]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/vec.h
vec.h (debug_helper): New function.
[thirdparty/gcc.git] / gcc / vec.h
CommitLineData
ada55151 1/* Vector API for GNU compiler.
cbe34bb5 2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
ada55151 3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
0823efed 4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
ada55151
NS
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
ada55151
NS
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
ada55151
NS
21
22#ifndef GCC_VEC_H
23#define GCC_VEC_H
24
13fdf2e2
AM
25/* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
29
30extern void ggc_free (void *);
31extern size_t ggc_round_alloc_size (size_t requested_size);
32extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
3e097227 33
bd0c3bfd
DN
34/* Templated vector type and associated interfaces.
35
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
39
bd0c3bfd
DN
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
9ba5ff0f 45
ada55151
NS
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
0e61db61 49 (it dies if there is not). The latter will reallocate the
ada55151
NS
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
d4e6fecb
NS
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
efb7e1e0
ILT
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
d4e6fecb 59 specific size from the get go.
ada55151
NS
60
61 You should prefer the push and pop operations, as they append and
a064479c
NS
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
ada55151
NS
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
d4e6fecb
NS
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
58152808 70 array using insert that will maintain sorted order.
9ba5ff0f 71
9771b263
DN
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
75
76 Four allocation strategies are supported:
77
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
80
9771b263
DN
81 - GC: allocation is done using ggc_alloc/ggc_free.
82
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
89
90 Two physical layouts are supported:
91
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
98
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
105
106 The type, allocation and layout are specified when the vector is
107 declared.
b8698a0f 108
9ba5ff0f
NS
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
b8698a0f 113
9771b263
DN
114 Notes on the different layout strategies
115
116 * Embeddable vectors (vec<T, A, vl_embed>)
117
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
121
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
128
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
132
133 Properties of embeddable vectors:
134
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
143
144
145 * Space efficient vector (vec<T, A, vl_ptr>)
146
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
151
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
156
157 Properties:
158
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
ada55151
NS
166
167 An example of their use would be,
168
ada55151 169 struct my_struct {
9771b263
DN
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
ada55151
NS
172 };
173
174 struct my_struct *s;
175
9771b263
DN
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
2a68a7de 179 { do something with elt }
ada55151
NS
180*/
181
9771b263
DN
182/* Support function for statistics. */
183extern void dump_vec_loc_statistics (void);
0823efed 184
2d44c7de
ML
185/* Hashtable mapping vec addresses to descriptors. */
186extern htab_t vec_mem_usage_hash;
0823efed 187
9771b263
DN
188/* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
0823efed 190
26da79f5 191struct vec_prefix
0823efed 192{
38f2ca32
DN
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
26da79f5 195
9771b263 196 /* Memory allocation support routines in vec.c. */
2d44c7de
ML
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, bool CXX_MEM_STAT_INFO);
26da79f5 199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
3a938d75 200 static unsigned calculate_allocation_1 (unsigned, unsigned);
9771b263
DN
201
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
205
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
18e1fd75 208 template <typename, typename, typename> friend struct vec;
9771b263
DN
209
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
9771b263 214
ff4c81cc 215 unsigned m_alloc : 31;
3a938d75 216 unsigned m_using_auto_storage : 1;
30f641cd 217 unsigned m_num;
0823efed
DN
218};
219
3a938d75
RB
220/* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
223
224inline unsigned
225vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
227{
228 if (exact)
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx)
231 return MAX (4, reserve);
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
233}
234
18e1fd75 235template<typename, typename, typename> struct vec;
bd0c3bfd 236
9771b263 237/* Valid vector layouts
bd0c3bfd 238
9771b263
DN
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242struct vl_embed { };
243struct vl_ptr { };
bd0c3bfd 244
bd0c3bfd 245
9771b263 246/* Types of supported allocations
bd0c3bfd 247
9771b263
DN
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
ff4c81cc 251 do not need to be marked during collection. */
bd0c3bfd 252
9771b263
DN
253/* Allocator type for heap vectors. */
254struct va_heap
255{
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
bd0c3bfd 259
9771b263
DN
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
bd0c3bfd 263
9771b263
DN
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
266};
bd0c3bfd 267
bd0c3bfd 268
9771b263
DN
269/* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
026c3cfd 272 allocated and RESERVE is 0, no vector will be created. */
bd0c3bfd 273
9771b263
DN
274template<typename T>
275inline void
276va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
278{
26da79f5 279 unsigned alloc
30f641cd 280 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
3a938d75 281 gcc_checking_assert (alloc);
bd0c3bfd 282
9771b263 283 if (GATHER_STATISTICS && v)
2d44c7de 284 v->m_vecpfx.release_overhead (v, v->allocated (), false);
bd0c3bfd 285
9771b263
DN
286 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
287 unsigned nelem = v ? v->length () : 0;
288 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
289 v->embedded_init (alloc, nelem);
bd0c3bfd 290
9771b263 291 if (GATHER_STATISTICS)
2d44c7de 292 v->m_vecpfx.register_overhead (v, alloc, nelem PASS_MEM_STAT);
9771b263 293}
0823efed 294
bd0c3bfd 295
9771b263 296/* Free the heap space allocated for vector V. */
0823efed
DN
297
298template<typename T>
299void
9771b263 300va_heap::release (vec<T, va_heap, vl_embed> *&v)
0823efed 301{
38f2ca32
DN
302 if (v == NULL)
303 return;
304
9771b263 305 if (GATHER_STATISTICS)
2d44c7de 306 v->m_vecpfx.release_overhead (v, v->allocated (), true);
9771b263
DN
307 ::free (v);
308 v = NULL;
0823efed
DN
309}
310
311
9771b263
DN
312/* Allocator type for GC vectors. Notice that we need the structure
313 declaration even if GC is not enabled. */
0823efed 314
9771b263 315struct va_gc
0823efed 316{
9771b263
DN
317 /* Use vl_embed as the default layout for GC vectors. Due to GTY
318 limitations, GC vectors must always be pointers, so it is more
319 efficient to use a pointer to the vl_embed layout, rather than
320 using a pointer to a pointer as would be the case with vl_ptr. */
321 typedef vl_embed default_layout;
322
323 template<typename T, typename A>
324 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
325 CXX_MEM_STAT_INFO);
326
327 template<typename T, typename A>
7b24b675 328 static void release (vec<T, A, vl_embed> *&v);
9771b263 329};
0823efed 330
0823efed 331
7b24b675
TJ
332/* Free GC memory used by V and reset V to NULL. */
333
334template<typename T, typename A>
335inline void
336va_gc::release (vec<T, A, vl_embed> *&v)
337{
338 if (v)
339 ::ggc_free (v);
340 v = NULL;
341}
342
343
9771b263
DN
344/* Allocator for GC memory. Ensure there are at least RESERVE free
345 slots in V. If EXACT is true, grow exactly, else grow
346 exponentially. As a special case, if the vector had not been
026c3cfd 347 allocated and RESERVE is 0, no vector will be created. */
9771b263
DN
348
349template<typename T, typename A>
0823efed 350void
9771b263
DN
351va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
352 MEM_STAT_DECL)
0823efed 353{
26da79f5 354 unsigned alloc
30f641cd 355 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
9771b263
DN
356 if (!alloc)
357 {
358 ::ggc_free (v);
359 v = NULL;
360 return;
361 }
0823efed 362
9771b263
DN
363 /* Calculate the amount of space we want. */
364 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
0823efed 365
9771b263 366 /* Ask the allocator how much space it will really give us. */
18e1fd75 367 size = ::ggc_round_alloc_size (size);
0823efed 368
9771b263
DN
369 /* Adjust the number of slots accordingly. */
370 size_t vec_offset = sizeof (vec_prefix);
371 size_t elt_size = sizeof (T);
372 alloc = (size - vec_offset) / elt_size;
0823efed 373
9771b263
DN
374 /* And finally, recalculate the amount of space we ask for. */
375 size = vec_offset + alloc * elt_size;
0823efed 376
9771b263 377 unsigned nelem = v ? v->length () : 0;
231120e5 378 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
18e1fd75 379 PASS_MEM_STAT));
9771b263
DN
380 v->embedded_init (alloc, nelem);
381}
ada55151 382
ada55151 383
9771b263
DN
384/* Allocator type for GC vectors. This is for vectors of types
385 atomics w.r.t. collection, so allocation and deallocation is
386 completely inherited from va_gc. */
387struct va_gc_atomic : va_gc
388{
389};
9ba5ff0f 390
0823efed 391
9771b263
DN
392/* Generic vector template. Default values for A and L indicate the
393 most commonly used strategies.
