (REG_P (loc))
b5b8b0ac 5494 {
951d4497 5495 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
b5b8b0ac 5496
457eeaae
JJ
5497 if (loc == cfa_base_rtx)
5498 return MO_CLOBBER;
951d4497 5499 expr = REG_EXPR (loc);
b5b8b0ac
AO
5500
5501 if (!expr)
5502 return MO_USE_NO_VAR;
5503 else if (target_for_debug_bind (var_debug_decl (expr)))
5504 return MO_CLOBBER;
951d4497 5505 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
b5b8b0ac
AO
5506 false, modep, NULL))
5507 return MO_USE;
5508 else
5509 return MO_USE_NO_VAR;
5510 }
951d4497 5511 else if (MEM_P (loc))
b5b8b0ac 5512 {
951d4497 5513 expr = MEM_EXPR (loc);
b5b8b0ac
AO
5514
5515 if (!expr)
5516 return MO_CLOBBER;
5517 else if (target_for_debug_bind (var_debug_decl (expr)))
5518 return MO_CLOBBER;
951d4497 5519 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
bfd5f9f5
AO
5520 false, modep, NULL)
5521 /* Multi-part variables shouldn't refer to one-part
5522 variable names such as VALUEs (never happens) or
5523 DEBUG_EXPRs (only happens in the presence of debug
5524 insns). */
5525 && (!MAY_HAVE_DEBUG_INSNS
4f498863 5526 || !rtx_debug_expr_p (XEXP (loc, 0))))
b5b8b0ac
AO
5527 return MO_USE;
5528 else
5529 return MO_CLOBBER;
5530 }
5531
5532 return MO_CLOBBER;
5533}
94a7682d 5534
b5b8b0ac
AO
5535/* Log to OUT information about micro-operation MOPT involving X in
5536 INSN of BB. */
94a7682d 5537
b5b8b0ac 5538static inline void
598d62da 5539log_op_type (rtx x, basic_block bb, rtx_insn *insn,
b5b8b0ac
AO
5540 enum micro_operation_type mopt, FILE *out)
5541{
5542 fprintf (out, "bb %i op %i insn %i %s ",
9771b263 5543 bb->index, VTI (bb)->mos.length (),
b5b8b0ac
AO
5544 INSN_UID (insn), micro_operation_type_name[mopt]);
5545 print_inline_rtx (out, x, 2);
5546 fputc ('\n', out);
94a7682d 5547}
ca787200 5548
b5b8b0ac
AO
5549/* Tell whether the CONCAT used to holds a VALUE and its location
5550 needs value resolution, i.e., an attempt of mapping the location
5551 back to other incoming values. */
5552#define VAL_NEEDS_RESOLUTION(x) \
5553 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5554/* Whether the location in the CONCAT is a tracked expression, that
5555 should also be handled like a MO_USE. */
5556#define VAL_HOLDS_TRACK_EXPR(x) \
5557 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5558/* Whether the location in the CONCAT should be handled like a MO_COPY
5559 as well. */
5560#define VAL_EXPR_IS_COPIED(x) \
5561 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5562/* Whether the location in the CONCAT should be handled like a
5563 MO_CLOBBER as well. */
5564#define VAL_EXPR_IS_CLOBBERED(x) \
5565 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5566
1feb8238 5567/* All preserved VALUEs. */
9771b263 5568static vec<rtx> preserved_values;
1feb8238 5569
0de3e43f 5570/* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
1feb8238
JJ
5571
5572static void
5573preserve_value (cselib_val *val)
5574{
5575 cselib_preserve_value (val);
9771b263 5576 preserved_values.safe_push (val->val_rtx);
1feb8238
JJ
5577}
5578
5644a3d0
JJ
5579/* Helper function for MO_VAL_LOC handling. Return non-zero if
5580 any rtxes not suitable for CONST use not replaced by VALUEs
5581 are discovered. */
5582
7e56c283
RS
5583static bool
5584non_suitable_const (const_rtx x)
5644a3d0 5585{
7e56c283
RS
5586 subrtx_iterator::array_type array;
5587 FOR_EACH_SUBRTX (iter, array, x, ALL)
5644a3d0 5588 {
7e56c283
RS
5589 const_rtx x = *iter;
5590 switch (GET_CODE (x))
5591 {
5592 case REG:
5593 case DEBUG_EXPR:
5594 case PC:
5595 case SCRATCH:
5596 case CC0:
5597 case ASM_INPUT:
5598 case ASM_OPERANDS:
5599 return true;
5600 case MEM:
5601 if (!MEM_READONLY_P (x))
5602 return true;
5603 break;
5604 default:
5605 break;
5606 }
5644a3d0 5607 }
7e56c283 5608 return false;
5644a3d0
JJ
5609}
5610
014a1138 5611/* Add uses (register and memory references) LOC which will be tracked
3b4459f9 5612 to VTI (bb)->mos. */
014a1138 5613
3b4459f9
RS
5614static void
5615add_uses (rtx loc, struct count_use_info *cui)
014a1138 5616{
ef4bddc2 5617 machine_mode mode = VOIDmode;
b5b8b0ac 5618 enum micro_operation_type type = use_type (loc, cui, &mode);
38ae7651 5619
b5b8b0ac 5620 if (type != MO_CLOBBER)
014a1138 5621 {
b5b8b0ac 5622 basic_block bb = cui->bb;
0de3e43f 5623 micro_operation mo;
014a1138 5624
0de3e43f
JJ
5625 mo.type = type;
5626 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5627 mo.insn = cui->insn;
b5b8b0ac
AO
5628
5629 if (type == MO_VAL_LOC)
94a7682d 5630 {
951d4497 5631 rtx oloc = loc;
b5b8b0ac
AO
5632 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5633 cselib_val *val;
5634
5635 gcc_assert (cui->sets);
5636
5637 if (MEM_P (vloc)
457eeaae 5638 && !REG_P (XEXP (vloc, 0))
09dbcd96 5639 && !MEM_P (XEXP (vloc, 0)))
b5b8b0ac
AO
5640 {
5641 rtx mloc = vloc;
ef4bddc2 5642 machine_mode address_mode = get_address_mode (mloc);
d4ebfa65 5643 cselib_val *val
4deef538
AO
5644 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5645 GET_MODE (mloc));
b5b8b0ac
AO
5646
5647 if (val && !cselib_preserved_value_p (val))
6f2ffb4b 5648 preserve_value (val);
b5b8b0ac
AO
5649 }
5650
5644a3d0 5651 if (CONSTANT_P (vloc)
7e56c283 5652 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5644a3d0 5653 /* For constants don't look up any value. */;
09dbcd96 5654 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5644a3d0 5655 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
b5b8b0ac 5656 {
ef4bddc2 5657 machine_mode mode2;
b5b8b0ac 5658 enum micro_operation_type type2;
6f2ffb4b
AO
5659 rtx nloc = NULL;
5660 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5661
5662 if (resolvable)
5663 nloc = replace_expr_with_values (vloc);
b5b8b0ac
AO
5664
5665 if (nloc)
5666 {
5667 oloc = shallow_copy_rtx (oloc);
5668 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5669 }
5670
5671 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5672
951d4497 5673 type2 = use_type (vloc, 0, &mode2);
b5b8b0ac
AO
5674
5675 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5676 || type2 == MO_CLOBBER);
5677
5678 if (type2 == MO_CLOBBER
5679 && !cselib_preserved_value_p (val))
5680 {
6f2ffb4b 5681 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
1feb8238 5682 preserve_value (val);
b5b8b0ac
AO
5683 }
5684 }
5685 else if (!VAR_LOC_UNKNOWN_P (vloc))
5686 {
5687 oloc = shallow_copy_rtx (oloc);
5688 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5689 }
5690
0de3e43f 5691 mo.u.loc = oloc;
94a7682d 5692 }
b5b8b0ac 5693 else if (type == MO_VAL_USE)
94a7682d 5694 {
ef4bddc2 5695 machine_mode mode2 = VOIDmode;
b5b8b0ac 5696 enum micro_operation_type type2;
951d4497
AO
5697 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5698 rtx vloc, oloc = loc, nloc;
b5b8b0ac
AO
5699
5700 gcc_assert (cui->sets);
5701
5702 if (MEM_P (oloc)
457eeaae 5703 && !REG_P (XEXP (oloc, 0))
09dbcd96 5704 && !MEM_P (XEXP (oloc, 0)))
b5b8b0ac
AO
5705 {
5706 rtx mloc = oloc;
ef4bddc2 5707 machine_mode address_mode = get_address_mode (mloc);
d4ebfa65 5708 cselib_val *val
4deef538 5709 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
09dbcd96 5710 GET_MODE (mloc));
b5b8b0ac
AO
5711
5712 if (val && !cselib_preserved_value_p (val))
6f2ffb4b 5713 preserve_value (val);
b5b8b0ac
AO
5714 }
5715
5716 type2 = use_type (loc, 0, &mode2);
5717
5718 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5719 || type2 == MO_CLOBBER);
5720
5721 if (type2 == MO_USE)
951d4497 5722 vloc = var_lowpart (mode2, loc);
b5b8b0ac
AO
5723 else
5724 vloc = oloc;
5725
5726 /* The loc of a MO_VAL_USE may have two forms:
5727
5728 (concat val src): val is at src, a value-based
5729 representation.
5730
5731 (concat (concat val use) src): same as above, with use as
5732 the MO_USE tracked value, if it differs from src.
5733
5734 */
5735
6f2ffb4b 5736 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
951d4497 5737 nloc = replace_expr_with_values (loc);
b5b8b0ac
AO
5738 if (!nloc)
5739 nloc = oloc;
5740
5741 if (vloc != nloc)
5742 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5743 else
5744 oloc = val->val_rtx;
5745
0de3e43f 5746 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
b5b8b0ac
AO
5747
5748 if (type2 == MO_USE)
0de3e43f 5749 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
b5b8b0ac
AO
5750 if (!cselib_preserved_value_p (val))
5751 {
0de3e43f 5752 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
1feb8238 5753 preserve_value (val);
b5b8b0ac 5754 }
94a7682d 5755 }
b5b8b0ac
AO
5756 else
5757 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
014a1138 5758
b5b8b0ac 5759 if (dump_file && (dump_flags & TDF_DETAILS))
0de3e43f 5760 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
9771b263 5761 VTI (bb)->mos.safe_push (mo);
014a1138 5762 }
014a1138
JZ
5763}
5764
5765/* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5766
5767static void
b5b8b0ac 5768add_uses_1 (rtx *x, void *cui)
014a1138 5769{
3b4459f9
RS
5770 subrtx_var_iterator::array_type array;
5771 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5772 add_uses (*iter, (struct count_use_info *) cui);
014a1138
JZ
5773}
5774
09dbcd96
AO
5775/* This is the value used during expansion of locations. We want it
5776 to be unbounded, so that variables expanded deep in a recursion
5777 nest are fully evaluated, so that their values are cached
5778 correctly. We avoid recursion cycles through other means, and we
5779 don't unshare RTL, so excess complexity is not a problem. */
5780#define EXPR_DEPTH (INT_MAX)
5781/* We use this to keep too-complex expressions from being emitted as
5782 location notes, and then to debug information. Users can trade
5783 compile time for ridiculously complex expressions, although they're
5784 seldom useful, and they may often have to be discarded as not
5785 representable anyway. */
5786#define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
f0686e78 5787
6f2ffb4b
AO
5788/* Attempt to reverse the EXPR operation in the debug info and record
5789 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5790 no longer live we can express its value as VAL - 6. */
0c5863c2 5791
6f2ffb4b 5792static void
598d62da 5793reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
0c5863c2
JJ
5794{
5795 rtx src, arg, ret;
5796 cselib_val *v;
ae25db45 5797 struct elt_loc_list *l;
0c5863c2 5798 enum rtx_code code;
8ab1d2e9 5799 int count;
0c5863c2
JJ
5800
5801 if (GET_CODE (expr) != SET)
6f2ffb4b 5802 return;
0c5863c2
JJ
5803
5804 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
6f2ffb4b 5805 return;
0c5863c2
JJ
5806
5807 src = SET_SRC (expr);
5808 switch (GET_CODE (src))
5809 {
5810 case PLUS:
5811 case MINUS:
5812 case XOR:
5813 case NOT:
5814 case NEG:
370ae599 5815 if (!REG_P (XEXP (src, 0)))
6f2ffb4b 5816 return;
370ae599 5817 break;
0c5863c2
JJ
5818 case SIGN_EXTEND:
5819 case ZERO_EXTEND:
370ae599 5820 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
6f2ffb4b 5821 return;
0c5863c2
JJ
5822 break;
5823 default:
6f2ffb4b 5824 return;
0c5863c2
JJ
5825 }
5826
370ae599 5827 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
6f2ffb4b 5828 return;
0c5863c2 5829
4deef538 5830 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
0c5863c2 5831 if (!v || !cselib_preserved_value_p (v))
6f2ffb4b 5832 return;
0c5863c2 5833
0e224656
AO
5834 /* Use canonical V to avoid creating multiple redundant expressions
5835 for different VALUES equivalent to V. */
5836 v = canonical_cselib_val (v);
5837
ae25db45
JJ
5838 /* Adding a reverse op isn't useful if V already has an always valid
5839 location. Ignore ENTRY_VALUE, while it is always constant, we should
5840 prefer non-ENTRY_VALUE locations whenever possible. */
8ab1d2e9 5841 for (l = v->locs, count = 0; l; l = l->next, count++)
ae25db45
JJ
5842 if (CONSTANT_P (l->loc)
5843 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5844 return;
8ab1d2e9
JJ
5845 /* Avoid creating too large locs lists. */
5846 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5847 return;
ae25db45 5848
0c5863c2
JJ
5849 switch (GET_CODE (src))
5850 {
5851 case NOT:
5852 case NEG:
5853 if (GET_MODE (v->val_rtx) != GET_MODE (val))
6f2ffb4b 5854 return;
0c5863c2
JJ
5855 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5856 break;
5857 case SIGN_EXTEND:
5858 case ZERO_EXTEND:
5859 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5860 break;
5861 case XOR:
5862 code = XOR;
5863 goto binary;
5864 case PLUS:
5865 code = MINUS;
5866 goto binary;
5867 case MINUS:
5868 code = PLUS;
5869 goto binary;
5870 binary:
5871 if (GET_MODE (v->val_rtx) != GET_MODE (val))
6f2ffb4b 5872 return;
0c5863c2
JJ
5873 arg = XEXP (src, 1);
5874 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5875 {
d5b6cc25 5876 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
0c5863c2 5877 if (arg == NULL_RTX)
6f2ffb4b 5878 return;
0c5863c2 5879 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
6f2ffb4b 5880 return;
0c5863c2
JJ
5881 }
5882 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5883 if (ret == val)
5884 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5885 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5886 breaks a lot of routines during var-tracking. */
5887 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5888 break;
5889 default:
5890 gcc_unreachable ();
5891 }
5892
6f2ffb4b 5893 cselib_add_permanent_equiv (v, ret, insn);
0c5863c2
JJ
5894}
5895
014a1138 5896/* Add stores (register and memory references) LOC which will be tracked
b5b8b0ac
AO
5897 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5898 CUIP->insn is instruction which the LOC is part of. */
014a1138
JZ
5899
5900static void
b5b8b0ac 5901add_stores (rtx loc, const_rtx expr, void *cuip)
014a1138 5902{
ef4bddc2 5903 machine_mode mode = VOIDmode, mode2;
b5b8b0ac
AO
5904 struct count_use_info *cui = (struct count_use_info *)cuip;
5905 basic_block bb = cui->bb;
0de3e43f 5906 micro_operation mo;
b5b8b0ac 5907 rtx oloc = loc, nloc, src = NULL;
951d4497 5908 enum micro_operation_type type = use_type (loc, cui, &mode);
b5b8b0ac
AO
5909 bool track_p = false;
5910 cselib_val *v;
5911 bool resolve, preserve;
5912
5913 if (type == MO_CLOBBER)
5914 return;
5915
5916 mode2 = mode;
38ae7651 5917
f8cfc6aa 5918 if (REG_P (loc))
014a1138 5919 {
457eeaae 5920 gcc_assert (loc != cfa_base_rtx);
b5b8b0ac 5921 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
951d4497 5922 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
b5b8b0ac 5923 || GET_CODE (expr) == CLOBBER)
94a7682d 5924 {
0de3e43f
JJ
5925 mo.type = MO_CLOBBER;
5926 mo.u.loc = loc;
2b1c5433
JJ
5927 if (GET_CODE (expr) == SET
5928 && SET_DEST (expr) == loc
09dbcd96
AO
5929 && !unsuitable_loc (SET_SRC (expr))
5930 && find_use_val (loc, mode, cui))
2b1c5433
JJ
5931 {
5932 gcc_checking_assert (type == MO_VAL_SET);
f7df4a84 5933 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
2b1c5433 5934 }
94a7682d 5935 }
ca787200 5936 else
94a7682d 5937 {
2b1c5433
JJ
5938 if (GET_CODE (expr) == SET
5939 && SET_DEST (expr) == loc
5940 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
457eeaae 5941 src = var_lowpart (mode2, SET_SRC (expr));
b5b8b0ac 5942 loc = var_lowpart (mode2, loc);
94a7682d
RS
5943
5944 if (src == NULL)
5945 {
0de3e43f
JJ
5946 mo.type = MO_SET;
5947 mo.u.loc = loc;
94a7682d
RS
5948 }
5949 else
5950 {
f7df4a84 5951 rtx xexpr = gen_rtx_SET (loc, src);
94a7682d 5952 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
f7e088e7
EB
5953 {
5954 /* If this is an instruction copying (part of) a parameter
5955 passed by invisible reference to its register location,
5956 pretend it's a SET so that the initial memory location
5957 is discarded, as the parameter register can be reused
5958 for other purposes and we do not track locations based
5959 on generic registers. */
5960 if (MEM_P (src)
5961 && REG_EXPR (loc)
5962 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5963 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5964 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5965 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5966 != arg_pointer_rtx)
5967 mo.type = MO_SET;
5968 else
5969 mo.type = MO_COPY;
5970 }
94a7682d 5971 else
0de3e43f
JJ
5972 mo.type = MO_SET;
5973 mo.u.loc = xexpr;
94a7682d
RS
5974 }
5975 }
0de3e43f 5976 mo.insn = cui->insn;
014a1138 5977 }
3c0cb5de 5978 else if (MEM_P (loc)
951d4497 5979 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
b5b8b0ac 5980 || cui->sets))
014a1138 5981 {
b5b8b0ac 5982 if (MEM_P (loc) && type == MO_VAL_SET
457eeaae 5983 && !REG_P (XEXP (loc, 0))
09dbcd96 5984 && !MEM_P (XEXP (loc, 0)))
b5b8b0ac
AO
5985 {
5986 rtx mloc = loc;
ef4bddc2 5987 machine_mode address_mode = get_address_mode (mloc);
457eeaae 5988 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
4deef538
AO
5989 address_mode, 0,
5990 GET_MODE (mloc));
b5b8b0ac
AO
5991
5992 if (val && !cselib_preserved_value_p (val))
6f2ffb4b 5993 preserve_value (val);
b5b8b0ac 5994 }
014a1138 5995
b5b8b0ac 5996 if (GET_CODE (expr) == CLOBBER || !track_p)
94a7682d 5997 {
0de3e43f
JJ
5998 mo.type = MO_CLOBBER;
5999 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
94a7682d
RS
6000 }
6001 else
6002 {
2b1c5433
JJ
6003 if (GET_CODE (expr) == SET
6004 && SET_DEST (expr) == loc
6005 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
457eeaae 6006 src = var_lowpart (mode2, SET_SRC (expr));
b5b8b0ac 6007 loc = var_lowpart (mode2, loc);
94a7682d
RS
6008
6009 if (src == NULL)
6010 {
0de3e43f
JJ
6011 mo.type = MO_SET;
6012 mo.u.loc = loc;
94a7682d
RS
6013 }
6014 else
6015 {
f7df4a84 6016 rtx xexpr = gen_rtx_SET (loc, src);
00ee9f44 6017 if (same_variable_part_p (SET_SRC (xexpr),
ca787200 6018 MEM_EXPR (loc),
8c6c36a3 6019 INT_MEM_OFFSET (loc)))
0de3e43f 6020 mo.type = MO_COPY;
94a7682d 6021 else
0de3e43f
JJ
6022 mo.type = MO_SET;
6023 mo.u.loc = xexpr;
94a7682d
RS
6024 }
6025 }
0de3e43f 6026 mo.insn = cui->insn;
b5b8b0ac
AO
6027 }
6028 else
6029 return;
6030
6031 if (type != MO_VAL_SET)
6032 goto log_and_return;
6033
b5cd2a02
EB
6034 v = find_use_val (oloc, mode, cui);
6035
6036 if (!v)
6037 goto log_and_return;
6038
6039 resolve = preserve = !cselib_preserved_value_p (v);
6040
35af99b4
EB
6041 /* We cannot track values for multiple-part variables, so we track only
6042 locations for tracked parameters passed either by invisible reference
6043 or directly in multiple locations. */
6044 if (track_p
6045 && REG_P (loc)
6046 && REG_EXPR (loc)
6047 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
6048 && DECL_MODE (REG_EXPR (loc)) != BLKmode
8263440b 6049 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
35af99b4
EB
6050 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
6051 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
6052 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
6053 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
b5cd2a02
EB
6054 {
6055 /* Although we don't use the value here, it could be used later by the
6056 mere virtue of its existence as the operand of the reverse operation
6057 that gave rise to it (typically extension/truncation). Make sure it
6058 is preserved as required by vt_expand_var_loc_chain. */
6059 if (preserve)
6060 preserve_value (v);
6061 goto log_and_return;
6062 }
b5b8b0ac 6063
0fe03ac3
JJ
6064 if (loc == stack_pointer_rtx
6065 && hard_frame_pointer_adjustment != -1
6066 && preserve)
6067 cselib_set_value_sp_based (v);
6068
b5b8b0ac
AO
6069 nloc = replace_expr_with_values (oloc);
6070 if (nloc)
6071 oloc = nloc;
6072
cbdd7479
AO
6073 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6074 {
4deef538 6075 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
cbdd7479 6076
0ca59830
JM
6077 if (oval == v)
6078 return;
cbdd7479
AO
6079 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6080
cbd65133 6081 if (oval && !cselib_preserved_value_p (oval))
cbdd7479 6082 {
0de3e43f 6083 micro_operation moa;
cbdd7479 6084
1feb8238 6085 preserve_value (oval);
cbdd7479 6086
0de3e43f
JJ
6087 moa.type = MO_VAL_USE;
6088 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6089 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6090 moa.insn = cui->insn;
cbdd7479
AO
6091
6092 if (dump_file && (dump_flags & TDF_DETAILS))
0de3e43f
JJ
6093 log_op_type (moa.u.loc, cui->bb, cui->insn,
6094 moa.type, dump_file);
9771b263 6095 VTI (bb)->mos.safe_push (moa);
cbdd7479
AO
6096 }
6097
6098 resolve = false;
6099 }
0de3e43f 6100 else if (resolve && GET_CODE (mo.u.loc) == SET)
b5b8b0ac 6101 {
6f2ffb4b
AO
6102 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6103 nloc = replace_expr_with_values (SET_SRC (expr));
6104 else
6105 nloc = NULL_RTX;
00ee9f44
AO
6106
6107 /* Avoid the mode mismatch between oexpr and expr. */
6108 if (!nloc && mode != mode2)
6109 {
457eeaae 6110 nloc = SET_SRC (expr);
00ee9f44
AO
6111 gcc_assert (oloc == SET_DEST (expr));
6112 }
b5b8b0ac 6113
6f2ffb4b 6114 if (nloc && nloc != SET_SRC (mo.u.loc))
f7df4a84 6115 oloc = gen_rtx_SET (oloc, nloc);
b5b8b0ac
AO
6116 else
6117 {
0de3e43f 6118 if (oloc == SET_DEST (mo.u.loc))
b5b8b0ac 6119 /* No point in duplicating. */
0de3e43f
JJ
6120 oloc = mo.u.loc;
6121 if (!REG_P (SET_SRC (mo.u.loc)))
b5b8b0ac
AO
6122 resolve = false;
6123 }
6124 }
6125 else if (!resolve)
6126 {
0de3e43f
JJ
6127 if (GET_CODE (mo.u.loc) == SET
6128 && oloc == SET_DEST (mo.u.loc))
b5b8b0ac 6129 /* No point in duplicating. */
0de3e43f 6130 oloc = mo.u.loc;
b5b8b0ac
AO
6131 }
6132 else
6133 resolve = false;
6134
6135 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6136
0de3e43f
JJ
6137 if (mo.u.loc != oloc)
6138 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
b5b8b0ac
AO
6139
6140 /* The loc of a MO_VAL_SET may have various forms:
6141
6142 (concat val dst): dst now holds val
6143
6144 (concat val (set dst src)): dst now holds val, copied from src
6145
6146 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6147 after replacing mems and non-top-level regs with values.
6148
6149 (concat (concat val dstv) (set dst src)): dst now holds val,
6150 copied from src. dstv is a value-based representation of dst, if
00ee9f44
AO
6151 it differs from dst. If resolution is needed, src is a REG, and
6152 its mode is the same as that of val.
b5b8b0ac
AO
6153
6154 (concat (concat val (set dstv srcv)) (set dst src)): src
6155 copied to dst, holding val. dstv and srcv are value-based
6156 representations of dst and src, respectively.
6157
6158 */
6159
0c5863c2 6160 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6f2ffb4b 6161 reverse_op (v->val_rtx, expr, cui->insn);
0c5863c2 6162
0de3e43f 6163 mo.u.loc = loc;
b5b8b0ac
AO
6164
6165 if (track_p)
6166 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6167 if (preserve)
6168 {
6169 VAL_NEEDS_RESOLUTION (loc) = resolve;
1feb8238 6170 preserve_value (v);
b5b8b0ac 6171 }
0de3e43f 6172 if (mo.type == MO_CLOBBER)
b5b8b0ac 6173 VAL_EXPR_IS_CLOBBERED (loc) = 1;
0de3e43f 6174 if (mo.type == MO_COPY)
b5b8b0ac
AO
6175 VAL_EXPR_IS_COPIED (loc) = 1;
6176
0de3e43f 6177 mo.type = MO_VAL_SET;
b5b8b0ac
AO
6178
6179 log_and_return:
6180 if (dump_file && (dump_flags & TDF_DETAILS))
0de3e43f 6181 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
9771b263 6182 VTI (bb)->mos.safe_push (mo);
b5b8b0ac
AO
6183}
6184
2b1c5433
JJ
6185/* Arguments to the call. */
6186static rtx call_arguments;
6187
6188/* Compute call_arguments. */
6189
6190static void
598d62da 6191prepare_call_arguments (basic_block bb, rtx_insn *insn)
2b1c5433 6192{
da4fdf2d 6193 rtx link, x, call;
2b1c5433 6194 rtx prev, cur, next;
325f5379
JJ
6195 rtx this_arg = NULL_RTX;
6196 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6197 tree obj_type_ref = NULL_TREE;
d5cc9181
JR
6198 CUMULATIVE_ARGS args_so_far_v;
6199 cumulative_args_t args_so_far;
2b1c5433 6200
d5cc9181
JR
6201 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6202 args_so_far = pack_cumulative_args (&args_so_far_v);
da4fdf2d
SB
6203 call = get_call_rtx_from (insn);
6204 if (call)
2b1c5433 6205 {
325f5379
JJ
6206 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6207 {
6208 rtx symbol = XEXP (XEXP (call, 0), 0);
6209 if (SYMBOL_REF_DECL (symbol))
6210 fndecl = SYMBOL_REF_DECL (symbol);
6211 }
6212 if (fndecl == NULL_TREE)
6213 fndecl = MEM_EXPR (XEXP (call, 0));
6214 if (fndecl
6215 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6216 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6217 fndecl = NULL_TREE;
6218 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6219 type = TREE_TYPE (fndecl);
6220 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6221 {
6222 if (TREE_CODE (fndecl) == INDIRECT_REF
6223 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6224 obj_type_ref = TREE_OPERAND (fndecl, 0);
6225 fndecl = NULL_TREE;
6226 }
6227 if (type)
2b1c5433 6228 {
2b1c5433
JJ
6229 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6230 t = TREE_CHAIN (t))
6231 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6232 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6233 break;
325f5379 6234 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
2b1c5433
JJ
6235 type = NULL;
6236 else
325f5379 6237 {
e42348b8 6238 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
325f5379
JJ
6239 link = CALL_INSN_FUNCTION_USAGE (insn);
6240#ifndef PCC_STATIC_STRUCT_RETURN
6241 if (aggregate_value_p (TREE_TYPE (type), type)
6242 && targetm.calls.struct_value_rtx (type, 0) == 0)
6243 {
6244 tree struct_addr = build_pointer_type (TREE_TYPE (type));
ef4bddc2 6245 machine_mode mode = TYPE_MODE (struct_addr);
325f5379 6246 rtx reg;
d5cc9181 6247 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
325f5379 6248 nargs + 1);
d5cc9181 6249 reg = targetm.calls.function_arg (args_so_far, mode,
325f5379 6250 struct_addr, true);
d5cc9181 6251 targetm.calls.function_arg_advance (args_so_far, mode,
325f5379
JJ
6252 struct_addr, true);
6253 if (reg == NULL_RTX)
6254 {
6255 for (; link; link = XEXP (link, 1))
6256 if (GET_CODE (XEXP (link, 0)) == USE
6257 && MEM_P (XEXP (XEXP (link, 0), 0)))
6258 {
6259 link = XEXP (link, 1);
6260 break;
6261 }
6262 }
6263 }
325f5379 6264 else
3becc47b 6265#endif
d5cc9181 6266 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
325f5379
JJ
6267 nargs);
6268 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6269 {
ef4bddc2 6270 machine_mode mode;
325f5379
JJ
6271 t = TYPE_ARG_TYPES (type);
6272 mode = TYPE_MODE (TREE_VALUE (t));
d5cc9181 6273 this_arg = targetm.calls.function_arg (args_so_far, mode,
325f5379
JJ
6274 TREE_VALUE (t), true);
6275 if (this_arg && !REG_P (this_arg))
6276 this_arg = NULL_RTX;
6277 else if (this_arg == NULL_RTX)
6278 {
6279 for (; link; link = XEXP (link, 1))
6280 if (GET_CODE (XEXP (link, 0)) == USE
6281 && MEM_P (XEXP (XEXP (link, 0), 0)))
6282 {
6283 this_arg = XEXP (XEXP (link, 0), 0);
6284 break;
6285 }
6286 }
6287 }
6288 }
2b1c5433
JJ
6289 }
6290 }
6291 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6292
6293 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6294 if (GET_CODE (XEXP (link, 0)) == USE)
6295 {
6296 rtx item = NULL_RTX;
6297 x = XEXP (XEXP (link, 0), 0);
7d810276
JJ
6298 if (GET_MODE (link) == VOIDmode
6299 || GET_MODE (link) == BLKmode
6300 || (GET_MODE (link) != GET_MODE (x)
50b6ee8b
DD
6301 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6302 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6303 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6304 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
7d810276
JJ
6305 /* Can't do anything for these, if the original type mode
6306 isn't known or can't be converted. */;
6307 else if (REG_P (x))
2b1c5433
JJ
6308 {
6309 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6310 if (val && cselib_preserved_value_p (val))
7d810276 6311 item = val->val_rtx;
50b6ee8b
DD
6312 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6313 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
2b1c5433 6314 {
ef4bddc2 6315 machine_mode mode = GET_MODE (x);
2b1c5433
JJ
6316
6317 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6318 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6319 {
6320 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6321
6322 if (reg == NULL_RTX || !REG_P (reg))
6323 continue;
6324 val = cselib_lookup (reg, mode, 0, VOIDmode);
6325 if (val && cselib_preserved_value_p (val))
6326 {
7d810276 6327 item = val->val_rtx;
2b1c5433
JJ
6328 break;
6329 }
6330 }
6331 }
6332 }
6333 else if (MEM_P (x))
6334 {
6335 rtx mem = x;
6336 cselib_val *val;
6337
6338 if (!frame_pointer_needed)
6339 {
6340 struct adjust_mem_data amd;
6341 amd.mem_mode = VOIDmode;
6342 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
2f33ff0a 6343 amd.side_effects = NULL;
2b1c5433
JJ
6344 amd.store = true;
6345 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6346 &amd);
6347 gcc_assert (amd.side_effects == NULL_RTX);
6348 }
6349 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6350 if (val && cselib_preserved_value_p (val))
7d810276 6351 item = val->val_rtx;
50b6ee8b
DD
6352 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6353 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
4fe249e7
JJ
6354 {
6355 /* For non-integer stack argument see also if they weren't
6356 initialized by integers. */
ef4bddc2 6357 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
4fe249e7
JJ
6358 if (imode != GET_MODE (mem) && imode != BLKmode)
6359 {
6360 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6361 imode, 0, VOIDmode);
6362 if (val && cselib_preserved_value_p (val))
7d810276
JJ
6363 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6364 imode);
4fe249e7
JJ
6365 }
6366 }
2b1c5433
JJ
6367 }
6368 if (item)
7d810276
JJ
6369 {
6370 rtx x2 = x;
6371 if (GET_MODE (item) != GET_MODE (link))
6372 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6373 if (GET_MODE (x2) != GET_MODE (link))
6374 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6375 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6376 call_arguments
6377 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6378 }
2b1c5433
JJ
6379 if (t && t != void_list_node)
6380 {
db3ed0b3 6381 tree argtype = TREE_VALUE (t);
ef4bddc2 6382 machine_mode mode = TYPE_MODE (argtype);
db3ed0b3 6383 rtx reg;
d5cc9181 6384 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
db3ed0b3
JJ
6385 {
6386 argtype = build_pointer_type (argtype);
6387 mode = TYPE_MODE (argtype);
6388 }
d5cc9181 6389 reg = targetm.calls.function_arg (args_so_far, mode,
db3ed0b3
JJ
6390 argtype, true);
6391 if (TREE_CODE (argtype) == REFERENCE_TYPE
6392 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
2b1c5433
JJ
6393 && reg
6394 && REG_P (reg)
6395 && GET_MODE (reg) == mode
50b6ee8b
DD
6396 && (GET_MODE_CLASS (mode) == MODE_INT
6397 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
2b1c5433
JJ
6398 && REG_P (x)
6399 && REGNO (x) == REGNO (reg)
6400 && GET_MODE (x) == mode
6401 && item)
6402 {
ef4bddc2 6403 machine_mode indmode
db3ed0b3 6404 = TYPE_MODE (TREE_TYPE (argtype));
2b1c5433
JJ
6405 rtx mem = gen_rtx_MEM (indmode, x);
6406 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6407 if (val && cselib_preserved_value_p (val))
6408 {
6409 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6410 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6411 call_arguments);
6412 }
6413 else
6414 {
6415 struct elt_loc_list *l;
6416 tree initial;
6417
6418 /* Try harder, when passing address of a constant
6419 pool integer it can be easily read back. */
fe58e02b
L
6420 item = XEXP (item, 1);
6421 if (GET_CODE (item) == SUBREG)
6422 item = SUBREG_REG (item);
6423 gcc_assert (GET_CODE (item) == VALUE);
6424 val = CSELIB_VAL_PTR (item);
2b1c5433
JJ
6425 for (l = val->locs; l; l = l->next)
6426 if (GET_CODE (l->loc) == SYMBOL_REF
6427 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6428 && SYMBOL_REF_DECL (l->loc)
6429 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6430 {
6431 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
9541ffee 6432 if (tree_fits_shwi_p (initial))
2b1c5433 6433 {
9439e9a1 6434 item = GEN_INT (tree_to_shwi (initial));
2b1c5433
JJ
6435 item = gen_rtx_CONCAT (indmode, mem, item);
6436 call_arguments
6437 = gen_rtx_EXPR_LIST (VOIDmode, item,
6438 call_arguments);
6439 }
6440 break;
6441 }
6442 }
6443 }
d5cc9181 6444 targetm.calls.function_arg_advance (args_so_far, mode,
db3ed0b3 6445 argtype, true);
2b1c5433
JJ
6446 t = TREE_CHAIN (t);
6447 }
6448 }
6449
ddb555ed
JJ
6450 /* Add debug arguments. */
6451 if (fndecl
6452 && TREE_CODE (fndecl) == FUNCTION_DECL
6453 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6454 {
9771b263 6455 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
ddb555ed
JJ
6456 if (debug_args)
6457 {
6458 unsigned int ix;
6459 tree param;
9771b263 6460 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
ddb555ed
JJ
6461 {
6462 rtx item;
9771b263 6463 tree dtemp = (**debug_args)[ix + 1];
ef4bddc2 6464 machine_mode mode = DECL_MODE (dtemp);
ddb555ed 6465 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
09dbcd96 6466 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
ddb555ed
JJ
6467 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6468 call_arguments);
6469 }
6470 }
6471 }
6472
2b1c5433
JJ
6473 /* Reverse call_arguments chain. */
6474 prev = NULL_RTX;
6475 for (cur = call_arguments; cur; cur = next)
6476 {
6477 next = XEXP (cur, 1);
6478 XEXP (cur, 1) = prev;
6479 prev = cur;
6480 }
6481 call_arguments = prev;
6482
da4fdf2d
SB
6483 x = get_call_rtx_from (insn);
6484 if (x)
2b1c5433
JJ
6485 {
6486 x = XEXP (XEXP (x, 0), 0);
8b29c87a
JJ
6487 if (GET_CODE (x) == SYMBOL_REF)
6488 /* Don't record anything. */;
6489 else if (CONSTANT_P (x))
6490 {
6491 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6492 pc_rtx, x);
6493 call_arguments
6494 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6495 }
6496 else
2b1c5433
JJ
6497 {
6498 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6499 if (val && cselib_preserved_value_p (val))
6500 {
6501 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6502 call_arguments
6503 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6504 }
6505 }
6506 }
325f5379
JJ
6507 if (this_arg)
6508 {
ef4bddc2 6509 machine_mode mode
325f5379
JJ
6510 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6511 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6512 HOST_WIDE_INT token
9439e9a1 6513 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
325f5379 6514 if (token)
0a81f074
RS
6515 clobbered = plus_constant (mode, clobbered,
6516 token * GET_MODE_SIZE (mode));
325f5379
JJ
6517 clobbered = gen_rtx_MEM (mode, clobbered);
6518 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6519 call_arguments
6520 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6521 }
2b1c5433
JJ
6522}
6523
b5b8b0ac
AO
6524/* Callback for cselib_record_sets_hook, that records as micro
6525 operations uses and stores in an insn after cselib_record_sets has
6526 analyzed the sets in an insn, but before it modifies the stored
6527 values in the internal tables, unless cselib_record_sets doesn't
6528 call it directly (perhaps because we're not doing cselib in the
6529 first place, in which case sets and n_sets will be 0). */
6530
6531static void
46665961 6532add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
b5b8b0ac
AO
6533{
6534 basic_block bb = BLOCK_FOR_INSN (insn);
6535 int n1, n2;
6536 struct count_use_info cui;
0de3e43f 6537 micro_operation *mos;
b5b8b0ac
AO
6538
6539 cselib_hook_called = true;
6540
6541 cui.insn = insn;
6542 cui.bb = bb;
6543 cui.sets = sets;
6544 cui.n_sets = n_sets;
6545
9771b263 6546 n1 = VTI (bb)->mos.length ();
b5b8b0ac
AO
6547 cui.store_p = false;
6548 note_uses (&PATTERN (insn), add_uses_1, &cui);
9771b263
DN
6549 n2 = VTI (bb)->mos.length () - 1;
6550 mos = VTI (bb)->mos.address ();
b5b8b0ac 6551
7168dc47
AO
6552 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6553 MO_VAL_LOC last. */
b5b8b0ac
AO
6554 while (n1 < n2)
6555 {
0de3e43f 6556 while (n1 < n2 && mos[n1].type == MO_USE)
b5b8b0ac 6557 n1++;
0de3e43f 6558 while (n1 < n2 && mos[n2].type != MO_USE)
b5b8b0ac
AO
6559 n2--;
6560 if (n1 < n2)
fab27f52 6561 std::swap (mos[n1], mos[n2]);
7168dc47
AO
6562 }
6563
9771b263 6564 n2 = VTI (bb)->mos.length () - 1;
7168dc47
AO
6565 while (n1 < n2)
6566 {
0de3e43f 6567 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
7168dc47 6568 n1++;
0de3e43f 6569 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
7168dc47
AO
6570 n2--;
6571 if (n1 < n2)
fab27f52 6572 std::swap (mos[n1], mos[n2]);
b5b8b0ac
AO
6573 }
6574
6575 if (CALL_P (insn))
6576 {
0de3e43f 6577 micro_operation mo;
b5b8b0ac 6578
0de3e43f
JJ
6579 mo.type = MO_CALL;
6580 mo.insn = insn;
2b1c5433
JJ
6581 mo.u.loc = call_arguments;
6582 call_arguments = NULL_RTX;
b5b8b0ac
AO
6583
6584 if (dump_file && (dump_flags & TDF_DETAILS))
0de3e43f 6585 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
9771b263 6586 VTI (bb)->mos.safe_push (mo);
b5b8b0ac
AO
6587 }
6588
9771b263 6589 n1 = VTI (bb)->mos.length ();
b5b8b0ac
AO
6590 /* This will record NEXT_INSN (insn), such that we can
6591 insert notes before it without worrying about any
6592 notes that MO_USEs might emit after the insn. */
6593 cui.store_p = true;
6594 note_stores (PATTERN (insn), add_stores, &cui);
9771b263
DN
6595 n2 = VTI (bb)->mos.length () - 1;
6596 mos = VTI (bb)->mos.address ();
b5b8b0ac 6597
0de3e43f
JJ
6598 /* Order the MO_VAL_USEs first (note_stores does nothing
6599 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6600 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
b5b8b0ac
AO
6601 while (n1 < n2)
6602 {
0de3e43f 6603 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
b5b8b0ac 6604 n1++;
0de3e43f 6605 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
b5b8b0ac
AO
6606 n2--;
6607 if (n1 < n2)
fab27f52 6608 std::swap (mos[n1], mos[n2]);
0de3e43f
JJ
6609 }
6610
9771b263 6611 n2 = VTI (bb)->mos.length () - 1;
0de3e43f
JJ
6612 while (n1 < n2)
6613 {
6614 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6615 n1++;
6616 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6617 n2--;
6618 if (n1 < n2)
fab27f52 6619 std::swap (mos[n1], mos[n2]);
014a1138
JZ
6620 }
6621}
6622
62760ffd 6623static enum var_init_status
94a7682d 6624find_src_status (dataflow_set *in, rtx src)
62760ffd 6625{
62760ffd
CT
6626 tree decl = NULL_TREE;
6627 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6628
6629 if (! flag_var_tracking_uninit)
6630 status = VAR_INIT_STATUS_INITIALIZED;
6631
0ef0421e 6632 if (src && REG_P (src))
62760ffd 6633 decl = var_debug_decl (REG_EXPR (src));
0ef0421e 6634 else if (src && MEM_P (src))
62760ffd
CT
6635 decl = var_debug_decl (MEM_EXPR (src));
6636
6637 if (src && decl)
b5b8b0ac 6638 status = get_init_value (in, src, dv_from_decl (decl));
62760ffd
CT
6639
6640 return status;
6641}
6642
94a7682d
RS
6643/* SRC is the source of an assignment. Use SET to try to find what
6644 was ultimately assigned to SRC. Return that value if known,
6645 otherwise return SRC itself. */
62760ffd
CT
6646
6647static rtx
94a7682d 6648find_src_set_src (dataflow_set *set, rtx src)
62760ffd
CT
6649{
6650 tree decl = NULL_TREE; /* The variable being copied around. */
62760ffd 6651 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
62760ffd
CT
6652 variable var;
6653 location_chain nextp;
6654 int i;
6655 bool found;
6656
0ef0421e 6657 if (src && REG_P (src))
62760ffd 6658 decl = var_debug_decl (REG_EXPR (src));
0ef0421e 6659 else if (src && MEM_P (src))
62760ffd
CT
6660 decl = var_debug_decl (MEM_EXPR (src));
6661
6662 if (src && decl)
6663 {
b5b8b0ac
AO
6664 decl_or_value dv = dv_from_decl (decl);
6665