bd0c3bfd 394
9771b263
DN
395 FIXME - Ideally, they would all be vl_ptr to encourage using regular
396 instances for vectors, but the existing GTY machinery is limited
397 in that it can only deal with GC objects that are pointers
398 themselves.
bd0c3bfd 399
9771b263
DN
400 This means that vector operations that need to deal with
401 potentially NULL pointers, must be provided as free
402 functions (see the vec_safe_* functions above). */
403template<typename T,
404 typename A = va_heap,
405 typename L = typename A::default_layout>
18e1fd75 406struct GTY((user)) vec
9771b263
DN
407{
408};
bd0c3bfd 409
19a30b71
AH
410/* Generic vec<> debug helpers.
411
412 These need to be instantiated for each vec<TYPE> used throughout
413 the compiler like this:
414
415 DEFINE_DEBUG_VEC (TYPE)
416
417 The reason we have a debug_helper() is because GDB can't
418 disambiguate a plain call to debug(some_vec), and it must be called
419 like debug<TYPE>(some_vec). */
420
421template<typename T>
422void
423debug_helper (vec<T> &ref)
424{
425 unsigned i;
426 for (i = 0; i < ref.length (); ++i)
427 {
428 fprintf (stderr, "[%d] = ", i);
429 debug_slim (ref[i]);
430 fputc ('\n', stderr);
431 }
432}
433
434/* We need a separate va_gc variant here because default template
435 argument for functions cannot be used in c++-98. Once this
436 restriction is removed, those variant should be folded with the
437 above debug_helper. */
438
439template<typename T>
440void
441debug_helper (vec<T, va_gc> &ref)
442{
443 unsigned i;
444 for (i = 0; i < ref.length (); ++i)
445 {
446 fprintf (stderr, "[%d] = ", i);
447 debug_slim (ref[i]);
448 fputc ('\n', stderr);
449 }
450}
451
452/* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
453 functions for a type T. */
454
455#define DEFINE_DEBUG_VEC(T) \
456 template static void debug_helper (vec<T> &); \
457 template static void debug_helper (vec<T, va_gc> &); \
458 /* Define the vec<T> debug functions. */ \
459 DEBUG_FUNCTION void \
460 debug (vec<T> &ref) \
461 { \
462 debug_helper <T> (ref); \
463 } \
464 DEBUG_FUNCTION void \
465 debug (vec<T> *ptr) \
466 { \
467 if (ptr) \
468 debug (*ptr); \
469 else \
470 fprintf (stderr, "<nil>\n"); \
471 } \
472 /* Define the vec<T, va_gc> debug functions. */ \
473 DEBUG_FUNCTION void \
474 debug (vec<T, va_gc> &ref) \
475 { \
476 debug_helper <T> (ref); \
477 } \
478 DEBUG_FUNCTION void \
479 debug (vec<T, va_gc> *ptr) \
480 { \
481 if (ptr) \
482 debug (*ptr); \
483 else \
484 fprintf (stderr, "<nil>\n"); \
485 }
486
c3684b7b
MS
487/* Default-construct N elements in DST. */
488
489template <typename T>
490inline void
491vec_default_construct (T *dst, unsigned n)
492{
493 for ( ; n; ++dst, --n)
494 ::new (static_cast<void*>(dst)) T ();
495}
496
497/* Copy-construct N elements in DST from *SRC. */
498
499template <typename T>
500inline void
501vec_copy_construct (T *dst, const T *src, unsigned n)
502{
503 for ( ; n; ++dst, ++src, --n)
504 ::new (static_cast<void*>(dst)) T (*src);
505}
506
6e1aa848
DN
507/* Type to provide NULL values for vec<T, A, L>. This is used to
508 provide nil initializers for vec instances. Since vec must be
509 a POD, we cannot have proper ctor/dtor for it. To initialize
b862552d
JJ
510 a vec instance, you can assign it the value vNULL. This isn't
511 needed for file-scope and function-local static vectors, which
512 are zero-initialized by default. */
6e1aa848
DN
513struct vnull
514{
515 template <typename T, typename A, typename L>
671d5bcb 516 CONSTEXPR operator vec<T, A, L> () { return vec<T, A, L>(); }
6e1aa848
DN
517};
518extern vnull vNULL;
519
bd0c3bfd 520
9771b263
DN
521/* Embeddable vector. These vectors are suitable to be embedded
522 in other data structures so that they can be pre-allocated in a
523 contiguous memory block.
bd0c3bfd 524
9771b263
DN
525 Embeddable vectors are implemented using the trailing array idiom,
526 thus they are not resizeable without changing the address of the
527 vector object itself. This means you cannot have variables or
528 fields of embeddable vector type -- always use a pointer to a
529 vector. The one exception is the final field of a structure, which
530 could be a vector type.
bd0c3bfd 531
9771b263
DN
532 You will have to use the embedded_size & embedded_init calls to
533 create such objects, and they will not be resizeable (so the 'safe'
534 allocation variants are not available).
535
536 Properties:
537
538 - The whole vector and control data are allocated in a single
539 contiguous block. It uses the trailing-vector idiom, so
540 allocation must reserve enough space for all the elements
541 in the vector plus its control data.
542 - The vector cannot be re-allocated.
543 - The vector cannot grow nor shrink.
544 - No indirections needed for access/manipulation.