6666 var = shared_hash_find (set->vars, dv);
d24686d7 6667 if (var)
62760ffd 6668 {
62760ffd
CT
6669 found = false;
6670 for (i = 0; i < var->n_var_parts && !found; i++)
b8698a0f 6671 for (nextp = var->var_part[i].loc_chain; nextp && !found;
62760ffd
CT
6672 nextp = nextp->next)
6673 if (rtx_equal_p (nextp->loc, src))
6674 {
6675 set_src = nextp->set_src;
6676 found = true;
6677 }
b8698a0f 6678
62760ffd
CT
6679 }
6680 }
6681
6682 return set_src;
6683}
6684
b5b8b0ac
AO
6685/* Compute the changes of variable locations in the basic block BB. */
6686
6687static bool
6688compute_bb_dataflow (basic_block bb)
6689{
0de3e43f
JJ
6690 unsigned int i;
6691 micro_operation *mo;
b5b8b0ac
AO
6692 bool changed;
6693 dataflow_set old_out;
6694 dataflow_set *in = &VTI (bb)->in;
6695 dataflow_set *out = &VTI (bb)->out;
6696
6697 dataflow_set_init (&old_out);
6698 dataflow_set_copy (&old_out, out);
6699 dataflow_set_copy (out, in);
6700
af6236c1 6701 if (MAY_HAVE_DEBUG_INSNS)
b787e7a2 6702 local_get_addr_cache = new hash_map<rtx, rtx>;
af6236c1 6703
9771b263 6704 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
b5b8b0ac 6705 {
598d62da 6706 rtx_insn *insn = mo->insn;
b5b8b0ac 6707
0de3e43f 6708 switch (mo->type)
b5b8b0ac
AO
6709 {
6710 case MO_CALL:
0f9f9784 6711 dataflow_set_clear_at_call (out);
b5b8b0ac
AO
6712 break;
6713
6714 case MO_USE:
6715 {
0de3e43f 6716 rtx loc = mo->u.loc;
b5b8b0ac
AO
6717
6718 if (REG_P (loc))
6719 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6720 else if (MEM_P (loc))
6721 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6722 }
6723 break;
6724
6725 case MO_VAL_LOC:
6726 {
0de3e43f 6727 rtx loc = mo->u.loc;
b5b8b0ac
AO
6728 rtx val, vloc;
6729 tree var;
6730
6731 if (GET_CODE (loc) == CONCAT)
6732 {
6733 val = XEXP (loc, 0);
6734 vloc = XEXP (loc, 1);
6735 }
6736 else
6737 {
6738 val = NULL_RTX;
6739 vloc = loc;
6740 }
6741
6742 var = PAT_VAR_LOCATION_DECL (vloc);
6743
6744 clobber_variable_part (out, NULL_RTX,
6745 dv_from_decl (var), 0, NULL_RTX);
6746 if (val)
6747 {
6748 if (VAL_NEEDS_RESOLUTION (loc))
6749 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6750 set_variable_part (out, val, dv_from_decl (var), 0,
6751 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6752 INSERT);
6753 }
5644a3d0
JJ
6754 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6755 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6756 dv_from_decl (var), 0,
6757 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6758 INSERT);
b5b8b0ac
AO
6759 }
6760 break;
6761
6762 case MO_VAL_USE:
6763 {
0de3e43f 6764 rtx loc = mo->u.loc;
b5b8b0ac
AO
6765 rtx val, vloc, uloc;
6766
6767 vloc = uloc = XEXP (loc, 1);
6768 val = XEXP (loc, 0);
6769
6770 if (GET_CODE (val) == CONCAT)
6771 {
6772 uloc = XEXP (val, 1);
6773 val = XEXP (val, 0);
6774 }
6775
6776 if (VAL_NEEDS_RESOLUTION (loc))
6777 val_resolve (out, val, vloc, insn);
fb4cbb9f
AO
6778 else
6779 val_store (out, val, uloc, insn, false);
b5b8b0ac
AO
6780
6781 if (VAL_HOLDS_TRACK_EXPR (loc))
6782 {
6783 if (GET_CODE (uloc) == REG)
6784 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6785 NULL);
6786 else if (GET_CODE (uloc) == MEM)
6787 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6788 NULL);
6789 }
6790 }
6791 break;
6792
6793 case MO_VAL_SET:
6794 {
0de3e43f 6795 rtx loc = mo->u.loc;
6f2ffb4b 6796 rtx val, vloc, uloc;
d05cae4a 6797 rtx dstv, srcv;
b5b8b0ac 6798
0c5863c2 6799 vloc = loc;
0c5863c2
JJ
6800 uloc = XEXP (vloc, 1);
6801 val = XEXP (vloc, 0);
6802 vloc = uloc;
b5b8b0ac 6803
d05cae4a
AO
6804 if (GET_CODE (uloc) == SET)
6805 {
6806 dstv = SET_DEST (uloc);
6807 srcv = SET_SRC (uloc);
6808 }
6809 else
6810 {
6811 dstv = uloc;
6812 srcv = NULL;
6813 }
6814
b5b8b0ac
AO
6815 if (GET_CODE (val) == CONCAT)
6816 {
d05cae4a 6817 dstv = vloc = XEXP (val, 1);
b5b8b0ac
AO
6818 val = XEXP (val, 0);
6819 }
6820
6821 if (GET_CODE (vloc) == SET)
6822 {
d05cae4a 6823 srcv = SET_SRC (vloc);
b5b8b0ac 6824
d05cae4a 6825 gcc_assert (val != srcv);
b5b8b0ac
AO
6826 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6827
d05cae4a 6828 dstv = vloc = SET_DEST (vloc);
b5b8b0ac
AO
6829
6830 if (VAL_NEEDS_RESOLUTION (loc))
d05cae4a 6831 val_resolve (out, val, srcv, insn);
b5b8b0ac
AO
6832 }
6833 else if (VAL_NEEDS_RESOLUTION (loc))
6834 {
6835 gcc_assert (GET_CODE (uloc) == SET
6836 && GET_CODE (SET_SRC (uloc)) == REG);
6837 val_resolve (out, val, SET_SRC (uloc), insn);
6838 }
6839
6840 if (VAL_HOLDS_TRACK_EXPR (loc))
6841 {
6842 if (VAL_EXPR_IS_CLOBBERED (loc))
6843 {
6844 if (REG_P (uloc))
6845 var_reg_delete (out, uloc, true);
6846 else if (MEM_P (uloc))
d05cae4a
AO
6847 {
6848 gcc_assert (MEM_P (dstv));
6849 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6850 var_mem_delete (out, dstv, true);
6851 }
b5b8b0ac
AO
6852 }
6853 else
6854 {
6855 bool copied_p = VAL_EXPR_IS_COPIED (loc);
d05cae4a 6856 rtx src = NULL, dst = uloc;
b5b8b0ac
AO
6857 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6858
6859 if (GET_CODE (uloc) == SET)
6860 {
d05cae4a
AO
6861 src = SET_SRC (uloc);
6862 dst = SET_DEST (uloc);
b5b8b0ac 6863 }
014a1138 6864
b5b8b0ac
AO
6865 if (copied_p)
6866 {
6867 if (flag_var_tracking_uninit)
6868 {
d05cae4a 6869 status = find_src_status (in, src);
014a1138 6870
b5b8b0ac 6871 if (status == VAR_INIT_STATUS_UNKNOWN)
d05cae4a 6872 status = find_src_status (out, src);
b5b8b0ac 6873 }
014a1138 6874
d05cae4a 6875 src = find_src_set_src (in, src);
b5b8b0ac 6876 }
014a1138 6877
d05cae4a
AO
6878 if (REG_P (dst))
6879 var_reg_delete_and_set (out, dst, !copied_p,
6880 status, srcv);
6881 else if (MEM_P (dst))
6882 {
6883 gcc_assert (MEM_P (dstv));
6884 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6885 var_mem_delete_and_set (out, dstv, !copied_p,
6886 status, srcv);
6887 }
b5b8b0ac
AO
6888 }
6889 }
6890 else if (REG_P (uloc))
6891 var_regno_delete (out, REGNO (uloc));
8cda8ad3 6892 else if (MEM_P (uloc))
af6236c1
AO
6893 {
6894 gcc_checking_assert (GET_CODE (vloc) == MEM);
6895 gcc_checking_assert (dstv == vloc);
6896 if (dstv != vloc)
6897 clobber_overlapping_mems (out, vloc);
6898 }
dedc1e6d 6899
d05cae4a 6900 val_store (out, val, dstv, insn, true);
dedc1e6d
AO
6901 }
6902 break;
6903
014a1138
JZ
6904 case MO_SET:
6905 {
0de3e43f 6906 rtx loc = mo->u.loc;
94a7682d 6907 rtx set_src = NULL;
62760ffd 6908
94a7682d 6909 if (GET_CODE (loc) == SET)
62760ffd 6910 {
94a7682d
RS
6911 set_src = SET_SRC (loc);
6912 loc = SET_DEST (loc);
62760ffd 6913 }
014a1138 6914
f8cfc6aa 6915 if (REG_P (loc))
62760ffd
CT
6916 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6917 set_src);
ca787200 6918 else if (MEM_P (loc))
62760ffd
CT
6919 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6920 set_src);
ca787200
AO
6921 }
6922 break;
6923
6924 case MO_COPY:
6925 {
0de3e43f 6926 rtx loc = mo->u.loc;
62760ffd 6927 enum var_init_status src_status;
94a7682d
RS
6928 rtx set_src = NULL;
6929
6930 if (GET_CODE (loc) == SET)
6931 {
6932 set_src = SET_SRC (loc);
6933 loc = SET_DEST (loc);
6934 }
62760ffd
CT
6935
6936 if (! flag_var_tracking_uninit)
6937 src_status = VAR_INIT_STATUS_INITIALIZED;
6938 else
7eb3f1f7
JJ
6939 {
6940 src_status = find_src_status (in, set_src);
62760ffd 6941
7eb3f1f7
JJ
6942 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6943 src_status = find_src_status (out, set_src);
6944 }
62760ffd 6945
94a7682d 6946 set_src = find_src_set_src (in, set_src);
ca787200
AO
6947
6948 if (REG_P (loc))
62760ffd 6949 var_reg_delete_and_set (out, loc, false, src_status, set_src);
3c0cb5de 6950 else if (MEM_P (loc))
62760ffd 6951 var_mem_delete_and_set (out, loc, false, src_status, set_src);
014a1138
JZ
6952 }
6953 break;
6954
6955 case MO_USE_NO_VAR:
ca787200 6956 {
0de3e43f 6957 rtx loc = mo->u.loc;
ca787200
AO
6958
6959 if (REG_P (loc))
6960 var_reg_delete (out, loc, false);
6961 else if (MEM_P (loc))
6962 var_mem_delete (out, loc, false);
6963 }
6964 break;
6965
014a1138
JZ
6966 case MO_CLOBBER:
6967 {
0de3e43f 6968 rtx loc = mo->u.loc;
014a1138 6969
f8cfc6aa 6970 if (REG_P (loc))
ca787200 6971 var_reg_delete (out, loc, true);
3c0cb5de 6972 else if (MEM_P (loc))
ca787200 6973 var_mem_delete (out, loc, true);
014a1138
JZ
6974 }
6975 break;
6976
6977 case MO_ADJUST:
0de3e43f 6978 out->stack_adjust += mo->u.adjust;
014a1138
JZ
6979 break;
6980 }
6981 }
6982
b5b8b0ac
AO
6983 if (MAY_HAVE_DEBUG_INSNS)
6984 {
b787e7a2 6985 delete local_get_addr_cache;
af6236c1
AO
6986 local_get_addr_cache = NULL;
6987
b5b8b0ac 6988 dataflow_set_equiv_regs (out);
013e5ef9 6989 shared_hash_htab (out->vars)
c203e8a7 6990 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
013e5ef9 6991 shared_hash_htab (out->vars)
c203e8a7 6992 ->traverse <dataflow_set *, canonicalize_values_star> (out);
b5b8b0ac 6993#if ENABLE_CHECKING
013e5ef9 6994 shared_hash_htab (out->vars)
c203e8a7 6995 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
b5b8b0ac
AO
6996#endif
6997 }
014a1138
JZ
6998 changed = dataflow_set_different (&old_out, out);
6999 dataflow_set_destroy (&old_out);
7000 return changed;
7001}
7002
7003/* Find the locations of variables in the whole function. */
7004
ec8c3978 7005static bool
014a1138
JZ
7006vt_find_locations (void)
7007{
7b69b603
ML
7008 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7009 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
fab27f52 7010 sbitmap visited, in_worklist, in_pending;
014a1138
JZ
7011 basic_block bb;
7012 edge e;
7013 int *bb_order;
7014 int *rc_order;
7015 int i;
b5b8b0ac 7016 int htabsz = 0;
ec8c3978
JJ
7017 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
7018 bool success = true;
014a1138 7019
f029db69 7020 timevar_push (TV_VAR_TRACKING_DATAFLOW);
e04faf24 7021 /* Compute reverse completion order of depth first search of the CFG
014a1138 7022 so that the data-flow runs faster. */
e04faf24 7023 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
8b1c6fd7 7024 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
e04faf24
RB
7025 pre_and_rev_post_order_compute (NULL, rc_order, false);
7026 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
014a1138
JZ
7027 bb_order[rc_order[i]] = i;
7028 free (rc_order);
7029
8b1c6fd7
DM
7030 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
7031 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7032 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
f61e445a 7033 bitmap_clear (in_worklist);
014a1138 7034
11cd3bed 7035 FOR_EACH_BB_FN (bb, cfun)
7b69b603 7036 pending->insert (bb_order[bb->index], bb);
f61e445a 7037 bitmap_ones (in_pending);
014a1138 7038
7b69b603 7039 while (success && !pending->empty ())
014a1138 7040 {
fab27f52
MM
7041 std::swap (worklist, pending);
7042 std::swap (in_worklist, in_pending);
014a1138 7043
f61e445a 7044 bitmap_clear (visited);
014a1138 7045
7b69b603 7046 while (!worklist->empty ())
014a1138 7047 {
7b69b603 7048 bb = worklist->extract_min ();
d7c028c0
LC
7049 bitmap_clear_bit (in_worklist, bb->index);
7050 gcc_assert (!bitmap_bit_p (visited, bb->index));
7051 if (!bitmap_bit_p (visited, bb->index))
014a1138
JZ
7052 {
7053 bool changed;
628f6a4e 7054 edge_iterator ei;
b5b8b0ac 7055 int oldinsz, oldoutsz;
014a1138 7056
d7c028c0 7057 bitmap_set_bit (visited, bb->index);
014a1138 7058
ec8c3978 7059 if (VTI (bb)->in.vars)
b5b8b0ac
AO
7060 {
7061 htabsz
c203e8a7
TS
7062 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7063 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7064 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7065 oldoutsz
7066 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
b5b8b0ac
AO
7067 }
7068 else
7069 oldinsz = oldoutsz = 0;
7070
7071 if (MAY_HAVE_DEBUG_INSNS)
7072 {
7073 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7074 bool first = true, adjust = false;
7075
7076 /* Calculate the IN set as the intersection of
7077 predecessor OUT sets. */
7078
7079 dataflow_set_clear (in);
7080 dst_can_be_shared = true;
7081
7082 FOR_EACH_EDGE (e, ei, bb->preds)
7083 if (!VTI (e->src)->flooded)
7084 gcc_assert (bb_order[bb->index]
7085 <= bb_order[e->src->index]);
7086 else if (first)
7087 {
7088 dataflow_set_copy (in, &VTI (e->src)->out);
7089 first_out = &VTI (e->src)->out;
7090 first = false;
7091 }
7092 else
7093 {
7094 dataflow_set_merge (in, &VTI (e->src)->out);
7095 adjust = true;
7096 }
7097
7098 if (adjust)
7099 {
7100 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7101#if ENABLE_CHECKING
7102 /* Merge and merge_adjust should keep entries in
7103 canonical order. */
013e5ef9 7104 shared_hash_htab (in->vars)
c203e8a7
TS
7105 ->traverse <dataflow_set *,
7106 canonicalize_loc_order_check> (in);
b5b8b0ac
AO
7107#endif
7108 if (dst_can_be_shared)
7109 {
7110 shared_hash_destroy (in->vars);
7111 in->vars = shared_hash_copy (first_out->vars);
7112 }
7113 }
7114
7115 VTI (bb)->flooded = true;
7116 }
7117 else
014a1138 7118 {
b5b8b0ac
AO
7119 /* Calculate the IN set as union of predecessor OUT sets. */
7120 dataflow_set_clear (&VTI (bb)->in);
7121 FOR_EACH_EDGE (e, ei, bb->preds)
7122 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
014a1138
JZ
7123 }
7124
7125 changed = compute_bb_dataflow (bb);
c203e8a7
TS
7126 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7127 + shared_hash_htab (VTI (bb)->out.vars)->size ();
ec8c3978
JJ
7128
7129 if (htabmax && htabsz > htabmax)
7130 {
7131 if (MAY_HAVE_DEBUG_INSNS)
7132 inform (DECL_SOURCE_LOCATION (cfun->decl),
7133 "variable tracking size limit exceeded with "
7134 "-fvar-tracking-assignments, retrying without");
7135 else
7136 inform (DECL_SOURCE_LOCATION (cfun->decl),
7137 "variable tracking size limit exceeded");
7138 success = false;
7139 break;
7140 }
b5b8b0ac 7141
014a1138
JZ
7142 if (changed)
7143 {
628f6a4e 7144 FOR_EACH_EDGE (e, ei, bb->succs)
014a1138 7145 {
fefa31b5 7146 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
014a1138
JZ
7147 continue;
7148
d7c028c0 7149 if (bitmap_bit_p (visited, e->dest->index))
014a1138 7150 {
d7c028c0 7151 if (!bitmap_bit_p (in_pending, e->dest->index))
014a1138
JZ
7152 {
7153 /* Send E->DEST to next round. */
d7c028c0 7154 bitmap_set_bit (in_pending, e->dest->index);
7b69b603
ML
7155 pending->insert (bb_order[e->dest->index],
7156 e->dest);
014a1138
JZ
7157 }
7158 }
d7c028c0 7159 else if (!bitmap_bit_p (in_worklist, e->dest->index))
014a1138
JZ
7160 {
7161 /* Add E->DEST to current round. */
d7c028c0 7162 bitmap_set_bit (in_worklist, e->dest->index);
7b69b603
ML
7163 worklist->insert (bb_order[e->dest->index],
7164 e->dest);
014a1138
JZ
7165 }
7166 }
7167 }
b5b8b0ac
AO
7168
7169 if (dump_file)
7170 fprintf (dump_file,
7171 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7172 bb->index,
c203e8a7 7173 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
b5b8b0ac 7174 oldinsz,
c203e8a7 7175 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
b5b8b0ac 7176 oldoutsz,
7b69b603
ML
7177 (int)worklist->nodes (), (int)pending->nodes (),
7178 htabsz);
b5b8b0ac
AO
7179
7180 if (dump_file && (dump_flags & TDF_DETAILS))
7181 {
7182 fprintf (dump_file, "BB %i IN:\n", bb->index);
7183 dump_dataflow_set (&VTI (bb)->in);
7184 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7185 dump_dataflow_set (&VTI (bb)->out);
7186 }
014a1138
JZ
7187 }
7188 }
7189 }
7190
ec8c3978 7191 if (success && MAY_HAVE_DEBUG_INSNS)
11cd3bed 7192 FOR_EACH_BB_FN (bb, cfun)
b5b8b0ac
AO
7193 gcc_assert (VTI (bb)->flooded);
7194
014a1138 7195 free (bb_order);
7b69b603
ML
7196 delete worklist;
7197 delete pending;
014a1138
JZ
7198 sbitmap_free (visited);
7199 sbitmap_free (in_worklist);
7200 sbitmap_free (in_pending);
ec8c3978 7201
f029db69 7202 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
ec8c3978 7203 return success;
014a1138
JZ
7204}
7205
7206/* Print the content of the LIST to dump file. */
7207
7208static void
7209dump_attrs_list (attrs list)
7210{
7211 for (; list; list = list->next)
7212 {
b5b8b0ac
AO
7213 if (dv_is_decl_p (list->dv))
7214 print_mem_expr (dump_file, dv_as_decl (list->dv));
7215 else
7216 print_rtl_single (dump_file, dv_as_value (list->dv));
30e6f306 7217 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
014a1138 7218 }
c263766c 7219 fprintf (dump_file, "\n");
014a1138
JZ
7220}
7221
7222/* Print the information about variable *SLOT to dump file. */
7223
013e5ef9
LC
7224int
7225dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
b5b8b0ac 7226{
013e5ef9 7227 variable var = *slot;
b5b8b0ac 7228
4a4d4c08 7229 dump_var (var);
b5b8b0ac
AO
7230
7231 /* Continue traversing the hash table. */
7232 return 1;
7233}
7234
7235/* Print the information about variable VAR to dump file. */
7236
7237static void
4a4d4c08 7238dump_var (variable var)
014a1138 7239{
014a1138
JZ
7240 int i;
7241 location_chain node;
7242
b5b8b0ac
AO
7243 if (dv_is_decl_p (var->dv))
7244 {
7245 const_tree decl = dv_as_decl (var->dv);
7246
7247 if (DECL_NAME (decl))
6764d92c
JJ
7248 {
7249 fprintf (dump_file, " name: %s",
7250 IDENTIFIER_POINTER (DECL_NAME (decl)));
7251 if (dump_flags & TDF_UID)
7252 fprintf (dump_file, "D.%u", DECL_UID (decl));
7253 }
7254 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7255 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
b5b8b0ac
AO
7256 else
7257 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
6764d92c 7258 fprintf (dump_file, "\n");
b5b8b0ac 7259 }
e56f9152 7260 else
b5b8b0ac
AO
7261 {
7262 fputc (' ', dump_file);
7263 print_rtl_single (dump_file, dv_as_value (var->dv));
7264 }
e56f9152 7265
014a1138
JZ
7266 for (i = 0; i < var->n_var_parts; i++)
7267 {
c263766c 7268 fprintf (dump_file, " offset %ld\n",
09dbcd96 7269 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
014a1138
JZ
7270 for (node = var->var_part[i].loc_chain; node; node = node->next)
7271 {
c263766c 7272 fprintf (dump_file, " ");
62760ffd
CT
7273 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7274 fprintf (dump_file, "[uninit]");
c263766c 7275 print_rtl_single (dump_file, node->loc);
014a1138
JZ
7276 }
7277 }
014a1138
JZ
7278}
7279
7280/* Print the information about variables from hash table VARS to dump file. */
7281
7282static void
c203e8a7 7283dump_vars (variable_table_type *vars)
014a1138 7284{
c203e8a7 7285 if (vars->elements () > 0)
014a1138 7286 {
c263766c 7287 fprintf (dump_file, "Variables:\n");
c203e8a7 7288 vars->traverse <void *, dump_var_tracking_slot> (NULL);
014a1138
JZ
7289 }
7290}
7291
7292/* Print the dataflow set SET to dump file. */
7293
7294static void
7295dump_dataflow_set (dataflow_set *set)
7296{
7297 int i;
7298
30e6f306
RH
7299 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7300 set->stack_adjust);
d3067303 7301 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
014a1138
JZ
7302 {
7303 if (set->regs[i])
7304 {
c263766c 7305 fprintf (dump_file, "Reg %d:", i);
014a1138
JZ
7306 dump_attrs_list (set->regs[i]);
7307 }
7308 }
d24686d7 7309 dump_vars (shared_hash_htab (set->vars));
c263766c 7310 fprintf (dump_file, "\n");
014a1138
JZ
7311}
7312
7313/* Print the IN and OUT sets for each basic block to dump file. */
7314
7315static void
7316dump_dataflow_sets (void)
7317{
7318 basic_block bb;
7319
11cd3bed 7320 FOR_EACH_BB_FN (bb, cfun)
014a1138 7321 {
c263766c
RH
7322 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7323 fprintf (dump_file, "IN:\n");
014a1138 7324 dump_dataflow_set (&VTI (bb)->in);
c263766c 7325 fprintf (dump_file, "OUT:\n");
014a1138
JZ
7326 dump_dataflow_set (&VTI (bb)->out);
7327 }
7328}
7329
09dbcd96
AO
7330/* Return the variable for DV in dropped_values, inserting one if
7331 requested with INSERT. */
7332
7333static inline variable
7334variable_from_dropped (decl_or_value dv, enum insert_option insert)
7335{
013e5ef9 7336 variable_def **slot;
09dbcd96
AO
7337 variable empty_var;
7338 onepart_enum_t onepart;
7339
c203e8a7 7340 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
09dbcd96
AO
7341
7342 if (!slot)
7343 return NULL;
7344
7345 if (*slot)
013e5ef9 7346 return *slot;
09dbcd96
AO
7347
7348 gcc_checking_assert (insert == INSERT);
7349
7350 onepart = dv_onepart_p (dv);
7351
7352 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7353
7e46899d 7354 empty_var = onepart_pool (onepart).allocate ();
09dbcd96
AO
7355 empty_var->dv = dv;
7356 empty_var->refcount = 1;
7357 empty_var->n_var_parts = 0;
7358 empty_var->onepart = onepart;
7359 empty_var->in_changed_variables = false;
7360 empty_var->var_part[0].loc_chain = NULL;
7361 empty_var->var_part[0].cur_loc = NULL;
7362 VAR_LOC_1PAUX (empty_var) = NULL;
7363 set_dv_changed (dv, true);
7364
7365 *slot = empty_var;
7366
7367 return empty_var;
7368}
7369
7370/* Recover the one-part aux from dropped_values. */
7371
7372static struct onepart_aux *
7373recover_dropped_1paux (variable var)
7374{
7375 variable dvar;
7376
7377 gcc_checking_assert (var->onepart);
7378
7379 if (VAR_LOC_1PAUX (var))
7380 return VAR_LOC_1PAUX (var);
7381
7382 if (var->onepart == ONEPART_VDECL)
7383 return NULL;
7384
7385 dvar = variable_from_dropped (var->dv, NO_INSERT);
7386
7387 if (!dvar)
7388 return NULL;
7389
7390 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7391 VAR_LOC_1PAUX (dvar) = NULL;
7392
7393 return VAR_LOC_1PAUX (var);
7394}
7395
7396/* Add variable VAR to the hash table of changed variables and
d24686d7 7397 if it has no locations delete it from SET's hash table. */
014a1138
JZ
7398
7399static void
d24686d7 7400variable_was_changed (variable var, dataflow_set *set)
014a1138 7401{
b5b8b0ac 7402 hashval_t hash = dv_htab_hash (var->dv);
014a1138
JZ
7403
7404 if (emit_notes)
7405 {
013e5ef9 7406 variable_def **slot;
b5b8b0ac
AO
7407
7408 /* Remember this decl or VALUE has been added to changed_variables. */
7409 set_dv_changed (var->dv, true);
014a1138 7410
c203e8a7 7411 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
014a1138 7412
864ddef7
JJ
7413 if (*slot)
7414 {
013e5ef9 7415 variable old_var = *slot;
864ddef7
JJ
7416 gcc_assert (old_var->in_changed_variables);
7417 old_var->in_changed_variables = false;
09dbcd96
AO
7418 if (var != old_var && var->onepart)
7419 {
7420 /* Restore the auxiliary info from an empty variable
7421 previously created for changed_variables, so it is
7422 not lost. */
7423 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7424 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7425 VAR_LOC_1PAUX (old_var) = NULL;
7426 }
864ddef7
JJ
7427 variable_htab_free (*slot);
7428 }
09dbcd96 7429
d24686d7 7430 if (set && var->n_var_parts == 0)
014a1138 7431 {
09dbcd96
AO
7432 onepart_enum_t onepart = var->onepart;
7433 variable empty_var = NULL;
013e5ef9 7434 variable_def **dslot = NULL;
014a1138 7435
09dbcd96
AO
7436 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7437 {
c203e8a7
TS
7438 dslot = dropped_values->find_slot_with_hash (var->dv,
7439 dv_htab_hash (var->dv),
7440 INSERT);
013e5ef9 7441 empty_var = *dslot;
09dbcd96
AO
7442
7443 if (empty_var)
7444 {
7445 gcc_checking_assert (!empty_var->in_changed_variables);
7446 if (!VAR_LOC_1PAUX (var))
7447 {
7448 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7449 VAR_LOC_1PAUX (empty_var) = NULL;
7450 }
7451 else
7452 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7453 }
7454 }
7455
7456 if (!empty_var)
7457 {
7e46899d 7458 empty_var = onepart_pool (onepart).allocate ();
09dbcd96
AO
7459 empty_var->dv = var->dv;
7460 empty_var->refcount = 1;
7461 empty_var->n_var_parts = 0;
7462 empty_var->onepart = onepart;
7463 if (dslot)
7464 {
7465 empty_var->refcount++;
7466 *dslot = empty_var;
7467 }
7468 }
7469 else
7470 empty_var->refcount++;
864ddef7 7471 empty_var->in_changed_variables = true;
014a1138 7472 *slot = empty_var;
09dbcd96
AO
7473 if (onepart)
7474 {
7475 empty_var->var_part[0].loc_chain = NULL;
7476 empty_var->var_part[0].cur_loc = NULL;
7477 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7478 VAR_LOC_1PAUX (var) = NULL;
7479 }
d24686d7 7480 goto drop_var;
014a1138
JZ
7481 }
7482 else
7483 {
09dbcd96
AO
7484 if (var->onepart && !VAR_LOC_1PAUX (var))
7485 recover_dropped_1paux (var);
d24686d7 7486 var->refcount++;
864ddef7 7487 var->in_changed_variables = true;
014a1138
JZ
7488 *slot = var;
7489 }
7490 }
7491 else
7492 {
d24686d7 7493 gcc_assert (set);
014a1138
JZ
7494 if (var->n_var_parts == 0)
7495 {
013e5ef9 7496 variable_def **slot;
d24686d7
JJ
7497
7498 drop_var:
b5b8b0ac 7499 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
014a1138 7500 if (slot)
d24686d7
JJ
7501 {
7502 if (shared_hash_shared (set->vars))
b5b8b0ac 7503 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
d24686d7 7504 NO_INSERT);
c203e8a7 7505 shared_hash_htab (set->vars)->clear_slot (slot);
d24686d7 7506 }
014a1138
JZ
7507 }
7508 }
7509}
7510
ca787200
AO
7511/* Look for the index in VAR->var_part corresponding to OFFSET.
7512 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7513 referenced int will be set to the index that the part has or should
7514 have, if it should be inserted. */
7515
7516static inline int
7517find_variable_location_part (variable var, HOST_WIDE_INT offset,
7518 int *insertion_point)
7519{
7520 int pos, low, high;
7521
09dbcd96
AO
7522 if (var->onepart)
7523 {
7524 if (offset != 0)
7525 return -1;
7526
7527 if (insertion_point)
7528 *insertion_point = 0;
7529
7530 return var->n_var_parts - 1;
7531 }
7532
ca787200
AO
7533 /* Find the location part. */
7534 low = 0;
7535 high = var->n_var_parts;
7536 while (low != high)
7537 {
7538 pos = (low + high) / 2;
09dbcd96 7539 if (VAR_PART_OFFSET (var, pos) < offset)
ca787200
AO
7540 low = pos + 1;
7541 else
7542 high = pos;
7543 }
7544 pos = low;
7545
7546 if (insertion_point)
7547 *insertion_point = pos;
7548
09dbcd96 7549 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
ca787200
AO
7550 return pos;
7551
7552 return -1;
7553}
7554
013e5ef9
LC
7555static variable_def **
7556set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
b5b8b0ac
AO
7557 decl_or_value dv, HOST_WIDE_INT offset,
7558 enum var_init_status initialized, rtx set_src)
014a1138 7559{
ca787200 7560 int pos;
11599d14
JZ
7561 location_chain node, next;
7562 location_chain *nextp;
014a1138 7563 variable var;
09dbcd96 7564 onepart_enum_t onepart;
b5b8b0ac 7565
013e5ef9 7566 var = *slot;
d24686d7 7567
09dbcd96
AO
7568 if (var)
7569 onepart = var->onepart;
7570 else
7571 onepart = dv_onepart_p (dv);
7572
7573 gcc_checking_assert (offset == 0 || !onepart);
7574 gcc_checking_assert (loc != dv_as_opaque (dv));
7575
7eb3f1f7
JJ
7576 if (! flag_var_tracking_uninit)
7577 initialized = VAR_INIT_STATUS_INITIALIZED;
7578
b5b8b0ac 7579 if (!var)
014a1138
JZ
7580 {
7581 /* Create new variable information. */
7e46899d 7582 var = onepart_pool (onepart).allocate ();
b5b8b0ac 7583 var->dv = dv;
81f2eadb 7584 var->refcount = 1;
014a1138 7585 var->n_var_parts = 1;
09dbcd96 7586 var->onepart = onepart;
864ddef7 7587 var->in_changed_variables = false;
09dbcd96
AO
7588 if (var->onepart)
7589 VAR_LOC_1PAUX (var) = NULL;
7590 else
7591 VAR_PART_OFFSET (var, 0) = offset;
014a1138
JZ
7592 var->var_part[0].loc_chain = NULL;
7593 var->var_part[0].cur_loc = NULL;
7594 *slot = var;
7595 pos = 0;
b5b8b0ac 7596 nextp = &var->var_part[0].loc_chain;
b5b8b0ac
AO
7597 }
7598 else if (onepart)
7599 {
7600 int r = -1, c = 0;
7601
7602 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7603
7604 pos = 0;
7605
7606 if (GET_CODE (loc) == VALUE)
7607 {
7608 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7609 nextp = &node->next)
7610 if (GET_CODE (node->loc) == VALUE)
7611 {
7612 if (node->loc == loc)
7613 {
7614 r = 0;
7615 break;
7616 }
7617 if (canon_value_cmp (node->loc, loc))
7618 c++;
7619 else
7620 {
7621 r = 1;
7622 break;
7623 }
7624 }
7625 else if (REG_P (node->loc) || MEM_P (node->loc))
7626 c++;
7627 else
7628 {
7629 r = 1;
7630 break;
7631 }
7632 }
7633 else if (REG_P (loc))
7634 {
7635 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7636 nextp = &node->next)
7637 if (REG_P (node->loc))
7638 {
7639 if (REGNO (node->loc) < REGNO (loc))
7640 c++;
7641 else
7642 {
7643 if (REGNO (node->loc) == REGNO (loc))
7644 r = 0;
7645 else
7646 r = 1;
7647 break;
7648 }
7649 }
7650 else
7651 {
7652 r = 1;
7653 break;
7654 }
7655 }
7656 else if (MEM_P (loc))
7657 {
7658 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7659 nextp = &node->next)
7660 if (REG_P (node->loc))
7661 c++;
7662 else if (MEM_P (node->loc))
7663 {
7664 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7665 break;
7666 else
7667 c++;
7668 }
7669 else
7670 {
7671 r = 1;
7672 break;
7673 }
7674 }
7675 else
7676 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7677 nextp = &node->next)
7678 if ((r = loc_cmp (node->loc, loc)) >= 0)
7679 break;
7680 else
7681 c++;
7682
7683 if (r == 0)
7684 return slot;
7685
864ddef7 7686 if (shared_var_p (var, set->vars))
b5b8b0ac
AO
7687 {
7688 slot = unshare_variable (set, slot, var, initialized);
013e5ef9 7689 var = *slot;
b5b8b0ac
AO
7690 for (nextp = &var->var_part[0].loc_chain; c;
7691 nextp = &(*nextp)->next)
7692 c--;
7693 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7694 }
014a1138
JZ
7695 }
7696 else
7697 {
ca787200
AO
7698 int inspos = 0;
7699
b5b8b0ac 7700 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
014a1138 7701
ca787200 7702 pos = find_variable_location_part (var, offset, &inspos);
014a1138 7703
ca787200 7704 if (pos >= 0)
014a1138 7705 {
81f2eadb
JZ
7706 node = var->var_part[pos].loc_chain;
7707
7708 if (node
f8cfc6aa 7709 && ((REG_P (node->loc) && REG_P (loc)
81f2eadb
JZ
7710 && REGNO (node->loc) == REGNO (loc))
7711 || rtx_equal_p (node->loc, loc)))
7712 {
7713 /* LOC is in the beginning of the chain so we have nothing
7714 to do. */
62760ffd
CT
7715 if (node->init < initialized)
7716 node->init = initialized;
7717 if (set_src != NULL)
7718 node->set_src = set_src;
7719
b5b8b0ac 7720 return slot;
81f2eadb
JZ
7721 }
7722 else
7723 {
7724 /* We have to make a copy of a shared variable. */
864ddef7 7725 if (shared_var_p (var, set->vars))
b5b8b0ac
AO
7726 {
7727 slot = unshare_variable (set, slot, var, initialized);
013e5ef9 7728 var = *slot;
b5b8b0ac 7729 }
81f2eadb
JZ
7730 }
7731 }
7732 else
7733 {
7734 /* We have not found the location part, new one will be created. */
7735
7736 /* We have to make a copy of the shared variable. */
864ddef7 7737 if (shared_var_p (var, set->vars))
b5b8b0ac
AO
7738 {
7739 slot = unshare_variable (set, slot, var, initialized);
013e5ef9 7740 var = *slot;
b5b8b0ac 7741 }
014a1138 7742
014a1138
JZ
7743 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7744 thus there are at most MAX_VAR_PARTS different offsets. */
b5b8b0ac 7745 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
09dbcd96 7746 && (!var->n_var_parts || !onepart));
014a1138 7747
ca787200
AO
7748 /* We have to move the elements of array starting at index
7749 inspos to the next position. */
7750 for (pos = var->n_var_parts; pos > inspos; pos--)
7751 var->var_part[pos] = var->var_part[pos - 1];
014a1138
JZ
7752
7753 var->n_var_parts++;
09dbcd96
AO
7754 gcc_checking_assert (!onepart);
7755 VAR_PART_OFFSET (var, pos) = offset;
014a1138
JZ
7756 var->var_part[pos].loc_chain = NULL;
7757 var->var_part[pos].cur_loc = NULL;
7758 }
014a1138 7759
b5b8b0ac
AO
7760 /* Delete the location from the list. */
7761 nextp = &var->var_part[pos].loc_chain;
7762 for (node = var->var_part[pos].loc_chain; node; node = next)
014a1138 7763 {
b5b8b0ac
AO
7764 next = node->next;
7765 if ((REG_P (node->loc) && REG_P (loc)
7766 && REGNO (node->loc) == REGNO (loc))
7767 || rtx_equal_p (node->loc, loc))
7768 {
7769 /* Save these values, to assign to the new node, before
7770 deleting this one. */
7771 if (node->init > initialized)
7772 initialized = node->init;
7773 if (node->set_src != NULL && set_src == NULL)
7774 set_src = node->set_src;
864ddef7 7775 if (var->var_part[pos].cur_loc == node->loc)
09dbcd96 7776 var->var_part[pos].cur_loc = NULL;
7e46899d 7777 delete node;
b5b8b0ac
AO
7778 *nextp = next;
7779 break;
7780 }
7781 else
7782 nextp = &node->next;
014a1138 7783 }
b5b8b0ac
AO
7784
7785 nextp = &var->var_part[pos].loc_chain;
014a1138
JZ
7786 }
7787
7788 /* Add the location to the beginning. */
7e46899d 7789 node = new location_chain_def;
014a1138 7790 node->loc = loc;
62760ffd
CT
7791 node->init = initialized;
7792 node->set_src = set_src;
b5b8b0ac
AO
7793 node->next = *nextp;
7794 *nextp = node;
7795
014a1138
JZ
7796 /* If no location was emitted do so. */
7797 if (var->var_part[pos].cur_loc == NULL)
864ddef7 7798 variable_was_changed (var, set);
b5b8b0ac
AO
7799
7800 return slot;
014a1138
JZ
7801}
7802
b5b8b0ac
AO
7803/* Set the part of variable's location in the dataflow set SET. The
7804 variable part is specified by variable's declaration in DV and
7805 offset OFFSET and the part's location by LOC. IOPT should be
7806 NO_INSERT if the variable is known to be in SET already and the
7807 variable hash table must not be resized, and INSERT otherwise. */
ca787200
AO
7808
7809static void
b5b8b0ac
AO
7810set_variable_part (dataflow_set *set, rtx loc,
7811 decl_or_value dv, HOST_WIDE_INT offset,
7812 enum var_init_status initialized, rtx set_src,
7813 enum insert_option iopt)
ca787200 7814{
013e5ef9 7815 variable_def **slot;
ca787200 7816
b5b8b0ac
AO
7817 if (iopt == NO_INSERT)
7818 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7819 else
7820 {
7821 slot = shared_hash_find_slot (set->vars, dv);
7822 if (!slot)
7823 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7824 }
649beb33 7825 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
b5b8b0ac 7826}
ca787200 7827
b5b8b0ac
AO
7828/* Remove all recorded register locations for the given variable part
7829 from dataflow set SET, except for those that are identical to loc.
7830 The variable part is specified by variable's declaration or value
7831 DV and offset OFFSET. */
7832
013e5ef9
LC
7833static variable_def **
7834clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
b5b8b0ac
AO
7835 HOST_WIDE_INT offset, rtx set_src)
7836{
013e5ef9 7837 variable var = *slot;
b5b8b0ac
AO
7838 int pos = find_variable_location_part (var, offset, NULL);
7839
7840 if (pos >= 0)
ca787200 7841 {
b5b8b0ac 7842 location_chain node, next;
ca787200 7843
b5b8b0ac
AO
7844 /* Remove the register locations from the dataflow set. */
7845 next = var->var_part[pos].loc_chain;
7846 for (node = next; node; node = next)
ca787200 7847 {
b5b8b0ac
AO
7848 next = node->next;
7849 if (node->loc != loc
7850 && (!flag_var_tracking_uninit
7851 || !set_src
7852 || MEM_P (set_src)
7853 || !rtx_equal_p (set_src, node->set_src)))
ca787200 7854 {
b5b8b0ac 7855 if (REG_P (node->loc))
d3067303 7856 {
b5b8b0ac
AO
7857 attrs anode, anext;
7858 attrs *anextp;
7859
7860 /* Remove the variable part from the register's
7861 list, but preserve any other variable parts
7862 that might be regarded as live in that same
7863 register. */
7864 anextp = &set->regs[REGNO (node->loc)];
7865 for (anode = *anextp; anode; anode = anext)
d3067303 7866 {
b5b8b0ac
AO
7867 anext = anode->next;
7868 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7869 && anode->offset == offset)
d3067303 7870 {
7e46899d 7871 delete anode;
b5b8b0ac 7872 *anextp = anext;
d3067303 7873 }
b5b8b0ac
AO
7874 else
7875 anextp = &anode->next;
d3067303 7876 }
b5b8b0ac
AO
7877 }
7878
7879 slot = delete_slot_part (set, node->loc, slot, offset);
7880 }
7881 }
7882 }
7883
7884 return slot;
7885}
7886
7887/* Remove all recorded register locations for the given variable part
7888 from dataflow set SET, except for those that are identical to loc.