545 - It requires 2 words of storage (prior to vector allocation). */
546
547template<typename T, typename A>
18e1fd75 548struct GTY((user)) vec<T, A, vl_embed>
9771b263
DN
549{
550public:
30f641cd
RS
551 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
552 unsigned length (void) const { return m_vecpfx.m_num; }
553 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
554 T *address (void) { return m_vecdata; }
555 const T *address (void) const { return m_vecdata; }
12e109d1
TS
556 T *begin () { return address (); }
557 const T *begin () const { return address (); }
558 T *end () { return address () + length (); }
559 const T *end () const { return address () + length (); }
9771b263
DN
560 const T &operator[] (unsigned) const;
561 T &operator[] (unsigned);
562 T &last (void);
563 bool space (unsigned) const;
564 bool iterate (unsigned, T *) const;
565 bool iterate (unsigned, T **) const;
18e1fd75 566 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
9e3a5131
RS
567 void splice (const vec &);
568 void splice (const vec *src);
9771b263
DN
569 T *quick_push (const T &);
570 T &pop (void);
571 void truncate (unsigned);
572 void quick_insert (unsigned, const T &);
573 void ordered_remove (unsigned);
574 void unordered_remove (unsigned);
575 void block_remove (unsigned, unsigned);
576 void qsort (int (*) (const void *, const void *));
32500433 577 T *bsearch (const void *key, int (*compar)(const void *, const void *));
9771b263 578 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
12e109d1 579 bool contains (const T &search) const;
9771b263 580 static size_t embedded_size (unsigned);
3a938d75 581 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
9771b263
DN
582 void quick_grow (unsigned len);
583 void quick_grow_cleared (unsigned len);
584
585 /* vec class can access our internal data and functions. */
18e1fd75 586 template <typename, typename, typename> friend struct vec;
9771b263
DN
587
588 /* The allocator types also need access to our internals. */
589 friend struct va_gc;
590 friend struct va_gc_atomic;
591 friend struct va_heap;
9771b263 592
38f2ca32
DN
593 /* FIXME - These fields should be private, but we need to cater to
594 compilers that have stricter notions of PODness for types. */
30f641cd
RS
595 vec_prefix m_vecpfx;
596 T m_vecdata[1];
9771b263 597};
bd0c3bfd 598
bd0c3bfd 599
9771b263
DN
600/* Convenience wrapper functions to use when dealing with pointers to
601 embedded vectors. Some functionality for these vectors must be
602 provided via free functions for these reasons:
0823efed 603
9771b263 604 1- The pointer may be NULL (e.g., before initial allocation).
0823efed 605
9771b263
DN
606 2- When the vector needs to grow, it must be reallocated, so
607 the pointer will change its value.
0823efed 608
9771b263
DN
609 Because of limitations with the current GC machinery, all vectors
610 in GC memory *must* be pointers. */
0823efed 611
bd0c3bfd 612
9771b263
DN
613/* If V contains no room for NELEMS elements, return false. Otherwise,
614 return true. */
615template<typename T, typename A>
616inline bool
617vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
618{
619 return v ? v->space (nelems) : nelems == 0;
620}
bd0c3bfd 621
0823efed 622
9771b263
DN
623/* If V is NULL, return 0. Otherwise, return V->length(). */
624template<typename T, typename A>
bd0c3bfd 625inline unsigned
9771b263 626vec_safe_length (const vec<T, A, vl_embed> *v)
0823efed 627{
9771b263 628 return v ? v->length () : 0;
0823efed 629}
4038c495
GB
630
631
9771b263
DN
632/* If V is NULL, return NULL. Otherwise, return V->address(). */
633template<typename T, typename A>
634inline T *
635vec_safe_address (vec<T, A, vl_embed> *v)
636{
637 return v ? v->address () : NULL;
638}
639
bd0c3bfd 640
9771b263
DN
641/* If V is NULL, return true. Otherwise, return V->is_empty(). */
642template<typename T, typename A>
bd0c3bfd 643inline bool
9771b263 644vec_safe_is_empty (vec<T, A, vl_embed> *v)
bd0c3bfd 645{
9771b263 646 return v ? v->is_empty () : true;
bd0c3bfd 647}
ada55151 648
9771b263
DN
649/* If V does not have space for NELEMS elements, call
650 V->reserve(NELEMS, EXACT). */
651template<typename T, typename A>
652inline bool
653vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
18e1fd75 654 CXX_MEM_STAT_INFO)
9771b263
DN
655{
656 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
657 if (extend)
658 A::reserve (v, nelems, exact PASS_MEM_STAT);
659 return extend;
660}
0823efed 661
9771b263
DN
662template<typename T, typename A>
663inline bool
18e1fd75
DN
664vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
665 CXX_MEM_STAT_INFO)
0823efed 666{
9771b263 667 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
0823efed
DN
668}
669
ada55151 670
9771b263
DN
671/* Allocate GC memory for V with space for NELEMS slots. If NELEMS
672 is 0, V is initialized to NULL. */
bd0c3bfd 673
9771b263
DN
674template<typename T, typename A>
675inline void
18e1fd75 676vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
bd0c3bfd 677{
9771b263 678 v = NULL;
18e1fd75 679 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
bd0c3bfd 680}
ada55151 681
0823efed 682
9771b263 683/* Free the GC memory allocated by vector V and set it to NULL. */
0823efed 684
9771b263
DN
685template<typename T, typename A>
686inline void
687vec_free (vec<T, A, vl_embed> *&v)
0823efed 688{
9771b263 689 A::release (v);
0823efed
DN
690}
691
9771b263
DN
692
693/* Grow V to length LEN. Allocate it, if necessary. */
694template<typename T, typename A>
695inline void
18e1fd75 696vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
0823efed 697{
9771b263
DN
698 unsigned oldlen = vec_safe_length (v);
699 gcc_checking_assert (len >= oldlen);
700 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
18e1fd75 701 v->quick_grow (len);
0823efed 702}
9ba5ff0f 703
ada55151 704
9771b263
DN
705/* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
706template<typename T, typename A>
707inline void
18e1fd75 708vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
9771b263
DN
709{
710 unsigned oldlen = vec_safe_length (v);
711 vec_safe_grow (v, len PASS_MEM_STAT);
c3684b7b 712 vec_default_construct (v->address () + oldlen, len - oldlen);
9771b263 713}
ada55151 714
0823efed 715
9771b263
DN
716/* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
717template<typename T, typename A>
718inline bool
719vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
0823efed 720{
9771b263
DN
721 if (v)
722 return v->iterate (ix, ptr);
0823efed
DN
723 else
724 {
725 *ptr = 0;
726 return false;
727 }
728}
729
9771b263
DN
730template<typename T, typename A>
731inline bool
732vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
0823efed 733{
9771b263
DN
734 if (v)
735 return v->iterate (ix, ptr);
0823efed
DN
736 else
737 {
738 *ptr = 0;
739 return false;
740 }
741}
ada55151 742
bd0c3bfd 743
9771b263
DN
744/* If V has no room for one more element, reallocate it. Then call
745 V->quick_push(OBJ). */
746template<typename T, typename A>
747inline T *
18e1fd75 748vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
9771b263
DN
749{
750 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
18e1fd75 751 return v->quick_push (obj);
9771b263 752}
ac47786e 753
ac47786e 754
9771b263
DN
755/* if V has no room for one more element, reallocate it. Then call
756 V->quick_insert(IX, OBJ). */
757template<typename T, typename A>
758inline void
759vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
18e1fd75 760 CXX_MEM_STAT_INFO)
9771b263
DN
761{
762 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
763 v->quick_insert (ix, obj);
764}
8ffa0351 765
8ffa0351 766
9771b263
DN
767/* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
768template<typename T, typename A>
769inline void
770vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
771{
772 if (v)
773 v->truncate (size);
774}
c021f10b 775
c021f10b 776
9771b263
DN
777/* If SRC is not NULL, return a pointer to a copy of it. */
778template<typename T, typename A>
779inline vec<T, A, vl_embed> *
b3bb0eb9 780vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
9771b263 781{
b3bb0eb9 782 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
9771b263 783}
0823efed 784
9771b263
DN
785/* Copy the elements from SRC to the end of DST as if by memcpy.