7889 The variable part is specified by variable's declaration or value
7890 DV and offset OFFSET. */
7891
7892static void
7893clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7894 HOST_WIDE_INT offset, rtx set_src)
7895{
013e5ef9 7896 variable_def **slot;
b5b8b0ac
AO
7897
7898 if (!dv_as_opaque (dv)
7899 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7900 return;
7901
7902 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7903 if (!slot)
7904 return;
7905
649beb33 7906 clobber_slot_part (set, loc, slot, offset, set_src);
b5b8b0ac 7907}
d3067303 7908
b5b8b0ac
AO
7909/* Delete the part of variable's location from dataflow set SET. The
7910 variable part is specified by its SET->vars slot SLOT and offset
7911 OFFSET and the part's location by LOC. */
7912
013e5ef9
LC
7913static variable_def **
7914delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
b5b8b0ac
AO
7915 HOST_WIDE_INT offset)
7916{
013e5ef9 7917 variable var = *slot;
b5b8b0ac
AO
7918 int pos = find_variable_location_part (var, offset, NULL);
7919
7920 if (pos >= 0)
7921 {
7922 location_chain node, next;
7923 location_chain *nextp;
7924 bool changed;
09dbcd96 7925 rtx cur_loc;
b5b8b0ac 7926
864ddef7 7927 if (shared_var_p (var, set->vars))
b5b8b0ac
AO
7928 {
7929 /* If the variable contains the location part we have to
7930 make a copy of the variable. */
7931 for (node = var->var_part[pos].loc_chain; node;
7932 node = node->next)
7933 {
7934 if ((REG_P (node->loc) && REG_P (loc)
7935 && REGNO (node->loc) == REGNO (loc))
7936 || rtx_equal_p (node->loc, loc))
7937 {
7938 slot = unshare_variable (set, slot, var,
7939 VAR_INIT_STATUS_UNKNOWN);
013e5ef9 7940 var = *slot;
b5b8b0ac 7941 break;
d3067303 7942 }
ca787200
AO
7943 }
7944 }
b5b8b0ac 7945
09dbcd96
AO
7946 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7947 cur_loc = VAR_LOC_FROM (var);
7948 else
7949 cur_loc = var->var_part[pos].cur_loc;
7950
b5b8b0ac 7951 /* Delete the location part. */
864ddef7 7952 changed = false;
b5b8b0ac
AO
7953 nextp = &var->var_part[pos].loc_chain;
7954 for (node = *nextp; node; node = next)
7955 {
7956 next = node->next;
7957 if ((REG_P (node->loc) && REG_P (loc)
7958 && REGNO (node->loc) == REGNO (loc))
7959 || rtx_equal_p (node->loc, loc))
7960 {
864ddef7
JJ
7961 /* If we have deleted the location which was last emitted
7962 we have to emit new location so add the variable to set
7963 of changed variables. */
09dbcd96 7964 if (cur_loc == node->loc)
864ddef7
JJ
7965 {
7966 changed = true;
7967 var->var_part[pos].cur_loc = NULL;
09dbcd96
AO
7968 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7969 VAR_LOC_FROM (var) = NULL;
864ddef7 7970 }
7e46899d 7971 delete node;
b5b8b0ac
AO
7972 *nextp = next;
7973 break;
7974 }
7975 else
7976 nextp = &node->next;
7977 }
7978
b5b8b0ac
AO
7979 if (var->var_part[pos].loc_chain == NULL)
7980 {
864ddef7 7981 changed = true;
b5b8b0ac 7982 var->n_var_parts--;
b5b8b0ac
AO
7983 while (pos < var->n_var_parts)
7984 {
7985 var->var_part[pos] = var->var_part[pos + 1];
7986 pos++;
7987 }
7988 }
7989 if (changed)
7990 variable_was_changed (var, set);
7991 }
7992
7993 return slot;
7994}
7995
7996/* Delete the part of variable's location from dataflow set SET. The
7997 variable part is specified by variable's declaration or value DV
7998 and offset OFFSET and the part's location by LOC. */
7999
8000static void
8001delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
8002 HOST_WIDE_INT offset)
8003{
013e5ef9 8004 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
b5b8b0ac
AO
8005 if (!slot)
8006 return;
8007
649beb33 8008 delete_slot_part (set, loc, slot, offset);
b5b8b0ac
AO
8009}
8010
09dbcd96 8011
864ddef7
JJ
8012/* Structure for passing some other parameters to function
8013 vt_expand_loc_callback. */
8014struct expand_loc_callback_data
8015{
8016 /* The variables and values active at this point. */
c203e8a7 8017 variable_table_type *vars;
864ddef7 8018
09dbcd96
AO
8019 /* Stack of values and debug_exprs under expansion, and their
8020 children. */
00f96dc9 8021 auto_vec<rtx, 4> expanding;
09dbcd96
AO
8022
8023 /* Stack of values and debug_exprs whose expansion hit recursion
8024 cycles. They will have VALUE_RECURSED_INTO marked when added to
8025 this list. This flag will be cleared if any of its dependencies
8026 resolves to a valid location. So, if the flag remains set at the
8027 end of the search, we know no valid location for this one can
8028 possibly exist. */
00f96dc9 8029 auto_vec<rtx, 4> pending;
09dbcd96
AO
8030
8031 /* The maximum depth among the sub-expressions under expansion.
8032 Zero indicates no expansion so far. */
6a184afa 8033 expand_depth depth;
864ddef7
JJ
8034};
8035
09dbcd96
AO
8036/* Allocate the one-part auxiliary data structure for VAR, with enough
8037 room for COUNT dependencies. */
8038
8039static void
8040loc_exp_dep_alloc (variable var, int count)
8041{
8042 size_t allocsize;
8043
8044 gcc_checking_assert (var->onepart);
8045
8046 /* We can be called with COUNT == 0 to allocate the data structure
8047 without any dependencies, e.g. for the backlinks only. However,
8048 if we are specifying a COUNT, then the dependency list must have
8049 been emptied before. It would be possible to adjust pointers or
8050 force it empty here, but this is better done at an earlier point
8051 in the algorithm, so we instead leave an assertion to catch
8052 errors. */
8053 gcc_checking_assert (!count
9771b263
DN
8054 || VAR_LOC_DEP_VEC (var) == NULL
8055 || VAR_LOC_DEP_VEC (var)->is_empty ());
09dbcd96 8056
9771b263 8057 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
09dbcd96
AO
8058 return;
8059
8060 allocsize = offsetof (struct onepart_aux, deps)
9771b263 8061 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
09dbcd96
AO
8062
8063 if (VAR_LOC_1PAUX (var))
8064 {
8065 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8066 VAR_LOC_1PAUX (var), allocsize);
8067 /* If the reallocation moves the onepaux structure, the
8068 back-pointer to BACKLINKS in the first list member will still
8069 point to its old location. Adjust it. */
8070 if (VAR_LOC_DEP_LST (var))
8071 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8072 }
8073 else
8074 {
8075 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8076 *VAR_LOC_DEP_LSTP (var) = NULL;
8077 VAR_LOC_FROM (var) = NULL;
6a184afa
AO
8078 VAR_LOC_DEPTH (var).complexity = 0;
8079 VAR_LOC_DEPTH (var).entryvals = 0;
09dbcd96 8080 }
9771b263 8081 VAR_LOC_DEP_VEC (var)->embedded_init (count);
09dbcd96
AO
8082}
8083
8084/* Remove all entries from the vector of active dependencies of VAR,
8085 removing them from the back-links lists too. */
8086
8087static void
8088loc_exp_dep_clear (variable var)
8089{
9771b263 8090 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
09dbcd96 8091 {
9771b263 8092 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
09dbcd96
AO
8093 if (led->next)
8094 led->next->pprev = led->pprev;
8095 if (led->pprev)
8096 *led->pprev = led->next;
9771b263 8097 VAR_LOC_DEP_VEC (var)->pop ();
09dbcd96
AO
8098 }
8099}
8100
8101/* Insert an active dependency from VAR on X to the vector of
8102 dependencies, and add the corresponding back-link to X's list of
8103 back-links in VARS. */
8104
8105static void
c203e8a7 8106loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
09dbcd96
AO
8107{
8108 decl_or_value dv;
8109 variable xvar;
8110 loc_exp_dep *led;
8111
8112 dv = dv_from_rtx (x);
8113
8114 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8115 an additional look up? */
c203e8a7 8116 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
09dbcd96
AO
8117
8118 if (!xvar)
8119 {
8120 xvar = variable_from_dropped (dv, NO_INSERT);
8121 gcc_checking_assert (xvar);
8122 }
8123
8124 /* No point in adding the same backlink more than once. This may
8125 arise if say the same value appears in two complex expressions in
8126 the same loc_list, or even more than once in a single
8127 expression. */
8128 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8129 return;
8130
d05cae4a 8131 if (var->onepart == NOT_ONEPART)
7e46899d 8132 led = new loc_exp_dep;
d05cae4a
AO
8133 else
8134 {
f32682ca
DN
8135 loc_exp_dep empty;
8136 memset (&empty, 0, sizeof (empty));
9771b263
DN
8137 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8138 led = &VAR_LOC_DEP_VEC (var)->last ();
d05cae4a 8139 }
09dbcd96
AO
8140 led->dv = var->dv;
8141 led->value = x;
8142
8143 loc_exp_dep_alloc (xvar, 0);
8144 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8145 led->next = *led->pprev;
8146 if (led->next)
8147 led->next->pprev = &led->next;
8148 *led->pprev = led;
8149}
8150
8151/* Create active dependencies of VAR on COUNT values starting at
8152 VALUE, and corresponding back-links to the entries in VARS. Return
8153 true if we found any pending-recursion results. */
8154
8155static bool
013e5ef9 8156loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
c203e8a7 8157 variable_table_type *vars)
09dbcd96
AO
8158{
8159 bool pending_recursion = false;
8160
9771b263
DN
8161 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8162 || VAR_LOC_DEP_VEC (var)->is_empty ());
09dbcd96
AO
8163
8164 /* Set up all dependencies from last_child (as set up at the end of
8165 the loop above) to the end. */
8166 loc_exp_dep_alloc (var, count);
8167
8168 while (count--)
8169 {
8170 rtx x = *value++;
8171
8172 if (!pending_recursion)
8173 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8174
8175 loc_exp_insert_dep (var, x, vars);
8176 }
8177
8178 return pending_recursion;
8179}
8180
8181/* Notify the back-links of IVAR that are pending recursion that we
8182 have found a non-NIL value for it, so they are cleared for another
8183 attempt to compute a current location. */
8184
8185static void
c203e8a7 8186notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
09dbcd96
AO
8187{
8188 loc_exp_dep *led, *next;
8189
8190 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8191 {
8192 decl_or_value dv = led->dv;
8193 variable var;
8194
8195 next = led->next;
8196
8197 if (dv_is_value_p (dv))
8198 {
8199 rtx value = dv_as_value (dv);
8200
8201 /* If we have already resolved it, leave it alone. */
8202 if (!VALUE_RECURSED_INTO (value))
8203 continue;
8204
8205 /* Check that VALUE_RECURSED_INTO, true from the test above,
8206 implies NO_LOC_P. */
8207 gcc_checking_assert (NO_LOC_P (value));
8208
8209 /* We won't notify variables that are being expanded,
8210 because their dependency list is cleared before
8211 recursing. */
6f2ffb4b 8212 NO_LOC_P (value) = false;
09dbcd96
AO
8213 VALUE_RECURSED_INTO (value) = false;
8214
8215 gcc_checking_assert (dv_changed_p (dv));
8216 }
d05cae4a
AO
8217 else
8218 {
8219 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8220 if (!dv_changed_p (dv))
8221 continue;
8222 }
09dbcd96 8223
c203e8a7 8224 var = vars->find_with_hash (dv, dv_htab_hash (dv));
09dbcd96
AO
8225
8226 if (!var)
8227 var = variable_from_dropped (dv, NO_INSERT);
8228
8229 if (var)
8230 notify_dependents_of_resolved_value (var, vars);
8231
8232 if (next)
8233 next->pprev = led->pprev;
8234 if (led->pprev)
8235 *led->pprev = next;
8236 led->next = NULL;
8237 led->pprev = NULL;
8238 }
8239}
8240
8241static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8242 int max_depth, void *data);
8243
8244/* Return the combined depth, when one sub-expression evaluated to
8245 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8246
6a184afa
AO
8247static inline expand_depth
8248update_depth (expand_depth saved_depth, expand_depth best_depth)
09dbcd96
AO
8249{
8250 /* If we didn't find anything, stick with what we had. */
6a184afa 8251 if (!best_depth.complexity)
09dbcd96
AO
8252 return saved_depth;
8253
8254 /* If we found hadn't found anything, use the depth of the current
8255 expression. Do NOT add one extra level, we want to compute the
8256 maximum depth among sub-expressions. We'll increment it later,
8257 if appropriate. */
6a184afa 8258 if (!saved_depth.complexity)
09dbcd96
AO
8259 return best_depth;
8260
6a184afa
AO
8261 /* Combine the entryval count so that regardless of which one we
8262 return, the entryval count is accurate. */
8263 best_depth.entryvals = saved_depth.entryvals
8264 = best_depth.entryvals + saved_depth.entryvals;
8265
8266 if (saved_depth.complexity < best_depth.complexity)
09dbcd96
AO
8267 return best_depth;
8268 else
8269 return saved_depth;
8270}
8271
8272/* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8273 DATA for cselib expand callback. If PENDRECP is given, indicate in
8274 it whether any sub-expression couldn't be fully evaluated because
8275 it is pending recursion resolution. */
8276
8277static inline rtx
8278vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8279{
8280 struct expand_loc_callback_data *elcd
8281 = (struct expand_loc_callback_data *) data;
8282 location_chain loc, next;
8283 rtx result = NULL;
8284 int first_child, result_first_child, last_child;
8285 bool pending_recursion;
8286 rtx loc_from = NULL;
8287 struct elt_loc_list *cloc = NULL;
6a184afa
AO
8288 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8289 int wanted_entryvals, found_entryvals = 0;
09dbcd96
AO
8290
8291 /* Clear all backlinks pointing at this, so that we're not notified
8292 while we're active. */
8293 loc_exp_dep_clear (var);
8294
6a184afa 8295 retry:
09dbcd96
AO
8296 if (var->onepart == ONEPART_VALUE)
8297 {
8298 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8299
8300 gcc_checking_assert (cselib_preserved_value_p (val));
8301
8302 cloc = val->locs;
8303 }
8304
8305 first_child = result_first_child = last_child
9771b263 8306 = elcd->expanding.length ();
09dbcd96 8307
6a184afa
AO
8308 wanted_entryvals = found_entryvals;
8309
09dbcd96
AO
8310 /* Attempt to expand each available location in turn. */
8311 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8312 loc || cloc; loc = next)
8313 {
8314 result_first_child = last_child;
8315
6a184afa 8316 if (!loc)
09dbcd96
AO
8317 {
8318 loc_from = cloc->loc;
8319 next = loc;
8320 cloc = cloc->next;
8321 if (unsuitable_loc (loc_from))
8322 continue;
8323 }
8324 else
8325 {
8326 loc_from = loc->loc;
8327 next = loc->next;
8328 }
8329
8330 gcc_checking_assert (!unsuitable_loc (loc_from));
8331
6a184afa 8332 elcd->depth.complexity = elcd->depth.entryvals = 0;
09dbcd96
AO
8333 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8334 vt_expand_loc_callback, data);
9771b263 8335 last_child = elcd->expanding.length ();
09dbcd96
AO
8336
8337 if (result)
8338 {
8339 depth = elcd->depth;
8340
6a184afa
AO
8341 gcc_checking_assert (depth.complexity
8342 || result_first_child == last_child);
09dbcd96
AO
8343
8344 if (last_child - result_first_child != 1)
6a184afa
AO
8345 {
8346 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8347 depth.entryvals++;
8348 depth.complexity++;
8349 }
09dbcd96 8350
6a184afa
AO
8351 if (depth.complexity <= EXPR_USE_DEPTH)
8352 {
8353 if (depth.entryvals <= wanted_entryvals)
8354 break;
8355 else if (!found_entryvals || depth.entryvals < found_entryvals)
8356 found_entryvals = depth.entryvals;
8357 }
09dbcd96
AO
8358
8359 result = NULL;
8360 }
8361
8362 /* Set it up in case we leave the loop. */
6a184afa 8363 depth.complexity = depth.entryvals = 0;
09dbcd96
AO
8364 loc_from = NULL;
8365 result_first_child = first_child;
8366 }
8367
6a184afa
AO
8368 if (!loc_from && wanted_entryvals < found_entryvals)
8369 {
8370 /* We found entries with ENTRY_VALUEs and skipped them. Since
8371 we could not find any expansions without ENTRY_VALUEs, but we
8372 found at least one with them, go back and get an entry with
8373 the minimum number ENTRY_VALUE count that we found. We could
8374 avoid looping, but since each sub-loc is already resolved,
8375 the re-expansion should be trivial. ??? Should we record all
8376 attempted locs as dependencies, so that we retry the
8377 expansion should any of them change, in the hope it can give
8378 us a new entry without an ENTRY_VALUE? */
9771b263 8379 elcd->expanding.truncate (first_child);
6a184afa
AO
8380 goto retry;
8381 }
8382
09dbcd96
AO
8383 /* Register all encountered dependencies as active. */
8384 pending_recursion = loc_exp_dep_set
9771b263 8385 (var, result, elcd->expanding.address () + result_first_child,
09dbcd96
AO
8386 last_child - result_first_child, elcd->vars);
8387
9771b263 8388 elcd->expanding.truncate (first_child);
09dbcd96
AO
8389
8390 /* Record where the expansion came from. */
8391 gcc_checking_assert (!result || !pending_recursion);
8392 VAR_LOC_FROM (var) = loc_from;
8393 VAR_LOC_DEPTH (var) = depth;
8394
6a184afa 8395 gcc_checking_assert (!depth.complexity == !result);
5a9fbcf1 8396
09dbcd96
AO
8397 elcd->depth = update_depth (saved_depth, depth);
8398
8399 /* Indicate whether any of the dependencies are pending recursion
8400 resolution. */
8401 if (pendrecp)
8402 *pendrecp = pending_recursion;
8403
8404 if (!pendrecp || !pending_recursion)
8405 var->var_part[0].cur_loc = result;
8406
8407 return result;
8408}
8409
b5b8b0ac 8410/* Callback for cselib_expand_value, that looks for expressions
0b7e34d7
AO
8411 holding the value in the var-tracking hash tables. Return X for
8412 standard processing, anything else is to be used as-is. */
b5b8b0ac
AO
8413
8414static rtx
09dbcd96
AO
8415vt_expand_loc_callback (rtx x, bitmap regs,
8416 int max_depth ATTRIBUTE_UNUSED,
8417 void *data)
b5b8b0ac 8418{
864ddef7
JJ
8419 struct expand_loc_callback_data *elcd
8420 = (struct expand_loc_callback_data *) data;
b5b8b0ac
AO
8421 decl_or_value dv;
8422 variable var;
09dbcd96
AO
8423 rtx result, subreg;
8424 bool pending_recursion = false;
8425 bool from_empty = false;
b5b8b0ac 8426
0ca5af51 8427 switch (GET_CODE (x))
0b7e34d7 8428 {
0ca5af51 8429 case SUBREG:
0b7e34d7 8430 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
09dbcd96 8431 EXPR_DEPTH,
0b7e34d7
AO
8432 vt_expand_loc_callback, data);
8433
8434 if (!subreg)
8435 return NULL;
8436
8437 result = simplify_gen_subreg (GET_MODE (x), subreg,
8438 GET_MODE (SUBREG_REG (x)),
8439 SUBREG_BYTE (x));
8440
8441 /* Invalid SUBREGs are ok in debug info. ??? We could try
8442 alternate expansions for the VALUE as well. */
864ddef7 8443 if (!result)
0b7e34d7
AO
8444 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8445
8446 return result;
0b7e34d7 8447
0ca5af51 8448 case DEBUG_EXPR:
0ca5af51 8449 case VALUE:
09dbcd96 8450 dv = dv_from_rtx (x);
0ca5af51
AO
8451 break;
8452
8453 default:
8454 return x;
8455 }
b5b8b0ac 8456
9771b263 8457 elcd->expanding.safe_push (x);
09dbcd96
AO
8458
8459 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8460 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8461
8462 if (NO_LOC_P (x))
6f2ffb4b
AO
8463 {
8464 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8465 return NULL;
8466 }
b5b8b0ac 8467
c203e8a7 8468 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
b5b8b0ac
AO
8469
8470 if (!var)
864ddef7 8471 {
09dbcd96
AO
8472 from_empty = true;
8473 var = variable_from_dropped (dv, INSERT);
864ddef7 8474 }
b5b8b0ac 8475
09dbcd96
AO
8476 gcc_checking_assert (var);
8477
8478 if (!dv_changed_p (dv))
864ddef7 8479 {
09dbcd96
AO
8480 gcc_checking_assert (!NO_LOC_P (x));
8481 gcc_checking_assert (var->var_part[0].cur_loc);
8482 gcc_checking_assert (VAR_LOC_1PAUX (var));
6a184afa 8483 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
b5b8b0ac 8484
09dbcd96
AO
8485 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8486
8487 return var->var_part[0].cur_loc;
8488 }
b5b8b0ac
AO
8489
8490 VALUE_RECURSED_INTO (x) = true;
09dbcd96
AO
8491 /* This is tentative, but it makes some tests simpler. */
8492 NO_LOC_P (x) = true;
b5b8b0ac 8493
09dbcd96
AO
8494 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8495
8496 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8497
8498 if (pending_recursion)
b5b8b0ac 8499 {
09dbcd96 8500 gcc_checking_assert (!result);
9771b263 8501 elcd->pending.safe_push (x);
864ddef7 8502 }
2b1c5433 8503 else
864ddef7 8504 {
09dbcd96
AO
8505 NO_LOC_P (x) = !result;
8506 VALUE_RECURSED_INTO (x) = false;
8507 set_dv_changed (dv, false);
8508
8509 if (result)
8510 notify_dependents_of_resolved_value (var, elcd->vars);
ca787200 8511 }
b5b8b0ac 8512
09dbcd96 8513 return result;
ca787200
AO
8514}
8515
09dbcd96
AO
8516/* While expanding variables, we may encounter recursion cycles
8517 because of mutual (possibly indirect) dependencies between two
8518 particular variables (or values), say A and B. If we're trying to
8519 expand A when we get to B, which in turn attempts to expand A, if
8520 we can't find any other expansion for B, we'll add B to this
8521 pending-recursion stack, and tentatively return NULL for its
8522 location. This tentative value will be used for any other
8523 occurrences of B, unless A gets some other location, in which case
8524 it will notify B that it is worth another try at computing a
8525 location for it, and it will use the location computed for A then.
8526 At the end of the expansion, the tentative NULL locations become
8527 final for all members of PENDING that didn't get a notification.
8528 This function performs this finalization of NULL locations. */
8529
8530static void
ff4c81cc 8531resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
09dbcd96 8532{
ff4c81cc 8533 while (!pending->is_empty ())
09dbcd96 8534 {
ff4c81cc 8535 rtx x = pending->pop ();
09dbcd96
AO
8536 decl_or_value dv;
8537
8538 if (!VALUE_RECURSED_INTO (x))
8539 continue;
8540
8541 gcc_checking_assert (NO_LOC_P (x));
8542 VALUE_RECURSED_INTO (x) = false;
8543 dv = dv_from_rtx (x);
8544 gcc_checking_assert (dv_changed_p (dv));
8545 set_dv_changed (dv, false);
8546 }
8547}
8548
8549/* Initialize expand_loc_callback_data D with variable hash table V.