786 Reallocate DST, if necessary. */
787template<typename T, typename A>
788inline void
9e3a5131 789vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
18e1fd75 790 CXX_MEM_STAT_INFO)
9771b263
DN
791{
792 unsigned src_len = vec_safe_length (src);
793 if (src_len)
794 {
18e1fd75
DN
795 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
796 PASS_MEM_STAT);
9771b263
DN
797 dst->splice (*src);
798 }
799}
0823efed 800
12e109d1
TS
801/* Return true if SEARCH is an element of V. Note that this is O(N) in the
802 size of the vector and so should be used with care. */
803
804template<typename T, typename A>
805inline bool
806vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
807{
808 return v ? v->contains (search) : false;
809}
0823efed 810
9771b263
DN
811/* Index into vector. Return the IX'th element. IX must be in the
812 domain of the vector. */
0823efed 813
9771b263
DN
814template<typename T, typename A>
815inline const T &
816vec<T, A, vl_embed>::operator[] (unsigned ix) const
817{
30f641cd
RS
818 gcc_checking_assert (ix < m_vecpfx.m_num);
819 return m_vecdata[ix];
9771b263 820}
0823efed 821
9771b263
DN
822template<typename T, typename A>
823inline T &
824vec<T, A, vl_embed>::operator[] (unsigned ix)
0823efed 825{
30f641cd
RS
826 gcc_checking_assert (ix < m_vecpfx.m_num);
827 return m_vecdata[ix];
0823efed
DN
828}
829
bd0c3bfd 830
9771b263 831/* Get the final element of the vector, which must not be empty. */
0823efed 832
9771b263
DN
833template<typename T, typename A>
834inline T &
835vec<T, A, vl_embed>::last (void)
0823efed 836{
30f641cd
RS
837 gcc_checking_assert (m_vecpfx.m_num > 0);
838 return (*this)[m_vecpfx.m_num - 1];
0823efed
DN
839}
840
841
9771b263
DN
842/* If this vector has space for NELEMS additional entries, return
843 true. You usually only need to use this if you are doing your
844 own vector reallocation, for instance on an embedded vector. This
845 returns true in exactly the same circumstances that vec::reserve
846 will. */
bd0c3bfd 847
9771b263
DN
848template<typename T, typename A>
849inline bool
850vec<T, A, vl_embed>::space (unsigned nelems) const
851{
30f641cd 852 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
9771b263 853}
bd0c3bfd 854
bd0c3bfd 855
9771b263
DN
856/* Return iteration condition and update PTR to point to the IX'th
857 element of this vector. Use this to iterate over the elements of a
858 vector as follows,
bd0c3bfd 859
c3284718 860 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
9771b263 861 continue; */
bd0c3bfd 862
9771b263
DN
863template<typename T, typename A>
864inline bool
865vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
0823efed 866{
30f641cd 867 if (ix < m_vecpfx.m_num)
9771b263 868 {
30f641cd 869 *ptr = m_vecdata[ix];
9771b263
DN
870 return true;
871 }
872 else
873 {
874 *ptr = 0;
875 return false;
876 }
0823efed
DN
877}
878
9ba5ff0f 879
9771b263
DN
880/* Return iteration condition and update *PTR to point to the
881 IX'th element of this vector. Use this to iterate over the
882 elements of a vector as follows,
ada55151 883
c3284718 884 for (ix = 0; v->iterate (ix, &ptr); ix++)
9771b263 885 continue;
4c254e68 886
9771b263
DN
887 This variant is for vectors of objects. */
888
889template<typename T, typename A>
890inline bool
891vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
0823efed 892{
30f641cd 893 if (ix < m_vecpfx.m_num)
9771b263 894 {
30f641cd 895 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
9771b263
DN
896 return true;
897 }
898 else
0823efed 899 {
9771b263
DN
900 *ptr = 0;
901 return false;
0823efed 902 }
0823efed 903}
9ba5ff0f 904
9ba5ff0f 905
9771b263 906/* Return a pointer to a copy of this vector. */
4038c495 907
9771b263
DN
908template<typename T, typename A>
909inline vec<T, A, vl_embed> *
910vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
0823efed 911{
9771b263
DN
912 vec<T, A, vl_embed> *new_vec = NULL;
913 unsigned len = length ();
bd0c3bfd 914 if (len)
0823efed 915 {
9771b263 916 vec_alloc (new_vec, len PASS_MEM_STAT);
bd0c3bfd 917 new_vec->embedded_init (len, len);
c3684b7b 918 vec_copy_construct (new_vec->address (), m_vecdata, len);
0823efed 919 }
bd0c3bfd
DN
920 return new_vec;
921}
b8698a0f 922
9ba5ff0f 923
9771b263
DN
924/* Copy the elements from SRC to the end of this vector as if by memcpy.
925 The vector must have sufficient headroom available. */
9ba5ff0f 926
9771b263
DN
927template<typename T, typename A>
928inline void
9e3a5131 929vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
9771b263 930{
c3284718 931 unsigned len = src.length ();
9771b263
DN
932 if (len)
933 {
934 gcc_checking_assert (space (len));
c3684b7b 935 vec_copy_construct (end (), src.address (), len);
30f641cd 936 m_vecpfx.m_num += len;
9771b263
DN
937 }
938}
939
940template<typename T, typename A>
941inline void
9e3a5131 942vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
0823efed 943{
9771b263
DN
944 if (src)
945 splice (*src);
0823efed
DN
946}
947
ada55151 948
9771b263
DN
949/* Push OBJ (a new element) onto the end of the vector. There must be
950 sufficient space in the vector. Return a pointer to the slot
951 where OBJ was inserted. */
9ba5ff0f 952
9771b263
DN
953template<typename T, typename A>
954inline T *
955vec<T, A, vl_embed>::quick_push (const T &obj)
0823efed 956{
9771b263 957 gcc_checking_assert (space (1));
30f641cd 958 T *slot = &m_vecdata[m_vecpfx.m_num++];
9771b263
DN
959 *slot = obj;
960 return slot;
0823efed
DN
961}
962
ada55151 963
9771b263 964/* Pop and return the last element off the end of the vector. */
efb7e1e0 965
9771b263
DN
966template<typename T, typename A>
967inline T &
968vec<T, A, vl_embed>::pop (void)
0823efed 969{
9771b263 970 gcc_checking_assert (length () > 0);
30f641cd 971 return m_vecdata[--m_vecpfx.m_num];
9771b263 972}
0823efed 973
0823efed 974
9771b263
DN
975/* Set the length of the vector to SIZE. The new length must be less
976 than or equal to the current length. This is an O(1) operation. */
977
978template<typename T, typename A>
979inline void
980vec<T, A, vl_embed>::truncate (unsigned size)
981{
982 gcc_checking_assert (length () >= size);
30f641cd 983 m_vecpfx.m_num = size;
0823efed
DN
984}
985
efb7e1e0 986
9771b263
DN
987/* Insert an element, OBJ, at the IXth position of this vector. There
988 must be sufficient space. */
0823efed 989
9771b263
DN
990template<typename T, typename A>
991inline void
992vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
0823efed 993{
9771b263
DN
994 gcc_checking_assert (length () < allocated ());
995 gcc_checking_assert (ix <= length ());
30f641cd
RS
996 T *slot = &m_vecdata[ix];
997 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
9771b263 998 *slot = obj;
0823efed
DN
999}
1000
989ea525 1001
9771b263
DN
1002/* Remove an element from the IXth position of this vector. Ordering of
1003 remaining elements is preserved. This is an O(N) operation due to
1004 memmove. */
989ea525 1005
9771b263
DN
1006template<typename T, typename A>
1007inline void
1008vec<T, A, vl_embed>::ordered_remove (unsigned ix)
0823efed 1009{
c3284718 1010 gcc_checking_assert (ix < length ());
30f641cd
RS
1011 T *slot = &m_vecdata[ix];
1012 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
9771b263
DN
1013}
1014
1015
1016/* Remove an element from the IXth position of this vector. Ordering of
1017 remaining elements is destroyed. This is an O(1) operation. */
1018
1019template<typename T, typename A>
1020inline void
1021vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1022{
c3284718 1023 gcc_checking_assert (ix < length ());
30f641cd 1024 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
9771b263
DN
1025}
1026
1027
1028/* Remove LEN elements starting at the IXth. Ordering is retained.
1029 This is an O(N) operation due to memmove. */
1030
1031template<typename T, typename A>
1032inline void
1033vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1034{
c3284718 1035 gcc_checking_assert (ix + len <= length ());
30f641cd
RS
1036 T *slot = &m_vecdata[ix];
1037 m_vecpfx.m_num -= len;
1038 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
9771b263
DN
1039}
1040
1041
1042/* Sort the contents of this vector with qsort. CMP is the comparison
1043 function to pass to qsort. */
1044
1045template<typename T, typename A>
1046inline void
1047vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
1048{
32500433
RB
1049 if (length () > 1)
1050 ::qsort (address (), length (), sizeof (T), cmp);
1051}
1052
1053
1054/* Search the contents of the sorted vector with a binary search.
1055 CMP is the comparison function to pass to bsearch. */
1056
1057template<typename T, typename A>
1058inline T *
1059vec<T, A, vl_embed>::bsearch (const void *key,
1060 int (*compar) (const void *, const void *))
1061{
1062 const void *base = this->address ();
1063 size_t nmemb = this->length ();
1064 size_t size = sizeof (T);
1065 /* The following is a copy of glibc stdlib-bsearch.h. */
1066 size_t l, u, idx;
1067 const void *p;
1068 int comparison;
1069
1070 l = 0;
1071 u = nmemb;
1072 while (l < u)
1073 {
1074 idx = (l + u) / 2;
1075 p = (const void *) (((const char *) base) + (idx * size));
1076 comparison = (*compar) (key, p);
1077 if (comparison < 0)
1078 u = idx;
1079 else if (comparison > 0)
1080 l = idx + 1;
1081 else
1082 return (T *)const_cast<void *>(p);
1083 }
1084
1085 return NULL;
9771b263
DN
1086}
1087
12e109d1
TS
1088/* Return true if SEARCH is an element of V. Note that this is O(N) in the
1089 size of the vector and so should be used with care. */
1090
1091template<typename T, typename A>
1092inline bool
1093vec<T, A, vl_embed>::contains (const T &search) const
1094{
1095 unsigned int len = length ();
1096 for (unsigned int i = 0; i < len; i++)
1097 if ((*this)[i] == search)
1098 return true;
1099
1100 return false;
1101}
9771b263
DN
1102
1103/* Find and return the first position in which OBJ could be inserted
1104 without changing the ordering of this vector. LESSTHAN is a
1105 function that returns true if the first argument is strictly less
1106 than the second. */
1107
1108template<typename T, typename A>
1109unsigned
1110vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1111 const
1112{
1113 unsigned int len = length ();
1114 unsigned int half, middle;
1115 unsigned int first = 0;
1116 while (len > 0)
0823efed 1117 {
9771b263
DN
1118 half = len / 2;
1119 middle = first;
1120 middle += half;
1121 T middle_elem = (*this)[middle];
1122 if (lessthan (middle_elem, obj))
1123 {
1124 first = middle;
1125 ++first;
1126 len = len - half - 1;
1127 }
1128 else
1129 len = half;
0823efed 1130 }
9771b263 1131 return first;
0823efed
DN
1132}
1133
0823efed 1134
9771b263
DN
1135/* Return the number of bytes needed to embed an instance of an
1136 embeddable vec inside another data structure.
bd0c3bfd 1137
9771b263
DN
1138 Use these methods to determine the required size and initialization
1139 of a vector V of type T embedded within another structure (as the
1140 final member):
1141
1142 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
c3284718 1143 void v->embedded_init (unsigned alloc, unsigned num);
9771b263
DN
1144
1145 These allow the caller to perform the memory allocation. */
1146
1147template<typename T, typename A>
1148inline size_t
1149vec<T, A, vl_embed>::embedded_size (unsigned alloc)
0823efed 1150{
9771b263 1151 typedef vec<T, A, vl_embed> vec_embedded;
30f641cd 1152 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
0823efed
DN
1153}
1154
ada55151 1155
9771b263
DN
1156/* Initialize the vector to contain room for ALLOC elements and
1157 NUM active elements. */
bd0c3bfd 1158
9771b263
DN
1159template<typename T, typename A>
1160inline void
3a938d75 1161vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
0823efed 1162{
30f641cd 1163 m_vecpfx.m_alloc = alloc;
3a938d75 1164 m_vecpfx.m_using_auto_storage = aut;
30f641cd 1165 m_vecpfx.m_num = num;
0823efed
DN
1166}
1167
ada55151 1168
9771b263
DN
1169/* Grow the vector to a specific length. LEN must be as long or longer than
1170 the current length. The new elements are uninitialized. */
0823efed 1171
9771b263
DN
1172template<typename T, typename A>
1173inline void
1174vec<T, A, vl_embed>::quick_grow (unsigned len)
0823efed 1175{
30f641cd
RS
1176 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1177 m_vecpfx.m_num = len;
0823efed
DN
1178}
1179
ada55151 1180
9771b263
DN
1181/* Grow the vector to a specific length. LEN must be as long or longer than
1182 the current length. The new elements are initialized to zero. */
0823efed 1183
9771b263
DN
1184template<typename T, typename A>
1185inline void
1186vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
0823efed 1187{
9771b263 1188 unsigned oldlen = length ();
c3684b7b 1189 size_t growby = len - oldlen;
9771b263 1190 quick_grow (len);
c3684b7b
MS
1191 if (growby != 0)
1192 vec_default_construct (address () + oldlen, growby);
0823efed
DN
1193}
1194
9771b263 1195/* Garbage collection support for vec<T, A, vl_embed>. */
d4e6fecb 1196
bd0c3bfd 1197template<typename T>
bd0c3bfd 1198void
9771b263 1199gt_ggc_mx (vec<T, va_gc> *v)
0823efed 1200{
9771b263
DN
1201 extern void gt_ggc_mx (T &);
1202 for (unsigned i = 0; i < v->length (); i++)
1203 gt_ggc_mx ((*v)[i]);
0823efed
DN
1204}
1205
bd0c3bfd 1206template<typename T>
bd0c3bfd 1207void
9771b263 1208gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
0823efed 1209{
9771b263
DN
1210 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1211 be traversed. */
0823efed
DN
1212}
1213
a590ac65 1214
9771b263 1215/* PCH support for vec<T, A, vl_embed>. */
0823efed 1216
9771b263 1217template<typename T, typename A>
bd0c3bfd 1218void
9771b263 1219gt_pch_nx (vec<T, A, vl_embed> *v)
0823efed 1220{
9771b263
DN
1221 extern void gt_pch_nx (T &);
1222 for (unsigned i = 0; i < v->length (); i++)
1223 gt_pch_nx ((*v)[i]);
0823efed
DN
1224}
1225
9771b263
DN
1226template<typename T, typename A>
1227void
1228gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1229{
1230 for (unsigned i = 0; i < v->length (); i++)
1231 op (&((*v)[i]), cookie);
1232}
ada55151 1233
9771b263 1234template<typename T, typename A>
bd0c3bfd 1235void
9771b263 1236gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
bd0c3bfd 1237{
9771b263
DN
1238 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1239 for (unsigned i = 0; i < v->length (); i++)
1240 gt_pch_nx (&((*v)[i]), op, cookie);
bd0c3bfd 1241}
9ba5ff0f 1242
bd0c3bfd 1243
9771b263
DN
1244/* Space efficient vector. These vectors can grow dynamically and are
1245 allocated together with their control data. They are suited to be
1246 included in data structures. Prior to initial allocation, they
1247 only take a single word of storage.