9771b263 8550 It must be a macro because of alloca (vec stack). */
09dbcd96
AO
8551#define INIT_ELCD(d, v) \
8552 do \
8553 { \
8554 (d).vars = (v); \
6a184afa 8555 (d).depth.complexity = (d).depth.entryvals = 0; \
09dbcd96
AO
8556 } \
8557 while (0)
8558/* Finalize expand_loc_callback_data D, resolved to location L. */
8559#define FINI_ELCD(d, l) \
8560 do \
8561 { \
ff4c81cc 8562 resolve_expansions_pending_recursion (&(d).pending); \
9771b263
DN
8563 (d).pending.release (); \
8564 (d).expanding.release (); \
09dbcd96
AO
8565 \
8566 if ((l) && MEM_P (l)) \
8567 (l) = targetm.delegitimize_address (l); \
8568 } \
8569 while (0)
8570
8571/* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8572 equivalences in VARS, updating their CUR_LOCs in the process. */
014a1138 8573
b5b8b0ac 8574static rtx
c203e8a7 8575vt_expand_loc (rtx loc, variable_table_type *vars)
014a1138 8576{
864ddef7 8577 struct expand_loc_callback_data data;
09dbcd96 8578 rtx result;
864ddef7 8579
b5b8b0ac
AO
8580 if (!MAY_HAVE_DEBUG_INSNS)
8581 return loc;
81f2eadb 8582
09dbcd96 8583 INIT_ELCD (data, vars);
014a1138 8584
09dbcd96
AO
8585 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8586 vt_expand_loc_callback, &data);
8587
8588 FINI_ELCD (data, result);
8589
8590 return result;
014a1138
JZ
8591}
8592
09dbcd96
AO
8593/* Expand the one-part VARiable to a location, using the equivalences
8594 in VARS, updating their CUR_LOCs in the process. */
864ddef7 8595
09dbcd96 8596static rtx
c203e8a7 8597vt_expand_1pvar (variable var, variable_table_type *vars)
864ddef7
JJ
8598{
8599 struct expand_loc_callback_data data;
09dbcd96
AO
8600 rtx loc;
8601
8602 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8603
8604 if (!dv_changed_p (var->dv))
8605 return var->var_part[0].cur_loc;
8606
8607 INIT_ELCD (data, vars);
8608
8609 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8610
9771b263 8611 gcc_checking_assert (data.expanding.is_empty ());
09dbcd96
AO
8612
8613 FINI_ELCD (data, loc);
864ddef7 8614
09dbcd96 8615 return loc;
864ddef7
JJ
8616}
8617
014a1138
JZ
8618/* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8619 additional parameters: WHERE specifies whether the note shall be emitted
b5b8b0ac 8620 before or after instruction INSN. */
014a1138 8621
013e5ef9
LC
8622int
8623emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
014a1138 8624{
013e5ef9 8625 variable var = *varp;
598d62da 8626 rtx_insn *insn = data->insn;
013e5ef9 8627 enum emit_note_where where = data->where;
c203e8a7 8628 variable_table_type *vars = data->vars;
66e8df53
DM
8629 rtx_note *note;
8630 rtx note_vl;
c938250d 8631 int i, j, n_var_parts;
014a1138 8632 bool complete;
62760ffd 8633 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
014a1138
JZ
8634 HOST_WIDE_INT last_limit;
8635 tree type_size_unit;
c938250d
JJ
8636 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8637 rtx loc[MAX_VAR_PARTS];
b5b8b0ac 8638 tree decl;
864ddef7 8639 location_chain lc;
014a1138 8640
09dbcd96
AO
8641 gcc_checking_assert (var->onepart == NOT_ONEPART
8642 || var->onepart == ONEPART_VDECL);
b5b8b0ac
AO
8643
8644 decl = dv_as_decl (var->dv);
8645
014a1138
JZ
8646 complete = true;
8647 last_limit = 0;
c938250d 8648 n_var_parts = 0;
09dbcd96
AO
8649 if (!var->onepart)
8650 for (i = 0; i < var->n_var_parts; i++)
8651 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8652 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
014a1138
JZ
8653 for (i = 0; i < var->n_var_parts; i++)
8654 {
ef4bddc2 8655 machine_mode mode, wider_mode;
b5b8b0ac 8656 rtx loc2;
09dbcd96 8657 HOST_WIDE_INT offset;
c938250d 8658
09dbcd96 8659 if (i == 0 && var->onepart)
014a1138 8660 {
09dbcd96
AO
8661 gcc_checking_assert (var->n_var_parts == 1);
8662 offset = 0;
8663 initialized = VAR_INIT_STATUS_INITIALIZED;
8664 loc2 = vt_expand_1pvar (var, vars);
014a1138 8665 }
09dbcd96 8666 else
864ddef7 8667 {
09dbcd96
AO
8668 if (last_limit < VAR_PART_OFFSET (var, i))
8669 {
8670 complete = false;
8671 break;
8672 }
8673 else if (last_limit > VAR_PART_OFFSET (var, i))
8674 continue;
8675 offset = VAR_PART_OFFSET (var, i);
d05cae4a
AO
8676 loc2 = var->var_part[i].cur_loc;
8677 if (loc2 && GET_CODE (loc2) == MEM
8678 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8679 {
8680 rtx depval = XEXP (loc2, 0);
8681
8682 loc2 = vt_expand_loc (loc2, vars);
8683
8684 if (loc2)
8685 loc_exp_insert_dep (var, depval, vars);
8686 }
8687 if (!loc2)
09dbcd96
AO
8688 {
8689 complete = false;
8690 continue;
8691 }
d05cae4a 8692 gcc_checking_assert (GET_CODE (loc2) != VALUE);
09dbcd96
AO
8693 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8694 if (var->var_part[i].cur_loc == lc->loc)
8695 {
8696 initialized = lc->init;
8697 break;
8698 }
8699 gcc_assert (lc);
864ddef7 8700 }
09dbcd96
AO
8701
8702 offsets[n_var_parts] = offset;
b5b8b0ac
AO
8703 if (!loc2)
8704 {
8705 complete = false;
8706 continue;
8707 }
8708 loc[n_var_parts] = loc2;
864ddef7 8709 mode = GET_MODE (var->var_part[i].cur_loc);
09dbcd96 8710 if (mode == VOIDmode && var->onepart)
5644a3d0 8711 mode = DECL_MODE (decl);
c938250d
JJ
8712 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8713
8714 /* Attempt to merge adjacent registers or memory. */
8715 wider_mode = GET_MODE_WIDER_MODE (mode);
8716 for (j = i + 1; j < var->n_var_parts; j++)
09dbcd96 8717 if (last_limit <= VAR_PART_OFFSET (var, j))
c938250d
JJ
8718 break;
8719 if (j < var->n_var_parts
8720 && wider_mode != VOIDmode
864ddef7
JJ
8721 && var->var_part[j].cur_loc
8722 && mode == GET_MODE (var->var_part[j].cur_loc)
7cf72011 8723 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
09dbcd96
AO
8724 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8725 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
864ddef7 8726 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
c938250d
JJ
8727 {
8728 rtx new_loc = NULL;
c938250d
JJ
8729
8730 if (REG_P (loc[n_var_parts])
8731 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8732 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
09e18274 8733 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
c938250d
JJ
8734 == REGNO (loc2))
8735 {
8736 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8737 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8738 mode, 0);
8739 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8740 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8741 if (new_loc)
8742 {
8743 if (!REG_P (new_loc)
8744 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8745 new_loc = NULL;
8746 else
8747 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8748 }
8749 }
8750 else if (MEM_P (loc[n_var_parts])
8751 && GET_CODE (XEXP (loc2, 0)) == PLUS
481683e1
SZ
8752 && REG_P (XEXP (XEXP (loc2, 0), 0))
8753 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
c938250d 8754 {
481683e1 8755 if ((REG_P (XEXP (loc[n_var_parts], 0))
c938250d
JJ
8756 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8757 XEXP (XEXP (loc2, 0), 0))
8758 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8759 == GET_MODE_SIZE (mode))
8760 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
481683e1 8761 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
c938250d
JJ
8762 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8763 XEXP (XEXP (loc2, 0), 0))
8764 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8765 + GET_MODE_SIZE (mode)
8766 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8767 new_loc = adjust_address_nv (loc[n_var_parts],
8768 wider_mode, 0);
8769 }
8770
8771 if (new_loc)
8772 {
8773 loc[n_var_parts] = new_loc;
8774 mode = wider_mode;
8775 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8776 i = j;
8777 }
8778 }
8779 ++n_var_parts;
014a1138 8780 }
b5b8b0ac 8781 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
014a1138
JZ
8782 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8783 complete = false;
8784
62760ffd
CT
8785 if (! flag_var_tracking_uninit)
8786 initialized = VAR_INIT_STATUS_INITIALIZED;
8787
864ddef7 8788 note_vl = NULL_RTX;
014a1138 8789 if (!complete)
fcc74520 8790 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
c938250d 8791 else if (n_var_parts == 1)
014a1138 8792 {
e80691a0
JJ
8793 rtx expr_list;
8794
8795 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8796 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8797 else
8798 expr_list = loc[0];
014a1138 8799
fcc74520 8800 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
014a1138 8801 }
c938250d 8802 else if (n_var_parts)
014a1138 8803 {
014a1138
JZ
8804 rtx parallel;
8805
c938250d
JJ
8806 for (i = 0; i < n_var_parts; i++)
8807 loc[i]
8808 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8809
014a1138 8810 parallel = gen_rtx_PARALLEL (VOIDmode,
c938250d 8811 gen_rtvec_v (n_var_parts, loc));
864ddef7 8812 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
fcc74520 8813 parallel, initialized);
014a1138
JZ
8814 }
8815
864ddef7
JJ
8816 if (where != EMIT_NOTE_BEFORE_INSN)
8817 {
c3583c4a 8818 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
864ddef7
JJ
8819 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8820 NOTE_DURING_CALL_P (note) = true;
8821 }
8822 else
8784e5ac
AK
8823 {
8824 /* Make sure that the call related notes come first. */
8825 while (NEXT_INSN (insn)
8826 && NOTE_P (insn)
65cca5de
JJ
8827 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8828 && NOTE_DURING_CALL_P (insn))
8829 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8784e5ac 8830 insn = NEXT_INSN (insn);
65cca5de
JJ
8831 if (NOTE_P (insn)
8832 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8833 && NOTE_DURING_CALL_P (insn))
8834 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8784e5ac
AK
8835 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8836 else
c3583c4a 8837 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8784e5ac 8838 }
864ddef7
JJ
8839 NOTE_VAR_LOCATION (note) = note_vl;
8840
b5b8b0ac 8841 set_dv_changed (var->dv, false);
864ddef7
JJ
8842 gcc_assert (var->in_changed_variables);
8843 var->in_changed_variables = false;
c203e8a7 8844 changed_variables->clear_slot (varp);
014a1138 8845
014a1138
JZ
8846 /* Continue traversing the hash table. */
8847 return 1;
8848}
8849
09dbcd96
AO
8850/* While traversing changed_variables, push onto DATA (a stack of RTX
8851 values) entries that aren't user variables. */
b5b8b0ac 8852
013e5ef9
LC
8853int
8854var_track_values_to_stack (variable_def **slot,
ff4c81cc 8855 vec<rtx, va_heap> *changed_values_stack)
09dbcd96 8856{
013e5ef9 8857 variable var = *slot;
1feb8238 8858
09dbcd96 8859 if (var->onepart == ONEPART_VALUE)
9771b263 8860 changed_values_stack->safe_push (dv_as_value (var->dv));
09dbcd96 8861 else if (var->onepart == ONEPART_DEXPR)
9771b263 8862 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
1feb8238 8863
09dbcd96
AO
8864 return 1;
8865}
1feb8238 8866
09dbcd96
AO
8867/* Remove from changed_variables the entry whose DV corresponds to
8868 value or debug_expr VAL. */
1feb8238 8869static void
09dbcd96 8870remove_value_from_changed_variables (rtx val)
1feb8238 8871{
09dbcd96 8872 decl_or_value dv = dv_from_rtx (val);
013e5ef9 8873 variable_def **slot;
09dbcd96 8874 variable var;
1feb8238 8875
c203e8a7 8876 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
013e5ef9
LC
8877 NO_INSERT);
8878 var = *slot;
09dbcd96 8879 var->in_changed_variables = false;
c203e8a7 8880 changed_variables->clear_slot (slot);
1feb8238
JJ
8881}
8882
09dbcd96
AO
8883/* If VAL (a value or debug_expr) has backlinks to variables actively
8884 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8885 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8886 have dependencies of their own to notify. */
b5b8b0ac 8887
09dbcd96 8888static void
c203e8a7 8889notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
ff4c81cc 8890 vec<rtx, va_heap> *changed_values_stack)
b5b8b0ac 8891{
013e5ef9 8892 variable_def **slot;
09dbcd96
AO
8893 variable var;
8894 loc_exp_dep *led;
8895 decl_or_value dv = dv_from_rtx (val);
b5b8b0ac 8896
c203e8a7 8897 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
013e5ef9 8898 NO_INSERT);
09dbcd96 8899 if (!slot)
c203e8a7 8900 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
09dbcd96 8901 if (!slot)
c203e8a7
TS
8902 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8903 NO_INSERT);
013e5ef9 8904 var = *slot;
09dbcd96
AO
8905
8906 while ((led = VAR_LOC_DEP_LST (var)))
8907 {
8908 decl_or_value ldv = led->dv;
09dbcd96 8909 variable ivar;
b5b8b0ac 8910
09dbcd96
AO
8911 /* Deactivate and remove the backlink, as it was “used up”. It
8912 makes no sense to attempt to notify the same entity again:
8913 either it will be recomputed and re-register an active
8914 dependency, or it will still have the changed mark. */
8915 if (led->next)
8916 led->next->pprev = led->pprev;
8917 if (led->pprev)
8918 *led->pprev = led->next;
8919 led->next = NULL;
8920 led->pprev = NULL;
b5b8b0ac 8921
09dbcd96
AO
8922 if (dv_changed_p (ldv))
8923 continue;
8924
8925 switch (dv_onepart_p (ldv))
8926 {
8927 case ONEPART_VALUE:
8928 case ONEPART_DEXPR:
8929 set_dv_changed (ldv, true);
9771b263 8930 changed_values_stack->safe_push (dv_as_rtx (ldv));
09dbcd96
AO
8931 break;
8932
d05cae4a 8933 case ONEPART_VDECL:
c203e8a7 8934 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
09dbcd96
AO
8935 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8936 variable_was_changed (ivar, NULL);
8937 break;
d05cae4a
AO
8938
8939 case NOT_ONEPART:
7e46899d 8940 delete led;
c203e8a7 8941 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
d05cae4a
AO
8942 if (ivar)
8943 {
8944 int i = ivar->n_var_parts;
8945 while (i--)
8946 {
8947 rtx loc = ivar->var_part[i].cur_loc;
8948
8949 if (loc && GET_CODE (loc) == MEM
8950 && XEXP (loc, 0) == val)
8951 {
8952 variable_was_changed (ivar, NULL);
8953 break;
8954 }
8955 }
8956 }
8957 break;
8958
8959 default:
8960 gcc_unreachable ();
09dbcd96
AO
8961 }
8962 }
b5b8b0ac
AO
8963}
8964
09dbcd96
AO
8965/* Take out of changed_variables any entries that don't refer to use
8966 variables. Back-propagate change notifications from values and
8967 debug_exprs to their active dependencies in HTAB or in
8968 CHANGED_VARIABLES. */
864ddef7 8969
09dbcd96 8970static void
c203e8a7 8971process_changed_values (variable_table_type *htab)
864ddef7 8972{
09dbcd96
AO
8973 int i, n;
8974 rtx val;
00f96dc9 8975 auto_vec<rtx, 20> changed_values_stack;
864ddef7 8976
09dbcd96 8977 /* Move values from changed_variables to changed_values_stack. */
013e5ef9 8978 changed_variables
c203e8a7 8979 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
013e5ef9 8980 (&changed_values_stack);
864ddef7 8981
09dbcd96
AO
8982 /* Back-propagate change notifications in values while popping
8983 them from the stack. */
9771b263
DN
8984 for (n = i = changed_values_stack.length ();
8985 i > 0; i = changed_values_stack.length ())
864ddef7 8986 {
9771b263 8987 val = changed_values_stack.pop ();
09dbcd96
AO
8988 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8989
8990 /* This condition will hold when visiting each of the entries
8991 originally in changed_variables. We can't remove them
8992 earlier because this could drop the backlinks before we got a
8993 chance to use them. */
8994 if (i == n)
864ddef7 8995 {
09dbcd96
AO
8996 remove_value_from_changed_variables (val);
8997 n--;
864ddef7 8998 }
864ddef7 8999 }
864ddef7
JJ
9000}
9001
014a1138 9002/* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
09dbcd96
AO
9003 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
9004 the notes shall be emitted before of after instruction INSN. */
014a1138
JZ
9005
9006static void
598d62da 9007emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
b5b8b0ac 9008 shared_hash vars)
014a1138
JZ
9009{
9010 emit_note_data data;
c203e8a7 9011 variable_table_type *htab = shared_hash_htab (vars);
b5b8b0ac 9012
c203e8a7 9013 if (!changed_variables->elements ())
b5b8b0ac
AO
9014 return;
9015
9016 if (MAY_HAVE_DEBUG_INSNS)
09dbcd96 9017 process_changed_values (htab);
014a1138
JZ
9018
9019 data.insn = insn;
9020 data.where = where;
b5b8b0ac
AO
9021 data.vars = htab;
9022
013e5ef9 9023 changed_variables
c203e8a7 9024 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
014a1138
JZ
9025}
9026
9027/* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9028 same variable in hash table DATA or is not there at all. */
9029
013e5ef9 9030int
c203e8a7 9031emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
014a1138 9032{
014a1138
JZ
9033 variable old_var, new_var;
9034
013e5ef9 9035 old_var = *slot;
c203e8a7 9036 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
014a1138
JZ
9037
9038 if (!new_var)
9039 {
9040 /* Variable has disappeared. */
09dbcd96 9041 variable empty_var = NULL;
b5b8b0ac 9042
09dbcd96
AO
9043 if (old_var->onepart == ONEPART_VALUE
9044 || old_var->onepart == ONEPART_DEXPR)
b5b8b0ac 9045 {
09dbcd96
AO
9046 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9047 if (empty_var)
b5b8b0ac 9048 {
09dbcd96
AO
9049 gcc_checking_assert (!empty_var->in_changed_variables);
9050 if (!VAR_LOC_1PAUX (old_var))
9051 {
9052 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9053 VAR_LOC_1PAUX (empty_var) = NULL;
9054 }
9055 else
9056 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
b5b8b0ac 9057 }
b5b8b0ac 9058 }
09dbcd96
AO
9059
9060 if (!empty_var)
864ddef7 9061 {
7e46899d 9062 empty_var = onepart_pool (old_var->onepart).allocate ();
09dbcd96
AO
9063 empty_var->dv = old_var->dv;
9064 empty_var->refcount = 0;
9065 empty_var->n_var_parts = 0;
9066 empty_var->onepart = old_var->onepart;
9067 empty_var->in_changed_variables = false;
9068 }
864ddef7 9069
09dbcd96
AO
9070 if (empty_var->onepart)
9071 {
9072 /* Propagate the auxiliary data to (ultimately)
9073 changed_variables. */
9074 empty_var->var_part[0].loc_chain = NULL;
9075 empty_var->var_part[0].cur_loc = NULL;
9076 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9077 VAR_LOC_1PAUX (old_var) = NULL;
864ddef7 9078 }
09dbcd96
AO
9079 variable_was_changed (empty_var, NULL);
9080 /* Continue traversing the hash table. */
9081 return 1;
9082 }
9083 /* Update cur_loc and one-part auxiliary data, before new_var goes
9084 through variable_was_changed. */
9085 if (old_var != new_var && new_var->onepart)
9086 {
9087 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9088 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9089 VAR_LOC_1PAUX (old_var) = NULL;
9090 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
864ddef7 9091 }
09dbcd96
AO
9092 if (variable_different_p (old_var, new_var))
9093 variable_was_changed (new_var, NULL);
014a1138
JZ
9094
9095 /* Continue traversing the hash table. */
9096 return 1;
9097}
9098
9099/* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9100 table DATA. */
9101
013e5ef9 9102int
c203e8a7 9103emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
014a1138 9104{
014a1138
JZ
9105 variable old_var, new_var;
9106
013e5ef9 9107 new_var = *slot;
c203e8a7 9108 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
014a1138
JZ
9109 if (!old_var)
9110 {
864ddef7 9111 int i;
864ddef7
JJ
9112 for (i = 0; i < new_var->n_var_parts; i++)
9113 new_var->var_part[i].cur_loc = NULL;
014a1138
JZ
9114 variable_was_changed (new_var, NULL);
9115 }
9116
9117 /* Continue traversing the hash table. */
9118 return 1;
9119}
9120
9121/* Emit notes before INSN for differences between dataflow sets OLD_SET and
9122 NEW_SET. */
9123
9124static void
598d62da 9125emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
014a1138
JZ
9126 dataflow_set *new_set)
9127{
013e5ef9 9128 shared_hash_htab (old_set->vars)
c203e8a7 9129 ->traverse <variable_table_type *, emit_notes_for_differences_1>
013e5ef9
LC
9130 (shared_hash_htab (new_set->vars));
9131 shared_hash_htab (new_set->vars)
c203e8a7 9132 ->traverse <variable_table_type *, emit_notes_for_differences_2>
013e5ef9 9133 (shared_hash_htab (old_set->vars));
b5b8b0ac 9134 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
014a1138
JZ
9135}
9136
12c5ffe5
EB
9137/* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9138
598d62da
DM
9139static rtx_insn *
9140next_non_note_insn_var_location (rtx_insn *insn)
12c5ffe5
EB
9141{
9142 while (insn)
9143 {
9144 insn = NEXT_INSN (insn);
c3583c4a
JJ
9145 if (insn == 0
9146 || !NOTE_P (insn)
9147 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
12c5ffe5
EB
9148 break;
9149 }
9150
9151 return insn;
9152}
9153
014a1138
JZ
9154/* Emit the notes for changes of location parts in the basic block BB. */
9155
9156static void
b5b8b0ac 9157emit_notes_in_bb (basic_block bb, dataflow_set *set)
014a1138 9158{
0de3e43f
JJ
9159 unsigned int i;
9160 micro_operation *mo;
014a1138 9161
b5b8b0ac
AO
9162 dataflow_set_clear (set);
9163 dataflow_set_copy (set, &VTI (bb)->in);
014a1138 9164
9771b263 9165 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
014a1138 9166 {
598d62da
DM
9167 rtx_insn *insn = mo->insn;
9168 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
014a1138 9169
0de3e43f 9170 switch (mo->type)
014a1138
JZ
9171 {
9172 case MO_CALL:
0f9f9784 9173 dataflow_set_clear_at_call (set);
b5b8b0ac 9174 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
2b1c5433 9175 {
66e8df53
DM
9176 rtx arguments = mo->u.loc, *p = &arguments;
9177 rtx_note *note;
2b1c5433
JJ
9178 while (*p)
9179 {
9180 XEXP (XEXP (*p, 0), 1)
9181 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
09dbcd96 9182 shared_hash_htab (set->vars));
2b1c5433
JJ
9183 /* If expansion is successful, keep it in the list. */
9184 if (XEXP (XEXP (*p, 0), 1))
9185 p = &XEXP (*p, 1);
9186 /* Otherwise, if the following item is data_value for it,
9187 drop it too too. */
9188 else if (XEXP (*p, 1)
9189 && REG_P (XEXP (XEXP (*p, 0), 0))
9190 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9191 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9192 0))
9193 && REGNO (XEXP (XEXP (*p, 0), 0))
9194 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9195 0), 0)))
9196 *p = XEXP (XEXP (*p, 1), 1);
9197 /* Just drop this item. */
9198 else
9199 *p = XEXP (*p, 1);
9200 }
c3583c4a 9201 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
2b1c5433
JJ
9202 NOTE_VAR_LOCATION (note) = arguments;
9203 }
b5b8b0ac
AO
9204 break;
9205
9206 case MO_USE:
014a1138 9207 {
0de3e43f 9208 rtx loc = mo->u.loc;
014a1138 9209
b5b8b0ac
AO
9210 if (REG_P (loc))
9211 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9212 else
9213 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9214
f7e088e7 9215 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
014a1138
JZ
9216 }
9217 break;
9218
b5b8b0ac 9219 case MO_VAL_LOC:
dedc1e6d 9220 {
0de3e43f 9221 rtx loc = mo->u.loc;
b5b8b0ac
AO
9222 rtx val, vloc;
9223 tree var;
7eb3f1f7 9224
b5b8b0ac
AO
9225 if (GET_CODE (loc) == CONCAT)
9226 {
9227 val = XEXP (loc, 0);
9228 vloc = XEXP (loc, 1);
9229 }
dedc1e6d 9230 else
b5b8b0ac
AO
9231 {
9232 val = NULL_RTX;
9233 vloc = loc;
9234 }
9235
9236 var = PAT_VAR_LOCATION_DECL (vloc);
9237
9238 clobber_variable_part (set, NULL_RTX,
9239 dv_from_decl (var), 0, NULL_RTX);
9240 if (val)
9241 {
9242 if (VAL_NEEDS_RESOLUTION (loc))
9243 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9244 set_variable_part (set, val, dv_from_decl (var), 0,
9245 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9246 INSERT);
9247 }
5644a3d0
JJ
9248 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9249 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9250 dv_from_decl (var), 0,
9251 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9252 INSERT);
b5b8b0ac
AO
9253
9254 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9255 }
9256 break;
9257
9258 case MO_VAL_USE:
9259 {
0de3e43f 9260 rtx loc = mo->u.loc;
b5b8b0ac
AO
9261 rtx val, vloc, uloc;
9262
9263 vloc = uloc = XEXP (loc, 1);
9264 val = XEXP (loc, 0);
9265
9266 if (GET_CODE (val) == CONCAT)
9267 {
9268 uloc = XEXP (val, 1);
9269 val = XEXP (val, 0);
9270 }
9271
9272 if (VAL_NEEDS_RESOLUTION (loc))
9273 val_resolve (set, val, vloc, insn);
fb4cbb9f
AO
9274 else
9275 val_store (set, val, uloc, insn, false);
b5b8b0ac
AO
9276
9277 if (VAL_HOLDS_TRACK_EXPR (loc))
9278 {
9279 if (GET_CODE (uloc) == REG)
9280 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9281 NULL);
9282 else if (GET_CODE (uloc) == MEM)
9283 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9284 NULL);
9285 }
9286
9287 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9288 }
9289 break;
9290
9291 case MO_VAL_SET:
9292 {
0de3e43f 9293 rtx loc = mo->u.loc;
6f2ffb4b 9294 rtx val, vloc, uloc;
d05cae4a 9295 rtx dstv, srcv;
dedc1e6d 9296
0c5863c2 9297 vloc = loc;
0c5863c2
JJ
9298 uloc = XEXP (vloc, 1);
9299 val = XEXP (vloc, 0);
9300 vloc = uloc;
b5b8b0ac 9301
d05cae4a
AO
9302 if (GET_CODE (uloc) == SET)
9303 {
9304 dstv = SET_DEST (uloc);
9305 srcv = SET_SRC (uloc);
9306 }
9307 else
9308 {
9309 dstv = uloc;
9310 srcv = NULL;
9311 }
9312
b5b8b0ac
AO
9313 if (GET_CODE (val) == CONCAT)
9314 {
d05cae4a 9315 dstv = vloc = XEXP (val, 1);
b5b8b0ac
AO
9316 val = XEXP (val, 0);
9317 }
9318
9319 if (GET_CODE (vloc) == SET)
9320 {
d05cae4a 9321 srcv = SET_SRC (vloc);
b5b8b0ac 9322
d05cae4a 9323 gcc_assert (val != srcv);
b5b8b0ac
AO
9324 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9325
d05cae4a 9326 dstv = vloc = SET_DEST (vloc);
b5b8b0ac
AO
9327
9328 if (VAL_NEEDS_RESOLUTION (loc))
d05cae4a 9329 val_resolve (set, val, srcv, insn);
b5b8b0ac
AO
9330 }
9331 else if (VAL_NEEDS_RESOLUTION (loc))
9332 {
9333 gcc_assert (GET_CODE (uloc) == SET
9334 && GET_CODE (SET_SRC (uloc)) == REG);
9335 val_resolve (set, val, SET_SRC (uloc), insn);
9336 }
9337
9338 if (VAL_HOLDS_TRACK_EXPR (loc))
9339 {
9340 if (VAL_EXPR_IS_CLOBBERED (loc))
9341 {
9342 if (REG_P (uloc))
9343 var_reg_delete (set, uloc, true);
9344 else if (MEM_P (uloc))
d05cae4a
AO
9345 {
9346 gcc_assert (MEM_P (dstv));
9347 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9348 var_mem_delete (set, dstv, true);
9349 }
b5b8b0ac
AO
9350 }
9351 else
9352 {
9353 bool copied_p = VAL_EXPR_IS_COPIED (loc);
d05cae4a 9354 rtx src = NULL, dst = uloc;
b5b8b0ac
AO
9355 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9356
9357 if (GET_CODE (uloc) == SET)
9358 {
d05cae4a
AO
9359 src = SET_SRC (uloc);
9360 dst = SET_DEST (uloc);
b5b8b0ac
AO
9361 }
9362
9363 if (copied_p)
9364 {
d05cae4a 9365 status = find_src_status (set, src);
b5b8b0ac 9366
d05cae4a 9367 src = find_src_set_src (set, src);
b5b8b0ac
AO
9368 }
9369
d05cae4a
AO
9370 if (REG_P (dst))
9371 var_reg_delete_and_set (set, dst, !copied_p,
9372 status, srcv);
9373 else if (MEM_P (dst))
9374 {
9375 gcc_assert (MEM_P (dstv));
9376 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9377 var_mem_delete_and_set (set, dstv, !copied_p,
9378 status, srcv);
9379 }
b5b8b0ac
AO
9380 }
9381 }
9382 else if (REG_P (uloc))
9383 var_regno_delete (set, REGNO (uloc));
8cda8ad3 9384 else if (MEM_P (uloc))
af6236c1
AO
9385 {
9386 gcc_checking_assert (GET_CODE (vloc) == MEM);
9387 gcc_checking_assert (vloc == dstv);
9388 if (vloc != dstv)
9389 clobber_overlapping_mems (set, vloc);
9390 }
b5b8b0ac 9391
d05cae4a 9392 val_store (set, val, dstv, insn, true);
b5b8b0ac 9393
12c5ffe5 9394 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
b5b8b0ac 9395 set->vars);
dedc1e6d
AO
9396 }
9397 break;
9398
014a1138
JZ
9399 case MO_SET:
9400 {
0de3e43f 9401 rtx loc = mo->u.loc;
94a7682d 9402 rtx set_src = NULL;
62760ffd 9403
94a7682d 9404 if (GET_CODE (loc) == SET)
62760ffd 9405 {
94a7682d
RS
9406 set_src = SET_SRC (loc);
9407 loc = SET_DEST (loc);
62760ffd 9408 }
014a1138 9409
f8cfc6aa 9410 if (REG_P (loc))
b5b8b0ac 9411 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
62760ffd 9412 set_src);
014a1138 9413 else
b5b8b0ac 9414 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
62760ffd 9415 set_src);
ca787200 9416
12c5ffe5 9417 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
b5b8b0ac 9418 set->vars);
ca787200
AO
9419 }
9420 break;
9421
9422 case MO_COPY:
9423 {
0de3e43f 9424 rtx loc = mo->u.loc;
62760ffd 9425 enum var_init_status src_status;
94a7682d
RS
9426 rtx set_src = NULL;
9427
9428 if (GET_CODE (loc) == SET)
9429 {
9430 set_src = SET_SRC (loc);
9431 loc = SET_DEST (loc);
9432 }
62760ffd 9433
b5b8b0ac
AO
9434 src_status = find_src_status (set, set_src);
9435 set_src = find_src_set_src (set, set_src);
ca787200
AO
9436
9437 if (REG_P (loc))
b5b8b0ac 9438 var_reg_delete_and_set (set, loc, false, src_status, set_src);
ca787200 9439 else
b5b8b0ac 9440 var_mem_delete_and_set (set, loc, false, src_status, set_src);
014a1138 9441
12c5ffe5 9442 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
b5b8b0ac 9443 set->vars);
014a1138
JZ
9444 }
9445 break;
9446
9447 case MO_USE_NO_VAR:
014a1138 9448 {
0de3e43f 9449 rtx loc = mo->u.loc;
014a1138 9450
f8cfc6aa 9451 if (REG_P (loc))
b5b8b0ac 9452 var_reg_delete (set, loc, false);
014a1138 9453 else
b5b8b0ac 9454 var_mem_delete (set, loc, false);
ca787200 9455
b5b8b0ac 9456 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
ca787200
AO
9457 }
9458 break;
014a1138 9459
ca787200
AO
9460 case MO_CLOBBER:
9461 {
0de3e43f 9462 rtx loc = mo->u.loc;
ca787200
AO
9463
9464 if (REG_P (loc))
b5b8b0ac 9465 var_reg_delete (set, loc, true);
dedc1e6d 9466 else
b5b8b0ac 9467 var_mem_delete (set, loc, true);
ca787200 9468
12c5ffe5 9469 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
b5b8b0ac 9470 set->vars);
014a1138
JZ
9471 }
9472 break;
9473
9474 case MO_ADJUST:
0de3e43f 9475 set->stack_adjust += mo->u.adjust;
014a1138
JZ
9476 break;
9477 }
9478 }
014a1138
JZ
9479}
9480
9481/* Emit notes for the whole function. */
9482
9483static void
9484vt_emit_notes (void)
9485{
9486 basic_block bb;
b5b8b0ac 9487 dataflow_set cur;
014a1138 9488
c203e8a7 9489 gcc_assert (!changed_variables->elements ());
014a1138 9490
b5b8b0ac
AO
9491 /* Free memory occupied by the out hash tables, as they aren't used
9492 anymore. */
11cd3bed 9493 FOR_EACH_BB_FN (bb, cfun)
b5b8b0ac
AO
9494 dataflow_set_clear (&VTI (bb)->out);
9495
014a1138
JZ
9496 /* Enable emitting notes by functions (mainly by set_variable_part and
9497 delete_variable_part). */
9498 emit_notes = true;
9499
b5b8b0ac 9500 if (MAY_HAVE_DEBUG_INSNS)
d05cae4a 9501 {
c203e8a7 9502 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
d05cae4a 9503 }
b5b8b0ac
AO
9504
9505 dataflow_set_init (&cur);
014a1138 9506
11cd3bed 9507 FOR_EACH_BB_FN (bb, cfun)
014a1138
JZ
9508 {
9509 /* Emit the notes for changes of variable locations between two
9510 subsequent basic blocks. */
b5b8b0ac 9511 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
014a1138 9512
af6236c1 9513 if (MAY_HAVE_DEBUG_INSNS)
b787e7a2 9514 local_get_addr_cache = new hash_map<rtx, rtx>;
af6236c1 9515
014a1138 9516 /* Emit the notes for the changes in the basic block itself. */
b5b8b0ac 9517 emit_notes_in_bb (bb, &cur);
014a1138 9518
af6236c1 9519 if (MAY_HAVE_DEBUG_INSNS)
b787e7a2 9520 delete local_get_addr_cache;
af6236c1
AO
9521 local_get_addr_cache = NULL;
9522
b5b8b0ac
AO
9523 /* Free memory occupied by the in hash table, we won't need it
9524 again. */
9525 dataflow_set_clear (&VTI (bb)->in);
014a1138 9526 }
b5b8b0ac 9527#ifdef ENABLE_CHECKING
013e5ef9 9528 shared_hash_htab (cur.vars)
c203e8a7 9529 ->traverse <variable_table_type *, emit_notes_for_differences_1>
013e5ef9 9530 (shared_hash_htab (empty_shared_hash));
b5b8b0ac
AO
9531#endif
9532 dataflow_set_destroy (&cur);
9533
9534 if (MAY_HAVE_DEBUG_INSNS)
c203e8a7
TS
9535 delete dropped_values;
9536 dropped_values = NULL;
b5b8b0ac 9537
014a1138
JZ
9538 emit_notes = false;
9539}
9540
9541/* If there is a declaration and offset associated with register/memory RTL
9542 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9543
9544static bool
9545vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9546{
f8cfc6aa 9547 if (REG_P (rtl))
014a1138
JZ
9548 {
9549 if (REG_ATTRS (rtl))
9550 {
9551 *declp = REG_EXPR (rtl);
9552 *offsetp = REG_OFFSET (rtl);
9553 return true;
9554 }
9555 }
35af99b4
EB
9556 else if (GET_CODE (rtl) == PARALLEL)
9557 {
9558 tree decl = NULL_TREE;
9559 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9560 int len = XVECLEN (rtl, 0), i;
9561
9562 for (i = 0; i < len; i++)
9563 {
9564 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9565 if (!REG_P (reg) || !REG_ATTRS (reg))
9566 break;
9567 if (!decl)
9568 decl = REG_EXPR (reg);
9569 if (REG_EXPR (reg) != decl)
9570 break;
9571 if (REG_OFFSET (reg) < offset)
9572 offset = REG_OFFSET (reg);
9573 }
9574
9575 if (i == len)
9576 {
9577 *declp = decl;
9578 *offsetp = offset;
9579 return true;
9580 }
9581 }
3c0cb5de 9582 else if (MEM_P (rtl))
014a1138
JZ
9583 {
9584 if (MEM_ATTRS (rtl))
9585 {
9586 *declp = MEM_EXPR (rtl);
8c6c36a3 9587 *offsetp = INT_MEM_OFFSET (rtl);
014a1138
JZ
9588 return true;
9589 }
9590 }
9591 return false;
9592}
9593
6f2ffb4b
AO
9594/* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9595 of VAL. */
ebdc0d4b
JJ
9596
9597static void
6f2ffb4b 9598record_entry_value (cselib_val *val, rtx rtl)
09dbcd96
AO
9599{
9600 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
09dbcd96
AO
9601
9602 ENTRY_VALUE_EXP (ev) = rtl;
9603
6f2ffb4b 9604 cselib_add_permanent_equiv (val, ev, get_insns ());
ebdc0d4b
JJ
9605}
9606
8dcfef8f 9607/* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
014a1138
JZ
9608
9609static void
8dcfef8f 9610vt_add_function_parameter (tree parm)
014a1138 9611{
8dcfef8f
AO
9612 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9613 rtx incoming = DECL_INCOMING_RTL (parm);
9614 tree decl;
ef4bddc2 9615 machine_mode mode;
8dcfef8f
AO
9616 HOST_WIDE_INT offset;
9617 dataflow_set *out;
9618 decl_or_value dv;
014a1138 9619
8dcfef8f
AO
9620 if (TREE_CODE (parm) != PARM_DECL)
9621 return;
014a1138 9622
8dcfef8f
AO
9623 if (!decl_rtl || !incoming)
9624 return;
014a1138 9625
8dcfef8f
AO
9626 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9627 return;
014a1138 9628
2b9d5ad7
AO
9629 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9630 rewrite the incoming location of parameters passed on the stack
9631 into MEMs based on the argument pointer, so that incoming doesn't
9632 depend on a pseudo. */
80060f7a 9633 if (MEM_P (incoming)
80060f7a
JJ
9634 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9635 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9636 && XEXP (XEXP (incoming, 0), 0)
9637 == crtl->args.internal_arg_pointer
9638 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9639 {
9640 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9641 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9642 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9643 incoming
9644 = replace_equiv_address_nv (incoming,
0a81f074
RS
9645 plus_constant (Pmode,
9646 arg_pointer_rtx, off));
80060f7a
JJ
9647 }
9648
12c5ffe5
EB
9649#ifdef HAVE_window_save
9650 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9651 If the target machine has an explicit window save instruction, the
9652 actual entry value is the corresponding OUTGOING_REGNO instead. */
499f32e8 9653 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
12c5ffe5 9654 {
499f32e8
DM
9655 if (REG_P (incoming)
9656 && HARD_REGISTER_P (incoming)
9657 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
12c5ffe5 9658 {
4595475a 9659 parm_reg_t p;
499f32e8
DM
9660 p.incoming = incoming;
9661 incoming
9662 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9663 OUTGOING_REGNO (REGNO (incoming)), 0);
9664 p.outgoing = incoming;
9771b263 9665 vec_safe_push (windowed_parm_regs, p);
499f32e8 9666 }
35af99b4
EB
9667 else if (GET_CODE (incoming) == PARALLEL)
9668 {
9669 rtx outgoing
9670 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9671 int i;
9672
9673 for (i = 0; i < XVECLEN (incoming, 0); i++)
9674 {
9675 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9676 parm_reg_t p;
9677 p.incoming = reg;
9678 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9679 OUTGOING_REGNO (REGNO (reg)), 0);
9680 p.outgoing = reg;
9681 XVECEXP (outgoing, 0, i)
9682 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9683 XEXP (XVECEXP (incoming, 0, i), 1));
9684 vec_safe_push (windowed_parm_regs, p);
9685 }
9686
9687 incoming = outgoing;
9688 }
499f32e8
DM
9689 else if (MEM_P (incoming)
9690 && REG_P (XEXP (incoming, 0))
9691 && HARD_REGISTER_P (XEXP (incoming, 0)))
9692 {
9693 rtx reg = XEXP (incoming, 0);
9694 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9695 {
9696 parm_reg_t p;
9697 p.incoming = reg;
9698 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9699 p.outgoing = reg;
9700 vec_safe_push (windowed_parm_regs, p);
9701 incoming = replace_equiv_address_nv (incoming, reg);
9702 }
12c5ffe5
EB
9703 }
9704 }
9705#endif
9706
8dcfef8f
AO
9707 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9708 {
f7e088e7 9709 if (MEM_P (incoming))
38ae7651 9710 {
8dcfef8f
AO
9711 /* This means argument is passed by invisible reference. */
9712 offset = 0;
9713 decl = parm;
38ae7651 9714 }
8dcfef8f 9715 else
3d7e23f6 9716 {
8dcfef8f
AO
9717 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9718 return;
9719 offset += byte_lowpart_offset (GET_MODE (incoming),
9720 GET_MODE (decl_rtl));
3d7e23f6 9721 }
8dcfef8f 9722 }
014a1138 9723
8dcfef8f
AO
9724 if (!decl)
9725 return;
9726
9727 if (parm != decl)
9728 {
ee84cd37
MP
9729 /* If that DECL_RTL wasn't a pseudo that got spilled to
9730 memory, bail out. Otherwise, the spill slot sharing code
9731 will force the memory to reference spill_slot_decl (%sfp),
9732 so we don't match above. That's ok, the pseudo must have
9733 referenced the entire parameter, so just reset OFFSET. */
9734 if (decl != get_spill_slot_decl (false))
9735 return;
8dcfef8f
AO
9736 offset = 0;
9737 }
38ae7651 9738
8dcfef8f
AO
9739 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9740 return;
014a1138 9741
fefa31b5 9742 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
b5b8b0ac 9743
8dcfef8f 9744 dv = dv_from_decl (parm);
b5b8b0ac 9745
8dcfef8f
AO
9746 if (target_for_debug_bind (parm)
9747 /* We can't deal with these right now, because this kind of
9748 variable is single-part. ??? We could handle parallels
9749 that describe multiple locations for the same single
9750 value, but ATM we don't. */
9751 && GET_CODE (incoming) != PARALLEL)
9752 {
9753 cselib_val *val;
75a5b7dd 9754 rtx lowpart;
b5b8b0ac 9755
8dcfef8f
AO
9756 /* ??? We shouldn't ever hit this, but it may happen because
9757 arguments passed by invisible reference aren't dealt with
9758 above: incoming-rtl will have Pmode rather than the
9759 expected mode for the type. */
9760 if (offset)
9761 return;
b5b8b0ac 9762
75a5b7dd
AO
9763 lowpart = var_lowpart (mode, incoming);
9764 if (!lowpart)
9765 return;
9766
9767 val = cselib_lookup_from_insn (lowpart, mode, true,
2b1c5433 9768 VOIDmode, get_insns ());
b5b8b0ac 9769
8dcfef8f
AO
9770 /* ??? Float-typed values in memory are not handled by
9771 cselib. */
9772 if (val)
014a1138 9773 {
8dcfef8f
AO
9774 preserve_value (val);
9775 set_variable_part (out, val->val_rtx, dv, offset,
b5b8b0ac 9776 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8dcfef8f 9777 dv = dv_from_value (val->val_rtx);
38ae7651 9778 }
de2c775d
AO
9779
9780 if (MEM_P (incoming))
9781 {
9782 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9783 VOIDmode, get_insns ());
9784 if (val)
9785 {
9786 preserve_value (val);
9787 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9788 }
9789 }
014a1138 9790 }
b5b8b0ac 9791
8dcfef8f
AO
9792 if (REG_P (incoming))
9793 {
9794 incoming = var_lowpart (mode, incoming);
9795 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9796 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9797 incoming);
9798 set_variable_part (out, incoming, dv, offset,
9799 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
2b1c5433
JJ
9800 if (dv_is_value_p (dv))
9801 {
6f2ffb4b 9802 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
2b1c5433
JJ
9803 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9804 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9805 {
ef4bddc2 9806 machine_mode indmode
2b1c5433
JJ
9807 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9808 rtx mem = gen_rtx_MEM (indmode, incoming);
09dbcd96
AO
9809 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9810 VOIDmode,
9811 get_insns ());
2b1c5433
JJ
9812 if (val)
9813 {
9814 preserve_value (val);
6f2ffb4b 9815 record_entry_value (val, mem);
09dbcd96
AO
9816 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9817 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
2b1c5433
JJ
9818 }
9819 }
9820 }
8dcfef8f 9821 }
35af99b4
EB
9822 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9823 {
9824 int i;
9825
9826 for (i = 0; i < XVECLEN (incoming, 0); i++)
9827 {
9828 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9829 offset = REG_OFFSET (reg);
9830 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9831 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9832 set_variable_part (out, reg, dv, offset,
9833 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9834 }
9835 }
8dcfef8f
AO
9836 else if (MEM_P (incoming))
9837 {
9838 incoming = var_lowpart (mode, incoming);
9839 set_variable_part (out, incoming, dv, offset,
9840 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9841 }
9842}
9843
9844/* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9845
9846static void
9847vt_add_function_parameters (void)
9848{
9849 tree parm;
9850
9851 for (parm = DECL_ARGUMENTS (current_function_decl);
9852 parm; parm = DECL_CHAIN (parm))
d5e254e1
IE
9853 if (!POINTER_BOUNDS_P (parm))
9854 vt_add_function_parameter (parm);
8dcfef8f
AO
9855
9856 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9857 {
9858 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9859
9860 if (TREE_CODE (vexpr) == INDIRECT_REF)
9861 vexpr = TREE_OPERAND (vexpr, 0);
9862
9863 if (TREE_CODE (vexpr) == PARM_DECL
9864 && DECL_ARTIFICIAL (vexpr)
9865 && !DECL_IGNORED_P (vexpr)
9866 && DECL_NAMELESS (vexpr))
9867 vt_add_function_parameter (vexpr);
9868 }
014a1138
JZ
9869}
9870
457eeaae
JJ
9871/* Initialize cfa_base_rtx, create a preserved VALUE for it and
9872 ensure it isn't flushed during cselib_reset_table.