1248
1249 These vectors are implemented as a pointer to an embeddable vector.
1250 The semantics allow for this pointer to be NULL to represent empty
1251 vectors. This way, empty vectors occupy minimal space in the
1252 structure containing them.
1253
1254 Properties:
1255
1256 - The whole vector and control data are allocated in a single
1257 contiguous block.
1258 - The whole vector may be re-allocated.
1259 - Vector data may grow and shrink.
1260 - Access and manipulation requires a pointer test and
1261 indirection.
1262 - It requires 1 word of storage (prior to vector allocation).
1263
1264
1265 Limitations:
1266
1267 These vectors must be PODs because they are stored in unions.
1268 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1269 As long as we use C++03, we cannot have constructors nor
1270 destructors in classes that are stored in unions. */
1271
ff4c81cc
TS
1272template<typename T>
1273struct vec<T, va_heap, vl_ptr>
9771b263
DN
1274{
1275public:
1276 /* Memory allocation and deallocation for the embedded vector.
1277 Needed because we cannot have proper ctors/dtors defined. */
1278 void create (unsigned nelems CXX_MEM_STAT_INFO);
1279 void release (void);
1280
1281 /* Vector operations. */
1282 bool exists (void) const
30f641cd 1283 { return m_vec != NULL; }
9771b263
DN
1284
1285 bool is_empty (void) const
30f641cd 1286 { return m_vec ? m_vec->is_empty () : true; }
9771b263
DN
1287
1288 unsigned length (void) const
30f641cd 1289 { return m_vec ? m_vec->length () : 0; }
9771b263
DN
1290
1291 T *address (void)
30f641cd 1292 { return m_vec ? m_vec->m_vecdata : NULL; }
9771b263
DN
1293
1294 const T *address (void) const
30f641cd 1295 { return m_vec ? m_vec->m_vecdata : NULL; }
9771b263 1296
12e109d1
TS
1297 T *begin () { return address (); }
1298 const T *begin () const { return address (); }
1299 T *end () { return begin () + length (); }
1300 const T *end () const { return begin () + length (); }
9771b263 1301 const T &operator[] (unsigned ix) const
30f641cd 1302 { return (*m_vec)[ix]; }
9771b263
DN
1303
1304 bool operator!=(const vec &other) const
1305 { return !(*this == other); }
1306
1307 bool operator==(const vec &other) const
c3284718 1308 { return address () == other.address (); }
9771b263
DN
1309
1310 T &operator[] (unsigned ix)
30f641cd 1311 { return (*m_vec)[ix]; }
9771b263
DN
1312
1313 T &last (void)
30f641cd 1314 { return m_vec->last (); }
9771b263
DN
1315
1316 bool space (int nelems) const
30f641cd 1317 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
9771b263
DN
1318
1319 bool iterate (unsigned ix, T *p) const;
1320 bool iterate (unsigned ix, T **p) const;
1321 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1322 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1323 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
9e3a5131
RS
1324 void splice (const vec &);
1325 void safe_splice (const vec & CXX_MEM_STAT_INFO);
9771b263
DN
1326 T *quick_push (const T &);
1327 T *safe_push (const T &CXX_MEM_STAT_INFO);
1328 T &pop (void);
1329 void truncate (unsigned);
1330 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1331 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1332 void quick_grow (unsigned);
1333 void quick_grow_cleared (unsigned);
1334 void quick_insert (unsigned, const T &);
1335 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1336 void ordered_remove (unsigned);
1337 void unordered_remove (unsigned);
1338 void block_remove (unsigned, unsigned);
1339 void qsort (int (*) (const void *, const void *));
32500433 1340 T *bsearch (const void *key, int (*compar)(const void *, const void *));
9771b263 1341 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
12e109d1 1342 bool contains (const T &search) const;
9771b263 1343
ff4c81cc 1344 bool using_auto_storage () const;
9771b263 1345
38f2ca32
DN
1346 /* FIXME - This field should be private, but we need to cater to
1347 compilers that have stricter notions of PODness for types. */
ff4c81cc 1348 vec<T, va_heap, vl_embed> *m_vec;
9771b263
DN
1349};
1350
1351
00f96dc9
TS
1352/* auto_vec is a subclass of vec that automatically manages creating and
1353 releasing the internal vector. If N is non zero then it has N elements of
1354 internal storage. The default is no internal storage, and you probably only
1355 want to ask for internal storage for vectors on the stack because if the
1356 size of the vector is larger than the internal storage that space is wasted.
1357 */
1358template<typename T, size_t N = 0>
ef062b13
TS
1359class auto_vec : public vec<T, va_heap>
1360{
1361public:
00f96dc9 1362 auto_vec ()
ff4c81cc 1363 {
3a938d75
RB
1364 m_auto.embedded_init (MAX (N, 2), 0, 1);
1365 this->m_vec = &m_auto;
ff4c81cc
TS
1366 }
1367
a5c9f2b7
TS
1368 auto_vec (size_t s)
1369 {
1370 if (s > N)
1371 {
1372 this->create (s);
1373 return;
1374 }
1375
1376 m_auto.embedded_init (MAX (N, 2), 0, 1);
1377 this->m_vec = &m_auto;
1378 }
1379
00f96dc9 1380 ~auto_vec ()
ff4c81cc
TS
1381 {
1382 this->release ();
1383 }
1384
1385private:
3a938d75
RB
1386 vec<T, va_heap, vl_embed> m_auto;
1387 T m_data[MAX (N - 1, 1)];
9771b263 1388};
0823efed 1389
00f96dc9
TS
1390/* auto_vec is a sub class of vec whose storage is released when it is
1391 destroyed. */
1392template<typename T>
1393class auto_vec<T, 0> : public vec<T, va_heap>
1394{
1395public:
1396 auto_vec () { this->m_vec = NULL; }
1397 auto_vec (size_t n) { this->create (n); }
1398 ~auto_vec () { this->release (); }
1399};
1400
ada55151 1401
9771b263
DN
1402/* Allocate heap memory for pointer V and create the internal vector
1403 with space for NELEMS elements. If NELEMS is 0, the internal
1404 vector is initialized to empty. */
9ba5ff0f 1405
0823efed 1406template<typename T>
9771b263 1407inline void
18e1fd75 1408vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
0823efed 1409{
9771b263
DN
1410 v = new vec<T>;
1411 v->create (nelems PASS_MEM_STAT);
0823efed
DN
1412}
1413
ada55151 1414
9771b263 1415/* Conditionally allocate heap memory for VEC and its internal vector. */
9ba5ff0f 1416
0823efed 1417template<typename T>
9771b263 1418inline void
18e1fd75 1419vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
0823efed 1420{
9771b263
DN
1421 if (!vec)
1422 vec_alloc (vec, nelems PASS_MEM_STAT);
0823efed
DN
1423}
1424
ada55151 1425
9771b263 1426/* Free the heap memory allocated by vector V and set it to NULL. */
9e28024a 1427
0823efed 1428template<typename T>
9771b263
DN
1429inline void
1430vec_free (vec<T> *&v)
0823efed 1431{
9771b263
DN
1432 if (v == NULL)
1433 return;
1434
1435 v->release ();
1436 delete v;
1437 v = NULL;
0823efed 1438}
9ba5ff0f 1439
aaaa46d2 1440
9771b263
DN
1441/* Return iteration condition and update PTR to point to the IX'th
1442 element of this vector. Use this to iterate over the elements of a
1443 vector as follows,
1444
c3284718 1445 for (ix = 0; v.iterate (ix, &ptr); ix++)
9771b263
DN
1446 continue; */
1447
ff4c81cc 1448template<typename T>
9771b263 1449inline bool
ff4c81cc 1450vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
fc64b448 1451{
30f641cd
RS
1452 if (m_vec)
1453 return m_vec->iterate (ix, ptr);
9771b263 1454 else
0823efed 1455 {
9771b263
DN
1456 *ptr = 0;
1457 return false;
0823efed 1458 }
a0ef884f
NS
1459}
1460
bd0c3bfd 1461
9771b263
DN
1462/* Return iteration condition and update *PTR to point to the
1463 IX'th element of this vector. Use this to iterate over the
1464 elements of a vector as follows,
1465
c3284718 1466 for (ix = 0; v->iterate (ix, &ptr); ix++)
9771b263 1467 continue;
c2569604 1468
9771b263 1469 This variant is for vectors of objects. */
c2569604 1470
ff4c81cc 1471template<typename T>
9771b263 1472inline bool
ff4c81cc 1473vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
0823efed 1474{
30f641cd
RS
1475 if (m_vec)
1476 return m_vec->iterate (ix, ptr);
9771b263 1477 else
bd0c3bfd 1478 {
9771b263
DN
1479 *ptr = 0;
1480 return false;
bd0c3bfd 1481 }
9771b263
DN
1482}
1483
1484
1485/* Convenience macro for forward iteration. */
1486#define FOR_EACH_VEC_ELT(V, I, P) \
1487 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1488
1489#define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1490 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1491
1492/* Likewise, but start from FROM rather than 0. */
1493#define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1494 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
bd0c3bfd 1495
9771b263
DN
1496/* Convenience macro for reverse iteration. */
1497#define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1498 for (I = (V).length () - 1; \
1499 (V).iterate ((I), &(P)); \
1500 (I)--)
1501
1502#define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1503 for (I = vec_safe_length (V) - 1; \
1504 vec_safe_iterate ((V), (I), &(P)); \
1505 (I)--)
1506
1507
1508/* Return a copy of this vector. */
1509
ff4c81cc
TS
1510template<typename T>
1511inline vec<T, va_heap, vl_ptr>
1512vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
9771b263 1513{
ff4c81cc 1514 vec<T, va_heap, vl_ptr> new_vec = vNULL;
9771b263 1515 if (length ())
30f641cd 1516 new_vec.m_vec = m_vec->copy ();
9771b263 1517 return new_vec;
c2569604
ILT
1518}
1519
c2569604 1520
9771b263
DN
1521/* Ensure that the vector has at least RESERVE slots available (if
1522 EXACT is false), or exactly RESERVE slots available (if EXACT is
1523 true).
c2569604 1524
9771b263
DN
1525 This may create additional headroom if EXACT is false.
1526
1527 Note that this can cause the embedded vector to be reallocated.
1528 Returns true iff reallocation actually occurred. */
1529
ff4c81cc 1530template<typename T>
9771b263 1531inline bool
ff4c81cc
TS
1532vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1533{
3a938d75 1534 if (space (nelems))
ff4c81cc
TS
1535 return false;
1536
1537 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1538 this is necessary because it doesn't have enough information to know the
1539 embedded vector is in auto storage, and so should not be freed. */
1540 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1541 unsigned int oldsize = 0;
1542 bool handle_auto_vec = m_vec && using_auto_storage ();
1543 if (handle_auto_vec)
1544 {
1545 m_vec = NULL;
1546 oldsize = oldvec->length ();
1547 nelems += oldsize;
1548 }
1549
1550 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1551 if (handle_auto_vec)
1552 {
c3684b7b 1553 vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
ff4c81cc
TS
1554 m_vec->m_vecpfx.m_num = oldsize;
1555 }
1556
1557 return true;
9771b263
DN
1558}
1559
bd0c3bfd 1560
9771b263
DN
1561/* Ensure that this vector has exactly NELEMS slots available. This
1562 will not create additional headroom. Note this can cause the
1563 embedded vector to be reallocated. Returns true iff reallocation
1564 actually occurred. */
bd0c3bfd 1565
ff4c81cc 1566template<typename T>
9771b263 1567inline bool
ff4c81cc 1568vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
9771b263
DN
1569{
1570 return reserve (nelems, true PASS_MEM_STAT);
1571}
1572
1573
1574/* Create the internal vector and reserve NELEMS for it. This is
1575 exactly like vec::reserve, but the internal vector is
1576 unconditionally allocated from scratch. The old one, if it
1577 existed, is lost. */
1578
ff4c81cc 1579template<typename T>
9771b263 1580inline void
ff4c81cc 1581vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
9771b263 1582{
30f641cd 1583 m_vec = NULL;
9771b263
DN
1584 if (nelems > 0)
1585 reserve_exact (nelems PASS_MEM_STAT);
1586}
1587
1588
1589/* Free the memory occupied by the embedded vector. */
1590
ff4c81cc 1591template<typename T>
9771b263 1592inline void
ff4c81cc 1593vec<T, va_heap, vl_ptr>::release (void)
9771b263 1594{
ff4c81cc
TS
1595 if (!m_vec)
1596 return;
9771b263 1597
ff4c81cc
TS
1598 if (using_auto_storage ())
1599 {
3a938d75 1600 m_vec->m_vecpfx.m_num = 0;
ff4c81cc
TS
1601 return;
1602 }
1603
1604 va_heap::release (m_vec);
1605}
9771b263
DN
1606
1607/* Copy the elements from SRC to the end of this vector as if by memcpy.
1608 SRC and this vector must be allocated with the same memory
1609 allocation mechanism. This vector is assumed to have sufficient
1610 headroom available. */
1611
ff4c81cc 1612template<typename T>
9771b263 1613inline void
9e3a5131 1614vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
9771b263 1615{
30f641cd
RS
1616 if (src.m_vec)
1617 m_vec->splice (*(src.m_vec));
9771b263
DN
1618}
1619
1620
1621/* Copy the elements in SRC to the end of this vector as if by memcpy.