9873 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9874 has been eliminated. */
9875
9876static void
9877vt_init_cfa_base (void)
9878{
9879 cselib_val *val;
9880
9881#ifdef FRAME_POINTER_CFA_OFFSET
9882 cfa_base_rtx = frame_pointer_rtx;
cfd8c4b1 9883 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
457eeaae
JJ
9884#else
9885 cfa_base_rtx = arg_pointer_rtx;
cfd8c4b1 9886 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
457eeaae 9887#endif
f0c12fcc
JJ
9888 if (cfa_base_rtx == hard_frame_pointer_rtx
9889 || !fixed_regs[REGNO (cfa_base_rtx)])
9890 {
9891 cfa_base_rtx = NULL_RTX;
9892 return;
9893 }
457eeaae
JJ
9894 if (!MAY_HAVE_DEBUG_INSNS)
9895 return;
9896
61630b27
JJ
9897 /* Tell alias analysis that cfa_base_rtx should share
9898 find_base_term value with stack pointer or hard frame pointer. */
80060f7a
JJ
9899 if (!frame_pointer_needed)
9900 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9901 else if (!crtl->stack_realign_tried)
9902 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9903
109f4af3 9904 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
4deef538 9905 VOIDmode, get_insns ());
457eeaae 9906 preserve_value (val);
9de9cbaf 9907 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
457eeaae
JJ
9908}
9909
014a1138
JZ
9910/* Allocate and initialize the data structures for variable tracking
9911 and parse the RTL to get the micro operations. */
9912
457eeaae 9913static bool
014a1138
JZ
9914vt_initialize (void)
9915{
d459f870 9916 basic_block bb;
457eeaae 9917 HOST_WIDE_INT fp_cfa_offset = -1;
014a1138
JZ
9918
9919 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9920
7e46899d 9921 empty_shared_hash = new shared_hash_def;
457eeaae 9922 empty_shared_hash->refcount = 1;
c203e8a7
TS
9923 empty_shared_hash->htab = new variable_table_type (1);
9924 changed_variables = new variable_table_type (10);
457eeaae
JJ
9925
9926 /* Init the IN and OUT sets. */
04a90bec 9927 FOR_ALL_BB_FN (bb, cfun)
457eeaae
JJ
9928 {
9929 VTI (bb)->visited = false;
9930 VTI (bb)->flooded = false;
9931 dataflow_set_init (&VTI (bb)->in);
9932 dataflow_set_init (&VTI (bb)->out);
9933 VTI (bb)->permp = NULL;
9934 }
9935
9936 if (MAY_HAVE_DEBUG_INSNS)
9937 {
9938 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
b5b8b0ac 9939 scratch_regs = BITMAP_ALLOC (NULL);
9771b263 9940 preserved_values.create (256);
b787e7a2 9941 global_get_addr_cache = new hash_map<rtx, rtx>;
b5b8b0ac
AO
9942 }
9943 else
9944 {
9945 scratch_regs = NULL;
af6236c1 9946 global_get_addr_cache = NULL;
b5b8b0ac
AO
9947 }
9948
48b00503
AO
9949 if (MAY_HAVE_DEBUG_INSNS)
9950 {
9951 rtx reg, expr;
9952 int ofst;
9953 cselib_val *val;
9954
9955#ifdef FRAME_POINTER_CFA_OFFSET
9956 reg = frame_pointer_rtx;
9957 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9958#else
9959 reg = arg_pointer_rtx;
9960 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9961#endif
9962
9963 ofst -= INCOMING_FRAME_SP_OFFSET;
9964
9965 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9966 VOIDmode, get_insns ());
9967 preserve_value (val);
2e084917
AO
9968 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9969 cselib_preserve_cfa_base_value (val, REGNO (reg));
48b00503
AO
9970 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9971 stack_pointer_rtx, -ofst);
9972 cselib_add_permanent_equiv (val, expr, get_insns ());
9973
9974 if (ofst)
9975 {
9976 val = cselib_lookup_from_insn (stack_pointer_rtx,
9977 GET_MODE (stack_pointer_rtx), 1,
9978 VOIDmode, get_insns ());
9979 preserve_value (val);
9980 expr = plus_constant (GET_MODE (reg), reg, ofst);
9981 cselib_add_permanent_equiv (val, expr, get_insns ());
9982 }
9983 }
9984
65773087
EB
9985 /* In order to factor out the adjustments made to the stack pointer or to
9986 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9987 instead of individual location lists, we're going to rewrite MEMs based
9988 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9989 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9990 resp. arg_pointer_rtx. We can do this either when there is no frame
9991 pointer in the function and stack adjustments are consistent for all
9992 basic blocks or when there is a frame pointer and no stack realignment.
9993 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9994 has been eliminated. */
457eeaae
JJ
9995 if (!frame_pointer_needed)
9996 {
9997 rtx reg, elim;
9998
9999 if (!vt_stack_adjustments ())
10000 return false;
10001
10002#ifdef FRAME_POINTER_CFA_OFFSET
10003 reg = frame_pointer_rtx;
10004#else
10005 reg = arg_pointer_rtx;
10006#endif
10007 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10008 if (elim != reg)
10009 {
10010 if (GET_CODE (elim) == PLUS)
10011 elim = XEXP (elim, 0);
10012 if (elim == stack_pointer_rtx)
10013 vt_init_cfa_base ();
10014 }
10015 }
10016 else if (!crtl->stack_realign_tried)
10017 {
10018 rtx reg, elim;
10019
10020#ifdef FRAME_POINTER_CFA_OFFSET
10021 reg = frame_pointer_rtx;
10022 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10023#else
10024 reg = arg_pointer_rtx;
10025 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10026#endif
10027 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10028 if (elim != reg)
10029 {
10030 if (GET_CODE (elim) == PLUS)
10031 {
10032 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10033 elim = XEXP (elim, 0);
10034 }
10035 if (elim != hard_frame_pointer_rtx)
10036 fp_cfa_offset = -1;
457eeaae 10037 }
65773087
EB
10038 else
10039 fp_cfa_offset = -1;
457eeaae 10040 }
65773087 10041
80060f7a
JJ
10042 /* If the stack is realigned and a DRAP register is used, we're going to
10043 rewrite MEMs based on it representing incoming locations of parameters
10044 passed on the stack into MEMs based on the argument pointer. Although
10045 we aren't going to rewrite other MEMs, we still need to initialize the
10046 virtual CFA pointer in order to ensure that the argument pointer will
10047 be seen as a constant throughout the function.
10048
10049 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10050 else if (stack_realign_drap)
10051 {
10052 rtx reg, elim;
10053
10054#ifdef FRAME_POINTER_CFA_OFFSET
10055 reg = frame_pointer_rtx;
10056#else
10057 reg = arg_pointer_rtx;
10058#endif
10059 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10060 if (elim != reg)
10061 {
10062 if (GET_CODE (elim) == PLUS)
10063 elim = XEXP (elim, 0);
10064 if (elim == hard_frame_pointer_rtx)
10065 vt_init_cfa_base ();
10066 }
10067 }
10068
457eeaae
JJ
10069 hard_frame_pointer_adjustment = -1;
10070
2b1c5433
JJ
10071 vt_add_function_parameters ();
10072
11cd3bed 10073 FOR_EACH_BB_FN (bb, cfun)
014a1138 10074 {
598d62da 10075 rtx_insn *insn;
7b39f38b 10076 HOST_WIDE_INT pre, post = 0;
d9a6979d 10077 basic_block first_bb, last_bb;
b5b8b0ac
AO
10078
10079 if (MAY_HAVE_DEBUG_INSNS)
10080 {
0de3e43f 10081 cselib_record_sets_hook = add_with_sets;
b5b8b0ac
AO
10082 if (dump_file && (dump_flags & TDF_DETAILS))
10083 fprintf (dump_file, "first value: %i\n",
5440c0e7 10084 cselib_get_next_uid ());
b5b8b0ac 10085 }
014a1138 10086
d9a6979d
JJ
10087 first_bb = bb;
10088 for (;;)
10089 {
10090 edge e;
fefa31b5 10091 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
d9a6979d
JJ
10092 || ! single_pred_p (bb->next_bb))
10093 break;
10094 e = find_edge (bb, bb->next_bb);
10095 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10096 break;
10097 bb = bb->next_bb;
10098 }
10099 last_bb = bb;
10100
0de3e43f 10101 /* Add the micro-operations to the vector. */
d9a6979d 10102 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
014a1138 10103 {
457eeaae
JJ
10104 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10105 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
d9a6979d
JJ
10106 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10107 insn = NEXT_INSN (insn))
014a1138 10108 {
d9a6979d 10109 if (INSN_P (insn))
014a1138 10110 {
d9a6979d 10111 if (!frame_pointer_needed)
b5b8b0ac 10112 {
d9a6979d
JJ
10113 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10114 if (pre)
10115 {
0de3e43f
JJ
10116 micro_operation mo;
10117 mo.type = MO_ADJUST;
10118 mo.u.adjust = pre;
10119 mo.insn = insn;
d9a6979d
JJ
10120 if (dump_file && (dump_flags & TDF_DETAILS))
10121 log_op_type (PATTERN (insn), bb, insn,
10122 MO_ADJUST, dump_file);
9771b263 10123 VTI (bb)->mos.safe_push (mo);
457eeaae 10124 VTI (bb)->out.stack_adjust += pre;
d9a6979d 10125 }
014a1138 10126 }
014a1138 10127
d9a6979d 10128 cselib_hook_called = false;
457eeaae 10129 adjust_insn (bb, insn);
d9a6979d 10130 if (MAY_HAVE_DEBUG_INSNS)
014a1138 10131 {
2b1c5433
JJ
10132 if (CALL_P (insn))
10133 prepare_call_arguments (bb, insn);
d9a6979d
JJ
10134 cselib_process_insn (insn);
10135 if (dump_file && (dump_flags & TDF_DETAILS))
10136 {
10137 print_rtl_single (dump_file, insn);
10138 dump_cselib_table (dump_file);
10139 }
014a1138 10140 }
d9a6979d
JJ
10141 if (!cselib_hook_called)
10142 add_with_sets (insn, 0, 0);
457eeaae 10143 cancel_changes (0);
014a1138 10144
d9a6979d
JJ
10145 if (!frame_pointer_needed && post)
10146 {
0de3e43f
JJ
10147 micro_operation mo;
10148 mo.type = MO_ADJUST;
10149 mo.u.adjust = post;
10150 mo.insn = insn;
d9a6979d
JJ
10151 if (dump_file && (dump_flags & TDF_DETAILS))
10152 log_op_type (PATTERN (insn), bb, insn,
10153 MO_ADJUST, dump_file);
9771b263 10154 VTI (bb)->mos.safe_push (mo);
457eeaae
JJ
10155 VTI (bb)->out.stack_adjust += post;
10156 }
10157
d459f870 10158 if (fp_cfa_offset != -1
457eeaae 10159 && hard_frame_pointer_adjustment == -1
40155239 10160 && fp_setter_insn (insn))
457eeaae
JJ
10161 {
10162 vt_init_cfa_base ();
10163 hard_frame_pointer_adjustment = fp_cfa_offset;
0fe03ac3
JJ
10164 /* Disassociate sp from fp now. */
10165 if (MAY_HAVE_DEBUG_INSNS)
10166 {
10167 cselib_val *v;
10168 cselib_invalidate_rtx (stack_pointer_rtx);
10169 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10170 VOIDmode);
10171 if (v && !cselib_preserved_value_p (v))
10172 {
10173 cselib_set_value_sp_based (v);
10174 preserve_value (v);
10175 }
10176 }
d9a6979d 10177 }
014a1138
JZ
10178 }
10179 }
457eeaae 10180 gcc_assert (offset == VTI (bb)->out.stack_adjust);
014a1138 10181 }
d9a6979d
JJ
10182
10183 bb = last_bb;
10184
b5b8b0ac
AO
10185 if (MAY_HAVE_DEBUG_INSNS)
10186 {
0de3e43f
JJ
10187 cselib_preserve_only_values ();
10188 cselib_reset_table (cselib_get_next_uid ());
b5b8b0ac
AO
10189 cselib_record_sets_hook = NULL;
10190 }
014a1138
JZ
10191 }
10192
457eeaae 10193 hard_frame_pointer_adjustment = -1;
fefa31b5 10194 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
457eeaae
JJ
10195 cfa_base_rtx = NULL_RTX;
10196 return true;
014a1138
JZ
10197}
10198
5619e52c
JJ
10199/* This is *not* reset after each function. It gives each
10200 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10201 a unique label number. */
10202
10203static int debug_label_num = 1;
10204
b5b8b0ac
AO
10205/* Get rid of all debug insns from the insn stream. */
10206
10207static void
10208delete_debug_insns (void)
10209{
10210 basic_block bb;
598d62da 10211 rtx_insn *insn, *next;
b5b8b0ac
AO
10212
10213 if (!MAY_HAVE_DEBUG_INSNS)
10214 return;
10215
11cd3bed 10216 FOR_EACH_BB_FN (bb, cfun)
b5b8b0ac
AO
10217 {
10218 FOR_BB_INSNS_SAFE (bb, insn, next)
10219 if (DEBUG_INSN_P (insn))
5619e52c
JJ
10220 {
10221 tree decl = INSN_VAR_LOCATION_DECL (insn);
10222 if (TREE_CODE (decl) == LABEL_DECL
10223 && DECL_NAME (decl)
10224 && !DECL_RTL_SET_P (decl))
10225 {
10226 PUT_CODE (insn, NOTE);
10227 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10228 NOTE_DELETED_LABEL_NAME (insn)
10229 = IDENTIFIER_POINTER (DECL_NAME (decl));
10230 SET_DECL_RTL (decl, insn);
10231 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10232 }
10233 else
10234 delete_insn (insn);
10235 }
b5b8b0ac
AO
10236 }
10237}
10238
10239/* Run a fast, BB-local only version of var tracking, to take care of
10240 information that we don't do global analysis on, such that not all
10241 information is lost. If SKIPPED holds, we're skipping the global
10242 pass entirely, so we should try to use information it would have
10243 handled as well.. */
10244
10245static void
10246vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10247{
10248 /* ??? Just skip it all for now. */
10249 delete_debug_insns ();
10250}
10251
014a1138
JZ
10252/* Free the data structures needed for variable tracking. */
10253
10254static void
10255vt_finalize (void)
10256{
10257 basic_block bb;
10258
11cd3bed 10259 FOR_EACH_BB_FN (bb, cfun)
014a1138 10260 {
9771b263 10261 VTI (bb)->mos.release ();
014a1138
JZ
10262 }
10263
04a90bec 10264 FOR_ALL_BB_FN (bb, cfun)
014a1138
JZ
10265 {
10266 dataflow_set_destroy (&VTI (bb)->in);
10267 dataflow_set_destroy (&VTI (bb)->out);
b5b8b0ac
AO
10268 if (VTI (bb)->permp)
10269 {
10270 dataflow_set_destroy (VTI (bb)->permp);
10271 XDELETE (VTI (bb)->permp);
10272 }
014a1138
JZ
10273 }
10274 free_aux_for_blocks ();
c203e8a7
TS
10275 delete empty_shared_hash->htab;
10276 empty_shared_hash->htab = NULL;
10277 delete changed_variables;
10278 changed_variables = NULL;
7e46899d
ML
10279 attrs_def::pool.release ();
10280 var_pool.release ();
10281 location_chain_def::pool.release ();
10282 shared_hash_def::pool.release ();
b5b8b0ac
AO
10283
10284 if (MAY_HAVE_DEBUG_INSNS)
10285 {
af6236c1 10286 if (global_get_addr_cache)
b787e7a2 10287 delete global_get_addr_cache;
af6236c1 10288 global_get_addr_cache = NULL;
7e46899d
ML
10289 loc_exp_dep::pool.release ();
10290 valvar_pool.release ();
9771b263 10291 preserved_values.release ();
b5b8b0ac
AO
10292 cselib_finish ();
10293 BITMAP_FREE (scratch_regs);
10294 scratch_regs = NULL;
10295 }
10296
09dbcd96 10297#ifdef HAVE_window_save
9771b263 10298 vec_free (windowed_parm_regs);
09dbcd96 10299#endif
8b9b2275 10300
7eb3f1f7 10301 if (vui_vec)
b5b8b0ac 10302 XDELETEVEC (vui_vec);
7eb3f1f7
JJ
10303 vui_vec = NULL;
10304 vui_allocated = 0;
014a1138
JZ
10305}
10306
10307/* The entry point to variable tracking pass. */
10308
ec8c3978
JJ
10309static inline unsigned int
10310variable_tracking_main_1 (void)
014a1138 10311{
ec8c3978
JJ
10312 bool success;
10313
d00dce27
JJ
10314 if (flag_var_tracking_assignments < 0
10315 /* Var-tracking right now assumes the IR doesn't contain
10316 any pseudos at this point. */
10317 || targetm.no_register_allocation)
b5b8b0ac
AO
10318 {
10319 delete_debug_insns ();
10320 return 0;
10321 }
10322
0cae8d31 10323 if (n_basic_blocks_for_fn (cfun) > 500 &&
dc936fb2 10324 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
b5b8b0ac
AO
10325 {
10326 vt_debug_insns_local (true);
10327 return 0;
10328 }
014a1138
JZ
10329
10330 mark_dfs_back_edges ();
457eeaae 10331 if (!vt_initialize ())
014a1138 10332 {
457eeaae
JJ
10333 vt_finalize ();
10334 vt_debug_insns_local (true);
10335 return 0;
014a1138
JZ
10336 }
10337
ec8c3978
JJ
10338 success = vt_find_locations ();
10339
10340 if (!success && flag_var_tracking_assignments > 0)
10341 {
10342 vt_finalize ();
10343
10344 delete_debug_insns ();
10345
10346 /* This is later restored by our caller. */
10347 flag_var_tracking_assignments = 0;
10348
457eeaae
JJ
10349 success = vt_initialize ();
10350 gcc_assert (success);
ec8c3978
JJ
10351
10352 success = vt_find_locations ();
10353 }
10354
10355 if (!success)
10356 {
10357 vt_finalize ();
10358 vt_debug_insns_local (false);
10359 return 0;
10360 }
014a1138 10361
5b4fdb20 10362 if (dump_file && (dump_flags & TDF_DETAILS))
014a1138
JZ
10363 {
10364 dump_dataflow_sets ();
532aafad 10365 dump_reg_info (dump_file);
5b4fdb20 10366 dump_flow_info (dump_file, dump_flags);
014a1138
JZ
10367 }
10368
f029db69 10369 timevar_push (TV_VAR_TRACKING_EMIT);
b5b8b0ac 10370 vt_emit_notes ();
f029db69 10371 timevar_pop (TV_VAR_TRACKING_EMIT);
b5b8b0ac 10372
014a1138 10373 vt_finalize ();
b5b8b0ac 10374 vt_debug_insns_local (false);
c2924966 10375 return 0;
014a1138 10376}
ec8c3978
JJ
10377
10378unsigned int
10379variable_tracking_main (void)
10380{
10381 unsigned int ret;
10382 int save = flag_var_tracking_assignments;
10383
10384 ret = variable_tracking_main_1 ();
10385
10386 flag_var_tracking_assignments = save;
10387
10388 return ret;
10389}
ef330312 10390\f
27a4cd48
DM
10391namespace {
10392
10393const pass_data pass_data_variable_tracking =
10394{
10395 RTL_PASS, /* type */
10396 "vartrack", /* name */
10397 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
10398 TV_VAR_TRACKING, /* tv_id */
10399 0, /* properties_required */
10400 0, /* properties_provided */
10401 0, /* properties_destroyed */
10402 0, /* todo_flags_start */
3bea341f 10403 0, /* todo_flags_finish */
ef330312 10404};
27a4cd48
DM
10405
10406class pass_variable_tracking : public rtl_opt_pass
10407{
10408public:
c3284718
RS
10409 pass_variable_tracking (gcc::context *ctxt)
10410 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
27a4cd48
DM
10411 {}
10412
10413 /* opt_pass methods: */
1a3d085c
TS
10414 virtual bool gate (function *)
10415 {
10416 return (flag_var_tracking && !targetm.delay_vartrack);
10417 }
10418
be55bfe6
TS
10419 virtual unsigned int execute (function *)
10420 {
10421 return variable_tracking_main ();
10422 }
27a4cd48
DM
10423
10424}; // class pass_variable_tracking
10425
10426} // anon namespace
10427
10428rtl_opt_pass *
10429make_pass_variable_tracking (gcc::context *ctxt)
10430{
10431 return new pass_variable_tracking (ctxt);
10432}