1622 SRC and this vector must be allocated with the same mechanism.
1623 If there is not enough headroom in this vector, it will be reallocated
1624 as needed. */
1625
ff4c81cc 1626template<typename T>
9771b263 1627inline void
9e3a5131 1628vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
ff4c81cc 1629 MEM_STAT_DECL)
9771b263 1630{
c3284718 1631 if (src.length ())
0823efed 1632 {
c3284718 1633 reserve_exact (src.length ());
9771b263 1634 splice (src);
0823efed 1635 }
9771b263
DN
1636}
1637
1638
1639/* Push OBJ (a new element) onto the end of the vector. There must be
1640 sufficient space in the vector. Return a pointer to the slot
1641 where OBJ was inserted. */
1642
ff4c81cc 1643template<typename T>
9771b263 1644inline T *
ff4c81cc 1645vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
9771b263 1646{
30f641cd 1647 return m_vec->quick_push (obj);
9771b263
DN
1648}
1649
1650
1651/* Push a new element OBJ onto the end of this vector. Reallocates
1652 the embedded vector, if needed. Return a pointer to the slot where
1653 OBJ was inserted. */
1654
ff4c81cc 1655template<typename T>
9771b263 1656inline T *
ff4c81cc 1657vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
9771b263
DN
1658{
1659 reserve (1, false PASS_MEM_STAT);
1660 return quick_push (obj);
1661}
1662
bd0c3bfd 1663
9771b263
DN
1664/* Pop and return the last element off the end of the vector. */
1665
ff4c81cc 1666template<typename T>
9771b263 1667inline T &
ff4c81cc 1668vec<T, va_heap, vl_ptr>::pop (void)
9771b263 1669{
30f641cd 1670 return m_vec->pop ();
9771b263
DN
1671}
1672
1673
1674/* Set the length of the vector to LEN. The new length must be less
1675 than or equal to the current length. This is an O(1) operation. */
1676
ff4c81cc 1677template<typename T>
9771b263 1678inline void
ff4c81cc 1679vec<T, va_heap, vl_ptr>::truncate (unsigned size)
9771b263 1680{
30f641cd
RS
1681 if (m_vec)
1682 m_vec->truncate (size);
9771b263
DN
1683 else
1684 gcc_checking_assert (size == 0);
1685}
1686
1687
1688/* Grow the vector to a specific length. LEN must be as long or
1689 longer than the current length. The new elements are
1690 uninitialized. Reallocate the internal vector, if needed. */
1691
ff4c81cc 1692template<typename T>
9771b263 1693inline void
ff4c81cc 1694vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
9771b263
DN
1695{
1696 unsigned oldlen = length ();
1697 gcc_checking_assert (oldlen <= len);
1698 reserve_exact (len - oldlen PASS_MEM_STAT);
27a7de71
RB
1699 if (m_vec)
1700 m_vec->quick_grow (len);
1701 else
1702 gcc_checking_assert (len == 0);
9771b263
DN
1703}
1704
1705
1706/* Grow the embedded vector to a specific length. LEN must be as
1707 long or longer than the current length. The new elements are
1708 initialized to zero. Reallocate the internal vector, if needed. */
1709
ff4c81cc 1710template<typename T>
9771b263 1711inline void
ff4c81cc 1712vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
9771b263
DN
1713{
1714 unsigned oldlen = length ();
c3684b7b 1715 size_t growby = len - oldlen;
0b435c16 1716 safe_grow (len PASS_MEM_STAT);
c3684b7b
MS
1717 if (growby != 0)
1718 vec_default_construct (address () + oldlen, growby);
9771b263
DN
1719}
1720
1721
1722/* Same as vec::safe_grow but without reallocation of the internal vector.
1723 If the vector cannot be extended, a runtime assertion will be triggered. */
1724
ff4c81cc 1725template<typename T>
9771b263 1726inline void
ff4c81cc 1727vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
9771b263 1728{
30f641cd
RS
1729 gcc_checking_assert (m_vec);
1730 m_vec->quick_grow (len);
9771b263
DN
1731}
1732
1733
1734/* Same as vec::quick_grow_cleared but without reallocation of the
1735 internal vector. If the vector cannot be extended, a runtime
1736 assertion will be triggered. */
1737
ff4c81cc 1738template<typename T>
9771b263 1739inline void
ff4c81cc 1740vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
9771b263 1741{
30f641cd
RS
1742 gcc_checking_assert (m_vec);
1743 m_vec->quick_grow_cleared (len);
9771b263
DN
1744}
1745
1746
1747/* Insert an element, OBJ, at the IXth position of this vector. There
1748 must be sufficient space. */
1749
ff4c81cc 1750template<typename T>
9771b263 1751inline void
ff4c81cc 1752vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
9771b263 1753{
30f641cd 1754 m_vec->quick_insert (ix, obj);
9771b263
DN
1755}
1756
1757
1758/* Insert an element, OBJ, at the IXth position of the vector.
1759 Reallocate the embedded vector, if necessary. */
1760
ff4c81cc 1761template<typename T>
9771b263 1762inline void
ff4c81cc 1763vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
9771b263
DN
1764{
1765 reserve (1, false PASS_MEM_STAT);
1766 quick_insert (ix, obj);
1767}
1768
1769
1770/* Remove an element from the IXth position of this vector. Ordering of
1771 remaining elements is preserved. This is an O(N) operation due to
1772 a memmove. */
1773
ff4c81cc 1774template<typename T>
9771b263 1775inline void
ff4c81cc 1776vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
9771b263 1777{
30f641cd 1778 m_vec->ordered_remove (ix);
9771b263
DN
1779}
1780
1781
1782/* Remove an element from the IXth position of this vector. Ordering
1783 of remaining elements is destroyed. This is an O(1) operation. */
1784
ff4c81cc 1785template<typename T>
9771b263 1786inline void
ff4c81cc 1787vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
9771b263 1788{
30f641cd 1789 m_vec->unordered_remove (ix);
9771b263
DN
1790}
1791
1792
1793/* Remove LEN elements starting at the IXth. Ordering is retained.
1794 This is an O(N) operation due to memmove. */
1795
ff4c81cc 1796template<typename T>
9771b263 1797inline void
ff4c81cc 1798vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
9771b263 1799{
30f641cd 1800 m_vec->block_remove (ix, len);
9771b263
DN
1801}
1802
1803
1804/* Sort the contents of this vector with qsort. CMP is the comparison
1805 function to pass to qsort. */
1806
ff4c81cc 1807template<typename T>
9771b263 1808inline void
ff4c81cc 1809vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
9771b263 1810{
30f641cd
RS
1811 if (m_vec)
1812 m_vec->qsort (cmp);
9771b263
DN
1813}
1814
1815
32500433
RB
1816/* Search the contents of the sorted vector with a binary search.
1817 CMP is the comparison function to pass to bsearch. */
1818
1819template<typename T>
1820inline T *
1821vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1822 int (*cmp) (const void *, const void *))
1823{
1824 if (m_vec)
1825 return m_vec->bsearch (key, cmp);
1826 return NULL;
1827}
1828
1829
9771b263
DN
1830/* Find and return the first position in which OBJ could be inserted
1831 without changing the ordering of this vector. LESSTHAN is a
1832 function that returns true if the first argument is strictly less
1833 than the second. */
1834
ff4c81cc 1835template<typename T>
9771b263 1836inline unsigned
ff4c81cc
TS
1837vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1838 bool (*lessthan)(const T &, const T &))
38f2ca32 1839 const
9771b263 1840{
30f641cd 1841 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
c2569604
ILT
1842}
1843
12e109d1
TS
1844/* Return true if SEARCH is an element of V. Note that this is O(N) in the
1845 size of the vector and so should be used with care. */
1846
1847template<typename T>
1848inline bool
1849vec<T, va_heap, vl_ptr>::contains (const T &search) const
1850{
1851 return m_vec ? m_vec->contains (search) : false;
1852}
1853
ff4c81cc
TS
1854template<typename T>
1855inline bool
1856vec<T, va_heap, vl_ptr>::using_auto_storage () const
1857{
3a938d75 1858 return m_vec->m_vecpfx.m_using_auto_storage;
ff4c81cc
TS
1859}
1860
b58d3df2
ML
1861/* Release VEC and call release of all element vectors. */
1862
1863template<typename T>
1864inline void
1865release_vec_vec (vec<vec<T> > &vec)
1866{
1867 for (unsigned i = 0; i < vec.length (); i++)
1868 vec[i].release ();
1869
1870 vec.release ();
1871}
1872
26da79f5 1873#if (GCC_VERSION >= 3000)
30f641cd 1874# pragma GCC poison m_vec m_vecpfx m_vecdata
26da79f5
JJ
1875#endif
1876
9771b263 1877#endif // GCC_VEC_H